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Abstract: We show that the presence of an infrared cutoff Q0 in the parton shower (PS)

evolution for massive quarks implies that the generator quark mass corresponds to a Q0-
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considers an angular ordered parton shower based on the coherent branching formalism for

quasi-collinear stable heavy quarks and splitting functions at next-to-leading logarithmic

(NLL) order, and it is based on the analysis of the peak of hemisphere jet mass distributions.

We show that NLL shower evolution is sufficient to describe the peak jet mass at full

next-to-leading order (NLO). We determine the relation of this short-distance mass to

the pole mass at NLO. We also show that the shower cut Q0 affects soft radiation in a

universal way for massless and quasi-collinear massive quark production. The basis of our

analysis is (i) an analytic solution of the PS evolution based on the coherent branching

formalism, (ii) an implementation of the infrared cut Q0 of the angular ordered shower

into factorized analytic calculations in the framework of Soft-Collinear-Effective-Theory

(SCET) and (iii) the dependence of the peak of the jet mass distribution on the shower
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1 Introduction

1.1 Prelude and review

A precise determination of the top quark mass mt represents one of the most important

measurements in the context of studies of the Standard Model (SM) as well as of new

physics, in particular in the context of electroweak symmetry breaking. The most precise

top mass measurements are obtained from template and matrix element fits which are

based on the idea of accessing mt by directly reconstructing the kinematic properties of a

top quark “particle”. These types of measurements naturally yield a very high sensitivity

to the top quark mass because they involve endpoints, thresholds or resonant structures in

kinematic distributions which substantially reduces the impact of uncertainties that affect

poperties such as their normalization. The most recent reconstruction measurements are

mMC
t = 172.44(49) GeV (CMS) [1], mMC

t = 172.84(70) GeV (ATLAS) [2] and mMC
t =

174.34(64) GeV (Tevatron) [3].

The characteristic property of these measurements, however, is that the observables

employed for the reconstruction analyses are too complicated to be calculated in a systemat-

ically improvable way and, in addition, involve sizeable perturbative and non-perturbative

corrections due to soft gluon emission which, in the vicinity of kinematic endpoints or

thresholds, are not power-suppressed. The theoretical computations used for these mea-

surements are therefore based on multi-purpose Monte Carlo (MC) event generators since

they can produce predictions for essentially any conceivable observable. As a consequence,

in these direct mass measurements the top mass parameter mMC
t of the MC generator em-

ployed in the analyses is determined. The experimental collaborations provide estimates

of the theoretical uncertainty in the extracted value of mMC
t concerning the quality of the

modelling of non-perturbative effects, e.g. by using different tunes or MC generators, or

concerning theoretical uncertainties, e.g. by variations of theory parameters. The improve-

ment of the theoretical basis of MC event generators and of methods to estimate their

uncertainties is an ongoing effort [4–6].
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However, the intrinsic, i.e. quantum field theoretic meaning of mMC
t has up to now not

been rigorously specified. Since this matter goes beyond the task of properly estimating

or reducing MC modelling uncertainties and is also tied to the constructive elements in-

corporated to the MC’s perturbative and non-perturbative components, it is much harder

to quantify. Issues one has to consider do not only involve the truncations of perturbative

QCD expansions, but also MC specific implementations such as the cut on the PS evolution

or even modifications that are formally subleading but play numerically important roles in

reaching better agreement with data or are part of the implementation of the hadroniza-

tion model. It should also be remembered that the level of theoretical rigor of MC event

generators depends on the observable. Since the theoretical description of thresholds and

endpoints in general involves the resummation of QCD radiation to all orders, the pertur-

bative aspect of how to interpret mMC
t thus significantly depends on the implementation of

the parton showers that are used in the MC generators and to the extent that NLO fixed-

order QCD corrections have been systematically implemented for the observables that are

relevant for the reconstruction analyses. Apart from that, the interface between the per-

turbative components and the hadronization models, which involves the structure of the

infrared cut of the shower evolution, Q0 ∼ 1 GeV, or the treatment of the top quarks finite

width, Γt ∼ 1.4 GeV, and other finite lifetime effects can play essential roles. Finally, it

should also be mentioned that mMC
t may also be affected by non-perturbative MC modelling

effects as a consequence of the tuning process partly compensating for approximations and

model-like features implemented into the MC perturbative components.

So, although mMC
t is by construction closely related to the concept of a kinematic top

quark mass, the identification to a particular kinematic mass scheme is far from obvious

— also because there are several options for kinematic masses including schemes such the

pole mass mpole
t or short-distance threshold masses as they are employed for the top pair

threshold cross section at a future Linear Collider [7–9] or in the context of massive quark

initiated jets [10, 11]. As shown in ref. [12], these kinematic mass schemes can differ by

more than 1 GeV. Given that the reconstruction analyses have reached uncertainties at

the level of 0.5 GeV it appears evident that systematic and quantitative examinations on

the field theoretic meaning of the MC top mass mMC
t are compulsory. This scrutiny may

involve examinations of different MC generators, as well as the respective interplay of their

perturbative and non-perturbative components.

So far, only a limited number of theoretical considerations dedicated to this issue exist

in the literature. In ref. [13], based on the analogy of the MC components to the QCD

factorization for boosted top quark initiated jet masses in the peak region derived in the

factorization framework of Soft-Collinear-Effective Theory (SCET) and boosted Heavy-

Quark-Effective-Theory (bHQET) [14, 15], it was conjectured that the relation between

mMC
t and the pole mass is given by mpole

t −mMC
t = Rsc(αs/π), where the scale Rsc should

be closely related to the shower cut Q0. The conjecture was based on general considerations

how an infrared cut affects perturbative calculations but did not provide a precise quanti-

tative relation. It was, however, argued that the uncertainty in the relation is unlikely to

exceed the level of 1 GeV. A similar conclusion was drawn in ref. [16] where it was argued

that mMC
t , due to the effects of the hadronization models, may have properties analogous
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to the mass of a top (heavy-light) meson. Based on the concepts of heavy quark symme-

try [17, 18] the relation mMC
t = mMSR

t (R) + ∆t,MC(R) was conjectured, where mMSR
t is

the MSR mass [19, 20], the term ∆t,MC contains perturbative as well as non-perturbative

corrections and R = 1 GeV represents a factorization scale separating perturbative and

non-perturbative effects. From a comparison of B meson and bottom quark masses, and

using heavy quark symmetry, it was concluded that ∆t,MC could in principle be at the level

of 1 GeV. We also refer to ref. [21] for a related discussion.

In ref. [11] the concrete numerical relation mMC
t = mMSR

t (1 GeV) + (0.18± 0.22) GeV

was obtained from fitting NNLL (next-to-next-to-leading logarithmic) and O(αs) matched

factorized hadron level predictions for the 2-jettiness distribution in the peak region for

boosted top production in e+e− annihilation [14, 15] to corresponding pseudo-data samples

obtained by PYTHIA 8.2 [22] with the default Monash tune [23] correctly accounting for

the dominant top quark width effects in the factorized calculation. Here the quoted error

is the theoretical uncertainty of the factorized NNLL+O(αs) prediction and also includes

an estimate for the intrinsic uncertainty of the PYTHIA 8.2 calculation. Using the pole

mass scheme in the factorized NNLL+O(αs) prediction, the corresponding analysis yielded

mMC
t = mpole

t +(0.57±0.28) GeV. While this analysis provided a concrete numerical result,

it can only be generalized to LHC measurements if one makes the additional assumption

that the MC top mass has a universal meaning covering in particular also the LHC envi-

ronment and the substantially more complicated observables included in the direct mass

measurements, for which currently no first principle calculations exist. In addition, sys-

tematic uncertainties in the modelling of non-perturbative effects at hadron colliders, such

as multi parton interactions, or the description of the pile-up effects are much harder to

control. An analogous analysis for the LHC environment was subsequently carried out in

ref. [24] using factorized NLL soft-drop groomed [25, 26] hadron level jet mass distributions

showing results that are compatible with, but less precise than those of [11]. We also refer

to ref. [27] for a related analysis.

Aside from the previously mentioned examinations, recently, a number of complemen-

tary studies were conducted focusing on various sources of uncertainties in the perturbative

description of top production and decay and the non-perturbative modelling of final states

involved in top mass measurements. While these studies mainly aimed at examining the

potential size of uncertainties in top mass determinations from reconstruction as well as

from alternative methods (see refs. [28–30] and references therein), some of their findings

may also be relevant for addressing the question how mMC
t obtained from reconstruction

should be interpreted field theoretically.

In ref. [31] the sensitivity of mMC
t determinations from exclusive hadronic variables such

as the B-meson energy EB [32], the B-lepton invariant mass mB` [33] or the transverse mass

variables mT2 [34–37] to variations of the parameters of the MC hadronization models in

PYTHIA 8 and Herwig 6 was studied. They found that for top mass determinations

based on these distributions to be competitive with direct reconstruction methods these

hadronization parameters would have to be constrained significantly more precisely than

what is possible from usual multi-purpose tuning. In addition, they made the observation

that the top mass dependent endpoints of these distributions are, compared to the overall
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shape of the distributions, largely insensitive to variations of the hadronization parameters,

indicating that these kinematic endpoints only depend on global and inclusive properties

of the final state dynamics.

In ref. [38] top mass determinations from distributions such as the b-jet and lepton

invariant mass mbj` and the variable mT2 [34] were analyzed within fixed-order perturba-

tion theory comparing the full NLO QCD result for W+W−bb̄ production with different

approximations in the narrow width approximation (NWA) concerning NLO QCD cor-

rections in the production and the decay of the top quarks as well as using the parton

shower from SHERPA [39] after top production. Using pseudo-data fits they found that

the extracted top mass can depend significantly (at the level of 1 GeV or even more) on the

approximation used, indicating that incomplete descriptions of finite-lifetime effects can

lead to systematic deviations in the value of the extracted top mass of order Γt.

In ref. [40] the NLO-PS matched POWHEG [41, 42] top production generators hvq [43],

tt̄dec [44] and bb̄4` [45] interfaced to PYTHIA 8.2 [22] and Herwig 7.1 [46, 47] were studied

comparatively examining the peak position of the particle level b-jet and W invariant mass

mbjW , the peak of the b-jet energy Ebj [32] and moments of various lepton observables [48]

in view of an extraction of the top quark mass. They found that the mbjW peak is largely

insensitive to variations of the generators and the shower MC as well as to input quantities

such as the strong coupling and the PDFs or the b-jet definition, and concluded that

changes in the top mass due to these variations do not exceed 200 MeV in the absence

of experimental resolution effects. They also indicated that the good agreement between

the three POWHEG generators may imply that mbjW is not sensitive to additional finite

lifetime effects. Once the smearing due to experimental resolution effects is accounted for,

however, they found an increased sensitivity to the differences in the parton showers of

PYTHIA 8.2 and Herwig 7.1 that correspond to variations in the extracted top mass

at the level of 1 GeV or more. For Ebj the dependence of the extracted top mass on the

shower type and on the b-jet definition is in general at the level of 1 GeV. For the leptonic

observables variations of this size arise from PDF uncertainties and from changing the

shower type.

1.2 About this work

The aim of this work is to initiate dedicated individual examinations of the different com-

ponents of MC event generators with the aim to gain insights concerning the field theoretic

meaning and potential limitations of the MC top mass parameter mMC
t from first prin-

ciples. In this paper we start with an examination of the parton shower evolution with

respect to the dependence on the infrared shower cut Q0.

Apart from the perturbative hard interaction matrix elements that encode the basic

hard process that can be described by MC generators, the parton shower describes the par-

ton branching for energies below the hard interaction scale and represents the perturbative

component of MC generators responsible for the low energy dynamics in MC predictions.

While common analytic calculations in perturbative QCD are carried out in the limit of

a vanishing infrared regulator, event generators based on parton showers rely on the exis-
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tence of an infrared cut in order to prevent infinite parton multiplicities and to ensure that

the parton shower description does not leave the realm of perturbation theory.

From the field theoretic point of view, Q0 represents a factorization scale that sepa-

rates the perturbative components of MC event generators and their hadronization models.

While it is generally accepted that a finite value for Q0 restricts the amount of real radia-

tion and multiplicity generated by the shower evolution, it is not per se obvious to which

extend it may also affect the meaning of QCD parameters such as the MC quark mass

parameters. Due to the unitarization property of the shower evolution which is responsi-

ble for the coherent summation of real as well as infrared virtual radiative corrections for

scales above Q0, it is also plausible that the MC top mass parameter mMC
t should acquire

a dependence on the value of Q0 unless one makes the additional assumption the Q0 effects

are negligible. In this work we examine this dependence and find that it is not negligible.

We emphasize that in the discussions of this paper we ignore all issues related to (the

shower cut dependence of) hadronization because the primary aim is to concentrate on the

perturbative aspects of the relation between mMC
t and field theoretic mass schemes. We

are aware that the properties of the hadronization modelling in MC event generators may

have a significant impact on the interpretation of mMC
t , but we believe that examining

perturbative and non-perturbative MC components separately in this respect is essential

to gain full conceptual insight.

Because the top quark has color charge its mass is — following the principles of heavy

quark symmetry — linearly affected by the momenta of ultra-collinear gluons [14, 15],

which are the gluons that are soft in the top quark rest frame. The role of these ultra-

collinear gluons turns out to be essential for our conceptual considerations concerning the

shower cut dependence of the top quark mass. Compared to the radiation pattern of

massless quarks the additional effects coming from the ultra-collinear gluons is for example

responsible for the dead cone effect [49, 50] which is generally considered as coming from

the top mass regulating the emergence of collinear singularities in the quasi-collinear limit.

The radiation in the dead-cone region, however, is still non-zero and to the extent that it is

unresolved becomes part of the energy (i.e. mass) of the measured top quark state. It is this

quantum mechanical feature that goes beyond the classic picture of an unambiguous top

quark “particle” whose total energy could be determined in the direct mass measurements.

Since the parton showers in all state-of-the-art MC generators account for the dead cone

effect [51], it appears obvious that the meaning of mMC
t should naturally have a linear

dependence on the shower cut Q0 restricting the ultra-collinear radiation — unless there is

a mechanism that leads to a power suppressed effect of order Q2
0 or higher which we may

then safely neglect for the case of the top quark. Therefore, to examine the intrinsic field

theoretical meaning of the MC top quark mass parameter mMC
t it is essential to start with

a careful examination of the production of the top quarks and the ultra-collinear gluons.

From this point of view, studies of the top decay and the treatment of the observable final

states are important to quantify to which extent the ultra-collinear gluons are unresolved

and how they enter a particular observable.

In this work we aim to focus primarily on the production aspect, and we are therefore

studying an observable that is maximally insensitive on details of the final state dynamics
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and its theoretical modeling. This observable is the peak (i.e. resonance) position of hemi-

sphere jet masses in e+e− annihilation, explained in more detail in section 2. The basic

outcome of our considerations concerning the field theoretic meaning of mMC
t , however,

should be general and shall be systematically extended to other types of observables and

to the LHC environment in subsequent work. As a further simplification we consider the

narrow width approximation (NWA), i.e. the case of quasi-stable top quarks which allows

to rigorously factorize top production and decay, the case of boosted (i.e. large-pT ) top

quarks and the coherent branching formalism which is related to angular ordered show-

ers, see refs. [52–54] for massless and ref. [55] for massive quarks, and also refs. [56, 57].

Since the limit of stable and quasi-collinear heavy quarks is the theoretical basis of all

parton shower formulations for top (and other heavy) quarks, it is natural to investigate

the physics in this limit first to avoid that the conclusions are affected by the additional

approximations that need to be made in the attempt to account for the effects of slow and

unstable top quarks. Our current focus on angular ordered showers is, on the other hand,

of purely practical nature: our considerations here require explicit analytic solutions of the

shower evolution, and angular ordered showers based on the coherent branching formal-

ism can be more easily tackled by well known analytic methods [58] applicable to global

event shapes. So our current results are directly relevant for the Herwig MC generator

which employs an angular ordered PS. Generalizations to other MC generators shall be

treated elsewhere.

In this context our paper is structured around the following three questions:

(A) Can state-of-the-art partons showers in principle describe the single top resonance

mass and related thresholds with NLO precision?

(B) What is the impact of the shower cut Q0 on the resonance value of the jet masses?

(C) Does the shower cut imply that the MC top quark mass parameter mMC
t is a low-scale

threshold short-distance mass, and how can this be proven from first principles at

the field theoretic level?

Question A is relevant because, only if parton showers can describe the threshold or res-

onance mass with NLO precision, the question of which mass scheme is employed can be

addressed systematically in a meaningful way. In the course of our examination we show

that this is indeed the case as long as NLL order logarithmic terms are resummed, and

we also show that the additional NLO corrections implemented by NLO matched parton

showers do not further increase the precision. Question B concerns the dependence of the

resonance value of the jet mass on Q0. We show that the jet mass at the resonance peak

depends linearly on Q0 which means that for the field theoretic meaning of mMC
t the finite

shower cut is essential and cannot be neglected. Finally, question C addresses to which

extent the linear dependence on Q0 must be interpreted as a Q0-dependence of the MC top

quark mass. As we will show, only a part of the linear Q0-dependence of the peak jet mass

is related to ultra-collinear radiation and thus to the top quark mass. Overall, the shower

cut also restricts the radiation of large angle soft gluons unrelated to the top quark and the
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ultra-collinear radiation. Only the latter is related to the top quark mass, and its domi-

nant linear Q0-dependence caused by the shower cut can be shown to automatically imply

a mass redefinition which differs from the pole mass by a term proportional to αs(Q0)Q0.

This result implies that mMC
t is equivalent to the top quark pole mass, in the limit Q0 = 0

which is however practically inaccessible for parton showers. In the formal limit mt → 0

the effects of the ultra-collinear radiation and its Q0-dependence vanish and only the cutoff

dependence on the soft radiation remains. This cutoff dependence represents the factor-

ization interface between perturbative soft radiation and hadronization effects governed by

the MC hadronization models. Since in this context the understanding of the shower cut

dependence of the soft radiation is a prerequisite to the examination of the ultra-collinear

radiation, we also analyze carefully the case of massless quark production in parallel to our

discussions on the top quark.

1.3 Outline and reader instruction

The outline of our paper is as follows: in section 2 we set up our theoretical framework by

explaining the hemisphere mass observable τ and reviewing the corresponding NLL and

hadron level factorized QCD predictions in the resonance region for massless as well as

massive quark production. We also provide details on the hadronization model shape func-

tion which is important for the numerical analyses carried out in the subsequent sections.

In this section we also prove, using the factorized predictions, that NLL resummation

of logarithms is sufficient to achieve NLO precision for the position of the peak in the

τ distribution.

In section 3 we review the coherent branching formalism, provide the analytic evolution

equation for the jet mass distribution for massless and massive quark production at NLL

order and give some details on the practical implementation of the angular order parton

shower based on the coherent branching formalism in the Herwig 7 event generator.

In section 4 we show — in the absence of any infrared cutoff and in the context of

strict perturbative computations — that the NLL predictions for the hemisphere mass τ

distribution in the resonance region obtained from the coherent branching formalism are

fully equivalent to the NLL factorized QCD predictions for massless quark production as

well as for massive quark production in the pole mass scheme. This result proves, that

in the context of strict perturbative computations for massive quarks in the limit Q0 = 0

the MC generator mass is equivalent to the pole mass. This conclusion, however, does not

apply for MC event generators because their parton shower algorithm strictly requires a

finite shower cut Q0 in order to terminate and to avoid infinite multiplicities.

The impact of the shower cut Q0 is then analyzed in detail in section 5, which rep-

resents the core of this work. Here we analyze the power counting of the relevant modes

entering the hemisphere mass in the resonance region in the massless and massive quark

case and we focus on a coherent view of the factorized QCD and the coherent branching

approach. We calculate analytically the NLO corrections caused by the shower cut Q0 in

comparison with the results without any cut in the coherent branching formalism and the

factorized QCD approach focusing on the dominant effects linear in Q0. We show that the

results obtained for the linear Q0 contributions in coherent branching and factorized QCD
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are compatible, and we use the direct connection of the factorized QCD computation to

field theory to unambiguously distinguish shower cut effects related to soft hadronization

corrections and the quark mass parameter. By coherently examining massless and massive

quark production we prove that using a finite shower cut Q0 in the coherent branching

formalism — and thus also in angular ordered parton showers — automatically implies

that one employs a short-distance mass scheme different from the pole mass, called the co-

herent branching (CB) mass, mCB(Q0). We explicitly calculate the relation of the coherent

branching mass to the pole mass at NLO, i.e. O(αs).

In section 6 the conceptual results obtained in the previous sections are summarized

coherently to set up the numerical examinations we carry out in section 7. In section 7

we compare the results obtained in section 5 with analytic methods and conceptual con-

siderations with numerical results running simulations for the hemisphere mass variable τ

in Herwig 7 using different values of the shower cut Q0. Focusing mostly on the peak

position of τ we show that the simulations are in full agreement with our conceptual re-

sults. We also show explicitly that NLO corrections added in the context of NLO matched

parton showers have extremely small effects in the resonance location and do not modify

any of the previous results, confirming that NLL accurate parton showers are already NLO

accurate as far as the resonance region is concerned. Furthermore, we also demonstrate

that the results we have obtained in the context the hemisphere mass variable τ are also

compatible with numerical simulations for the more exclusive kinematic variables mbj` and

mbjW supporting the view that our results are universal.

Finally, section 8 contains our conclusions and an outlook for some of the remaining

questions that should be addressed in the future. There we also provide a brief numerical

analysis how mCB(Q0) is related to other mass renormalization schemes. The paper also

contains four appendices containing some supplemental material relevant for our work. In

appendix A we collect all parton level results for NLL+O(αs) factorized QCD predictions

of the τ distribution in the resonance region for massless and massive quark production. In

appendix B we provide details on the computations of the effects of the shower cut Q0 in

the context of the factorized QCD predictions and in appendix C we collect results for loop

integrals in the presence of the shower cut Q0. Finally, in appendix D we give information

on the Herwig 7 settings we have employed for our simulation studies.

To the reader mainly interested in the phenomenological implications of our discus-

sions in the context of the Monte-Carlo top mass problem: we recommend to go through

our paper by starting with section 1 and section 2 for all basic information concerning our

examinations and in particular for important elementary knowledge concerning the hemi-

sphere mass variable τ in the resonance region and its theoretical description. One may

then jump directly to section 6, where all of our conceptual results are summarized and

continue with our simulations studies in section 7 and the conclusions in section 8.

2 The observable: squared hemisphere mass sum

The observable we consider in this work is the sum of the squared hemisphere masses

defined with respect to the thrust axis in e+e−-collisions normalized to the square of the
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c.m. energy Q,

τ ≡ M2
1 +M2

2

Q2
. (2.1)

In the lower endpoint region the τ distribution has a resonance peak which is dominated

by back-to-back 2-jet configurations which arise from LO quark-antiquark production, and

it is the location of the resonance, τpeak, which we focus on mostly in our study. For

massless quarks this resonance region is located close to τ = 0 and represents the threshold

region for dijet production. Non-perturbative effects shift the observable peak towards

positive τ values by an mount of O(Λ/Q), where Λ is a scale of around 1 GeV. For massive

quark production the resonance region and the peak are located close to τ = 2m2
Q/Q

2,

and for the case of the top quark for Q � mt is dominated by boosted back-to-back

top quark initiated jets. As for the case of massless quark production non-perturbative

effects shift the observable peak towards positive τ values by an mount of O(Λ/Q). The

scale of Λ ≈ 1 GeV is generated from non-perturbative effects, but its value is numerically

larger than ΛQCD because it accounts for the cumulative hadronization effect from both

hemispheres [59]. In the peak region, τ is closely related to the classic thrust variable [60] in

the case of massless quark production [58], and to 2-Jettiness [61] for massive quarks [14].

To be concrete, concerning the structure of large logarithms and of terms singular in the

τ → τmin limit, which dominate the shape and position of the peak, the hemisphere mass

variable τ , thrust and 2-jettiness are equivalent for large Q. We therefore frequently refer

to τ simply as “thrust” in this paper.

For our examinations for top quarks we also consider the rescaled thrust variable

Mτ ≡
Q2τ

2mQ
. (2.2)

The variable Mτ is peaked close to Mτ = mQ and allows for a more transparent inter-

pretation of the shower cut Q0-dependence from the point of view of the top quark mass

than τ . Note that the scheme dependence of the quark mass parameter mQ appearing

in the definition (2.2) represents an effect that is O(α2
s)-suppressed in the context of our

examinations and therefore irrelevant at the order we are working.

An essential aspect of the examinations in this work is that for boosted top quarks

events related to top decay products being radiated outside the parent top quark’s hemi-

sphere are (mt/Q)2 power suppressed [14]. So, because thrust depends on the sum of

momenta in each hemisphere, effects of the top quark decay in the thrust distribution are

power suppressed as well, and the situation of a finite top quark width is smoothly con-

nected to the NWA and the stable top quark limit. This is compatible with the factorized

treatment of top production and decay used in contemporary parton showers and also al-

lows us to carry out analytic QCD calculations for stable top quarks which are essential

for the chain of arguments we use. In this way thrust is an ideal observable for the exami-

nations made in this work since it allows to study the mass of the top quark accounting in

particular for the contribution of the unresolved ultra-collinear gluon cloud around it.

However, in thrust the effects of large angle soft radiation are maximized, and the

impact of the shower cut Q0 on the meaning of the top quark mass parameter interferes with
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that Q0 has on large angle soft radiation. Since the latter is not related to the top quark

mass, but represents the interface to hadronization effects [58, 62], it is important that

both effects are disentangled unambiguously. As we will show, for thrust in the peak region

this can be carried out in a straightforward way owing to soft-collinear factorization [63,

64]. Since the structure of large angle soft radiation is equivalent for the production of

massless quarks and boosted massive quarks [14, 15], we discuss the case of massless quark

production before we examine boosted top quarks.

Since our discussion requires the analytic comparison of the thrust distribution de-

termined from the parton shower evolution based on the coherent branching formalism

at NLL order (where we follow the approach of [58, 65]) and of corresponding resummed

QCD calculations based on soft-collinear factorization, we briefly review the latter in the

following two subsections for massless and massive quark production.

2.1 Factorized QCD cross section: massless quarks

Resummed calculations for the thrust distribution in the peak region require the summa-

tion of terms that are logarithmically enhanced and singular in the limit τ → τmin = 0,

where the partonic threshold is located. In the context of conventional perturbative QCD,

factorized calculations for massless quarks have been carried out in ref. [64] at NLL order.

In the context of SCET the corresponding results have been obtained at NLL+O(αs) in

ref. [66] and were extended to N3LL+O(α3
s) in refs. [59, 67]. Using the notations from

ref. [59] the observable hadron level thrust distribution in the peak region can be written

in the form

dσ

dτ
(τ,Q) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q

)
Smod(`) (2.3)

where dσ̂s/dτ contains the factorized resummed singular partonic QCD corrections

(containing δ-function terms of the form αns δ(τ) and plus-distributions of the form

αns [lnk(τ)/τ ]+) and Smod(`) is the soft model shape function that describes the non-

perturbative effects. It has support for positive values of `, exhibits a peaked behavior

for ` values around 1 GeV and is strongly falling for larger values. We further assume

that it vanishs at zero momentum, Smod(0) = 0.1 Due to the smearing caused by the

non-perturbative function the visible peak of the thrust distribution is shifted to positive

values by an amount of order (1 GeV)/Q. The dominant perturbative corrections to the

factorized cross section in eq. (2.3) are coming from so-called non-singular contributions

containing terms of the form αns lnk(τ). For our considerations in the resonance region

these corrections are power-suppressed by a additional factor of order (1 GeV)/Q, i.e. they

cause a shift in the peak position by an amount (1 GeV)2/Q2 which we can safely neglect.

1The typical scale of the non-perturbative function Smod is about twice the typical hadronization scale

ΛQCD . 0.5 GeV as it accounts for non-perturbative from both hemispheres [59]. The property Smod(0) = 0

is assumed for all shape functions treated in the literature and physically motivated from the hadroniza-

tion gap.
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The resummed factorized singular partonic QCD cross section has the form

1

σ0

dσ̂s
dτ

(τ,Q) = QHQ(Q,µH)

Q2τ∫
0

ds

s∫
0

ds′ UJ(s′, µH , µJ) J (τ)(s− s′, µJ) (2.4)

×
Qτ−s/Q∫

0

dk US(k, µH , µS)S(τ)

(
Qτ − s

Q
− k, µS

)

where σ0 is the total partonic e+e− tree-level cross section. The term HQ is the hard

function describing effects at the production scale Q, J (τ) is the jet function describing

the distribution of the squared invariant mass s due to collinear radiation coming from

both jets and S(τ) is the soft function containing the effects of large angle soft radiation.

They depend on the renormalizations scales µH ∼ Q, µJ ∼ Q
√
τ and µS ∼ Qτ , which are

chosen such that no large logs appear in hard, jet and soft functions respectively. Large

logarithmic contributions are resummed in the different U factors which are evolved from

the corresponding renormalization scale µH , µJ or µS to a common renormalization scale.

Since it most closely resembles the analytic form of the resummation formulae obtained

in the coherent branching formalism, we have set in eq. (2.4) the common renormalization

scale equal to the hard scale µH , so that there is no evolution factor UH for the hard

function. So, UJ sums logarithms between the jet scale µJ and the hard scale µH , and

US sum logarithms between the soft scale µS and the hard scale. For our discussions

we need the expressions for the U factors at NLL and the hard, soft and jet function at

O(αs). These formulae (and also the renormalization group equations for the U factors)

are provided for convenience in appendix A.1.

Expanded to first order in the strong coupling and setting µH = µJ = µS = µ in

eq. (2.4) we obtain the well-known O(αs) singular fixed-order thrust distribution

1

σ0

dσ̂s
dτ

(τ,Q) = δ(τ)+
αsCF

4π

{
−8

[
θ (τ) lnτ

τ

]
+

−6

[
θ (τ)

τ

]
+

+

(
2π2

3
−2

)
δ (τ)

}
+O(α2

s) .

(2.5)

Transforming the partonic massless quark thrust distribution of eq. (2.4) to Laplace

space with the convention

σ̃(ν,Q) =

∞∫
0

dτ e−ντ
1

σ0

dσ̂s
dτ

(τ,Q) (2.6)

the NLL thrust distribution can be written in the condensed form

σ̃(ν,Q) = exp

[
K(ΓJ , µH,ν , µJ,ν) +K(ΓS , µH,ν , µS,ν)

+
1

2

(
ω(γJ , µH,ν , µJ,ν) + ω(γS , µH,ν , µS,ν)

)]
, (2.7)
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where the evolution functions K and ω have the form

K(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dαs
β[αs]

Γ[αs]

∫ αs

αs(µ0)

dα′s
β[α′s]

, (2.8)

ω(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dαs
β[αs]

Γ[αs] . (2.9)

The QCD beta function is defined as

µ
dαs (µ)

dµ
= β [αs (µ)] = −2αs (µ)

∑
n=0

βn

(
αs(µ)

4π

)n+1

(2.10)

with β0 = 11 − 2
3nf and β1 = 102 − 38

3 nf , and the cusp and non-cusp anomalous dimen-

sions read

ΓJ [αs] = −2ΓS [αs] = 4 Γcusp[αs] ,

γJ [αs] = 12CF

(αs
4π

)
,

γS [αs] = 0 (2.11)

with

Γcusp [αs] = Γcusp
0

(αs
4π

)
+ Γcusp

1

(αs
4π

)2
,

Γcusp
0 = 4CF ,

Γcusp
1 = CF

[
CA

(
268

9
− 4π2

3

)
− 80

9
TFnf

]
. (2.12)

The scales µH,ν , µJ,ν and µS,ν are given by

µH,ν = Q , µJ,ν = Q (ν eγE )−1/2 , µS,ν = Q (ν eγE )−1 . (2.13)

These scales are fixed to the expressions shown and arise from the combination of the renor-

malization scale dependent NLL U evolution factors and the Laplace transformed O(αs)

corrections in the hard, jet and soft functions shown in eqs. (A.1), (A.2) and (A.3) that

are logarithmic or plus-distributions. Dropping a π2 term arising in the Laplace transform

of the (ln τ/τ)+ distributions, in this combination the dependence on the renormalization

scales µH , µJ and µS cancels and the result shown in eq. (2.7) with the physical scales

given in eqs. (2.13) emerges. Since the structure of these O(αs) corrections is already

unambiguously known from the NLL renormalization properties, we consider them part

of the NLL logarithmic contributions. (We refer to ref. [68] for an extensive discussion

on this issue.) Using in eq. (2.7) the renormalization scales µi instead of the scales µi,ν
(i = H,J, S) one recovers the renormalization scale dependent results coming from the U

evolution factors alone.

