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Abstract

We summarize different levels of RNA structure prediction, from classi-
cal 2D structure to extended secondary structure and motif based research
towards 3D structure prediction of RNA. We outline the importance of
classical secondary structure during all those levels of structure prediction.

1 Introduction
The secondary structure model of RNA is at the center of most computational
work related to RNA. In this review we will sketch how recent research has
taken advantage of the increasing amount of experimentally solved RNA 3D
structures to move beyond the secondary structure view, but how it cannot
move away from it.

RNA secondary structure is defined by canonical AU, GC base-pairs and GU
wobble-pairs, which form between nucleotides typically within one RNA strand
to create anti-parallel A-type helices. Pseudoknot-free secondary structures can
be encoded as strings, e.g. in the Vienna dot-bracket notation, where nested
pairs of left and right parentheses signify nested base pairs, while dots signify
unpaired nucleotides (See Figure 1, box “Secondary Structure”).

RNA secondary structure can be efficiently predicted from the primary se-
quence using dynamic programming approaches. The easiest such algorithm
maximizes the number of base-pairs for a given sequence [1], while state-of-the-
art prediction tools [2] use an energy model with different energy contributions
for different loop types. This model takes the stacking of neighboring base pairs
into account and is often referred to as nearest neighbor model. The energy
parameters of the nearest neighbor model were derived from RNA melting ex-
periments collected by Turner et al [3]. These secondary structure prediction
algorithms can be used not only to predict the structure with the lowest free
energy, but also to generate the Boltzmann ensemble of suboptimal structures
[2, 4, 5]. By including data from chemical probing experiments such as SHAPE,
the reliability of the generated secondary structures can be further increased.
For an overview over state of the art techniques in secondary structure predic-
tion and their integration with chemical probing data, see the recent review by
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Lorenz et al.[6]. Pseudoknots increase the computational complexity, but simple
types can be predicted with dedicated software [7]

The great success of the secondary structure description of RNA is grounded
in the hierarchical nature of RNA folding [8]. Intra-helical interactions have
a significantly greater energy contribution than tertiary interactions. Thus,
energy barriers and in most cases energy differences between different secondary
structures are significantly higher than energy differences and barriers between
different 3D structures that correspond to the same secondary structure.

Secondary structure is useful in many approaches beyond simple structure
prediction: Sequence design [9, 10] aims at finding sequences that fold into
one or more predefined (meta-)stable structures. Folding kinetics [11] and co-
transcriptional folding [12, 13] look at the dynamic nature of RNA secondary
structure formation. Functional RNA secondary structures are expected to be
evolutionary conserved. Hence they can be detected in genomic data via com-
pensatory mutations and structure stability [14] or co-variance models (RNA
families) [15, 16]).

While some biological mechanisms can be understood on the basis of sec-
ondary structure alone, others require more detailed structure knowledge. In
this contribution we will therefore focus on approaches that go beyond classical
secondary structure.

On the other end of the spectrum lie methods that model RNA structures
in full atomistic resolution. In particular, Molecular Dynamics simulations can
be readily applied to RNA, with the AMBER force-field being most popular
in the RNA community. However, despite many RNA related corrections to
the AMBER force field, the current version still sometimes fails to identify the
correct native state among all possible states [17, 18]. Despite these challenges,
reduced model [19] and explicit solvent MD simulations[20] of the full ribosome
have been successfully performed, using experimental crystal structures as a
starting point and, in the case of the reduced model, for the construction of a
structure-based (Gō-like) potential. The reduced model simulation covered bio-
logically relevant time-scales, while the explicit solvent MD simulation covered
over a microsecond, enough to separate rapid local fluctuations from large-scale
collective movements. The latter simulation took several months on over 1000
computer cores.

In contrast to molecular dynamics from a given starting conformation, true
de-novo simulations are possible only for very small molecules, due to the huge
space of possible conformations and rugged energy landscapes, even when com-
bined with enhanced sampling techniques [21] Recent applications of classical
force fields to RNA folding range from the folding of G-quadruplexes [22] and
RNA-ion interactions [23] to the folding of tetra-loop hairpins [17].

While all-atom approaches are limited to small molecules or fragments, some-
what larger RNAs can be treated by methods working with a coarse grained
RNA representation, which we will review in sections 3 and 4. In both cases,
prior knowledge of the secondary structure is not required. Rather, correct sec-
ondary structure should emerge as a by-product of tertiary structure prediction.
Occasionally, known secondary structures are used as constraints to reduce the
search space. However, we will also discuss tertiary structure methods that
explicitly build on secondary structure knowledge and use it to enable a more
aggressive coarse-graining.

For a discussion on different ways of coarse graining in RNA 3D structure
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Figure 1: RNA structure prediction programs can be classified into hierarchical folding
approaches and all-in-one programs.

prediction and the distinction between theory based and knowledge based po-
tentials, see the recent review by Dawson et al. [24].

2 Extended secondary structure
While prediction of full tertiary RNA structures remains an extremely difficult
task, several promising avenues have emerged to go beyond classical secondary
structure without tackling actual 3D structure, e.g. by extending the notion of
secondary structure to include non-canonical interactions. In addition to the
Watson-Crick and GU wobble pairs, RNA nucleotides can form a wide variety
of interactions, both pairwise and between more than two nucleotides.

A highly useful classification of these non-canonical interactions was intro-
duced by Leontis and Westhof [25], by noting that almost all interactions happen
on one of 3 “edges” (the Watson-Crick, Hoogsteen, and sugar edge). Together
with the relative orientation of the glycosidic bond (cis or trans) this results
in 12 basepairing types, each of which has at least two hydrogen bonds and
was observed for at least some combinations of bases [26]. Additionally, weaker
interactions involving a single hydrogen bond, base triplets or multiplets and
G-quadruplexes have been observed in RNA molecules.

An RNA structure including some or all of the above-mentioned non-canonical
interactions, but not the full 3D information, will be called an extended sec-
ondary structure. Decomposition and motif search are the two main approaches
for the prediction of extended secondary structures.
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Extended secondary structures play an important role in many natural RNAs,
including ribosomal RNAs[27], where non-canonical basepairs contribute to the
movement of the ribosome[28].

