
1

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Aligning the eARK4All ARchivAl infoRmAtion PAcK-
Age And oxfoRd common file lAyout SPecificAtionS

 Complementary rather than competing approaches

Neil Jefferies
Bodleian Libraries

University of Oxford, UK
neil.jefferies@bodleian.ox.ac.uk
orcid.org/0000-0003-3311-3741

Karin Bredenberg
Swedish National Archives

Sweden
karin.bredenberg@riksarkivet.se
orcid.org/0000-0003-1627-2361

Angela Dappert
Springer Nature

UK
angela.dappert@springernature.com

orcid.org/0000-0003-2614-6676

Abstract – The E-ARK4ALL1 project released an alpha
version of its Common Specification for Information
Packages (CSIP)2 to be used in the eArchiving Building
Block3 for review at the end of November 2018. Slightly
earlier, the Oxford Common File Layout (OCFL)4 initia-
tive had also released an alpha version of its software
independent preservation file organisation speci-
fication. While, at first sight, these would appear to
attempt to do similar things, they are in fact, largely
complementary approaches. While the eARK spec-
ification aims to define the logical structure and
content of Open Archival Information Systems (OAIS)5
Information Packages, the OCFL describes how to map
any logical digital object layout onto a physical file
system in a preservation-friendly manner, as well as
identifying the fundamental operations required to
manage such objects. This paper provides a brief intro-
duction to the two specifications and then describes
how the OCFL can be applied to an E-ARK IP.

Keywords – Preservation, OAIS, AIP, file system,
specification

Conference Topics: The Cutting Edge: Technical
Infrastructure and Implementation;

Collaboration: a Necessity, an Opportunity or a
Luxury?

[1]  E-ARK4ALL Project, http://e-ark4all.eu/

[2]  E-ARK Common Specification for Information Packages,

http://earkcsip.dilcis.eu/

[3]  eArchving Building Block, https://ec.europa.eu/cefdigital/

wiki/display/CEFDIGITAL/eArchiving

[4]  Oxford Common File Layout, https://ocfl.io/

[5]  Open Archival Information System, http://www.oais.info/

i. intRoduction

The E-ARK4ALL project released an alpha version

of its Common Specification for Information Packages
(CSIP) to be used in the eArchiving Building Block for
review at the end of November 2018. In September,
the Oxford Common File Layout (OCFL) initiative had
also released an alpha version of its software inde-
pendent preservation file organisation specification.
While, at first sight, these would appear to attempt
to do similar things, they are in fact, largely comple-
mentary approaches.

While neither specification is completely finalised

at the time of writing, they are largely complete so
it is an opportune time to examine how, in practice,
they might be aligned. The examination presented
here is quite high level since it is based on members
of each of the respective communities reading of
the other’s specification while completing work
on their own documents. However, it is possible
to usefully identify some basic workable princi-
ples and potential areas for further discussion. As
always, the fine detail will only emerge when code
comes to be written and systems to be built.

ii. the oxfoRd common file lAyout

he Oxford Common File Layout (OCFL) initiative

began as a discussion among digital repository
practitioners about the ideal layout and character-
istics for persisted objects, from a computational
and conceptual point of view. It is named, as with

https://creativecommons.org/licenses/by/4.0/
mailto:neil.jefferies@bodleian.ox.ac.uk
http://orcid.org/0000-0003-3311-3741
mailto:karin.bredenberg@riksarkivet.se
http://orcid.org/0000-0003-1627-2361
mailto:angela.dappert@springernature.com
http://orcid.org/0000-0003-2614-6676
http://e-ark4all.eu/
http://earkcsip.dilcis.eu/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving
https://ocfl.io/
http://www.oais.info/

2

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

a number of other projects1, for the location of this
initial discussion. It has since grown into an open
community effort defining an application indepen-
dent way of storing versioned digital objects with a
focus on long term digital preservation.

The approach is informed by three simple

observations:
1) Archived objects change relatively slowly

compared to archival software, and are
rarely deleted.

2) Migration by export and re-ingest is gener-
ally slow and error-prone. Data is most at
risk of loss or corruption when it is moved or
migrated, rather than at-rest.

3) File systems, in particular POSIX-style2 file
systems, have been the most consistently
implemented and widely tested Application
Programming Interfaces (API’s) for accessing
storage in any form.

• Objectives
The OCFL also builds on practical experience

gained from previous work on related initiatives, such
as Stanford’s MOAB3 and BagIt4, both in order to avoid
some of their pitfalls and bottlenecks, but also with a
view towards interoperability and easy migration.