As we show in section 4.1 all terms displayed in eq. (2.7) are also precisely obtained

by the coherent branching formalism at NLL order.
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2.2 Factorized QCD cross section: massive quarks

In the case of boosted massive quark production the thrust distribution has been de-

termined at NNLL+O(αs) in refs. [11, 14, 15]. Adopting the pole mass scheme, the τ

distribution as defined in eq. (2.1) has its partonic threshold at

τpole
min =

2(mpole)2

Q2
. (2.14)

The observable thrust distribution in the resonance region for τ & τpole
min , can be written in

a form analogous to the case of massless quarks and has the form

dσ

dτ

(
τ,Q,mpole

)
=

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,mpole

)
Smod (`) , (2.15)

where dσ̂s/dτ is the resummed singular massive quark partonic QCD cross section, which

contains terms of the form αns δ(τ − τpole
min ) and αns [lnk(τ − τpole

min )/(τ − τpole
min )]+). The non-

singular corrections to the factorized cross section in eq. (2.15) are coming from terms of

the form αns lnk(τ − τpole
min ). In the resonance region these corrections are power-suppressed

by a additional factor of order (1 GeV)/Q or (1 GeV)/m and can, in analogy to the case of

massless quark production, be safely neglected for top quark production. In an arbitrary

mass scheme m with δm = mpole −m we can write the observable thrust distribution in

the form

dσ

dτ
(τ,Q,m, δm) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,m, δm

)
Smod (`) , (2.16)

where the additional argument δm indicates the dependence on the mass scheme changing

contributions in the perturbation series for the partonic cross section.

For the rescaled thrust variable defined in eq. (2.2) the relation analogous to eq. (2.15)

reads

dσ

dMτ

(
Mτ , Q,m

pole
)

=

2mpoleMτ/Q∫
0

d`
dσ̂s
dMτ

(
Mτ −

Q`

2mpole
, Q,mpole

)
Smod (`) , (2.17)

where

dσ̂s
dMτ

(
Mτ , Q,m

pole
)
≡ 2mpole

Q2

dσ̂s
dτ

(
2mpoleMτ

Q2
, Q,mpole

)
. (2.18)

The generalization of eqs. (2.17) and (2.18) to an arbitrary mass scheme is straightforward.
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The singular partonic cross section in the resonance region can be written in the

factorized form

dσ̂s
dτ

(τ,Q,mpole) =σ0QHQ(Q,µH)UH(Q,µH ,µm)Hm(Q,mpole,µm)Um

(
Q

mpole
,µm,µH

)

×
Q2(τ−τmin

pole)∫
0

ds

s/m∫
0

dŝ′ UJB (ŝ′,µH ,µJB )J
(τ)
B

( s

mpole
−ŝ′,mpole, δm= 0,µJB

)

×
Q(τ−τmin

pole)−s/Q∫
0

dk US(k,µH ,µS)S(τ)

(
Q
(
τ−τpole

min

)
− s

Q
−k,µS

)
, (2.19)

where σ0 is again the total partonic e+e− tree-level cross section. The hard function HQ,

the soft function S(τ) and the soft evolution factor US , as well as the soft model function

Smod in eq. (2.19) are identical to the case of massless quarks [14, 15] (see appendix A.1

for their respective expressions at NLL and O(αs)). Their effects are universal for massless

and boosted massive quarks, because large angle soft radiation cannot distinguish between

the color flow associated to massless and boosted massive quarks. The relation of the soft

function renormalization scale to τ is, however, modified to the form µS ∼ Q(τ − τmin)

because the quark mass shifts the τ threshold from zero to τmin. For the other components

of the factorization formula the quark mass represents an additional intermediate scale

which leads to modifications. The term J
(τ)
B (ŝ) is the bHQET jet function [14, 15] which

describes the linearized distribution of the invariant mass of both jets with respect to the

partonic threshold,

ŝ =
s− (2mpole)2

mpole
, (2.20)

due to ultra-collinear gluon radiation in the region where ŝ is much smaller than the mass,

ŝ � m. It depends on the renormalization scale µJB ∼ QµS/m ∼ Q2(τ − τmin)/m, and

its expression at O(αs) in an arbitrary mass scheme m, J
(τ)
B (ŝ,m, δm, µJB ), with δm =

mpole −m 6= 0 is shown in eq. (A.8). At NLL+O(αs) the bHQET jet function completely

controls the quark mass scheme dependence of the singular partonic cross section. So at

this order the singular partonic cross section in an arbitrary mass scheme, dσ̂s
dτ (τ,Q,m, δm),

is obtained from eq. (2.19), by employing the bHQET jet function J
(τ)
B (ŝ,m, δm, µJB ) and

setting mpole → m everywhere else. This is because J
(τ)
B has mass sensitivity already at

tree level through the dependence on τmin, see eq. (2.14). Physically the ultra-collinear

radiation is, owing to heavy quark symmetry, related to the soft radiation governing the

mass of heavy-light mesons. The mass mode factor Hm contains fluctuations at the scale of

the quark mass µm ∼ m coming from the massive quark field fluctuations that are off-shell

in the resonance region and integrated out. Its expression at O(αs) is shown in eq. (A.7)

and a detailed discussion on its definition and properties can be found in ref. [15]. The

factor UJB sums logarithms between the ultra-collinear jet scale µJB and the hard scale µH ,

US sums logarithms between the soft scale µS and the hard scale, and Um sum logarithms

between the quark mass scale µm and the hard scale. Their formulae are for convenience

also provided in appendix A.2.
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From a physical point of view it appears more appropriate to evolve the factors UJB , US
and Um to the quark mass scale µm (at which point the factor Um could be dropped) rather

than the hard scale. This is because the logarithms resummed in UJB and Um physically

arise from scales below the quark mass. The form we have adopted here is equivalent

due to renormalization group consistency conditions [15] and matches better to the form

of the log resummations obtained from the coherent branching formalism as discussed in

section 4.2. For our examinations we need the expressions for the U factors at NLL and

the hard, mass matching, soft and the bHQET jet functions at O(αs). Expanding to first

order in the strong coupling and setting µH = µJB = µS = µ we obtain the O(αs) singular

fixed-order massive quark thrust distribution in the pole mass scheme (Lm = ln (mpole)2

Q2 ):

1

σ0

dσ̂s
dτ

(τ,Q,mpole) = δ(τ−τpole
min )+

αsCF
4π

{
−8(1+Lm)

[
θ
(
τ−τpole

min

)
τ−τpole

min

]
+

(2.21)

+(4L2
m+2Lm+2π2)δ

(
τ−τpole

min

)}
+O(α2

s) .

In eq. (2.21), changing to another mass scheme m leads to the additional term δ′(τ −
τpole

min ) 4mδm/Q2 on the r.h.s. , and this term has to be counted as a NLL contributions

as well.

We note that in eq. (2.21) the dead cone effect [49, 50] is manifest as a τ → τmin

behavior that is less singular than the τ → 0 limit for massless quark production displayed

in eq. (2.5). However, one can see from the form of the bHQET jet function in eq. (A.8),

that ultra-collinear radiation still involves soft-collinear double-logarithmic singularities

which arise from the coherent effect of ultra-collinear gluons physically originating from

the associated top quark and its opposite hemisphere [14, 15]. So, in the context of QCD

factorization based on SCET and bHQET the deadcone effect arises from a cancellation of

double logarithmic singularities between the ultra-collinear and the large-angle soft radia-

tion (radiated in the collinear direction and called collinear-soft radiation in the following).

This can be seen from the expression for the partonic soft function S(τ) given in eq. (A.3)

which exhibits the same double-logarithmic singularity as the bHQET jet function, but

with the opposite sign. So the origin of the deadcone effect from the perspective of QCD

factorization, which is manifestly gauge invariant, is due to a cancellation of ultra-collinear

and collinear-soft radiation. This is somewhat different (but not contradictory) to the con-

ventional and gauge-dependent view that the deadcone originates from the suppression of

collinear radiation off the boosted top quarks due to the finite top quark mass. The rela-

tion between these two views is subtle because in the canonical SCET/bHQET approach

(ultra-)collinear jet functions are defined with a zero-bin subtraction [69] to avoid a double

counting between (ultra-)collinear and collinear-soft radiation.

Transforming the partonic massive quark thrust distribution to Laplace space with

the convention

σ̃(ν,Q,mpole) =

∞∫
τpolemin

dτ e−ντ
1

σ0

dσ̂s
dτ

(τ,Q,mpole) (2.22)
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the NLL thrust distribution can be written in the condensed form

σ̃(ν,Q,mpole) = exp

[
−K(ΓHm ,µH,ν ,µm,ν)+K(ΓJB ,µH,ν ,µJB ,ν)+K(ΓS ,µH,ν ,µS,ν)

]
×exp

[
1

2

(
ω(γHm−γHQ ,µH,ν ,µm,ν)+ω(γJB ,µH,ν ,µJB ,ν)+ω(γS ,µH,ν ,µS,ν)

)]
(2.23)

where the evolution functions K and ω have been given in eqs. (2.8) and the cusp and

non-cusp anomalous dimensions not already displayed in eqs. (2.11) and (2.12) read

ΓJB [αs] = −ΓHm [αs] = −ΓHQ [αs] = 2Γcusp[αs] ,

γH [αs] = −12CF

(αs
4π

)
,

γHm [αs] = −8CF

(αs
4π

)
,

γJB [αs] = 8CF

(αs
4π

)
(2.24)

and the scales µH , µm, µB,ν and µS,ν are given by

µH,ν =Q, µm,ν =mpole , µJB ,ν =
Q2

mpole
(ν eγE )−1 , µS,ν =Q(ν eγE )−1 . (2.25)

As for the case of massless quark production these scales are fixed to the expressions

shown and arise from the combination of the renormalization scale dependent NLL U

evolution factors and the Laplace transformed O(αs) corrections in the hard, mass mode,

bHQET jet and soft functions, shown in eqs. (A.1), (A.7), (A.8) and (A.3) respectively,

which are logarithmic and plus-distributions. In this combination the dependence on the

renormalization scales µH , µm, µJB and µS cancels and the result shown in eq. (2.23) with

the physical scales given in eqs. (2.25) emerges. Like in the case of massless quarks, since

the structure of these O(αs) corrections is already unambiguously known from the NLL

renormalization properties, we consider them part of the NLL logarithmic contributions.

Using in eq. (2.23) the renormalization scales µi instead of the scales µi,ν (i = H,m, JB, S)

one recovers the renormalization scale dependent results coming from the U evolution

factors alone. The mass dependence of the scales in eq. (2.25) and in the rescaled thrust

variable Mτ defined in eq. (2.2) is subleading and does not generate NLL contributions

when the quark mass scheme is changed.

As we show in section 4.2 all terms shown in eq. (2.23) are also precisely obtained by

the coherent branching formalism at NLL order.

We finally note that all functions and U factors that appear in eqs. (2.4) and (2.19)

have been determined using dimensional regularization to regularize infrared and ultraviolet

divergences and the MS renormalization scheme. At this point the partonic soft function

S(τ)(k) does not contain any gap subtraction [70] to remove its O(ΛQCD) renormalon

ambiguity related to the partonic threshold at k = 0.

2.3 Importance of the shape function

The soft model shape function Smod appearing in eqs. (2.3) and (2.15) represents an es-

sential part of the thrust factorization theorems since it accounts for the hadronization
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effects that affect the observable thrust distribution. The shape function leads to a smear-

ing of the parton level contributions and an additional shift of the peak position since the

hadronization effects increase the hemisphere masses by non-perturbative contributions. It

is also essential as far as the shape of the distribution in the resonance region is concerned

where the thrust distribution is peaked.

Since in this work we are mainly interested in the Q0-dependence of the partonic con-

tributions, one may conclude that one should better drop the effects of the shape function

Smod in our analysis such that it does not interfere with the perturbative effects. However,

this is not possible since analyzing the singular partonic corrections of the thrust distribu-

tion (and their Q0 dependence) alone without any smearing does not allow for a correct

interpretation of their contributions to the observable distribution. This can be easily seen

for example from the O(αs) fixed-order parton level results for the massless and massive

quark thrust distributions shown in eqs. (2.5) and (2.21). Here the partonic contributions

to the observable distribution contained in the δ-functions and in the regularized singular-

ity structures of the plus distributions at the partonic thresholds at τ = 0 and τ = τmin,

respectively, remain invisible if one simply studies the partonic contributions at a function

of τ . One may in particular conclude wrongly, that the observable peak position is inde-

pendent of Q0 simply because the partonic threshold always remains at τ = 0 and τ = τmin

for massless and massive quarks, respectively. The essential point is that the complete

set of singular structures in the (infinitesimal) vicinity of the threshold contributes in the

resonance region and non-trivially affect the observable peak location. Thus, the partonic

thresholds alone do not govern the observable peak position and some smearing is crucial

to fully resolve the effects of all parton level contributions.

As a consequence, in our analysis of the partonic effects coming from the shower cut

Q0, it is still important that we account for the hadronic smearing of the shape function

Smod. For the analysis of the partonic effects coming from the shower cut Q0 we therefore

include a shape function that is Q0-independent. It has the simple form

Smod(`) =
128 `3

3 Λ4
m

exp
(
− 4`

Λm

)
, (2.26)

and the important properties∫ ∞
0

d` Smod(`) = 1 and

∫ ∞
0

d` ` Smod(`) = Λm , (2.27)

where we consider Λm values between 1 and 5 GeV for our conceptual discussions. (See also

our comment after eq. (2.3).) We use this shape function for our analytic calculations as

well as for the parton level numerical results we obtain from the Herwig event generator.

This way we can ensure that the smearing is precisely equivalent for both types of results.

We note that the exact form of Smod and the size of the smearing scale Λm affect the

form and the absolute value of peak location of the distribution in the resonance region.

However, for our analysis only the relative dependence of the peak position on the cut value

Q0 is essential, for which the exact form of the shape function turns out to be irrelevant. We

further note that for our numerical studies for top quark production we use the smearing
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due to Smod to also mimic effects of the top quark width even though the form of Smod

does not provide a fully consistent description.

As we show in section 5, for making physical predictions the soft model function

has to compensate for the dependence of the parton level large angle soft radiation on

the Q0 cut. This is because for large angle soft radiation the shower cut represents a

factorization scale that separates the parton level and non-perturbative regions. The point

of our examination, however, is not to make physical predictions, but to conceptually

quantify the dependence on Q0 with the aim to disentangle it unambiguously from the

effect Q0 has on the mass parameter. Along the same lines, we also do not account for

the possible effects of a finite experimental resolution. The latter results in an additional

smearing of the resonance distribution that, particularly in the context of hadron colliders,

may by far exceed the smearing caused by the hadronization effects. While the overall norm

still remains irrelevant for the peak position, properties of the theoretical distribution far

away from the resonance region could then affect the experimentally observed peak position

in a non-negligible way. In such a case the non-singular corrections may have to be included

for a reliable description. This is straightforward, but beyond the scope of this work.

2.4 NLO precision for the resonance location

Within quantum field theory a consistent discussion of a quark mass (renormalization)

scheme is only meaningful if the theoretical description of the observable of interest has

all or at least the dominant O(αs) corrections implemented. In the factorization theorems

of eqs. (2.3) and (2.15) we can neglect the nonsingular corrections since they are power-

suppressed in the resonance region. To be concrete, they lead to negligible shifts in the

peak position of order (1 GeV)2/Q2 and (1 GeV)2/m2, respectively, upon including the

smearing effects coming from the soft model shape function Smod. It is now obvious to

ask the question if, apart from the summation of logarithms at NLL order, also the full

set of O(αs) non-logarithmic fixed-order corrections contained in the hard, mass mode, jet

and soft functions are needed to achieve O(αs) precision in the resonance region. These

corrections are either constant (originating from the functions HQ and Hm, see eqs. (A.1)

and (A.7), respectively) or proportional to the delta-function (coming from the functions

J (τ), J
(τ)
B and S(τ), see eqs. (A.2), (A.8) and (A.3), respectively), and their sum is displayed

in eqs. (2.5) and (2.21). If one considers all aspects of the thrust distribution in the

resonance region, obviously both, NLL resummation and the full set of O(αs) fixed-order

corrections are needed. For example, the one-loop corrections in the hard function lead

to O(αs) corrections in the norm of the thrust distributions. This in general favors the

so-called “primed” counting scheme [59] where NLL′ order refers to the resummation of

logarithms at NLL order combined with all additional fixed-order corrections at O(αs).

However, the mass sensitivity of the thrust distribution in the peak region mainly comes

from the location of the resonance peak, τpeak, and properties such as the overall norm of

the distribution are less important. For most practical considerations of such kinematic

distributions, the norm is even eliminated on purpose by considering distributions that are

normalized to a restricted interval in the kinematic variable. Therefore, in our analysis we

mainly focus on the resonance peak position of the thrust distribution and do not consider
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the overall norm. Interestingly, as we show in the following, when discussing the peak

position with NLO (i.e. O(αs)) precision, we only have to account for the NLL resummed

cross section, and we can neglect the O(αs) non-logarithmic corrections. The reason why

these non-logarithmic O(αs) corrections do not contribute to the peak position τpeak at

NLO is that they are represent corrections proportional to the LL cross section.

To see this more explicitly let us rewrite the NLL+O(αs) thrust distributions of

eqs. (2.3) and (2.15) in the generic form

fNLL+αs(τ) =

∫ τ

0
dτ̄ f̂NLL+αs(τ̄) S̄mod(τ − τ̄) , (2.28)

where f and f̂ stand for the hadron and parton level thrust distributions, respectively,

and S̄mod for the hadronization shape function after variable rescaling. The NLL+O(αs)

partonic thrust distribution can then be written in the form

f̂NLL+αs(τ) = f̂LL(τ) + αs

(
∆f̂NLL(τ) + cf̂LL(τ)

)
(2.29)

where f̂LL represents the LL cross section (which provides the complete leading order

approximation), the term αs∆fNLL contains all NLL corrections in the NLL resummed

cross section, and αsc stands for the non-logarithmic O(αs) corrections mentioned above.

The latter corrections are related to the LL tower of logarithms associated to the term

(2π2/3−2)δ(τ) in eq. (2.5) and the term 2π2δ(τ−τpole
min ) in eq. (2.21). Note that corrections

arising from a change in the quark mass scheme are proportional to derivatives of δ(τ−τpole
min )

and therefore always contained in the term αs∆fNLL.

The LL peak position τ0
peak is determined from the equality

0
!

= f ′LL(τ0
peak) =

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄′mod(τ0

peak − τ̄) . (2.30)

At the NLL level, writing the O(αs) correction to the peak position as δτpeak, the corre-

sponding equality reads

0
!

= f ′NLL+αs(τ
0
peak + δτpeak) (2.31)

=

∫ τ0peak+δτpeak

0
dτ̄
[
f̂LL(τ̄) + αs

(
∆f̂NLL(τ̄) + cf̂LL(τ̄)

)]
S̄′mod(τ0

peak + δτpeak − τ̄)

= δτpeak

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄′′mod(τ0

peak − τ̄)

+ αs

∫ τ0peak

0
dτ̄
[
∆f̂NLL(τ̄) + cf̂LL(τ̄)

]
S̄′mod(τ0

peak − τ̄) +O(α2
s)

= δτpeak

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄′′mod(τ0

peak − τ̄)

+ αs

∫ τ0peak

0
dτ̄ ∆f̂NLL(τ̄) S̄′mod(τ0

peak − τ̄) +O(α2
s) ,
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where in the third line we have dropped terms of O(α2
s) and in the fourth we used the

LL constraint of eq. (2.30) for the non-logarithmic O(αs) fixed-order corrections with are

proportional to the LL cross section.

The outcome is that the non-logarithmic O(αs) fixed-order corrections contained in

the hard, jet and soft function are not relevant for discussing the peak position τpeak

as far as O(αs) precision is concerned and would only enter when O(α2
s) corrections are

considered. Since the peak position represents the dominant characteristics of the thrust

distribution entering the mass determination, we can therefore conclude that the resum-

mation of logarithmic correction at the NLL level is sufficient to achieve O(αs) precision

for a mass determination based on the resonance peak position. Going along the line of

arguments we use in the subsequent sections this important result also means that to the

extent that parton showers systematically and correctly sum all NLL logarithmic terms,

the peak position of the thrust distribution generated by their evolution is already O(αs)

precise, even without including any additional NLO fixed-order corrections by an NLO

matching prescription.

3 Coherent branching formalism

The coherent branching formalism has proven to be a very powerful tool for analytic resum-

mation of a large number of observables. Besides the analytic use, it forms the core rationale

behind coherent parton shower algorithms, notably the angular ordered algorithms of the

Herwig family [46, 47, 71] of event generators. Following earlier work of refs. [58, 62] we

use this framework to calculate the parton level jet mass distributions J(s,Q2) for massless

quarks and J(s,Q2,m2) for massive quarks originating from successive gluon radiation off

the progenitor quark and anti-quark pair generated by the hard interaction at c.m. energy

Q. Here the variable s = M2
jet stands for the resulting squared jet invariant mass. This

determines the parton level thrust distribution in the peak region as defined in eq. (2.1) as

dσ̂cb

dτ
(τ,Q) = σ0

∫
ds1 ds2 δ

(
τ − s1 + s2

Q2

)
J(s1, Q

2)J(s2, Q
2) ,

dσ̂cb

dτ
(τ,Q,m) = σ0

∫
ds1 ds2 δ

(
τ − s1 + s2

Q2

)
J(s1, Q

2,m2)J(s2, Q
2,m2) , (3.1)

for massless and massive quark cases, respectively. The jet mass distributions obtained

in the context of coherent branching incorporate coherently the dynamic effects of soft

as well as (ultra-)collinear radiation and are UV-finite quantities. Thus they differ from

the jet functions J (τ) and J
(τ)
B in the QCD factorization approach which describe the

factorized collinear and ultra-collinear gluon effects, respectively, and are determined from

UV-divergent effective theory matrix elements that need to be renormalized. In order

to obtain the observable hadron level thrust distribution, the contributions of the non-

perturbative effects are accounted for in exactly the same way as for the QCD factorization

approach by an additional convolution with a soft model shape function, as shown in

eqs. (2.3) and (2.15), see refs. [58, 62, 72].
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We note that in eqs. (3.1) we have used the superscript ‘cb’ to indicate the cross

sections obtained in the coherent branching formalism. We use this notation throughout

this paper, when suitable, to distinguish results based on the coherent branching formalism

from those obtained in the factorization approach.

While an analytic treatment of the coherent branching formalism in the strict context

of perturbation theory does not rely on the presence of any infrared cutoff,2 it is, however,

required within the realm of an event generator for several reasons. These include the

Landau pole singularity of the strong coupling, which emerges because its renormaliza-

tion scale is tied to shower evolution variables, and that the particle multiplicities diverge

when the shower evolves to infrared scales. In addition, in the limit of small scales the

perturbative treatment of the parton splitting breaks down anyway, and it is therefore

mandatory to terminate the shower at a low scale where the perturbative description is

still valid and hand over the partonic ensemble generated through the shower emissions to

a phenomenological model of hadronization.

The variables we consider in the following of this section are used both to derive an-

alytic results, but we also stress that they precisely correspond to the variables employed

in the angular ordered parton shower of the Herwig 7 event generator. The results ob-

tained from the Herwig 7 event generator only differ from the analytic framework by the

implementation of exact momentum conservation with respect to the momenta of all final

state particles that emerge when the shower has terminated at its infrared cutoff Q0. This

implementation of momentum conservation shall not change the jet mass distribution and

is explained in more detail in section 3.3. There we also briefly discuss some Herwig 7

(version 7.1.2) specific implementations in its default setting that go beyond the coherent

branching formalism and that we do not use in the context of the conceptual studies carried

out in this work.

3.1 Massless case

Starting from an initial, color-connected qq̄-pair with momenta p and p̄, the momenta of

the partons emerging from the shower evolution of the quark carrying the momentum p

are parametrized based on

kµi = αi p
µ + βi n̄

µ + kµi,⊥ , (3.2)

where ki is the quarks momentum after the i-th emission. In the massless case we use

n̄ = p̄ as the reference direction to specify the collinear limit, with ki,⊥ · p = ki,⊥ · n = 0,

k2
i,⊥ < 0 and βi being determined by the virtualities ki · ki = kµi kiµ = k2

i as

βi =
−k2

i,⊥ + k2
i

2αi(p · n̄)
. (3.3)

The radiation off the anti-quark with momentum p̄ is described similarly with a reference

direction n = p. Expressing kµi in terms of the momentum of the emitter before the i-th

2We refer to strict perturbation theory as expanding in αs at a constant renormalization scale such

that the evolution is described by higher powers of αs and logarithms only, and that virtual loop and real

radiation phase space integrals can be carried out down to zero momenta.
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1− z

Figure 1. A gluon branching off a back-to-back quark/anti-quark system. The radiated gluon

is assumed to carry a fraction 1 − z of the parent’s momentum and is emitted at a transverse

momentum which equals the one acquired by, in this case, the anti-quark after the emission.

branching we find

kµi = zi k
µ
i−1 +

p2
i,⊥ + k2

i − z2
i k

2
i−1

2zi(ki−1 · n̄)
n̄µ + qµi,⊥ (3.4)

where the physical splitting variables relative to the quark’s momentum ki−1 before the

i-th emission relate to the global light-cone decomposition eq. (3.2) as

zi =
αi
αi−1

, (3.5)

qµi,⊥ = kµi−1,⊥ − zik
µ
i,⊥ , (3.6)

where α0 = 1 as well as qµ0,⊥ = 0 are understood. This means that for the first emission the

physical branching variables coincide with the global parametrization. We have depicted

the variables of one branching in figure 1. Soft gluon coherence is encoded through ordering

emissions in an angular variable [54],

q̃2
i =

p2
i,⊥

z2
i (1− zi)2

, (3.7)

where p2
i,⊥ = −q2

i,⊥ is the magnitude of the transverse momentum, which is purely spacelike

and perpendicular to the emitter axis in the centre-of-mass system of the momenta ki and

n̄. The explicit restrictions of decreasing opening angle of subsequent emissions following a

branching at scale q̃i from the evolving quark or anti-quark at scale q̃2
i+1, and the radiated

gluon at scale k̃2
i are imposed by the conditions

q̃2
i+1 < z2

i q̃
2
i and k̃2

i < (1− z2
i ) q̃2

i . (3.8)

In the context of these variables, the Altarelli-Parisi splitting functions explicitly show

the full Eikonal radiation pattern and the correct collinear limit, see e.g. ref. [73] for an

overview and comparison to dipole-type parton showers. The formalism is appropriate to

resum higher order logarithmic corrections for observables that are inclusive concerning

the collinear radiation in the same jet and in the sense that the information that large-

angle soft gluon radiation originates from a particular collinear parton is unresolved and

can hence be described to originate from the net collinear color charge of the whole jet.

Momentum conservation in the branching i− 1→ i implies

k2
i−1 =

k2
i

zi
+

q2
i

1− zi
+ zi(1− zi)q̃2

i , (3.9)
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q2

k′2
s

Figure 2. Graphical representation of the evolution equation eq. (3.10): grey blobs denote the

quark and gluon jet function at a given jet mass, a single line implies a δ-function at mass zero,

while the black dot represents a factor of one and implies an unconstrained integration over the

gluon’s emission scale and momentum fraction.

where q2
i is the virtuality of the emitted gluon, the momentum of which is parametrized in

a decomposition similar to eq. (3.2).

We follow ref. [58] and start with an analytic approach for which the evolution equation

for the jet mass distribution starting at a hard scale q̃2 = Q2 has the form

J(s,Q2) = δ(s) +

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs
(
z(1− z)q̃

)
, z
]

(3.10)

×
[∫ ∞

0
dk′2

∫ ∞
0

dq2δ

(
s− k′2

z
− q2

1− z − z(1− z)q̃2

)
J(k′2, z2q̃2)Jg(q

2, (1− z)2q̃2)

− J(s, q̃2)

]
,

where Jg(s,Q
2) is the gluon jet mass distribution defined in analogy to the jet mass distri-

bution J(s,Q2) for the quarks. We have illustrated the evolution schematically in figure 2.

The splitting function is given by

Pqq [αs, z] =
αsCF

2π

1 + z2

1− z =
αsCF

2π

[
2

1− z − (1 + z)

]
(3.11)

where the second equality makes the cusp and non-cusp terms explicit, which stem from

soft (z → 1) and hard collinear emissions, respectively.

We note that the evolution equation for the jet mass distribution shown in eq. (3.10)

can be rendered NLL precise by correctly implementing the analytic form of the two-loop

cusp term in quark splitting function Pqq. By using the relative transverse momentum of

the splitting,

p2
⊥ = z2(1− z)2q̃2 , (3.12)

as the renormalization scale for the strong coupling the leading ln(1−z)/(1−z) behavior of

the cusp term in the two-loop splitting function is reproduced exactly. The remaining non-

logarithmic term from the two-loop cusp anomalous dimension and can be incorporated by

either scaling

αs → αs

(
1 +Kg

αs
2π

)
, (3.13)
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or, equivalently, (up to terms of O(α3
s)) by adopting a change in renormalization scheme

through the rescaling

ΛMS → ΛMC = ΛMS exp

(
Kg

β0

)
(3.14)

The constant Kg commonly used in this context relates to the two-loop cusp anomalous

dimension as Γcusp
1 = 8CFKg shown in eqs. (2.12). This approach to implement NLL

precision in parton showers is called the CMW (”Catani-Marchesini-Webber”) or Monte

Carlo scheme [54]. We note that in the Herwig event generator, the transverse momentum

argument (3.12) is used as the scale of the strong coupling, but that in the default settings

the CMW scheme of eqs. (3.13) and (3.14) is not used explicitly. Instead the precise value

of αs is obtained from tuning to LEP data along with the parameters of the hadronization

model and the shower cut Q0. The result, however, numerically resembles the CMW

factor in the relation between ΛMS and ΛMC. Indeed, for example for a one-loop running

the CMW correction implies that

αMC
s (MZ) =

αMS
S (MZ)

1− αMS
S (MZ)

Kg
2π

= 0.126 at αMS
S (MZ) = 0.118 , nf = 5 , (3.15)

and the larger value is exactly is the tuned value, with a similar converted value for

αMS
s (MZ) for the two loop running actually employed in the Herwig shower. For our

numerical analyses in sections 7.4 and 7.5, where we compare analytic calculations and

Herwig results concerning the shower cut Q0 dependence of the thrust peak position, we

therefore use the strong coupling as implemented in Herwig.

The evolution equation for the jet mass distribution given in eq. (3.10) is an explicit

representation of the coherent branching algorithm. Consider the distribution of the first

emitter’s virtuality k2
0 ≡ k2 and one iteration of the branching algorithm, where one choses

q̃2 ≡ q̃2
1, z ≡ z1, as well as k′2 ≡ k2

1 and the gluon’s virtuality is denoted by q2 ≡ q2
1 as

displayed in figure 2. There is a contribution without any branching or virtual effects,

encoded in the first δ-function term in eq. (3.10). It describes a vanishing jet mass that

corresponds to the tree-level contribution and also constitutes the initial condition for the

shower evolution at q̃2 = Q2. In addition, we need to take into account a resolvable

branching at a scale q̃2 below the hard scale Q2, which gives rise to a subsequent evolution

of the quark and gluon jet mass distributions at the scales imposed by the angular ordering

criterion of eq. (3.8). This contribution is itself constrained by the momentum conservation

criterion of eq. (3.9). The last contribution originates from an unresolved emission, which

gives rise to an evolution of the quark mass distribution starting at scale q̃2 but being

unconstrained otherwise. Notice that the momentum conservation constraint links the

evolution scale to the specific kinematics that is considered. No further constraints to the

integration over the momenta involved in the emission are present.

As already mentioned, in the context of an event generator the evolution has to be

terminated by imposing infrared cutoff Q0. This is typically done by a requiring a minimum

transverse momentum for the emissions with respect to the momentum direction of the

emitter. This restricts the integral over q̃2 and z to a region where

p2
⊥ = q̃2 z2(1− z)2 > Q2

0 . (3.16)
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We note that also other choices are in principle possible and have been discussed in the

context of radiation within the ‘dead cone’ for massive quarks [55]. In principle any pre-

scription that simultaneously cuts off both the collinear q̃ → 0 and soft z → 1 (as well as

z → 0 for a gluon branching) limits, and also avoids low transverse momenta appearing in

the argument of the strong coupling, is appropriate.

We also note that an analogous evolution equation holds for the gluon jet mass distri-

bution Jg(s,Q
2). The evolution of the gluon jet is governed by the gluon splitting function,

and also describes gluon branching into a quark/anti-quark pair. However, as far as the jet

mass distributions in the resonance region is are concerned, the contribution of the gluon

jet mass to the quark jet mass is at least at NLL precision suppressed due to the angular

ordering constraint, see e.g. ref. [58]. Therefore, at NLL several simplifying approximations

are in principle possible to solve the evolution equation for the quark jet mass distribution,

which are particularly useful for analytic calculations of the jet mass distribution: (i) we

can neglect the contribution to the jet mass due to the branching of emitted gluons by

the replacement Jg((1 − z)q̃2) → δ(q2) for the gluon jet mass distribution and (ii) we can

take the limit z → 1 for some terms that do not acquire an enhancement in the soft limit.