2.1 Loop decomposition with non-canonical basepairs
Classical secondary structure prediction is based upon the unique decomposition
of the RNA structure into loops delimited only by canonical and G-U basepairs.
The program MC-Fold [29] generalizes the classical decomposition by considering
all types of non-canonical basepairs as loop delimiters. The resulting loops,
termed NCMs (Nucleotide cyclic motifs) in MC-Fold, are defined via a minimal
cycle basis of the RNA structure graph [30].

The programs MC-Fold [29] and the faster dynamic programming implemen-
tation MC-Fold-dp [31] find optimal and sub-optimal combinations of NCMs for
a given sequence according to a statistical energy function. This energy function
is composed of probability terms for finding individual and combinations of two
NCMs.

RNAwolf [31] further generalizes the MC-Fold approach by allowing each
nucleotide to form two interactions, thus supporting base-triplets which are ob-
served quite frequently in nature. RNAwolf, however, uses a simplified Nussinov-
like energy model, limiting its accuracy. Parametrization of a full featured en-
ergy model remains the big challenge for extended secondary structure predic-
tion, and it is unclear if enough data is available to estimate the large number
of parameters required. Moreover, while the nearest neighbor approximation
has been shown to be quite accurate for canonical secondary structures, the
distortion of the double helix through non-canonical pairs could well exert an
influence beyond its direct neighbors.

2.2 Motif based
An alternative to the loop decomposition above is to treat substructures con-
taining several non-canonical pairs as a single unit, called a tertiary structure
motif. Such an RNA motif is characterized by well-defined (base-pairing) inter-
actions [32, 33], a well-defined geometry [34, 35, 36],[37], or both. The prime
example of such a recurrent motif would be the kink turn motif, a sharp turn
between two adjacent helices introduced by a number of bases forming a dense
network of non-canonical interactions. This and three other common motifs can
be detected in single sequences or multiple sequence alignments using RMDetect
[38].

A well-maintained collection of such motifs can be found in the Motif Atlas
[39]. An accompanying search tool, JAR3D [40], can be used to predict the
presence of any motif from the Atlas in interior or hairpin loops of a secondary
structure.

Motif based approaches circumvent the problem of decomposing complex in-
teraction networks, such as the kink turn, and even allow for crossing interaction
within these motifs. On the downside, they cannot predict novel motifs and are
limited to the set of motifs that we observe in known tertiary structures. One
application of motifs is homology modeling, where non-homologous regions can
be filled in using motifs.[41]

4



Prediction of G-quadruplexes can also be seen as a motif based extension of
secondary structure. G-quadruplex prediction has recently been integrated in
the folding algorithms of the ViennaRNA package [42]. This integration presents
a significant advantage over pure sequence searches, as it properly treats the
competition between formation of G-quads and normal secondary structure.

Extended secondary structures are of great interest because functionally im-
portant interaction with proteins and other factors, typically take place in re-
gions of irregular structure, rather than perfect helices. Moreover, extended
secondary structures provide a much better starting place for modeling tertiary
structures. The kink turn again serves as a perfect example: The sharp bend
introduced by this motif will strongly affect the overall shape of the molecule,
but would be very hard to predict by any approach that is not aware of the
motif.

3 Hierarchical folding enables aggressive coarse-
graining

Figure 2: The secondary structure of
RNA defines fragments for fragment
assembly or aggressive coarse-graining.

While secondary structure can be used in
most 3D structure prediction programs
to constrain the search space, for some
programs the secondary structure is at
the core of the abstraction, on which the
coarse grained structure representation is
based.

Vfold3D [43, 44] creates a coarse
grained 3D scaffold from the RNA sec-
ondary structure and sequence using a
template based approach. For each loop
region, the best matching template is
selected from a template library con-
structed from PDB structures, where the
match quality is based on sequence sim-
ilarity. Helices are modeled as ideal A-
type helices. From this scaffold, a full
atom model is constructed which is then
relaxed using an AMBER all-atom force
field.

More than one fragment can be tried for each loop in an exhaustive way (5
fragments were tried in the RNA puzzles entries - see below). However, Vfold3D
does not contain any energy function to score these coarse-grained scaffolds, nor
does it contain a sampling protocol to sample combinations of such fragments.
Since it is unlikely that AMBER energy minimization will overcome larger energy
barriers, the quality of the prediction depends on the correct choice of fragments.
Thus Vfold works best when the structure of loops strongly depends on the
sequence (see section 2.2 about motifs) or Vfold contains close homologs of the
target RNA in its knowledge-base, while it has limitations whenever similar loop
sequences can adopt multiple loop conformations.

RNAComposer [45] uses a machine translation system that translates RNA

5



sequence and secondary structure into 3D structure. Similar to VFold it selects
the best matching fragment for every loop and helix from a database of frag-
ments. RNAComposer provides fallback mechanisms for cases where no fragment
is found as well as two final refinement steps using CYANA (for refinement in tor-
sion angle space) and the CHARMM force field (for refinement in cartesian space).
Like Vfold3D, it allows for the creation of random suboptimal structures but
does not provide sampling methods or a fast to evaluate energy function for a
systematic exploration of the conformational space.

ERNWIN [46] and RAGTOP [47] use the user-supplied secondary structure to
guide their aggressive coarse-graining of the RNA into helices (stems) and con-
necting loops. In contrast to RNAComposer and VFold3D, these tools explore the
conformational space on the level of loops and helices.

RAGTOP [47], first employs machine learning to predict the topology of multi-
loops (junctions) [48]. Next interior loop angles are sampled with a Monte
Carlo/ Simulated Annealing algorithm using a knowledge-based potential. Fi-
nally an all-atom representation is recovered from the sampled conformations
[49]. With RMSD values from 2.38 to 14.56 (for structures of 25 to 158 nu-
cleotides) the reported prediction accuracy of RAGTOP is slightly better than
previous tools which use less aggressive coarse-graining.

