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Abstract
Nonadiabatic dynamics is a central concept in the study of ultrafast chemical and physical

processes, especially light-induced processes. One method to computationally study such

processes is provided by the "Surface Hopping including ARbitrary Couplings" (SHARC)

approach, which we present here. We focus on a general description of the involved approx-

imations, and the strengths and limitations of the approach. We also discuss the choice of

electronic structure method and give an overview over techniques to analyze the trajectories

obtained in the simulations.
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10.1 Introduction
Chemistry can be viewed as the motion of nuclei and electrons. Thus, one approach to

understand chemistry is to follow that motion. Such an endeavor is highly complex due to the

typical presence of non-Born-Oppenheimer (nonadiabatic) couplings and spin-orbit couplings

(SOCs), among other factors. The motion of nuclei and electrons and their accompanying

interactions occur already on the time scale of femto- and attoseconds (10
−15

and 10
−18

seconds), respectively. The investigation of these short time scales is only possible with light,

and considerable e�ort is being devoted to create ever shorter laser pulses in order to observe

chemical processes in real time.
1–6

With the advent of time-resolved spectroscopy,
7–12

photochemical and photophysical

processes can be studied using pump-probe experiments. In a pump-probe experiment, the

�rst pulse (pump) excites the system, starting the reaction in an electronic excited state.

The course of the reaction is then interrogated by a second pulse (probe), by repeating the

experiment with di�erent time delays between the two pulses and thus providing a time-

dependent picture of the chemical reaction. The actual observable in these experiments

depends on the characteristics of the laser pulses: If a good time resolution is aimed at, it is

desirable to employ short pulses, which then necessarily feature large energetic bandwidths—

as for example in the case of studying high-harmonic generation or ionization processes.

Both the signals from ionization and high harmonic generation are able to trace nuclear and

electronic motion. The reason is that the ionization probability and also its counterpart, the

recombination probability in high harmonic generation, depend on the nuclear and electronic

con�guration of the system.
13

In this sense, two types of attosecond pump-probe experiments

can be conceived: (i) a standard (femtosecond) pump pulse excites a molecule and probing

is executed afterwards by generating high harmonics within the excited molecule,
13

or (ii)

high harmonics are generated externally, and only the attosecond pulses from the high

harmonics generation are used to investigate the molecule of interest.
14

In either case, the

initial excitation leads to nuclear and electronic motion, which in most cases implies that

excited electronic states are populated. As the accompanying dynamics of the molecule can

be quite complex, theory plays an essential role in deciphering the molecular changes which

are encoded in the experimental signals.
15

In this chapter, we discuss our on-going e�orts in investigating ultrafast excited-state

processes using the SHARC (Surface Hopping including ARbitrary Couplings) method,
16–18

where the nuclei are treated classically and the electrons quantum mechanically. Despite

the mixed quantum-classical nature of surface-hopping methods
19

, SHARC has proved to

be particularly successful to investigate the role of intersystem crossing dynamics in nucle-

obases,
20–24

nucleobase analoga,
25–27

and other molecular systems.
28–32

SHARC is also suited

to simulate time-resolved photo-electron spectroscopy.
15

10.2 Electronic state representations
In the discussion of electronic states, it is important to clearly de�ne the di�erent bases

in which these states can be represented. For example, the terms “diabatic” and “adiabatic”

electronic states might be misleading in the presence of SOCs, and care should be taken
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in the adopted nomenclature. “Adiabatic” literally means “impassable”, and with respect to

electronic states, it can be associated with potential energy surfaces (PESs) which cannot

pass (cross) through each other. Since this is a rather imprecise de�nition, mathematically,

adiabatic states are obtained as the eigenstates of the electronic Hamiltonian

Ĥ el |Ψadiab

β 〉 = Eelβ |Ψ
adiab

β 〉, (1)

where Eelβ is the electronic energy of state β . In the simplest case, a non-relativistic electronic

Hamiltonian is considered with only one spin multiplicity and where no external �eld is

applied. In this case, the Hamiltonian contains only kinetic energy and Coulombic terms of

the molecular system:

ĤMCH = −

n
el∑
i

∇2i +

nnuc∑
A<B

ZAZB

| ®RA − ®RB |
−

n
el∑
i

nnuc∑
A

ZA

| ®RA − ®ri |
+

n
el∑

i<j

1

|®ri − ®r j |
, (2)

where i, j andA,B are the electron and nuclear indices, respectively, Z are the nuclear charges,

and ®r and ®R are the electron and nuclear positions, respectively. Following the nomenclature of

Mai et al.,
17,21

we term this Hamiltonian the Molecular Coulomb Hamiltonian (MCH), because

there are no external �elds (only the molecule) and no interactions beyond the Coulomb

ones. Most quantum chemistry calculations yield electronic states which are eigenstates of

this MCH, which could be called “MCH states” (see Fig. 1b), or “states in the MCH picture”.

Within each multiplicity, these states do not cross each other (i.e., they are adiabatic), and

from their energetic ordering and spin multiplicity it is sensible to denote the states as S0, S1,
..., T1, T2, etc.

[Figure 1 about here.]

When more than one multiplicity is considered simultaneously and states couple through

the relativistic SOCs, the situation is more complicated. In this case, the electronic Hamiltonian

is the sum of the MCH and the SOC Hamiltonian

Ĥ el = ĤMCH + Ĥ SOC, (3)

where the MCH might or might not contain relativistic corrections to the electron kinetic

energy. SOCs introduce o�-diagonal terms in the electronic Hamiltonian which couple states

of di�erent spin multiplicity. More details of SOCs—their relativistic origin, their mathemati-

cal form, and methods for obtaining ab initio values—are discussed in section 10.4.3. Here,

we only want to stress that SOCs lift the block-diagonal form of the MCH, and hence it is

not su�cient anymore to consider only a single multiplicity. In this context, adiabatic states

could be obtained as the eigenstates of this full electronic Hamiltonian. However, computing

such eigenstates—i.e., relativistic quantum chemistry—can be extremely demanding.
33,34

Con-

sequently, in most quantum chemistry calculations only MCH states of di�erent multiplicities

(e.g., singlets and triplets) are computed, with SOCs considered as a perturbation. Even

though these MCH states of di�erent multiplicities are used as electronic basis, they are not

eigenstates of the full Hamiltonian. Approximate eigenstates of the full Hamiltonian can

instead be obtained by constructing the matrix representation of the electronic Hamiltonian
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in the space of a small number of relevant MCH states, denoted as HMCH
(note that the

superscript refers to the representation of the matrix) and containing elements

HMCH

βα = 〈ΨMCH

β |Ĥ el |ΨMCH

α 〉, (4)

and diagonalizing it. To avoid misunderstanding, and because these states originate from a

diagonalization, we term the basis of the eigenstates of the electronic Hamiltonian including

all perturbative terms the “diagonal” basis (see Fig. 1c). The resulting states do not cross

each other (i.e., they are adiabatic), but each state is a mixture of di�erent multiplicities and

therefore they can only be denoted as diagonal state 1, 2, 3, etc.

The electronic states can also be represented in a so-called diabatic picture, where the

states are de�ned such that they have a constant electronic character for all coordinates (e.g.,

1ππ ∗, see Fig. 1a). The advantage of such a picture is that most spectroscopic properties, like

the corresponding transition dipole moments, stay relatively constant for di�erent molecular

conformations. Therefore, experimental observables often directly relate to diabatic states,

e.g., a bright ππ ∗ state can be detected while the dark nπ ∗ state does not give a (strong) signal.

Because spectroscopic observations can be readily interpreted and discussed in terms of such

diabatic states, we also label the diabatic representation “spectroscopic representation”.
17,21

Yet, one should keep in mind that a rigorous diabatic representation cannot be de�ned for

polyatomic molecules.
35,36

Even approximate diabatic states are not suitable for computations

because a very large number of diabatic states is necessary to describe all parts of the PESs

accurately. Hence, quantum chemical computations are generally carried out in the either

the MCH or the diagonal representation. Within SHARC, we employ quantum chemical

computations in the MCH representation, which are converted to the diagonal one. Hence, it

is not necessary to obtain diabatic states to carry out SHARC simulations; instead, diabatic

states are only employed for a posteriori analysis purposes, if they are available.

It is very instructive to see the in�uence of the choice of representation on the terms

appearing in the nuclear Schrödinger equation:∑
α

[
T̂ n −

nnuc∑
A

1

2MA
〈Ψβ | ®∇A |Ψα 〉︸         ︷︷         ︸

®Tβα

®∇A + 〈Ψβ |Ĥ
el |Ψα 〉︸         ︷︷         ︸

Hβα

]
|χα 〉 = i~

∂

∂t
|χβ 〉, (5)

where T̂ n
is the nuclear kinetic energy operator, MA is the mass of atom A, and the |χi 〉 is

the nuclear wave function for state i (and where the diagonal Born-Oppenheimer terms are

omitted). In this equation, ®Tβα are the nonadiabatic coupling (NAC) vectors and Hβα are the

matrix elements of the electronic Hamiltonian. These two terms directly depend on the choice

of representation, i.e., the choice of the electronic states |Ψα 〉, and the electronic Hamiltonian.

Considering a Hamiltonian including SOCs, in the MCH representation neither ®Tβα nor Hβα
have any special form. In contrast, in the diagonal representation, the matrix of the Hβα is

diagonal, while in the diabatic representation, the ®Tβα terms vanish.

From the discussion above one can infer that while computational results are usually

discussed in either the MCH or diagonal representation, experiments are typically analyzed

in terms of spectroscopic states. Therefore, care should be taken with these two di�erent
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nomenclatures, because in general it is not possible to directly correlate MCH and spectro-

scopic (or diabatic) states. Even the simple label of “S1” can be confusing when the order of

the states changes at di�erent geometries. The “S1” label is sometimes used to refer to the

state that most closely resembles the electronic character of the S1 at the Franck-Condon

geometry or, alternatively, to the second-lowest MCH state at the geometry of interest, no

matter the character. We argue that the latter is more appropriate and one should prefer more

descriptive state labels, such as
1ππ ∗,1 nπ ∗,1 La , ..., when one is actually talking about a state

of a particular electronic character.

These di�erent representations are relevant in an analogous way if the states interact via

dipole moment-�eld couplings (DFCs), when the interaction with the laser �eld is explicitly

taken into account (see Fig. 1d-f). Note that in this case, the diagonal states are time-dependent

due to the time-varying electric �eld.

Which representation to use is not only a matter of taste or convenience, but it is relevant

in computational simulations as the di�erent representations are only equivalent when

using a fully quantum-mechanical description for both nuclei and electrons. However, this

equivalence is lost when classical approximations are employed. In the following, we shall

introduce the SHARC method, which is a mixed quantum-classical method in which the

choice of representation is determinant.

10.3 Nonadiabatic dynamics: SHARC
Before discussing the strengths and weaknesses of SHARC, it is instructive to brie�y explain a

few general concepts of nuclear dynamics simulations, starting from the nuclear Schrödinger

equation, from quantum to mixed quantum-classical dynamics, with particular emphasis on

surface-hopping. Then, the special aspects of SHARC are introduced.

A method useful to perform photodynamics simulations in the ultrafast domain (fs to ps) has

to comply with several important requirements. First, in order to describe ultrafast processes,

which are always very far from any equilibrium, it is necessary to explicitly treat the motion

of all constituent particles—nuclei and electrons. Approaches such as Fermi’s golden rule
37

or nonadiabatic transition state theory,
38

used in the study of (slow) excited-state processes,

are not applicable to the ultrafast time regime.

Second, the method should consider the actual PESs involved, because approximate analyt-

ical potentials, e.g., harmonic ones, might fail to describe relevant parts of the conformational

space.

Third, the method should describe the interaction between several di�erent electronic

states, i.e., diabatic or nonadiabatic interactions, explicitly. This is essential for the description

of excited-state dynamics as excited states are often not well separated in energy,
39

and

therefore show an increased propensity for population transfer.
40

Related to this point is the

requirement that the method should be able to account for any kind of coupling between the

electronic states, in order to allow the consistent simulation of di�erent types of ultrafast

processes, e.g., internal conversion (IC) or intersystem crossing (ISC).

And �nally, in order to be applicable to physically and chemically relevant problems, the

method needs to be able to describe the nuclear motion of large (i.e., more than a dozen atoms)

molecules in a practical way.
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10.3.1 From quantum dynamics to molecular dynamics
In principle, the nuclear motion of an excited molecule can be exactly described by solving

the nuclear time-dependent Schrödinger equation, as given in Eq. (5). This equation can

be derived
41,42

from the total time-dependent Schrödinger equation
43,44

of the system by

inserting the Born-Huang expansion for the total molecular wave function and assuming that

one has found suitable solutions of the electronic Schrödinger equation (Equation (1)).