Interestingly, this also includes that, once prescription (i) is applied, we can remove the

remaining, strict angular ordering constraint in the quark jet mass distribution through

modifying the starting scale of the subsequent emission contained in the quark jet mass

distribution by the replacement J(k′2, z2q̃2)→ J(k′2, q̃2). In section 7.3 we explicitly verify

these simplifications from numerical simulations using the Herwig 7 event generator.

3.2 Massive case

Moving on to radiation off massive quarks, we consider the generalizations of coherent

branching developed in ref. [55], based on splitting functions and factorization in the quasi-

collinear limit for which the emitted parton’s transverse momenta is restricted from above

by the mass of the emitting quark and furthermore small compared to the scale of the

previous emission, p2
i,⊥ . m2

i � 2(ki−1 · n̄). In this case we consider a system of a massive

quark and anti-quark, p2 = p̄2 = m2. However we still use light-like backward directions n̄

and n in the momentum parametrization such as (3.2), with three-momenta pointing along

the direction of the massive momenta, i.e. n̄ = (|~p|,−~p) and n = (|~p|, ~p). This modifies the

form of the βi variables to take into account the mass effect,

βi =
−k2

i,⊥ + k2
i − α2

i m
2

2αi(p · n̄)
, (3.17)

while the parametrization of the momenta from the massless case given in eq. (3.2) and

the relation to the branching variables in eqs. (3.5) and (3.6) remain unchanged. Following

ref. [55] the evolution variable is generalized to the expression

q̃2
i =

p2
i,⊥ + (1− zi)2m2

z2
i (1− zi)2

. (3.18)

Consequently, the generalization of eq. (3.9) also adopts a mass term and reads

k2
i−1 =

k2
i − (1− zi)m2

zi
+

q2
i

1− zi
+ zi(1− zi)q̃2

i . (3.19)
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The arguments we discussed for the massless quark case concerning the mass of the gluon

jet apply in the analogous way in the massive quark case. Therefore we do not have to

consider the fully general formalism for our analytic calculations at NLL order and can

restrict ourselves to the case of gluon emission from a massive quark. We note that gluon

splitting into massive quarks is also a negligible effect for the jet mass distribution in the

resonance region since the corresponding splitting function is suppressed with respect to

the gluon emission case due to a lack of soft enhancement (even in the absence of angular

ordering). The variables considered here are precisely those used in the Herwig 7 angular

ordered shower, which, in its current version is not relying on a finite Qg parameter as

quoted in [55], but is instead using a cutoff on the transverse momentum.

The evolution equation of the massive quark jet mass distribution then has the form

J(s,Q2,m2) = δ(s−m2) +

∫ Q̃2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs(µ

2
R(q̃2, z)), z,

m2

q̃2

]
(3.20)

×
[∫ ∞

0
dk′2

∫ ∞
0

dq2δ

(
s− k′2 − (1− z)m2

z
− q2

1− z − z(1− z)q̃2

)
× J(k′2, z2q̃2,m2)Jg(q

2, (1− z)2q̃2)

− J(s, q̃2,m2)

]
.

The initial hard scale of the evolution in q̃2 is chosen as

Q̃2 =
1

2
Q2

(
1 +

√
1− 4m2

Q2

)
(3.21)

which amounts to the ‘symmetric’ phase space choice for the QQ̄ system as suggested in

section 3.2 of ref. [55], so that the shower evolution off the progenitors Q and Q̄ only cover

physically distinct phase space regions. For the situation of boosted quarks (m2/Q2 �
1) we consider in this paper, however, we can safely replace Q̃2 → Q2 for all analytic

calculations. The shower cutoff condition in the massive quark case reads

p2
⊥ = z2(1− z)2q̃2 − (1− z)2m2 > Q2

0 , (3.22)

and the splitting function in the quasi-collinear limit generalizes to

PQQ

[
αs, z,

m2

q̃2

]
=
αsCF

2π

[
1 + z2

1− z −
2m2

z(1− z)q̃2

]
. (3.23)

In contrast to the massless quark case where the coherent branching formalism has a

solid conceptual basis related to the different kinematics of soft and collinear phase space

regions, the corresponding formalism for massive quarks has in its present form higher

order ambiguities, which makes e.g. the determination O(α2
s) corrections to the quasi-

collinear splitting functions ambiguous. This is related to the more complicated structure

of collinear, ultra-collinear, mass mode and soft dynamics and phase space regions that
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emerge in the presence of the quark mass and which (as we show explicitly in section 4.2)

depends in addition on the relation between the jet invariant mass
√
s and the quark

mass m. This is manifest in the fact that, in contrast to the massless quark case, there

is no unique choice of the renormalization scale of αs as a function of z, q̃ and the quark

mass m. As such, different choices for µ2
R(q̃2, z) which reduce to eq. (3.12) in the massless

limit may be considered. The default choice is the generalized transverse momentum,

µ2
R(q̃2, z) = q̃2z2(1 − z)2, which adds an additional mass-dependent contribution relative

to the physical transverse momentum given in eq. (3.22). We demonstrate in section 4.2

that this choice is fully consistent with the QCD factorization approach for massive quarks

at NLL order. (See also the power counting shown in table 2: in the soft gluon region the

m2 term is suppressed and irrelevant, and in the ultra-collinear region the q̃2 and the m2

terms are of the same order.)

3.3 Coherent branching in the Herwig 7 event generator

The coherent branching formalis and its variables outlined in the previous two subsections

form the core of the angular ordered parton shower in the Herwig 7 event generator [46,

47, 71], covering the massless and the massive quark cases as discussed in sections 3.1

and 3.2, respectively. In the Herwig 7 parton shower algorithm, a sequence of random

values for the variables q̃ and z is generated, distributed according to the Sudakov form

factor that depends on the splitting function. This provides a solution to the evolution of

the jet mass distribution accounting for the branching and no-branching probabilities in

terms of explicit events.

A major difference to a purely analytic computation of the jet mass distributions en-

coded in the evolution equations (3.10) and (3.20), however, is related to the virtualities,

i.e. the off-shell invariant masses of the branching partons. While an analytic calculation

of the jet mass distribution just focuses on the description of the overall invariant mass of

the final state particles produced by the emissions from the progenitor parton originating

from the hard process, event generators have to face an additional constraint: they have

to evolve the progenitor parton to a final state consisting of partons on their physical mass

shell consistent with overall energy-momentum conservation at the point when the shower

terminates. This procedure is called ‘kinematic reconstruction’. It is the kinematic recon-

struction procedure that fixes the virtualities to the partons before showering (which are,

however, approximated as on-shell in the splitting function). The kinematic reconstruction

is based on the information of the entire evolution tree, the momentum decomposition

based on eq. (3.2), four-momentum conservation at each vertex, and the knowledge of the

q̃ and z values of each branching to determine explicit particle momenta and to relate the

kinematics of the subsequent emissions to the associated off-shell invariant masses.

In this context an additional important issue the kinematic reconstruction procedure

has to deal with is that the sizes of the physical virtualities are kinematically limited by

the available phase space. However, this phase space constraint is not imposed by the

parton shower evolution itself, such that physically inaccessible (i.e. too large) invariant

masses can be generated. Given the decomposition of the momenta based on eq. (3.2), and

a sequence of q̃ and z values, the kinematic reconstruction algorithms are designed such
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that one single solution for the final state momenta is obtained. However, physically, the

final state momenta cannot be determined uniquely such that ambiguities arise in the way

how overall energy-momentum conservation is restored in the event.

To illustrate the kinematic reconstruction procedure more concretely, consider the

production of a quark/anti-quark progenitor pair produced in e+e− annihilation carrying

on-shell momenta

p =
(√

p2 +m2,p
)

and p̄ =
(√

p2 +m2,−p
)
, (3.24)

respectively, with the initial tree-level process constraint Q = 2
√

p2 +m2 at the starting

point of the parton shower evolution. At the end of the parton shower evolution their

showered counterparts will have gained virtualities M2 ≥ m2 and M̄2 ≥ m2 with momenta

P =
(√

M2 + P2,P
)

P̄ =
(√

M̄2 + P̄2, P̄
)

(3.25)

and an overall restoration of energy-momentum conservation is mandatory. The strategy

in this case (and similarly its generalizations to more final and initial state partons) is

to transform the reconstructed momenta of the children coming from the now off-mass-

shell shower progenitors into their common centre-of-mass frame where three-momentum

conservation is guaranteed. Their spatial momentum components will then be re-scaled

by a common parameter such that the overall invariant mass is consistent with energy-

momentum conservation, (P + P̄ )2 = Q2. This procedure is equivalent to specific boosts

along the P and the P̄ directions, respectively, for the progenitor quark and anti-quark

sides. In cases that the shower evolution, which — as we have mentioned before has no

notion of global energy-momentum conservation — has generated virtualities which are

inconsistent with the available centre-of-mass energy Q, the procedure just outlined is

not possible.

Different choices for re-interpreting the branching variables when setting up the full

kinematics, with the aim of reducing the occurrence of unphysically large virtualities have

been implemented in Herwig 7. The default setting in the released version of Her-

wig 7, set ShowerHandler:ReconstructionOption OffShell5, imposes an additional

constraint in the intermediate evolution by explicitly altering the intermediate splitting

variables q̃ and z (which are originally obtained in the approximation the partons after

the splitting are on-shell). This scheme absorbs the invariant mass of the children of the

branching parton [74] into a redefinition of the splitting variables to preserve the originally

generated virtuality of the splitting parton. This approach, however, intrinsically changes

the original form of the coherent branching algorithm as outlined in the previous two sub-

sections, and we therefore do not consider this default option in the numerical analyses

carried out in section 7. Instead, the setting set ShowerHandler:ReconstructionOption

CutOff is used. It directly uses the variables generated for the splittings, and does not

redefine the variables used to set up the full kinematics. Events with unphysically large

virtualities are discarded.

An additional difference of the Herwig 7 parton shower to the analytic computation

of the jet mass distributions encoded in eqs. (3.10) and (3.20), is that its default (cluster-

type) hadronization model [75], imposes, in addition, constituent mass on-shell conditions
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for all partons that emerge when the shower is switched off. This includes in particular a

constituent mass for the gluons of around 1 GeV. These parton constituent masses repre-

sent tunable parameters of the hadronization model and are thus part of the hadronization

model even though they enter the Herwig 7 parton level output. In particular, the con-

stituent mass allows for a splitting into quark/anti-quark pairs such that the primary

non-perturbative clusters can be formed. Within our parton level examination concerning

the dependence on the shower cut Q0, parton constituent masses would represent addi-

tional infrared cutoff scales that non-trivially interfere with Q0 and in addition may cause

gauge-invariance issues in higher order perturbative QCD calculations. Since we anyway

do not use the Herwig 7 hadronization model in our numerical analyses of section 7, as

already explained in section 2.3, we do not account for these constituent masses in our

analytic calculations and when generating parton level results from Herwig 7. We set all

quark constituent masses to mc
q = 0.01 MeV, and the gluon mass parameter to mc

g = 2mc
q,

which is the lower bound dictated by constraints from the cluster hadronization model.

This effectively eliminates any effect coming from the constituent masses. We note that

string hadronization models do not require to assign a mass to the gluons produced by

the shower.

4 Hemisphere mass distribution from coherent branching without cut

In this section we show that — in the context of strict perturbative computations — the

coherent branching formalism and the factorized QCD predictions provide identical results

concerning the NLL resummation of logarithmic corrections for the thrust distribution

in the absence of any infrared cut, i.e. for Q0 = 0. In the context of our discussions in

section 2.4, this equivalence means that for the thrust distribution the coherent branching

formalism with NLL log resummation is already O(αs) precise as far as the peak position

is concerned. For the thrust distribution for massive quarks this allows us to identify

at O(αs) the coherent branching (CB) mass parameter and the pole mass mpole as long

as we consider the resonance peak location as the observable. We phrase this restricted

equivalence by the relation

mCB(Q0 = 0)
peak
= mpole +O(α2

s) . (4.1)

We stress that an exact solution for the jet mass distributions in eqs. (3.10) and (3.20)

(i.e. a solution that does not rely on any perturbative expansion or rearrangement of the

expressions) is impossible without imposing any infrared cut because of the singularities in

the soft and collinear regions of the (z, q̃) plane caused by the Landau pole of the strong

coupling. So applying the coherent branching formalism without any infrared cut implies

(and requires) that the running of the strong coupling is treated strictly perturbatively (see

also footnote 2). The equivalence relation (4.1) must therefore be understood strictly in the

perturbative sense. From the point of view of an exact solution of the coherent branching

formalism the limit Q0 → 0 is impossible to reach. This illustrates the well-known problem

of the pole mass being a purely perturbative concept that, however, cannot be associated

directly to any physical process at the exact, non-perturbative level.
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In the following two subsections we calculate the jet mass distribution in eqs. (3.10)

and (3.20) obtained from the coherent branching formalism analytically at NLL order for

massless and massive quark, respectively, and show that the results agree identically with

those obtained from the factorized QCD calculations for thrust reviewed in sections 2.1

and 2.2. For the case of massless quarks this equivalence is well known and has already

been studied thoroughly in the literature, see e.g. refs. [68, 76]. We nevertheless lay out

the analysis for massless quarks in some detail because it sets the stage for the more com-

plicated discussion for massive quarks in the resonance region, where — to the best of our

knowledge — such a study has never been carried out before. Moreover, the manipulations

are setting the stage for section 5.2 where we examine the impact of the infrared shower

cut Q0 on the resonance location τpeak. The reader not interested in these computational

details may safely skip these two subsection and continue reading with section 5.

For simplicity we carry out the bulk of the calculations in Laplace space and define

the Laplace transform of the jet mass distributions as

J̃(ν̄, Q) =

∫ ∞
0

ds e−ν̄s J(s,Q) ,

J̃(ν̄, Q,m) =

∫ ∞
m2

ds e−ν̄(s−m2) J(s,Q,m) , (4.2)

such that the Laplace space thrust distributions as defined in eqs. (2.6) and (2.22) adopt

the simple form

σ̃cb(ν,Q) =
[
J̃
( ν

Q2
, Q
)]2

,

σ̃cb(ν,Q,m) =
[
J̃
( ν

Q2
, Q,m

)]2
. (4.3)

To keep our notation simple we write the heavy quark mass paramter simply as m instead

of mCB(Q0 = 0) in the rest of section 4.

4.1 NLL resummation for massless quarks

To analytically determine the NLL jet mass distribution for massless quarks in the peak

region from eq. (3.10) we follow ref. [58] and replace z by 1 in all functions that are slowly

varying in the limit z → 1, except in the splitting function. As already discussed at the

end of section 3.1, this means that the angular ordering constraint can be dropped in the

peak region, giving

J̃(ν̄, Q) = 1 +

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs
(
(1− z)q̃

)
, z
](

e−ν̄(1−z)q̃2 − 1
)
J̃(ν, q̃) , (4.4)

for the Lapace space integral equation for the jet mass distribution. From this we find the

differential equation

dJ̃(ν̄, Q)

J̃(ν̄, Q)
=

dQ2

Q2

∫ 1

0
dz Pqq

[
αs
(
(1− z)Q

)
, z
](

e−ν̄(1−z)Q2 − 1
)
, (4.5)
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which gives the solution

ln J̃(ν̄, Q) =

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs
(
(1− z)q̃

)
, z
](

e−ν̄(1−z)q̃2 − 1
)
. (4.6)

With the substitutions

q̃2 =
q2

1− z and z = 1− q′2

q2
(4.7)

and using the explicit form of the NLL splitting function in terms of the cusp anomalous

dimension of eq. (2.12) and a subleading non-cusp term,

Pqq[αs, z] =
Γcusp[αs]

1− z −
(CFαs

2π

)
(1 + z) , (4.8)

we arrive at

ln J̃ (ν̄,Q) =

∫ Q2

0

dq2

q2

(
e−ν̄q

2−1
)∫ q2

(q2)2

Q2

dq′2

q′2

[
Γcusp

[
αs
(
q′
)]
−
(
CFαs (q′)

2π

)(
2− q

′2

q2

)
q′2

q2

]
.

(4.9)

For the second non-cusp term we rewrite αs(q
′) in terms of αs(q) and powers of ln(q′2/q2)

and notice that at NLL precision we only have to keep terms that are proportional to

αn+1
s (q) lnn(q2/Q2) after the q′ integration. Here in turns out that only a single term for

n = 0 has to be kept,

−
∫ q2

(q2)2

Q2

dq′2

q′2

(
CFαs (q′)

2π

)(
2− q′2

q2

)
q′2

q2

NLL
= −3CF

(
αs(q)

4π

)
= −1

4
γJ [αs(q)] , (4.10)

which we have, anticipating the form of the final result, identified with the non-cusp anoma-

lous dimension of the jet function in the factorized QCD cross section. Rewriting in the

remaining integral αs(q) in terms of αs(Q) and powers of ln(q2/Q2), we can further simplify

the integral by noticing, that for obtaining all NLL logarithmic terms correctly, we can use

the replacement

e−ν̄q
2 − 1

NLL
= −θ(q2 − w) with w = (eγE ν̄)−1 = Q2(eγEν)−1 . (4.11)

This replacement technically acts like an infrared cutoff for the q integration. It is, however,

not a physical cutoff because it is derived in the context of a strict perturbative expansion

(where no infrared Landau Pole singularity arises) and is furthermore not correct beyond

NLL order. One should therefore better think of the replacement simply as an algebraic

relation that simplifies the perturbative analytic NLL resummation calculation.

For the remaining double integral with the cusp-anomalous dimension we can now

switch the order of integration,

−
∫ w

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

w

dq′2

q′2
−
∫ Q2

w

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

q2

dq′2

q′2
, (4.12)
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and reshuffle the q′ integrations,∫ qQ

w

dq′2

q′2
=

1

2

∫ q2

w2

Q2

dq′2

q′2
,

∫ qQ

q2

dq′2

q′2
= −

∫ q2

w

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (4.13)

to obtain

−1

2

∫ Q2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

Q2

dq′2

q′2
+

∫ Q2

w

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w

dq′2

q′2
. (4.14)

Noticing the scale identifications

Q2 = µ2
H,ν , w = µ2

J,ν , w2/Q2 = µ2
S,ν (4.15)

according to eqs. (2.13) and (4.11), we see that at this point we have separated the collinear

and soft evolution to the hard scale. The non-cusp term

1

4

∫ Q2

w

dq2

q2
γJ [αs(q)] , (4.16)

on the other hand, describes only a collinear evolution to the hard scale consistent with our

assignment in eq. (4.10). Accounting for eq. (2.10) for the QCD beta function and eq. (4.3),

we then arrive at the following form of the NLL Laplace space thrust distribution,

ln σ̃cb(ν,Q) = 8

∫ αs(Q)

αs(µJ,ν)

dαs
β[αs]

Γcusp[αs]

∫ αs

αs(µJ,ν)

dα′s
β[α′s]

− 4

∫ αs(Q)

αs(µS,ν)

dαs
β[αs]

Γcusp[αs]

∫ αs

αs(µS,ν)

dα′s
β[α′s]

+

∫ αs(Q)

αs(µJ,ν)

dαs
β[αs]

γJ [αs] . (4.17)

In terms of the K and ω evolution factors defined in eq. (2.8) this can be rewritten as

σ̃cb(ν,Q) = exp

[
4K(Γcusp, µH,ν , µJ,ν)− 2K(Γcusp, µH,ν , µS,ν) +

1

2
ω(γJ , µH,ν , µJ,ν)

]
= exp

[
K(ΓJ , µH,ν , µJ,ν) +K(ΓS , µH,ν , µS,ν) +

1

2
ω(γJ , µH,ν , µJ,ν)

]
, (4.18)

where in the last line we have used the cusp and non-cusp identities of eqs. (2.11). This

agrees identically with the factorized QCD cross section for massless quarks of eq. (2.7).

4.2 NLL resummation for massive quarks

To analytically determine the NLL jet mass distribution for massive quarks in the peak

region from eq. (3.20) we initially proceed in the same way as for the massless quark
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case. Taking the large z approximation of ref. [58] and in addition the limit of large

boost (Q2 � m2), the Laplace space integral equation for the jet mass distribution adopts

the form

J̃(ν̄, Q,m) = 1 +

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs
(
(1− z)q̃

)
, z,

m2

q̃2

](
e−ν̄(1−z)q̃2 − 1

)
J̃(ν, q̃) ,

(4.19)

with

PQQ

[
αs, z,

m2

q̃2

]
=

Γcusp[αs]

1− z −
(CFαs

2π

)
(1 + z)−

(CFαs
π

) m2

(1− z)q̃2
, (4.20)

where we have dropped a factor 1/z from the mass correction term for a consistent expan-

sion in the z → 1 limit, see also section 3. Its solution reads

ln J̃(ν̄, Q,m) =

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs
(
(1− z)q̃

)
, q̃,m, z

](
e−ν̄(1−z)q̃2 − 1

)
, (4.21)

and with the substitutions of eq. (4.7) we arrive at

ln J̃(ν̄, Q,m) =

∫ Q2

w

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2

[
−Γcusp[αs(q

′)]

+

(
CFαs (q′)

2π

)(
2− q′2

q2

)
q′2

q2
+

(
CFαs(q

′)

π

)
m2q′2

(q2)2

]
θ(q2 − q′m) (4.22)

for the NLL resummed Lapace space thrust distribution. We have already implemented

the NLL relation of eq. (4.11) to simplify the q2 integration, since it is also valid in the

context of massive quarks.

It it easy to see that the massive quark constraint q2 > q′m is irrelevant for w =

µ2
J,ν > m2, which refers to the situation where the hemisphere jet masses are larger than

the mass of the quark. In this kinematic situation the mass correction in the splitting

function represents the only modification due to the quark mass, but the struture of the log

resummation is otherwise in complete analogy to the massless quark case. In the context of

the factorized QCD calculations, one can then employ usual SCET factorization where the

collinear sector of the effective Lagrangian is extended trivially by just accounting for the

finite quark mass [14, 15]. In this work, however, we are interested in the peak region where

the hemisphere jet masses are close to the quark mass, i.e. where w < m2. Here the ultra-

collinear sector emerges and the QCD factorization requires that the off-shell fluctuations

of the massive quark field are integrated out [14, 15]. So the quark mass effects are much

more complicated and lead to a substantial rearrangement of the structure of the resummed

logarithms. The physical meaning of w is also modified and the scale identifications read

Q2 = µ2
H,ν , m2 = µ2

m,ν , w2/m2 = µ2
JB ,ν

, w2/Q2 = µ2
S,ν (4.23)
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Let us now have a closer look at the calculation for the cusp term. Reversing the order

of integration we have to distinguish three integration regions and find

−
∫ w2

m2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

w

dq′2

q′2
−
∫ m2

w2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ Qq

mq

dq′2

q′2

−
∫ Q2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ Qq

q2

dq′2

q′2
. (4.24)

The q′ integrations can be reshuffled using∫ qQ

w

dq′2

q′2
=

1

2

∫ q2

w2

Q2

dq′2

q′2
, (4.25)

∫ Qq

mq

dq′2

q′2
= −1

2

∫ q2

w2

m2

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (4.26)

∫ Qq

q2

dq′2

q′2
= −1

2

∫ q2

m2

dq′2

q′2
− 1

2

∫ q2

w2

m2

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (4.27)

such that we get

1

2

∫ Q2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

m2

dq′2

q′2
+

1

2

∫ Q2

w2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

m2

dq′2

q′2

− 1

2

∫ Q2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

Q2

dq′2

q′2

= K(Γcusp, µH,ν , µm,ν) +K(Γcusp, µH,ν , µJB ,ν)−K(Γcusp, µH,ν , µS,ν) . (4.28)

At this point we have separated mass-dependent, ultra-collinear and soft evolution to the

hard scale and have rewritten the result using the evolution function K of eq. (2.8) and

the scale identifications of eq. (4.23).

For the non-cusp term, rewriting the constraint q2 > q′m in terms of integration limits,

∫ Q2

w

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2
θ(q2 − q′m) =

∫ m2

w

dq2

q2

∫ (q2)2

m2

(q2)2

Q2

dq′2

q′2
+

∫ Q2

m2

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2
(4.29)

we can use the considerations already applied in the massless quark case and find that only

the second integration contributes at NLL order. This gives∫ Q2

m2

dq2

q2

[
3CF

(
αs(q)

4π

)]
=

1

4

∫ Q2

m2

dq2

q2

[
−γH [αs(q)]+γJB [αs(q)]+γHm [αs(q)]

]
, (4.30)

where we have written the expression in terms of the non-cusp anomalous dimensions of

the hard, the mass mode and the bHQET jet functions, anticipating already the form of

the final result.
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For the mass correction term in the splitting function we reverse integration order in

analogy to our manipulation for the cusp term in eq. (4.24),∫ w2

m2

w2

Q2

dq2

q2

(CFαs(q′)
π

)∫ qQ

w

dq′2

q′2
m2q2

(q2′)2
+

∫ m2

w2

m2

dq2

q2

(CFαs(q′)
π

)∫ Qq

mq

dq′2

q′2
m2q2

(q2′)2

+

∫ Q2

m2

dq2

q2

(CFαs(q′)
π

)∫ Qq

q2

dq′2

q′2
m2q2

(q2′)2
. (4.31)

In the limit of a boosted massive quark (Q2 � m2) only the second term can contribute

NLL logarithms. Using ∫ Qq

mq

dq′2

q′2
m2q2

(q2′)2
=

1

2
+O

(
m2

Q2

)
, (4.32)

the contribution from the mass correction term at NLL accuracy then reads∫ m2

w2

m2

dq2

q2

[
2CF

(
αs(q)

4π

)]
=

1

4

∫ Q2

w2

m2

dq2

q2
γJB [αs(q)]−

1

4

∫ Q2

m2

dq2

q2
γJB [αs(q)] (4.33)

Taking the sum of the NLL contributions from the non-cusp term in eq. (4.30) and the

mass corrections term in eq. (4.33) we obtain

1

4

∫ Q2

m2

dq2

q2

[
−γH [αs(q)] + γHm [αs(q)]

]
+

1

4

∫ Q2

w2

m2

dq2

q2
γJB [αs(q)]

=
1

4

(
ω(γHm − γHQ , µH,ν , µm,ν) + ω(γJB , µH,ν , µJB ,ν) + ω(γS , µH,ν , µS,ν)

)
(4.34)

where in the second line we have rewritten the result using the evolution function ω of

eq. (2.8), the scale identities of eq. (4.23) and that γS [αs] = 0 at NLL. Combining

eqs. (4.28) and (4.34) and using (4.3) we arrive at the final form for the NLL Laplace

space thrust distribution

σ̃cb(ν,Q,mpole) = exp

[
−K(ΓHm ,µH,ν ,µm,ν)+K(ΓJB ,µH,ν ,µJB ,ν)+K(ΓS ,µH,ν ,µS,ν)

]
×exp

[
1

2

(
ω(γHm−γHQ ,µH,ν ,µm,ν)+ω(γJB ,µH,ν ,µJB ,ν)+ω(γS ,µH,ν ,µS,ν)

)]
, (4.35)

which agrees identically with the factorized QCD cross section for massive quarks of

eq. (2.23).

5 Hemisphere mass distribution with shower cut Q0

In this section we study analytically the impact of the shower evolution cut Q0 on the

thrust distribution in the resonance regions for massless and massive quark production.

The main focus is on the effects that cause a dependence of the hemisphere masses that

is linear on Q0. The Q0 cut is defined as the restriction p2
⊥ > Q2

0 on the transverse

momentum of the emission with respect to the momentum of the emitter. In the context
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of the coherent branching formalism the dependence of the transverse momentum on the

shower evolution variables q̃ and z for the massless and the massive quark cases are given

in eqs. (3.7) and (3.18), respectively, leading to the constraints in eqs. (3.16) and (3.22).

Since in the framework of strict perturbative calculations the Q0 cut represents an

artificial restriction of the radiation generated by the shower, we call the emissions that

are allowed by the Q0 cut released and the emissions that is not allowed by the Q0 cut

unreleased. As we will show, the dominant (linear in Q0) effect of removing the unreleased

radiation from the calculation in the resonance region must be reinterpreted as a redefinition

of parameters in a perturbative calculation without Q0 cut.

To elucidate this we compare the effects of the unreleased radiation in the context of

the coherent branching formalism for the jet mass distributions as described in sections 3.1

and 3.2, and in the context of QCD factorization using the SCET approach for the thrust

distribution as described in sections 2.1 and 2.2. This comparison, together with the

facts that in the absence of the Q0 cut coherent branching and QCD factorization provide

equivalent results at NLL order and both are O(αs) precise for the resonance peak mass,

allows us to relate the quark mass parameter of the coherent branching formalism with

Q0 cut (and thus of angular ordered parton showers) to an explicit field theoretic mass

renormalization scheme at O(αs).

In subsection 5.1 we outline the collinear and soft phase space regions and QCD modes

relevant for the thrust distribution in the resonance region in the context of coherent

branching and QCD factorization, respectively, and we show where a linear Q0 dependence

can possibly emerge. In subsections 5.3 to 5.2 we calculate the effects of the unreleased ra-

diation each for massless and massive quarks for QCD factorization and coherent branching

and analyze in detail the effects linear in Q0.

5.1 Phase space regions with and without Q0 cut

To initiate the analytic examinations it is illustrative to first discuss the structure of the

phase space and the QCD modes relevant for the resonance region. To define our counting

variable we start from the hadron level thrust distributions given in eqs. (2.3) and (2.15),

where the partonic thrust distribution is convoluted with the soft model shape function

Smod(`). The parameters of the shape function may be either determined from fits to

experimental data or from non-perturbative methods. The shape function has support for

positive ` values and exhibits a peak for ` ≈ Λ, where Λ parametrizes the overall energy the

non-perturbative effects add to the parton level hemisphere masses. For larger ` values the

shape function falls quickly and one usually assumes an exponential behavior. A typical

generic form for Smod is displayed in figure 3. The effect of the shape function on the

hadron level prediction is twofold: it smears out the distributive and singular structures of

the partonic cross section, and it leads to a shift of the observable resonance peak position

in the thrust distribution towards larger values with respect to the partonic thresholds,

τmin = 0 for massless quarks and τmin = 2m2/Q2 for massive quarks:

τpeak − τmin ∼
Λ

Q
� 1 . (5.1)

It is therefore natural to adopt Λ/Q as the counting parameter in the resonance region.
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0 ΛΔ
ℓ

Smod(ℓ)

Figure 3. Generic form of the soft model shape function Smod(`) in arbitray units for illustration.

The original soft model shape function Smod(`) is represented by the solid red line and the soft

model shape function with a gap shift, Smod(`−∆) for the case 0 < ∆ < Λ, by the dashed red line.

(a) (b)

Figure 4. (z, q̃) phase space for coherent branching in the (a) massless and (b) massive case, with

indication of the relevant soft, collinear and ultra-collinear regions. The hatched area corresponds to

the phase space populated in the presence of a shower cut Q0. The soft, collinear and ultra-collinear

phase space regions are indicated.

In figure 4a we show the generic form of the (z, q̃) phase space populated by coherent

branching for the jet mass distribution for massless quarks, see eq. (3.10). The gray area

represents the phase space without Q0 cut and the hatched area the phase space with Q0

cut. In the peak region the thrust distribution is dominated by soft and collinear gluon

radiation, which are also indicated. In QCD factorization the soft and the collinear modes

are separated at the operator level by imposing powercounting contraints on the momentum

fluctuations these operators can generate. These constraints are most efficiently formulated
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phase space regions for τpeak ∼
Λ

Q
� 1, m = 0

coherent branching QCD factorization

n-collinear

z ∼ (1− z) ∼ 1

qµ ∼ (Λ, Q, (QΛ)
1
2 )q̃ ∼ (QΛ)

1
2

q⊥ ∼ (QΛ)
1
2

soft

1− z ∼ Λ

Q
, z ∼ 1

qµ ∼ (Λ,Λ,Λ)
q̃ ∼ Q
q⊥ ∼ Λ

Table 1. Power counting for coherent branching and QCD factorization for masseless quarks.

in the light cone basis where

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ (5.2)

where n and n̄ are back-to-back light-like vectors than can be directed along the momenta

of the progenitor quark-antiquark pair produced by the primary hard scattering. The

momentum components in this basis are then denoted by pµ = (p+, p−, p⊥) = (n·p, n̄·p, p⊥)

where the momentum square reads p2 = p+p− − p2
⊥, see also sections 3.1 and 3.2. The Λ

counting of the collinear and soft regions formulated in the coherent branching and in the

QCD factorization approaches can be connected by the relation

(p+, p−, p⊥) = Q(1− z)

(
q̃2

Q2
, 1,

q̃

Q

)
(5.3)

for soft and n-collinear modes. For the n̄ collinear modes, the plus and the minus compo-

nents on the r.h.s. have to be swapped. The momentum power counting for both approaches

for massless quark production is summarized in table 1.