ERNWIN [46] uses a similar coarse-graining based on secondary structure. He-
lices are described by 10 parameters: The position of the helix’s start and end
(or equivalently the start and the direction) and 4 parameter for the position
of the minor groove along the length of the helix. This model assumes a reg-
ular helix where the position of the minor groove with respect to the helices
axis changes by a fixed angle with each subsequent nucleotide. The helix axis
and the vector pointing to the minor groove form a local coordinate system for
residues. Using average atom position data in this local coordinate system gath-
ered from a non-redundant list of PDB files, so-called “virtual atom positions”
of all the helix atoms can be quickly calculated just from the 10 parameters
defining the helix. Another major difference between RAGTOP and ERNWIN is the
fact that the later can sample different multiloop-conformations. This means
that the prediction quality of ERNWIN is independent of the correctness of the
junction topology prediction, but comes at the cost of a higher number of re-
jections during Monte Carlo sampling. Finally, sampling and energy evaluation
are significantly different between RAGTOP and ERNWIN. In ERNWIN, local loop
and helix conformations are sampled directly from a fragment library, whereas
RAGTOP samples the angle from continuous space and therefore needs local en-
ergy terms to evaluate the likeliness of a local angle. As for the contribution of
global features to the energy function, both programs have a term for the radius
of gyration. ERNWIN in addition contains a term for loop-loop interactions and a
sophisticated term for interactions of single stranded Adenines with the minor
groove of a helix (A-Minor motif [50]). ERNWIN also has direct support for motif
search via JAR3D (see above).

While the idea of using helices without internal degrees of freedom is common
to RAGTOP and ERNWIN, it is the details that matter: The sampling strategy
that explores the conformational space and the energy function that detects
native-like conformations require a lot of fine-tuning and still have room for
improvement.

MC-Sym [29] uses a different approach towards tertiary structure prediction.
It is built on top of MC-Fold which can predict extended secondary structures.
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It uses a library of 3D fragments for each nucleotide cyclic motif (NCM) pre-
dicted by MC-Fold to assemble 3D structures. In a Las Vegas algorithm, 3D
structures are sampled for 12 hours by aligning adjacent NCM-3D fragments to
form structures. The final result is an ensemble of 3D structures.

4 Predicting secondary and tertiary structure to-
gether (“all in one”)

While the tools in the previous section built their model on top of a given
secondary structure, the following programs add secondary structure constraints
into their model via a force field.

The program NAST[51] represents each nucleotide by a single point, which
means that it does not hold any information about the orientation of the base
with respect to the backbone. The program requires an input secondary struc-
ture, which is used to create energy potentials on the lengths, angles and di-
hedrals between residues. These potentials direct the sampling of the RNA
towards the desired secondary structure. We argue that the requirement for a
secondary structure is inherent to the coarse grained model used, because for-
mation of new basepairs would depend on the orientation of the base, which is
not part of the model. In NAST, sampling via a Molecular Dynamics approach
starting from the extended chain is followed by filtering according to tertiary
structure constraints (e.g. from SAXS or SHAPE experiments or from phyloge-
netic observations [52]) and clustering using an k-means algorithm based on a
simplified pairwise GDT-TS [53] distance. For one RNA molecule the effect of
errors in the secondary structure input was investigated and the authors con-
cluded that up to 35% wrong base-pairs did not significantly reduce the RMSD
of their prediction.

The most aggressive coarse-graining possible that allows for de-novo predic-
tion of base-pairs uses one rigid body per nucleotide (in contrast to one point),
as implemented in oxRNA [54, 55] (see below). In a similar fashion, FARNA uses
rigid fragments of 1 to 3 nucleotides to assemble the final RNA structure. Next
to energy terms for clashes and the radius of gyration, FARNA uses a base-pairing
statistical potential that can be seen as a heatmap around the center of an ideal
base. If two bases are placed in a relative orientation that is frequently found
in base-pairs in solved RNA structures, these bases receive a favorable energy
contribution. Structures generated by FARNA can be refined using an all-atom
force field, giving rise to the combined method FARFAR [56, 57]. In theory such
an all-atom refinement would be useful for all coarse grained approaches (but
see introduction for the limits of current force-fields), however its integration in
one framework (namely the Rosetta framework) is a great technical advantage
of FARNA/FARFAR.

In contrast to FARNA, oxRNA [54, 55] samples structures from a continuous
space. It can be used for Molecular Dynamics Simulations and for Monte Carlo
calculations. The energy function of oxRNA is parametrized to favor RNA A-type
helices by using potentials for sequence dependent hydrogen bonding, stacking
and cross-stacking in helices in addition to the backbone potential. Since all
nucleotides are equally sized, mismatches in helices do not disturb the overall
helix geometry in oxRNA and thus the stability of such helices is over-estimated
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despite the lack of the energy contribution from the hydrogen bonding term.
The quality of the secondary structure predicted by oxRNA is comparable with
secondary structure prediction tools using the nearest neighbor model for small
RNAs, as shown by melting temperature calculations done with oxRNA. Since
oxRNA does not include any non-canonical or long-range interactions (except
excluded volume effects), it is no surprise that the use of a 3-dimensional model
does not bring any significant advantage over a 2 dimensional model with respect
to the prediction of secondary structures. The oxRNA paper studied mechanical
properties like force-extension and overstretching properties, persistence length
and modeled hairpin-unzipping. These applications, while leading to results
that are only in the same order of magnitude as the experimental values, could
not be done with most of the other RNA structure prediction models.

