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ABSTRACT
By means of the q-Zeilberger algorithm, we prove a basic hyperge-
ometric supercongruence modulo the fifth power of the cyclotomic
polynomial �n(q). This result appears to be quite unique, as in the
existing literature so far no basic hypergeometric supercongruences
modulo a power greater than the fourth of a cyclotomic polyno-
mial have been proved. We also establish a couple of related results,
including a parametric supercongruence.
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1. Introduction

In 1997, Van Hamme [27] conjectured that 13 Ramanujan-type series including

∞∑
k=0

(−1)k(4k + 1)
( 12 )

3
k

k!3
= 2

π

admit nice p-adic analogues, such as

p−1
2∑

k=0

(−1)k(4k + 1)
( 12 )

3
k

k!3
≡ p (−1)

p−1
2 (mod p3),

where (a)n = a(a + 1) . . . (a + n − 1) denotes the Pochhammer symbol and p is an odd
prime. Up to present, all of the 13 supercongruences have been confirmed. See [21,24] for
historic remarks on these supercongruences. Recently, q-analogues of congruences and
supercongruences have caught the interests of many authors [1–7,8–20,23,25,26,29]. In
particular, the first author and Zudilin [16] devised a method, called ‘creative microscop-
ing’, to prove quite a few q-supercongruences by introducing an additional parameter a. In
[13], the authors of this paper proved many additional q-supercongruences by the creative
microscopingmethod. Supercongruences modulo a higher integer power of a prime, or, in
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the q-case, of a cyclotomic polynomial, are very special and usually difficult to prove. As
far as we know, until now the result

n−1
2∑

k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ q
1−n
2 [n] + (n2 − 1)(1 − q)2

24
q
1−n
2 [n]3 (mod [n]�n(q)3), (1)

for an odd positive integer n, due to the first author and Wang [15], is the unique
q-supercongruence modulo [n]�n(q)3 in the literature that was completely proved. (Sev-
eral similar conjectural q-supercongruences are stated in [13] and in [16].) The purpose of
this paper is to establish an even higher q-congruence, namely modulo a fifth power of a
cyclotomic polynomial. Specifically, we prove the following three theorems. (The first two
together confirm a conjecture by the authors [13, Conjecture 5.4] .)

Theorem 1.1: Let n>1 be a positive odd integer. Then

n+1
2∑

k=0

[4k − 1]
(q−1; q2)4k
(q2; q2)4k

q4k ≡ −(1 + 3q + q2)[n]4 (mod [n]4�n(q)) (2a)

and
n−1∑
k=0

[4k − 1]
(q−1; q2)4k
(q2; q2)4k

q4k ≡ −(1 + 3q + q2)[n]4 (mod [n]4�n(q)). (2b)

Theorem 1.2: Let n>1 be a positive odd integer. Then

n+1
2∑

k=0

[4k − 1]
(aq−1; q2)k(q−1/a; q2)k(q−1; q2)2k

(aq2; q2)k(q2/a; q2)k(q2; q2)2k
q4k ≡ 0 (mod [n]2(1 − aqn)(a − qn))

and
n−1∑
k=0

[4k − 1]
(aq−1; q2)k(q−1/a; q2)k(q−1; q2)2k

(aq2; q2)k(q2/a; q2)k(q2; q2)2k
q4k ≡ 0 (mod [n]2(1 − aqn)(a − qn)).

The a=−1 case of Theorem 1.2 admits an even stronger q-congruence.

Theorem 1.3: Let n>1 be a positive odd integer. Then

n+1
2∑

k=0

[4k − 1]
(q−2; q4)2k
(q4; q4)2k

q4k ≡ −qn(1 − q + q2)[n]2q2 (mod [n]2q2�n(q2)) (3a)

and
n−1∑
k=0

[4k − 1]
(q−2; q4)2k
(q4; q4)2k

q4k ≡ −(1 − q + q2)[n]2q2 (mod [n]2q2�n(q2)). (3b)
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In the above q-supercongruences and in what follows:

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

is the q-shifted factorial,

[n] = [n]q = 1 + q + · · · + qn−1

is the q-number,
[
n
k

]
=

[
n
k

]
q
:= (q; q)n

(q; q)k(q; q)n−k

is the q-binomial coefficient and�n(q) is the nth cyclotomic polynomial of q. Note that the
congruences in Theorem1.1modulo [n]�n(q)2 and the congruences in Theorem1.2mod-
ulo [n](1 − aqn)(a − qn) have already been proved by the authors in [13, Equations (5.5)
and (5.10)].

