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ABSTRACT
Threat intelligence sharing has become a cornerstone of cooperative
and collaborative cybersecurity. Sources providing such data have
become more widespread in recent years, ranging from public enti-
ties (driven by legislatorial changes) to commercial companies and
open communities that provide threat intelligence in order to help
organisations and individuals to better understand and assess the
cyber threat landscape putting their systems at risk. Tool support
to automatically process this information is emerging concurrently.
It has been observed that the quality of information received by the
sources varies significantly and that in order to assess the quality
of a threat intelligence source it is not sufficient to only consider
qualitative indications of the source itself, but it is necessary to
monitor the data provided by the source continuously to be able
to draw conclusions about the quality of information provided by
a source. In this paper, we propose a methodology for evaluating
cyber threat information sources based on quantitative parameters.
The methodology aims to facilitate trust establishment to threat
intelligence sources, based on a weighted evaluation method that
allows each entity to adapt it to its own needs and priorities. The ap-
proach facilitates automated tools utilising threat intelligence, since
information to be considered can be prioritised based on which
source is trusted the most at the time the intelligence arrives.

KEYWORDS
Cooperative and collaborative cybersecurity, cyber threat informa-
tion sharing, cyber threat intelligence source evaluation, quality
parameters, trust indicators

1 INTRODUCTION
The landscape of cyber threats is rapidly evolving, thus making it
harder for security experts to deal with them. Cyber attacks rely on
sophisticated methods in order to exploit the target system, while
also being stealthy to avoid detection from defence mechanisms
on the target system. Furthermore, attackers collaborate with each
other by sharing tools and services, thus increasing the effectiveness
of their attacks.

From the defenders’ point of view, any information regarding
the behaviour and the methods used by cyber attacks is very valu-
able for either preventing or confronting them. The cybersecurity
community in the context of developing effective defence mecha-
nisms, has started sharing Cyber Threat Information/Intelligence
(CTI) to help organisations protect their assets against constantly
evolving as well as emerging threats in the cyberspace. Cyber threat
information is defined by NIST as any information that can help
an organisation identify, assess, monitor, and respond to cyber
threats (NIST 800-150) [11]. Moreover, cyber threat intelligence
platforms are being built that are capable of consuming various
cyber threat information feeds, analysing and enhancing the infor-
mation (adding intelligence), and thus generating knowledge with
regards to the status of the cyber threat information.

CTI is a way of expressing knowledge about cyber threats and
vulnerabilities in a structured way, after relevant information has
been collected, aggregated, evaluated, analysed, or enriched using
appropriate analysis techniques [11]. A comprehensive definition
of cyber threat intelligence is also provided by Gartner, according
to which “Threat intelligence is evidence-based knowledge, including
context, mechanisms, indicators, implications and actionable advice,
about an existing or emerging menace or hazard to assets that can
be used to inform decisions regarding the subject’s response to that
menace or hazard” [14].

The type of information shared by these emerging CTI sources
varies and might include suspicious domain names, hashes for ma-
licious executables, IPs where malicious activity might originate,
or even descriptions of techniques used by attackers, tools and
exploits. In practice the level of analysis carried out by a source
prior to sharing this information varies significantly. While some
CTI sources might choose to share information without properly
filtering or evaluating it to speed up sharing, others might adopt a
different approach which requires a proper analysis prior to dissem-
inating it. Moreover, CTI sources might provide similar information
to other sources. Aggregators are types of CTI sources that typically
combine information from various sources and of various types and
share them as separate feed, while removing duplicates and poten-
tially enriching the information with intelligence. Aggregators are
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therefore likely to provide more complete information, although
not as fast as the original source.

When deciding to rely on a CTI source and integrate its feeds into
security tools deployed in the organisation, one has to consider the
above and other properties that can be used to evaluate CTI sources.
In this work a methodology is presented to assess the trust in the
quality of a CTI source by continuously re-evaluating the trust once
new intelligence is shared by a source, and setting it in context
with other relevant CTI sources. Trust in the context of this work
stands for the computational trust evaluation as described by [2]
conducted by the computation of a trust indicator as described in
Section 4.2, while quality represents how good the information of a
source is. This is achieved by following the closedworld assumption,
assuming that all the threat intelligence shared by the considered
sourcesmake up the entire world view of threat intelligence. A set of
quantitative parameters is defined that is able to determine relevant
quality aspects for threat intelligence, evaluating each newmessage
against the information contained in the world view, and a trust
indicator for each source is derived from those parameters at regular
intervals. The advantage of this approach is that trust evaluation
can be done in an online fashion, and the trust in the quality of
a source considers each threat intelligence message shared by a
source. No prior evaluation such as the establishment of a training
set is required since the approach utilises the sources considered in
the world view as baseline to validate against. It should be noted
that while the goal of this research is to establish trust indicators,
the core contribution of the research is to define the quantitative
parameters at the core of the indicators. The actual calculation of
trust is done by applying a previously defined trust model, and no
contribution to research into computational trust is given in this
work.