Solving the nuclear time-dependent Schrödinger equation numerically is usually called

quantum dynamics or wave packet dynamics.
45

It is the most accurate method for the simu-

lation of nuclear dynamics and in combination with accurate electronic energies it is able

to match the accuracy of many experiments.
45

In order to solve the nuclear time-dependent

Schrödinger equation, it is necessary to �rst compute the PESs of all relevant electronic states

over all relevant parts of the conformational space. Unfortunately, the conformational space

grows exponentially as the number of degrees of freedom goes up. This means that already for

�ve-atomic molecules, standard quantum dynamics becomes essentially unfeasible.
45

Using

the related multi-con�gurational time-dependent Hartree (MCTDH) method, it is possible to

treat more dimensions,
46

but even in this case the bottleneck of computing high-dimensional

PESs remains. Hence, these quantum dynamics methods can only be applied to rather small

systems in the gas phase, or to large systems if some degrees of freedom are neglected.

Consequently, di�erent approaches with di�erent approximations (possibly neglecting some

quantum e�ects) in the computations have been developed, see e.g. Refs. 17,45,47–57.

One of the most ubiquitous approximations to deal with many degrees of freedom is to

treat the nuclear motion classically. In this way, each atom can be described as a massive point

charge moving according to Newton’s equation of motion, instead of having to deal with the

large, multi-dimensional nuclear wave function. Furthermore, Newton’s equation requires

only local information on the PES—namely, the gradient of the potential energy—and thus can

be easily combined with on-the-�y
58

computations. In this way, the a priori calculation of the

PES can be fully avoided. An additional advantage of classical nuclear dynamics is that because

it can be easily propagated in Cartesian coordinates, it is not necessary to de�ne internal

coordinates or select the few most important modes where to propagate the nuclear motion.

Compared to QD, classical molecular dynamics (MD) is much less restricted in the number

of atoms or the time scales, as shown by the large number of bio-molecular applications

to systems of hundreds of thousands of atoms and time scales of many nanoseconds in the

electronic ground state. However, for excited-state dynamics, the limitations in system size

and time scale remain as they are primarily linked to solving the electronic problem.

10.3.2 From Born-Oppenheimer molecular dynamics to surface
hopping

Unfortunately, classical MD fails to describe a number of quantum e�ects.
19,57

(i) As classical

MD (i.e., Born-Oppenheimer MD) considers only one potential energy, it neglects all nona-

diabatic interactions between di�erent electronic states. Consequently, it is not possible to

describe photophysical processes like IC and ISC. (ii) As all nuclei are classical, point-like

particles, it is not possible to simulate the splitting of a wave packet into multiple reaction

pathways. This is usually not a problem for long ground state simulations close to equi-
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librium, but for non-equilibrium processes like in photodynamics, the simulated trajectory

will randomly follow only one of the available reaction pathways. This problem is usually

mitigated by considering an ensemble of independent trajectories and statistically analyzing

the branching of the trajectories into the di�erent pathways. (iii) However, even though a

trajectory ensemble recovers the splitting behavior of the wave packet, classical MD cannot

describe (de-)coherence and interference of di�erent parts of the wave packet.
57

This is pri-

marily because the trajectories in the ensemble are independent of each other. (iv) Classical

mechanics cannot properly represent the e�ects of the zero-point energy (ZPE). The ZPE is a

consequence of the Heisenberg uncertainty principle and requires that even in the vibrational

ground state, each normal mode retains a certain amount of energy. However, in classical MD

it is possible that the nuclear motion completely stops and no vibrational energy is retained.

Furthermore, the vibrational energy can freely �ow between the degrees of freedom. (v)

Finally, classical MD is not able to account for tunneling through classically forbidden energy

barriers.

Certainly, for the description of excited-state dynamics, the presence of nonadiabatic

interactions between the electronic states is essential (recall point (i)). In order to extend

classical MD to excited states, there are two main approaches in use: Ehrenfest dynamics
51

and surface hopping (SH).
47,59

Both approaches are based on simulating a total electronic

wave function, which is propagated along with the classical nuclei. The total electronic wave

function Ψel(t) is described as a linear combination of the di�erent electronic states Ψel

α (t):

Ψel(t) =
∑
α

cα (t)Ψ
el

α (t). (6)

By inserting this equation into the time-dependent Schrödinger equation, one can derive the

equation of motion (EOM) for the coe�cients cα (t):
42

∂

∂t
cβ (t) = −

∑
α

[
iHβα + ®v · ®Tβα

]
cα (t), (7)

where Hβα is an element of the electronic Hamiltonian matrix, which contains the electronic

energies on the diagonal and coupling terms on the o�-diagonal. Furthermore, ®v is the nuclear

velocity vector and ®Tβα is a NAC vector (®Tβα = 〈Ψβ | ®∇|Ψα 〉). Both kinds of coupling terms

will be discussed in more detail below. This EOM allows propagating the coe�cients from a

time step t to the next time step, given the energies and coupling terms of all electronic states.

Naturally, the evolution of the electronic wave function should have an e�ect on the

nuclear dynamics, hence some coupling scheme has to be introduced. The two approaches,

Ehrenfest dynamics and SH, di�er in how this coupling is accomplished, i.e., in the way the

potential energy and gradients are derived from the electronic wave function. In Ehrenfest

dynamics, the potential energy is the average of the energies of the states, weighted by

the amplitudes |cα (t)|
2
. In this way, when the electronic wave function changes due to

nonadiabatic interactions, the energy and gradients adapt to the new electronic situation.

However, if several amplitudes are large, Ehrenfest dynamics can lead to unphysical average

trajectories, which do not follow either of two reaction pathways, but the average of them.
42

The SH approach
47,59

has become very popular in the last decades, which explains the

proliferation of excellent reviews on the topic.
19,42,57,60

In SH, the potential energy at each
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time step is always one of the energies of the considered electronic states. At each time

step, based on the evolution of the amplitudes |cα (t)|
2

the method determines stochastically—

by drawing a random number—which of the electronic states is the “active” state. If the

algorithm decides to change the active state, a “surface hop” is performed, which is the

origin of the method’s name. In order to conserve total energy, the nuclear velocities are

rescaled during such a surface hop. Since the potential energy is always the energy of one

of the electronic states, SH fully avoids the nonphysical average trajectories encountered in

Ehrenfest dynamics. However, the stochastic nature of the algorithm requires a su�ciently

large ensemble of independent trajectories, in order to produce the correct branching ratios

during a nonadiabatic event. Hence, the SH method solves problems (i) and (ii) explained

above.

Concerning point (iii), many SH simulations employ some kind of empirical or ad hoc

decoherence correction schemes.
57,61–63

These are necessary, since a given trajectory might

have large amplitudes |cα (t)|
2

for several states, but the nuclear motion follows only one of

them. In principle, this is unphysical because these other amplitudes are arti�cially dragged

along with the active state, i.e., the states are too coherent. In reality, the amplitudes of

di�erent states would follow their individual gradients and quickly separate. Therefore, in

most decoherence correction schemes the amplitudes of the non-active states are damped and

the amplitude of the active state rescaled such that the total population is conserved. While

this might seem like a rather technical detail, the decoherence correction has a quite palpable

e�ect: for an ensemble of trajectories, it makes the sums of the amplitudes (the “quantum”

populations of the ensemble) consistent with the fraction of trajectories in each state (the

“classical” populations of the ensemble).

Figure 2 illustrates the di�erences between a quantum dynamics simulation and an SH

simulation. In the former (panel (a)), a Gaussian wave packet (initially in light gray on the

upper left) moves through an avoided crossing, is mostly transferred to the lower adiabatic

state, and continues to travel to the right. Is is apparent that some parts of the wave packet

are also re�ected around the avoided crossing and can be found on the lower left part of

the potential curve. In the SH simulation (panel (b)), each line represents one trajectory, all

starting on the upper left. Most trajectories perform one surface hop to the lower state and

continue to the right, just as in the wave packet simulation. A couple of trajectories instead

get re�ected before hopping, and end up on the lower left part.

[Figure 2 about here.]

Unfortunately, regular SH still misses other quantum e�ects. As all trajectories are com-

pletely independent, it is not possible to simulate interference when di�erent parts of the

ensemble would meet each other in phase space. The problem of interference (iii) can be solved

by methods which go beyond regular SH, like multiple spawning
64

or multiple cloning
65

;

these methods are computationally more demanding than SH as they use ensembles of coupled

trajectories. However, SH remains a valid method choice when interferences do not play a

signi�cant role, for example in large molecules, where it might become increasingly unlikely

that separated parts of the wave packet ever meet again.
66,67

Regarding the treatment of ZPE (iv), there exists no rigorous and at the same time practical

(for large systems) solution to this problem.
68

A pragmatical solution for SH simulations is
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to generate initial conditions with as much initial energy as the ZPE
69

and check that no

signi�cant errors accumulate during the propagation.

The problem of including tunneling (v) is also very di�cult to treat because in SH the

potential energies are usually computed on-the-�y, i.e., only local information about the

PES is known. Thus, it is not possible to identify in advance energy barriers which could be

tunneled through. Such identi�cation would add many energy calculations per time step to

scan forward and obtain energy pro�les to compute tunneling probabilities. Alternatively, it

is possible to allow tunneling only for particular degrees of freedom.
70

Another solution to

this problem is to use ring-polymer molecular dynamics (RPMD),
54,71

where each nucleus is

treated as a set of several coupled point-like masses, which can exchange energy and therefore

might be able to climb classically forbidden barriers. As there is no free lunch, RPMD requires

many more energy calculations than regular MD or SH, so it is only employed if tunneling is

known to be a critical part of the investigated process.

Notwithstanding the fact that these quantum e�ects cannot be described by SH, this

method is still extremely useful for many applications. In particular, SH is computationally

very e�cient to treat the excited-state dynamics of molecular systems with many degrees

of freedom, due to its on-the-�y and independent-trajectories paradigms, which reduce

the required number of energy calculations and allow for a trivial parallelization of the

computational workload for multiple trajectories.
19

10.3.3 From Surface Hopping to SHARC
The original formulation of SH

47,59
is targeted only at the description of IC. In the basis of the

eigenstates of the MCH, IC is mediated by the NAC vectors between the excited states. These

NAC vectors enter the EOM for the electronic wave function coe�cients (see equation (7))

and lead to transfer of population from one state to another.

In order to describe other kinds of nonadiabatic processes—absorption, stimulated emission,

or ISC—additional couplings have to be introduced in the EOM. For absorption and stimulated

emission, the explicit interaction of the system with an electric �eld is necessary. The most

basic interaction term is the scalar product of the molecular (transition) dipole moment matrix

with the electric �eld vector
®E. These DFCs are then included in the electronic Hamiltonian

matrix elements in the EOM (equation (7)) as

Hβα = δβαEβ +

〈
Ψβ

�����− n
el∑
i

®ri +
nnuc∑
A

ZA ®RA

�����Ψα
〉
· ®E, (8)

and allow an electric �eld to modify the electronic populations.

The description of ISC requires SOCs (see Section 10.4.3 for more details) to be included in

the electronic Hamiltonian elements of the EOM (equation (7)) as

Hβα = δβαEβ + 〈Ψβ |Ĥ
SOC |Ψα 〉. (9)

SOC is a relativistic e�ect and hence,
37

the most accurate way to proceed would be to compute

fully relativistic four- (or two-)component electronic states
33,34

and perform regular SH on

the resulting potentials. In such relativistic calculations, states of di�erent multiplicity (e.g.,
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singlets and triplets) are automatically mixed, and the coupling between these mixed states is

described by terms analogous to the regular NAC vectors. Hence, no modi�cations to the

SH algorithm, besides using a relativistic electronic structure method, would be required.

In such a simulation, IC and ISC would be indistinguishable, as they are both mediated by

NACs between the relativistic electronic states. However, such relativistic calculations are

nowadays computationally very demanding and the implementations of relativistic excited

states gradients and NAC vectors are not yet developed enough
72

to be applied to nonadiabatic

dynamics simulations.

An alternative to fully relativistic calculations is the calculation of spin-orbit mixed states

through a perturbative scheme.
73,74

In this ansatz, one �rst computes a set of MCH states (e.g.,

a small set of singlet and triplet states relevant for the investigated process, see section 10.2).