2. Proof of Theorem 1.1 by the Zeilberger algorithm

The Zeilberger algorithm [cf. 22] can be used to find that the functions

f (n, k) = (−1)k
(4n − 1)(− 1

2 )
3
n(− 1

2 )n+k

(1)3n(1)n−k(− 1
2 )

2
k

,

g(n, k) = (−1)k−1 4(− 1
2 )

3
n(− 1

2 )n+k−1

(1)3n−1(1)n−k(− 1
2 )

2
k

satisfy the relation

(2k − 3)f (n, k − 1) − (2k − 4)f (n, k) = g(n + 1, k) − g(n, k).

Of course, given this relation, it is not difficult to verify by hand that it is satisfied by the
above pair of doubly indexed sequences f (n, k) and g(n, k).

Here we use the convention 1/(1)m = 0 for all negative integers m. We now define the
q-analogues of f (n, k) and g(n, k) as follows:

F(n, k) = (−1)kq(k−2)(k−2n+1) [4n − 1](q−1; q2)3n(q−1; q2)n+k

(q2; q2)3n(q2; q2)n−k(q−1; q2)2k
,

G(n, k) = (−1)k−1q(k−2)(k−2n+3)(q−1; q2)3n(q−1; q2)n+k−1

(1 − q)2(q2; q2)3n−1(q2; q2)n−k(q−1; q2)2k
,

where we have used the convention that 1/(q2; q2)m = 0 for m = −1,−2, . . . . Then the
functions F(n, k) and G(n, k) satisfy the relation

[2k − 3]F(n, k − 1) − [2k − 4]F(n, k) = G(n + 1, k) − G(n, k). (4)
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Indeed, it is straightforward to obtain the following expressions:

F(n, k − 1)
G(n, k)

= q2n−4k+6(1 − q)(1 − q4n−1)(1 − q2k−3)2

(1 − q2n−2k+2)(1 − q2n)3
,

F(n, k)
G(n, k)

= −q4−2k(1 − q)(1 − q4n−1)(1 − q2n+2k−3)

(1 − q2n)3
,

G(n + 1, k)
G(n, k)

= q4−2k(1 − q2n−1)3(1 − q2n+2k−3)

(1 − q2n)3(1 − q2n−2k+2)
.

It is easy to verify the identity

q2n−4k+6(1 − q4n−1)(1 − q2k−3)3

(1 − q2n−2k+2)(1 − q2n)3
+ q4−2k(1 − q2k−4)(1 − q4n−1)(1 − q2n+2k−3)

(1 − q2n)3

= q4−2k(1 − q2n−1)3(1 − q2n+2k−3)

(1 − q2n)3(1 − q2n−2k+2)
− 1,

which is equivalent to (4). (Alternatively, we could have established (4) by only guessing
F(n, k) and invoking the q-Zeilberger algorithm [28].)

Letm>1 be an odd integer. Summing (4) over n from 0 to (m + 1)/2, we get

[2k − 3]

m+1
2∑

n=0
F(n, k − 1) − [2k − 4]

m+1
2∑

n=0
F(n, k) = G

(
m + 3

2
, k

)
− G(0, k)

= G
(
m + 3

2
, k

)
. (5)