The methodology is built around the STIX (Structure Threat
Information Expression) [20] standard, however without excluding
sources that do not adopt the same standard as information provided
in other formats can be converted to STIX. Other relevant standards
like OpenIOC [19] provide a similar framework to structure threat
intelligence, and the presented approach can be adapted to those
standards easily.

The core of this paper is structured as follows: Existing ap-
proaches and relevant research is described in Section 2, followed
by an overview of the current cyber threat intelligence landscape
in Section 3. In Section 4 the methodology is introduced and de-
scribed in further detail in Subsection 4.1 and 4.2. The benefits and
challenges of this new approach to determining a trust value for
CTI sources are outlined in Section 5, where an example calculation
is also presented. Finally, a summary and outlook on future work
is given in Section 6.

2 RELATEDWORK
There are different possible approaches for evaluating cyber threat
intelligence sources, depending on what the collected information
is needed for and what type of source is considered. One such ap-
proach would be to analyse a source based on the quality of the
data or information provided [3, 4, 22]. This becomes even more
challenging in the era of big data and big data analysis. The authors
in [4] introduce five dimensions (availability, usability, reliability,

relevance and presentation quality), each divided into their individ-
ual elements, resulting in a big data quality assessment framework.
In [22] the authors have demonstrated the necessity of information
quality evaluation specific to big data in the intelligence community
context. Their solution is to introduce a set of metrics to determine
the quality of the source as well as an approach to validate said
source. Another approach would be to identify metrics and indi-
cators specific to the domain the information will be used for. An
example for such a solution has been proposed by the authors in [3],
who have structured their methodology into five assessment crite-
ria: syntax accuracy, completeness, timeliness, situation certainty
and consistency and relevance. This approach was designed specif-
ically for the context of emergency situational awareness, aiming
to improve critical information received by emergency response
teams by assessing the sources based on above criteria. Evaluation
methods in the area of cyber threat intelligence so far have been
limited, those that have been devised are mostly theoretical and
not yet publicly available [15] [18]. The criteria selected by the
authors in [18] are useful for a general assessment of cyber threat
intelligence sources, and must be evaluated manually by experts via
a questionnaire, which determine weights for each criterion. These
are then adjusted using a multi-objective algorithm, resulting in
a final weight per criterion. This approach evaluates commercial
cyber threat intelligence providers, stating that work on the micro
level of threat intelligence is still to be undertaken. The authors in
[13] have created an automated solution scanning thousands of blog
entries and creating relevant cyber threat entities after matching
information collected. This tool uses NLP (natural language pro-
cessing) to identify threat information in unstructured text. While
it focuses more on cyber threats on a micro level, it does not offer
any analysis of the collected information. The approach presented
in [15] uses the automated analysis of each single cyber threat
message to derive an overall rating for the source it has come from.
The authors based their ranking method on Google’s PageRank
[17], and provide an algorithm that “ranks feeds according to the
originality of their content and the reuse of entries by other feeds”.

Another approach to evaluating information sources would be
to focus on how much a source can be trusted. This research has
been mostly applied to peer-to-peer information sharing platforms
[16, 21] or data provided by commercial anti virus providers [1]. In
the peer-to-peer community, where each peer can access and share
information, it is essential to trust said peers. Current peer-to-peer
networks use personal, face-to-face validation of their peers and
base their trust on personal experience. One of the attempts to au-
tomate trust distribution is based on four attributes, each weighted
based on expert input: sharing activity, stakeholder rating, same
source and same industry. The authors in [21] acknowledge re-
maining vulnerabilities of their approach in regards to collusion
attacks or malicious stakeholders. Similar faults have been men-
tioned by the authors in [16], who have implemented a distributed
data interaction model as well as a generic scoring model to evalu-
ate the contributed attributes by each peer to the MISP (Malware
Information Sharing Platform and Threat Sharing) community.
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3 THE CYBER THREAT INTELLIGENCE
LANDSCAPE