Consequently, the OCFL is constructed with five

main objectives, most of which readily map to the
more hardware focussed elements of the emerging
Digital Preservation Storage Criteria5.

• Completeness
All the data and metadata required to understand

and render or execute an object should be stored
within the directory that represents the object on

[1]  e.g. Dublin Core Metadata Initiative http://dublincore.org/;

Portland Common Data Model https://pcdm.org/2016/04/18/

models

[2]  Posix - The Open Group Library,

http://pubs.opengroup.org/onlinepubs/9699919799/

[3]  The Moab Design for Digital Object Versioning,

https://journal.code4lib.org/articles/8482

[4]  The BagIt File Packaging Format (V1.0),

https://tools.ietf.org/html/rfc8493

[5]  Digital Preservation Storage Criteria (Version 2.0),

https://osf.io/sjc6u/

the filesystem. This ensures that a repository can be
rebuilt from scratch given just the files on storage.
It also aligns very well with the construction of an
E-ARK AIP.

• Parsability
The structure of content stored using the OCFL

should be easy to access and interpret by humans
and machines. This ensures that the content can be
understood in the absence of the original systems
and software. To this end, as with some parts of the
E-ARK CSIP, the OCFL allows for embedded docu-
mentation. This is crucial since the OCFL does not
mandate the internal structure of the objects that
it stores.

• Versioning
The OCFL is designed with the expectation that

digital objects will change over time, even if only
as a result of preservation activity. It therefore
supports object versioning, provides a mechanism
for recording version history and allows access to
previous versions.

• Robustness
Robustness against errors, corruption, and migra-

tion between storage technologies is a basic require-
ment of any preservation storage system. The OCFL
uses SHA256 or SHA512 for content addressing and,
consequently, for default fixity provision, which
operates at both a file and object version level.

• Portability
The ability to store content on different storage

infrastructures and migrate between them is essen-
tial for maintaining diversity as a hedge against both
obsolescence and systemic technological failure.
The OCFL requires a minimal set of file system
features to operate, and proscribes the use of addi-
tional features if they have the potential to affect
portability.

To these five criteria we can also add efficiency

as an additional consideration, which is manifest
in several ways. The OCFL is designed to support
forward-delta differencing between object versions
so that components that do not change between
versions are only stored once, reducing the storage
overhead, and hence cost, for versioning. It is also
constructed to minimise the number of file system

https://creativecommons.org/licenses/by/4.0/
http://dublincore.org/
https://pcdm.org/2016/04/18/models
https://pcdm.org/2016/04/18/models
http://pubs.opengroup.org/onlinepubs/9699919799/
https://journal.code4lib.org/articles/8482
https://tools.ietf.org/html/rfc8493
https://osf.io/sjc6u/

3

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

operations that are involved in scanning OCFL struc-
tures for validation or rebuilding purposes. This had
emerged as a key bottleneck with the design of the
MOAB file layout.

Specific Features
Without going into too much technical detail on

the specification1, several features of OCFL should
be highlighted with respect to the implementation
of E-ARK AIP’s.

• The OCFL Storage Root
While the CSIP specification deals purely with

the internal structure of the object, the OCFL also
describes how collections of objects should be
managed in a file system, as a necessary feature for
building archival systems and repositories. However,
this is done in a way that is consistent with the CSIP
design principles.

The “OCFL Storage Root” is the top level directory

for storing OCFL Objects and should contain both a
copy of the OCFL specification and a conformance
declaration that indicates which version is imple-
mented - as a check that the correct documentation
is present, if nothing else!

In addition, the Storage Root should also contain

documentation that describes the scheme used for
distributing OCFL Objects across directories on the
file system in a balanced way that maintains the
efficiency of file system operations. Unfortunately,
there is no single scheme that is optimal for all use
cases, so various options and their relative merits
are discussed in the Implementation Notes2. As
a general principle, this “File System Disposition”
should programmatically derive the path of an OCFL
Object from its unique identifier.

• OCFL Objects
An OCFL Object is completely contained within one

directory termed the “OCFL Object Root”. At the top
level of the directory there must be an object version
conformance declaration, an object inventory, which

[1]  Oxford Common File Layout Specification 0.2, https://ocfl.

io/0.2/spec/

[2]  Oxford Common File Layout Implementation Notes 0.2,

https://ocfl.io/0.2/implementation-notes/

is discussed further in the next section, and a digest
for the inventory for validation purposes. Importantly,
the OCFL only requires the version conformance to
apply to the top level inventory and the most recent
version of the object. This permits legacy versions to
be included in an OCFL object without rewriting or
otherwise tampering with them.