For this set of states, the full electronic Hamiltonian matrix in the basis of the MCH states,

HMCH
(equation (4)) is computed and diagonalized to yield approximate relativistic states:

Hdiag = U†HMCHU. (10)

Here, the matrix Hdiag
is a diagonal matrix containing the approximate energies of the spin-

orbit mixed states, called diagonal states (see section 10.2). The approximation in this scheme

lies in neglecting all spin-orbit couplings between the included small set of states and all

other states. For systems without very heavy atoms (i.e., atoms with �lled 6p orbitals and

higher
75

), this ansatz usually produces accurate spin-orbit states, while being signi�cantly

cheaper than two- or four-component relativistic methods.

The main idea behind SHARC
16,17

is to perform SH on the potentials obtained through

diagonalization, as shown in equation (10). For problems including ISC, this ansatz will hence

use the approximate spin-orbit-mixed states discussed above. Equivalently, the DFC matrix

can be included in the diagonalization to obtain �eld-dressed states on which the propagation

can be performed.
76

The diagonalization of the electronic Hamiltonian has certain advantages
17,77,78

over using

the (SOC or DFC) interaction matrix directly in the EOM for the electronic wave function.

First, in the case of ISC dynamics, the diagonalization leads to rotation-invariant states, which

means that the sum of the population transfer to the component states of a multiplet is

independent of the orientation of the molecule or the de�nition of the spin functions.
17,78

Not using such a diagonalization scheme instead would lead to ISC rates which depend on

the orientation or the spin functions. Second, SOCs (in ISC dynamics) or DFCs are usually

of almost constant magnitude over a large portion of the PESs, and therefore can induce

hops in a large phase space volume.
47,78,79

This is disadvantageous for SH simulations, since

a large number of trajectories is required to sample in an unbiased way these hops. Upon

diagonalization, the delocalized SOCs/DFCs are replaced by localized NAC-like terms which

are large only where the energy gap between the corresponding states is small. By localizing

the coupling terms, a signi�cantly reduction in the amount of trajectories is achieved.

The diagonalization step in SHARC requires several modi�cations of the original SH

algorithm. First, it is necessary to numerically control the form of the transformation matrix U,

which can contain arbitrary signs or phase factors which lead to non-smooth propagation.
17,80

Second, the propagation in the diagonal basis modi�es the EOM of the electronic coe�cients,
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which includes the transformation matrix U:

∂

∂t
®c(t) =

[
iU†HMCHU + U†(®v ®TMCH)U + U†

∂

∂t
U
]
®cα (t). (11)

This equation could be solved by directly integrating:

®cdiag(t + ∆t) = exp

[
−

∫ t+∆t

t

(
iU†HMCHU + U†(®v ®TMCH)U + U†

∂

∂t
U
)
dτ

]
®cdiag(t), (12)

but this would involve di�erentiation and integration of U, a matrix which can change locally

extremely fast.
17

Instead, in SHARC the coe�cients are obtained through:

®cdiag(t + ∆t) = U†(t + ∆t) exp
[
−

∫ t+∆t

t

(
iHMCH + (®v ®TMCH)

)
dτ

]
U(t)®cdiag(t). (13)

Here, di�erentiation and integration of U are simply replaced by matrix products involving

the U of the previous and current time step, a practice which was inspired by the local-

diabatization method.
81

This scheme is numerically very stable, especially if SOCs are small.

Third, as the SHARC dynamics is carried out on the energies in the diagonalized Hamiltonian,

it is necessary to �nd the gradients of these diagonal energies.
17

These gradients can be

computed as a linear combination of the gradients and NAC vectors of the MCH states,

meaning that at each time step it is necessary to compute multiple MCH gradients, which

increases the computational e�ort compared to regular SH. Despite appearing technical,

these modi�cations are essential to correctly perform SH in the diagonal representation,

as recognized by recent further implementations of dynamics codes using a diagonalized

Hamiltonian.
80

10.3.4 Practical aspects of SHARC simulations
One important aspect of carrying out a SHARC (or any other SH) simulation is the preparation

of the initial conditions. To �nd the relaxation pathway after vertical excitation from the

ground state, the initial conditions are usually chosen to resemble the nuclear phase space

distribution in the equilibrium of the ground state. In such a case, there are two main

approaches to sample the ground state positions and momenta.
69,82

In the �rst, one computes

the harmonic frequencies and normal modes of the molecule at the equilibrium geometry and

picks position/momentum snapshots from the Wigner distribution of the harmonic oscillator

model,
83,84

possibly including temperature e�ects by considering the Wigner distribution of

higher vibrational states. This approach is very useful for relatively small and sti� molecules

in vacuum, as it generates a good representation of the ZPE of the system. For larger systems,

this approach might not be appropriate if the harmonic oscillator model becomes a bad

approximation due to the presence of strongly anharmonic or non-linear modes, or if the

approach becomes impractical due to the high computational cost of calculating the Hessian.

In such cases, one resorts to a classical MD simulation in the ground state and picks random

position/momentum snapshots from the resulting trajectory.
85

The disadvantage of the latter

method is that each degree of freedom receives the same share of the thermal energy, even

12



though in a quantum mechanical distribution high-frequency modes should receive more

energy than low-frequency ones.
69

After �nding appropriate initial positions and momenta, it is also necessary to determine

the correct initial electronic state. This step is related intimately to the way the molecule

is experimentally pumped to the electronic excited state. In many experiments, a good

temporal resolution requires that the pump pulse is as short as possible. Consequently, in the

preparation of initial conditions for SHARC, one routinely assumes an in�nitely short laser

pulse (a delta pulse) and simply excites the snapshots vertically. Often, the initial electronic

state is chosen stochastically based on the oscillator strength of all states;
86

in this way, only

bright states are initially populated, as it would be the case in a typical experiment. An

alternative to the delta pulse approach is to initiate the dynamics simulation in the ground

state and explicitly include the pump pulse in the SHARC simulation. This approach is

signi�cantly more expensive, as the laser pulse might excite only a small fraction of the

ground state trajectories and the remaining ones will be wasted.

Also important for SHARC, and SH in general, is the number of trajectories.
19

Ideally, a

number of criteria should be satis�ed. First, for non-equilibrium classical MD simulations, one

should employ multiple trajectories to sample di�erent reaction pathways. The number of

trajectories should therefore be such that the initial wave function is adequately represented,

covering the relevant phase space volume. Second, in excited state dynamics, the ensemble

should additionally consider that the initial conditions are distributed over multiple electronic

states, depending on the laser bandwidth. And third, speci�c to SH simulations, one also needs

multiple trajectories to sample the stochastic hopping events for each nonadiabatic event.

Hence, optimally one generates a phase-space distribution of initial positions/momenta, and

for each position one would generate a distribution over the relevant electronic states, and

for each initial state one would generate multiple trajectories with di�erent random number

sequences. The actual number of trajectories then also depends on whether one is interested

only in the main relaxation pathways or if the main focus is on one of the side channels; in

the latter case more trajectories are required for adequate statistics.

In practice, however, these suggestions for the number of trajectories can rarely be met to

full extent. One is usually limited by the computational expense of the trajectories, which

primarily depends on the choice of the electronic structure method used to compute energies,

gradients, and coupling terms on-the-�y. Only for very cheap methods or when using

precomputed PESs, it is possible to simulate thousands of trajectories; when using ab initio

electronic structure methods not more than a few hundred trajectories are typically computed

in practice. Such a small number of trajectories might increase the statistical noise in the

extracted properties of interest, but this is often preferable to employing a cheaper electronic

structure methods which yields unphysical potentials. Therefore, it is always necessary to

�nd an acceptable compromise between computational e�ort and accuracy of the electronic

structure calculations. As these calculations are a topic of high importance for any SHARC

(or SH) simulation, it is discussed in detail in the next section.
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10.4 Electronic structure methods
The electronic structure computations underlying SHARC (or SH) simulations have to provide

three general types of ingredients: (i) energies and gradients of the individual electronic

states, (ii) coupling terms between the states, and (iii) terms needed to simulate experimental

observables from various probing techniques. Point (i) is formally satis�ed by any method

that can perform excited-state structure optimizations, which is a large subset of the methods

which can compute excitation energies. For (ii), three types of coupling terms are usually

considered within SHARC (see above): NACs leading to IC between states of the same spin,

SOCs leading to ISC between states of di�erent spin, and DFCs governing the interaction

of a molecule with an external electric �eld. Regarding (iii), SHARC can also incorporate

further electronic quantities to simulate experimental observables. Currently, SHARC is able

to incorporate transition dipole moments—allowing the simulation of transient absorption

spectra—and Dyson norms, to approximate ionization probabilities.

The choice of the electronic structure level of theory—which provides all electronic quanti-

ties during the on-the-�y trajectory simulation—is usually the parameter that most strongly

a�ects the outcome of the simulations. A poor choice, such that critical aspects of the PESs

are not described correctly, can lead to meaningless dynamics.

10.4.1 Excited-state energies and gradients
The right choice of electronic structure method to calculate excited-state energies is particu-

larly challenging when electronic states with di�erent wave function characters participate

in the dynamics. Valence states (nπ ∗, ππ ∗, ones involving σ orbitals), Rydberg states, charge

transfer states, etc., often demand di�erent electronic structure descriptions. Hence, it might

be not trivial to �nd a method which describes then all on the same footing.

A good practice is to validate the electronic structure method before starting the dynamical

simulations. A starting point is to compare the excitation energies and state ordering at the

Franck-Condon geometry with a reliable level of theory or to experimental results. However,

as the trajectories will quickly leave the Franck-Condon region and travel to other parts

of the PESs, this validation approach is actually of limited value. It is strongly advisable

that geometries likely critical for the dynamics—excited-state minima, minimum-energy

crossing points, dissociation limits, etc.—are optimized prior to the dynamics simulations.

Only if the chosen electronic structure method can appropriately describe the energies at

these geometries, the method can be expected to be reliable for dynamics.

While the accuracy of the electronic structure method is of fundamental importance, the

choice of method is also restricted by the computational cost, as SH simulations require up to

hundreds of thousands of single point calculations. The need to simulate long time scales and

the available resources can also limit feasible options. Therefore, the choice of the electronic

structure method has to be balanced between the available resources and the desired accuracy.

In the following, we describe brie�y methods which are commonly used in SH simulations.

The methods for which interfaces are available in SHARC are collected in Table 1.

[Table 1 about here.]
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For general applicability, a method also needs to correctly and e�ciently treat challenging

electronic structure situations that lead to unpaired electrons in the ground state, such as

ground state/excited state crossings, bond breaking, or strong molecular deformations. In this

situation, the ground state electronic structure can no longer be approximated by a single elec-

tronic con�guration and one should resort to multi-con�gurational methods.
87

The complete

active space self-consistent �eld (CASSCF) method,
88

which allows optimizing the orbitals for

multi-con�gurational wave functions, o�ers a logical starting point. It has indeed been used

for a wide range of dynamics studies including nucleobases and analogues,
20,22,24,89–91

unsat-

urated hydrocarbons,
92–94

or various aromatic systems.
29,32,95–99

The downside of CASSCF is

that it does not include dynamic electron correlation and thus tends to provide an imbalanced

description of excited states of di�erent character, e.g., nπ ∗ and ππ ∗.
A correlated multi-reference description is provided by multi-reference con�guration

interaction (MRCI)
100

or CAS perturbation theory (CASPT2).
101

In the context of SHARC

simulations, the MRCI method has been applied to a number of small and medium-sized

systems, including nucleobases,
27,102–105

unsaturated hydrocarbons,
106,107

, pyrrole,
108

and

SO2.
28

CASPT2 in its uncontracted or contracted forms is seldom employed in dynamics

simulations
26,109

due to its high cost. A promising new implementation of extended multi-

state CASPT2 for nonadiabatic dynamics simulations has been reported recently.
110

Though

MRCI and CASPT2 are among the most accurate methods, they also have downsides: MRCI

lacks size-extensivity
87

—leading to a degradation of its accuracy as system size increases—and

CASPT2 is rather sensitive to empirical shift parameters.
111

Furthermore, all multi-reference

methods su�er from the fact that the results crucially depend on the choice of the active

orbital space.