Cyber threat intelligence, or more generally cybersecurity-related
information sharing is an essential part of the collaborative and
cooperative cybersecurity efforts to effectively enhance security in
cyber space, as laid out by the European cybersecurity strategy [7].
Two legislative actions that enforce this strategy are the Network
and Information Security (NIS) Directive [8], as well as the General
Data Protection Regulation (GDPR) [9] that require organisations
to share cyber incident information as well as data breach informa-
tion with the relevant authorities. Threat intelligence communities
intend to utilise this information, gain a better understanding of the
situation through analysis and share the added intelligence with the
communities, organisations and the general public. In this collabo-
rative and cooperative cybersecurity environment, both public as
well as commercial and community-based actors have emerged that
share CTI based on public mandate, for commercial profit or simply
based on an interest to enhance security in cyberspace. Examples
of such shareable information include:

• Indicators, i.e., system artefacts or observables that contain
patterns which can help identify suspicious or malicious
activity.

• Tactics, Techniques and Procedures (TTPs), i.e., (detailed)
description of the behaviour of an actor.

• Security alerts, i.e., notification, usually human-readable re-
garding security issues, such as vulnerabilities.

• Threat intelligence reports, i.e., collections of threat intelli-
gence for various topics, such as threat actors, malware, and
attack techniques.

• Recommended security tool configurations, regarding auto-
mated collection and processing as well as healing of identi-
fied security issues.

Focusing on more automated solutions adopted for machine-
to-machine CTI sharing, the exchanged CTI contain information
in the form of Indicators of Compromise (IOC) which are forensic
artefacts related to the security incident (e.g. malware file hashes, IP
addresses, virus signatures). Given the complexity and the dynamic
nature of the present cyber attacks, sharing and processing of IOCs
has to be automated, so as to be completed within a reasonable
time frame. Hence, a structured representation of CTI according
to a common standard is essential, so as to maximise its usability
potential. Two of the most popular and widely used standards
for sharing CTI are the Structured Threat Information Expression
(STIX) [20] and OpenIOC [19].

STIX is a language and serialisation format used to exchange
cyber threat intelligence. It is expressive, as it includes IOCs and
additional cyber threat information, such as techniques and pro-
cedures, indicators, cyber observables, campaigns and threat mit-
igations. Furthermore, it is flexible given that it can be extended
with custom user-defined fields. The latest version of STIX (2.x) is
defined using JSON schemas, thus rendering it easier to parse and
expand than its XML-based predecessor (STIX 1.x).

OpenIOC, developed by Mandiant, is an extensible XML schema
containing technical characteristics that identify a known threat,
an attacker’s methodology or other evidence of a compromise.

CTI can be obtained from either public sources, or from licensed
ones by paying a fee. However, given the abundance of sources,
suitable metrics are required for conducting an appropriate evalua-
tion that will help towards minimising false alerts, as well as not
missing any valuable threat information.

The literature review made it evident that limited metrics or
scoring systems exist and that most of them were following a qual-
itative approach. Additionally, none of the qualitative approaches
found in the literature fully captured the specific aspects the authors
considered the most important when choosing a suitable threat
intelligence source. As listed in Table 1, 6 categories of evaluation
properties were defined that allow to assess and classify the types
of sources available and how they share information. The Quality
criterion indicates the type and complexity of information shared
by a source, the Provider Classification assesses the distribution
models, the Licensing Options identifies the potential restrictions
of usage for provided data, the Interoperability criterion assesses
different standards used to share CTI to see how well they sup-
port existing tools, Advanced API support assesses how data can
be accessed by a consumer, and Context Applicability lists different
classes of CTI that can be shared by sources to assess its applica-
bility to specific contexts. The definition of the evaluation criteria
presented in this work are based on the experiences of the authors
in the H2020 project CS-AWARE1, and a more extensive description
of the methodology and expertise involved in defining those criteria
is described in CS-AWARE project deliverable D2.2.

The properties examined at source level according to Table 1,
which can be done in most cases by evaluating published proper-
ties of a source, may be sufficient for many use cases. However,
considering that the quality of a source may vary over time, a quan-
titative approach that validates those aspects continuously will lead
to more accurate results for cases where the quality of data to e.g.
avoid misinformation or false positives is important. Taking the
properties mentioned in Table 1 as a basis, a methodology based
on purely quantitative parameters was introduced, resulting in the
methodology presented in Section 4.