Imposing the Q0 cut, one has to note that it represents a cut on the transverse momen-

tum of the emission with respect to the momentum of the emitter and not with respect to

the momenta of the progenitor quarks. In the coherent branching approach this is automat-

ically taken care of in the definition of the transverse momentum variable qµi,⊥ of eq. (3.6)

which parametrizes the i-th branching. In QCD factorization, on the other hand, the con-

straint has a more complicated structure, because the momenta of all radiated partons are

usually formulated in one common frame based on eq. (5.2). Fortunately at NLL+O(αs)

precision, the order we consider in this work, only the first emission has to be calculated

in the QCD factorization approach to determine the effects linear in Q0. At this level the

transverse momentum variable in coherent branching defined in eq. (3.6) and the transverse

momentum in QCD factorization defined in eq. (5.2) agree and can be identified. So at

NLL+O(αs) precision we can implement the shower cut constraint in the factorized calcu-

lation by simply imposing a cut on the transverse momentum in eq. (5.2) without further
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complications. For the rest of this paper we therefore identify the transverse momenta in

both apporaches to keep the presentation simple, and we frequently refer to the shower cut

Q0 also as the cut on the transverse momentum p⊥ without further specification.

From a conceptual point of view the numerical value for Q0 should be chosen such

that it is unresolved, i.e. it should be smaller than the typical values p⊥ can adopt for the

observable of interest. From table 1 we can see that soft radiation imposes the strongest

constraint and requires that Q0 should in principle be smaller than Λ ∼ 1 GeV. This is

the hierarchy we assume for some of the arguments presented below. For practical parton

showers, however, this constraint cannot be satisfied in terms of a strong hierarchy (if at all)

due to computational reasons and the proximity to the Landau pole of the strong coupling.

As we show in our numerical analysis in section 7 using the approximation Q0 � Λ in our

analytic calculations does very well, even for cases where the both scales are similar in size.

In any case, since Q0 represents the smallest scale for the strong coupling, integrations over

its Landau pole are prevented as long as Q0 is chosen larger than ΛQCD, and, moreover,

for finite Q0 there are no renormalon ambiguities in perturbative calculations.

In the context of QCD factorization we can see already at the level of the factorization

theorem (2.4) that a linear dependence on the p⊥ cut Q0 can only arise in the partonic soft

function S because it is linear in the light cone momentum `. In the jet function J , however,

we expect a quadratic behavior for simple dimensional reasons. This consideration can be

confirmed explicitly applying the soft and collinear (z, q̃) counting shown table 1 to the

quark jet mass distribution defined in eq. (3.10): in the collinear region z ∼ (1 − z) ∼ 1

and the cut-dependence arises where q̃2 ∼ Q2
0. This leads to changes proportional to Q2

0

on the invariant mass s due to the δ function constraint. In the soft region we have q̃ ∼ Q
and z ∼ 1, and the cut dependence arises where (1 − z) ∼ Q0/Q, and. This then leads to

changes in s proportional to QQ0 due to the δ function constraint. This simple counting

is confirmed by the explicit calculations carried out in sections 5.2 and 5.3.

In figure 4b we show the generic form of the (z, q̃) phase space populated by coherent

branching for the jet mass distribution in the resonance region for a massive quark, see

eq. (3.20), where the coloring is the same as for the massless quark case. Again the gray

region represents the allowed phase space without Q0 cut and the hatched region when

the Q0 cut is imposed. We see that the allowed phase space is considerably different from

the massless quark case and overall confined to the region of large z. This is particular

to the resonance region, where s −m2 � m2. Here the massive quark thrust distribution

is dominated by soft and ultra-collinear gluon radiation, which are also indicated. While

the soft region is equivalent to the case of massless quarks, the ultra-collinear region differs

substantially from the collinear region for massless quarks because it is related to gluon

radiation that is soft in the massive quark rest frame and only becomes collinear due to

the massive quark boost. As such the ultra-collinear radiation originating from a boosted

massive quark with a given energy is substantially less energetic than the typical collinear

radiation originating from a massless quark with the same energy. The resulting power

counting is shown in table 2, where we see e.g. that ultra-collinear gluons have a typical

energy of order Q2Λ/m2, compared to collinear gluons which have a typical energy of order

Q. Note that if we would consider the situation s − m2 � m2 the allowed phase space
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phase space regions for τpeak − τmin ∼
Λ

Q
� 1, m 6= 0

coherent branching QCD factorization

n-ultra-collinear

1− z ∼ QΛ

m2
, z ∼ 1

qµ ∼
(

Λ,
Q2

m2
Λ,
Q

m
Λ

)
q̃ ∼ m

q⊥ ∼
Q

m
Λ

soft

1− z ∼ Λ

Q
, z ∼ 1

qµ ∼ (Λ,Λ,Λ)
q̃ ∼ Q
q⊥ ∼ Λ

Table 2. Power counting for coherent branching and QCD factorization for massive quarks.

would look similar to the massless case and we would recover the collinear counting. It is a

remarkable fact that, despite its limitations, the coherent branching formalism for massive

quarks is capable of describing both limits correctly and provides a smooth connection

between them. We also note that, since (p2
⊥+(1−z)2m2)1/2 is the renormalization scale of

the strong coupling, integrations over its Landau pole are strictly prevented as long as Q0

is chosen larger than ΛQCD. Therefore there are no renormalon ambiguities in perturbative

calculations in the presence of the p⊥ cut Q0.

To conclude this section let us also discuss in which sectors we should expect a linear

dependence on Q0 for the case of massive quark production. In the context of QCD fac-

torization, inspecting the factorization theorem (2.19), we see that a linear dependence on

the p⊥ cut Q0 can arise not only in the partonic soft function S but also in the bHQET

jet function JB because it has, in contrast to the massless quark jet function, a linear

kinematic dependence on the reduced invariant mass variable ŝ, see eq. (2.20). This sim-

ple dimensional argument can again be confirmed applying the ultra-collinear momentum

counting shown in table 2 to the quark jet mass distribution defined in eq. (3.20): we have

z ∼ 1, q̃ ∼ m and the cut-dependence arises where (1− z) ∼ Q0/m. This leads to changes

in the squared invariant mass relative to the threshold of order s−m2 ∼ mQ0. This simple

counting is confirmed by the explicit calculations carried out in sections 5.2 and 5.4.

5.2 Unreleased radiation: coherent branching

To calculate the effects of the p⊥ cut Q0 on the thrust distribution in the peak region

in the context of the coherent branching formalism we can start from the corresponding

Lapace space expressions given in eq. (4.6) for massless quarks and eq. (4.21) for massive

quarks. In contrast to the calculations we carried out for our examinations concerning the

summation of logarithms in sections 4.1 and 4.2, where the finite quark mass represented

a non-trivial modification, we can treat the massless and the massive quark case within

the same computation because Q0 < m. We can therefore begin from the Laplace space
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thrust distribution

ln σ̃cb(ν,Q,m,Q0) = 2

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz θ

(
q̃2 −m2 − Q2

0

(1− z)2

)
× PQQ

[
αs
(
q̃2(1− z)2

)
, z,

m2

q̃2

](
e−νq̃

2(1−z)/Q2 − 1
)

=

∫ Q2

Q2
0

dq2
⊥

∫ 1− q⊥
Q

0
dz

1

q2
⊥ +m2(1− z)2

× PQQ
[
αs
(
q2
⊥ +m2(1− z)2

)
, z,

m2(1− z)2

q2
⊥ +m2(1− z)2

]
×
(

e−ν(q2⊥+m2(1−z)2)/Q2(1−z) − 1
)
, (5.4)

where we have implemented the p⊥ cut Q0 according to eqs. (3.16) and (3.22). In the

second line we changed the integration variable from q̃ to q⊥ and used that m2/Q2 � 1.

From the second line one can see that we can write the Laplace space thrust distribution

with Q0 cut as

σ̃cb(ν,Q,m,Q0) = e−I(ν,Q,m,Q0) × σ̃cb(ν,Q,m) , (5.5)

where σ̃cb(ν,Q,m) is the distribution without Q0 cut and the function

I(ν,Q,m,Q0) = 2

∫ Q2
0

0
dq2
⊥

∫ 1− q⊥
Q

0
dz

1

q2
⊥ +m2(1− z)2

× PQQ
[
αs
(
q2
⊥ +m2(1− z)2

)
, z,

m2(1− z)2

q2
⊥ +m2(1− z)2

]
×
(

e−ν(q2⊥+m2(1−z)2)/Q2(1−z) − 1
)

(5.6)

describes the contributions of the unreleased radiation. Since we are interested in the

dominant contribution linear in Q0 we can expand to linear order in ν and change variables

to q2 = p2
⊥ +m2(1− z)2 to obtain

I(ν,Q,m,Q0) =− 4CF ν

πQ2

{
(Q− 2m)

∫ Q0

0
dq αs(q) (5.7)

+m

∫ m

Q0

dq αs(q)

(
q −

√
q2 −Q2

0

)2
q
√
q2 −Q2

0

}
+O

(
ν2, Q2

0,
m2Q0

Q3

)
.

where we have dropped terms which are down by additional powers of Q0/m and m/Q. In

addition, to linear order in Q0 we can extend the upper limit of the second integral up to

infinity. From this we obtain at O(αs) the final result

I (ν,Q,m,Q0) =−
[
16
Q0

Q
− 8π

Q0m

Q2

]
CFαs(Q0)

4π
ν +O

(
ν2, Q2

0,
m2Q0

Q3
, α2

s

)
, (5.8)

for the unreleased radiation, where we can fix the scale of the strong coupling to Q0 because

it represents the only scale the integral depends. For the case of massless quark production
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the term proportional to m is zero. A similar calculation for the massless quark case

(relevant for an analysis in the effective coupling model) was carried out in ref. [65].

For the thrust distributions obtained from the coherent branching formalism the re-

lations (5.5) and (5.8) in connection with Laplace space identities imply that up to terms

quadratic in Q0, the strong coupling and m/Q the effect of the p⊥ cut is a simple shift in

τ with respect to the thrust distribution without p⊥ cut:

dσcb

dτ
(τ,Q,Q0) =

dσcb

dτ

(
τ + 16

Q0

Q

CFαs(Q0)

4π
,Q,Q0 = 0

)
(5.9)

dσcb

dτ
(τ,Q,m,Q0) =

dσcb

dτ

(
τ +

[
16
Q0

Q
− 8π

Q0m

Q2

]
CFαs(Q0)

4π
,Q,m,Q0 = 0

)
(5.10)

These shifts are valid for the parton level distributions and through the convolutions of

eqs. (2.3) and (2.15) also for the hadron level distributions. Numerically, these shifts are

far from negligible for Q0 ∼ 1 GeV, which is the typical size of the shower cut values used

in state-of-the-art Monte-Carlo event generators.

Within the coherent branching formalism it is, however, not possible to systemati-

cally address the question if these shifts should be interpreted as modifications of QCD

parameters such as the mass. This is because the coherent branching formalism provides a

convenient computational method to sum cross section contributions that are singular in

the soft and collinear limits, but does not provide a field theoretic background where this

issue can be discussed conceptually from first principles. We will therefore examine the

effects of p⊥ cut Q0 again in the next two subsections in the framework of the factorization

theorems (2.4) and (2.19) for massless and massive quarks, respectively.

5.3 Unreleased radiation for massless quarks: QCD factorization

In the context of QCD factorization the hard, soft and collinear effects are separated at

the operator level and the modifications caused the by the p⊥ cut Q0 can be determined

in each sector individually. Possible cross terms and exponentiation effects are automati-

cally taken care of by the multiplicative structure of the factorization theorem (2.4). It is

then straightforward to see that there is no change in the U factors which sum the large

logarithms, since the p⊥ cut acts in the infrared and does not lead to any new types of

UV-divergences. As far as the hard function HQ is concerned, the p⊥ cut contributes only

through terms of order Q2
0/Q

2, which are strongly power-suppresed and negligible at the

order we are working. So we only have to analyze the jet function J (τ) and the soft function

S(τ) as they describe radiation where the p⊥ cut Q0 can leave a non-trivial impact.

We write the jet function J (τ) and the soft function S(τ) in the presence of the p⊥ cut

Q0 in the form

J (τ)(s, µJ , Q0) = J (τ)(s, µJ)− J (τ)
ur (s,Q0) , (5.11)

S(τ)(k, µS , Q0) = S(τ)(k, µS)− S(τ)
ur (k,Q0) (5.12)

where J (τ)(s, µJ) and S(τ)(k, µS , Q0) are the renormalization scale dependent jet and soft

functions from eq. (2.4) determined using dimensional regularization for the momentum
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s

J
(τ)(s)

SCET Jet Function, μ=Q0

(a)

Q0

k

S
(τ)(k)

Soft Function, μ=Q0

(b)

Figure 5. SCET jet function for massless quarks (a) and soft function (b) without cut (solid red),

unreleased (dotted green) and with cut (dashed blue) for µ = Q0.

integrations and defined in the MS renormalization scheme. Their expressions at O(αs) are

displayed in eqs. (A.2) and (A.3), respectively. The functions J
(τ)
ur (s,Q0) and S

(τ)
ur (k,Q0)

represent the unreleased radiation coming from regions below the p⊥ cut Q0, i.e. they

describes the perturbative radiation that is prevented if Q0 is finite. Since the p⊥ cut does

not lead to any genuine UV divergences, J
(τ)
ur and S

(τ)
ur are renormalization group invariant,

which we have indicated by dropping the renormalization scale dependence from their

arguments. The calculations for S
(τ)
ur and J

(τ)
ur at O(αs) are straightforward and described

in detail in appendix B.1 and appendix B.4, respectively.

The result for the unreleased jet function has the form [s′ = s/Q2
0, w(z) = (1−4/z)1/2]

J (τ)
ur (s,Q0) =

αs(Q0)CF
4π

{(
12− 4π2

3

)
δ(s)

+ θ(4Q2
0 − s)

(
− 6

Q2
0

[
θ(s′)

s′

]
+

+
8

Q2
0

[
θ(s′) ln s′

s′

]
+

)
(5.13)

+ θ(s− 4Q2
0)

1

s

[
6(w(s′)− 1)− 8

(
ln
(1 + w(s′)

1− w(s′)

)
− ln s′

)]}
+O(α2

s) .

In figure 5a the O(αs) corrections for jet function without p⊥ cut, J (τ)(s, µJ) (solid red

line), the unreleased jet function J
(τ)
ur (s,Q0) (dotted green), and the full jet function with

p⊥ cut, J (τ)(s, µJ , Q0) (dashed blue line) are shown for µJ = Q0 using arbitrary units.

For this scale choice the p⊥ cut completely eliminates the plus distributions for s < 4Q2
0 in

J (τ)(s, µJ , Q0) and slightly reduces the collinear jet mass distribution for s larger than 4Q2
0.

As already argued in section 5.1, the unreleased radiation in the collinear sector depends

quadratially on Q0 except for the δ-function term, which is however, not affecting the peak

location τpeak at O(αs), see the discussion of section 2.4. The contributions from s < 4Q2
0

as well as from s > 4Q2
0 lead to effects of order Q2

0 in the observable thrust distribution

upon integration over the soft model shape function, which corresponds to a smearing in

s over an interval of order QΛ which is much larger than Q2
0, see eq. (2.3). Since we are
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interested in effects that are linear in Q0, the unreleased radiation in the collinear sector

can thus be ignored in our discussion.

The result for the unreleased soft function reads [k′ = k/Q0]

S(τ)
ur (k,Q0) =

αs(Q0)CF
4π

16 θ(Q0 − k)

{
− 1

Q0

[
θ(k̃) ln k̃

k̃

]
+

}
+O(α2

s) . (5.14)

In figure 5b the O(αs) corrections to the soft function without p⊥ cut, S(τ)(k, µS) (solid

red line), the unreleased jet function S
(τ)
ur (k,Q0) (dotted green), and the full jet function

with p⊥ cut, S(τ)(s, µS , Q0) (dashed blue line) are shown for µS = Q0 for arbitrary units.

Similar to the case of the jet function, for this scale choice, the p⊥ cut just eliminates the

plus distributions for k < Q0 in S(τ)(k, µS , Q0), and but has no effects for k > Q0. As

already anticipated on general grounds in section 5.1, the p⊥ cut indeed leads to a linear

dependence on Q0.

As can be seen from the factorization formula (2.3), the soft model shape function

causes a smearing in k over an interval of order Λ which we assume to be larger than Q0.

Since the unreleased soft function has support only for light cone momenta k < Q0, we can

therefore quantify its effect more transparently in terms of a multipole expansion,

S(τ)
ur (k,Q0) =−∆soft(Q0) δ′(k) +O(Q2

0) , (5.15)

where the term ∆soft(Q0) is the first moment of the unreleased soft function,

∆soft(Q0) =

∫
dk′ k′ S(τ)

ur (k′, Q0) = 16Q0
αs(Q0)CF

4π
. (5.16)

Mathematically, this multipole term appears to cause a shift of the partonic soft

function threshold by −∆soft(Q0) since it can absorbed into the tree level soft function,

δ(k) + ∆soft(Q0) δ′(k) ≈ δ(k + ∆soft(Q0)) +O(α2
s). In the context of the thrust factoriza-

tion theorem (2.3) we thus see that this shift agrees identically with the result which we

determined from the coherent branching formalism given in eq. (5.9). However, as we have

already mentioned before, in the coherent branching formalism there was no rigorous field

theoretical background that strictly enforced this view in the context of perturbation theory

because a perturbative modification of the threshold of a kinematic variable can only be

implemented by a renormalization scheme change of a dimensionful parameter. Such a

parameter does also not exists for the soft function because is arises from the dynamics

of massless gluons and only depends on a light-cone momentum. In the context of the

factorization formula (2.3) the correct view is that the linear effect caused by the p⊥ cut

Q0 can be reinterpreted as a shift of the soft model shape function Smod [58, 62, 72], called

“gap” in ref. [70]. Following the presentation of ref. [70] we can write the convolution of

the partonic soft function and the non-perturbative shape function as∫
d` S(τ)(k − `, µS , Q0)Smod(`) =

∫
d`
[
S(τ)(k − `, µS)− S(τ)

ur (k − `,Q0)
]
Smod(`) ,

=

∫
d` S(τ)

(
k − `+ ∆soft(Q0), µS

)
Smod(`) +O(α2

s, αsQ
2
0)

=

∫
d` S(τ)(k − `, µS)Smod

(
`+ ∆soft(Q0)

)
+O(α2

s, αsQ
2
0) . (5.17)
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This relation shows that the dominant effect of the p⊥ cut Q0 is to modify the interface

between perturbation theory and non-perturbative physics and — from the point of view

of a partonic computation carried out without Q0 cut — acts as a modification of the

hadronization contribution from Smod(`) to Smod

(
` + ∆soft(Q0)

)
as shown in the last line

of eq. (5.17). As long as the scale Q0 is in the perturbative regime, this scheme change

can be described perturbatively. This shows that the correct way to deal with a change in

Q0 when making physical predictions — from the point of view of a partonic computation

with a Q0 cut — is to modify the non-perturbative effects by a corresponding change of

the shape function gap in order to leave the physical prediction unchanged.

One of the motivations of discussing “gapped” soft functions in ref. [70] was to devise

a way consistent with QCD factorization and field theory to eliminate the O(ΛQCD) renor-

malon from the partonic soft function. This O(ΛQCD) renormalon arises from large factori-

ally growing coefficients in its perturbation series and renders, from the non-perturbative,

i.e. beyond perturbation theory point of view, the partonic threshold ambiguous to an

amount of order of ΛQCD. While for a massive particle threshold this can be achieved

by a modification of the mass scheme, there is no such parameter for gluonic thresholds.

Our argumentation that the effects linear in the p⊥ cut Q0 should be interpreted as a soft

function gap are therefore further supported, if the p⊥ cut eliminates the O(ΛQCD) renor-

malon behavior of the partonic soft function. To examine this we restrict our discussion to

the effects of dressing the gluon propagator with massless fermion bubble chains using the

replacement [77]

1

q2 + iε
−→ 4π

αs(µ)β0

(e5/3

µ2

)−u −1

(−q2 − iε)1+u
, (5.18)

to compute the Borel transform, using the convention β[αs] = −2β0(α2
s/4π) + . . . for

defining the coefficients of the β-function (see also eq. (2.10)), and focusing on poles in

the Borel variable u located a u = 1/2. The term e5/3 is related to using the usual MS

renormalization scheme for the strong coupling. In passing we note that using the bubble

chain method does not represent a strict all order proof that the p⊥ cut eliminates the

O(ΛQCD) renormalon. However, it is sufficient for our discussion that focuses on angular

ordered showers which have NLL order precision.

As was shown in ref. [70], the Laurent expansion of the Borel transform of the partonic

soft function S(τ)(k, µS) around u = 1/2 reads

B
[
S(τ)(k, µ)

](
u ≈ 1

2

)
=

16CF e
−5/6

πβ0

µ

u− 1
2

δ′(k) . (5.19)

The O(ΛQCD) renormalon is canceled by the p⊥ cut, if the unreleased soft function S
(τ)
ur

exhibits also a Borel pole at u = 1/2 and if the residue agrees with the one shown in

eq. (5.19). Some details on the calculation of the Borel transform of the unreleased soft

function can be found in appendix B.1. The result reads

B
[
S(τ)

ur (k,Q0)
](
u ≈ 1

2

)
=

16CF e
−5/6

πβ0

µ

u− 1
2

δ′(k) , (5.20)

– 45 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
0

and is identical to eq. (5.19) when, consistently, the same scale choice is adopted for the

strong coupling. The agreement shows that in the presence of the p⊥ cut Q0 the O(ΛQCD)

renormalon is indeed removed from the partonic soft function due to eq. (5.12). Thus

the p⊥ cut eliminates the O(ΛQCD) renormalon and leads to a more convergent large-order

behavior of the partonic soft function. This analysis also reconfirms the view that soft gluon

radiation in (at least angular ordered) parton showers used in MC event generators does

not suffer from O(ΛQCD) renormalon ambiguities, in contrast to perturbative calculations

without finite infrared cuts.

5.4 Unreleased radiation for massive quarks: QCD factorization

For the massive quark thrust distribution factorization theorem (2.4) we proceed in a way

analogous to the massless quark case. The p⊥ cut does not lead to any modifications

for the U factors that sum large logarithms since it does not lead to any new types of

UV-divergences. The hard function HQ is the same as for massless quarks, and the p⊥
cut contributes terms of order Q2

0/Q
2. The mass mode factor Hm, which arises from off-

shell massive quark fluctuations, obtains modifications of order Q2
0/m

2. Both effects are

strongly power-suppressed and negligible at the order we are working. Since the massive

and massless quark factorization theorems contain the same partonic soft function S(τ) and

the same non-perturbative model shape function Smod, the effects of the p⊥ cut we have

discussed for them in the massless quark case also apply for massive quarks: the p⊥ cut

leads to a linear sensitivity to Q0 can be associated to a gapped soft function, as shown in

eqs. (5.16) and (5.17). This takes care of the m-independent shift contribution shown in

eq. (5.10).

What remains to be examined is the bHQET jet function J
(τ)
B which contains the

dynamics of the ultra-collinear radiation and which, as we have argued in section 5.1, can

also have a linear sensitivity to the p⊥ cut Q0. The aim is to show from the field theory

perspective that we can associate the m-dependent term in eq. (5.10) to a modification

of the quark mass scheme different from the pole mass. This examination of the bHQET

jet function represents the central part of our discussion because at NLL+O(αs) order

the bHQET jet function completely controls the quark mass scheme. We note that the

bHQET jet function dominates the mass dependence also at higher orders, while the mass

dependence coming from other parts of the factorization formula is subleading.

We write the bHQET jet function J
(τ)
B in the presence of the p⊥ cut Q0 in the form

J
(τ)
B (ŝ,mpole, µB, Q0) =J

(τ)
B (ŝ,mpole, δm = 0, µB)− J (τ)

B,ur(ŝ, Q0) , (5.21)

where J
(τ)
B (ŝ,mpole, δm = 0, µB) is the renormalization scale dependent bHQET jet from

eq. (2.19) in the pole mass scheme determined using dimensional regularization for the

momentum integrations and defined in the MS renormalization scheme. Its expression

at O(αs) is displayed in eqs. (A.8). The function J
(τ)
B,ur(ŝ, Q0) describes the unreleased

radiation coming from regions below the p⊥ cut Q0. The p⊥ cut does not lead to any genuine

UV divergences, so J
(τ)
B,ur is renormalization group invariant, which we have indicated by

dropping the renormalization scale dependence from its arguments. The calculation of

J
(τ)
B,ur is described in detail in appendix B.3.
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2Q0

ŝ

JB
(τ)
(ŝ)

bHQET Jet Function, μ=Q0

Figure 6. bHQET jet function without cut (solid red), unreleased (dotted green) and with cut

(dashed blue) for µ = Q0.

The result for the unreleased bHQET jet function reads [s̃ = ŝ/Q0, w(z) = (1−4/z)1/2]

mpoleJ
(τ)
B,ur(ŝ, Q0) =

αs(Q0)CF
4π

{
−8πQ0δ

′(ŝ) + 2
(

4− π2

3

)
δ(ŝ)

+ θ(2Q0 − ŝ)
(
− 8

Q0

[
θ(s̃)

s̃

]
+

+
16

Q0

[
θ(s̃) ln s̃

s̃

]
+

)
(5.22)

+ θ(ŝ− 2Q0)
8

ŝ

[
(w(s̃2)− 1)−

(
ln
(1 + w(s̃2)

1− w(s̃2)

)
− 2 ln s̃

)]}
+O(α2

s)

In figure 6 the O(αs) corrections to the bHQET jet function without p⊥ cut, J
(τ)
B (ŝ, µB)

(solid red line), the unreleased jet function J
(τ)
B,ur(ŝ, Q0) (dotted green), and the full jet

function with the p⊥ cut, J
(τ)
B (ŝ, µB, Q0) (dashed blue line) are shown for µB = Q0 for

arbitrary units. We see that the effect of the p⊥ cut has features common to the massless

quark jet function: the p⊥ cut eliminates the plus distributions for ŝ < 2Q0 and slightly

reduces the ultra-collinear jet mass distributions for ŝ larger than 2Q0, compare to figure 5a.

However, the difference is that the overall dependence on Q0 is linear, as anticipated in

section 5.1, and the singular structure at ŝ = 0 is more complicated due to the appearance

of the term proportional to the derivative of the delta function, δ′(ŝ). This term arises

from the on-shell cuts of the self-energy diagram of the heavy quark with the p⊥ cut Q0,

see appendix B.3 for details.

To understand the result for the unreleased bHQET jet function in eq. (5.22), it is

important to recall that for the soft function the interpretation of the effects of the p⊥
cut is related to the interface between partonic cross section and the non-perturbative

shape function that describes hadronization effects and that there is no partonic parameter

involved in the argumentation. This differs from the bHQET jet function which contains

the quark mass as a partonic parameter that depends on an explicit decision about its

renormalization condition. In the expression for the O(αs) corrections to the bHQET jet

function in eq. (A.8) this dependence is manifest in the term − 4δm
mpole δ

′(ŝ), where δm =

mpole−m is the difference of the employed mass renormalization scheme to the pole mass.

From the structure of the convolutions in the factorization formulae (2.15) and (2.19), due
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to the combination ŝ m/Q−k appearing in the partonic soft function S(τ), it is also evident

that the effects linear in Q0 contained in eq. (5.22) cannot be associated to a universal (i.e.

m/Q-independent) change of the soft function model gap. It is therefore mandatory to

interpret these contributions from the point of a perturbative mass change alone.

In the absence of the p⊥ cut, i.e. when only dimensional regularization is used to regu-

larize infrared and ultraviolet divergences, the bHQET on-shell heavy quark self energy is a

scaleless integral and vanishes to all orders. So in bHQET the quark mass renormalization

scheme is automatically the pole mass when we set δm = 0. A change to another scheme

is realized by explicitly adopting a finite expressions for δm (which is a series that starts

at O(αs)). In the presence of the p⊥ cut Q0, however, the on-shell self-energy depends on

the scale Q0 and does not vanish any more, see appendix B.3 for details of this calculation.

This is the origin of the δ′(ŝ) term in eq. (5.22), and it means that in the presence of the

p⊥ cut Q0 the pole mass mpole, as defined in perturbation theory without any infrared cut,

does not any more represent the pole position of the heavy quark propagator.3 Rather, the

pole is located at the Q0-dependent mass

mCB(Q0) = mpole − δmCB(Q0) , (5.23)

with

δmCB(Q0) =
αs(Q0)CF

4π
2πQ0 +O(α2

s)

=
2

3
αs(Q0)Q0 +O(α2

s) . (5.24)

We stress that this means that the pole of the heavy quark propagator is not physical

and implicitly depends on the infrared regularization scheme employed. The pole of the

heavy quark propagatpr is unique only in the limit of vanishing infrared regulators. We

call mCB(Q0) the scale-dependent coherent branching (CB) mass. It is possible to absorb

the δ′(ŝ) correction term into the mass scheme (of the tree-level bHQET jet function)

which changes it from mpole to the coherent branching mass mCB(Q0). The essential

point is that this scheme change is implicitly carried out within the coherent branching

formalism (and in angular ordered parton showers) because there the δ′(ŝ) term never

arises. This means that the mass parameter in the coherent branching formalism in the

presence of the p⊥ cut Q0 agrees with the pole of the heavy quark propagator which is the

CB mass mCB(Q0). As we show in the following, only within this context we find that the

result of eq. (5.22) is compatible with the mass-dependent shift in eq. (5.10) obtained from

the coherent branching formalism in the presence of the p⊥ cut, recalling the definitions

of the thrust variable τ and the linearized invariant mass variable ŝ given in eqs. (2.1)

and (2.20), respectively.

3At this point one may object that in the calculation of the unreleased bHQET jet function one can decide

whether one applies the p⊥ cut Q0 in the on-shell self-energy diagram or not. However, this corresponds to

using different infrared regulators for virtual and real radiation corrections which is inconsistent. In fact,

dropping the p⊥ cut Q0 in the on-shell self-energy diagram only and keeping it in the rest of the calculation

is just equivalent to switching from the pole mass scheme to mCB(Q0).
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The subtle issue to fully understand (and appreciate) our conclusion is that all the

terms shown in eq. (5.22) are required to allow the interpretation that the effects of the

p⊥ cut that are linear in Q0 represent a modification of the mass scheme. The crucial

consistency requirement for this interpretation is that the sum of all modifications due

to the contributions linear in the cutoff scale Q0 given in eq. (5.22) vanish. This is be-

cause a change of the quark mass scheme (and of the renormalization scheme of any QCD

parameter) leaves the theoretical prediction invariant and essentially represents a mutual

exchange of perturbative corrections between the mass parameter and the dynamical matrix

elements. It is therefore mandatory that the contributions linear in Q0 of the remaining

corrections (other than the δ′(ŝ) term) in the unreleased bHQET jet function given in

eq. (5.22) have the same magnitude but the opposite sign as the contribution coming from

the δ′(ŝ) term. Since the soft model in the factorization theorem (2.15) causes a smearing

in ŝ of order QΛ/m � Q0, we can — in analogy to our discussion on the unreleased soft

function in section 5.3 — use again the multipole expansion to proceed. In contrast to our

discussion on the soft function, we do not have to argue about the validity of the multi-

pole expansion because for boosted top quarks we have Q/m � 1 so that the multipole

expansion is well applicable even if Q0 and Λ are similar in size. The outcome is that we

need to show that the total integral (i.e. the zeroth moment) as well as the first moment of

the unreleased bHQET jet function vanish identially. If these conditions are satisfied, we

can interpret all effects of the p⊥ cut that are linear in Q0 as a change in the quark mass

renormalization scheme.

It is straightforward to check from the result in eq. (5.22) that these properties are

indeed satisfied:∫
dŝ J

(τ)
B,ur(ŝ, Q0) = 0 , (5.25)∫

dŝ ŝ J
(τ)
B,ur(ŝ, Q0) =

[
αs(Q0)CF

4π
8πQ0

]
δ′
−
[
αs(Q0)CF

4π
8πQ0

]
non−δ′

=
[
4δmCB (Q0)

]
δ′
−
[
4δmCB(Q0)

]
non−δ′ = 0 , (5.26)

where for the first moment we have indicated by subscripts the contributions from the

δ′(ŝ) term and the rest. Given the complicated structure of the result for the unreleased

bHQET jet function in eq. (5.22), the results appear highly non-trivial. From the physical

point of view, however, the vanishing zeroth moment is related to the fact that the total

(e+e− hadronic) cross section is not linearly sensitive to infrared momenta, which is well

known. The vanishing of the first moment expresses that, physically, the mass-dependent

kinematics threshold generated by the ultra-collinear radiation is not linearly sensitive to

infrared momenta either. Linear sensitivity to infrared moments is only introduced by hand

when one imposes the pole scheme for the heavy quark mass (defined in the common way

by the one-particle irreducible on-shell self energy diagrams in the absence of any infrared

regulator).4 This feature is well known since a long time see e.g. ref. [78]. We can therefore

4In this work we define the pole mass scheme mpole strictly in the generally accepted canonical way,

namely in the context of perturbation theory in the limit of vanishing infrared regularization.
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expect that the zeroth and the first moments of the unreleased bHQET jet function vanish

to all orders in perturbation theory.

