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Abstract
We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic
lattice by emphasizing its relationwith the emergence of theWulff shape in the crystallization
problem. Minimizers Mn of the edge perimeter are shown to deviate from a corresponding
cubic Wulff configuration with respect to their symmetric difference by at most O(n3/4)
elements. The exponent 3/4 is optimal. This extends to the cubic lattice analogous results
that have already been established for the triangular, the hexagonal, and the square lattice in
two space dimensions.
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1 Introduction

In this contribution we consider the Edge-Isoperimetric Problem (EIP) in

Z
3 := {k1e1 + k2e2 + k3e3 : ki ∈ Z for i = 1, 2, 3}

where e1 := (1, 0, 0), e2 := (0, 1, 0) and e3 := (0, 0, 1). For any set Cn made of n elements
of Z3, we denote by �(Cn) the edge boundary of Cn , i.e.,

�(Cn) := {
(x, y) ∈ Z

3 × Z
3 : |x − y| = 1, x ∈ Cn and y ∈ Z

3\Cn
}

(1)

and we refer to its cardinality #�(Cn) as the edge perimeter of Cn . Notice that the edge
perimeter of a set Cn coincides with the surface area of the union of the closure of the
Voronoi cells related to Cn , i.e.,

#�(Cn) := H2(∂{x ∈ R
3 : dist(x,Cn) ≤ dist(x,Z3\Cn)}),

where H2 denotes the two-dimensional Hausdorff measure in R
3. Given the family Cn of

all sets Cn ⊂ Z
3 with n elements, the Edge-Isoperimetric Problem over Cn consists in

considering the minimum problem

θn := min
Cn∈Cn

#�(Cn), (2)

which we denote by EIPn , and in characterizing the EIPn solutions. The EIP is a classical
combinatorial problem and a review on the results in Combinatorics can be found in [2,12].
Beyond its relevance in pure combinatorics, the EIP (and corresponding problems for similar
notions of perimeter) plays a decisive role in a number of applied problems, ranging from
machine learning (see [23] and references therein) to the Crystallization Problem (CP). We
refer the reader to [9] for the relation between the EIP in the triangular lattice and the CP
with respect to a two-body interatomic energy characterized by the sticky-disc interaction
potential (see [13,19] for more details).

The minimum problem (2) relates also to the Ising model for ferromagnetic materials that
characterizes the magnetism of a bulk material as the combined effect of magnetic dipole
moments of the many atomic spins within the material [10]. Such magnetic dipole moments
are generally considered to be arranged on each site of a fixed lattice and assumed to be in two
states, either +1 or −1. The connection with (2) resides on the fact that the Hamiltonian of
the Ising model can be expressed under certain conditions with respect to the edge perimeter
of the plus phase, i.e., the set of +1 spins, as described in [10].

Our main objective is to prove that anyminimizer of the EIPn –after a suitable translation–
differs from a fixed cubic configuration

Wn := [0, �n]3 ∩ Z
3 with �n := � 3

√
n�. (3)

(with respect to the cardinality of their symmetric difference) by at most

K n3/4 + o(n3/4) (4)

elements of Z3 for some universal positive constant K > 0 (see Theorem 1.1), and to
show that this estimate is sharp for infinitely many n. In particular, the exponent 3/4 of
the leading term cannot be lowered in general. The right scaling intuition comes from the
lower bound construction (see Sect. 4), that allows to see how much one can ‘dig’ a ground
state, still keeping minimality. In the following we refer to the cubic configuration Wn as
the Wulff shape because of the analogy to the crystallization problem and the Ising model.
For results in Statistical Mechanics related to the derivation in the scaling limit of the Wulff
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1482 E. Mainini et al.

shape in the context of the low-temperature two-dimensional Ising model we refer to [10]
(see also [14,15,21,22]), and to [4,7] for analogous results in three dimensions. Results in
Combinatorics can be found in [6], where some of the minimizers of the edge perimeter in
the family of polyominoes are characterized.

We first show that (4) is an upper bound for every minimizer of EIPn .

Theorem 1.1 (Upper bound) There exists a constant K1 > 0 independent of n such that

min
a∈Z3

#(Mn	(a + Wn)) ≤ K1n
3/4 + o(n3/4) (5)

for every n ∈ N and every minimizer Mn of the EIPn.

Our second result shows that the exponent 3/4 in (4) is optimal.

Theorem 1.2 (Lower bound) There exists a sequence of minimizers Mni with a diverging
number ni ∈ N of particles such that

min
a∈Z3

#(Mni 	(a + Wni )) ≥ K2ni
3/4 + o(n3/4i ) (6)

for some constant K2 > 0 (not depending on ni ).

We will prove Theorem 1.1 in Sect. 3 and Theorem 1.2 in Sect. 4. By setting K :=
lim supn→∞ n−3/4 maxMn mina∈Z3 #(Mn	(a+Wn)),where themaximum is taken amongall
configurationsMn that are EIPn minimizers, by Theorems 1.1 and 1.2we have K ∈ (0,+∞).
We see that it is possible to choose K1 = K2 = K in (5) and (6).

These results for Z3 are the first ones related to fluctuations of minimizers in three dimen-
sions. Analogous results in two dimensions have been established in [9,20] for the triangular
lattice (see also [1]), in [17,18] for the square lattice, and finally in [8] for the hexagonal lat-
tice. The methods in these contributions are based on rearrangement techniques [20] and on
the isoperimetric characterization of minimizers (with respect to suitable notions of perime-
ter P and area A of configurations) which also allows one to find the optimal constants for
relations of the type of (5) (see [8,9]). Quite surprisingly, the same exponent 3/4 is optimal
in all of the two-dimensional cases considered (triangular, square, hexagonal) and inZ3. This
is however not a general fact, for other exponents are to be expected in Zd for d ≥ 4, see the
end of Sect. 4.