4 METHODOLOGY
While most of the current threat intelligence evaluation methods
discussed in related work in Section 2 focus on a direct estimation
of the quality of information provided by a source, we argue that
such a quality assessment will always be incomplete and inaccurate
to a degree that can make it difficult to draw conclusions about the
actual quality of information provided by a source. The main reason
is that current methods are either qualitative indicators that require
manual assessment and constant manual re-assessment in order to
provide quality indications, or quantitative approaches that conduct
one-time tests to assess the quality at specific points or frames in
time. It is our assumption that for a comprehensive and meaningful
evaluation of a threat intelligence source, constant monitoring and
re-evaluation is required and that a single quality indicator is not the
best way to represent this evaluation. The presented methodology
is able to derive a trust value per source based on the quantitative
evaluation of parameters for each message provided by a threat
intelligence source.

1https://cs-aware.eu/
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Table 1: Properties for evaluating the quality of aCTI source.

1 Type of Information

1.1 Indicators
1.2 Sightings
1.3 Courses of Action
1.4 Vulnerabilities

2 Provider Classification

2.1 Data Feed Provider
2.1.1 Original Provider
2.1.2 Aggregator
2.2 Intelligence Platform
2.3 Report Provider

3 Licensing Options

3.1 Open
3.2 Restricted
3.3 Commercial
3.4 Information Reuse
3.4.1 Commercial: Allowed
3.4.2 Academic: Allowed
3.4.3 Personal: Allowed

4 Interoperability

4.1 Supported formats
4.1.1 STIX1
4.1.2 STIX2
4.1.3 PlainText
4.1.4 OpenIOC
4.1.5 RSS
4.1.6 JSON (non-STIX)
4.1.7 CSV
4.2 Supported data exchange formats
4.2.1 TAXII1
4.2.2 TAXII2

5 Advanced API Supported

5.1 Filtering based on dates
5.2 Filtering based on type of information

6 Context Applicability

6.1 Vulnerabilities
6.2 Threats
6.3 Campaigns
6.4 Hashes
6.5 Recommendations
6.6 Incidents (Sightings)

Our approach is based on a closed world assumption, where it
is assumed that the information provided by a fixed set of threat
intelligence sources encompasses the complete set of information
available in the world of threat intelligence. Thus, in order to vali-
date information provided by a source, it only needs to be validated
against the information provided by the other sources considered in

this closed world. This assumption allows to draw concrete conclu-
sions about specific parameters, such as how fast threat information
is made available compared to other sources, or how original the
provided information and added intelligence is compared to the
other sources.

The methodology is composed of two main aspects: A definition
of quantitative parameters and how they can be derived is described
in Section 4.1, and a method of deriving a trust indicator from those
parameters is described in Section 4.2.
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Figure 1: Methodology for CTI evaluation.

Figure 1 shows an overview of the procedure of how the trust
value is generated. Beginning with the collection of data from the
pre-selected sources s1, . . . , sn , of which each single message is
analysed. Every messagemt by each source is directly evaluated in
regards to the selected parameters as well as added to the database,
which constitutes the overall world view of the evaluation. The
parameter evaluation is applied to every new message provided by
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each of the sources as soon as the system receives it and results in
p1s1, . . . ,pmsn . The results of these parameters are then combined
to determine the overall trust indicator, which is calculated in pre-
defined time intervals and results in a final trust indicator for each
source T Is1 , . . . ,T Isn .

4.1 Quantitative evaluation parameters
In this Section the properties for evaluating source quality that
have been defined in this work, as well as a tentative approach of
deriving those parameters based on STIX 2.0 as a representative
threat information exchange standard, are described. Table 2 sum-
marises the aforementioned parameters. The output provided by
them is restricted to the interval [0, 1] (normalisation is applied, if
necessary).

The Extensiveness parameter evaluates how much effort a
threat intelligence source puts in describing specific aspects of
an information that are not explicitly required. An indicator of
this effort can be how many optional properties (in addition to the
required properties) relating to a specific object defined by CTI
sharing standards are filled by the source. In many cases a simple
sum of filled-in optional properties will be a sufficient indicator, but
depending on the specific object and/or protocol, a weighting of
optional properties may be relevant in order to put more emphasis
on those that are deemed more important than others. In STIX 2.x
all objects have properties that are either required to be provided or
optional. Moreover, these properties are grouped into common and
object-specific ones. For example, when constructing an instance
of the object sighting, it has the following object-specific properties
that are required:

• type
• sighting_of_ref

whereas, the following are optional:
• first_seen
• last_seen
• count
• observed_data_refs
• where_sighted_refs.