At this point our prove is complete and we have field theoretically shown that — if one

always employs a mass scheme that agrees with the pole of the perturbative heavy quark

propagator — all effects of the p⊥ cut that are linear in Q0 not only can, but rather must

be interpreted as a change of the quark mass scheme from the pole mass to the coherent

branching mass:

J
(τ)
B (ŝ,mpole, µB, Q0) = J

(τ)
B (ŝ,mpole, δm = 0, µB)− J (τ)

B,ur(ŝ, Q0)

= J
(τ)
B

(
ŝ,mCB(Q0), δmCB(Q0), µB

)
+O(Q2

0) , (5.27)

where at O(αs), keeping in mind eq. (5.21) and the form of eq. (A.8), the term δmCB(Q0)

in the 2nd line of eq. (5.27) is generated by the non-δ′ terms in the unreleased bHQET jet

function of eq. (5.22). Recalling the definitions of the thrust variable τ and the linearized

invariant mass variable ŝ given in eqs. (2.1), (2.2) and (2.20), we see that the mass depen-

dent τ shift in eq. (5.10) agrees with the τ shift generated by δmCB(Q0) in the 2nd line

of eq. (5.27). This implies that the mass parameter in the coherent branching formalism

(as well as in angular ordered parton showers) in the presence of the p⊥ cut Q0 is the CB

mass mCB(Q0). The result of eq. (5.27) gives us full control over the quark mass scheme

in the presence of the p⊥ cut Q0 since, with the help of relation (5.23), we can relate the

coherent branching mass mCB(Q0) to any other scheme at O(αs).

It is now natural to ask if the change from the pole mass to the scale-dependent CB

mass cures the O(ΛQCD) renormalon problem of the thrust distribution in the pole mass

scheme. We address this question using again the dressed gluon propagator approach of

eq. (5.18) to determine the Borel transform in the region around u = 1/2. As was shown

in refs. [79, 80], the Laurent expansion of the Borel transform of the perturbative series in

αs(µ) for the pole mass in terms of the MS mass around u = 1/2 reads

B
[
mpole −m(µ)

](
u ≈ 1

2

)
= −2CF e

−5/6

β0

µ

u− 1
2

. (5.28)

The corresponding result for the perturbative series in αs(µ) for the pole mass in terms of

the CB mass is calculated in appendix B.3 and reads

B
[
mpole −mCB(Q0)

](
u ≈ 1

2

)
= −2CF e

−5/6

β0

µ

u− 1
2

. (5.29)

We see that the result is identical to eq. (5.28). This shows that the scale-dependent

CB mass mCB(Q0) is a low-scale short-distance mass. This is not unexpected, of course,

because the CB mass is defined from the bHQET on-shell massive quark self-energy with

a transverse momentum infrared cut which prevents the low-virtuality contributions from

the evolution of the strong coupling that are responsible for the emergence of infrared

renormalons. It is also straightforward to check that the Borel ambiguities coming from the
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δ′(ŝ) self-energy term and the other contributions in the unreleased jet function (calculated

from the perturbative series in αs(µ)) cancel exactly:

B
[
J

(τ)
B,ur (ŝ, Q0)

](
u ≈ 1

2

)
=

[
8CF e

−5/6

β0

µ

u− 1
2

δ′ (ŝ)

]
δ′

−
[

8CF e
−5/6

β0

µ

u− 1
2

δ′ (ŝ)

]
non−δ′

= 0 . (5.30)

This reconfirms the relation (5.27) also beyond the NLO precision level (at least in the

large-β0 approximation). As a consequence, imposing the p⊥ cut Q0 in the massive quark

thrust distributions implies that one uses the CB mass scheme of eq. (5.23) and that all

O(ΛQCD) infrared renormalon issues are removed.

6 Summary of all theoretical considerations

In this section we summarize all theoretical and conceptual results we have obtained in

the previous sections in the context of the massless and massive quark thrust distributions

(see eq. (2.1) and (2.2) in section 2) obtained in the coherent branching formalism and

the QCD factorization approach. These findings provide the basis of the field theoretic

reinterpretation of the effects of the p⊥ cut Q0 that are linear in Q0 as a modification of

hadronization contributions and a redefinition of the heavy quark mass scheme, valid for

boosted massive quarks in the narrow width approximation. We also discuss the meaning

of these results in the context of angular ordered parton showers, which are based on the

coherent branching formalism and for which a p⊥ cut on the parton shower evolution is

mandatory. These considerations set the stage for the numerical studies we carry out in

section 7 using the Herwig 7 event generator [46, 47, 71].

Since the QCD factorization approach provides the closest relation to field theory

and allows to systematically address issues concerning the interpretation of partonic and

non-perturbative parameters, the examinations in the previous sections were built around

establishing a one-to-one correspondence between the factorized cross sections for thrust

and the corresponding results obtained from the coherent branching formalism. For mas-

sive quarks the latter is known to be valid for quasi-collinear and the former for boosted

massive quarks, which here correspond to equivalent kinematic situations. Because the

peak resonance region of the thrust distribution, and in particular the peak position, pro-

vide the strongest and cleanest top mass sensitivity we have focused our considerations on

the thrust resonance peak position.

In section 2.4 we have shown that, for the factorized predictions, resummed results at

full NLL order (where the dynamical logarithmic terms in the fixed-order matrix elements of

the factorized predictions are understood to be part of full NLL) are sufficient to describe

the peak position with NLO precision, i.e. up to higher order terms that enter only at

O(α2
s) and beyond. In sections 4.1 and 4.2 we then established for massless and massive

quarks, respectively, that in the absence of any infrared cut the NLL resummed results

provided by the coherent branching formalism and by the usual factorized approach are

equivalent. Since the massive quark results in the factorized approach we were using for the
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comparison were determined in the strict pole mass scheme mpole, we could prove that in

the coherent branching formalism with NLL resummation of logarithms and in the absence

of an infrared cut (i.e. for Q0 = 0) the quark mass parameter is equivalent to the pole mass

mpole at O(αs):

mCB(Q0 = 0)
peak
= mpole +O(α2

s) , (6.1)

where mCB is the quark mass parameter in the coherent branching formalism and called

the coherent branching (CB) mass.

This relation, however, is only valid in the context of strict QCD perturbation theory,

i.e. in calculations based on expanding in αs at a constant renormalization scale such

that evolution effects are encoded entirely in powers of logarithms and virtual loop and

real radiation phase space integrals can be carried out down to zero momenta. Such a

strict perturbative approach, however, cannot be applied for angular ordered parton shower

algorithms implemented in state-of-the-art MC event generators, so that it is not possible

to use them without an infrared cut on the parton shower evolution. There are two main

reasons for that. The first is related to the fact that for the parton showers implemented

in multi-purpose MC event generators the renormalization scale of the strong coupling is a

function of kinematic variables that decrease in the course of the shower evolution. In this

way parton showers can account for important subleading NLL information. Without an

infrared cut the strong coupling would therefore run into its Landau pole once the evolution

reached virtualities and momenta close to ΛQCD. The second reason is that in the absence

of the infrared cut the particle multiplicities generated by the shower became infinite and

made event generation impossible for pure computational reasons. Thus, relation (6.1)

does not apply for parton showers that are used in MC event generators.

In section 5 we then analyzed the impact of the transverse momentum p⊥ cut Q0

that is imposed on angular ordered parton showers. In the evolution described by the co-

herent branching formalism this cut is paraphrased in the conditions (3.16) and (3.22)

for the massless and massive quark case, respectively. In the factorization approach

it represents, at NLL+O(αs), a simple cut on the transverse momentum of (virtual or

real) gluons with respect to the thrust axis in the hard, soft and jet functions. In the

presence of the cut Q0 the descriptions provided by angular ordered parton showers,

based on the coherent branching formalism and the one provided by the factorized ap-

proach are all equivalent, and we were thus able to unambiguously track the field the-

oretic meaning and interpretation of the dominant contributions linear in the p⊥ cut

Q0 through the results obtained in the factorized approach. At this point we empha-

size that our conclusions related to the meaning and reinterpretation of QCD parame-

ters in the context of computations with the finite p⊥ cut are made from the perspec-

tive of computations without any infrared cut, since the canonical way how perturba-

tive calculations and the renormalization procedure are carried out in collider physics

applications is in the limit of zero infrared cutoff. Based on our examinations in sec-

tions 5.2, 5.3 and 5.4 we proved the following two statements valid in the peak region of
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the thrust distribution:

(1) For massless quark production the dominant linear effects of the shower cut Q0

represent a factorization scale5 at the interface of perturbative and non-perturbative

large angle soft radiation, and changes in Q0 can be reinterpreted as a modification

of the non-perturbative contributions in the resonance peak region. In the coherent

branching formalism and in the QCD factorization approach this modification is

related to a shift in the non-perturbative model shape function, called “gap” in

ref. [70],6 that can be computed perturbatively. For the thrust distribution in the peak

region obtained in QCD factorization this is expressed quantitatively by the relation

dσ

dτ
(τ,Q,Q0) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,Q0

)
Smod(`) (6.2)

=

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,Q0 = 0

)
Smod(`+ ∆soft(Q0)) +O(α2

s, Q
2
0)

where dσ̂/dτ stands for the partonic and dσ/dτ for the hadron level distribution,

Smod is the soft model shape function incorporating the hadronization effects (see

section 2.3), and having Q0 in the argument of a function refers to a calculation with

the Q0 cut imposed. Here, ∆soft(Q0) is the Q0-dependent gap that has the form

∆soft(Q0) =16Q0
αs(Q0)CF

4π
+O(α2

sQ0) . (6.3)

The gap function ∆soft(Q0) satisfies the renormalization group equation

R
d

dR
∆soft(R) = 16R

αs(R)CF
4π

+O(α2
sR) , (6.4)

which, due to the appearance of the scale R on the r.h.s. , describes evolution that

is linear in the renormalization scale and is called R-evolution [19, 20, 81, 82]. R-

evolution differs from usual renormalization group equations such as for the strong

coupling, which describe logarithmic evolution. In the context of multi-purpose

MC event generators, where an angular ordered parton shower is combined with

a hadronization model, the relation means that a change of the shower cut Q0 needs

to be compensated by a retuning of the hadronization model parameters in order

to keep physical predictions effectively unchanged. At the level of the hadron level

thrust factorization theorem valid in the peak region, which involves the convolution

of the partonic distribution dσ̂
dτ with the soft model shape function, this feature is

quantitatively encoded in the relation

dσ

dτ
(τ,Q,Q0) =

Qτ∫
0

d`
dσ̂

dτ

(
τ − `

Q
,Q,Q′0

)
Smod(`+ ∆soft(Q0)−∆soft(Q

′
0)) , (6.5)

5We adopt the canonical approach of factorization where the factorization scale that separates pertur-

bative and non-perturbative effects is chosen small, but also sufficiently large such that the interface can

be described within perturbative QCD.
6The name “gap” is motivated by the hadronization gap of the hadron mass spectrum.
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where the difference of the gap functions at the scales Q0 and Q′0 is

∆soft (Q0)−∆soft

(
Q′0
)

=16

Q0∫
Q′0

dR

[
αs(R)CF

4π
+O(α2

s)

]
, (6.6)

which is manifestly infrared insensitive. Relation (6.5) states that the dominant linear

effects of a change of the shower cut form Q′0 to Q0 can be compensated, to keep the

prediction unchanged, by a modification of the soft model shape function of the form

Smod(`)→ S̄mod(`) = Smod

(
`−∆soft(Q0) + ∆soft(Q

′
0)
)
. (6.7)

We note that relations (6.2) and (6.5) also have the important implication that the

size of hadronization corrections for event-shape distributions that are encoded in

MC event generators (i.e. the difference between parton and hadron level output)

depends the value of the shower cut. A discussion of the feature is, however, beyond

the scope of this work. We also remark that in practice a change in the shower cut Q0

may not be entirely compensated by a modification of the gap function alone because

of additional non-linear dependence on the shower cut.

(2) For massive quark production, the dominant linear effects of the shower cut Q0 on the

thrust distribution at the resonance peak can be interpreted, from the perspective of

a computation in QCD factorization without infrared cutoff in the pole mass scheme

mpole, as a modification of the non-perturbative contribution from large angle soft

radiation and a change of the quark mass scheme from mpole to the scale-dependent

coherent branching (CB) mass scheme mCB(Q0). The modification concerning the

non-perturbative effects from large angle soft radiation is universal and the same as

for massless quark production. The modification concerning the quark mass scheme

originates from the restriction the shower cut Q0 imposes on the ultra-collinear ra-

diation, which corresponds to soft radiation in the massive quark rest frame and

which has to be partly considered as an unresolved contribution to the observable

top quark state. The shower cut Q0 changes the position of the pole of the massive

quark propagator to mCB(Q0) and also provides the associated scheme change correc-

tions. Starting from a QCD factorization computation of the thrust distribution in

the pole mass scheme, this is expressed quantitatively by the relation

dσ

dτ
(τ,Q,mpole, Q0) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,mpole, Q0

)
Smod(`) (6.8)

=

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,mCB(Q0), δmCB(Q0), Q0 = 0

)
Smod(`+ ∆soft(Q0))

+O(α2
s, Q

2
0)

where dσ̂s/dτ stands for the parton level and dσ/dτ for the hadron level distribution,

Smod is the soft model shape function incorporating the hadronization effects, having
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Q0 in the argument of a function refers to a calculation with the Q0 cut imposed

coherently in virtual and real radiation calculations, and the argument δmCB(Q0) in

dσ̂s/dτ indicates the modification of the perturbative series due to the scheme change

from mpole to mCB(Q0). The soft function gap ∆soft(Q0) is given in eq. (6.3) and the

scale-dependent CB (coherent branching) mass scheme is defined by

mCB(Q0) = mpole − δmCB(Q0) , (6.9)

with

δmCB(Q0) =
2

3
αs(Q0)Q0 +O(α2

sQ0) . (6.10)

The scale-dependent CB mass mCB(Q0) is a short-distance mass and thus does not

suffer from the O(ΛQCD) renormalon ambiguity inherent to the pole mass mpole. It

satisfies the R-evolution equation [19, 20, 82]

R
d

dR
mCB(R) = −2

3
Rαs(R) +O(α2

sR) , (6.11)

and evolves linearly in R in the same way as the soft function gap ∆soft(R). The

difference of the CB masses for the cutoff scales Q′0 and Q0 can then be expressed by

solving the R-evolution equation

mCB(Q0)−mCB(Q′0) =− 2

3

Q0∫
Q′0

dR
[
αs(R) +O(α2

s)
]
, (6.12)

which is manifestly infrared insensitive. In the context of angular ordered partons

showers with a transverse momentum cut Q0 the result implies — because the par-

ton shower quark mass parameter is implicitly identified with the pole of the quark

propagator — that the parton shower quark mass parameter is the scale-dependent

CB mass mCB(Q0). In the context of multi-purpose Monte-Carlo event generators,

where an angular ordered parton shower is combined with a hadronization model this

means that a change of the shower cut from Q′0 to Q0 needs to be compensated by

a retuning of the hadronization model parameters compatible with eq. (6.7) and a

change of the value of the CB mass from mCB(Q′0) to mCB(Q0) according to eq. (6.12)

in order to keep physical predictions unchanged. This puts a stringent field theoretic

constraint on properties of the hadronization models, since it is forbidden that they

modify by themselves the mass scheme through the retuning procedure.

Statements (1) and (2) can be cross checked numerically from the side of MC event

generators by the analysis of the thrust peak position τpeak as a function of the shower

cut Q0 when leaving the hadronization model as well as the numerical value of the gen-

erator mass unchanged. In that case the sizable linear effects in the p⊥ cut Q0 remain

uncompensated and are directly visible in a characteristic dependence of the thrust peak
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position, τpeak(Q0), on Q0. The resulting Q0-dependence of τpeak(Q0) can be directly read

off eqs. (6.2), (6.3), (6.8) and (6.10) giving the relation

τpeak(Q0) = τpeak(Q′0)− 1

Q

[
16− 8π

m

Q

] Q0∫
Q′0

dR
CF αs(R)

4π
, (6.13)

where m is the generator mass and Q′0 is some reference cutoff scale. Here it is understood

that only cutoff values Q0 � m are employed, and we also remind the reader that the

results have been derived in the limit of boosted massive quarks where m � Q. For the

rescaled thrust variable Mτ , see eq. (2.2), which is suitable for an analysis for top quarks,

the analogous relation reads

Mτ, peak(Q0) = Mτ, peak(Q′0)−
[
8
Q

m
− 4π

] Q0∫
Q′0

dR
CF αs(R)

4π
. (6.14)

We note that in relations (6.13) and (6.14) the cutoff dependence coming from the large

angle soft and the ultra-collinear radiation have an opposite sign. This is a characteristic

property of these two different types of effects, which may be used to differentiate between

them in the context of quark mass sensitive observables which are more exclusive concerning

the soft radiation. In the next section we confront these relations numerically with parton-

level simulations carried out with the Herwig 7 event generator [46, 47, 71].

7 Event generation with Herwig 7

In this section we confront the conceptual and theoretical considerations summarized in

section 6 and in particular our predictions for the shower cutoff dependence of the peak

position of the thrust distributions given in eqs. (6.13) and (6.14) and our main conclusion

that the presence of a shower cutoff Q0 implies that the top quark mass parameter used in

an angular ordered parton shower is the scale-dependent CB mass given in eq. (6.9) with

numerical simulations for e+e− collisions using the Herwig 7 event generator [46, 47, 71]

in version 7.1.2. The angular ordered parton shower algorithm of Herwig 7 implements

the coherent branching algorithm outlined in sections 3.1 and 3.2, for massless and massive

quarks, respectively. Since the treatment of the top quark decay goes beyond the coher-

ent branching formalism outlined in these sections, we provide some more details of event

generation in Herwig 7 for top quarks in section 7.1. In section 7.2 we explain a number

of special setting we use for our Herwig 7 simulations such that they are precisely in ac-

cordance to the coherent branching formalism. In section 7.3, using simulations results ob-

tained with Herwig 7, we reconfirm some approximations used in our analytic calculations

in sections 4.1, 4.2 and 5.2 within the coherent branching formalism, and the insensitivity

of thrust to the cut governing the parton shower evolution of the top decay products. Our

predictions for the shower cutoff dependence of the thrust peak position for the massless

quark and top quark case are then confronted with Herwig 7 in sections 7.4 and 7.5,
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respectively. Here we demonstrate that our conceptual predictions for the shower cut de-

pendence of the peak position of the thrust distributions given in eqs. (6.13) and (6.14) are

indeed reproduced by the Herwig 7 simulations. In section 7.6 we address the universality

of our findings for thrust by discussing the reconstructed (b-jet and W boson) top quark

invariant mass mbjW and the endpoint region of the b-jet and lepton invariant mass mbj`.

Finally, in section 7.7 we comment on the (ir)relevance of NLO-matched simulations with

respect to the cutoff dependence of the thrust distribution in the resonance region and the

kinematic mass sensitivity of the reconstructed observables mbjW and mbj`.

7.1 Event generation for top quark production

Within Herwig 7 events with top quarks account for the top quark decay in a factorized

narrow width approach: the top quarks are considered stable at the stage of their pro-

duction, with momenta pµ which satisfy the on-shell condition p2 = m2
t , where mt is the

Herwig top mass parameter. In the default setting for the LEP-Matchbox.in simulation

setup, no smearing with any Breit-Wigner-type distribution is applied, so that off-shell

effects coming from the finite top quark width are absent. This default setting is mainly

rooted in considerations related to NLO matched predictions, where the smearing disrupts

the cancellation of virtual and real infrared cancellations. The angular ordered parton

shower then attaches radiation to the production process terminated by the p⊥ cutoff Q0,

including radiation off the top quarks (and possibly other colored partons involved in the

hard scattering). After the kinematic reconstruction following the production stage parton

shower, the final state top quarks have definite momenta p′µ which satisfy the on-shell condi-

tion p′2 = m2
t , and the progenitor top quarks, which initiated the showering, have acquired a

virtual mass, see the discussion in section 3.3. At this point the top quarks decay, where we

for simplicity only consider leptonic decays of the W bosons coming from the top decays as-

suming perfect neutrino identification. This is not a restriction for the thrust distributions

we examine, but simplifies their numerical analyses. The partons originating from the top

decays, t→ b W+ and t̄→ b̄ W−, then radiate according to the decay parton shower algo-

rithm from refs. [55] and [83] which is terminated by the p⊥ cutoff Q0,b. The radiation from

the decay stage parton shower exactly preserves the 4-momenta of the decaying top and

antitop quarks, respectively, and hence their mass shell condition, in a separate kinematic

reconstruction procedure. Within this procedure the b-quark shower progenitor that initi-

ates the b-jet is allowed to acquire a virtuality according to the decay stage parton shower.

In the conceptual considerations of the preceding sections we were discussing the effects

of the production stage parton shower cutoff Q0. The thrust variable is by construction

independent of details of the top decay and therefore also insensitive to the value of the

decay state parton shower cutoff Q0,b. In Herwig 7 the values of Q0 and Q0,b can be chosen

independently, which allows us to explicitly check the insensitivity of thrust to variations

of Q0,b. This check is carried out in section 7.3.

7.2 Settings for MC simulations

To compare the predictions obtained from analytic examinations of the preceding sections

with the Herwig predictions, which are based on the previously described algorithms and
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methods, we use a number of special settings. These settings are used to eliminate default

features in Herwig 7 which go beyond the coherent branching formalism as described

in section 3 or interfere with the Q0 dependence of the parton level predictions we aim to

analyze. We emphasize that the purpose of these settings is to allow for a direct comparison

of Herwig simulations with our analytic results at the parton level in a conceptually clean

and controlled setup. So these special settings may serve as the starting point of further

examinations, also accounting for the effects and properties of hadronization models, where

the impact of default settings used in Herwig (or other MC event generators) can be

studied in more detail, or for upcoming releases. We emphasize, however, that these

special Herwig 7 settings should be taken with some care since they are not appropriate

to carry out full hadron level simulations.

As already explained in section 3.3 we set the (constituent) masses of all quarks and

the mass of the gluons that have emerged after the parton showers have terminated to

very small values to effectively remove their effects in the parton level results.7 Zero

constituent quark and gluon masses are required to allow a comparison with our analytic

QCD calculations; they are, however, not compatible with the default Herwig 7 cluster

hadronization model. Furthermore, in our Herwig simulations we do not include any QED

radiation or any matrix element corrections, except in our discussion of NLO matching

carried out in section 7.7. As already discussed in section 3.3 we also choose the CutOff

option for the kinematic reconstruction as this does not alter the correspondence to the

underlying coherent branching algorithm as described in sections 3.1 and 3.2. Finally we

note that most analyses we have developed are based on Rivet [84], except those focusing

on particle multiplicities for which an entirely in-house analysis code is used. In appendix D

we give the complete set of input file changes required to reproduce the parton level results

within our special settings, both for the massless and massive case.

7.3 Monte Carlo tests of approximations for analytic thrust calculations

In our analytic calculations of the parton level massless and massive quark jet mass distri-

butions at NLL order in sections 4.1, 4.2 and 5.2 within the coherent branching formalism

we used two approximations which were crucial to allow for an analytic all order expo-

nentiation of the computation, see e.g. eqs. (4.4) to (4.6). In the integral equations for

the jet mass distributions shown in eqs. (3.10) and (3.20) these approximations involve (i)

neglecting the parton branching of the gluon (i.e. switching off the g → gg and g → qq̄

branchings) and (ii) using the z → 1 limit in the parts which are slowly varying in the soft

limit. These approximations were already discussed (and used for analytic calculations) in

the seminal coherent branching papers for massless quarks, see e.g. refs. [58, 62]. The for-

mer approximation is — for the thrust distribution in the peak region — related to the fact

that due to angular ordering the showered gluons originating from the progenitor quarks

can themselves not radiate to pick up any significant virtuality. The latter approximation

7We note that in Herwig all light quarks (i.e. up, down and strange quarks) and gluons are treated as

exactly massless during the shower evolution and that constituent quark mass and gluon mass conditions

are only imposed kinematically for the partons that emerge after shower terminations. The constituent

quark and gluon masses have to be considered as part of the hadronization model.
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Figure 7. Thrust at the parton level in the peak region generated by Herwig 7 for (a) massless

quarks at c.m. energy Q = 91 GeV and (b) top quarks with mass mt = 173 GeV at Q = 700 GeV.

The Herwig 7 parton level results are smeared with a soft model shape function with smearing

parameter Λ = 1 GeV, see section 2.3. Displayed are simulation results for shower cuts Q0 = 1 GeV

(right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves) and

with gluon splitting and angular ordering both turned on (solid red curves), with gluon splitting

turned off, but angular ordering turned on (dashed blue curves) and with gluon splitting and angular

ordering both turned off (dotted green curves).

implies — again for the thrust distribution in the peak region — that once gluon splitting is

turned off, also strict angular ordering can be dropped from the calculations. For simplicity

reasons we therefore refer to the latter approximation as “angular ordering switched off”

in the following discussion.

Adopting the settings discussed in section 7.2, these two approximations can be explic-

itly verified numerically using Herwig 7 to generate the parton level thrust distribution

for massless and massive quark production. In figure 7a the parton level thrust distri-

bution, defined in eq. (2.1), obtained from Herwig 7 for massless quarks at c.m. energy

Q = 91 GeV is displayed for shower cuts Q0 = 1 GeV (right set of curves), Q0 = 1.5 GeV

(middle set of curves) and Q0 = 2 GeV (left set of curves) with gluon splitting and angular

ordering both turned on (solid red curves), with gluon splitting turned off, but angular or-

dering turned on (dashed blue curves) and with gluon splitting and angular ordering both

turned off (dotted green curves). All curves are normalized such that at their respective

maximum they evaluate to unity, which is particularly suitable to discuss the peak region.

We also remind the reader that all curves are produced by convolution of the Herwig 7

parton level results with the soft model shape function of eq. (2.26) for Λm = Λ with

Λ = 1 GeV according to eq. (2.3). As discussed in section 2.3, this is essential to obtain

a smooth distribution in the peak region that can be interpreted properly. In figure 7b

the parton level rescaled thrust distribution, as defined in eq. (2.2), obtained from Her-

wig 7 for top quarks at c.m. energy Q = 700 GeV and with the generator mass set to

mt = 173 GeV is displayed in the same way and for the same choices for the shower cut Q0

and concerning gluon splitting and angular ordering. For the top quark case we employed a
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convolution over the same shape function according to eq. (2.17) with Λm = Λ + 4mtΓt/Q

and Γt = 1.5 GeV. For the top quark case the smearing parameter is larger than for the

massless quarks in order to simulate the additional smearing effects of the top quark width.

Note, however, that this does not represent a systematic treatment of width effects for the

top quark.

From the results in figures 7a and 7b we clearly see that the impact of the gluon

splitting is very small in the peak region and, furthermore, that once gluon splitting is

turned off the numerical effects of angular ordering are very small as well. For the rescaled

thrust distribution in the case of top production these three settings lead to variations in

the peak position of less than ∆τpeak ∼ 10−3 in the massless case and less than ∆Mτ,peak ∼
100 MeV in the massive case for Q0 between 1 and 2 GeV. In any case, these variation are

considerably smaller than the variations caused by changes in the shower cut Q0 which we

focus on in our subsequent examinations. While the validity of the two approximations

concerning gluon splitting and angular ordering for thrust for massless quarks has already

been known since ref. [58], our analysis shows that they are also applicable for the massive

quark case, which is new. We note that in our analysis of the dependence of the thrust peak

position on the shower cut Q0 in sections 7.4 and 7.5, we consider Herwig 7 simulations

using all three options: (i) full simulation, (i) simulations with gluon branchings switched

off and (iii) simulations with gluon branchings and angular ordering both switched off. The

differences of the Herwig 7 results obtained from these three options should be viewed as

an illustration of possible subleading effects even though they should not be overinterpreted

as a systematic error estimate.

In the context of these results an obvious question to ask is whether the suppression

of effects coming from the gluon branching in the thrust peak region is only a cumulative

effect visible in the distribution upon accounting for the sum of all emissions, or whether

the suppression takes place literally at the level of the individual parton multiplicities. To

answer this question we can analyze the parton level massless quark thrust distribution for

a fixed number of final state parton multiplicity, where we define the multiplicity n as the

total number of partons emitted from the progenitor quark-antiquark pair. Interestingly,

for the Laplace space parton level distribution (2.6) for massless quarks the contribution

for a given multiplicity n can be determined analytically, in the approximation that gluon

splitting and angular ordering are switched off, simply from eq. (4.18) by taking the n-

th term in the Taylor expansion of the exponential function. In figure 8 the Laplace

space parton level thrust distribution for massless quarks at Q = 91 GeV with shower

cut Q0 = 1.25 GeV is shown as a function of 1/ν in the peak region 1/ν ∼ τpeak � 1

for multiplicities n = 1, 2, 3, 4. Shown are the Herwig 7 full simulation results with gluon

splitting and angular ordering both turned on (solid red curves), with gluon splitting turned

off, but angular ordering turned on (solid blue curves) and with gluon splitting and angular

ordering both turned off (solid green curves) and the analytic result from eq. (4.18), which

is calculated in the approximation with gluon splitting and angular ordering both turned

off (dashed black curves). The curves do not include any smearing effects from the shape

function because the Laplace integral of eq. (2.6) already provides a sufficient amount of

smearing. We see that Herwig 7 and the analytic results in the various approximations
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Figure 8. Laplace space parton level thrust distribution over 1/ν in the peak region for Q = 91 GeV

and Q0 = 1.25 GeV shown for the final state parton multiplicities n = 1, 2, 3, 4. Displayed are

the analytic results (dashed black curves) and simulation results with gluon splitting and angular

ordering both turned on (red curves), with gluon splitting turned off, but angular ordering turned

on (blue curves) and with gluon splitting and angular ordering both turned off (green curves).

agree very well. The outcome shows that the approximations we used in our analytic

calculations are also appropriate at the level of fixed parton multiplicities and may therefore

have a more general validity.

At this point we emphasize that the examination of the effects of gluon splitting and

angular ordering we have just carried out solely serves as a cross check for the approxima-

tions we used in our analytic calculation for thrust using the coherent branching formalism

in section 4 and 5.2 and that these approximation are not a viable option for general phe-

nomenological studies. These approximations do also not in any way constitute conceptual

guidelines for predictions based on QCD factorization (or SCET). In addition, the consis-

tent use of these approximations for thrust involves that the effects angular ordering are

only small once the gluon branchings are already switched off. Indeed, the converse, a sim-

ulation with gluon branchings but strict angular ordering switched off leads to a dramatic

increase of parton radiation and multiplicities and to physically meaningless outcomes.

As already elaborated in section 7.1, for event generation involving top quarks Her-

wig 7 uses a factorized treatment of production and decay stage parton shower evolution.

As we argued in section 2 the thrust variable is by construction independent of details of

the top decay and should therefore be insensitive to the value of the decay state parton

shower cutoff Q0,b. In figure 9a the parton level distribution of the rescaled thrust Mτ in

the peak region obtained from Herwig 7 is shown for the c.m. energy Q = 700 GeV and

generator mass mt = 173 GeV with production stage shower cuts Q0 = 1 GeV (right set

of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves), and

decay state shower cuts of Q0,b = 1 GeV (solid red curves), Q0,b = 1.5 GeV (dashed blue

curves) and Q0,b = 2 GeV (dotted green curves). In figure 9b a ratio plot for the curves

for the three choices of Q0,b is shown for Q0 = 1 GeV. For all curves a shape function
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Figure 9. Parton level rescaled thrust for top quarks with mt = 173 GeV and Q = 700 GeV in the

peak region generated by Herwig 7 and smeared with a soft model shape function with smearing

parameter Λ = 1 GeV, see section 2.3. Displayed are simulation results for production stage shower

cuts Q0 = 1 GeV (right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left

set of curves) and decay stage shower cuts Q0,b = 1 GeV (solid red curves), Q0,b = 1.5 GeV (dashed

blue curves) and Q0,b = 2 GeV (dotted green curves).

smearing with Λ = 1 GeV has been included following the prescription given above. The

results confirm that the dependence of the thrust distribution on the decay stage shower

cut Q0,b is extremely weak and in particular significantly smaller than the corresponding

dependence on the production stage shower cut Q0. In the resonance region variations

due to changes of Q0,b are at the percent level and negligible as far as the peak position

is concerned. The results confirm that the thrust variable is ideal to study the production

stage shower cutoff dependence and essentially insensitive to differential details of the top

quark decay. For our studies of the shower cutoff dependence of the thrust peak position

in sections 7.4 and 7.5 we set Q0,b = Q0, which is the default Herwig 7 setting.