For the above reasons, there is a strong drive to use single-reference methods that can o�er

much better computational performance while retaining su�cient accuracy.
112

However,

care must be taken at strongly distorted geometries where the ground state and excited

states become near-degenerate, because single-reference methods might completely fail in

this situation, either by exhibiting serious convergence problems (which might lead to the

abort of the trajectory) or by describing an unphysical topology of the ground state–excited

state conical intersection. In contrast, conical intersections between two excited states are

usually
113

described with the correct topology. Hence, single-reference methods are preferably

used for nonadiabatic dynamics where the ground state is not involved.

Among single-reference methods, time-dependent density functional theory (TD-DFT)

is attractive due to its computational e�ciency. Applications include transition metal com-

plexes,
31,114,115

nucleobases (see, e.g., citations in Ref. 91), and larger biological molecules
116–118

;

see also applications in a extensive review on DFT-based SH.
119

The main problem of TD-DFT

is that the results might depend on the choice of the exchange-correlation functional and

in particular on the amount of non-local orbital exchange. Correlated wave-function-based

single-reference methods o�er a promising alternative. In particular, the algebraic diagram-

matic construction method ADC(2)
120,121

can produce accurate results at reasonable cost. A

number of ADC(2) dynamics simulations of IC have been reported,
122,123

and an extension to

ISC has been achieved recently.
124

An additional option, which combines positive aspects of both single- and multi-reference

methods, is provided by the spin-�ip paradigm.
125

It has been shown that spin-�ip methods

do indeed show favorable properties, i.e., a correct topology of conical intersections between
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ground and excited states.
126

However, dynamics simulations using spin-�ip methods have

not been carried out so far up to our knowledge.

10.4.2 Nonadiabatic couplings
As discussed above, the central quantity for computing the interconversion between states of

the same multiplicity is the NAC vector. Given the electronic wave functions of two states

Ψα and Ψβ , the NAC vector is de�ned as

®Tβα ( ®R) =
〈
Ψβ ( ®R)

���®∇���Ψα ( ®R)〉 (14)

where
®∇ is the di�erential operator with respect to the nuclear coordinates ®R. The coupling

vector measures how much the change in the wave function of one state (
®∇Ψα ) resembles the

wave function of a di�erent state (Ψβ ). It is large whenever two wave functions exchange

their character, which is usually the case around avoided crossings or conical intersections.

The NAC vector can be computed using response theory, requiring a similar, albeit somewhat

more involved, formalism as the computation of energy gradients. This has been realized for

several electronic structure methods, e.g., CASSCF,
127,128

MRCI,
129

and TD-DFT,
130

but is not

as readily available as excited-state energies and gradients. In SHARC, NAC vectors are only

available from Molpro and Columbus, for the CASSCF and MRCI methods.

One caveat of computing NAC vectors for SH simulations is that on the order of n2
states

vec-

tors need to be computed every time step, adding considerable cost. Therefore, an alternative

method for computing nonadiabatic interactions has been developed following the initial

work of Hammes-Schi�er and Tully.
70

For the application of this method, it is important to

realize that for evaluating the EOM not the whole NAC vector is needed but only its projection

on the nuclear velocity, i.e., ®Tβα ( ®R) ·
∆ ®R
∆t . It can further be realized that this expression can be

discretized according to
131

®Tβα ( ®R) ·
∆®R

∆t
≈

1

∆t

〈
Ψβ ( ®R)

���Ψα ( ®R + ∆®R)〉 . (15)

The central quantity in this context is the overlap between the wave functions computed at

the geometries of subsequent time steps.

The wave function overlap can be computed from the overlaps of the atomic orbitals at

the two geometries, the molecular orbital coe�cients, as well as the response or CI coef-

�cients.
131–133

For large wave function expansions, it can become prohibitively expensive

to compute this term, primarily because the two molecular orbital sets are non-orthogonal.

However, the cost can be drastically reduced by using an optimized algorithm, such as the one

proposed in Ref. 131. In this algorithm, one takes advantage of two facts: that the overlap can

be factored into independent alpha and beta contributions and that many Slater determinants

only di�er by one electron. This allows reusing many intermediates in the computation,

signi�cantly reducing the scaling of the overlap computation.

The advantage of using wave function overlaps in nonadiabatic dynamics simulations

is that they can be readily adapted to various electronic structure methods and quantum

chemistry programs. SHARC can currently compute wave function overlaps for all interfaced
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methods—CASSCF, MRCI,
131

MS-CASPT2,
134,135

TD-DFT,
31

and ADC(2).
124

Furthermore, in

situations where the NAC vectors become locally very large and narrow
136

—and thus di�cult

to integrate numerically—wave function overlaps allow for a more stable propagation with

longer time steps, especially when used in connection with the local diabatization method.
81

10.4.3 Spin-orbit coupling and scalar relativistic e�ects
In general, states of di�erent multiplicity or di�erent spin-magnetic quantum number MS
interact due to relativistic e�ects. The theory of relativistic quantum chemistry, which

describes these e�ects, is exceedingly complex due to both formal and practical issues.
34

However, some very practical approximations have emerged over the years, which allow

including relativistic e�ects in standard quantum chemistry codes with only little additional

e�ort.

The SOC terms considered here can be de�ned as the matrix elements of the Breit-Pauli

spin-orbit Hamiltonian:
34

Ĥ SO,BP =
1

2c2

n
el∑
i

nnuc∑
A

ZA(®riA × ®pi ) · ®si

r 3iA
−

1

2c2

n
el∑

i,j

(®ri j × ®pi ) · ®si

r 3i j
+

1

c2

n
el∑

i,j

(®ri j × ®pi ) · ®sj

r 3i j
, (16)

where c is the speed of light, ®riA is the distance vector between electron i and nucleus A,

®ri j is the distance vector between electrons i and j, ®p is a momentum vector, and ®s a spin

vector. The three terms of the operator are usually called the one-electron term and the

two-electron spin-same and spin-other-orbit contributions (from left to right). Physically, the

�rst term describes the interaction of the magnetic moment induced by the orbital motion of

an electron around a nucleus with the intrinsic spin magnetic moment, and analogously for

the two-electron terms. This e�ect can couple an α electron in some orbital with a β orbital in

an orbital with an appropriate di�erent angular momentum, thus introducing a spin-�ipping

mechanism which is necessary for ISC.

Generally, calculations involving Ĥ SO,BP
will be more demanding compared to calculations

considering only the MCH, due to the larger number of two-electron integrals needed. Hence,

the SOC terms are usually computed in a mean-�eld approach using either atomic mean-�eld

integrals (AMFI),
137,138

or the somewhat more sophisticated spin-orbit mean-�eld (SOMF)

approach.
139,140

In both approaches, the formally two-electron spin-orbit operator is approxi-

mated by an e�ective one-electron operator (reminiscent to Hartree-Fock theory), leading

to considerably cheaper computations with little error.
137–140

In order to arrive at spin-orbit

matrix elements between two electronic states, one �nally combines the integrals over the

e�ective one-electron operator and the basis functions with the appropriate one-electron

spin-transition density matrix.
141

SHARC currently supports the computation of SOC terms,

using either the AMFI or SOMF approaches, for the CASSCF,
138

MS-CASPT2,
138

MRCI,
142

TD-DFT,
31,75

and ADC(2)
124

methods.

Besides SOC, oftentimes scalar relativistic e�ects are considered. These e�ects are due to

the fact that in heavy atoms the inner shell electrons move at relativistic velocities, which leads

to a relativistic mass increase that a�ects the shapes and energies of the orbitals. Typically,

the innermost shells of s type will shrink considerably due to this mass increase, whereas

outer shells will expand because the inner shells better shield the nuclear charge.
143

Scalar
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relativistic e�ects can be included in electronic structure calculation by means of methods

like the zero-order regular approximation
144

or the Douglas-Kroll-Hess transformation.
145

Practically, these methods add little extra e�ort to the calculations, because they mainly a�ect

how the one-electron kinetic energy integrals are computed. Consequently, most electronic

structure packages interfaced to SHARC can compute scalar relativistic e�ects, which are

routinely included in SHARC simulations.

10.4.4 Dipole moments and Dyson norms
In order to incorporate DFCs into the SH simulation, it is also necessary to compute the static

dipole moments of the electronic states as well as the transition dipole moments between

them. This gives rise to a matrix of dipole moment vectors:

®µβα =

〈
Ψβ

�����− n
el∑
i

®ri +
nnuc∑
A

ZA ®RA

�����Ψα
〉
. (17)

These terms are readily available for methods producing explicit wave functions such as

CASSCF and MRCI. In these cases, the terms are simply computed as operator expectation

values and matrix elements between the di�erent wave functions.
146

In the case of (single-

reference) response methods, such as TD-DFT and CC2, the situation is more involved. While

the matrix elements involving the ground state (µ00 and µ0α ) are usually easily computed, the

excited-state (transition) dipole moments (µββ and µβα ) require the solution of additional

response equations,
147

or might not be available at all.

Another related quantity is the photoionization probability, which is needed if the interac-

tion with an electric �eld leads to ionization. These probabilities might be approximated by

means of the norms of Dyson orbitals,
148,149

which are relatively cheap to calculate and can

thus be used on-the-�y. The Dyson orbital between an n-electron wave function Ψβ and an

ionized (n − 1)-electron wave function Θα is de�ned as

ϕ
Dyson

βα (®r ) =

∫
. . .

∫
Ψβ (®r , ®r2, . . . , ®rn)Θα (®r2, . . . , ®rn)d®r2 . . . d®rn . (18)

This equation is closely related to the one for wave function overlaps, described in sec-

tion 10.4.2, with the exception that one electron is “left out”. The practical implementation

therefore involves a loop over multiple overlap calculations, one for each occupied orbital.
150

Dyson norms are currently available in SHARC for CASSCF, MS-CASPT2, MRCI, and TD-DFT

methods.

10.5 Analysis
Nonadiabatic dynamics simulations produce a wealth of information for each time step:

nuclear positions and velocities, electronic populations and energies, information on the

active state, hopping probabilities, etc. In order to extract chemical meaning and to make

useful predictions
151

data analysis is necessary.

In general, one can distinguish between (i) predicted values for physical observables and (ii)

non-observable descriptors.60,151
The former quantities can be directly related to data measured

18



experimentally and are therefore also valuable to estimate the accuracy of the simulations.

Non-observable descriptors, i.e., quantities that are not directly accessible by experiments, for

example wave functions, can facilitate discussions of reaction mechanisms, enable generaliza-

tions to whole classes of molecules, and allow comparison to other computational simulations,

i.e., provide additional insight that is not necessarily accessible experimentally.

10.5.1 Simulation of observables
Among the basic observables which can be simulated by nonadiabatic dynamics methods are

di�erent types of product branching ratios.
60

A prime example of this are quantum yields,

either related to di�erent electronic states—e.g., the electronic ground state, long-lived triplet

states, or ionic states—or to di�erent stable molecular arrangements—e.g., in photoinduced

rearrangement reactions. Quantum yields of electronic states can easily be computed from the

electronic populations—i.e., the absolute squares of the coe�cients |cα (t)|
2

summed over all

trajectories—or from the fraction of trajectories moving in a particular state at the end of the

simulation. Furthermore, for dissociation or scattering reactions, kinetic energy distributions

and velocity correlations
60,152

can be directly extracted from the trajectories.

[Figure 3 about here.]

Another important class of observables are transient signals measured in pump-probe

spectroscopic experiments. The basis principles behind some popular time-resolved methods

and their corresponding signals are sketched in Figure 3. One of the most ubiquitous pump-

probe techniques for gas-phase studies is time-resolved photoelectron spectroscopy (TRPES).
10

Within this method, after the pump pulse, the excited molecule is probed with a probe

laser pulse which is capable of ionizing the molecule, see Figure 3a. This is accomplished

either through high photon energies (leading to single-photon ionization) or through large

intensities (inducing two- or multiphoton ionization). The ejected electron and the remaining

molecular ion can then be detected through mass spectrometric techniques. In TRPES, only

the number and energy of ejected electrons are measured depending on the pump-probe delay.

A computational simulation of a TRPES signal therefore requires that for each time step and

trajectory one can compute the probability of ejecting an electron from the current active

electronic state, given the laser characteristics. The simplest way to do that is to approximate

the ionization probabilities by means of Dyson norms, which describe the compatibility

between a neutral and an ionic wave function (see above).
15

This means that in addition to

the neutral states calculated during the dynamics simulation, a number of ionic states are

also necessary for each time step. In turn, this might a�ect the choice of electronic structure

method because it needs to describe the neutral and ionic states in a balanced way.