The more of these a source has filled in, the better it is for the overall
extensiveness value. Equation 1 details the evaluation of the exten-
siveness parameter p1, where oi is the sum of the filled-in optional
properties in a specific message i , max yi is the maximum number
of optional properties defined for this specific type of message i by
the CTI sharing standard like STIX, and z is the total number of
messages shared by the source.

p1 =
1
z

z∑
i=1

(
oi

maxyi

)
(1)

The Maintenance parameter provides an indication of how
information provided by a source evolves over time and can be
evaluated by monitoring how often shared information is updated
with new and refined information. When updating messages in
STIX, the version number of the object is changed. Only the entity
that created the object, can issue an update for the object. Equa-
tion 2 details the calculation of the maintenance parameter, where:
ui is the number of updated objects provided by source s , and

avg(p2s1, . . . ,p2sn ) is the average maintenance parameter p2 of the
sources 1 . . .n at the time. The parameter is normalised to result in
a value between 0 and 1.

p2 =






 1
z
∑z
i=1 ui

avg(p2s1, . . . ,p2sn )






 (2)

Analysing the average number of False Positives of a source
allows an interpretation of how well a source deals with informa-
tion that turns out to be wrong. STIX allows the inclusion of the
optional property revoke, which if set to true marks the message
as being invalid. The authors assume that the fewer false positives
a source has, the better the information it provides is. However, in
practice it may turn out that a source with a higher false positive
rate indicates higher quality, since this source properly invalidates
previous information if new evidence suggests a false positive. In
that case this assumption may change in future. Equation 3 details
the calculation of the false positive parameter, where Fsx is the
number of false positives provided by source sx and Fsi represents
the number of false positives for source si in the world view.

p3 = 1 −
(

Fsx∑n
i=1 Fsi

)
(3)

The Verifiability parameter indicates whether threat informa-
tion provided by a source is externally verifiable. Some threat intel-
ligence standards allow to specify original sources utilised to derive
the provided information. One way of evaluating the verifiability
parameter is to check if a threat intelligence source tends to provide
verifiable sources. In STIX this is done via external_references,
which points to external sources that also provide information
about the shared content. Equation 4 details the calculation of the
verifiability parameter, where ri represents the number of refer-
ences provided by source s divided by the average of references per
source in the world view. The parameter is normalised to result in
a value between 0 and 1.

p4 =









 1
z
∑z
i=1 ri




avg(p4s1, . . . ,p4sn )






 (4)

The Intelligence parameter indicates how much added value a
threat intelligence source provides in addition to the basic threat
information. A way of determining added intelligence is to iden-
tify how much additional information (like analysis, descriptions,
mitigation actions) are added to the original information. A way of
validating this parameter, according to state-of-the-art threat intel-
ligence standards, is to evaluate how many additional objects are
linked to a threat intelligence parameter. For STIX this can be done
by evaluating the average number of relationships an object has
of some type, such as related-to or derived-from. Equation 5
details the calculation of the intelligence parameter, where li is
the number of links in objects from source si that are related to
other objects divided by the average of linked objects per source
in the world view. The computation of the average and the final
parameter are normalised to be between 0 and 1.

p5 =









 1
z
∑z
i=1 li




avg(p5s1, . . . ,p5sn )






 (5)
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Table 2: Quantitative parameters for cyber threat intelligence source evaluation.

Parameter Description

p1 Extensiveness Evaluates how many optional parameters are filled in.

p2 Maintenance Determines how often messages are updated.

p3 False Positives Determines how often messages of a source are invalidated.

p4 Verifiability Expresses how often a source verifies the information they provide by linking their source.

p5 Intelligence Indicates how much added value a source offers in their messages by linking it to other objects.

p6 Interoperability Based on which data format a source provides their data in.

p7 Compliance Determines how compliant a source is to the standard they use.

p8 Similarity Evaluates how similar specific entries of two sources are.

p9 Timeliness Analyses which source provides information the quickest.

p10 Completeness Indicates how much of the entire world a single source represents.

The Interoperability parameter is used to evaluate how well
CTI sources, as providers of information, work together with tools
that act as information consumers. While this parameter may not
be estimated as intuitively as the other parameters, one can derive
an estimate of interoperability based on the format the data is
exchanged, with commonly used and relevant standards like STIX
having a bigger impact on interoperability than less well known
or inadequate threat standards. This is done by firstly determining
which format is being most commonly used in the world view,
and ranking them accordingly. The sources are evaluated based on
how high the format they use is ranked in the overall word-view
rating. Equation 6 details the calculation of the interoperability
parameters, where bi is the number of sources in the world view
providing information using the same standard divided by the total
number of sources.

p6 =
n∑
i=1

(
bi
n

)
(6)