7.4 Thrust peak position for massless quarks

In this section we confront our analytic parton level prediction for the Q0 dependence of

the thrust peak position for massless quarks,

τpeak(Q0) = τpeak(Q′0)− 16

Q

Q0∫
Q′0

dR
CF αs(R)

4π
, (7.1)

with parton level simulations in Herwig 7 using the specific settings discussed in sec-

tion 7.2. To determine the distribution for a given c.m. energy Q and shower cut Q0 we

generated 109 events. The resulting binned distribution (with bin size ∆τ = 2× 10−4) was

numerically convoluted using a discretized version of eq. (2.3) with the soft model shape

function Smod given in eq. (2.26) for a given smearing parameter Λm. The peak position

was then determined from fitting a quadratic function to the bin values in the peak region

with heights that differ from the maximum by at most 1 per mille. This leads to statis-

tical uncertainties in the peak position well below 10−3 which is an order of magnitude
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Figure 10. Peak position τpeak at the parton level obtained from Herwig 7 as a function of the

shower cut Q0 and including a smearing with Λ = 1 GeV (left panels) and Λ = 3 GeV (right panels)

for massless quarks and Q = 91 GeV (upper panels) and Q = 300 GeV (lower panels). Displayed

are the results from the full simulation (red squares), with gluon splitting turned off, but angular

ordering turned on (blue squares) and with gluon splitting and angular ordering both turned off

(green squares). The blue solid line is the analytic prediction of eq. (7.1) taking the Herwig 7

result for Q′0 = 1.25 GeV as the reference.

smaller than the size of the Q0 variations we obtain in our analysis. The results can thus

be considered exact for all practical purposes and we refrain from quoting any statistical

uncertainties in the results we obtain in the simulations.

In figure 10 the peak position τpeak obtained from Herwig 7 is shown as a func-

tion of the shower cut Q0 for Q = 91 GeV (upper panels) and Q = 300 GeV (lower

panels) for the smearing parameter Λm = 1 GeV (left panels) and Λm = 3 GeV (right

panels). The (center of the) colored squares show the corresponding results from the full

simulation, i.e. with gluon splitting and angular ordering both turned on (red squares),

with gluon splitting turned off, but angular ordering turned on (blue squares) and with

gluon splitting and angular ordering both turned off (green squares). The solid blue

line represents the analytic prediction of eq. (7.1) with Q′0 = 1.25 GeV as the refer-

ence peak position taken form the Herwig 7 simulation and using the strong coupling
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Figure 11. Peak position τpeak at the parton level obtained from Herwig 7 for the parameters

used in figure 10, but including the soft function gap calculated analytically to achieve results that

eliminate the linear dependence on the shower cut Q0 taking Q′0 = 1.25 GeV as the reference. The

blue solid line represents the corresponding analytic prediction.

employed by the Herwig 7 parton shower to calculate τpeak for Q0 different from Q′0.

We have shown the results for shower cut values in the range between (0.5 GeV) <

Q0 < (2.0 GeV) even though the perturbative treatment is expected to break down

for scales below 1 GeV. Nevertheless, Herwig 7 can carry out simulations for values

of Q0 even below 0.5 GeV since for scales below 1 GeV the strong coupling used in its

parton shower is frozen to the value at 1 GeV. The choice of Q0 in the simulations is

in practice limited from below only by computation time since the parton mulplicities

strongly increase for decreasing shower cut. For theoretical considerations, however, only

shower cut values of 1 GeV and larger can be considered seriously, because Q0 concep-

tually represents a factorization scale and should be located well within the regime of

perturbation theory. In fact, indications of a breakdown of the perturbative description

for Q0 < 1 GeV are visible in figures 10 (and also in figures 11 and the corresponding

results for top quarks in the following subsection) as the increased spread in the Her-

wig 7 results arising from the different choices concerning gluon branching and angu-

lar ordering.
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Overall we see quite good agreement between the Herwig 7 simulations and the ana-

lytic prediction for τpeak for Λm = 1 GeV and excellent agreement for Λm = 3 GeV. While

Λm = 1 GeV corresponds to the actual size of hadronization effects compatible with ex-

perimental data, the choice Λm = 3 GeV is motivated by the possible size of additional

experimental resolution effects. That we find a much better agreement for larger smearing

scale is related to the fact that the evolution equation (7.1) only accounts for the dominant

linear dependence on Q0 which was in our analytic calculations in sections 5.2, 5.3 and 5.4

derived by employing the multipole expansion for the contributions of the unreleased radi-

ation, i.e. the radiation originating from below the shower cut. This expansion is formally

an expansion in Q0/Λm, and we see from the agreement between simulation and analytic

prediction in figure 10 that this expansion works already well for Q0 ∼ Λm and even better

for Λm > Q0. Since in realistic simulations and actual experimental measurements there

are additional resolution effects that always lead to a smearing scale that is effectively larger

than 1 GeV, we can conclude that the linear dependence on the shower cut Q0 expressed

by eq. (7.1) represents the dominant effects in all cases and that effects quadratic in Q0 or

of even higher power are small in practice.

At this point it is also illustrative to explicitly show the quality of relation (6.5) which

states that the observed peak position can be rendered shower cut independent, if the gap

of the soft model function used in the convolution is modified as described in eq. (6.7). In

figure 11 the thrust peak positions obtained from the Herwig 7 simulations already shown

in figure 10 are displayed once again as a function of Q0, however, with the corresponding

modification of the soft function gap for the reference shower cut value Q′0 = 1.25 GeV. As

expected, we see that the shower cut dependence is substantially reduced for the smearing

scale Λm = 1 GeV and almost vanishes for the smearing scale Λm = 3 GeV in the region

Q0 ≥ 1 GeV, i.e. where perturbation theory can be employed.

7.5 Thrust peak position for top quarks

In this section we finally confront our analytic prediction for the Q0 dependence of the

rescaled thrust peak position for top quarks

Mτ, peak(Q0) = Mτ, peak(Q′0)−
[
8
Q

mt
− 4π

] Q0∫
Q′0

dR
CF αs(R)

4π
, (7.2)

with simulations in Herwig 7. We again used the specific settings discussed in section 7.2

and generated 109 events for a given c.m. energy Q and shower cut Q0. For the convolution

with the soft model shape function Smod given in eq. (2.26) we employed the discretized

version of eq. (2.17) with Λm = Λ + 4mtΓt/Q with Γt = 1.5 GeV for the soft function

smearing parameter. It effectively accounts for the additional smearing caused by the top

quark width. Since the resonance region in τ is substantially more narrow compared to

the massless case we used a bin size that corresponds to ∆τ = 8× 10−6 and used the same

method to determine the peak position as for the massless quark case.

In figure 12 the peak position Mτ, peak obtained from Herwig 7 with the top quark

generator mass mt = 173 GeV is shown as a function of the shower cut Q0 for Q = 700 GeV
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Figure 12. Peak position Mτ,peak at the parton level obtained from Herwig 7 for the top quark

generator mass mt = 173 GeV as a function of the shower cut Q0 for Q = 700 GeV (upper panels)

and Q = 1 TeV (lower panels) for smearing Λ = 1 GeV (left panels) and Λ = 3 GeV (right panels).

Displayed are the results from the full simulation (red squares), with gluon splitting turned off, but

angular ordering turned on (blue squares) and with gluon splitting and angular ordering both turned

off (green squares). The blue solid line is the analytic prediction of eq. (7.2) taking the Herwig

7 result for Q′0 = 1.25 GeV as the reference. The dashed blue line is the analytic prediction of

eq. (7.2), but only accounting for the large angle soft radiation contributions which are multiplied

with the Q/mt factor.

(upper panel) and Q = 1 TeV (lower panel) for the smearing parameter Λ = 1 GeV (left

column) and Λ = 3 GeV (right column). The (center of the) colored squares show the

corresponding results from the full simulation, i.e. with gluon splitting and angular ordering

both turned on (red squares), with gluon splitting turned off, but angular ordering turned

on (blue squares) and with gluon splitting and angular ordering both turned off (green

squares). The solid blue line represents the analytic prediction of eq. (7.2) with Q′0 =

1.25 GeV as the reference peak position taken form the Herwig 7 simulation and using

the strong coupling employed by Herwig 7 parton shower to calculate Mτ, peak for Q0

different from Q′0. The dashed blue line represents the analytic prediction of eq. (7.2),

but only accounting for the large angle soft radiation contributions which are multiplied
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with the Q/mt factor, in order to visualize the size of the Q0 dependence coming from the

ultra-collinear radiation that affects the interpretation of the mass scheme alone. As in the

massless quark case we have shown the results for shower cut values in the range between

(0.5 GeV) < Q0 < (2.0 GeV) and remind the reader that the results for Q0 below 1 GeV

are only shown for illustration, as already explained in section 7.4.

We observe that the agreement between the Herwig 7 simulations and the analytic

prediction for Mτ, peak is very good for Λm = 1 GeV as well as for Λm = 3 GeV. This shows

that for the top quark case, where the width provides an additional irreducible smearing

effect, the linear dependence on the shower cut Q0, which we have determined in our

analytic calculations, fully captures the complete Q0 dependence and that contributions

proportional to higher powers of Q0 are negligible for all practical purposes.

It is now illustrative to explicitly demonstrate that the observed peak position can

be rendered shower cut independent, if — taking Q′0 = 1.25 GeV as the reference — the

gap of the soft model function used in the convolution is modified according to eqs. (6.6)

and (6.7) and if the generator mass mt is modified by

mt → mt +mCB
t (Q0)−mCB

t (Q′0) (7.3)

according to eq. (6.12). In figure 13 the rescaled thrust peak positions obtained from

the Herwig 7 simulations for Q = 700 GeV (upper panel) and Q = 1 TeV (lower panel)

are displayed once again as a function of Q0 for Λ = 3 GeV. In the left panels we have

in addition to the corresponding curves shown in figure 12 included the corresponding

modification of the soft function gap for the reference shower cut value Q′0 = 1.25 GeV.

This removes the shower cut dependence coming from the large angle soft radiation such

that the remaining Q0 dependence explicitly illustrates the shower cut dependence of the

generator mass alone.8 Compared to the results shown in figure 12 we see that the slope

in Q0 has an opposite sign which means that the Q0 dependent CB mass scheme that

has to be employed to keep the physical prediction unchanged is decreasing with Q0 as

expressed by the renormalization group equation (6.11). In the right panels we have then

also modified, in addition to the figures in the left column, the generator mass according

to eq. (7.3) and taking mCB(Q′0 = 1.25 GeV) = 173 GeV as the reference top quark mass.

We see that once both modifications are implemented, the shower cut dependence has

essentially disappeared.

It is interesting to also analyze to which extent the shower cut dependent modifications

of the soft function gap and the generator mass we have just discussed for the thrust peak

position also holds for the whole distribution function in the resonance region. This is

shown in figures 14 were the rescaled thrust distributions in the peak region are shown

for Q = 700 GeV for Q0 = 1 GeV (dotted green curves), Q0 = 1.5 GeV (solid red curves)

and Q0 = 2 GeV (dashed blue curves) obtained from the full simulation. The left panels

show the distributions in the peak region for fixed generators mass mt = 173 GeV with

smearing parameter Λ = 1 GeV (upper left panel) and Λ = 3 GeV (lower left panel).

8The rescaled thrust variable Mτ defined in eq. (2.2) is normalized such that the Q0 slope shown in the

left panels of figure 13 is minus twice the one of the generator mass.
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Figure 13. Peak position Mτ,peak at the parton level obtained from Herwig 7 for the top quark

generator mass mt = 173 GeV as a function of the shower cut Q0 for Q = 700 GeV (upper panels)

and Q = 1 TeV (lower panels) for smearing with Λ = 3 GeV. Left panels: in addition to the results

shown in figure 12 we have included the soft function gap calculated analytically to remove the

shower cut dependence due to the large angle soft radiation. Right panels: in addition to the

results of the left panels we have set the generator mass to mCB(Q0) such that the peak position

becomes independent of the shower cut Q0. The blue solid line represents the corresponding analytic

prediction for the remaining cutoff scale dependence. For all results we used Q′0 = 1.25 GeV as the

reference scale.

The corresponding right panels show, using Q′0 = 1.5 GeV as the reference scale, the

distributions including the Q0 dependent soft function gap according to eq. (6.7) and

the Q0 dependent generator mass according to eq. (7.3) to keep the peak position cutoff

independent. We see that the resonance distribution tends to be narrower for increasing

cutoff Q0, but that this effect is weaker for a larger smearing. This behavior can be

explained from the fact that for increasing cutoff Q0 the no-branching probability (which

describes production stage multiplicity n = 0 events and contributes to the coefficient

of the tree-level δ-function located at the partonic threshold) is becoming bigger and,

correspondingly, the weight of events with branching (which correspond to production

stage multiplicities n > 0 and lead to jet masses above the partonic threshold) is becoming
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Figure 14. Parton level rescaled thrust distribution in the peak region obtained from Herwig

7 full simulations for Q = 700 GeV and smearing with Λ = 1 GeV (upper panels) and Λ = 3 GeV

(lower panels) for shower cut values Q0 = 1 GeV (dotted green curves), Q0 = 1.5 GeV (solid red

curves) and Q0 = 2 GeV (dashed blue curves). Left panels: simulations with generator input mass

mt = 173 GeV and using the same soft model shape function for all shower cut values. Right

panels: same distributions, but using a Q0-dependent soft function gap to eliminate the shower

cut dependence due to large angle soft radiation and using mCB(Q0 = 1.0) = 173.22 GeV (green),

mCB(Q0 = 1.5) = 173 GeV (red) and mCB(Q0 = 2) = 172.86 GeV (blue) as the generator masses,

according to eq. (6.12), to render the peak location independent of the shower cut Q0.

smaller. For a larger smearing this width effects is washed out and therefore less pronounced

for Λ = 3 GeV. Thus depending on the size of the experimental resolution the effects

that a variation of the shower cut Q0 has on the whole peak distribution may be more

complicated than a simple modification of the soft function gap and the generator mass.

Since the contributions from ultra-collinear radiation in this context are mt/Q-suppressed,

see eq. (7.2), these width effects mostly originate from large angle soft radiation. One

can therefore conclude that these effects may be properly taken into account during the

retuning procedure which has to be carried out upon a change of the shower cut Q0 in MC

event generators used for experimental analyses, and which is substantially more involved

than an a simple modification of the soft function gap.
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7.6 Reconstructed observables and universality

After our analysis of the Q0 shower cut dependence of the MC generator top mass for

angular ordered parton showers using the thrust distribution in the resonance region there

is one obvious question to be asked: is our main conclusion concerning the equivalence

the MC generator top quark mass and the shower cut dependent CB mass defined in

eq. (6.9) only valid for thrust (or very similar event shape type observables), or is it

universal? Clearly, examinations at the same level of depth as we carried out for thrust,

where we employed analytic calculations within the coherent branching formalism and the

QCD factorization approach together with numerical MC simulations, will be difficult for

most other observables with strong kinematic quark mass dependence — most notably

because hadron level first principles and factorized predictions (which would allow directly

for conclusions at the field theoretic level) are not available for them. The question of

universality is also made difficult by the fact that the shower cut dependence not only affects

the meaning of the generator mass for heavy quarks (or potentially other QCD parameters),

but also modifies the description of non-perturbative effects through its effects on large

angle soft radiation (or other types of long-range gluon effects), so that the issue may not

be resolved completely restricting the considerations only to partonic cross sections.

At this point one may also have to define general criteria to prove universality system-

atically. Although we hope to address this issue in forthcoming work, at this time such

a systematic and universal approach is lacking. However — if universality applies — the

dependence of MC parton level predictions on the shower cut Q0, which was one of the

main instrument of our thrust examinations, should be visible in a predictable, simple and

universal way also for other observables and furthermore allow for non-trivial consistency

checks. While consistency concerning the Q0 dependence among thrust and other kinematic

observables represents only a necessary condition for claiming universality, it still provides

some evidence that universality indeed applies. Furthermore, computing the shower cut

Q0 dependence analytically for general observables and carrying out the corresponding MC

simulations as a cross check is a relatively straightforward and easy task and may even be

testable in consistency checks confronting MC generators with experimental data or in the

context of pseudo-data analyses. In this section we therefore examine exemplarily two com-

pletely different observables with very strong kinematic top mass dependence and which

are based on a jet clustering procedure acting on the full set of partons after production

and decay stage parton showers have terminated. In this work we restrict our examina-

tions to a numerical analysis of the shower cut dependence of these observables, and we

demonstrate that it can be easily predicted and interpreted. Interestingly, we find that the

results are compatible with our examinations for the thrust distribution. A more coherent

test of consistency in the context of pseudo-data analyses which specifically addresses the

shower cut dependence of the generator mass shall be addressed elsewhere.

The first observable is the b-jet and lepton invariant mass mbj` and the second the

reconstructed b-jet and W invariant mass mbjW . Both types of observables have been

studied intensely in the context of top quark mass measurements at the LHC. The kine-

matic sensitivity of mbj` to the top quark mass mt arises from the upper endpoint of its
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Figure 15. The mbj` (left panel) and mbjW distributions (right panel) generated by Herwig 7

for top masses between mt = 172 (dotted green), 173 (solid red) mt = 174 GeV (dashed blue) for

Q = 700 GeV, jet radius R = 0.5 and Cambridge-Aachen-type b-jet clustering.

distribution, which is, for stable W bosons and at tree-level, located at (m2
t − m2

W )1/2

neglecting the mass effects of the b-jet. But also the bulk of the mbj` distribution has kine-

matic top mass sensitivity because the region where mbj` is maximal depends on the boost

of the W boson in the top rest frame which depends kinematically on the top quark mass.

The direct kinematic sensitivity of mbjW to the top mass arises simply from the kinematic

location of the resonance which is tied to mt in a way very similar to thrust, see eqs. (2.1).

In the following we refer to the top mass sentivities of the endpoint location for mbj` and

the peak location for mbjW simply as ‘the kinematic top mass dependence’ of these two

variables. Typical results for the mbj` and mbjW distributions using the b-jet clustering

described below and generated with Herwig 7 are displayed in figure 15 for Q = 700 GeV

and top quark masses 172, 173 and 174 GeV. Overall, we see that mbjW has a somewhat

stronger top mass dependence than mbj`.

We consider the production of boosted top quarks at Q = 700 GeV in e+e− annihilation

and use Herwig 7.1.2 with the same settings as for the thrust analyses discussed in the

previous sections (see section 7.2). For simplicity we again generate only leptonically

decaying W bosons and assume perfect neutrino identification. Furthermore we neglect

any combinatorial background, i.e. we assume perfect b-jet lepton pairing and perfectly

reconstructed top or antitop quarks. While these simplications are not fully realistic,

they are, however, fully adequate for our examination of the shower cut Q0 dependence.

For the b-jet clustering we use the FastJet package [85] and employ the generalized kt
algorithm for e+e− collisions in the inclusive mode with the inter-particle and inclusive jet

distance measures

dij = min
(
E2p
i , E

2p
j

) 1− cos θij
1− cosR

, (7.4)

diB = E2p
i ,
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where Ei refers to energy, R is the jet radius,9 and θij is the relative angle between two

momenta. The exponent p = 1 corresponds to the kt-type generalized clustering algo-

rithm, p = 0 to the Cambridge-Aachen, and p = −1 to the anti-kt-type variant, and we

consider all three types of algorithms in our analysis. In figures 15a and 15b we show the

mbj` distribution and the mbjW distribution in the peak region, respectively, generated

by Herwig 7 at the parton level with jet radius R = 0.5 and Cambridge-Aachen-type

jet clustering for generator masses mt = 172 GeV (green dashed curves), mt = 173 GeV

(solid red curves) and mt = 174 GeV (dashed blue curves). For mbjW we have smeared

the distribution according to eq. (2.17) using smearing parameter Λ = 1 GeV as described

in section 7.5. Since the mbj` distribution is already smooth by itself at the parton level

we did not account for any additional smearing. For both distributions we see that the

top mass dependence is essentially linear and particularly strong in the endpoint region for

mbj` and in the peak region for mbjW .

The interesting conceptual aspect of the reconstructed observables mbj` and mbjW

is that, due to the b-jet clustering, they are more exclusive than the hemisphere masses

entering the thrust variable of eq. (2.1). In particular, mbj` and mbjW depend on the

b-jet radius R. For large R ∼ π/2 we can expect their shower cut dependence to be

very similar to the one for thrust since the ultra-collinear as well as major portions of

large angle soft radiation are clustered into the b-jet. On the other hand, due to the

boosted top kinematics which confines the top decay products as well as the ultra-collinear

radiation inside a cone with angle ∼ mt/Q with respect to the top momentum direction,

the clustering should always retain most of the ultra-collinear radiation that is soft in

the top rest frame and thus inherently tied to the physical top quark state. Thus for

small R ∼ mt/Q we can expect that the majority of the ultra-collinear radiation is still

clustered into the b-jet while the majority of the large-angle soft radiation is removed. As

a consequence we can expect that the shower cut dependence coming from the large-angle

soft radiation is reduced when R is lowered, while the one from ultra-collinear radiation

is kept.

To quantify the dependence of mbj` and mbjW generated from Herwig 7 on the shower

cut we use the following procedure: for a given jet radius R and clustering algorithm (as

well as matching scheme for the analysis in section 7.7) we take the results for Q0 = Q0,b =

1.5 GeV as the default and generate mbj` and mbjW distributions for different generator

masses mt in the range between 172 and 174 GeV, which we subsequently use to fit the top

quark mass from the distributions generated for mt = 173 GeV but with different choices

of Q0 or Q0,b. The shower cut dependence of the parts of the mbj` and mbjW distributions

used for the fits are then directly transferred into deviations of the fitted top masses with

respect to the default mass mt = 173 GeV (for Q0 = Q0,b = 1.5 GeV), which can then

be compared with our theoretical expectations. Due to the high number of events we

use, statistical uncertainties are negligible and therefore not specified in the following. We

emphasize that the shower cut dependence of the fitted top mass we obtain in this analysis

9We note that we use the variable R also for the R-evolution equations (6.4) and (6.11) and the corre-

sponding relations in eqs. (6.6), (6.12)–(6.14), (7.1), (7.2), (7.5) and (7.6). Since jet radius and R-evolution

are different concepts, the meaning of R should be clear from the context.
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Figure 16. Fitted top quark mass as a function of the shower cut Q0 = Q0,b for Q = 700 GeV

obtained from the mbj` endpoint (stars) and the mbjW resonance region (triangles) using the kt-

type-type algorithm (green), the Cambridge-Aachen-type algorithm (blue) and the anti-kt-type

algorithm (red) for b-jet clustering. Displayed are the results for b-jet radii R = 0.25, 0.5, 1.0 and

1.5. The solid blue line in the lower right panel corresponds to eq. (7.5) and the one in the upper

left panel corresponds to eq. (7.6) using Q′0 = 1.5 as the reference scale.

is a representation of the shower cut dependence of mbj` and mbjW themselves and not

equivalent to the shower cut dependence of the generator mass.

In figures 16 the dependence of the fitted top mass on the shower cut is shown, where

production stage and decay stage shower cuts are identified, using for Q0,b = Q0 the values

1.0, 1.5 and 2.0 GeV for jet radii R = 0.25 (upper left panel), R = 0.5 (upper right panel),

R = 1.0 (lower left panel) and R = 1.5 (lower right panel). The top masses obtained

from the mbj` endpoint region are shown as colored stars and have been obtained from

fits in the mbj` interval [150, 155] GeV. The top masses obtained from the mbjW resonance

region are shown as colored triangles and have been obtained from fits using the highest

20% of the distribution around to the peak. To allow for an easier visual identification

we have slightly displaced the stars and the triangles horizontally. We have carried out

the analyses for all three jet clustering algorithm where we use green color for the kt-type

algorithm (p = 1), blue color for the Cambridge-Aachen-type algorithm (p = 0) and red
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color for the anti-kt-type algorithm (p = −1). We see that for large hemisphere-type b-jet

cones the fitted top mass decreases with the shower cut. This means that the mass of the

reconstructed top quark state, to which mbj` and mbjW are kinematically sensitive (and

which for hemisphere-type b-jets includes the effects of large angle soft radiation), decreases

when Q0 is increased. So the behavior indeed follows the one of thrust we have observed

in section 7.5. Analytically, the expected Q0 dependence for ideal hemisphere-type b-jets

has the form

m
R=π/2
t, fit (Q0) = m

R=π/2
t, fit (Q′0)−

[
4
Q

mt
− 2π

] Q0∫
Q′0

dR
CF αs(R)

4π
(7.5)

and is ploted in the lower right panel of figure 16 as the blue solid line using Q′0 = 1.5 GeV

as the reference scale. The r.h.s. of eq. (7.5) is a factor two smaller than the one for the

rescaled thrust Mτ, peak in eq. (6.14) since the reconstructed top mass is linear in the top

mass while the rescaled thrust variable Mτ, peak is quadratic in the top mass, see eqs. (2.1)

and (2.2). We see that the expected behavior agrees very well with the results obtained

from the fit. The actual fit results for all clustering algorithms except for anti-kt tend to

have a slightly smaller slope than eq. (7.5), which is mainly due to the fact that even for

R = π/2 the b-jets are typically not full hemisphere jets because they are in general not

exactly back-to-back and compete with each other in the clustering process. For decreasing

jet radius R, on the other hand, we see that the slope in Q0 of the fitted top mass increases

continuously and becomes positive for R . 0.5. This confirms the expectation that the

shower cut dependence originating from large-angle soft radiation (which is the contribution

proportional to Q/m in eq. (7.5) becomes suppressed when R is reduced, while the shower

cut-dependence associated to the ultra-collinear radiation is kept. For visualization we

have plotted in upper left panel figure 16 the relation

m
R∼mt/Q
t, fit (Q0) = m

R∼mt/Q
t, fit (Q′0) + 2π

Q0∫
Q′0

dR
CF αs(R)

4π
(7.6)

with Q′0 = 1.5 GeV as the reference scale as the blue solid line. This is just eq. (7.5)

but with the Q/mt term dropped, that originates from large angle soft radiation. Again

we see excellent agreement between the expected shower cut dependence and the actual

fit results. It is also conspicuous that the shower cut dependence of the fitted top quark

masses we obtain from mbj` and mbjW for the different jet radii and jet algorithms are

essentially equivalent and do not exhibit any systematic difference. This analysis thus fully

supports universality concerning the equivalence of the MC generator top quark mass and

the shower cut dependent CB mass defined in eq. (6.9).

However, in the absence of a systematic factorized analytic approach to the kinematic

top mass dependence of the mbj` and mbjW this universality cannot be strictly proven

because, in contrast to thrust, mbj` and mbjW are affected substantially by the MC mod-

elling and the dynamics of the final state and, in particular, by the choice of the decay
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Figure 17. Fitted top quark mass as a function of the production stage shower cut Q0 with decay

stage shower cut fixed to Q0,b = 1.5 GeV for Q = 700 GeV obtained from the mbj` endpoint (stars)

and the mbjW resonance region (triangles) using the kt-type algorithm (green), the Cambridge-

Aachen algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. Displayed are

the results for b-jet radii R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel

corresponds to eq. (7.5) using Q′0 = 1.5 as the reference scale.

stage shower cut Q0,b. This makes the conceptual background to be examined more in-

volved. In particular, for our parton-level studies a strict proof would require that we could

analytically track the role played by the decay stage shower cut Q0,b for the interpretation

of the generator top quark mass in a systematic manner.

To visualize the relevance of the decay stage shower cut Q0,b for small b-jet radii we

show in figures 17 again the dependence of the fitted top mass on the production stage

shower cut Q0 for the same cases displayed in figures 16, but using a fixed decay stage

shower cut Q0,b = 1.5 GeV. We see that for a large hemisphere-type b-jet radius R = 1.5

the results are equivalent to the corresponding ones for Q0,b = Q0 shown in lower right

panel of figures 16. For decreasing jet radii we see that the dependence of the fitted top

mass on Q0 decreases continuously remains essentially flat for R < 0.5 in contrast to

figures 16 where a positive slope in Q0 was emerging. This shows that for small jet radii

the shower cut dependence of the kinematic top mass sensitivity of mbj` and mbjW arises
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from the decay stage shower cut Q0,b. Even though it appears hard to believe that the

good agreement we observed for small b-jet radii and Q0,b = Q0 between the fit results and

the naive expectations is purely accidental, the case of small jet radii is strictly speaking

not covered by the conceptual considerations we have carried out for thrust.

To conclude the question of universality, at the present stage, we can say that the

shower cut dependence we observe for the kinematic top mass dependence of mbj` and mbjW

is compatible with the one we have proven for thrust and thus supports universality. This

is quite encouraging and motivates further systematic and more general consistency studies

that may be carried out with MC simulations and relatively simple analytical computations

alone. However, a strict conceptual proof would also involve a precise quantification of the

role of the decay stage shower cut Q0,b (and maybe other issues relevant for exclusive

observables with strong kinematic top sensitivity), preferably in the context of a factorized

approach where the types of radiation relevant for the interpretation of the top quark

mass can be ambiguously separated from other types of radiation and discussed at the

field theoretic level. This strongly motivates the development of factorized predictions for

reconstructed and exclusive observables such as mbj` and mbjW .

At this point we would also like to remind the reader that all our examinations above

have been carried out for boosted top quarks. The direct reconstruction top mass mea-

surements at the LHC are, on the other hand, based on top quarks with pT values in

the range of 50 to 100 GeV, which corresponds predominantly to unboosted top quarks.

We stress that for unboosted top quarks a classification of the radiation modes relevant

for a systematic discussion of the meaning of the generator mass is currently lacking and

that, in particular, the concepts of large angle soft and ultra-collinear radiation do not

apply. Therefore, none of the above considerations or argumentations are applicable for

the reconstructed observables mbj` and mbjW for unboosted top quarks.

7.7 Impact of NLO matching

A crucial precondition of our examinations on the shower cut dependence was that NLL pre-

cise angular ordered parton showers, based on the coherent branching formalism described

in sections 3.1 and 3.2, are already NLO precise as far as the dominant linear shower cut

dependence of the thrust peak position is concerned, see section 2.4. This means in turn

that the O(αs) QCD corrections added to simulations in NLO matched MC setups should

show very small or even negligible effects in the numerical studies that we have carried out

in sections 7.3, 7.4 and 7.5. It is the purpose of this section to demonstrate this explicitly

by comparing Herwig 7 simulations with and without NLO matching. Furthermore we

show by general considerations that NLO matched MC simulation can a priori not modify

the shower cut dependence present in MC simulations at NLL for which NLO matching

is not accounted for. Since we believe that this discussion may add to a more refined

understanding of NLO matching for the general reader, we explain some generic features

of NLO matching in the following with a special focus on the role of the shower cut. The

reader familiar with the details of NLO matched MC simulations may skip this conceptual

discussion and jump directly to the numerical discussion starting after eq. (7.29).
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Matching parton showers to NLO QCD corrections for the hard process has by now

become a default requirement for event generation in LHC data analysis. In the following

we review the prototypical structure of a parton shower NLO matching algorithm with

particular focus on the effects related to the parton shower cutoff. The core of general

matching algorithms for parton showers is based on a careful analysis of a single shower

emission in order to avoid double counting with the corresponding NLO cross section

prediction. At this point, one has to keep in mind that the main aim is to improve the

hardest emission, which in general may not be the first one to occur, particularly in the case

of angular ordered parton showers. However, to first subleading order in αs, the first and

the hardest emission are the same. At this level, global recoil schemes like the kinematic

reconstruction of the angular ordered shower tree discussed in section 3.3, as well as local

recoil schemes which restore the kinematics after each successive emission can be discussed

in a unified fashion. Given the n-parton phase space point

φn ≡ {p1, . . . , pn} (7.7)

associated to the initial hard process, a phase space point with one additional emission

off the progenitor leg i can be parametrized in terms of the momentum scale q̃ of the

emission and the momentum fraction z, where for simplicity throughout our discussion we

suppress an additional azimuthal angle variable required to set up a complete momentum

for the emission:

(φn, q̃, z)→ Φ
(i)
n+1(φn, q̃, z) ≡ {q(i)

1 (φn, q̃, z), . . . , q(i)
n (φn, q̃, z), q

(i)
n+1(φn, q̃, z)} . (7.8)

At this point it is useful to also introduce the inverse mapping from the (n + 1)-parton

phase space point

φn+1 ≡ {q1, . . . , qn+1} (7.9)

to the n-parton phase space Φ
(i)
n (φn+1) and associated evolution variables Q̃(i)(φn+1),

Z(i)(φn+1) such that

Φ
(i)
n+1(Φ(i)

n (φn+1), Q̃(i)(φn+1), Z(i)(φn+1)) = φn+1 . (7.10)

Defining the general infinitesimal m-parton phase space volume element for a total mo-

mentum pe+ + pe− as

dPSPm(k1, . . . , km) ≡ (2π)4δ(4)

(
m∑
i=1

ki − (pe+ + pe−)

)
m∏
i=1

d4ki
(2π)3

δ(k2
i −m2

i )θ(k
0
i ) (7.11)

and using abbreviations

dφn ≡ dPSPn(p1, . . . , pn) , dφn+1 ≡ dPSPn+1(q1, . . . , qn+1) , (7.12)

the kinematic mapping implies a factorization of the (n + 1)-parton phase space volume

element of the form

dφn+1|φn+1=Φ
(i)
n+1(φn,q̃,z)

≡ dPSPn+1(q
(i)
1 (φn, q̃, z), . . . , q

(i)
n+1(φn, q̃, z)) (7.13)

= J (i)(φn, q, z)dφndq̃dz ,
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where the term J (i) is the associated Jacobian factor. At the cross section level the parton

shower splitting rate is then given by combining the (n + 1)-parton phase space element

with the propagator factor and the corresponding splitting function Pi:

dP (i)(φn, q̃, z) =
16π2

(qi + qn+1)2 −m2
i

Pi

[
αs, z,

m2
i

q̃2

]
J (i)(φn, q̃, z)dq̃dz , (7.14)

and the arguments of the mapped momenta qi = qi(φn, q̃, z) are understood implicitly.