The strategy of the proofs is mainly based on generalizing to three dimensions the
rearrangement techniques used in [17,20], and using the fine characterization of the edge
perimeter for minimizers of the EIP in two dimensions obtained in [17]. The analogue in
three dimensions of the two-dimensional passing to a normalized ground state as in [20] and
the rectangularization employed in [17] is here the cuboidification (seeDefinition 2.2), which
is quite more involved and allows to pass from any minimizer to a quasicubicminimizer (see
Definition 2.4). However, to obtain the upper bound further transformations are needed in
particular to prove the relation (25) between the largest dimension of a minimizer and the
side of the base of the corresponding cuboidification. To that end, we show how quasicubes
can be rearranged to be close to a cube with a “hole” near one of the corners by moving many
atomic layers at once, the (considerably more elementary) two dimensional version of which
was crucial in [20]. We also make use of the edge-perimeter characterization for the solutions
of two dimensional EIP [17]. The lower bound relies on a refinement of the argument for the
two-dimensional case, which we establish in Lemma 4.1. As a by product of this, we prove
the sharpness of the n3/4 upper bound also for the square lattice, which was not addressed in
[17].
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N3/4 Law in the Cubic Lattice 1483

2 Mathematical Setting

In this section we introduce the main definitions and notations used throughout the paper.
We first recall a useful characterization of EIPn minimizers that we shall often exploit.

The number of (unit) bonds of a configuration Cn ∈ Cn is

b(Cn) := 1

2
#
{
(x, y) ∈ Cn × Cn : |x − y| = 1

}
.

Then the elementary relation #�(Cn) + 2b(Cn) = 6n shows that Cn is a minimizer for the
EIPn if and only if it maximizes the number of unit bonds.

We also introduce the 2-dimensional analogon of (2) which we denote here as EIP2d for
d ∈ N, i.e.,

ηd := min
Ed∈C2

d

#�2(Ed), (7)

where C2d is the family of subsets of the square lattice Z2 with d elements and

�2(Ed) := {
(x, y) ∈ Z

2 × Z
2 : |x − y| = 1, x ∈ Ed and y ∈ Z

2\Ed
}
. (8)

We recall from [17] that Ed solves (7) if and only if the number of unit bonds of Ed (i.e.,
1
2 #{(x, y) ∈ Ed × Ed : |x − y| = 1}) is equal to �2d − 2

√
d�. This is equivalent to

#�2(Ed) = 4d − 2�2d − 2
√
d�, i.e., to

#�2(Ed) = 2
2√d�. (9)

We also recall from [17] that for any d ∈ N there exists a minimizer Dd of EIP2d of the
type

Dd := R(s, s′) ∪ Le (10)

for some s, s′ ∈ N and e ∈ N∪{0} such that s′ ∈ {s, s + 1}, s · s′ + e = d , and e < s′, where

R(s, s′) := Z
2 ∩ ([1, s] × [1, s′]) (11)

and

Le :=
{
Z
2 ∩ ((0, e] × {s′ + 1}) if s′ = s,

Z
2 ∩ ({s + 1} × (0, e]) if s′ = s + 1.

(12)

Notice that if e = 0, then Le = ∅, see Fig. 1. As already done in [17], we refer to these
two-dimensional minimizers as daisies. In fact, the name originates from the hexagonal case
[16], where the analogous construction gives rise to hexagonal configurations of hexagons,
resembling a flower. Moreover, we term the integers s−1 (resp. s′ −1) as the minimal (resp.
maximal) side length of the rectangle (11) of the daisy.

Let us also introduce the notion of minimal rectangle associated to a 2-dimensional con-
figuration Cn in Z

3.

Definition 2.1 Given a configuration

Cn ⊂ {k1e1 + k2e2 + ze3 : ki ∈ Z for i = 1, 2}
for some z ∈ Z, we denote by R(Cn) the closure of the minimal rectangle containing Cn ,
i.e., the minimal rectangle R with respect to set inclusion in

R
2
z := {(z1, z2, z3) ∈ R

3 : z3 = z}
with sides parallel to ei for i = 1, 2, and that satisfies Cn ⊂ R.
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e2
e1

s = s′, Le = ∅

s′ − 1

s − 1 s − 1 s − 1R(s, s) R(s, s) R(s, s+ 1)

s′ − 1 s′ − 1

s = s′, Le �= ∅

Le

s′ = s+ 1, Le �= ∅
Le

Fig. 1 The daisies Dd , d increases from left to right

Moving ahead to 3-dimensional configurations in Z
3 we introduce here a discrete rear-

rangement procedure, which we call cuboidification. Notice that the cuboidification is the
3-dimensional analogue of the 2-dimensional rearrangement introduced in [17] and denoted
rectangularization (see also [5,11,12]), even though here we define such rearrangement only
for EIPn minimizers and not for a general configuration. To this end, let us introduce for
every z ∈ Z the notion of z-levels of a configuration Cn ⊂ Z

3 in the direction i = 1, 2, 3,
i.e., the 2-dimensional configurations defined by

Cn(z, ·, ·) := Cn ∩ {ze1 + k2e2 + k3e3 : ki ∈ Z for i = 2, 3},
Cn(·, z, ·) := Cn ∩ {k1e1 + ze2 + k3e3 : ki ∈ Z for i = 1, 3}, and

Cn(·, ·, z) := Cn ∩ {k1e1 + k2e2 + ze3 : ki ∈ Z for i = 1, 2},
respectively. In the following, we also denote by Q(a1, a2, a3) for some ai ∈ N the closed
cuboid

Q(a1, a2, a3) := [1, a1] × [1, a2] × [1, a3].
Furthermore, we define the 3-vacancies of a configurationCn ⊂ Z

3 as the elements ofZ3\Cn

that would activate three bonds if added to Cn , i.e., those elements of Z3\Cn which have a
distance 1 to exactly three different elements of Cn .