The Compliance parameter evaluates how well the messages
provided by a threat intelligence source comply to the data standard
used to model the threat information. Compliance can be checked
by evaluating the messages using either the reference implementa-
tion validators (usually provided by standardisation organisations
to validate compliance) or by implementing such a validator, should
one not be available by default. The value of the parameter is calcu-
lated by determining how much percent of all messages over time
have been 100% compliant to the corresponding standard, such as
STIX. Equation 7 details the calculation of the compliance param-
eter, where ci is the number of objects that originate from source
si and are compliant to the CTI exchange standard used by the
specific source. The parameter is normalised to result in a value
between 0 and 1.

p7 =






 1
z
∑z
i=1 ci

avg(p7s1, . . . ,p7sn )






 (7)

The Similarity parameter indicates how similar information
provided by a source is to the same information provided by another

source. The goal is to compare semantic text entries and see if
a source would provide unique information relating to specific
threat information. This can be evaluated using one of the existing
text similarity algorithms such as the Jaccard or Cosine Similarity
[10]. As with other comparison parameters, similarity also requires
the evaluation of messages by comparing the type, followed by
the similarity index computation. The similarity index will be a
percentage on per message basis, which is then summed up for
the overall similarity score of the source. Equation 8 details the
calculation of the similarity parameter, where the similarity index
yi of all messages that are similar similar to others are added and
an average is generated.

p8 =
1
z

z∑
i=1

(yi ) (8)

The Timeliness parameter indicates which of the sources is
usually the fastest at providing threat intelligence relating to the
same event. This parameter can be evaluated by cross-referencing
messages with messages from the other sources in the world view.
Every incoming message ID is compared to all existing IDs in the
database, to see if this exact information already exists or if the
source at hand is the first to publish. If there is no match of IDs,
first the type of the object is compared to existing data, followed by
the similarity evaluation. Depending on how similar two messages
are, they are assumed to be equal and the message can be evaluated
in regards to its timeliness. Equation 9 details the calculation of the
timeliness parameter, where min ti is the fastest source for object i ,
expressed in UTC timezone (using an integer representation, such
as the UNIX Epoch time) and (ts )i is the time that source s has
shared the object with the same ID or a similar one.

p9 =
1
z

z∑
i=1

(
min ti
(ts )i

)
(9)

The Completeness parameter indicates how much of the infor-
mation contained in the world view is covered by a single threat



AQuantitative Evaluation of Trust ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

intelligence source. This parameter can be evaluated by cross-
referencing the messages from a source with the information con-
tained in theworld view. The first step is to identify if a newmessage
already exists in the world view and if so, how exact they match.
This is determined by firstly comparing the IDs and if there is no
match, comparing the type followed by the similarity evaluation.
Based on how similar two messages are, equality can be assumed
and will build a basis for the computation of completeness of a
source. Equation 10 details the calculation of the completeness pa-
rameter, where |A| is the number of objects found in the world view
with different ids or not similar to those provided by a single source
and |B | is the total number of objects in the world view.

p10 =
|B | − |A|

|B | (10)

Some of the parameters can be combined in order to minimise
computational effort, Figure 2 shows the combined procedural steps
for determining Timeliness, Completeness and Similarity. The first
step is to compare the ID of the incoming message to all existing
message IDs in the world view. In the case of a match, the similarity
of the two messages is evaluated immediately. Should there be no
match, the next step is to select all prior messages of the same type
and test for similarity.

match type

test for similarity

not relevant
NO MATCH

MATCH

Timeliness & Completeness

NO MATCH not relevant

MATCH!

MATCH NO MATCH

not relevant

match idMATCH

NO MATCH

Similarity

Figure 2: Calculating comparison parameters.

4.2 Trust-based quality indicator
Based on the parameters introduced in the previous section, the
objective is to derive a trust indicator to assess the trust in the
quality for each source contained in the world view. The key aspects
of such a trust model need to be that it takes into account each
parameter according to its importance for a specific use case, and
that the trust can be updated if new evidence arrives, to account
for the dynamically evolving cybersecurity environment. The goal
of the trust model chosen for this purpose is to (a) provide a simple
and effective way to combine the parameters according to their
importance, and (b) has proven to be applicable in use cases similar
to the one proposed in this research.

A model based on an averaged weighted sum was chosen, based
on a trust model developed by Caldeira et al. in [5] and applied

to the context of evaluating trust in risk estimates shared by po-
tentially unknown or untrustworthy entities in [6]. The model is
able to evaluate trust in a dynamic environment, and constantly
update the trust level if new evidence arrives while at the same
time discounting evidence further in the past to put more weight on
recent events. It should be noted that there are many trust models
available considering more complex trust concepts that may be
relevant in this use case at some point, and it may be interesting
to replace or adopt the trust model in a later phase of the research.
At this point however, the chosen trust model is covering all the
requirements of the use case.