We readily compute

G
(
m + 3

2
, 1

)
=

qm−1(q−1; q2)4(m+3)/2

(1 − q)2(q2; q2)4(m+1)/2(1 − q−1)2

= qm−3[m]4

[m + 1]4(−q; q)8(m−1)/2

[
m − 1

(m − 1)/2

]4
(6a)

and

G
(
m + 3

2
, 2

)
= −

(q−1; q2)3(m+3)/2(q
−1; q2)(m+5)/2

(1 − q)2(q2; q2)3(m+1)/2(q2; q2)(m−1)/2(q−1; q2)22

= − q−2[m]4[m + 2]
[m + 1]3(−q; q)8(m−1)/2

[
m − 1

(m − 1)/2

]4
. (6b)
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Combining (5) and (6), we have

m+1
2∑

n=0
F(n, 0) = [−2]

[−1]

m+1
2∑

n=0
F(n, 1) + 1

[−1]
G

(
m + 3

2
, 1

)

= 1 + q
q

G
(
m + 3

2
, 2

)
− qG

(
m + 3

2
, 1

)

= − (1 + q)[m]4[m + 1][m + 2] + qm+1[m]4

q3[m + 1]4(−q; q)8(m−1)/2

[
m − 1

(m − 1)/2

]4
,

i.e.
m+1
2∑

n=0
[4n − 1]

(q−1; q2)4n
(q2; q2)4n

q4n = − (1 + q)[m]4[m + 1][m + 2] + qm+1[m]4

q[m + 1]4(−q; q)8(m−1)/2

[
m − 1

(m − 1)/2

]4
.

(7)

By [4, Lemma 2.1] (or [3, Lemma 2.1]), we have (−q; q)2(m−1)/2 ≡ q(m2−1)/8

(mod �m(q)). Moreover, it is easy to see that

[
m − 1

(m − 1)/2

]
=

(m−1)/2∏
k=1

1 − qm−k

1 − qk

≡
(m−1)/2∏

k=1

1 − q−k

1 − qk
= (−1)(m−1)/2q(1−m2)/8 (mod �m(q)),

and [m] is relatively prime to (−q; q)(m−1)/2. It follows from (7) that

m+1
2∑

n=0
[4n − 1]

(q−1; q2)4n
(q2; q2)4n

q4n ≡ −((1 + q)2 + q)[m]4 (mod [m]4�m(q)).

Concluding, the congruence (2a) holds.
Similarly, summing (4) over n from 0 tom−1, we get

[2k − 3]
m−1∑
n=0

F(n, k − 1) − [2k − 4]
m−1∑
n=0

F(n, k) = G(m, k),

and so

m−1∑
n=0

[4n − 1]
(q−1; q2)4n
(q2; q2)4n

q4n = 1 + q
q

G(m, 2) − qG(m, 1)

= − (1 + q)[2m − 2][2m − 1] + q2m−2

q(−q; q)8m−1

[
2m − 2
m − 1

]4
. (8)
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It is easy to see that

1
[m]

[
2m − 2
m − 1

]
= 1

[m − 1]

[
2m − 2
m − 2

]
≡ (−1)m−2q2−(m−1

2 ) (mod �m(q)),

and (−q; q)m−1 ≡ 1 (mod �m(q)) [4]. The proof of (2b) then follows easily from (8).

3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2: It is easy to see by induction on N that
N∑
k=0

[4k − 1]
(aq−1; q2)k(q−1/a; q2)k(q−1; q2)2k

(aq2; q2)k(q2/a; q2)k(q2; q2)2k
q4k

= (aq; q2)N(q/a; q2)N((a + 1)2q2N+1 − a(1 + q)(1 + q4N+1))

q(a − q)(1 − aq)(aq2; q2)N(q2/a; q2)N(−q; q)4N

[
2N
N

]2
. (9)

For N = (n + 1)/2 or N=n−1, we see that (aq; q2)N(q/a; q2)N contains the factor
(1 − aqn)(1 − qn/a). Moreover,

[(n + 1)/2]
[n]

[
n

(n − 1)/2

]
=

[
n − 1

(n − 1)/2

]

is a polynomial in q. Since [(n + 1)/2] and [n] are relatively prime, we conclude that[ n
(n−1)/2