Definition 2.2 We define the cuboidificationQ(Mn) (in the direction e3) of a minimizer Mn

of the EIPn as the configuration resulting from rearranging the particles of Mn according to
the following three steps.

(i) For every z ∈ Z, let dz := #Mn(·, ·, z) and consider the 2-dimensional daisy Ddz (which
has been defined in (10)), order the elements of the family (Ddz )dz �=0 decreasingly with
respect to their cardinality, say (D(k))k=1,..., f with f := #{z ∈ Z : dz �= 0}, and
consider the configuration M ′

n characterized by

M ′
n(·, ·, k) = D(k) + ke3

for k = {1, . . . , f } and M ′
n(·, ·, k) = ∅ if k /∈ {1, . . . , f }, see Fig. 2.

By (10) there exist s, s′ ∈ N and e ∈ N ∪ {0} with s · s′ + e = d , s′ ∈ {s, s + 1}, and
e < s′, such that D(1) = R(s, s′) ∪ Le for R(s, s′) and Le defined as in (11) and (12),
respectively.
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Fig. 2 Configuration M ′
n . A

caveat: in favor of illustrative
clarity, proportions in this and the
following figures do not
correspond to the actual ones of a
ground state

e2
e1

e3

f layers

Fig. 3 Configuration M ′′
n

e2
e1

e3

It is clear thatM ′
n is still an EIPn minimizer. Also, if f ≤ 2 the cuboidification algorithm

ends here. Otherwise, we proceed to the next steps.
(ii) Consecutively move the elements fromM ′

n(·, ·, f )with at most 3 bonds (there is always
at least one of them) to fill the 3-vacancies in M ′

n\M ′
n(·, ·, f ). This allows to obtain a

configuration M ′′
n whose levels M ′′

n (·, ·, k) for k = 2, . . . , f − 1 are rectangles (with
possibly the extra segment Le + ke3), i.e.,

M ′′
n (·, ·, k)\(Le + ke3) = R(ak, bk) (13)

for some ak , bk ∈ N∪ {0} which are decreasing in k, see Fig. 3. We also notice that the
(z = 1)-level remains unchanged, i.e.,

M ′′
n (·, ·, 1) = M ′

n(·, ·, 1) = D(1) + e3,

and we assume, without loss of generality, that M ′′
n (·, ·, f ) is a daisy.

We stress that three-vacancies, if any, are filled one by one, first at the level z = 2, and
then at the levels z = 3, . . . f − 1 (in this order), in such a way that all the z-levels
up to f − 1 are still daisies. Moreover, each of these daisies is either coinciding with
M ′′

n (·, ·, 1), or it is a rectangle: that is, if (13) holds and ak < s or bk < s′, then actually
M ′′

n (·, ·, k) = R(ak, bk). As the three-vacancies are filled with atoms that present at
most 3 bonds, the total number of bonds does not decrease and hence, M ′′

n is also an
EIPn minimizer.

(iii) We nowconstruct a configurationM ′′′
n by iteratively performing the following procedure

Pk for k = 2, . . . , f − 1. The procedure Pk consists of performing the following two
substeps:
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1486 E. Mainini et al.

e2
e1

e3

F2

F1

f layers

s′ layers

s layers

Fig. 4 Configuration M ′′′
n

(1) If ak = s we directly pass to Substep 2). If instead ak < s, then we move an entire
external edge from the f -level (an f -level edge smaller or equal to bk exists by Step
(ii)), attach it at the k-level so that each of its atoms is bonded both to an atom that
was already at the k-level and to one atom at the (k−1)-level, and, if any 3-vacancies
at the k-level appeared, then we repeat Step (ii) in order to fill them. This can be
performed so that the k-level of the obtained configuration is R(ak + 1, bk). By
iterating this substep a = s − ak times, the k-level of the resulting configuration is
R(s, bk).

(2) If bk = s′, then the procedure Pk is finished. If instead bk < s′, then we move an
entire external edge from the f -level, attach it at the k-level so that each of its atoms
is bonded both to an atom that was already at the k-level and to one atom at the
(k − 1)-level, and possibly remove any 3-vacancies by repeating Step (ii). We then
iterate this substep b = s′ − bk times, so that the k-level of the final configuration is
R(s, s′).

For each k = 2, . . . , f − 1, the output of this step is a k-level of the form R(s, s′), plus
possibly an extra-line Le + ke3 (which can be there only if ak = s and bk = s′, that is,
only if the procedure Pk is empty), see Fig. 4.

We notice that, if we denote by Pk(M ′′
n ) the configuration obtained by iteratively

performing Pi for i = 2, . . . , k, we have that

Pk(M
′′
n )(·, ·, i)\(Le + ie3) = R(s, s′)

for every i = 2, . . . , k, and that

M ′′′
n := P f −1(M

′′
n ) = (Z3 ∩ Q(s, s′, f − 1)) ∪ F1 ∪ F2

where F1 := M ′′′
n (·, ·, f ) is rearranged as a daisy and

F2 :=
{
M ′′′

n (·, s + 1, ·) if s′ = s,

M ′′′
n (s + 1, ·, ·) if s′ = s + 1.

We notice that F2\F1 is a rectangle R(e, s′′) for some e ∈ {0, . . . , s′ − 1}, s′′ ∈
{1, . . . f − 1} and that, if e = 0, then F2 = ∅. Without loss of generality we assume
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that F2 = M ′′′
n (s + 1, ·, ·), as we can move the whole F2 (hence also the extra-line of

the daisy F1, if such line is contained in F2) on that side of Q(s, s′, f ) since s′ ≥ s.

The configuration Q(Mn) := M ′′′
n is still an EIPn minimizer and it is the output of the

cuboidification.

Remark 2.3 We stress that the recursive application of Steps (ii) and (iii) in the above
definition can never exhaust the upper face M ′

n(·, ·, f ) nor break its minimality for the
two-dimensional EIP before a configuration of the form of M ′′′

n is created, otherwise Mn

would not be a minimizer of the EIPn .