The trust indicator derived in this work can be seen in Equa-
tion 11. For each threat intelligence source sx in the world view, a
trust indicator T I at time t can be evaluated by adding a weighted
sum of the parameters at time t to the previous existing value of the
trust indicator at time t − 1. A recalculation of the trust indicator
should only be triggered if the weighted sum of the parameters∑m
n=1 ωn ∗(pn )sx (t) has changed during the time frame. The ageing

factor D multiplied to the original trust indicator T Isx (t − 1) is
used to put less emphasis on past events and highlight more recent
events. This is to account for the fact that, while the past should
not be dismissed completely, threat intelligence sources should be
judged more on what quality they are able to deliver in the present.

In the trust parameter calculation each parameter pn specific
to source sx is factored in at the relevant time t . The parameters
are weighted with a factor ω according to their importance for a
specific use case. In some use cases a parameter like accuracy may
be more important, while in other cases timeliness may be more
relevant. In Equation 11 those parameters with a higher ω value
gain more relevance towards the overall trust in the quality of the
threat intelligence source.

Finally, it is important to discuss the implications of choosing
the time t , specifying at which intervals the trust indicator is recal-
culated. Since parameter calculation is performed independently
from the time frame within which the trust indicator is recalculated,
two major factors should be considered when choosing the time
factor t :

• What is the expected rate in which the individual parame-
ters are changing their values considerably. The rate of the
most frequently changing parameter should be taken into
consideration.

• What are the needs of the specific use case the trust indica-
tors are evaluated for.

Based on those considerations, an applicable interval should be
chosen to represent t (e.g. hourly, daily, weekly, monthly).

T Isx (t) =
D ∗T Isx (t − 1) +∑m

n=1 ωn ∗ (pn )sx (t)
D +

∑m
n=1 ωn

(11)

5 APPLICATION EXAMPLE
Given the current status of cyber attacks and cyber threats world-
wide, it is of high importance to have suitable defence mechanisms
and mitigation procedures available, so as to protect effectively
any valuable assets. As has already been presented in the previous
sections, sharing CTI is vital for having effective defence against
all modern kinds of cyber threats. One such defence mechanism
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is developed through the CS-AWARE project, the threat detection
mechanism of which employs big data analytics and CTI [12]. This
triggered a need for developing a suitable CTI source assessment, as
getting data from reliable CTI sources would improve the system’s
threat detection and minimise the number of false positives. It was
therefore necessary to devise suitable parameters for conducting a
quantitative assessment, in order to be able to use the sources that
would best meet our needs.

Within the scope of this research, several cyber threat intelli-
gence sources were examined. Nevertheless, while there were many
such sources available, it quickly became apparent that there were
significant differences among them in terms of the provided in-
formation, ranging from volume size and refresh interval to CTI
standard conformity. It would certainly be beneficial for such at-
tributes to be considered in a potential assessment, since they may
prove to be quite important factors affecting the final outcome. For
instance, supposing that a given CTI source does not fully com-
ply with the involved protocols and standards, any information it
makes available requires additional effort during its parsing, before
it becomes fully usable.

Perhaps the first challenge encountered was to formulate an
assessment that would be able to work with a set of sources, se-
mantically rich or not. For example, sources providing plain lists of
IP addresses should somehow be compared to others that offered
CTI in STIX format (to the degree that this is attainable).

Furthermore, the assessment parameters should have some de-
gree of flexibility, that will be easy to configure. This approach
will allow for dynamically adding or removing sources and will
facilitate their use by entities with different requirements. For in-
stance, while an entity may be more interested in the rate at which
new CTI becomes available, another entity may regard information
reliability to be of higher importance. An additional aim of the
proposed assessment methodology was to keep it as simple as pos-
sible and avoid requiring expert intervention by data analysts, who
would adjust weights or other parameters involved in the various
calculations.

The major advantage of the approach presented in this paper
is that an evaluation of sources can be carried out automatically
without the need for interference by human experts. From an oper-
ational perspective this leads to several benefits. Firstly, the sources
can be assigned priorities dynamically, according to their trust score
over time. Secondly, each source will automatically be re-evaluated,
as soon as it makes available new CTI data. Moreover, due to the
absence of a human expert the introduction of any bias in the final
results is avoided.