In contrast to the continuous energy model used in oxRNA, simRNA [58,
59] and iFoldRNA [60] use discrete, grid-based statistical potentials. While
iFoldRNA uses Discrete Molecular Dynamics [61, 62], simRNA uses Monte Carlo
simulations.

iFoldRNA [60] uses 3 beads per nucleotide: one for the sugar, one for the
phosphate and only one for the base (see Figure 3). The position of the base
relative to the sugar is used to determine the direction of hydrogen bonding, but
tilting of the base’s plane cannot be modeled with this coarse-graining. Non-
canonical interactions are implicitly modeled by the use of a general hydrophobic
attraction between all kinds of bases. iFoldRNA’s energy function only contains
local terms (for bond length, angle and dihedral angle, base pairing, phosphate-
phosphate repulsion, hydrophobic interactions and base stacking). Furthermore
an additional energy term for the loop entropy is used to compensate for the
bias in loop entropy introduced by the coarse-graining. According to the data
reported in the paper’s supplement [60], iFoldRNA predicts pseudoknot-free sec-
ondary structures slightly better than MFold (average Q-value of 0.953 vs 0.948)
and can additionally predict pseudoknots. However, we note that the reported
benchmark of secondary structure prediction only includes the Q-value (true
positives) and does not take false positives (additional basepairs) into account.

SimRNA [58, 59] models the base with 3 points and is thus able to capture
the full 3-dimensional orientation of the base’s plane. The statistical energy
terms for base-base, base-backbone and backbone-backbone interactions can be
visualized as heatmaps similar to the ones used in the original FARNA publica-
tion [63]. The authors report that their model performs better than other 3D
structure prediction programs for short RNA sequences, but needs explicit sec-
ondary structure (and potentially long-range) restraints to model longer RNA
molecules correctly.

Among the last 3 discussed models, simRNA is the only one which fully incor-
porates non-canonical base-pairs in its energy model. Since secondary structure
constraints are modeled as distance constraints, (extended) secondary struc-
tures could in principle be used as input, but the type of the base-pair in the
prediction might be different from the type in the input structure.

5 RNA puzzles
As of now, 3 rounds of RNA puzzles, a CASP-like blind experiment in RNA 3D
structure prediction, have been completed [64, 65, 66]. In these competitions,

8



participating experimental groups provide solved but unpublished tertiary struc-
tures. Computational groups then have a few weeks time to perform tertiary
structure prediction given the sequence and - in some cases - chemical probing
information.

Figure 3: Different coarse grained rep-
resentations of nucleotides. NAST
uses a single point located at the C3’
atom. oxRNA uses a single rigid
body with multiple interaction sites de-
fined with respect to the RNA’s cen-
ter of mass (the positions in the fig-
ure are rough estimates of this inter-
action sites) iFoldRNA uses 3 beads
per residue, located at the center of the
phosphate, the sugar and the base re-
spectively. simRNA uses 5 beads per
nucleotide, 3 of which define the plane
of the base.

The submitted models are scored us-
ing different measures: The root mean
square deviation (RMSD) is a com-
mon measure for comparison of macro-
molecules which can be quickly calcu-
lated [67], but has received some critiques
[68]. The Interaction Network Fidelity
(INF) can be calculated for stacking and
(non-)canonical hydrogen bonding inter-
actions. While the RMSD is sensitive to
errors in flexible loop regions, the INF
is sensitive to errors in structured re-
gions. Additionally, RMSD and INF are
combined to the Deformation Index (DI).
From round II of RNA puzzles onwards,
the mean of circular quantities (MCQ)[69]
which is based on angular coordinates,
was used as additional measure. In con-
trast to the RMSD, errors in the relative
orientation of two relatively large RNA
domains do not have a higher impact on
the MCQ score than errors in the orien-
tation of small stems or hairpins.

In the first round of RNA puzzles,
one riboswitch domain, a stem-loop struc-
ture with two interior loops and a square
formed by 4 helices and interior loops in
the corners were modeled. Of these chal-
lenges, only the riboswitch domain con-
tained true higher order 3D folds. In-
terestingly, a fragment based approach
(Vfold) combined with relaxation in an
all-atom AMBER force-field yielded the re-
sult with the lowest RMSD for this puzzle.
This probably means that fragments from
homologous RNA molecules were selected
based on the sequence similarity score.
The second best result of this puzzle used
a coarse grained approach with secondary
structure constraints, followed by full-
atom refinement in a Discrete Molecu-
lar Dynamics framework (iFoldRNA). One
lesson learned from this RNA puzzle is certainly that the huge size of the sam-
pling space requires some sort of coarse-grained initial step which uses the sec-
ondary structure, followed by an all-atom refinement.

In round II [65] of the RNA puzzles contest, SHAPE data was provided to
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all participants by one group. Since this round’s target structures were longer
RNA molecules with more complex 3D folds (a ribozyme, a riboswitch and a T-
box-tRNA complex), these chemical probing data were crucial for 3D structure
prediction. Despite the use of experimental secondary structures, no perfect
predictions were obtained, which shows the open challenges in RNA 3D structure
prediction.

In round III it became apparent how homology modeling can achieve good
results when a homolog with solved structure exists, and how targets without
homology to solved structures still pose huge challenges to modelers. It is also
notable that many groups who submitted several models could not correctly
rank the best prediction as their top choice.

6 Summary
While RNA secondary structure prediction is well established and widely used,
tertiary structure prediction has long seemed out of reach. Recently, however,
two directions have emerged that promise RNA structure models that go be-
yond secondary structure. Inclusion of structure motifs and non-canonical base
pairs could yield extended secondary structures that are more detailed and will
perhaps even improve prediction accuracy. Coarse grained models of tertiary
structures may overcome the sampling problems that limit all-atom methods.

A successful RNA 3D structure prediction pipeline, as illustrated in figure 4,
will need several ingredients: It should start from a reliable secondary structure,
preferably including tertiary motifs and supported by experimental evidence,
such as probing data. Exploration of the conformation space will be best done
using coarse grained models that provide efficient sampling. Empirical scoring
functions need to be able to identify coarse-grained conformation(s) close to
the native state. Additional experimental restraints can be incorporated at this
step, as reviewed by Magnus et al[70]. The final step will reconstruct and refine
all-atom models from the best coarse grained conformations. While further
improvements are needed in all of these stages, reliable RNA tertiary structure
prediction is slowly getting within reach.

7 Acknowledgments
This work was funded, in part, by the Austrian FWF, project “SFB F43 RNA
regulation of the transcriptome”. We would like to thank Roman Ochsenreiter
for proof-reading the manuscript.