We conclude this section with two more definitions.

Definition 2.4 We say that a configuration Cn is quasicubic, or a quasicube, if there exist
s, s′, s3 ∈ N with s′ ∈ {s, s + 1} such that (up to translation, relabeling, and reorienting the
coordinate axes)

Cn = (
Z
3 ∩ Q(s, s′, s3 − 1)

) ∪ F1
d1 ∪ F2

d2

where Fi
di
, i = 1, 2, are configurations with cardinality di := #Fi

di
such that

F1
d1 ⊂ Z

3 ∩ ([1, s + 1] × [1, s′] × {s3})
and

F2
d2 ⊂ Z

3 ∩ ({s + 1} × [1, s′ − 1] × [1, s3]).
We observe that by Definition 2.2 the cuboidification Q(Mn) of an EIPn minimizer Mn

is a quasicube with s3 = #{z : Mn(·, ·, z) �= ∅} and s − 1 the smallest side length of the
rectangle [1, s]×[1, s′] of the daisy with maxz #Mn(·, ·, z) elements. Notice also that similar
rearrangement techniques to the cuboidification introduced in Definition 2.2 are employed in
[6] to prove that a subclass of the quasicubic configurations of Definition 2.4 have minimal
surface area among polyominoes. Finally, we define the minimal cuboid of a configuration
Cn ⊂ Z

3.

Definition 2.5 Given a configurationCn ⊂ Z
3 wedenote by Q(Cn) the closure of theminimal

rectangular cuboid containing Cn , i.e., the smallest rectangular cuboid Q with respect to set
inclusion in R3 that has sides parallel to ei for i = 1, 2, 3, and such that Cn ⊂ Q.

3 Upper Bound: Proof of Theorem 1.1

We exploit the cuboidification algorithm from Sect. 2 to obtain the proof of our first main
result.

Proof of Theorem 1.1 Fix n ∈ N and let Mn be a minimizer of EIPn . In the following, without
loss of generality (up to a translation and rotation of the coordinate system), we assume that

Q(Mn) = Q(�1 + 1, �2 + 1, �3 + 1) (14)

for some �1, �2, �3 ∈ N ∪ {0} with
0 ≤ �1 ≤ �2 ≤ �3, (15)
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1488 E. Mainini et al.

where Q(Mn) is the minimal cuboid of Mn (see Definition 2.5) and �i , i = 1, 2, 3 its side
lengths. Notice also that Q(Wn) = Q(�n + 1, �n + 1, �n + 1) − (1, 1, 1) for �n defined in
(3).

We now claim that there exists a constant K > 0 (which does not depend on n and Mn)
such that

max
i=1,2,3

|�i − �n | ≤ Kn1/12 + o(n1/12). (16)

Once this is proved, Theorem 1.1 follows since �n = n1/3 + O(1) by (3) and hence each
external face of Q(�1 + 1, �2 + 1, �3 + 1) intersected with Z3 has cardinality n2/3 + o(n2/3).
Thus we obtain

min
a∈Z3

#(Q(Mn)	(a + Wn)) ≤ 3Kn3/4 + o(n3/4).

By (16) we have

#(Q(Mn)\Mn) = (�1 + 1)(�2 + 1)(�3 + 1) − n

≤ (n1/3 + Kn1/12 + O(1))3 − n = 3Kn3/4 + o(n3/4),

and so (5) follows.
In order to prove (16) we proceed in 5 steps.

Step 1

In this step we show that by rearranging the elements of Mn we can construct another
minimizer Mn of the EIPn that is quasicubic, i.e., there exists �, �′, �3 ∈ N ∪ {0} with
0 ≤ � ≤ �3, �′ ∈ {�, � + 1}, and configurations F1

d1
and F2

d2
as in Definition 2.4 such that

Mn = (
Z
3 ∩ Q(� + 1, �′ + 1, �3)

) ∪ F1
d1 ∪ F2

d2 . (17)

This assertion follows by choosing Mn = Q(Mn) and by observing that (17) is satisfied with
� being the smallest side length of the rectangle of the daisy Dm (see (10)) where m is the
maximal cardinality of the z-levels Mn(·, ·, z) of Mn for z = 1, . . . , �3 + 1, i.e.,

m := max
z=1,...,�3+1

#Mn(·, ·, z).

We notice that
�3 ≥ �. (18)

Indeed, by (14) we have m ≤ (�1 + 1)(�2 + 1). On the other hand, by the definition of
daisy, since � is the minimal side length of the rectangle of the daisy Dm , it clearly satisfies
� + 1 ≤ √

m. Therefore
� + 1 ≤ √

(�1 + 1)(�2 + 1), (19)

and with (15) we obtain (18).

Step 2

We now further rearrange Mn to “get rid of” the face F2
d2

and obtain a new EIPn minimizer

which we denote Mn . To this end, recall from Definition 2.4 and Definition 2.2 that F1
d1
takes

either the form
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N3/4 Law in the Cubic Lattice 1489

F1
d1 = Z

3 ∩ (([1, a f ] × [1, b f ] × {�3 + 1}) ∪ ({a f + 1} × (0, e f ] × {�3 + 1}))

or the form

F1
d1 = Z

3 ∩ (([1, a f ] × [1, b f ] × {�3 + 1}) ∪ ((0, e f ] × {b f + 1} × {�3 + 1})) ,
for some a f ∈ {1, . . . , �+1}, b f ∈ {a f , a f +1}, e f ∈ {0, . . . , b f −1}, and that F2

d2
\F1

d1
is a

rectangle R(e, s′′) with e ∈ {0, 1, . . . , �′} and s′′ ∈ {1, . . . , �3}. If e = 0 we set Mn := M
1
n ,

where
M

1
n := Mn = (Z3 ∩ Q(� + 1, �′ + 1, �3)) ∪ F1 (20)

for F1 := F1
d1

= Mn(·, ·, �3 + 1).