Another advantage of the proposed approach is that new sources
can dynamically be added to the set that is subjected to evaluation.
Whenever a new source is added, the methodology allows to evalu-
ate the parameters as well as the trust in the quality of the source
based on the information that is collected from the new source.
For conducting the evaluation, historical messages can be taken
into consideration, which would help in establishing a common
reference point in the past for all sources and therefore conducting
a ‘more direct’ comparison. Alternatively, the evaluation can be
limited to future messages only, thus creating a reference ‘point
zero’ at the time a source started being evaluated. The only restric-
tion in order to ensure consistency in the knowledge base of the

world view is to not add historical messages of the new source to
the world view, because it would influence the parameter and trust
validation of all sources if new past messages are added without
triggering a re-evaluation of all sources.

From a run-time and scalability perspective the model primarily
depends on the number of messages stored in the world view and
on the parameters considered for the calculation of each quality pa-
rameter. We expect a linear run-time behaviour for each parameter
and therefore a rough run-time estimate can be given as O(m ∗ n),
wherem is the number of messages contained in the world view
and n is the maximum number of parameters that can be modelled
according to threat intelligence standards for each message.

5.1 Computational example of the
extensiveness parameter

In what follows we present an indicative example where the exten-
siveness quality indicator (p1) is calculated according to Equation 1.
The chosen data sample consists of 3 STIX messages obtained from
MISP (event ID 24504, 21271 and 24362). The first message (event
ID 24504) contains 7 SDO objects and for each of these objects, the
number of optional parameters (filled-in and available in total) is
presented in Table 3.

Therefore, for the first message:
o1

maxy1
=

10
47

Similarly, for the remaining two messages, the sums are calcu-
lated, respectively, as:

o2
maxy2

=
22
193

and
o3

maxy3
=

54
172

Hence,

p1 =
1
3

(
10
47
+

22
193
+

54
172

)
= 0.21

which means that this specific source, on average, has an extensive-
ness value of approximately 21% per message.

6 CONCLUSION
In this paper we introduced a methodology for evaluating trust in
the quality of threat intelligence sources based on a quantitative
assessment of parameters defined to assess a wide range of aspects
related to threat intelligence. The method is based on a closed world
assumption, where each source (or the threat intelligence provided
by each source) is evaluated against all other sources contained in
the world view to assess how trusted the information provided by
a source is expected to be in relation to the other sources in the
world view. A set of parameters (Extensiveness, Maintenance, False
Positives, Verifiability, Intelligence, Interoperability, Compliance,
Timeliness, Completeness, Similarity) was introduced along with
an approach to evaluate those parameters in a quantitative way
for data compliant with state-of-the-art threat intelligence sharing
standards like STIX 2.x. A method to derive a trust indicator for
each threat intelligence source based on those parameters was also
presented.
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Table 3: Number of optional parameters for the SDO objects contained in MISP message with event ID 24504.

Object ID Common Object-specific
Filled-in Max Filled-in Max

identity–5804fe16-fd94-4326-904f-07e6ac14012a 0 6 0 4

report–5ce65218-d350-423b-a303-339dac12042b 2 6 0 1

vulnerability–5ce652ae-ed7c-4d05-aee2-33a1ac12042b 1 6 1 2

observed-data–5ce65316-6b64-42b2-9549-0cd8ac12042b 2 6 0 0

observed-data–5ceaadd1-954c-464c-8a7f-142dac12042b 2 6 0 0

observed-data–5cee106b-2ea8-4846-8327-2f77ac12042b 2 6 0 0

marking-definition–dc2bb6b0-e841-46f0-bc97-77b025bce33b 0 0 0 4

Sum 9 36 1 11

The main advantage of the proposed method as compared to
other threat intelligence evaluation approaches is the possibility
of online re-evaluation of the evaluation parameters every time
new threat intelligence is shared by a source, allowing the dynamic
adjustment of trust in the quality of sources. The utilisation of the
closed world assumption allows interested parties to validate each
source against other sources in the world view, representing an
evaluation of how trusted a threat intelligence source is against the
other relevant players in the field of threat intelligence. No expert
intervention, such as the definition of a training set to establish a
baseline, is required for the validation of sources.

Ongoing and future work is focused on the implementation of
the methodology. An experimental setup for the collection of threat
intelligence from sources supporting STIX 1.x, STIX 2.x and poten-
tially OpenIOC standard, as well as the evaluation of parameters
and trust indicators will be implemented to evaluate the validity of
themethodology. The evaluation and validation results are expected
to be published in a scientific publication.
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