]
is divisible by [n]. Therefore,

[
n+1

(n+1)/2

]
= (1 + q(n+1)/2)

[ n
(n−1)/2

]
is also divisi-

ble by [n]. It is also well known that
[ 2n−2
n−1

]
is divisible by [n]. Moreover, it is easy to see

that [n] is relatively prime to 1 + qm for any non-negative integerm. The proof then follows
from (9) by taking N = (n + 1)/2 and N=n−1. �

Proof of Theorem 1.3: For a=−1, the identity (9) reduces to
N∑
k=0

[4k − 1]
(q−2; q4)2k
(q4; q4)2k

q4k = − (−q; q2)2N(1 + q4N+1)

q(1 + q)(−q2; q2)2N(−q; q)4N

[
2N
N

]2

= − (1 + q4N+1)

q(1 + q)(−q2; q2)4N

[
2N
N

]2
q2
. (10)

Note that, in the proof of Theorem 1.2, we have proved that
[ 2N
N

]
q2 is divisible by [n]q2 for

both N = (n + 1)/2 and N=n−1. Moreover, [n]q2 is relatively prime to (−q2; q2)m for
m � 0.Hence the right-hand side of (10) is congruent to 0modulo [n]2q2 forN = (n + 1)/2
orN=n−1. To further determine the right-hand side of (10)modulo [n]2q2�n(q2), we need
only to use the same congruences (with q �→ q2) used in the proof of Theorem 1.1. �

4. Immediate consequences

Notice that for n = pr being an odd prime power, �pr(q) = [p]qpr−1 holds. This observa-
tion was used in [15] to extend (1) to a supercongruence modulo [pr][p]3

qpr−1 . In the same

vein, we immediately deduce from Theorem 1.1 the following result:
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Corollary 4.1: Let p be an odd prime and r a positive integer. Then
pr+1
2∑

k=0

[4k − 1]
(q−1; q2)4k
(q2; q2)4k

q4k ≡ −(1 + 3q + q2)[pr]4 (mod [pr]4[p]qpr−1 ) (11a)

and
pr−1∑
k=0

[4k − 1]
(q−1; q2)4k
(q2; q2)4k

q4k ≡ −(1 + 3q + q2)[pr]4 (mod [pr]4[p]qpr−1 ). (11b)

The q → 1 limiting cases of these two identities yield the following supercongruences:

Corollary 4.2: Let p be an odd prime and r a positive integer. Then
pr−1
2∑

k=0

4k + 3
16(k + 1)4 256k

(
2k
k

)4
≡ 1 − 5p4r (mod p4r+1) (12a)

and
pr−2∑
k=0

4k + 3
16(k + 1)4 256k

(
2k
k

)4
≡ 1 − 5p4r (mod p4r+1). (12b)

Similarly, we deduce from Theorem 1.3 the following result:

Corollary 4.3: Let p be an odd prime and r a positive integer. Then
pr+1
2∑

k=0

[4k − 1]
(q−2; q4)2k
(q4; q4)2k

q4k ≡ −qp
r
(1 − q + q2)[pr]2q2 (mod [pr]2q2 [p]q2pr−1 ) (13a)

and
pr−1∑
k=0

[4k − 1]
(q−2; q4)2k
(q4; q4)2k

q4k ≡ −(1 − q + q2)[pr]2q2 (mod [pr]2q2 [p]q2pr−1 ). (13b)

The q → 1 limiting cases of these two identities yield the following supercongruences:

Corollary 4.4: Let p be an odd prime and r a positive integer. Then
pr−1
2∑

k=0

4k + 3
4(k + 1)2 16k

(
2k
k

)2
≡ 1 − p2r (mod p2r+1) (14a)

and
pr−2∑
k=0

4k + 3
4(k + 1)2 16k

(
2k
k

)2
≡ 1 − p2r (mod p2r+1). (14b)

The supercongruences in Corollaries 4.2 and 4.4 are remarkable since they are valid for
arbitrarily high prime powers. Swisher [24] had empirically observed several similar but
different hypergeometric supercongruences and stated them without proof.
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