For e > 0 and F1
d1

∩ F2
d2

= ∅ we define Mn by distinguishing 3 cases: a f ≥ e ∨ s′′,
a f < e and a f < s′′. Later we will see how to treat the case F1

d1
∩ F2

d2
�= ∅.

1. If a f ≥ e ∨ s′′, then we move F2
d2

on top of F1
d1
, and we consider the cuboidification of

such configuration, which has the form

M
2
n := (Z3 ∩ Q(� + 1, �′ + 1, �3 + 1)) ∪ F2 (21)

for some F2 := M
2
n(·, ·, �3 + 2) (which we take to be rearranged as a daisy). We set

Mn := M
2
n .

2. Let a f < e. We can assume without loss of generality that s′′ = �3. In fact, if s′′ < �3,
then we perform for j = 1, . . . , �3 − s′′ the following transformation T 1

j : Move an edge

with length less than e from F1
d1

onto F2
d2
, so that F2

d2
becomes a rectangle R(e, s′′ + j)

after removing (as done in Step (ii) of Definition 2.2) any 3-vacancy which might have
been created. The obtained configuration is

Mb
n := (Z3 ∩ Q(� + 1, �′ + 1, �3)) ∪ Fb

1 ∪ Fb
2

where Fb
1 := Mb

n (·, ·, �3 + 1) and Fb
2 is the rectangle R(e, �3). We then iterate the

following transformation T 2
p : for every element p ∈ Be where

Be := Z
3 ∩ ({� + 2} × (e, �′ + 1] × {1}) (22)

remove an edge of Fb
1 , attach it to F

b
2 byfirst rotating it in order tomake it parallel to e3 and

then translating it in such away that one of its endpoints coincideswith p, and then remove
all 3-vacancies possibly created as in Step (ii) of Definition 2.2, so that Fb

2 becomes
R(e+ 1, �3). We notice that we can perform T 2

p since a f < e ≤ �′ ≤ � + 1 ≤ �3 + 1 by
(18), thus a f ≤ �3. The configuration obtained after performing T 2

p for every p ∈ Be is

M
3
n := (Z3 ∩ Q(� + 2, �′ + 1, �3)) ∪ F3 (23)

where F3 := M
3
n(·, ·, �3 + 1) can be rearranged as a daisy. We set Mn := M

3
n .

3. Let a f < s′′. We first perform the transformation T 2
p for every p ∈ Be to obtain the

configuration

Mc
n := (Z3 ∩ Q(� + 1, �′ + 1, �3)) ∪ Fc

1 ∪ Fc
2

where Fc
1 := Mc

n(·, ·, �3 + 1) and Fc
2 is a rectangle R(�′ + 1, s′′). Then, if s′′ < �3 we

perform T 1
j for every j = 1, . . . , �3−s′′ (without losing bonds since a f ≤ �+1 ≤ �′+1)

and we obtain also a configuration of the type M
3
n . Therefore, also in this case we set

Mn := M
3
n .
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Let us now consider, for e > 0, the case F1
d1

∩ F2
d2

�= ∅, which is possible according to
Definition 2.2. The latter definition implies in such case s′′ = �3, a f = � + 1, and

F1
d1 ∩ F2

d2 = Z
3 ∩ ({� + 2} × [1, . . . , e f ] × {�3 + 1})

with 1 ≤ e f ≤ e. Since e ≤ �′ ≤ � + 1, we have e f ≤ � + 1, and thanks to (18)
we obtain e f ≤ �3 + 1. If e f ≤ �3 = s′′, we may move the e f points of F1

d1
∩ F2

d2
to

Z
3 ∩ ({� + 2} × {e + 1} × [1, e f ]) and preserve the number of bonds (since e f ≤ s′′).

This produces a new configuration, with the same structure of Mn , but with F1
d1

∩ F2
d2

= ∅,
and starting from such configuration we can proceed as above with the three cases. Else if
e f = �3+1, then by e f ≤ �+1 andby (18)weget � = �3, hencea f = �+1 = �3+1 = s′′+1.
On the other hand, e ≤ �′ ≤ � + 1 = a f ≤ b f . Therefore it is possible to remove the entire
F2
d2

and place it above the rectangle [1, a f ] × [1, b f ] of F1
d1

and conclude by arguing as in
Case 1 above.

We observe that Mn ∈ {Mi : i = 1, 2, 3} where M
i
are defined for i = 1, 2, 3 in (20),

(21), and (23), respectively, and hence,

Mn := (Z3 ∩ Q(a, �′ + 1, c)) ∪ Fd , (24)

where a ∈ {� + 1, � + 2}, c ∈ {�3, �3 + 1}, and Fd := Mn(·, ·, c + 1) with d := #Fd . From
here on, we assume that a = �+ 1. The rest of the proof for the case a = �+ 2 is essentially
the same and we omit the details.

Step 3

In this step we show that
�3 − � = √

6α1/4�1/4 + o(�1/4), (25)

where α ∈ [0, 1) is specified later on in (32) and depends on � and �3 only.
Assume without loss of generality that �3 − � ≥ 4. Then there exists k ∈ N such that

(c − 1) − � = 3k + r (26)

for some r ∈ {0, 1, 2}.We further rearrangeMn to obtain a newminimizer M̃n which is closer
to a cube by chopping off atomic layers of thickness k from the top and reattaching them
at the lateral boundaries. More precisely, in order to define M̃n we consider the following

subsets of Mn

S1 :=
⋃

z=z1+1,··· ,z2
Mn(·, ·, z),

S2 :=
⋃

z=z2+1,··· ,z3
Mn(·, ·, z),

S3 := Fd ∪
⎛

⎝
⋃

z=z3+1,··· ,z4
Mn(·, ·, z)

⎞

⎠ ,

and R :=
⋃

z=�+2,··· ,z1
Mn(·, ·, z), (27)
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where z1 := �+1+r , z2 := �+1+r+k, z3 := �+1+r+2k, and z4 := �+1+r+3k = c.
Notice that the configuration

G := Mn\
⎡

⎣R ∪
⎛

⎝
⋃

k=1,2,3

Sk

⎞

⎠

⎤

⎦

is such that G(·, ·, z) := R(� + 1, �′ + 1) for all 1 ≤ z ≤ � + 1 (and G(·, ·, z) := ∅ for
z > � + 1).