The exponent of the Sudakov form factor, which quantifies the no-branching probability

for possible emissions between the scale Q̃ and q̃, is then simply given by

∆(φn, q̃, Q̃) = exp

[
−
∫ Q̃

q̃
dk̃

∫
dz
∑
i

dP (i)(φn, k̃, z)

dk̃dz
θ
(
P

(i)
⊥ (k̃, z)−Q0

)
θ(k̃ −mi)

]
,

(7.15)

with a cut on the transverse momentum P
(i)
⊥ (q̃, z) of the splitting expressed as a function of

q̃ and z (see eq. (3.22)), and where the sum is over all possible splittings off the progenitor

partons. We can now define the one-emission action of the parton shower on an observable

η = fη,m(φm), where fη,m is the value of the observable for an m-parton final state, by

PS[u](φn) = ∆(φn, 0, Q̃)u(φn)

+
∑
i

∫ Q̃

0
dq̃

∫
dz

dP (i)(φn, q̃, z)

dq̃dz
∆(φn, q̃, Q̃)

× θ
(
P

(i)
⊥ (q̃, z)−Q0

)
θ(q̃ −mi)u(Φ

(i)
n+1(φn, q̃, z)) , (7.16)

where u(φm) = δ(η − fη,m(φm)) is the measurement function. Starting from a given n-

parton (LO) cross section

σLO[u] ≡
∫

dσLO(φn)u(φn) (7.17)

the one-emission action of the parton shower can then be expressed as

σLO+PS[u] = σLO[PS[u]] . (7.18)

Expanding the one-emission action to first subleading order in αs we find

σLO+PS[u] =

∫
dσLO(φn)u(φn)

+
∑
i

∫ Q̃

0
dq̃

∫
dz

∫
dσLO(φn)

dP (i)(φn, q̃, z)

dq̃dz

× θ
(
P

(i)
⊥ (q̃, z)−Q0

)
θ(q̃ −mi)

(
u(Φ

(i)
n+1(φn, q̃, z))− u(φn)

)
, (7.19)

which, with the help of the inverse mapping (7.10), can be cast into the form

σLO+PS[u] =

∫
dσLO(φn)u(φn) +

∑
i

∫
dσ

(i)
PS(φn+1)

× θ
(
Q̃− Q̃(i)(φn+1))

)
θ
(
P

(i)
⊥ (φn+1)−Q0

)(
u(φn+1)− u(Φ(i)

n (φn+1))
)
, (7.20)
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with P
(i)
⊥ (φn+1) = P

(i)
⊥ (Q̃(i)(φn+1), Z(i)(φn+1)), and where the starting point of the evo-

lution Q̃ and the infrared shower cut Q0 are now made explicit in terms of θ-functions

at the level of the squared matrix element, and we have introduced the parton shower

approximation to the NLO fixed-order correction to the cross section:

dσ
(i)
PS(φn+1) ≡ dσLO(Φ(i)

n (φn+1))

× dP (i)(Φ(i)
n (φn+1), Q̃(i)(φn+1), Z(i)(φn+1))θ

(
Q̃(i)(φn+1)−mi

)
. (7.21)

Expression (7.20) is particularly useful to formulate NLO matching since it is very close to

the generic form of the corresponding NLO fixed-order cross section obtained in full QCD

using the subtraction approach:10

σNLO[u] ≡σLO[u] +

∫
dσV+I(φn)u(φn)

+

∫ [
dσR(φn+1)u(φn+1)−

∑
i

dσ
(i)
A (φn+1)u(Φ(i)

n (φn+1))
]
. (7.22)

Here the terms dσ
(i)
A are the subtraction cross sections to cancel the infrared divergences

of the real emission cross section dσR coming from progenitor leg i, and dσV+I denotes the

combination of the NLO virtual corrections and the subtraction cross sections integrated

over the emission phase spaces, which is free of poles in ε in dimensional regularization. This

concludes our notation to discuss the generic formalism of NLO matched parton showers.

NLO matching, see [41, 86–89] for initial development concerning multi-purpose event

generators as well as a general review, including the modified hardest emission approach

as employed in the POWHEG formalism [41], is then performed by subtracting the O(αs)

contribution of eq. (7.20) from the NLO fixed-order cross section. To be specific, one sets

up a subtracted (or ‘matched’) NLO cross section σNLO−PS, such that

σNLO−PS[PS[u]] = σNLO[u]
[
1 +O(αs)

]
(7.23)

having the important condition in mind that the total NLO inclusive cross section precisely

agrees with the NLO fixed-order calculation:

σNLO−PS[PS[1]] = σNLO−PS[1] = σNLO[1] , (7.24)

where the first equality arises from the unitarity property of the parton shower. This can

be achieved by

σNLO−PS[u] = σLO[u] + σV+I [u] + σR−A−PS[u] , (7.25)

10For simplicity we assume here that the kinematic mapping used in the subtraction formalism is the

same as the one used for shower emissions, which is, however, not mandatory. In the general case one has

to account for additional Jacobian factors that, however, do not alter the line of reasoning.
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where σLO and σV+I are directly taken from eq. (7.22) and the matching subtraction term

is of the form

σR−A−PS[u] =∑
i

∫ (
θ(Q̃− Q̃(i)

n+1)θ(P
(i)
⊥,n+1 −Q0)dσ

(i)
PS(φn+1)− dσ

(i)
A (φn+1)

)
u(Φ(i)

n (φn+1))

+

∫ (
dσR(φn+1)−

∑
i

θ(Q̃− Q̃(i)
n+1)θ(P

(i)
⊥,n+1 −Q0)dσ

(i)
PS(φn+1)

)
u(φn+1) , (7.26)

where we have introduced the shorthand notations Q̃
(i)
n+1 ≡ Q̃(i)(φn+1) and P

(i)
⊥,n+1 ≡

P
(i)
⊥ (φn+1).

The important point of eq. (7.26) is that within the NLO matched parton shower evo-

lution algorithm the expression in the first line constitutes together with σLO[u] + σV+I [u]

the tree-level n-parton cross section with n progenitor partons, while the second line rep-

resents a new (n + 1)-parton tree-level configuration with n + 1 progenitors. Both types

of configuration are therefore showered separately and need to be independently infrared

safe and numerically stable without relying on any cross talk between both contributions.

However, there are by construction infrared divergences that only cancel in the combination

of dσR and the dσ
(i)
A because of the presence of the infrared cuts contained in the parton

shower contributions. As a consequence the coefficients of the individual u(Φ
(i)
n (φn+1)) and

u(φn+1) diverge for emissions at scales below the cutoff, and σR−A−PS cannot be used in

this form for event generation.

Therefore, at this point, all NLO matching algorithms supplement the matched cross

section of eq. (7.26) by an additional contribution which avoids the divergences individually

contained in the parton shower evolution starting from the n- and the (n + 1)-parton

configurations. This modified version of the matching subtraction term has the generic form

σ̃R−A−PS[u] = σR−A−PS[u]

−
∑
i

∫
dσ

(i)
X (φn+1)

(
u(φn+1)− u(Φ(i)

n (φn+1)
)
θ(Q0 − P (i)

⊥,n+1) . (7.27)

The term dσ
(i)
X (φn+1) is an additional subtraction (auxiliary) cross section that is designed

to reproduce locally in phase space the singularities of the subtraction terms dσ
(i)
A , and the

real emission contribution dσR. We note that the formalism could also be implemented in

a different way by simply removing the shower cut θ-functions in eq. (7.26) if care is taken

that the parton shower approximation precisely reproduces, locally in the phase space,

all singularities in the fixed-order real radiation and subtraction cross sections.11 This

approach, however, just corresponds a particular choice of dσX in the matching subtraction

term already shown in eq. (7.27).

Only after the modified subtracted (or ‘matched’) NLO cross section is constructed,

events can be generated with finite weights and leading to finite cross section. We stress

11This is the case for the splitting functions employed in the Powheg formalism [41], as well as for parton

showers featuring full color matrix element corrections [88, 90] and spin correlations [91–93].
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that depending on the construction of the additional subtraction in the modified matched

NLO cross section it is in principle possible that the parton shower allows emissions below

the cutoff Q0. However, the weights in these regions of phase space are without any

logarithmic enhancement. Their contributions are typically very small, but depend on the

form of the auxiliary cross section dσX . An important consequence is that the consistency

relation for the total inclusive cross section of eq. (7.24) is still satisfied, but that for

differential cross sections in dynamical kinematic variables η such as thrust, where η refers

to the difference to a threshold or an endpoint where linear sensitivity to the shower cut

can arise, the relation between parton shower approximation to the NLO cross section and

full fixed-order NLO cross section reads

σNLO−PS[PS[u]] = σNLO[u]
[
1 +O

(
(Q0/η), αs

)]
, (7.28)

and the cutoff dependence is linear and can be significant compared to achievable exper-

imental precision. It is these contributions which were the focus in the preceedings parts

of this paper, and the bottom line is that in NLO matched partons showers they are still

present and do not modify the principle precison with respect to the unmatched NLL

parton showers.

Within the Herwig 7 event generator’s Matchbox module [87] subtractive (which call

MC@NLO-type [86]) as well as multiplicative (which we call POWHEG-type [41]) matching

can be performed, which both are particular incarnations of the matching principles just

described above. In the latter case, however, an additional matrix element correction is

employed in eq. (7.26) to change the hardest emission to be described by a splitting function

given by the ratio of exact real emission and Born matrix elements,

P (i)(φn, q̃, z)→ w(i)(Φ
(i)
n+1(φn, q̃, z))∑

j w
(j)(Φ

(j)
n+1(φn, q̃, z))

|MR(Φ
(i)
n+1(φn, q̃, z)|2
|MB(φn)|2 . (7.29)

The terms w(i) are weight functions that partition the phase space into different emitter

regions, for which in practice we choose dipole-type factors, each of which has a collinear

divergence only if the emission becomes collinear to the emitter i. Both types of matching

schemes employ the NLO subtraction cross section dσ
(i)
A as the auxiliary cross section dσ

(i)
X ,

i.e. we have dσ
(i)
X = dσ

(i)
A . This provides a more transparent and stable implementation of

the matched cross section. Furthermore, for the Powheg-type matching, the first emission

off the n-parton Born configuration is generated using the splitting kernel and Sudakov

form factor determined with eq. (7.29) and the transverse momentum of all subsequent

emissions (with respect to the parent parton momentum) is vetoed not to exceed the

transverse momentum of the first. At this point emissions with larger angles but transverse

momenta smaller than the emission generated according to eq. (7.29) are included using in

addition a so-called vetoed, truncated shower [41, 94].

Let us now compare numerical results obtained with Herwig 7 without NLO matching

— referred to as ‘LO’ (’leading-order’) for the rest of this section — (which is the setup

we have used for our simulation studies in sections 7.3, 7.4, 7.5 and 7.6) and with NLO

matching using the MC@NLO-type and the POWHEG-type matching. In figures 18 we
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Figure 18. Thrust at the parton level in the peak region generated with Herwig 7 full simulations

for (a) massless quarks at c.m. energy Q = 91 GeV and (b) top quarks with mass mt = 173 GeV

at Q = 700 GeV. The parton level results are smeared with a soft model shape function with

smearing parameter Λ = 1 GeV, see section 2.3. Displayed are simulation results for shower cuts

Q0 = 1.0 GeV (right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set

of curves) at LO (i.e. without any NLO matching, solid red curves), with MC@NLO-type matching

(dashed blue curves) and POWHEG-type matching (dotted green curves).

show the thrust distribution for massless quark production at Q = 91 GeV (left panel)

and the rescaled thrust distribution for top quark production with mt = 173 GeV at Q =

700 GeV (right panel) for Q0 = Q0,b = 1.0 GeV (right set of curves), 1.5 GeV (middle set of

curves) and 2.0 GeV (left set of curves) at LO (solid red), with MC@NLO-type matching

(dashed blue curves) and with POWHEG-type matching (dotted green curves). All curves

are normalized to unity at the peak position. We hardly see any difference between the LO

and NLO matched simulations in the resonance regions. Visible effects arise only in the tails

away from the resonances, which can be understood from the fact that the hardest gluon

emission, which is improved to full NLO precision by the matching procedure, only obtains

sizable NLO corrections away from the singular resonance region. In the resonance region,

however, the NLL splitting function approach already provides a fully adequate description

and the genuine non-singular NLO corrections are very small. For the cases shown in

figures 18 the peak shifts due to NLO effects are typically less than ∆τpeak ∼ 10−4 in the

massless case and less than ∆Mτ,peak ∼ 100 MeV in the massive case which is considerably

smaller than the effects of the shower cut dependence we consider. We have checked that

this property is generic and valid for all energies and shower cut values we have examined

in our earlier studies. The results confirm that NLO matched parton shower simulations

do not add more precision in the thrust resonance region and, in particular, do not modify

the shower cut dependence of the simulations without NLO matching.

At this point it is also instructive to examine the impact of NLO matching to the

reconstructed observables mbj` and mbjW , which we have already examined at LO in sec-

tion 7.6. Within Herwig 7, concerning the description of top quarks, the MC@NLO-type

matching provides only NLO improved simulations concerning the production of the top
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Figure 19. The mbj` (left panel) and mbjW distributions (right panel) generated with Herwig 7

full simulations for mt = 173 GeV for Q = 700 GeV, jet radius R = 0.5 and Cambridge-Aachen-type

b-jet clustering. Show are results at LO (solid red curves), with MC@NLO-type matching (dashed

blue curves) and POWHEG-type matching (dotted green curves).

quarks while the POWHEG-type matching provides NLO improved simulations concern-

ing the production and the decay of the top quarks, where we refer to ref. [83] for more

details. In our LO examination in section 7.6 we have already seen that mbj` and mbjW

are quite sensitive to the modeling of the decay for b-jet clustering for small jet radii as

they are used in experimental reconstruction analyses. At the same time, for small jet

radii mbj` and mbjW are by construction insensitive to details of the top quark produc-

tion. We can therefore expect that the LO and MC@NLO-type simulation results are very

similar, while the POWHEG-type results may receive notable NLO corrections. This is

shown in figures 19 where the mbj` (left panel) and the mbjW distributions are displayed for

Q = 700 GeV, mt = 173 GeV, R = 0.5 and Q0 = Q0,b = 1.5 GeV at LO (solid red curve),

with MC@NLO-type matching (dashed blue curve) and POWHEG-type matching (dotted

green curve). As expected, we see that the MC@NLO-type matching for top production

has essentially no impact, while we find visible effects in the distribution for POWHEG-

type matching. However, in the top mass sensitive regions these are substantially smaller

for mbjW than for mbj`, which is particularly conspicuous when comparing the curves in

figures 19 to the corresponding ones shown in figures 15, where the dependence on the top

quark mass was illustrated.

Focusing on the shower cut dependence of the kinematic top mass sensitivity of mbj`

and mbjW we again use the approach of section 7.6 by fits of the top quark mass with respect

to the default shower cut setting Q0 = Q0,b = 1.5 GeV (see the paragraph prior to eq. (7.5)

in section 7.6 for the description of the fitting approach). In figures 20 and figures 21 the de-

pendence of the fitted top mass obtained from the mbj` endpoint region (stars) and from the

mbjW resonance region (triangles), respectively, is displayed at LO and with NLO matching

using the same settings as in figures 16 where we only displayed the LO results. We again

show the results for shower cuts Q0,b = Q0 = 1.0, 1.5 and 2.0 GeV for jet radii R = 0.25
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Figure 20. Fitted top quark mass obtained from the mbj` endpoint region for shower cut values

Q0 = Q0,b = 1.0, 1.5 and 2.0 GeV for Q = 700 GeV using the kt-type algorithm (green), the

Cambridge-Aachen algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. For

each Q0 value the respective left set of symbols come from the LO simulations, the respective middle

set of symbols come from simulations with MC@NLO-type matching and the respective right set of

symbols from simulations with POWHEG-type matching. Displayed are the results for b-jet radii

R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel corresponds to eq. (7.5) and

the one in the upper left panel corresponds to eq. (7.6) using Q′0 = 1.5 as the reference scale.

(upper left panels), R = 0.5 (upper right panels), R = 1.0 (lower left panels) and R = 1.5

(lower right panels), and we have carried out the analyses for b-jet clustering using the kt-

type algorithm (green symbols), the Cambridge-Aachen-type algorithm (blue symbols) and

the anti-kt-type algorithm (red symbols). To allow for an easier visual identification of the

results we have slightly displaced the symbols horizontally, where for each Q0 value the re-

spective left set of symbols come from the LO simulations (already displayed in figures 16),

the respective middle set of symbols come from simulations with MC@NLO-type matching

and the respective right set of symbols from simulations with POWHEG-type matching.

We see that the NLO matching has essentially no impact on the fitted top mass for

large jet radii and the cutoff dependence agrees again very well with eq. (7.5), which is

displayed in the lower right panel (R = 1.5) as the solid blue line with Q′0 = 1.5 GeV as the

reference scale. This is expected since mbj` and mbjW with large b-jet clustering radius are
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Figure 21. Fitted top quark mass obtained from the mbjW resonance region for shower cut values

Q0 = Q0,b = 1.0, 1.5 and 2.0 GeV for Q = 700 GeV using the kt-type algorithm (green), the

Cambridge-Aachen algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. For

each Q0 value the respective left set of symbols come from the LO simulations, the respective middle

set of symbols come from simulations with MC@NLO-type matching and the respective right set of

symbols from simulations with POWHEG-type matching. Displayed are the results for b-jet radii

R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel corresponds to eq. (7.5) and

the one in the upper left panel corresponds to eq. (7.6) using Q′0 = 1.5 as the reference scale.

by construction neither sensitive to the top production mechanism and nor to details of the

top quark decay. It is conspicuous, however, that there is also very good agreement between

the LO and NLO fitted top masses for small jet radii. For comparison we have displayed

again eq. (7.6) with Q′0 = 1.5 GeV as the reference scale in the upper left panel (R = 0.25).

We recall that eq. (7.6) describes the expected shower cut dependence for R ∼ mt/Q with

the contributions coming from large angle soft radiation being removed while those from

the ultra-collinear radiation being kept. So we see that, even though the POWHEG-type

matching has sizable nominal effects on the distributions for the reconstructed observables,

particularly for mbj`, the relative shower cut dependence itself it essentially unchanged.

This outcome again fully supports the idea of universality of the shower cut dependence

and its independence concerning NLO matched predictions, and it is precisely what is to

be expected if the equivalence of the MC generator top mass and the shower cut dependent
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CB mass of eq. (6.9) is universal. However, as already noted in section 7.6, a strict proof

would require a thorough quantitative (and preferably analytic) understanding of the b-jet

clustering for exclusive observables such as mbj` and mbjW to unambiguously track the

shower cut dependence. We emphasize again, that such quantitative understanding should

at best be achieved in the context of a QCD factorization approach as it allows for a

direct, clean and unambiguous field theoretical association of the different types of radiation

concerning dynamical physical effects and contributions affecting the interpretation of QCD

parameters such as the top quark mass.

8 Conclusions

The emergence of infrared divergences and their proper treatment to achieve meaningful

physics predictions represents one of the major conceptual and technical issues in mod-

ern applications of perturbative QCD in the context of collider physics. These divergences

emerge in partonic computations in the (unphysical) limit of infinitesimally small resolution

concerning infrared energies and momenta and are resolved by treating partonic configu-

rations below the resolution scale as contributions to the same observable configuration.

Within this approach, infrared cuts used to regulate the infrared divergences at the inter-

mediate steps of the perturbative calculations, can then be sent to zero, where the limit of

this procedure typically defines what is commonly perceived as the perturbative component

of cross section predictions. In the context of multi-purpose MC event generators, where

the parton showers are responsible for the description of the parton dynamics below the

hard interaction scale, the same principles are applied. However, the infrared shower cut

Q0 which terminates the parton shower evolution is finite, typically in the range of 1 GeV,

and leads to a power-like dependence of the parton-level predictions on Q0 depending on

the mass dimension and the infrared sensitivity of the observable. As we have discussed

in this work for observables with kinematic top mass sensitivity this dependence on the

shower cut Q0 turns out to be linear and non-negligible given that the current experimental

precision in top quark mass determinations based on direct reconstruction methods already

reached the level of 0.5 GeV.

In this work we analyzed in detail the role of the shower cut Q0 in angular ordered

parton showers based on the coherent branching formalism for quasi-collinear, i.e. boosted,

massive quarks at NLL. We have demonstrated, using an eventshape-type observable based

on hemisphere masses and closely related to thrust (see eqs. (2.1) and (2.2)) in the resonance

region where the highest kinematic top mass sensitivity is located, that the finite shower

cut automatically implies that the generator top quark mass is the Q0-dependent coherent

branching (CB) mass, mMC
t = mCB

t (Q0), even though the underlying analytic expressions

that go into the formulation of the parton shower are derived in the pole mass scheme. The

CB mass is a low-scale short-distance mass and free of an O(ΛQCD) renormalon ambiguity.

At O(αs) its relation to the pole mass mpole
t reads

mCB
t (Q0)−mpole

t = −2

3
αs(Q0)Q0 +O(α2

sQ0) . (8.1)
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The inclusion of NLO corrections in the context of NLO-matched parton showers does

not add more precision to this relation as the additional NLO information improves the

perturbative description of configurations that are located outside the resonance region,

i.e. outside the region where the main kinematic top mass sensitivity arises. In section 6

we have provided a detailed summary of all our theoretical findings and in section 7 we

have confronted them with parton-level simulations carried out using the Herwig 7 event

generator. The simulation results fully confirm our conceptual conclusions concerning the

equivalence of the generator top mass and the shower-cut-dependent CB mass, and we also

gathered evidence that the equivalence is universal and also applies for other more exclusive

observables such as the b-jet and lepton invariant mass mbj` and the reconstructed top

invariant mass mbjW in the limit of boosted top quarks. In the course of our examinations

we also analyzed in detail the shower cut dependence coming from large-angle soft radiation

which is universal for the production of massless quarks and boosted top quarks and which

represents an interface to the hadronization model used in the MC event generator. These

results have implications for the hadronization corrections in event-shape distribution and

the extraction of αs which we have, however, not addressed in this work and will be

discussed elsewhere.

To conclude this work we address two important questions which have not been ad-

dressed in the main body of the paper. The first is about the remaining conceptual issues

that have to be resolved to universally explore the meaning of the MC generator top quark

mass in the context of state-of-the-art MC event generators that are used in the experimen-

tal analyses. The second is about how to best convert mCB
t (Q0) to other top quark mass

schemes. This issue gains particular importance if one assumes that the MC top quark

mass mMC
t determined in direct reconstruction methods at hadron colliders is indeed equal

to the coherent branching mass mCB
t (Q0).

Before we address these issues we would like to emphasize that the proper field theoretic

specification of the generator top quark mass mMC
t as a particular mass renormalization

scheme does not touch in any way the important questions how MC modeling uncertainties

such as for the description of multi parton interactions or relevant for the event selection

and the description of hadronization effects in the final states such as color reconnection

affect the top mass measurements. These uncertainties are and shall continue to be under

scrutiny, and their study may lead to improved MC generators in the future. The focus

of the present work, on the other hand, is that the principle field theoretic meaning of the

cutoff-dependence of the generator top quark mass can be studied and resolved indepen-

dently of these issues and thus deserves particular attention by itself. Associated dedicated

studies cover subtle effects that are, however, already relevant in view of the current ex-

perimental uncertainties in top quark mass determinations and may in a complementary

way contribute to improved MC generators.

Let us now address the first issue. The basic simplifications for the examinations carried

out in this work were that we used (i) parton level studies, (ii) the narrow width approxi-

mation, (iii) boosted (quasi-collinear) top quark kinematics and (iv) hemiphere masses in

e+e− collisions closely related to the thrust/2-jettiness event-shape. In the context of hemi-

sphere mass studies, the extension to MC hadron level studies is straightforward and shall
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be carried out in forthcoming works. Here the main question to be addressed is how well

the MC hadronization models are compatible with the parton-hadron level factorization of

eqs. (2.3) and (2.15), which is an intrinsic property of QCD. The main point then to be

clarified is, whether MC hadronization models have the capability to retune the top quark

mass — a property that would make the MC top quark generator mass a hadronization

parameter und mean that there are additional MC dependent non-perturbative contribu-

tions that have to be accounted for in the relation between the MC generator top mass

mMC
t and the coherent branching mass mCB

t (Q0). Concerning the narrow width approxi-

mation, we note that state-of-the-art parton showers for massive quarks do not have the

capability to describe unstable particle effects from first principles. These unstable particle

effects include the top quark intrinsic Breit-Wigner smearing of its invariant mass as well

as interference effects connecting top and non-top processes through equivalent top decay

final states. Accounting for unstable particle effects may be possible in the context of MC

generators matched to calculations including the full top production and decay process or

in the context of new MC generators which incorporate unstable particle effects in terms of

systematic expansions that are more general than the narrow width approximation. Such

studies are in reach and may be addressed in the near future. Concerning the approxi-

mation of boosted top quark kinematics, imagining systematic studies for slow top quarks

comparable to the examinations carried out in this work, the prospects are far less clear.

This is because the existing parton shower formalisms for massive quarks are by construc-

tion designed to be valid in the quasi-collinear limit — even though the bulk of the top

quarks entering current experimental analyses have relatively low transverse momenta be-

tween 50 and 100 GeV and cannot be considered to be quasi-collinear. So progressing into

this direction involves general studies of the MC modeling for top quarks that in princi-

ple go beyond the problem of the MC top quark generator mass. Finally, concerning the

extension of examinations at the level of those carried out in this work to other types of

observables covering also hadronic collisions at the LHC, such studies require the devel-

opment of new types of factorization theorems. For groomed fat jet masses for boosted

top quark production at the LHC a factorization approach was recently developed [24],

but factorization theorems for more exclusive variables such as mbj` or mbjW , which are

currently absent, are desirable as well. Furthermore, pushing the existing factorization

approach for thrust and the description of the shower cut dependence to one higher order

would be useful as well since it would allow for an explicit check of the O(α2
s) corrections

to relation (8.1).

Let us now address the second issue. Assuming that the currently most precise top

quark mass measurements of mMC
t can be identified with a measurement of the CB mass

mCB
t (Q0) defined in relation (8.1), how well can it be converted to other mass schemes?

Given that most theoretical predictions for top quark physics at the LHC are carried out

in the pole mass scheme, one may simply convert the CB mass to the pole mass using

eq. (8.1). The Herwig 7 event generator uses Q0 = 1.25 GeV as the default value for the

shower cut, and using the MS scheme for the strong coupling with α
MS,(nf=5)
s (MZ) = 0.118

we obtain mpole
t −mCB

t (Q0 = 1.25 GeV) = 330 MeV, where we have evaluated the strong

coupling in the 3-flavor scheme using α
(nf=5)
s (MZ) = 0.118 as the input. On the other
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hand, using the Monte Carlo (MC) scheme for αs, which accounts for the two-loop cusp

anomalous dimension contained in the NLL quark splitting function and which is effectively

used in Herwig 7 (see eq. (3.15) in section 3.1 on the MC scheme for the strong coupling),

we obtain mpole
t − mCB

t (Q0 = 1.25 GeV) = 520 MeV. The difference of about 200 MeV

between both conversions can be viewed as an illustration of the currently unknown O(α2
s)

corrections and indicates that the convergence is not particularly good. This is, however,

expected since the pole mass has an O(ΛQCD) renormalon ambiguity. From the analysis

of ref. [82], where a determination of the pole mass from a short-distance mass at the

scale 1.3 GeV was studied in detail, we can expect that O(α2
s) and O(α3

s) corrections are

also needed to determine the pole mass value and that at O(α3
s) there is a remaining

irreducible uncertainty of around 250 MeV due to the O(ΛQCD) renormalon ambiguity of

the pole mass (see also [95] for an alternative view on the size of the renormalon ambiguity

of the pole mass). Thus the determination of the currently unknown O(α2
s) and O(α3

s)

corrections to eq. (8.1) is important to reliably determine the pole mass. To determine the

O(α2
s) corrections in the factorization approach the effects of the shower cut need to be

implemented into the bHQET jet function at O(α2
s). To determine the O(α2

s) corrections

in the context of coherent branching formalism (or angular ordered parton showers) the

effects of the shower cut have to be analyzed in the context of a fully consistent next-to-

next-to-leading order evolution. The overall conclusion is that the difference between the

pole mass and the CB mass, mpole
t −mCB

t (Q0 = 1.25 GeV), is likely at least as large as

the current uncertainties in top quark mass measurements from direct reconstruction of

around 500 MeV (see section 1.1) and requires the determination of two and three-loop

corrections. Even when these corrections become available, there will be is an irreducible

uncertainty of 250 MeV. So, for a reliable determination of the pole mass the unknown

higher order corrections to eq. (8.1) are very important, and the ultimate uncertainty in

the pole mass is at the same level as the precision of 200 MeV that may be achieved for

measurements of mMC
t in the future high-luminosity run of the LHC [96, 97].

Alternatively, since physical observables are not tied conceptually to the pole mass

scheme in any way and its O(ΛQCD) ambiguity is a pure artefact of the pole mass def-

inition, one can as well parametrize calculations using suitable short-distance top quark

mass schemes. In this approach the sizeable corrections and the renormalon ambiguity

associated to the pole mass scheme — as well as any controversial discussion on the ac-

tual size of this ambiguity — can be avoided entirely. To illustrate this approach let us

consider a determination of the MSR mass mMSR
t (Q0) from a given value of the CB mass

mCB
t (Q0). At O(αs) the relation between the scale-dependent MSR mass [19, 20] and the

pole mass reads mMSR
t (Q0) −mpole

t = −4αs(Q0)Q0/(3π). For the strong coupling in the

MS scheme this gives mMSR
t (Q0)−mCB

t (Q0 = 1.25 GeV) = 120 MeV compared to 190 MeV

in the Monte Carlo scheme. As expected from the fact that the difference of MSR and CB

masses does not contain any O(ΛQCD) renormalon ambiguity, the scheme corrections to

obtain the MSR mass are small, and one can also expect that they exhibit good conver-

gence because MSR and CB masses are both short-distance mass schemes. The difference

of 70 MeV can be viewed as an illustration of the currently unknown O(α2
s) corrections

and indicates that the knowledge of the two-loop corrections in eq. (8.1) may be sufficient
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to convert the CB mass to the MSR with a precision of better than 50 MeV. Compared

to the current uncertainties in top quark mass measurements from direct reconstruction of

around 500 MeV these corrections are small and the knowledge of these two-loop correc-

tions is not required. Furthermore, as was shown in ref. [20], one can convert the MSR

mass to all other commonly used short-distance mass schemes, such as the 1S [98–100],

the PS [101] or the MS schemes, with a precision of 10 MeV. The overall conclusion is

that, when using only short-distance mass schemes, the achievable precision in converting

the MC/CB mass to other mass schemes is already at this stage substantially higher than

the current experimental uncertainties and also than extrapolations concerning the future

high-luminosity run of the LHC which indicate that a precision of 200 MeV [96, 97] for a

determination of the top quark mass can be reached.
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A Ingredients of for 2-jettiness at NLL from effective field theory

A.1 Resummation for massless quarks in SCET

The O(αs) the hard, jet and soft functions appearing in the dominant singular partonic

contributions of the 2-jettiness factorization theorem obtained in SCET for massless quarks

have the form [66] (see also refs. [59, 67])

HQ(Q,µ) = 1 +
αs(µ)CF

4π

(
−2 ln2 Q

2

µ2
+ 6 ln

Q2

µ2
− 16 +

7π2

3

)
+O(α2

s) , (A.1)

J (τ)(s, µ) = δ(s) +
αs(µ)CF

4π

(
8

µ2

[
µ2 ln s

µ2

s

]
+

− 6

µ2

[
µ2

s

]
+

+ (14− 2π2)δ(s)

)
+O(α2

s) ,

(A.2)

S(τ)(k, µ) = δ(k) +
αs(µ)CF

4π

(
−16

µ

[
µ ln k

µ

k

]
+

+
π2

3
δ(k)

)
+O(α2

s) , (A.3)
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where we have used the notations of ref. [15]. Their respective anomalous dimensions can

(to all orders) be written in the form

µ
d

dµ
UH(Q,µH , µ) =

(
ΓH [αs(µ)] ln

( µ2

Q2

)
+ γH [αs(µ)]

)
UH(Q,µH , µ) , (A.4)

µ
d

dµ
UJ(s, µ, µJ) =

∫
ds′
(
− ΓJ [αs(µ)]

µ2

[µ2θ(s− s′)
s− s′

]
+

+ γJ [αs(µ)]δ(s− s′)
)

× UJ(s− s′, µ, µJ) , (A.5)

µ
d

dµ
US(k, µ, µJ) =

∫
dk′
(
− 2ΓS [αs(µ)]

µ

[µθ(k − k′)
k − k′

]
+ γS [αs(µ)]+δ(k − k′)

)
(A.6)

× US(k − k′, µ, µS) ,

where the coeffients at NLL precision needed for discussions are given in eqs. (2.11), (2.12)

and (2.24). These results have been obtained using dimensional regularization to regulate

ultraviolet as well as infrared divergences and do not account for any other infrared cutoff.