The content of the object is contained in sequen-

tially numbered version directories within the Object
Root, with all but the most recent version considered
immutable. No content is stored outside the version
directories. An optional Logs directory may exist in
the Object Root to store information that does not
affect the content of the object - for example, records
of periodic fixity checks that identify no problems.

• The OCFL Inventory
The Inventory is the principal metadata struc-

ture mandated by the OCFL specification and is the
primary mechanism through which most of its func-
tionality is realised. Its primary function is to map
between content paths, which point to physical files
on storage, and logical paths, which indicate where
these files appear in the logical representation
of a version of an OCFL object. This distinction is
important for a number of reasons:

1. Deduplication - the OCFL supports deduplica-

tion within an object, so that once a file exists
in storage, with a given content path, all refer-
ences to that particular content, regardless
of filename are merely different logical paths
that reference the single content path.

2. Filesystem Limitations - File systems may
have limits on paths (such as length or
restricted character sets3) that may mean that
the object structure cannot be represented
accurately on the file system. However, logical
paths are not restricted in this way and thus
object structure can be preserved regardless
of file system restrictions.

3. Efficiency - Complex directory structures can
be quite inefficient to traverse. For complex
objects, the OCFL Inventory allows content
paths to exist in a simplified hierarchy while
retaining complexity at the logical level.

[3]  Comparison of file systems, https://en.wikipedia.org/wiki/

Comparison_of_file_systems

https://creativecommons.org/licenses/by/4.0/
https://ocfl.io/0.2/spec/
https://ocfl.io/0.2/spec/
https://ocfl.io/0.2/implementation-notes/
https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems

4

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

4. Future Proofing - Longer term, storage
systems, such as content addressable object
stores, are appearing that do not have a hier-
archical file system. The OCFL Inventory is
designed to be a functional object description
even in this case.

5. Optimisation - Storage systems that handle
large numbers of small files well tend to
handle very large files poorly, and vice versa.
While it is not the default behaviour, there is no
reason content paths cannot point to separate
storage locations for problematic files. This is a
more robust approach than file segmentation
or stressing unsuitable file systems.

The Inventory is formatted using JavaScript
Object Notation (JSON)1 because it is compact and
easy to read for computers and humans. It has three
main sections:

1. A preamble section that, most importantly,
includes at least one unique identifier for the
object.

2. A manifest section that lists every file in the
object along with its digest. These are the
content paths.

3. One version section for each version of the
object that exists. Within each version section,
a state section lists the digests for each of the
files in the version (which must exist in the
manifest section) alongside the logical path(s)
for that file.

There is also an optional fixity section for addi-

tional fixity digests that is formatted in the same way
as the manifest section.

Additionally, it is recommended that each version

directory holds a copy of the inventory as it was at
the time of its creation. This has the effect of the
current version providing an additional copy of the
inventory and allowing rapid rollback of the entire
object state to an earlier version in the event of
errors during updates.

Basic Operations
In addition to specifying how files should be organ-

ised, the OCFL Implementation Notes go further and
define how basic operations on OCFL objects should

[1]  Introducing JSON, https://www.json.org/

be implemented with respect to inventory mainte-
nance and the requirement for previous versions of
objects to be immutable.

• Inheritance
By default, a new version of an OCFL Object

inherits all the filenames (logical paths) and file
contents (content paths) from the previous version.
This serves as the basis against which changes are
applied to create a new version. A newly created
OCFL Object, obviously, inherits nothing and is
populated by file additions.

• Addition
Adds a new logical path and new content with a

content path in the current version. The logical path
cannot exist in the previous version of the object,
and the content cannot have existed in any earlier
versions of the object.

• Updating
Changes the content pointed to by a logical path,

which must exist in the previous version of the OCFL
Object. A new content path is created in the current
version of the object. The content cannot have
existed in any earlier versions of the object.

• Renaming
Changes the logical path of existing content. The

logical path cannot exist in the previous version of
the OCFL Object.

• Deletion
Removes a logical path from the current version

of an OCFL Object. The logical path and content
remain available in earlier versions of the object.