10



Figure 4: A proposed RNA 3D structure prediction pipeline, as described in Section 6.
In addition to the structure prediction (middle), additional experimental (left) and
computational steps (right) can improve the prediction accuracy.

11



References
[1] Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ. Algorithms for Loop

Matchings. SIAM Journal on Applied Mathematics. 1978 jul;35(1):68–82.
Available from: https://doi.org/10.1137%2F0135006.

[2] Lorenz R, Bernhart SH, zu Siederdissen CH, Tafer H, Flamm C,
Stadler PF, et al. ViennaRNA Package 2.0. Algorithms for Molecu-
lar Biology. 2011;6(1):26. Available from: https://doi.org/10.1186%
2F1748-7188-6-26.

[3] Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database
for predicting stability of nucleic acid secondary structure. Nucleic Acids
Research. 2009 oct;38(Database):D280–D282. Available from: https://
doi.org/10.1093%2Fnar%2Fgkp892.

[4] Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster
P. Fast folding and comparison of RNA secondary structures. Monatshefte
für Chemie - Chemical Monthly. 1994 feb;125(2):167–188. Available from:
https://doi.org/10.1007%2Fbf00818163.

[5] Wuchty S, Fontana W, Hofacker IL, Schuster P. Complete subopti-
mal folding of RNA and the stability of secondary structures. Biopoly-
mers. 1999;49(2):145–165. Available from: http://dx.doi.org/10.1002/
(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G.

[6] Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL. Predicting RNA
secondary structures from sequence and probing data. Methods. 2016
jul;103:86–98. Available from: https://doi.org/10.1016%2Fj.ymeth.
2016.04.004.

[7] Bellaousov S, Mathews DH. ProbKnot: Fast prediction of RNA secondary
structure including pseudoknots. RNA. 2010 aug;16(10):1870–1880. Avail-
able from: https://doi.org/10.1261%2Frna.2125310.

[8] Mustoe AM, Brooks CL, Al-Hashimi HM. Hierarchy of RNA
Functional Dynamics. Annual Review of Biochemistry. 2014
jun;83(1):441–466. Available from: https://doi.org/10.1146%
2Fannurev-biochem-060713-035524.

[9] Wolfe BR, Porubsky NJ, Zadeh JN, Dirks RM, Pierce NA. Constrained
Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineer-
ing. Journal of the American Chemical Society. 2017 feb;139(8):3134–3144.
Available from: https://doi.org/10.1021%2Fjacs.6b12693.

[10] Taneda A. MODENA: a multi-objective RNA inverse folding. Ad-
vances and applications in bioinformatics and chemistry: AABC. 2011;4:1–
12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3169953/.

[11] Kucharík M, Hofacker IL, Stadler PF, Qin J. Pseudoknots in RNA folding
landscapes. Bioinformatics. 2016;32(2):187. Available from: +http://dx.
doi.org/10.1093/bioinformatics/btv572.

12

https://doi.org/10.1137%2F0135006
https://doi.org/10.1186%2F1748-7188-6-26
https://doi.org/10.1186%2F1748-7188-6-26
https://doi.org/10.1093%2Fnar%2Fgkp892
https://doi.org/10.1093%2Fnar%2Fgkp892
https://doi.org/10.1007%2Fbf00818163
http://dx.doi.org/10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
https://doi.org/10.1016%2Fj.ymeth.2016.04.004
https://doi.org/10.1016%2Fj.ymeth.2016.04.004
https://doi.org/10.1261%2Frna.2125310
https://doi.org/10.1146%2Fannurev-biochem-060713-035524
https://doi.org/10.1146%2Fannurev-biochem-060713-035524
https://doi.org/10.1021%2Fjacs.6b12693
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169953/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169953/
+ http://dx.doi.org/10.1093/bioinformatics/btv572
+ http://dx.doi.org/10.1093/bioinformatics/btv572


[12] Badelt S, Hammer S, Flamm C, Hofacker IL. Thermodynamic and Kinetic
Folding of Riboswitches. In: Methods in Enzymology. Elsevier BV; 2015.
p. 193–213. Available from: https://doi.org/10.1016%2Fbs.mie.2014.
10.060.

[13] Proctor JR, Meyer IM. COFOLD: an RNA secondary structure prediction
method that takes co-transcriptional folding into account. Nucleic Acids
Research. 2013 mar;41(9):e102–e102. Available from: https://doi.org/
10.1093%2Fnar%2Fgkt174.

[14] Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF. RNAZ 2.0:.
In: Biocomputing 2010. World Scientific Pub Co Pte Lt; 2009. p. 69–79.
Available from: https://doi.org/10.1142%2F9789814295291_0009.

[15] Eddy SR, Durbin R. RNA sequence analysis using covariance models.
Nucleic Acids Research. 1994 jun;22(11):2079–2088. Available from: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC308124/.

[16] Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology
searches. Bioinformatics. 2013;29(22):2933–2935. Available from: http:
//dx.doi.org/10.1093/bioinformatics/btt509.

[17] Kührová P, Best RB, Bottaro S, Bussi G, Šponer J, Otyepka M, et al.
Computer Folding of RNA Tetraloops: Identification of Key Force
Field Deficiencies. Journal of Chemical Theory and Computation. 2016
sep;12(9):4534–4548. Available from: https://doi.org/10.1021%2Facs.
jctc.6b00300.

[18] Gil-Ley A, Bottaro S, Bussi G. Empirical Corrections to the Amber RNA
Force Field with Target Metadynamics. Journal of Chemical Theory and
Computation. 2016 jun;12(6):2790–2798. Available from: https://doi.
org/10.1021%2Facs.jctc.6b00299.

[19] Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbon-
matsu KY. Accommodation of aminoacyl-tRNA into the ribosome involves
reversible excursions along multiple pathways. RNA. 2010;16(6):1196–
1204. Available from: http://rnajournal.cshlp.org/content/16/6/
1196.abstract.

[20] Whitford PC, Blanchard SC, Cate JHD, Sanbonmatsu KY. Connecting the
Kinetics and Energy Landscape of tRNA Translocation on the Ribosome.
PLOS Computational Biology. 2013 03;9(3):1–10. Available from: https:
//doi.org/10.1371/journal.pcbi.1003003.