Ionization probabilities can be computed by more elaborate methods beyond Dyson norms,

taking into account the wave function of the outgoing electron and the coupling between

di�erent ionization channels.
148,153–155

Either way, the ionization probability data from each

trajectory and time step can be combined to obtain a time-dependent signal

σTRPES(t, E) =

ntraj∑
a

nstate∑
α

Iβ→α ,a(t, E, Ephoton, Eα (t) − Eβ (t)), (19)
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where β is the active state at the respective time step. When using Dyson norms, the equation

can be stated as

σTRPES(t, E) =

ntraj∑
a

nstate∑
α

|ϕ
Dyson

βα ,a (t)|
2
exp

(
−
(E − Ephoton − Eβ ,a(t) + Eα ,a(t))

2

2w2

)
, (20)

wherew is the width parameter of the employed Gaussian broadening. The quantityσTRPES(t, E)
can then be convoluted with the respective instrument response function to arrive at the �nal

simulated TRPES signal.
15,156,157

There also exist a number of more elaborate experimental methods related to TRPES
6
—

like time-resolved photoelectron photoion coincidence detection, velocity map imaging,

or COLTRIMS (cold target recoil ion momentum spectrometer)—which also measure the

momentum of the photoelectron, as well as number, energies, and momenta of the photoion,

but to our knowledge corresponding on-the-�y simulations were not attempted to-date.

Another popular pump-probe technique—mostly for solvent-phase experiments—is tran-

sient absorption spectroscopy (TAS).
12

Here, the excited molecule is probed by the absorption

of a broad-band pulse in the UV or visible range, see Figure 3b. Because the absorption depends

on the populated electronic state, the excited-state dynamics can be followed by changes

in the resulting time-dependent absorption spectrum. The simulation of such a spectrum is

similar to the case of TRPES signals, involving equations analogous to Eq. (20). Instead of

computing ionic states, it is necessary to compute additional, higher-energy neutral states,

such that excitations from the current active state are possible. The absorption probabilities

are here given by the transition dipole moments between the currently active state and the

higher states. If the transition dipole moments to the lower states are also included, it is

possible to obtain stimulated emission signals in the TAS, too. More elaborate methods for

computing TAS signals from SH trajectories also exist.
158

Yet another pump-probe technique to detect excited-state dynamics is time-resolved infrared

spectroscopy (TRIR).
159

This method probes the time-dependent oscillations of the molecule

and its permanent dipole moment after excitation (see Figure 3c). In order to simulate a TRIR

spectrum from a trajectory, it is necessary to compute the permanent dipole moment of the

active state for all time steps, a task which is automatically done in SHARC. Then, the auto-

correlation function of the dipole moment vectors can be computed. A Fourier transformation

of this function would yield the static IR spectrum of the molecule,
160

however, no time-

dependent information is retained. Instead, a time-frequency distribution function can be

computed, e.g., from short-time Fourier transformations or wavelet transformations. Unlike

TRPES and TAS above, the simulation of TRIR spectra from a trajectory does not require the

computation of additional electronic states.

10.5.2 Analysis of electronic evolution
While the output of all pump-probe experiments is some kind of transient signal, most often

one is interested in the temporal evolution of the excited-state populations. Signals and

populations are clearly related, but often in a convoluted way because processes and signals

can overlap and exhibit additional dependencies. In contrast, excited-state simulations directly

provide excited-state populations, albeit in a particular representation, recall Figure 1.
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There are di�erent ways to compute populations in SH simulations. One can track the

fraction of trajectories in each state (giving the “classical” populations) or compute the sum

of the amplitudes |cα (t)|
2

over all trajectories (the “quantum” populations). If the simulations

correctly included decoherence (see section 10.3.2), then these two quantities will be consistent

and give the populations in terms of the actually used representation. In SHARC, this will

be the diagonal representation, but it is also possible to transform the populations back into

the MCH representation, with the states as produced by the quantum chemistry calculation

(S0, S1, T1, ...). These populations can subsequently be �tted—either with simple exponential

functions, or with more extensive kinetic models
26

—to obtain time constants that can be

compared to experiment.

Whereas the picture of adiabatic states is well de�ned from a computational point of view,

it is not generally the most meaningful way to discuss the physical processes occurring. Inter-

pretation is facilitated by transforming the populations into the spectroscopic representation,

yielding populations for the di�erent state characters, e.g.
1nπ ∗,1 ππ ∗,3 nπ ∗,3 ππ ∗. No general

and rigorous strategy exists to perform this transformation, but a number of approximate

strategies exist: (i) computing a path-integral of the overlap or NAC along a trajectory, (ii)

diabatization using physical observables, and (iii) diabatization using electronic structure

analysis methods as described below. Some of us used strategy (i) for the simulation of ISC in

SO2,
28

strategy (ii) for the study of the dynamics of the keto and enol tautomers of cytosine,
89

and strategy (iii) in model systems to investigate charge
161

and energy transfer.
136

A central problem in the adiabatic (i.e., MCH)-to-diabatic transformation is the identi�cation

of the dominant state character of the current MCH wave functions. The most straightforward

way is to analyze the molecular orbitals (MOs)—i.e., the highest occupied MO (HOMO), the

lowest unoccupied MO (LUMO), the LUMO+1, etc.—and the excited-state response vector to

�nd out which orbitals are involved in the transition. This method works in simple cases but

has two severe downsides. First, the state character identi�cation can be ambiguous if the

orbitals are mixed or several con�gurations are involved, as it is not possible to simply add

up all contributions—any interference terms have to be included in a consistent manner.
162

Second, a manual inspection of the involved orbitals is unfeasible if a large number of

computations is performed, as is the case in on-the-�y dynamics simulations. The application

of some well-established visualization techniques such as the natural transition orbitals
163

or

the attachment-detachment densities
164

can be used to solve the �rst problem.
165

Solving the second problem is a more involved task, as it requires a completely automated

analysis of excited state character. To this end, a set of analysis strategies based on the

one-electron transition density matrix was developed within the framework of exciton the-

ory.
165–167

A fundamental concept in this formalism is the computation of charge transfer

numbers (see, e.g., Ref. 168). These allow to partition the electronic excitation into individ-

ual local and charge transfer contributions. These methods have been previously applied

in static computations to study a number of systems, such as DNA
169–171

or conjugated

polymers.
172

It could also be used to automatically distinguish between di�erent classes of

states in metal complexes, e.g., metal-centered states, metal-to-ligand charge transfer states,

or intraligand states.
173

The possibility of employing this automated state identi�cation in

dynamics simulations was outlined in the case of monitoring energy transfer in the pyridone

dimer.
136

21



10.5.3 Analysis of nuclear evolution
Besides the analysis of the electronic degrees of freedom, it is also very important to evaluate

the evolution of the molecular geometry, which can undergo drastic changes during the

excited-state dynamics. A convenient way to monitor these changes is in terms of internal

coordinates, for example, bond distances, angles, dihedrals, or out-of-plane motions. Also of

relevance in many cases are ring conformation parameters,
174,175

or other large-scale motions,

which can be tracked, e.g., with intermolecular distances. This approach was applied, e.g.,

to monitor ring deformation in nucleobases
176

and analogues
26

or to follow excited-state

proton transfer processes.
177

Furthermore, internal coordinate evolution can also be a proxy

to observe the electronic populations, if di�erent state characters exhibit signi�cantly di�erent

equilibrium values for internal modes.
26

Experimentally, using the emerging techniques of

ultrafast X-Ray di�raction
178

or ultrafast electron di�raction,
179

it is possible to follow the

evolution of internal coordinates through time-resolved (radial) distribution functions.

Besides internal coordinate analysis, normal mode analysis protocols for molecular dy-

namics simulations were developed,
180,181

in light of the fact that coherent normal-mode

oscillations are readily observed in modern femtosecond experiments.
182

The method avail-

able in SHARC
181

proceeds by transforming the Cartesian coordinates of the structures

reached during the dynamics simulations into normal mode displacements. The normal

mode displacements are in turn subjected to various statistical analysis procedures to obtain

the coherent and total normal-mode activity during the dynamics. The method, applied in

the case of excited state proton transfer,
181

can reproduce the experimentally observed
183

normal-mode activation.

Dynamics simulations can also help to discover stationary points and minimum-energy

crossing points. The latter can be found by statistical analysis of the geometries where surface

hops occurred—clustering can, for example, unravel the number of involved minimum-energy

conical intersections. Similarly, statistical analysis of all geometries can �nd local minima,

because many time steps of the trajectories will be located in the vicinity of these minima.

The identi�cation of these stationary points can in turn facilitate the formulation of a general

relaxation mechanism.
27

10.6 Example application
In this section, we would like to illustrate some of the theoretical points discussed above

with one example. Cytosine is one of the chromophores in DNA and therefore has been an

interesting subject of study.
91,184–187

SHARC has been employed to unravel its excited-state

dynamics
20,21

and simulate its time-resolved photo-electron spectrum.
15

Our study aimed at

the simulation of cytosine in the gas phase, where di�erent tautomers of the molecule are

known to coexist. The two most important ones are the amino-keto (“keto cytosine”) and

amino-enol (“enol cytosine”) tautomers.
21

The �rst step of the study was the determination of the electronic structure level of theory

to use in dynamics. We chose the SA-CASSCF(12,9)/6-31G* level of theory, averaging four

singlets and three triplets for keto cytosine, and three singlets and four triplets for enol

cytosine with equal weights. This state-averaging protocol was able to reproduce the correct
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state ordering (with respect to MS-CASPT2 calculations) of the few lowest nπ ∗ and ππ ∗

states at the Franck-Condon point (i.e., the ground-state equilibrium geometry), which was

optimized for each tautomer beforehand. The active space contained 12 electrons in 9 active

orbitals, including the two lone pairs of cytosine, plus the orbitals of the π system (minus the π
of the amino group). This level of theory was chosen as a compromise between computational

cost and accuracy, using the largest feasible active space. Furthermore, at that time, CASSCF

in Molpro was virtually the only method where excited states including SOCs and NACs

(see section 10.4) were available.

The second step was the preparation of the initial conditions, as outlined in section 10.3.4.

Cytosine in the ground state is not always exactly at the equilibrium (Franck-Condon) ge-

ometry. Instead, it vibrates with the available ZPE and it samples di�erent con�gurations

that need to be considered as initial geometries for the excited-state dynamics. Separately for

each tautomer, the sampling of these initial geometries was carried out according to a Wigner

distribution which mimics the probability distribution of the geometries and velocities of

the vibrational ground-state. In order to compute the Wigner distributions, we performed

harmonic frequency calculations of the respective optimized ground-state equilibrium ge-

ometries. The Wigner sampling eventually yielded a list of geometries (and corresponding

velocities), and for each geometry a vertical-excitation calculation was performed. The calcu-

lated excitation energies and oscillator strengths were employed in a probabilistic manner
86

to determine whether a given geometry would be excited by a delta laser pulse, and which

excited state would be populated by the pulse. Consequently, after this probabilistic state

selection scheme, we obtained a list of initial conditions—with each one being a combination

of geometry, velocities, and initial state—which could be employed as the starting point of

one trajectory.

Inspection of initial conditions reveals how important the di�erent electronic state rep-

resentations are (see Figure 1). Even though the relevant bright state, the �rst ππ ∗ state,

at the Franck-Condon point is the S1 state (i.e., the lowest-energy excited singlet), many

initial conditions were obtained where the S2 was the bright state. The reason is that in keto

cytosine, a conical intersection between the ππ ∗ and an nπ ∗ state is located very close to

the Franck-Condon point and therefore a small displacement away from this geometry is

su�cient to lead to a reordering of these two states, such that the ππ ∗ state becomes the S2.
This shows that in the case of keto cytosine, it would be inaccurate to use the labels “S1” or

“S2” in order to discuss the bright ππ ∗ state beyond the frozen equilibrium geometry, and that

a set of initial conditions that sample the whole Franck-Condon region is necessary.

As a third step, we performed nonadiabatic dynamics simulations and carried out the

trajectory analysis for 68 and 65 trajectories in the keto and enol tautomers, respectively. The

resulting excited-state populations for the two forms are shown in Fig. 4a and 4b. Although

the trajectories were propagated in the diagonal representation internally in the SHARC

program, the �gure shows the populations in the spectroscopic representation. This was

accomplished by classifying the diagonal states as ground state (GS),
1ππ ∗, 1nπ ∗, or triplet (T)

based on the magnitude of the transition dipole moment between the state of interest and the

lowest-energy state. Bright states were classi�ed as
1ππ ∗, less bright state as

1nπ ∗, and very

dark states as triplet (see Ref. 21 for thresholds).