• Reinstatement
Makes content from a version earlier than the

previous version available in the current version of
an OCFL Object. The content must exist in an earlier
version, and not the previous version. The logical path
may exist in the previous version, effectively updating
the file path with older content, or it may not, effec-
tively adding the older content as a new file.

• Purging
Purging, as distinct from deletion, covers the

complete removal of content from all versions of
an OCFL Object. This is a special case that is not

https://creativecommons.org/licenses/by/4.0/
https://www.json.org/

5

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

supported as part of regular OCFL versioning oper-
ations since it breaks the previous version immuta-
bility requirement. Ideally, a new OCFL Object with an
amended version history should be created.

Community
The OCFL Community Google Group1 is where

discussion takes place and meeting announcements
are made. At the time of writing, community confer-
ence calls are scheduled monthly. The specification
and implementation notes are managed on Github2
and everyone is welcome to raise issues or even
submit pull requests.

iii. the e-ARK common SPecificAtion foR

infoRmAtion PAcKAgeS

In 2017 the European Archival Records and

Knowledge Preservation Project (E-ARK project3)

delivered its draft common specifications for infor-
mation packages to the Digital information LifeCycle
Interoperability Standards Board (DILCIS Board4) .
The board is responsible for the enhancement, main-
tenance, continuous development and endorsement
of specifications. Specifications concern information
packages as well as Content Information Types. The
information package specifications describe OAIS
reference model packages for archival transfer, but
can also be used for other types of transfer. Content
Information Type Specifications (CITS) describe
the content itself as well as its structure within
the package in order to facilitate easier content
validation.

The DILCIS Board specifications are the core spec-

ifications in the Connecting Europe Facility Building
Block eArchiving5.

[1]  Oxford Common File Layout Community, https://groups.

google.com/forum/#!forum/ocfl-community

[2]  The OCFL Specifications (WIP), https://github.com/OCFL/

spec

[3]  European Archival Records and Knowledge Preservation,

http://eark-project.com/

[4]  The Digital Information LifeCycle Interoperability Stan-

dards Board, http://dilcis.eu/

[5]  CEF eArchiving BB, https://ec.europa.eu/cefdigital/wiki/

display/CEFDIGITAL/eArchiving

The drafts for information packages are:
1. Common Specification for Information

Packages
2. Specification for SIP
3. Specification for AIP
4. Specification for DIP

These draft specifications have been updated,

enhanced and published in version 2.0 during spring
2019. The specifications are available as pdf at the
DILCIS board’s webpage and as markdown in GitHub6
accompanied with METS profiles and XML-schemas.
Questions and issues are handled in each specifica-
tion’s GitHub repository issue tracker. GitHub has
been chosen as the transparent platform in which
users can follow progress, see notes and comment
on the current work.

• Common Specification for Information Packages

(CSIP)7

The core package specification describes general
principles and requirements for an information
package, that are shared by all types of information
package in the OAIS reference model.

The principles present a conceptual view of an

Information Package, including an overall IP data
model, and use of data and metadata. These princi-
ples could be implemented with a physical directory
structure and the requirements are expressed with
the Metadata Encoding and Transmission Standard
(METS)8.

The principles describe:
• General requirements for the use of the

specification;
• Identification requirements ranging from

identification of the package to identification
of the transferred digital files;

• Structural requirements for the content in the
package, for example how different kinds of
metadata should be structured and added;

• Metadata requirements outlining the use of
standards for describing data.

[6]  DILCIS Board in GitHub https://github.com/DILCISBoard

[7]  E-ARK CSIP http://earkcsip.dilcis.eu/

[8] Metadata Encoding and Transmission Standards http://

www.loc.gov/standards/mets/

https://creativecommons.org/licenses/by/4.0/
https://github.com/OCFL/spec
https://github.com/OCFL/spec
http://eark-project.com/
http://dilcis.eu/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving
https://github.com/DILCISBoard
http://earkcsip.dilcis.eu/
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mets/

6

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

The requirements are expressed using METS and

PREservation Metadata Implementation Strategies
(PREMIS)1. METS describes the requirements on the
package level and PREMIS defines the preservation
metadata needed, especially those for the AIP. The
METS specification available both as a METS Profile
and in text form in the specification expresses the
requirements for how each part of METS is to be
used and how it fulfills the CSIP principles. A vali-
dation tool has been created to support automatic
metadata validation.

In summary, the requirements specify:
• how to identify the package ;
• how to describe the type of content;
• how to link descriptive, technical and prove-

nance metadata;
• which files are to be contained in the package,

where each file is described by its :
• File name
• Path
• Mime Type
• File size
• Checksum
• Creation date

• The mandatory METS structural map which
describes the package structure on a high
level.