We then define M̃n as the configuration resulting by performing the following transfor-
mations:

1. Move S3 altogether in such a way that each element on Mn(·, ·, z3 + 1) loses its bond

with Mn(·, ·, z3) and gains a bond with

G ∩ {k1e1 + e2 + k3e3 : ki ∈ Z for i = 1, 3}.

Note that this first rearrangement does not change the total number of bonds of the

minimizer Mn .

2. We then move S2 altogether in such a way that each element on Mn(·, ·, z2 + 1) loses its

bond with Mn(·, ·, z2) and gains a bond with

G ∩ {e1 + k2e2 + k3e3 : ki ∈ Z for i = 2, 3}.

Again, this rearrangement does not change the total number of bonds of the minimizer.
3. Observe that, after Transformation 2 and a translation of ke1 + ke2 the resulting con-

figuration, which we denote by Tn , is contained in the cuboid [1, � + 1 + k] × [0, �′ +
1 + k] × [1, � + 1 + r + k], (0 in the second factor is due to the new placement of Fd
after moving S3). However, Tn does not contain the points of V := Z

3 ∩ (V1 ∪ V2 ∪ V3),
where

V1 := [k + 1, � + 1 + k] × [1, k] × [� + 2, � + r + k]
V2 := [1, k] × [k + 1, � + k + 1] × [� + 2, � + r + k]
V3 = [1, k] × [1, k] × [1, � + 1].

Notice that V1 = V2 = ∅ if k = 1 and r = 0. We now fill-in the set V by subsequently
moving edges with length � from the side aligned in the direction e1 of Tn(·, ·, z2)
(each contains � + 1 points). We call the resulting configuration M̃n and we denote its
(remaining) upper face M̃n(·, ·, z2) by F̃m with

m := # F̃m = (� + 1)(�′ + 1) − #V

= (� + 1)(�′ + 1) − (� + 1)[k2 + 2k(r + k − 1)]. (28)

Notice that in all the steps the total number of bonds of the configuration remains the same
as in Mn , and so along these transformations the edges with length � are not exhausted

before V is filled (since this would contradict minimality of Mn for the EIPn). Hence,
M̃n is an EIPn minimizer as well.
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By (28) we have

m = (� + 1)(�′ + 1) − #V = (� + 1)(�′ + 1) − (� + 1)
[
k2 + 2k(k + r − 1)

]

= (� + 1)(�′ + 1 − (k2 + 2k(k + r − 1)))

= (� + 1)(� − 3k2 − 2s1k + s2 + 1)

= �2 − �(3k2 + 2s1k − s2 − 2) − 3k2 − 2s1k + s2 + 1 (29)

where s1 := r − 1 ∈ {−1, 0, 1} and s2 := �′ − � ∈ {0, 1}.
Furthermore, as M̃n is a minimizer of the EIPn , it is not possible to gain any bond by

rearranging the elements of F̃m over M̃n\F̃m . Therefore, F̃m is a minimizer (up to translation)
of EIP2m (see (7)). By (9),

�2(F̃m) = 2
2√m�. (30)

Since by the Transformation 3 the configuration F̃m is rectangular with side lengths � and
�′ − (

k2 + 2k(k + r − 1)
)
its edge perimeter is simply

�2(F̃m) = 2(� + 1) + 2(�′ − k2 − 2k(k + r − 1) + 1)

= 4� − 6k2 − 4s1k + 2s2 + 4. (31)

Therefore, by (29), (30), and (31), we have that

4� − 6k2 − 4s1k + 2s2

= 2
2
√

�2 − �(3k2 + 2s1k − s2 − 2) − 3k2 − 2s1k + s2 + 1� − 4,

which can be written as

2� − 3k2 − 2s1k + s2

= 2
√

�2 − �(3k2 + 2s1k − s2 − 2) − 3k2 − 2s1k + s2 + 1 − 2 + α

with
α := 
2√m − 1� − (2

√
m − 1) = 
2√m� − 2

√
m ∈ [0, 1). (32)

By taking the square we obtain

(2� − 3k2 − 2s1k + s2 + 2 − α)2

= 4�2 − 4�(3k2 + 2s1k − s2 − 2) − 12k2 − 8s1k + 4s2 + 4

from which it is straightforward to compute

4α� = 9k4 + 12s1k
3 + 2(2s21 + 3α − 3s2)k

2 + 4s1(α − s2)k + (α − s2)
2 − 4α. (33)

We now observe that (33) yields

k =
√
2 α1/4

√
3

�1/4 + o(�1/4). (34)

Therefore, from (26) and (34) we obtain

�3 − � = √
6α1/4�1/4 + o(�1/4). (35)
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Step 4

In this step we show that (with �n as defined in (3))

�n − � =
√
2

3
α1/4�1/4 + o(�1/4). (36)

From (24) we have that

n = (� + 1) (�′ + 1) (�3 + s3) + d = (� + 1) (�′ + 1) (� + �3 − � + s3) + d

= �3 + (�3 − �) �2 + O(�2) (37)

where s2 := �′ − � ∈ {0, 1} and s3 = c − �3, since d = O(�2) and since �3 − � = O(�1/4)

by (35). Then, (37) together with (3) yields

�n = � 3
√
n� =

⌊

�
3

√

1 + �3 − �

�
+ O

(
1

�

)⌋

=
⌊
�

3
√
1 + √

6α1/4�−3/4 + o(�−3/4)