[Figure 4 about here.]
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[Table 2 about here.]

According to the �gure, the initial population is primarily located in the bright
1ππ ∗

state (which is a mixture of the S1 and S2 states) for both keto and enol tautomers and it

decays with a time constant of approximately 25 fs (40 fs) for the keto (enol) tautomer. The

decaying population is transferred to the
1nπ ∗ state, from where it can subsequently convert

to the ground state or undergo ISC to a triplet state. The decay time of this
1nπ ∗ state is a

combination of the IC and ISC decay channels, and amounts to 216 fs (1513 fs) for the keto

(enol) tautomer. The rise time of the triplet state population was determined to be 745 fs

(6220 fs) for the keto (enol) tautomer. The three time constants are given in Table 2. These

time constants have been also heavily discussed in experimental investigations, although

there the population dynamics can only be inferred indirectly.

As a �nal, fourth step, we computed TRPES signals,
15

since it has been largely used to probe

the dynamics of cytosine.
188–191

The goal of TRPES is to follow the ionization probability of

the currently occupied (neutral) excited state. Unfortunately, the TRPES signals do not only

depend on the how the neutral excited-state populations actually change in time but also on

the geometry-dependent ionization probabilities between the electronic states. Therefore, it

is not enough to compare the experimental signal with the excited-state population, but one

should also simulate the actual probe step. As a crude approximation of the ionization yield,

we used Dyson norms (see sections 10.4.4 and 10.5). The resulting simulated ionization yields

are shown in Fig. 4c and 4d. The signals for keto and enol cytosine are scaled relative to each

other and re�ect the abundance of approximately 35% keto and 65% enol tautomer in the gas

phase.
192

As given in Table 2, the time constants for the ionization signals of the di�erent

states is di�erent from the time constants obtained from the population dynamics.

[Figure 5 about here.]

The experimental photoelectron yield
189

of gas phase cytosine is shown in Fig. 5. A �t

of this yield showed that the curve could be represented as the sum of two (temporally

broadened) exponentials (dashed lines). The corresponding time constants were determined

to be 820 fs and 3200 fs.
189

Strikingly enough, although the computations produced quite

di�erent time constants, the computed total photoelectron yield from the SHARC simulations

(based on CASSCF potentials and Dyson norms with their inherent limitations) agrees well

with the experimental photoelectron yield, as shown in Fig. 5. The comparison of these

numbers with the outcome of the simulations teaches that the experimental signal is the

sum of di�erent underlying contributions and that this sum cannot easily be decomposed

into those contributions without additional information.
15

This is why a collaborative e�ort

between experiment and theory is of utmost importance to gain a deeper understanding of

the complex interplay between electrons, nuclei and electromagnetic �elds.

10.7 Summary
The simulation of light-induced processes, where the motion of electrons and nuclei are

correlated, poses many challenges.
193

In this chapter, we describe a general surface-hopping

method able to follow the ultrafast nonadiabatic dynamics of molecular systems. This method,
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abbreviated SHARC (Surface Hopping including ARbitrary Couplings), allows for the simu-

lation of molecular systems with dozens of atoms including all degrees of freedom and any

type of coupling. As such, SHARC is able to simulate the direct interaction of the molecule

with explicit laser pulses as well as to describe internal conversion and intersystem crossing.

As a mixed quantum-classical method, where the nuclei are treated classically and only the

electrons are described quantum mechanically, SHARC cannot take into account quantum

phenomena, such as tunnelling, quantum interferences, or (de)-coherences. However, SHARC

and in general surface-hopping methods have demonstrated to be enormously successful in

the study of nonadiabatic phenomena for di�erent neutral molecular system in gas phase,

from small organic/inorganic chromophores or medium size transition metal complexes. The

implementation of hybrid quantum mechanical/molecular mechanical (QM/MM) approaches

to describe nonadiabatic dynamics in the presence of an environment is in progress and it

will see large applicability in the realm of photobiology and photochemistry in solution.

Trajectories provide the time evolution of state populations, where the character of the

associated wave functions, and the conformational changes can be resolved. The analysis

of all underlying data can reveal reaction mechanisms, as well as help in the determination

of time scales and quantum yields. A direct comparison of calculated reaction mechanism

and time-resolved populations with experimental observables is di�cult, since time-resolved

experiments can only infer neutral dynamics indirectly. Alternatively, SHARC can also simu-

late the experimental probe process, e.g., ionization, to allow for a direct comparison to the

experimental observable. Ionization can be approximated via the simple approach of calcu-

lating Dyson norms but more sophisticated methods, e.g., Coulomb waves,
155

discretization

of the ionic continuum,
194

B-splines,
195

Stieltjes imaging,
196

or time-dependent resolution

in ionic states (TD-RIS)
149,153

might be needed to obtain a better description of the ejected

ion and a better comparison to time-resolved photoelectron spectra. In SHARC it is even

possible to simulate the interaction of molecules with strong �elds. However, in this case it is

essential to get very accurate excited-state energies and transition dipole moments for a large

number of high-lying electronic states. This is because the Stark shifts induced by the strong

�elds are very sensitive to tiny inaccuracies in the state energies and the transition dipole

moments.
197

In these cases, it might be useful to employ simpler models with �tted e�ective

parameters that allow multiphoton processes,
198,199

but to allow for the full dimensionality of

the electronic and nuclear motion. In the realm of attochemistry, a more detailed analysis of

the electronic wave function and the tracking of its evolution
14

could open new possibilities

to the �eld of surface hopping.

Acknowledgment
We thank the Austrian Science Fund (FWF) within project I2883 (DeNeTheor) and the Univer-

sity of Vienna for �nancial support. The authors also would like to thank the past members

of the SHARC development team (Martin Richter, Matthias Ruckenbauer, Markus Oppel, and

Andrew J. Atkins), as well as the COST actions CM1405 (MOLIM) and CM1305 (ECOSTBio)

for fruitful discussions about nonadiabatic dynamics of spin-change processes. The Vienna

Scienti�c Cluster (VSC) is acknowledged for the generous allocation of computer resources

which made possible several large-scale SHARC simulations.

25



References
1. P. Agostini and L. F. DiMauro, Rep. Prog. Phys., 2004, 67, 813.

2. M. F. Kling and M. J. Vrakking, Annu. Rev. Phys. Chem., 2008, 59, 463–492.

3. F. Krausz and M. Ivanov, Rev. Mod. Phys., 2009, 81, 163–234.

4. W. Li, A. A. Jaroń-Becker, C. W. Hogle, V. Sharma, X. Zhou, A. Becker, H. C. Kapteyn

and M. M. Murnane, Proc. Natl. Acad. Sci., 2010, 107, 20219–20222.

5. F. Calegari, G. Sansone, S. Stagira, C. Vozzi and M. Nisoli, J. Phys. B: At., Mol. Opt. Phys.,
2016, 49, 062001.

6. M. Nisoli, P. Decleva, F. Calegari, A. Palacios and F. Martín, Chem. Rev., 2017, 117,

10760–10825.

7. A. H. Zewail, Angew. Chem. Int. Ed., 2000, 39, 2586–2631.

8. M. Dantus and A. H. Zewail (Eds.), Chem. Rev., 2004, 104, 1717–2124.

9. A. H. Zewail, Annu. Rev. Phys. Chem., 2006, 57, 65–103.

10. A. Stolow, A. E. Bragg and D. M. Neumark, Chem. Rev., 2004, 104, 1719–1758.

11. T. Seideman, Annu. Rev. Phys. Chem., 2002, 53, 41–65.

12. R. Berera, R. Grondelle and J. T. M. Kennis, Photosynth. Res., 2009, 101, 105–118.

13. W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H. C. Kapteyn and M. M. Murnane,

Science, 2008, 322, 1207–1211.

14. F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto,

L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín and M. Nisoli, Science, 2014,

346, 336–339.

15. M. Ruckenbauer, S. Mai, P. Marquetand and L. González, Sci. Rep., 2016, 6, 35522.

16. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola and L. González, J. Chem. Theory
Comput., 2011, 7, 1253–1258.

17. S. Mai, P. Marquetand and L. González, Int. J. Quantum Chem., 2015, 115, 1215–1231.

18. S. Mai, M. Richter, M. Ruckenbauer, M. Oppel, P. Marquetand and L. González, SHARC:
Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic
Dynamics, sharc-md.org, 2014.

19. M. Barbatti, WIREs Comput. Mol. Sci., 2011, 1, 620–633.

20. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola and L. González, J. Phys. Chem.
Lett., 2012, 3, 3090–3095.

21. S. Mai, P. Marquetand, M. Richter, J. González-Vázquez and L. González, ChemPhysChem,

2013, 14, 2920–2931.

22. M. Richter, S. Mai, P. Marquetand and L. González, Phys. Chem. Chem. Phys., 2014, 16,

24423–24436.

23. S. Mai, M. Richter, P. Marquetand and L. González, Ultrafast Phenomena XIX, Springer

International Publishing, 2015, vol. 162, pp. 509–513.

24. S. Mai, M. Richter, P. Marquetand and L. González, Chem. Phys., 2017, 482, 9–15.

25. C. E. Crespo-Hernández, L. Martínez-Fernández, C. Rauer, C. Reichardt, S. Mai, M. Pollum,

P. Marquetand, L. González and I. Corral, J. Am. Chem. Soc., 2015, 137, 4368–4381.

26



26. S. Mai, P. Marquetand and L. González, J. Phys. Chem. Lett., 2016, 7, 1978–1983.

27. S. Mai, M. Pollum, L. Martínez-Fernández, N. Dunn, P. Marquetand, I. Corral, C. E.

Crespo-Hernández and L. González, Nat. Commun., 2016, 7, 13077.

28. S. Mai, P. Marquetand and L. González, J. Chem. Phys., 2014, 140, 204302.

29. M. Marazzi, S. Mai, D. Roca-Sanjuán, M. G. Delcey, R. Lindh, L. González and A. Monari,

J. Phys. Chem. Lett., 2016, 7, 622–626.

30. C. Rauer, J. J. Nogueira, P. Marquetand and L. González, J. Am. Chem. Soc., 2016, 138,

15911–15916.

31. A. J. Atkins and L. González, J. Phys. Chem. Lett., 2017, 8, 3840–3845.

32. J. Cao, Z.-Z. Xie and X. Yu, Chem. Phys., 2016, 474, 25 – 35.

33. K. G. Dyall and K. Fægri, Introduction to Relativistic Quantum Chemistry, Oxford Univer-

sity Press, 2007.

34. M. Reiher and A. Wolf, Relativistic Quantum Chemistry, Wiley VCH Verlag Weinheim,

2009.

35. B. K. Kendrick, C. A. Mead and D. G. Truhlar, Chem. Phys. Lett., 2000, 330, 629 – 632.

36. M. Baer, Chem. Phys. Lett., 2000, 330, 633 – 634.

37. C. M. Marian, WIREs Comput. Mol. Sci., 2012, 2, 187–203.

38. J. N. Harvey, S. Grimme, M. Woeller, S. D. Peyerimho�, D. Danovich and S. Shaik, Chem.
Phys. Lett., 2000, 322, 358 – 362.

39. R. Englman and J. Jortner, Mol. Phys., 1970, 18, 145–164.

40. L. J. Butler, Annu. Rev. Phys. Chem., 1998, 49, 125.

41. M. Born and R. Oppenheimer, Ann. Phys., 1927, 389, 457–484.

42. N. L. Doltsinis, Computational Nanoscience: Do It Yourself!, John von Neuman Institut for

Computing, Jülich, 2006, vol. 31, pp. 389–409.

43. E. Schrödinger, Phys. Rev., 1926, 28, 1049–1070.

44. J. S. Briggs and J. M. Rost, Foundation of Physics, 2001, 31, 693–712.

45. H.-D. Meyer, F. Gatti and G. A. Worth, Multidimensional Quantum Dynamics, Wiley-VCH

Verlag GmbH & Co. KGaA, 2009.

46. Q. Meng and H.-D. Meyer, J. Chem. Phys., 2013, 138, 014313.

47. J. C. Tully, J. Chem. Phys., 1990, 93, 1061–1071.

48. N. Balakrishnan, C. Kalyanaraman and N. Sathyamurthy, Phys. Rep., 1997, 280, 79–144.

49. W. H. Miller, J. Phys. Chem. A, 2001, 105, 2942–2955.

50. M. Ben-Nun and T. J. Martínez, Advances in Chemical Physics, John Wiley & Sons, Inc.,

2002, vol. 121, pp. 439–512.