[21] Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED
2: New feathers for an old bird. Computer Physics Communications. 2014
feb;185(2):604–613. Available from: https://doi.org/10.1016%2Fj.cpc.
2013.09.018.

[22] Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, et al.
Folding of guanine quadruplex molecules–funnel-like mechanism or ki-
netic partitioning? An overview from MD simulation studies. Biochim-
ica et Biophysica Acta (BBA) - General Subjects. 2016 dec;Available from:
https://doi.org/10.1016%2Fj.bbagen.2016.12.008.

13

https://doi.org/10.1016%2Fbs.mie.2014.10.060
https://doi.org/10.1016%2Fbs.mie.2014.10.060
https://doi.org/10.1093%2Fnar%2Fgkt174
https://doi.org/10.1093%2Fnar%2Fgkt174
https://doi.org/10.1142%2F9789814295291_0009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC308124/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC308124/
http://dx.doi.org/10.1093/bioinformatics/btt509
http://dx.doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1021%2Facs.jctc.6b00300
https://doi.org/10.1021%2Facs.jctc.6b00300
https://doi.org/10.1021%2Facs.jctc.6b00299
https://doi.org/10.1021%2Facs.jctc.6b00299
http://rnajournal.cshlp.org/content/16/6/1196.abstract
http://rnajournal.cshlp.org/content/16/6/1196.abstract
https://doi.org/10.1371/journal.pcbi.1003003
https://doi.org/10.1371/journal.pcbi.1003003
https://doi.org/10.1016%2Fj.cpc.2013.09.018
https://doi.org/10.1016%2Fj.cpc.2013.09.018
https://doi.org/10.1016%2Fj.bbagen.2016.12.008


[23] Cunha RA, Bussi G. Unravelling Mg2+-RNA binding with atomistic
molecular dynamics. RNA. 2017 feb;p. rna.060079.116. Available from:
https://doi.org/10.1261%2Frna.060079.116.

[24] Dawson WK, Maciejczyk M, Jankowska EJ, Bujnicki JM. Coarse-grained
modeling of RNA 3D structure. Methods. 2016 jul;103:138–156. Available
from: https://doi.org/10.1016%2Fj.ymeth.2016.04.026.

[25] Leontis NB, Westhof E. Geometric nomenclature and classification of RNA
base pairs. RNA. 2001;7(4):499–512. Available from: http://rnajournal.
cshlp.org/content/7/4/499.abstract.

[26] RNA Basepair Catalogue;. Accessed: 2017-04-03. http://ndbserver.
rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html.

[27] Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C,
et al. Secondary Structures of rRNAs from All Three Domains of Life.
PLoS ONE. 2014 feb;9(2):e88222. Available from: https://doi.org/10.
1371/journal.pone.0088222.

[28] Mohan S, Noller HF. Recurring RNA structural motifs underlie the me-
chanics of L1 stalk movement. Nature Communications. 2017 feb;8:14285.
Available from: https://doi.org/10.1038/ncomms14285.

[29] Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA
structure from sequence data. Nature. 2008 mar;452(7183):51–55. Available
from: https://doi.org/10.1038%2Fnature06684.

[30] Lemieux S. Automated extraction and classification of RNA tertiary struc-
ture cyclic motifs. Nucleic Acids Research. 2006 apr;34(8):2340–2346. Avail-
able from: https://doi.org/10.1093%2Fnar%2Fgkl120.

[31] zu Siederdissen CH, Bernhart SH, Stadler PF, Hofacker IL. A fold-
ing algorithm for extended RNA secondary structures. Bioinformatics.
2011 jun;27(13):i129–i136. Available from: https://doi.org/10.1093%
2Fbioinformatics%2Fbtr220.

[32] Djelloul M, Denise A. Automated motif extraction and classification in
RNA tertiary structures. RNA. 2008 oct;14(12):2489–2497. Available from:
https://doi.org/10.1261%2Frna.1061108.

[33] Zhong C, Zhang S. Clustering RNA structural motifs in ribosomal
RNAs using secondary structural alignment. Nucleic Acids Research. 2011
oct;40(3):1307–1317. Available from: https://doi.org/10.1093%2Fnar%
2Fgkr804.

[34] Wadley LM. The identification of novel RNA structural motifs using COM-
PADRES: an automated approach to structural discovery. Nucleic Acids
Research. 2004 dec;32(22):6650–6659. Available from: https://doi.org/
10.1093%2Fnar%2Fgkh1002.

[35] HUANG HC. The application of cluster analysis in the intercomparison
of loop structures in RNA. RNA. 2005 apr;11(4):412–423. Available from:
https://doi.org/10.1261%2Frna.7104605.

14

https://doi.org/10.1261%2Frna.060079.116
https://doi.org/10.1016%2Fj.ymeth.2016.04.026
http://rnajournal.cshlp.org/content/7/4/499.abstract
http://rnajournal.cshlp.org/content/7/4/499.abstract
http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html
http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html
https://doi.org/10.1371/journal.pone.0088222
https://doi.org/10.1371/journal.pone.0088222
https://doi.org/10.1038/ncomms14285
https://doi.org/10.1038%2Fnature06684
https://doi.org/10.1093%2Fnar%2Fgkl120
https://doi.org/10.1093%2Fbioinformatics%2Fbtr220
https://doi.org/10.1093%2Fbioinformatics%2Fbtr220
https://doi.org/10.1261%2Frna.1061108
https://doi.org/10.1093%2Fnar%2Fgkr804
https://doi.org/10.1093%2Fnar%2Fgkr804
https://doi.org/10.1093%2Fnar%2Fgkh1002
https://doi.org/10.1093%2Fnar%2Fgkh1002
https://doi.org/10.1261%2Frna.7104605


[36] Wang X, Huan J, Snoeyink JS, Wang W. Mining RNA Tertiary Motifs
with Structure Graphs. In: 19th International Conference on Scientific and
Statistical Database Management (SSDBM 2007). Institute of Electrical
and Electronics Engineers (IEEE); 2007. p. 31–40. Available from: https:
//doi.org/10.1109%2Fssdbm.2007.38.