⌋

=
⌊

�

(

1 +
√
6α1/4

3
�−3/4 + o(�−3/4)

)⌋

, (38)

where in the second equality we used (35). The assertion (36) follows now from (38), since
it implies

�n − � =
⌊√

2

3
α1/4�1/4 + o(�1/4)

⌋

. (39)

Step 5

In this step we conclude the proof of the estimate (16).
Let us define εi ∈ R such that �i = �(1+εi ).We begin by observing that, as a consequence

of Step 4 we have that
� = n1/3 + o(n1/3). (40)

Furthermore, from (35) it follows that

ε3 = �3 − �

�
≤ √

6α1/4�−3/4 + o(�−3/4). (41)

By (15) and (19) we have �2 ≥ �. Therefore, by (41) we obtain that

0 ≤ ε2 ≤ ε3 ≤ √
6α1/4�−3/4 + o(�−3/4) (42)

as �2 ≤ �3. If also �1 ≥ �, then the same reasoning yields that 0 ≤ ε1 ≤ ε3 ≤ √
6α1/4�−3/4+

o(�−3/4). Therefore, it only remains to consider the case in which �1 < � and hence, ε1 < 0.
We have in such case, again by (15) and (19),

�2 ≤ �1�2 ⇒ �2 ≤ �2(1 + ε1)(1 + ε2) ⇒ 0 ≤ ε1 + ε2 + ε1ε2

⇒ −ε1 ≤ ε2 + ε1ε2

so that, in particular
0 ≤ −ε1 ≤ ε2. (43)
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Therefore, by (41), (42), and (43) we conclude that

|εi | ≤ √
6α1/4�−3/4 + o(�−3/4). (44)

for i = 1, 2, 3. Finally, by Step 4 and (44) we observe that

|�i − �n | ≤ |�i − �| + |� − �n |

≤ �|εi | +
√
2

3
α1/4�1/4 + o(�1/4)

≤
(√

6 +
√
2

3

)

α1/4�1/4 + o(�1/4)

for i = 1, 2, 3, which in turn by (40) yields estimate (16) with

K :=
(√

6 +
√
2

3

)

α1/4

where we recall that α := 
2√m� − 2
√
m ∈ [0, 1), see (32), for m given by (28). ��

4 Lower Bound: Proof of Theorem 1.2

We begin this section with an auxiliary lemma about solutions to the EIP in the two-
dimensional square lattice. Indeed, for nonnegative integers s, p, q (with s > p ∨ q), we
consider configurations in Z

2 of the form

Rs,p,q := R(s − p − 1, s) ∪ L p
s−q ,

where L p
s−q := Z

2 ∩ ({s − p} × [1, s − q]). Note that #Rs,p,q = s2 − sp − q .

Lemma 4.1 Let s, p, q ∈ N ∪ {0} be such that s ≥ 1, p < s, q < s. Then Rs,p,q is an EIP2n
minimizer (where n = #Rs,p,q = s2 − sp − q) if and only if

4(s − q) > (p + 1)2.

In particular, by choosing p = �s1/2� and q = �s/4�, Rs,p,q is a EIP2n minimizer for any
s ≥ 2.

Proof We observe that the number of unit bonds in Rs,p,q is equal to

(s − 1)(s − p − 1) + s(s − p − 2) + 2(s − q) − 1.

We use the fact that EIP2n minimizers are characterized by a number of unit bonds equal to
�2n − 2

√
n�, as recalled in Sect. 2. As a consequence, Rs,p,q is an EIP2n minimizer if and

only if

(s − 1)(s − p − 1) + s(s − p − 2) + 2(s − q) − 1 = �2(s2 − sp − q) − 2
√
s2 − sp − q�,

which is equivalent to �2s − p − 2
√
s2 − sp − q� = 0, thus to

0 ≤ 2s − p − 2
√
s2 − sp − q < 1.
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As the first inequality is obvious, Rs,p,q is an EIP2n minimizer if and only if

2s − p − 1 < 2
√
s2 − sp − q,

which is equivalent to 4(s − q) > (p + 1)2, as desired.
By choosing p = �s1/2� and q = �s/4�, the latter is reduced to

4s > 1 + 2�√s� + 4�s/4� + �√s�2,
which is implied by 2s > 1 + 2

√
s that is clearly true for s ≥ 2. ��

A straightforward consequence of Lemma 4.1 is the sharpness of the N 3/4 law in the
two-dimensional square lattice, see [17]. Indeed, we might consider the sequence

ds := s2 − s�s1/2� − �s/4�, s = 2, 3, . . . . (45)

It is easy to check that ds is a strictly increasing sequence. We have ds = #Rs,p,q with
p = �s1/2� and q = �s/4�, and Rs,p,q is an EIP2ds minimizer by Lemma 4.1. On the other
hand,

s − �d1/2s � =
⌈

s − s

√

1 − sp + q

s2

⌉

≥ s − s

(
1 − sp + q

2s2

)
≥ �s1/2�

2
,

so that we may compare the two-dimensional Wulff shape W 2
ds

:= [
1, �d1/2s �]2 ∩ Z

2 with
Rs,p,q and get

min
a∈Z2

#
(
Rs,p,q 	

(
a + W 2

ds

))
≥ 1

2
�s1/2� (s − �s1/2� − 1

)
,

for any s ≥ 2. As (45) implies s = d1/2s + o(d1/2s ), we find

min
a∈Z2

#
(
Rs,p,q 	 (

a + W 2
ds

)) ≥ 1

2
d3/4s + o

(
d3/4s

)
.

We now proceed with the proof of the three-dimensional counterpart of this result.

Proof of Theorem 1.2 Let us consider the strictly increasing sequence

ns := s3 + s2 − s�s1/2� − �s/4�, s = 2, 3, . . . .