51. X. Li, J. C. Tully, H. B. Schlegel and M. J. Frisch, J. Chem. Phys., 2005, 123, 084106.

52. D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective, Univer-

sity Science Books, 2006.

53. A. Abedi, N. T. Maitra and E. K. U. Gross, Phys. Rev. Lett., 2010, 105, 123002.

54. S. Habershon, D. E. Manolopoulos, T. E. Markland and T. F. M. III, Annu. Rev. Phys. Chem.,
2013, 64, 387–413.

27



55. G. Richings, I. Polyak, K. Spinlove, G. Worth, I. Burghardt and B. Lasorne, Int. Rev. Phys.
Chem., 2015, 34, 269–308.

56. B. F. E. Curchod, C. Rauer, P. Marquetand, L. González and T. J. Martínez, J. Chem. Phys.,
2016, 144, 101102.

57. J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang and N. Bellonzi, Annu. Rev. Phys.
Chem., 2016, 67, 387–417.

58. A. Warshel and M. Karplus, Chem. Phys. Lett., 1975, 32, 11 – 17.

59. J. C. Tully and R. K. Preston, J. Chem. Phys., 1971, 55, 562–572.

60. M. Persico and G. Granucci, Theor. Chem. Acc., 2014, 133, 1526.

61. S. C. Cheng, C. Zhu, K. K. Liang, S. H. Lin and D. G. Truhlar, J. Chem. Phys., 2008, 129,

024112.

62. G. Granucci, M. Persico and A. Zoccante, J. Chem. Phys., 2010, 133, 134111.

63. J. E. Subotnik and N. Shenvi, J. Chem. Phys., 2011, 134, 024105.

64. M. Ben-Nun and T. J. Martínez, J. Chem. Phys., 1998, 108, 7244–7257.

65. D. V. Makhov, W. J. Glover, T. J. Martinez and D. V. Shalashilin, J. Chem. Phys., 2014, 141,

054110.

66. U. Manthe and H. Köppel, J. Chem. Phys., 1990, 93, 1658–1669.

67. W. Domcke and G. Stock, in Theory of Ultrafast Nonadiabatic Excited-State Processes and
their Spectroscopic Detection in Real Time, ed. I. Prigogine and S. A. Rice, John Wiley &

Sons, Inc., 2007, vol. 100, ch. 1, pp. 1–169.

68. G. Stock and U. Müller, J. Chem. Phys., 1999, 111, 65–76.

69. M. Barbatti and K. Sen, Int. J. Quantum Chem., 2016, 116, 762–771.

70. S. Hammes-Schi�er and J. C. Tully, J. Chem. Phys., 1994, 101, 4657–4667.

71. F. A. Shakib and P. Huo, J. Phys. Chem. Lett., 2017, 8, 3073–3080.

72. T. Fleig, Chem. Phys., 2012, 395, 2 – 15.

73. V. Vallet, L. Maron, C. Teichteil and J.-P. Flament, J. Chem. Phys., 2000, 113, 1391–1402.

74. R. Winkler, in Spin–Orbit Coupling E�ects in Two-Dimensional Electron and Hole Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, ch. Quasi-Degenerate Perturbation

Theory, pp. 201–206.

75. F. Wang and T. Ziegler, J. Chem. Phys., 2005, 123, 154102.

76. P. Marquetand, M. Richter, J. González-Vázquez, I. Sola and L. González, Faraday Discuss.,
2011, 153, 261–273.

77. M. F. Herman, J. Chem. Phys., 1999, 111, 10427–10435.

78. G. Granucci, M. Persico and G. Spighi, J. Chem. Phys., 2012, 137, 22A501.

79. P. J. Kuntz, J. Chem. Phys., 1991, 95, 141–155.

80. M. Pederzoli and J. Pittner, J. Chem. Phys., 2017, 146, 114101.

81. G. Granucci, M. Persico and A. Toniolo, J. Chem. Phys., 2001, 114, 10608–10615.

82. N. Kla�ki, O. Weingart, M. Garavelli and E. Spohr, Phys. Chem. Chem. Phys., 2012, 14,

14299–14305.

28



83. R. Schinke, Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Poly-
atomic Molecules, Cambridge University Press, 1995.

84. J. P. Dahl and M. Springborg, J. Chem. Phys., 1988, 88, 4535–4547.

85. M. Garavelli, F. Bernardi, M. Olivucci, M. J. Bearpark, S. Klein and M. A. Robb, J. Phys.
Chem. A, 2001, 105, 11496–11504.

86. M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksić and

H. Lischka, J. Photochem. Photobiol. A, 2007, 190, 228–240.

87. P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka and R. Shepard, Chem. Rev., 2012, 112,

108–181.

88. B. O. Roos, P. R. Taylor and P. E. M. Siegbahn, Chem. Phys., 1980, 48, 157–173.

89. S. Mai, P. Marquetand, M. Richter, J. González-Vázquez and L. González, ChemPhysChem,

2013, 14, 2920–2931.

90. F. M. Siouri, S. Boldissar, J. A. Berenbeim and M. S. de Vries, J. Phys. Chem. A, 2017, 121,

5257–5266.

91. S. Mai, M. Richter, P. Marquetand and L. González, Photoinduced Phenomena in Nucleic
Acids I, Springer Berlin Heidelberg, 2015, vol. 355, pp. 99–153.

92. M. Assmann, T. Weinacht and S. Matsika, J. Chem. Phys., 2016, 144, 034301.

93. T. J. Martínez, Acc. Chem. Res., 2006, 39, 119–126.

94. D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello,

G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli and G. Cerullo, Nature, 2010, 467,

440–443.

95. G. Cui and W. Fang, J. Phys. Chem. A, 2011, 115, 11544–11550.

96. M. Barbatti, M. Vazdar, A. J. A. Aquino, M. Eckert-Maksić and H. Lischka, J. Chem. Phys.,
2006, 125, 164323.

97. M. Richter and B. P. Fingerhut, J. Chem. Theory Comput., 2016, 12, 3284–3294.

98. A. Banerjee, D. Halder, G. Ganguly and A. Paul, Phys. Chem. Chem. Phys., 2016, 18,

25308–25314.

99. S. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine and F. Remacle, J. Phys. Chem. A, 2017,

121, 1442–1447.

100. R. Shepard, H. Lischka, P. G. Szalay, T. Kovar and M. Ernzerhof, J. Chem. Phys., 1992, 96,

2085–2098.

101. K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej and K. Wolinski, J. Phys. Chem.,
1990, 94, 5483–5488.

102. M. Barbatti, J. J. Szymczak, A. J. A. Aquino, D. Nachtigallová and H. Lischka, J. Chem.
Phys., 2011, 134, 014304.

103. M. Barbatti, Z. Lan, R. Crespo-Otero, J. J. Szymczak, H. Lischka and W. Thiel, J. Chem.
Phys., 2012, 137, 22A503.

104. F. Peccati, S. Mai and L. González, Phil. Trans. R. Soc. A, 2017, 375, 20160202.

105. A. C. Borin, S. Mai, P. Marquetand and L. González, Phys. Chem. Chem. Phys., 2017, 19,

5888–5894.

29



106. B. Sellner, M. Barbatti, T. Müller, W. Domcke and H. Lischka, Mol. Phys., 2013, 111,

2439–2450.

107. M. Ruckenbauer, M. Barbatti, T. Müller and H. Lischka, J. Phys. Chem. A, 2013, 117,

2790–2799.

108. M. Vazdar, M. Eckert-Maksić, M. Barbatti and H. Lischka, Mol. Phys., 2009, 107, 845–854.

109. H. Tao, B. G. Levine and T. J. Martínez, J. Phys. Chem. A, 2009, 113, 13656–13662.

110. J. W. Park and T. Shiozaki, J. Chem. Theory Comput., 2017, 13, 3676–3683.

111. J. P. Zobel, J. J. Nogueira and L. González, Chem. Sci., 2017, 8, 1482–1499.

112. A. Dreuw and M. Head-Gordon, Chem. Rev., 2005, 105, 4009–4037.

113. D. Tuna, D. Lefrancois, Ł. Wolański, S. Gozem, I. Schapiro, T. Andruniów, A. Dreuw and

M. Olivucci, J. Chem. Theory Comput., 2015, 11, 5758–5781.

114. I. Tavernelli, B. F. Curchod and U. Rothlisberger, Chem. Phys., 2011, 391, 101 – 109.

115. R. Crespo-Otero and M. Barbatti, J. Chem. Phys., 2011, 134, 164305.

116. K. Bhattacharyya and A. Datta, Chem. Eur. J., 2017, 23, 11494–11498.

117. R. Crespo-Otero, M. Barbatti, H. Yu, N. L. Evans and S. Ullrich, ChemPhysChem, 2011,

12, 3365–3375.

118. D. Tuna, N. Došlić, M. Mališ, A. L. Sobolewski and W. Domcke, J. Phys. Chem. B, 2015,

119, 2112–2124.

119. M. Barbatti and R. Crespo-Otero, in Surface Hopping Dynamics with DFT Excited States,
ed. N. Ferré, M. Filatov and M. Huix-Rotllant, Springer International Publishing, Cham,

2016, pp. 415–444.

120. A. B. Tro�mov and J. Schirmer, J. Phys. B: At., Mol. Opt. Phys., 1995, 28, 2299.

121. C. Hättig, Adv. Quantum Chem., 2005, 50, 37–60.

122. F. Plasser, R. Crespo-Otero, M. Pederzoli, J. Pittner, H. Lischka and M. Barbatti, J. Chem.
Theory Comput., 2014, 10, 1395–1405.

123. A. Prlj, B. F. E. Curchod and C. Corminboeuf, Phys. Chem. Chem. Phys., 2015, 17, 14719–

14730.

124. S. Mai, F. Plasser, M. Pabst, F. Neese, A. Köhn and L. González, J. Chem. Phys., 2017, 147,

184109.

125. A. I. Krylov, Annu. Rev. Phys. Chem., 2008, 59, 433–62.

126. D. Lefrancois, D. Tuna, T. J. Martínez and A. Dreuw, J. Chem. Theory Comput., 2017, 0,

null.

127. B. H. Lengs�eld, III, P. Saxe and D. R. Yarkony, J. Chem. Phys., 1984, 81, 4549–4553.

128. I. Fdez. Galván, M. G. Delcey, T. B. Pedersen, F. Aquilante and R. Lindh, J. Chem. Theory
Comput., 2016, 12, 3636–3653.

129. H. Lischka, M. Dallos, P. G. Szalay, D. R. Yarkony and R. Shepard, J. Chem. Phys., 2004,

120, 7322–7329.

130. I. Tavernelli, E. Tapavicza and U. Rothlisberger, J. Chem. Phys., 2009, 130, 10.

131. F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand and L. González, J. Chem.
Theory Comput., 2016, 12, 1207.

30



132. E. Tapavicza, I. Tavernelli and U. Rothlisberger, Phys. Rev. Lett., 2007, 98, 023001.

133. J. Pittner, H. Lischka and M. Barbatti, Chem. Phys., 2009, 356, 147 – 152.

134. P.-Å. Malmqvist and B. O. Roos, Chem. Phys. Lett., 1989, 155, 189 – 194.

135. J. Finley, P.-Å. Malmqvist, B. O. Roos and L. Serrano-Andrés, Chem. Phys. Lett., 1998,

288, 299–306.

136. F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico and H. Lischka, J. Chem. Phys.,
2012, 137, 22A514.

137. B. A. Heß, C. M. Marian, U. Wahlgren and O. Gropen, Chem. Phys. Lett., 1996, 251,

365–371.

138. P.-Å. Malmqvist, B. O. Roos and B. Schimmelpfennig, Chem. Phys. Lett., 2002, 357, 230.

139. F. Neese, J. Chem. Phys., 2005, 122, 034107.

140. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73–78.

141. A. Berning, M. Schweizer, H. Werner, P. J. Knowles and P. Palmieri, Mol. Phys., 2000, 98,

1823–1833.

142. S. Mai, T. Müller, P. Marquetand, F. Plasser, H. Lischka and L. González, J. Chem. Phys.,
2014, 141, 074105.

143. P. Pyykkö, Chem. Rev., 1988, 88, 563–594.

144. E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505–6516.

145. T. Nakajima and K. Hirao, Chem. Rev., 2012, 112, 385.

146. J. Almlöf and P. R. Taylor, Int. J. Quant. Chem., 1985, 27, 743–768.

147. M. Pabst and A. Köhn, J. Chem. Phys., 2008, 129, 214101.

148. B. T. Pickup, Chem. Phys., 1977, 19, 193–208.

149. M. Spanner, S. Patchkovskii, C. Zhou, S. Matsika, M. Kotur and T. C. Weinacht, Phys. Rev.
A, 2012, 86, 053406.

150. M. Ruckenbauer, S. Mai, P. Marquetand and L. González, J. Chem. Phys., 2016, 144,

074303.