[37] Chojnowski G, Waleń T, Bujnicki JM. RNA Bricks—a database of RNA 3D
motifs and their interactions. Nucleic Acids Research. 2014;42(D1):D123–
D131. Available from: +http://dx.doi.org/10.1093/nar/gkt1084.

[38] Cruz JA, Westhof E. Sequence-based identification of 3D structural mod-
ules in RNA with RMDetect. Nature Methods. 2011 may;8(6):513–519.
Available from: https://doi.org/10.1038%2Fnmeth.1603.

[39] Petrov AI, Zirbel CL, Leontis NB. Automated classification of RNA 3D
motifs and the RNA 3D Motif Atlas. RNA. 2013 aug;19(10):1327–1340.
Available from: https://doi.org/10.1261%2Frna.039438.113.

[40] Zirbel CL, Roll J, Sweeney BA, Petrov AI, Pirrung M, Leontis NB. Identi-
fying novel sequence variants of RNA 3D motifs. Nucleic Acids Research.
2015 jun;43(15):7504–7520. Available from: https://doi.org/10.1093%
2Fnar%2Fgkv651.

[41] Tung CS, Joseph S, Sanbonmatsu KY. All-atom homology model of the
Escherichia coli 30S ribosomal subunit. Nature Structural Biology. 2002
sep;9(10):750–755. Available from: https://doi.org/10.1038/nsb841.

[42] Lorenz R, Bernhart SH, Qin J, Höner zu Siederdissen C, Tanzer A, Am-
man F, et al. 2D meets 4G: G-Quadruplexes in RNA Secondary Structure
Prediction. IEEE Trans Comp Biol Bioinf. 2013;10:832–844.

[43] Xu X, Zhao P, Chen SJ. Vfold: A Web Server for RNA Structure and
Folding Thermodynamics Prediction. PLoS ONE. 2014 sep;9(9):e107504.
Available from: https://doi.org/10.1371%2Fjournal.pone.0107504.

[44] Cao S, Chen SJ. Physics-Based De Novo Prediction of RNA 3D Struc-
tures. The Journal of Physical Chemistry B. 2011 apr;115(14):4216–4226.
Available from: https://doi.org/10.1021%2Fjp112059y.

[45] Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol
N, et al. Automated 3D structure composition for large RNAs. Nucleic
Acids Research. 2012;40(14):e112. Available from: +http://dx.doi.org/
10.1093/nar/gks339.

[46] Kerpedjiev P, zu Siederdissen CH, Hofacker IL. Predicting RNA 3D struc-
ture using a coarse-grain helix-centered model. RNA. 2015 apr;21(6):1110–
1121. Available from: https://doi.org/10.1261%2Frna.047522.114.

[47] Kim N, Laing C, Elmetwaly S, Jung S, Curuksu J, Schlick T. Graph-based
sampling for approximating global helical topologies of RNA. Proceedings
of the National Academy of Sciences. 2014 mar;111(11):4079–4084. Avail-
able from: https://doi.org/10.1073%2Fpnas.1318893111.

15

https://doi.org/10.1109%2Fssdbm.2007.38
https://doi.org/10.1109%2Fssdbm.2007.38
+ http://dx.doi.org/10.1093/nar/gkt1084
https://doi.org/10.1038%2Fnmeth.1603
https://doi.org/10.1261%2Frna.039438.113
https://doi.org/10.1093%2Fnar%2Fgkv651
https://doi.org/10.1093%2Fnar%2Fgkv651
https://doi.org/10.1038/nsb841
https://doi.org/10.1371%2Fjournal.pone.0107504
https://doi.org/10.1021%2Fjp112059y
+ http://dx.doi.org/10.1093/nar/gks339
+ http://dx.doi.org/10.1093/nar/gks339
https://doi.org/10.1261%2Frna.047522.114
https://doi.org/10.1073%2Fpnas.1318893111


[48] Laing C, Schlick T. Analysis of Four-Way Junctions in RNA Structures.
Journal of Molecular Biology. 2009 jul;390(3):547–559. Available from:
https://doi.org/10.1016%2Fj.jmb.2009.04.084.

[49] Zahran M, Bayrak CS, Elmetwaly S, Schlick T. RAG-3D: a search tool
for RNA 3D substructures. Nucleic Acids Research. 2015 aug;43(19):9474–
9488. Available from: https://doi.org/10.1093%2Fnar%2Fgkv823.

[50] Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. RNA tertiary inter-
actions in the large ribosomal subunit: The A-minor motif. Proceedings
of the National Academy of Sciences. 2001 apr;98(9):4899–4903. Available
from: https://doi.org/10.1073%2Fpnas.081082398.

[51] Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D,
et al. Coarse-grained modeling of large RNA molecules with knowledge-
based potentials and structural filters. RNA. 2009 feb;15(2):189–199. Avail-
able from: https://doi.org/10.1261%2Frna.1270809.

[52] Weinreb C, Riesselman AJ, Ingraham JB, Gross T, Sander C, Marks DS.
3D RNA and Functional Interactions from Evolutionary Couplings. Cell.
2016 may;165(4):963–975. Available from: https://doi.org/10.1016%
2Fj.cell.2016.03.030.

[53] Zemla A, Venclovas Č, Moult J, Fidelis K. Processing and analysis of
CASP3 protein structure predictions. Proteins: Structure, Function, and
Bioinformatics. 1999;37(S3):22–29.

[54] Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA. A nucleotide-
level coarse-grained model of RNA. The Journal of Chemical Physics.
2014 jun;140(23):235102. Available from: https://doi.org/10.1063%
2F1.4881424.

[55] Matek C, Šulc P, Randisi F, Doye JPK, Louis AA. Coarse-grained
modelling of supercoiled RNA. The Journal of Chemical Physics. 2015
dec;143(24):243122. Available from: https://doi.org/10.1063%2F1.
4933066.