For any integer s ≥ 2, we may consider the configuration

Mns := (
Q(s, s, s) ∩ Z

3) ∪ Fds (46)

where we have introduced a 2-dimensional configuration Fds := Mns (·, ·, s + 1) with ds :=
#Mn(·, ·, s + 1). More precisely, we define the top face Fds as

Fds := (
Z
3 ∩ ([1, r ] × [1, s] × {s + 1})) ∪ Ls, r := s − �s1/2� − 1, (47)

where
Ls := Z

3 ∩ ({r + 1} × [1, s − q] × {s + 1}), q := �s/4�. (48)

We see that
ds = s2 − s�s1/2� − �s/4� < s2 (49)

and that
ns = s3 + ds (50)
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is indeed the number of points of Mns . Moreover, the top face Fds is an EIP
2
ds
minimizer for

any s ≥ 2 by an application of Lemma 4.1. This ensures minimality of Mns for the EIPns ,
for any s ≥ 2, cf. [6]. We stress that

s − r = �s1/2� + 1. (51)

By (49) and (50) it follows that

s = n1/3s + o(n1/3s ), (52)

and hence
r = n1/3s + o

(
n1/3s

)
(53)

by (51). Furthermore, by (49) and (52) we have

ds = n2/3s + o
(
n2/3s

)
. (54)

We also refine (52) by recalling (3) and by claiming that

s = �ns . (55)

To prove (55) we observe that s ≤ �ns easily follows from (50) and that

�ns = � 3
√
ns − ds + ds� =

⌊
3
√
ns − ds

3

√

1 + ds
ns − ds

⌋

=
⌊

s 3

√

1 + ds
s3

⌋

≤
⌊
s
(
1 + 1

3

ds
s3

)⌋
= s (56)

where we used (3) in the first equality, (50) in the third one, (49) in the last equality. The
claim is proved.

We then proceed to construct another minimizer denoted by M ′′
ns by performing the fol-

lowing two consecutive transformations on Mns :

1. Define the integer

h1 =
⌊
1

3
n1/12s

⌋
. (57)

We translate by e1 the top face Fds and we move altogether the edge
({s} × [1, s] × {s}) ∩ Z

3 to the position ({1} × [1, s] × {s + 1}) ∩ Z
3. We repeat then

this procedure recursively for each line (parallel to e2) with s elements of Mns which is
included in the set

H1 := [s − h1, s] × [1, s] × [s − h1, s].
This transformation gives the configuration M ′

ns , see Fig. 5. Note that M
′
ns is an EIPns

minimizer for large enough s. In fact, the total number of moved lines is (h1+1)2. Hence,
we can translate Fds by (h1+1)2e1 without losing any bond if r+1+(h1+1)2 < s−h1,
as such a condition prevents the top face from reaching the points above the ‘hole’ H1

by this translation. The latter inequality is equivalent, by (51), to

h1 + (h1 + 1)2 < �s1/2�, (58)

which holds true for large enough s due to (55) and since by definition of h1 we have

(h1 + 1)2 = 1

9
n1/6s + o(n1/6s ).
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H1

h1

h1

H2

Fds
s

e2
e1

e3

Fig. 5 Configuration M ′
ns

2. Thanks to the previous step, there exists s0 ∈ N such that, for any s ≥ s0, M ′
ns is an EIPns

minimizer. In particular, s0 can be defined as the smallest integer such that (58) hold for
any s ≥ s0. For s ≥ s0 we move altogether the elements in the set

H2 := [1, s − h1 − 1] × [1, s] × [s − h1, s + 1]
in such away that each element ofM ′

ns (·, ·, s−h1) (loses the bondwithM ′
ns (·, ·, s−h1−1)

and) gets bonded with an element of M ′
n(1, ·, ·)\H2. We denote the resulting EIPns

minimizer by M ′′
ns .

Thanks to the two steps above, for any s ≥ s0 the constructed configuration M ′′
ns is a

minimizer of the EIPns problem and moreover we notice that

Z
3 ∩ ([−h1, s] × [1, s] × [1, s − h1 − 1]) ⊂ M ′′

ns , (59)

therefore by (3), (55), (57), (59) we conclude that

min
a∈Z3

#(M ′′
ns	(a + Wns )) ≥ min

a∈Z3
#(M ′′

ns\(a + Wns ))

≥ s(s − h1 − 1)(s + h1 + 1 − �ns )

= s

(
s −

⌊
1

3
n1/12s

⌋
− 1

) (⌊
1

3
n1/12s

⌋
+ 1

)
.

Hence,

min
a∈Z3

#
(
M ′′

ns	
(
a + Wns

)) ≥ 1

3
n3/4s + o

(
n3/4s

)

follows by (52). ��
Before closing this discussion, let us point out that the exponent 3/4, which is proved to

be optimal in Z
3 (this paper) and in Z

2 [17], is not optimal in Z
d for d > 4. Indeed, as d

grows minimizers can differ by a larger portion of elements: A hypercube with two extra
hyperfaces in one direction Q1 := [1, s]d−1 × [1, s + 2] and a hypercube with two extra
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Fig. 6 The exponent 3/4 is not
optimal for d ≥ 5: configurations
Q1 and Q2

Q1 Q2

hyperfaces in two different directions Q2 := [1, s]d−1 × [1, s + 1] ∪ [1, s + 1] × [1, s]d−1,
see Fig. 6, are both minimizers and fulfill #(Q1	Q2) = 2sd−1. Since s ∼ n1/d we have that
#(Q1	Q2) ∼ n(d−1)/d , and (d − 1)/d is strictly larger than 3/4 for all d ≥ 5.

This argument does not allow to conclude the nonoptimality of the exponent 3/4 for d = 4.
On the other hand, we expect that the construction from Fig. 5 could be adapted to show that
such exponent is nonoptimal for d = 4 as well.
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