151. J. C. Tully, J. Chem. Phys., 2012, 137, 22A301.

152. M. Persico, I. Cacelli and A. Ferretti, J. Chem. Phys., 1991, 94, 5508–5523.

153. M. Spanner and S. Patchkovskii, Phys. Rev. A, 2009, 80, 063411.

154. M. Spanner and S. Patchkovskii, Chem. Phys., 2012, in press.

155. S. Gozem, A. O. Gunina, T. Ichino, D. L. Osborn, J. F. Stanton and A. I. Krylov, J. Phys.
Chem. Lett., 2015, 6, 4532–4540.

156. R. Mitrić, J. Petersen, M. Wohlgemuth, U. Werner, V. Bonačić-Koutecký, L. Wöste and

J. Jortner, J. Phys. Chem. A, 2011, 115, 3755–3765.

157. W. Arbelo-González, R. Crespo-Otero and M. Barbatti, J. Chem. Theory Comput., 2016,

12, 5037–5049.

158. A. S. Petit and J. E. Subotnik, J. Chem. Phys., 2014, 141, 154108.

159. E. T. Nibbering, H. Fidder and E. Pines, Annu. Rev. Phys. Chem., 2005, 56, 337–367.

160. E. J. Heller, Acc. Chem. Res., 1981, 14, 368–375.

161. F. Plasser and H. Lischka, J. Chem. Phys., 2011, 134, 034309.

31



162. F. Plasser, B. Thomitzni, S. A. Bäppler, J. Wenzel, D. R. Rehn, M. Wormit and A. Dreuw, J.
Comp. Chem., 2015, 36, 1609–1620.

163. R. L. Martin, J. Chem. Phys., 2003, 118, 4775–4777.

164. M. Head-Gordon, A. M. Grana, D. Maurice and C. A. White, J. Chem. Phys., 1995, 99,

14261–14270.

165. F. Plasser, M. Wormit and A. Dreuw, J. Chem. Phys., 2014, 141, 024106.

166. F. Plasser and H. Lischka, J. Chem. Theory Comput., 2012, 8, 2777–2789.

167. S. A. Bäppler, F. Plasser, M. Wormit and A. Dreuw, Phys. Rev. A, 2014, 90, 052521.

168. A. V. Luzanov and O. A. Zhikol, Int. J. Quant. Chem., 2010, 110, 902–924.

169. F. Plasser, A. J. A. Aquino, W. L. Hase and H. Lischka, J. Phys. Chem. A, 2012, 116,

11151–11160.

170. F. Plasser and H. Lischka, Photochem. Photobiol. Sci., 2013, 12, 1440–52.

171. J. J. Nogueira, F. Plasser and L. González, Chem. Sci., 2017, 8, 5682–5691.

172. S. A. Mewes, J.-M. Mewes, A. Dreuw and F. Plasser, Phys. Chem. Chem. Phys., 2016, 18,

2548–2563.

173. F. Plasser and A. Dreuw, J. Phys. Chem. A, 2015, 119, 1023–1036.

174. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354–1358.

175. J. C. A. Boeyens, J. Cryst. Mol. Struct., 1978, 8, 317.

176. M. Barbatti and H. Lischka, J. Am. Chem. Soc., 2008, 130, 6831–6839.

177. N. Kungwan, F. Plasser, A. J. A. J. A. Aquino, M. Barbatti, P. Wolschann and H. Lischka,

Phys. Chem. Chem. Phys., 2012, 14, 9016.

178. C. Bressler and M. Chergui, Annu. Rev. Phys. Chem., 2010, 61, 263–282.

179. G. Sciaini and R. J. D. Miller, Rep. Prog. Phys., 2011, 74, 096101.

180. L. Kurtz, A. Hofmann and R. de Vivie-Riedle, J. Chem. Phys., 2001, 114, 6151–6159.

181. F. Plasser, M. Barbatti, A. J. A. Aquino and H. Lischka, J. Phys. Chem. A, 2009, 113,

8490–8499.

182. C. Chudoba, E. Riedle, M. Pfei�er and T. Elsaesser, Chemical Physics Letters, 1996, 263,

622 – 628.

183. K. Stock, C. Schriever, S. Lochbrunner and E. Riedle, Chemical Physics, 2008, 349, 197 –

203.

184. C. E. Crespo-Hernández, B. Cohen, P. M. Hare and B. Kohler, Chem. Rev., 2004, 104,

1977–2020.

185. P. M. Hare, C. E. Crespo-Hernández and B. Kohler, Proc. Natl. Am. Soc., 2007, 104, 435–440.

186. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández and B. Kohler,

Ann. Rev. Phys. Chem., 2009, 60, 217–239.

187. M. de Vries, Photoinduced Phenomena in Nucleic Acids I, Springer Berlin Heidelberg, 2015,

vol. 355, pp. 33–56.

188. H. Kang, K. T. Lee, B. Jung, Y. J. Ko and S. K. Kim, J. Am. Chem. Soc., 2002, 124, 12958–

12959.

32



189. S. Ullrich, T. Schultz, M. Z. Zgierski and A. Stolow, Phys. Chem. Chem. Phys., 2004, 6,

2796–2801.

190. C. Canuel, M. Mons, F. Piuzzi, B. Tardivel, I. Dimicoli and M. Elhanine, J. Chem. Phys.,
2005, 122, 074316.

191. J.-W. Ho, H.-C. Yen, W.-K. Chou, C.-N. Weng, L.-H. Cheng, H.-Q. Shi, S.-H. Lai and P.-Y.

Cheng, J. Phys. Chem. A, 2011, 115, 8406–8418.

192. G. Bazsó, G. Tarczay, G. Fogarasi and P. G. Szalay, Phys. Chem. Chem. Phys., 2011, 13,

6799–6807.

193. P. Marquetand, J. J. Nogueira, S. Mai, F. Plasser and L. González, Molecules, 2017, 22, 49.

194. R. S. Burkey and C. D. Cantrell, J. Opt. Soc. Am. B, 1984, 1, 169–175.

195. C. Marante, L. Argenti and F. Martín, Phys. Rev. A, 2014, 90, 012506.

196. R. K. Nesbet, Phys. Rev. A, 1976, 14, 1065–1081.

197. V. Tagliamonti, P. Sándor, A. Zhao, T. Rozgonyi, P. Marquetand and T. Weinacht, Phys.
Rev. A, 2016, 93, 051401.

198. P. Sándor, V. Tagliamonti, A. Zhao, T. Rozgonyi, M. Ruckenbauer, P. Marquetand and

T. Weinacht, Phys. Rev. Lett., 2016, 116, 063002.

199. W. D. M. Lunden, P. Sándor, T. C. Weinacht and T. Rozgonyi, Phys. Rev. A, 2014, 89,

053403.

33



List of Figures
1 State representations and their potentials. In the presence of SOC, the states

can be de�ned by (a) their electronic character (i.e., spectroscopic properties

remain mainly unchanged with coordinate), (b) sorting the eigenenergies

within one multiplicity (eigenstates of the MCH), or (c) diagonalizing the

Hamiltonian containing SOCs and then strictly ordering according to energy.

In the presence of dipole moment-�eld couplings (instead of or in addition

to SOC) a similar notation is possible (d,e,f). Note that in this case, time

is plotted on the x-axis and an electric �eld with Gaussian envelope leads

to time-dependent potentials in the diagonal picture (f). Terms used in the

literature for each representation are listed in the panels. . . . . . . . . . . . 35

2 Comparison of (a) QD and (b) SH simulations. Initially, the wave packet

is located on the left on the upper PES, but after a few fs it reaches the

nonadiabatic interaction region, where most of the wave packet switches to

the lower PES and �nally can be found on the right. Smaller parts of the

wave packet instead move to the left or remain on the upper PES. In the

SH simulation, the splitting of the wave packet at the interaction region is

faithfully reproduced by the swarm of trajectories. . . . . . . . . . . . . . . . 36

3 Experimental techniques for probing ultrafast nuclear dynamics in molecules:

(a) time-resolved photoionization spectroscopy, (b) transient absorption spec-

troscopy, and (c) time-resolved infrared spectroscopy. FC stands for Franck-

Condon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Simulated population dynamics
89

(left panels) and photo-ionization yields
15

(right panels) of (a,c) keto cytosine and (b,d) enol cytosine. The respective

signal heights of the photo-ionization yields re�ects the ratio of approximately

35:65 for keto:enol cytosine in the gas phase. . . . . . . . . . . . . . . . . . . 38

5 Time-resolved photo-electron yield for gas-phase cytosine computed with

SHARC and Dyson norms compared to experimental results from Ref. 189.

Adapted from Ref. 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

34



with spin-orbit coupling:

spectroscopic
also: diabatic

1ππ∗ 1nπ∗

3nπ∗
(a)

E
ne

rg
y MCH

also: spin-diabatic
“adiabatic” (wrong)

S1

S2

T1

(b)

Coordinate

diagonal
also: spin-adiabatic

adiabatic (correct)
1

2 3
4
5(c)

with dipole moment - field coupling:
spectroscopic
also: diabatic

field-free
1ππ∗

1nπ∗

(d)

E
ne

rg
y S2

S1

MCH
also: field-free

“adiabatic”

(e)

Time

2

1

diagonal
also: field-dressed

adiabatic

(f)

Figure 1: State representations and their potentials. In the presence of SOC, the states can be

de�ned by (a) their electronic character (i.e., spectroscopic properties remain mainly

unchanged with coordinate), (b) sorting the eigenenergies within one multiplicity

(eigenstates of the MCH), or (c) diagonalizing the Hamiltonian containing SOCs and

then strictly ordering according to energy. In the presence of dipole moment-�eld

couplings (instead of or in addition to SOC) a similar notation is possible (d,e,f). Note

that in this case, time is plotted on the x-axis and an electric �eld with Gaussian

envelope leads to time-dependent potentials in the diagonal picture (f). Terms used

in the literature for each representation are listed in the panels.
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Figure 2: Comparison of (a) QD and (b) SH simulations. Initially, the wave packet is located on

the left on the upper PES, but after a few fs it reaches the nonadiabatic interaction

region, where most of the wave packet switches to the lower PES and �nally can

be found on the right. Smaller parts of the wave packet instead move to the left or

remain on the upper PES. In the SH simulation, the splitting of the wave packet at

the interaction region is faithfully reproduced by the swarm of trajectories.
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Figure 4: Simulated population dynamics
89

(left panels) and photo-ionization yields
15

(right

panels) of (a,c) keto cytosine and (b,d) enol cytosine. The respective signal heights

of the photo-ionization yields re�ects the ratio of approximately 35:65 for keto:enol
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Table 1: Overview over the quantum chemistry interfaces of SHARC. For each method and

program, the table shows which multiplicities (S2) and which quantities are available.

Method Program S2 Grad. NAC OVL
a

SOC TDM
b

Dyson Refs.

SA-CASSCF Molpro any

√ √ √ √ √ √
20,22,24,89

Molcas any

√ √ √ √ √
29,30

Columbus any

√ √c √ √c √ √

MR-CISD Columbus any

√ √c √ √c √ √
27,28,104,105

MS-CASPT2 Molcas any

√d √ √ √ √
26

TD-DFT ADF any

√ √ √e √f √
31

Gaussian any

√ √ √f √

ADC2 Turbomole S, T

√ √ √ √
124

CC2 Turbomole S, T

√ √ √f

a
OVL: wave function overlaps;

b
TDM: transition dipole moments;

c
either NAC or SOC, but

not both at the same time;
d

numerical gradients;
e

SOCs only between singlets and triplets;

f
TDMs only between S0 and excited singlets.
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Table 2: Fitted time constants for the excited-state populations and integrated ionization yields

depicted in Fig. 4. Note that the experimentally extracted �t constants correspond to

820 fs and 3200 fs.
189

Contribution τexc.−state population [fs] τphoto−electron yield [fs]

— Keto —

ππ ∗ 25 21

nπ ∗ 216 960

T 745 310

— Enol —

ππ ∗ 40 57

nπ ∗ 1513 1080

T 6220 –
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