[56] Das R, Karanicolas J, Baker D. Atomic accuracy in predicting and design-
ing noncanonical RNA structure. Nature Methods. 2010 feb;7(4):291–294.
Available from: https://doi.org/10.1038%2Fnmeth.1433.

[57] Cheng CY, Chou FC, Das R. Modeling Complex RNA Tertiary Folds
with Rosetta. In: Methods in Enzymology. Elsevier BV; 2015. p. 35–64.
Available from: https://doi.org/10.1016%2Fbs.mie.2014.10.051.

[58] Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P, Soltysinski T,
et al. SimRNA: a coarse-grained method for RNA folding simulations and
3D structure prediction. Nucleic Acids Research. 2015 dec;44(7):e63–e63.
Available from: https://doi.org/10.1093%2Fnar%2Fgkv1479.

[59] Magnus M, Boniecki MJ, Dawson W, Bujnicki JM. SimRNAweb: a web
server for RNA 3D structure modeling with optional restraints. Nucleic
Acids Research. 2016 apr;44(W1):W315–W319. Available from: https:
//doi.org/10.1093%2Fnar%2Fgkw279.

16

https://doi.org/10.1016%2Fj.jmb.2009.04.084
https://doi.org/10.1093%2Fnar%2Fgkv823
https://doi.org/10.1073%2Fpnas.081082398
https://doi.org/10.1261%2Frna.1270809
https://doi.org/10.1016%2Fj.cell.2016.03.030
https://doi.org/10.1016%2Fj.cell.2016.03.030
https://doi.org/10.1063%2F1.4881424
https://doi.org/10.1063%2F1.4881424
https://doi.org/10.1063%2F1.4933066
https://doi.org/10.1063%2F1.4933066
https://doi.org/10.1038%2Fnmeth.1433
https://doi.org/10.1016%2Fbs.mie.2014.10.051
https://doi.org/10.1093%2Fnar%2Fgkv1479
https://doi.org/10.1093%2Fnar%2Fgkw279
https://doi.org/10.1093%2Fnar%2Fgkw279


[60] Sharma S, Ding F, Dokholyan NV. iFoldRNA: three-dimensional RNA
structure prediction and folding. Bioinformatics. 2008 jun;24(17):1951–
1952. Available from: https://doi.org/10.1093%2Fbioinformatics%
2Fbtn328.

[61] Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV.
Ab initio RNA folding by discrete molecular dynamics: From structure pre-
diction to folding mechanisms. RNA. 2008 apr;14(6):1164–1173. Available
from: https://doi.org/10.1261%2Frna.894608.

[62] Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI. Discrete molec-
ular dynamics studies of the folding of a protein-like model. Folding and De-
sign. 1998 nov;3(6):577–587. Available from: https://doi.org/10.1016%
2Fs1359-0278%2898%2900072-8.

[63] Das R, Baker D. Automated de novo prediction of native-like RNA ter-
tiary structures. Proceedings of the National Academy of Sciences. 2007
aug;104(37):14664–14669. Available from: https://doi.org/10.1073%
2Fpnas.0703836104.

[64] Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cao S, et al.
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure
prediction. RNA. 2012 feb;18(4):610–625. Available from: https://doi.
org/10.1261%2Frna.031054.111.

[65] Miao Z, Adamiak RW, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ,
et al. RNA-Puzzles Round II: assessment of RNA structure prediction pro-
grams applied to three large RNA structures. RNA. 2015 apr;21(6):1066–
1084. Available from: https://doi.org/10.1261%2Frna.049502.114.

[66] Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ, Biesiada M,
et al. RNA-Puzzles Round III: 3D RNA structure prediction of five ri-
boswitches and one ribozyme. RNA. 2017 jan;p. rna.060368.116. Available
from: https://doi.org/10.1261%2Frna.060368.116.

[67] Liu P, Agrafiotis DK, Theobald DL. Fast determination of the optimal
rotational matrix for macromolecular superpositions. Journal of Computa-
tional Chemistry. 2009;p. n/a–n/a. Available from: https://doi.org/10.
1002%2Fjcc.21439.

[68] Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A. A
study of quality measures for protein threading models. BMC Bioin-
formatics. 2001;2(1):5. Available from: https://doi.org/10.1186%
2F1471-2105-2-5.

[69] Zok T, Popenda M, Szachniuk M. MCQ4Structures to compute similar-
ity of molecule structures. Central European Journal of Operations Re-
search. 2013 apr;22(3):457–473. Available from: https://doi.org/10.
1007%2Fs10100-013-0296-5.

[70] Magnus M, Matelska D, Łach G, Chojnowski G, Boniecki MJ, Purta E,
et al. Computational modeling of RNA 3D structures, with the aid of
experimental restraints. RNA Biology. 2014 apr;11(5):522–536. Available
from: https://doi.org/10.4161/rna.28826.

17

https://doi.org/10.1093%2Fbioinformatics%2Fbtn328
https://doi.org/10.1093%2Fbioinformatics%2Fbtn328
https://doi.org/10.1261%2Frna.894608
https://doi.org/10.1016%2Fs1359-0278%2898%2900072-8
https://doi.org/10.1016%2Fs1359-0278%2898%2900072-8
https://doi.org/10.1073%2Fpnas.0703836104
https://doi.org/10.1073%2Fpnas.0703836104
https://doi.org/10.1261%2Frna.031054.111
https://doi.org/10.1261%2Frna.031054.111
https://doi.org/10.1261%2Frna.049502.114
https://doi.org/10.1261%2Frna.060368.116
https://doi.org/10.1002%2Fjcc.21439
https://doi.org/10.1002%2Fjcc.21439
https://doi.org/10.1186%2F1471-2105-2-5
https://doi.org/10.1186%2F1471-2105-2-5
https://doi.org/10.1007%2Fs10100-013-0296-5
https://doi.org/10.1007%2Fs10100-013-0296-5
https://doi.org/10.4161/rna.28826

	Introduction
	Extended secondary structure
	Loop decomposition with non-canonical basepairs
	Motif based

	Hierarchical folding enables aggressive coarse-graining
	Predicting secondary and tertiary structure together (``all in one'')
	RNA puzzles
	Summary
	Acknowledgments