Ultraviolet renormalization has been carried out in the MS scheme.

A.2 Resummation for massive quarks in SCET and bHQET

As shown in refs. [14, 15] using SCET and bHQET, for the dominant singular partonic

contributions of the 2-jettiness distribution in the peak resonance region for massive quarks,

the hard and soft functions, HQ and S(τ), are the same as for massless quarks. Their

expressions at O(αs) and the general form for their anomalous dimensions are given in

eqs. (A.1), (A.3), (A.4) and (A.6), respectively. The O(αs) results for the mass mode and

the bHQET jet functions read [15]

Hm(m,µ) = 1 +
αs(µ)CF

4π

(
2 ln2 m

2

µ2
− 2 ln

m2

µ2
+ 8 +

π2

3

)
+O(α2

s) , (A.7)

mJ
(τ)
B (ŝ,m, δm, µ) = δ(ŝ)− 4 δm δ′(ŝ) +

αs(µ)CF
4π

(
16

µ

[
µ ln ŝ

µ

ŝ

]
+

− 8

µ

[
µ

ŝ

]
+

+ (8− π2)δ(ŝ)

)
+O(α2

s) , (A.8)

where the result for the bHQET jet function has been displayed for a general quark mass

renormalization scheme m which is related to the pole mass scheme by the relation δm =

mpole−m. So in eq. (A.8) we have ŝ = (s−m2)/m. Their respective anomalous dimensions

can (to all orders) written in the form

µ
d

dµ
Um

(
Q

m
,µm, µ

)
=

(
Γm [αs (µ)] ln

(
m2

Q2

)
+ γm [αs (µ)]

)
Um

(
Q

m
,µm, µ

)
(A.9)

µ
d

dµ
UJB (ŝ, µ, µJB ) =

∫
dŝ′
(
−ΓJB [αs (µ)]

µ

[
µθ (ŝ− ŝ′)
ŝ− ŝ′

]
+

+ γJB [αs(µ)] δ(ŝ− ŝ′)
)

(A.10)

× UJB (ŝ− ŝ′, µ, µJB ) ,
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(a) (b)

Figure 22. Diagrams relevant for computation of the partonic soft function at O(αs).

where the coeffients at NLL precision are given in eqs. (2.24), see also eqs. (2.11) and (2.12).

These results have been obtained using dimensional regularization to regulate ultraviolet

as well as infrared divergences and do not account for any other infrared cutoff. Ultraviolet

renormalization has been carried out in the MS scheme.

B Jet and soft functions in SCET and bHQET with a p⊥ cut at O(αs)

B.1 Unreleased soft function for thrust

In this section we provide details on the calculation of the unreleased thrust soft function

S
(τ)
ur at O(αs). The unreleased soft function describes large angle soft radiation originating

from below the p⊥ cut Q0. We carry out the calculation using the dressed gluon propagator

of eq. (5.18) which is suitable to obtain the soft function in Borel space (accounting for

fermion bubble resummation to all orders). From this we can easily identify the O(ΛQCD)

renormalon pole located at u = 1/2. To obtain the usual one-loop result one can take

the limit u → 0 in the end and multiply back the factor (αsβ0)/(4π) effectively removed

by the dressed gluon propagator in this limit. We note that at O(αs) all integrations can

be readily carried out in 4 dimensions because the unreleased radiation does not result

in any ultraviolet divergences. However, in contrast to the calculations without any p⊥
cut we also have to consider the contributions from the virtual diagrams, because the

scale Q0 constitutes an additional scale such that the virtual diagrams may lead to finite

contributions. Interestingly, as we show below, the virtual diagrams lead to vanishing

results even for finite Q0.

The Borel space contribution from the real radiation diagrams (including the mirror

diagram) shown in figure 22a reads

B
[
S(τ,real)

ur (k,Q0)
]

=
4CF
β0

(
µ2e−c

)u
θ(k)

∫
dq+dq−

q+(q−)1+α

×
(
θ(q− − q+)δ(k − q+) + θ(q+ − q−)δ(k − q−)

)
× 1

π
Im

[∫ Q2
0

0
dq2
⊥

1(
q2
⊥ − (q+q− + i0)

)1+u

]
, (B.1)
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with c = 5/3 in the MS renormalization scheme for the strong coupling. In eq. (B.1) we

introduced the rapidity regulator α on the q− light-cone component. This is regulator is

useful because the upper bound for the transverse momentum integration leads to inter-

mediate 1/α rapidity divergences, which, however, cancel when summing the contributions

from the two hemispheres (defined by the contributions associated to the two θ step func-

tions). So, overall there are no rapidity divergences in the O(αs) thrust soft function with

an upper p⊥ cutoff. Doing the trivial delta function integrations gives

4CF
β0

(
µ2e−c

)u θ(k)

k

∫ ∞
k

dq

q

(
q−α + k−α

)
× 1

π
Im

[∫ Q2
0

0
dq2
⊥

1(
q2
⊥ − (qk + i0)

)1+u

]
. (B.2)

Next we can calculate the q⊥ integral and take the imaginary part employing the relation

1

π
Im

[∫ Q2
0

0
dq2
⊥

1(
q2
⊥ − (qk + i0)

)1+u

]
=

1

uπ
Im
[
(−qk− i0)−u − (Q2

0 − qk− i0)−u
]

=
1

Γ(1− u)Γ(1 + u)

(
(qk)−u − θ(qk −Q2

0)(qk −Q2
0)−u

)
, (B.3)

where in the last line we have used the fact that qk > 0. This leaves us with the sum of

three integrals

4CF
β0

(
µ2e−c

)u
Γ(1− u)Γ(1 + u)

1

k1+u

[
2

∫ ∞
k

dq

q1+u
− 2 θ (k −Q0)

∫ ∞
k

dq

q

(
q − Q2

0

k

)−u
− θ (Q0 − k)

∫ ∞
Q2
0
k

dq

q

(
q − Q2

0

k

)−u (
q−α + k−α

)]
(B.4)

=
2CF
β0

(
µ2e−c

)u
Γ(1− u)Γ(1 + u)

[
2

u k1+2u
− θ(k −Q0)

2Q−2u
0

k
B
[Q2

0

k2
; u, 1− u

]
− θ(Q0 − k)Q−2u−α

0 Γ(1− u)
(Qα0 Γ(u)

k1+α
+
Q−α0 Γ(u+ α)

Γ(1 + α) k1−α

)]
,

where we have already taken the limit α→ 0 in the first two terms since they are finite for

α → 0, and B[z; a, b] is the incomplete beta function. For the third term the α → 0 limit

has to be taken more carefully, using

Q±α0

k1±α = ∓ 1

α
δ(k) +

1

Q0

[
θ(k/Q0)

k/Q0

]
+

+O(α) . (B.5)

With this we finally arive at

B
[
S(τ)

ur (k,Q0)
]

= B
[
S(τ,real)

ur (k,Q0)
]

=
8CF
β0

(
µ2e−c

Q2
0

)u
Γ(1− u)Γ(1 + u)

[
Q2u

0

u k1+2u
− θ(k −Q0)

1

k
B
[Q2

0

k2
, u, 1− u

]
(B.6)

− θ(Q0 − k)Γ(u)Γ(1− u)
(
δ(k)

Hu−1

2
+

1

Q0

[
θ(k/Q0)

k/Q0

]
+

)]
,
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where Hn = ψ(n + 1) + γE is the harmonic number function and B
[
z; a, b

]
the incomplete

Beta function. As already discussed before, there are no rapidity divergences in the thrust

soft function and all 1
α poles cancel in the final result. Since the virtual diagrams turn

out to vanish (see below), this represents already the full result for the unreleased thrust

soft function.

To identify the leading renormalon pole we Laurent expand eq. (B.6) around u = 1/2.

Using the relation

µ2u

k1+2u
=

µ

2
(
u− 1

2

) δ′ (k) +O
((

u− 1

2

)0
)
, (B.7)

we find the pole contribution

B
[
S(τ)

ur (k,Q0)
](
u ≈ 1

2

)
=

16CF e−
c
2

πβ0

µ

u− 1
2

δ′(k) . (B.8)

To obtain the O(αs) unreleased soft function one has to take the limit u→ 0 of eq. (B.6)

and include back again the factor (αsβ0)/(4π). The result is

S(τ)
ur (k,Q0) =

αsCF
4π

16 θ(Q0 − k)

{
− 1

Q0

[
θ(k̃) ln k̃

k̃

]
+

}
, (B.9)

with k̃ = k/Q0.

We will now show that the virtual contributions to unreleased soft function vanish

even in the presence of a p⊥ cut. The Borel space contribution from the sum of the virtual

diagrams shown in figure 22b reads

B
[
S(τ,virt)

ur (k,Q0)
]

=
i 64CFπ

2

β0

(
µ2e−c

)u
δ(k)

∫
d4q

(2π)4

θ(Q0 − q⊥)

(−q2)1+u(n · q)(n̄ · q)1+α
, (B.10)

where we have again introduced the α regulator and used n2 = n̄2 = 0 and n · n̄ = 2. This

integral is most conveniently solved by using Feynman parameters of the form

1

aαbβcγ
=

Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

∫ ∞
0

dλ1dλ2
λβ−1

1 λγ−1
2

(a+ λ1b+ λ2c)α+β+γ
, (B.11)

such that one finds

−i 64CF
β0

(
µ2e−c

)u Γ(3 + u+ α)

Γ(1 + u)Γ(1 + α)
(−1)u+αδ(k)

×
∫ ∞

0
dλ1 dλ2 λ

α
2

∫
d4q

(2π)4

θ(Q0 − q⊥)

(q2 − λ1λ2)3+u+α
. (B.12)

The q integral is solved by using eq. (C.6) and leads to

B
[
S(virt)

ur (k,Q0)
]

=
−4CF
β0

(
µ2e−c

)u Γ(1 + u+ α)

Γ(1 + u)Γ(1 + α)
δ(k)

×
∫ ∞

0
dλ2 λ

α
2

∫ ∞
0

dλ1

(
(λ1λ2)−1−u−α − (Q2

0 + λ1λ2)−1−u−α
)

=
4CF
β0

(µ2e−c

Q2
0

)u Γ(u+ α)

Γ(1 + u)Γ(1 + α)
δ(k)Q−2α

0

∫ ∞
0

dλ2 λ
−1+α
2

= 0 . (B.13)
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The integral is scaleless and thus vanishes. Thus virtual diagrams do not contribute to the

unreleased soft function at O(αs).

B.2 Unreleased soft function for angularities and C-parameter

It is straightforward to determine soft functions for other event shape variables using the

method described in section B.1. In the following we provide the corresponding results for

the angularities τα and the C-parameter for future use.

For the angularities the measurement function shown in the second line of eq. (B.1)

for thrust reads

θ(q− − q+)δ
(
k − (q+)1−a

2 (q−)
a
2

)
+
[
q− ↔ q+

]
, (B.14)

and the resulting unreleased soft function at O(αs) has the form

S(τa)
ur (k,Q0) =

αs(Q0)CF
4π

16 θ(Q0 − k)

1− a

{
− 1

Q0

[
θ(k̃) ln k̃

k̃

]
+

}
. (B.15)

The pole of the Borel transform at u = 1/2 reads

B
[
S(τa)

ur (k,Q0)
](
u ≈ 1

2

)
=

16CF e−
c
2

πβ0(1− a)

µ

u− 1
2

δ′(k) , (B.16)

and the first moment has the form∫
dk k S(τa)

ur (k,Q0) =
αs(Q0)CF

4π

16Q0

1− a . (B.17)

For the C-parameter the measurement function shown in the second line of eq. (B.1)

for thrust reads

δ
(
k − q−q+

q− + q+

)
(B.18)

and the resulting unreleased soft function at O(αs) has the form [w(z) = (1− 4/z)1/2]

S(C)
ur (k,Q0) =

αs(Q0)CF
4π

16θ

(
Q0

2
−k
)− 1

Q0

[
θ(k̃) ln k̃

k̃

]
+

+
π2

24
δ(k)+

ln
(

1+w(1/k̃2)
2

)
k

 .

(B.19)

The pole of the Borel transform at u = 1/2 reads

B
[
S(C)

ur (k,Q0)
](
u ≈ 1

2

)
=

4CF e−
c
2

β0

µ

u− 1
2

δ′(k) , (B.20)

and the first moment has the form∫
d` ` S(C)

ur (`,Q0) =
αs(Q0)CF

4π
4πQ0 . (B.21)

For all results we have c = 5/3 in the MS scheme and k̃ ≡ k/Q0.
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Figure 23. Diagrams relevant for computation of the bHQET jet function at O(αs).

B.3 Unreleased bHQET jet function

In this section we calculate the unreleased bHQET jet function at O(αs). The unreleased

bHQET jet function arises from ultra-collinear radiation off the massive quark coming

from below the p⊥ cut Q0. As for the unreleased soft function we carry out the calculation

using the dressed gluon propagator of eq. (5.18), which is suitable to obtain the Borel

transform accounting for fermion bubble resummation to all orders and to obtain the usual

O(αs) result from the limit u → 0 and accounting for the additional factor (αsβ0)/(4π).

All integrals can again be carried out in 4 dimensions since in the presence of the p⊥
cut they are ultraviolet finite. In contrast to the calculation for the soft function, there

are no rapidity divergences at intermediate steps of the calculation. We note that in the

following we determine the O(αs) corrections to the unreleased bHQET jet function matrix

element J (τ)
B,ur(ŝ, Q0) with and ŝ = ŝ + i0 following the conventions from ref. [15]. The

actual unreleased bHQET jet function JB,ur(ŝ, Q0) appearing in the factorization theorem

of eq. (2.19) is then obtained by taking the imaginary part:

J
(τ)
B,ur(ŝ, Q0) = Im

[
J (τ)
B,ur(ŝ+ i0, Q0)

]
. (B.22)

The self energy diagram figure 23a in Borel space reads (already including a factor

two because the jet function in the factorization theorem eq. (2.19) accounts for both

hemispheres)

B
[
J (a)
B,ur(ŝ, Q0)

]
=
i 64π CF
mŝ2β0

(
µ2e−c

)u
θ(ŝ)

∫
d4q

(2π)4

θ(Q0 − q⊥)

(−q2)1+u(−v · q − ŝ
2)
, (B.23)

with v2 = 1 and c = 5/3 in the MS renormalization scheme. The integral is evaluated in

4 dimensions because in the unreleased contributions there are no divergences that need

to be regularized by dimensional regularization. It can be calculated by using Feynman

paramters of the form

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ ∞
0

dλ
λβ−1

(a+ λb)α+β
, (B.24)

such that

B
[
J (a)
B,ur(ŝ, Q0)

]
=
i 64π CF
mŝ2β0

(
µ2e−c

)u
(1 + u)(−1)uθ(ŝ)

×
∫ ∞

0
dλ

∫
d4q

(2π)4

θ(Q0 − q⊥)(
q2 − λ

2 (λ2 − ŝ)
)2+u . (B.25)
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The q integral is solved by using eq. (C.6) and leads to (after doing the additional substi-

tution λ→ 2Q0λ and s̃ = ŝ/Q0)

B
[
J (a)
B,ur(ŝ, Q0)

]
=
−8CF Q0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞
0

dλ
[(
λ(λ− s̃)

)−u − (1 + λ(λ− s̃)
)−u]

.

(B.26)

Let us first look at the on-shell (os) self-energy contribution of this diagram. Due to the

cutoff Q0 it does not vanish and is therefore relevant for the mass renormalization scheme.

It is obtained by setting ŝ→ 0 under the integral. This yields

B
[
J (a,os)
B,ur (ŝ, Q0)

]
=
−8CF Q0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞
0

dλ
[
λ−2u − (1 + λ2)−u

]
=

4CFQ0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

√
π Γ
(
u− 1

2

)
Γ(1 + u)

. (B.27)

The first term under the integral in the first line is scaleless and can be dropped. To

identify the leading renormalon pole we expand eq. (B.27) for u→ 1/2 to obtain

B
[
J (a,os)
B,ur (ŝ, Q0)

](
u ≈ 1

2

)
=

8CF e−
c
2

mŝ2πβ0
θ(ŝ)

µ

u− 1
2

. (B.28)

To get the one-loop result one has to take the limit u→ 0 of eq. (B.27) and include again

the factor (αsβ0)/(4π):

J (a,os)
B,ur (ŝ, Q0) = − 1

m

αsCF
4π

θ(ŝ)

πŝ2
8πQ0 . (B.29)

To get the result of the integral in eq. (B.26) for finite ŝ we first note that this does

not give a pole for u → 1/2. This can be seen by setting u = 1/2 and investigating the

behavior of the integrand for small and large values of λ:

λ−
1
2 for λ→ 0 , (B.30)

λ−3 for λ→∞ . (B.31)

This implies that the integral converges and that there is no renormalon pole at u = 1/2

in the off-shell case. To get the corresponding one-loop result we take the limit u→ 0 and

multiply back the factor (αsβ0)/(4π) and get [w(z) = (1− 4/z)1/2]

J (a)
B,ur(ŝ, Q0) =

1

m

αsCF
4π

θ(ŝ)

πŝ2
8Q0

∫ ∞
0

dλ ln

(
λ(λ− s̃)

1 + λ(λ− s̃)

)
(B.32)

=
1

m

αsCF
4π

θ(ŝ)

πŝ
8

[
θ(2Q0 − ŝ)

(
−
w(16

s̃2
)
(
2Tan−1

(
s̃

2w( 16
s̃2

)

)
+ π

)
s̃

+ ln(−s̃)
)

+ θ(ŝ− 2Q0)

(
iπ(w(s̃2)− 1) + ln s̃− w(s̃2)

2
ln
(1 + w(s̃2)

1− w(s̃2)

)
)

)]
.
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The diagram in figure 23b in Borel space reads (including a factor two to account for

both hemispheres and a factor two for the mirror diagram)

B
[
J (b)
B,ur(ŝ, Q0)

]
=
−i 64π CF
mŝβ0

(
µ2e−c

)u
θ(ŝ)

Q

m
(B.33)

×
∫

d4q

(2π)4

[
θ(Q0 − q⊥)

(−q2)1+u(−v · q − ŝ
2)(−n · q)

− θ(Q0 − q⊥)

(−q2)1+u(− Q
2m n̄ · q − ŝ

2)(−n · q)

]
,

with v2 = 1, n2 = n̄2 = 0, n · n̄ = 2 and n · v = Q/m. Again the prescription ŝ = ŝ + i0

is implied. The second term under the integral is the 0-bin that needs to be subratcted

to avoid a double counting between the soft and the collinear regions. We can again use

Feynman parameters of the form eq. (B.11) to obtain

B
[
J (b)
B,ur(ŝ, Q0)

]
=
i 64π CF
mŝβ0

(
µ2e−c

)u (−1)uΓ(3 + u)

Γ(1 + u)
θ(ŝ)

Q

m
(B.34)

×
∫ ∞

0
dλ1dλ2

∫
d4q

(2π)4

[
θ(Q0 − q⊥)(

q2 − λ1
2 (λ12 + Qλ2

m − ŝ)
)3+u −

θ(Q0 − q⊥)(
q2 − λ1

2 (Qλ2m − ŝ)
)3+u

]
.

The q integral is solved by using eq. (C.6) and leads to (after doing the additional substi-

tution λ1 → 2Q0λ1, λ2 → Q0mλ2/Q and s̃ = ŝ/Q0)

B
[
J (b)
B,ur(ŝ, Q0)

]
=

8CF
mŝπβ0

(µ2e−c

Q2
0

)u
θ(ŝ) (B.35)

×
∫ ∞

0
dλ1dλ2

[(
λ1(λ1 + λ2 − ŝ)

)−1−u −
(
1 + λ1(λ1 + λ2 − ŝ)

)−1−u

−
(
λ1(λ2 − ŝ)

)−1−u
+
(
1 + λ1(λ2 − ŝ))

)−1−u
]

=
8CF
mŝπβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞
0

dλ1

λ1

[(
λ1(λ1 − ŝ)

)−u − (1 + λ1(λ1 − ŝ)
)−u

−
(
−λ1ŝ

)−u
+
(
1− λ1ŝ)

)−u]
.

We note that the integral does not lead to a pole at u = 1/2, because the λ integral is

finite. This can be seen by investigating the behavior of the integrand for the small and

larger λ:

λ−
1
2 for λ→ 0 , (B.36)

λ−
3
2 for λ→∞ . (B.37)

To get the one-loop result we take the limit u→ 0 and multiply back the factor (αsβ0)/(4π)

to obtain [w(z) = (1− 4/z)1/2]

J (b)
B,ur(ŝ,Q0) =− 1

m

αsCF
4π

θ(ŝ)

πŝ
8

∫ ∞
0

dλ1

λ1
ln

(
−(λ1−ŝ)(1−λ1ŝ)

ŝ
(
1+λ1(λ1−ŝ)

) ) (B.38)

=
1

m

αsCF
4π

θ(ŝ)

πŝ
8

[
θ(2Q0−ŝ)

(
− ln2(−s̃)− π2

4
−
(

Tan−1
(

s̃

2w( 16
s̃2

)

)
+π
)

Tan−1
(

s̃

2w( 16
s̃2

)

))

+θ(ŝ−2Q0)

(
iπ
(

2ln s̃−ln
(

1+w(s̃2)

1−w(s̃2)

))
−ln

(
1+w(s̃2)

2

)
ln
(

1−w(s̃2)

2

))]
.
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The complete sum of all off-shell O(αs) corrections, defined as the sum of all contri-

butions for finite ŝ minus the on-shell diagram of eq. (B.29), reads

J (off)
B,ur (ŝ,Q0) =J (a)

B,ur(ŝ,Q0)+J (b)
B,ur(ŝ,Q0)−J (a,os)

B,ur (ŝ,Q0)

=
1

m

αsCF
4π

1

πŝ

{
θ(2Q0−ŝ)

[
−8ln2(−s̃)+8ln(−s̃)+

8π(1−w( 16
s̃2

))

s̃

−
16w( 16

s̃2
)Tan−1

(
s̃

2w( 16
s̃2

)

)
s̃

−8Tan−1
(

s̃

2w( 16
s̃2

)

)(
Tan−1

(
s̃

2w( 16
s̃2

)

)
+π
)
−2π2

]
+θ(ŝ−2Q0)

[
iπ
(

8w(s̃2)−8+16ln s̃−8ln
(

1+w(s̃2)

1−w(s̃2)

))
+8ln s̃

−4w(s̃2) ln
(

1+w(s̃2)

1−w(s̃2)

)
−8ln

(
1−w(s̃2)

2

)
ln
(

1+w(s̃2)

2

)
+

8π

s̃

]}
, (B.39)

and the corresponding Borel space result at the pole at u = 1/2 has the form

B
[
J (off)
B,ur (ŝ, Q0)

](
u ≈ 1

2

)
=
−8CF e−

c
2

mŝ2πβ0
θ(ŝ)

µ

u− 1
2

. (B.40)

To obtain the O(αs) results for the bHQET jet funtion we take the imaginary part

of eqs. (B.29) and (B.39) following eq. (B.22). Writing the jet function as a sum of the

on-shell (os) self-energy contribution and the remaining off-shell contributions (off)

J
(τ)
B,ur(ŝ, Q0) = J

(os)
B,ur(ŝ, Q0) + J

(off)
B,ur(ŝ, Q0) (B.41)

we obtain [w(z) = (1− 4/z)1/2, s̃ = ŝ/Q0]

J
(os)
B,ur(ŝ, Q0) =

1

m

αsCF
4π

(
−8πQ0 δ

′(ŝ)
)
, (B.42)

J
(off)
B,ur(ŝ, Q0) =

1

m

αsCF
4π

{
2
(

4− π2

3

)
δ(ŝ) (B.43)

+ θ(2Q0 − ŝ)
(
− 8

Q0

[
θ(s̃)

s̃

]
+

+
16

Q0

[
θ(s̃) ln s̃

s̃

]
+

)
+ θ(ŝ− 2Q0)

8

ŝ

[(
w(s̃2)− 1

)
−
(

ln
(1 + w(s̃2)

1− w(s̃2)

)
− 2 ln s̃

)]}
.

The corresponding Borel space result at the pole at u = 1/2 are obtained by taking the

imaginary parts of eqs. (B.28) and (B.40) giving

B
[
J

(os)
B,ur(ŝ, Q0)

](
u ≈ 1

2

)
=

8CF e−
c
2

mβ0

µ

u− 1
2

δ′(ŝ) , (B.44)

B
[
J

(off)
B,ur(ŝ, Q0)

](
u ≈ 1

2

)
=
−8CF e−

c
2

mβ0

µ

u− 1
2

δ′(ŝ) . (B.45)

B.4 Unreleased SCET jet function

The calculation for the unreleased SCET jet function for massless quark production can be

carried out in close analogy to section B.3. The full result (accounting for the contributions
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arising from two hemispheres) at O(αs) reads [s′ = s/Q2
0, w(z) = (1− 4/z)1/2]

J (τ)
ur (s,Q0) =

αs(Q0)CF
4π

{(
12− 4π2

3

)
δ(s)+θ(4Q2

0−s)
(
− 6

Q2
0

[
θ(s′)

s′

]
+

+
8

Q2
0

[
θ(s′) lns′

s′

]
+

)
+θ(s−4Q2

0)
1

s

[
6(w(s′)−1)−8

(
ln
(1+w(s′)

1−w(s′)

)
−ln s′

)]}
. (B.46)

For future reference we also provide some useful intermediate results the SCET jet function

in Feynman gauge. The self-energy diagrams yields

αs(µ)CF
4π

{
−δ(s) +

1

µ2

[
θ(s/µ2)

s/µ2

]
+

}
(B.47)

without any cut and

αs(Q0)CF
4π

{
−2δ(s) + θ(4Q2

0 − s)
1

Q2
0

[
θ(s/Q2

0)

s/Q2
0

]
+

+
θ(s− 4Q2

0)

s

(
1− w(s/Q2

0)
)}

(B.48)

for the unreleased contribution. The Wilson-line diagrams (containing the Eikonal propa-

gator) yield

αs(µ)CF
4π

{(
4− π2

2

)
δ(s)− 2

µ2

[
θ(s/µ2)

s/µ2

]
+

+
2

µ2

[
θ(s/µ2) ln s/µ2

s/µ2

]
+

}
(B.49)

without any cut and

αs(Q0)CF
4π

{(
4−π

2

3

)
δ (s)+θ

(
4Q2

0−s
)(
− 2

Q2
0

[
θ(s/Q2

0)

s/Q2
0

]
+

+
2

Q2
0

[
θ(s/Q2

0) lns/Q2
0

s/Q2
0

]
+

)

+θ
(
s−4Q2

0

) 2

s

[
w
(
s/Q2

0

)
−1+ln

s

Q2
0

−ln

(
1+w

(
s/Q2

0

)
1−w

(
s/Q2

0

))]} (B.50)

for the unreleased contribution.

C Integrals in d-dimensions with p⊥ cut

For the calculation of the jet and soft functions with and without a q⊥-cut we need to solve

d-dimensional integrals of the form∫
ddq

(2π)d
fQ0(q⊥)

(q2 + ∆)n
, (C.1)

for the cases fQ0(q⊥) = 1 (no cut), fQ0(q⊥) = θ(q⊥ −Q0) (only above cut) and fQ0(q⊥) =

θ(Q0−q⊥) (unreleased). After a Wick-rotation and doing the energy and angular integrals

that are not affected by the cutoff, one arrives at

2i(−1)n

(4π)
d
2 (n− 1)Γ

(
d
2 − 1

) ∫ ∞
0

dq⊥ fQ0(q⊥)
qd−3
⊥

(q2
⊥ −∆)n−1

. (C.2)

– 100 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
0

This can be solved for the three different cases and gives∫
ddq

(2π)d
1

(q2 + ∆)n
=
i(−1)n Γ

(
n− d

2

)
(4π)

d
2 Γ(n)

(−∆)
d
2
−n , (C.3)

∫
ddq

(2π)d
θ(q⊥ −Q0)

(q2 + ∆)n
=
i(−1)n B

(
∆
Q2

0
, n− d

2 , 2− n
)

(4π)
d
2 (n− 1)Γ

(
d
2 − 1

) (∆)
d
2
−n , (C.4)

∫
ddq

(2π)d
θ(Q0 − q⊥)

(q2 + ∆)n
=
i(−1)n 2F1

(
d
2 − 1, n− 1, d2 ,

Q2
0

∆

)
(4π)

d
2 (n− 1)Γ(d2)

(Q2
0)

d
2
−1(−∆)1−n (C.5)

−−−→
d→4

i(−1)n

16π2(n− 1)(n− 2)

(
(−∆)2−n − (Q2

0 −∆)2−n
)
, (C.6)

where in the last line we took the limit d → 4 since there are no divergences in the

unreleased contributions that need to be regularized by dimensional regularization.

D Simulation settings

In this appendix we document the changes relative to the default settings in Herwig

version 7.1.2 [102] with which these studies have been carried out. All of the results are

parton level simulations, with special settings to make contact with the analytic approach

and are not advocated to be used in a full simulation. All simulation is based on the

default LEP-Matchbox.in input file, which is prepared to generate both leading order and

next-to-leading order matched simulations.

D.1 Common settings

In all of the simulations we consider, we use light quarks u, d, s, c, b by setting their nominal

mass to zero, and their consitutent masses, as well as the gluon’s constituent mass to be

effectively zero,

set /Herwig/Particles/x:NominalMass 0*GeV

set /Herwig/Particles/x:ConstituentMass 0.00001*GeV

set /Herwig/Particles/g:ConstituentMass 0.000021*GeV

where x = u,d,s,c,b. We also switch off QED initial state radiation,

set /Herwig/Particles/e+:PDF /Herwig/Partons/NoPDF

set /Herwig/Particles/e-:PDF /Herwig/Partons/NoPDF

and do consider the kinematic reconstruction option employed in earlier Herwig versions,

set /Herwig/Shower/ShowerHandler:ReconstructionOption CutOff

We always consider parton level results

read Matchbox/PQCDLevel.in

– 101 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
0

The parton shower cutoff is changed via

set /Herwig/Shower/QtoQGSudakov:pTmin X*GeV

set /Herwig/Shower/GtoGGSudakov:pTmin X*GeV

set /Herwig/Shower/GtoQQbarSudakov:pTmin X*GeV

where X=Q0/GeV. If gluon branchings are desired to be switched off, we use

cd /Herwig/Shower

do SplittingGenerator:DeleteFinalSplitting g->g,g; GtoGGSudakov

do SplittingGenerator:DeleteFinalSplitting g->x,xbar; GtoQQbarSudakov

where x again runs over the different quark flavors. We always switch off g → tt̄ branchings

by an according statement. If additionally we qant to quantify the remaining impact of

angular ordering, we choose

cd /Herwig/Shower

set QtoQGSplitFn:AngularOrdered No

set GtoGGSplitFn:AngularOrdered No

set QtoQGSplitFn:ScaleChoice pT

set GtoGGSplitFn:ScaleChoice pT

As far as the calculation of the production process is concerned, we either use the leading

order, subtractive or multiplicative matched simulation,

read Matchbox/MCatLO-DefaultShower.in

read Matchbox/MCatNLO-DefaultShower.in

read Matchbox/Powheg-DefaultShower.in

respectively. The Matchbox build-in matrix elements for e+e− → jets at leading and

next-to-leading order are employed in our simulation. Unless stated otherwise, matrix

elment corrections are switched off,

set /Herwig/Shower/ShowerHandler:HardEmission None

D.2 Massless case

In the massless case we generate two-jet events using light flavours only

set Factory:OrderInAlphaS 0

set Factory:OrderInAlphaEW 2

do Factory:Process e+ e- -> j j

No other special settings are applied.
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D.3 Massive case

In the massive case, we produce top quark pairs on-shell,

read Matchbox/OnShellTopProduction.in

set Factory:OrderInAlphaS 0

set Factory:OrderInAlphaEW 2

do Factory:Process e+ e- -> t tbar

We exclusively select leptonic decays,

do /Herwig/Particles/t:SelectDecayModes t->nu_mu,mu+,b; t->nu_e,e+,b;

do /Herwig/Particles/tbar:SelectDecayModes tbar->nu_mubar,mu-,bbar; \

tbar->nu_ebar,e-,bbar;

If an independent cutoff on the top quark shower is desired, we use

cd /Herwig/Shower

do SplittingGenerator:DeleteFinalSplitting t->t,g; QtoQGSudakov

cp QtoQGSudakov TtoTGSudakov

do SplittingGenerator:AddFinalSplitting t->t,g; TtoTGSudakov

set /Herwig/Shower/TtoTGSudakov:pTmin X*GeV

Open Access. This article is distributed under the terms of the Creative Commons
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