Sometimes an IP is large, reaching tera bytes in

size. This is cumbersome to handle, both for the
submitter and the receiver of the IP. An example is
an IP that contains a whole database from an elec-
tronic records management system with records
comprising over a year. Therefore, CSIP contains a
section that discusses how to split large IP’s. In a
coming version of CSIP this section will be extended
and give guidance on splitting large packages.
Splitting leads to more than one IP being created.
The full IP is established by creating package refer-
encing connections between the split IP packages.
Draft specification texts are currently being written
that describe how to carry out the splitting, as well
as to how to describe the different parts and their
relationships. These updates will be published after
a review period.

[1]  PREservation Metadata Implementation Strategies, http://

www.loc.gov/standards/premis/

E-ARK profiles building upon CSIP
E-ARK SIP2, E-ARK AIP3 and E-ARK DIP4 profiles all

use CSIP as their basis and extend the CSIP require-
ments with requirements for their specific type of
information package. Some requirements extend
existing specific CSIP elements, for example by
requiring the value for the element describing the
OAIS Reference Model type of the package being set
to the appropriate value (SIP/AIP/DIP). The focus in
this paper is the AIP. To learn more about the E-ARK
SIP and E-ARK DIP please refer to their available
specifications.

E-ARK AIP
• The objectives for the E-ARK AIP are as follows:
• To define a generic structure of the AIP format

in a way that it is suitable for a wide variety
of data types, such as document and image
collections, archival records, databases or
geographical data.

• To recommend a set of metadata standards
related to the structural and the preservation
aspects of the AIP.

• To ensure the format is suitable for storing
large quantities of data.

• To mitigate the potential preservation risk of
repository obsolescence by implementing a
repository succession strategy.

The purpose of defining a standard format for the

archival information package is to pave the way for
simplified repository migration. Given the increasing
amount of digital content archives need to safe-
guard, changing the repository solution should be
based on a standard exchange format. This is to
say that a data repository solution provider does
not necessarily have to implement this format as
the internal storage format, but it should at least
support exporting AIPs. By this way, the costly
procedure of exporting AIP data as Dissemination
Information Packages (DIPs), producing SIPs for the
new repository solution, and ingesting them again
in the new repository can be simplified. Data repos-
itory solution providers know what kind of data
they can expect if they choose to replace an existing

[2]  E-ARK SIP, https://earksip.dilcis.eu/

[3]  E-ARK AIP, https://earkaip.dilcis.eu/

[4]  E-ARK DIP, https://earkdip.dilcis.eu/

https://creativecommons.org/licenses/by/4.0/
http://www.loc.gov/standards/premis/
http://www.loc.gov/standards/premis/
https://earksip.dilcis.eu/
https://earkaip.dilcis.eu/
https://earkdip.dilcis.eu/

7

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

repository solution. An E-ARK compliant repository
solution should be able to immediately analyse and
incorporate existing data in the form of AIPs without
the need of applying data transformations or having
to fulfil varying SIP creation requirements.

Generally, a variety of repository systems are

being developed by different providers. The way
the AIP is stored often depends on specific require-
ments which have been addressed according to
the needs of their respective customers. For this
reason, the purpose of the E-ARK AIP format is not to
impose a common storage format that all repository
systems need to implement. While it can be used as
an archival storage format, it can also be seen as a
format that makes system migration easier.

iv. Alignment of the e-ARK AiP

And the ocfl

The OCFL is engineered from the viewpoint that a

digital object should be considered a greater whole,
comprising several streams of information that can
be arbitrarily labelled data or metadata but all of
which contribute to the intellectual content of the
object. Consequently, it does not make any assump-
tions about the internal structure or composition of a
digital object, which is key to the alignment between
the E-ARK and OCFL specifications. In this respect,
the CSIP specification and the extension profile for
E-ARK AIP can be considered as filling this intentional
gap in the OCFL for a number of use cases, to provide
a more complete approach.

A very simplistic implementation could therefore

just encapsulate an entire eARK AIP structure within
an OCFL object. However, since the OCFL provides
file mechanisms for fixity, versioning, deduplication
and logging that are optimised for simplicity and
computational efficiency, a more nuanced and func-
tional approach would be to consider where these
could interoperate with corresponding elements
within the AIP structure.

The essential part of the alignment of the two

approaches is that the AIP structure is implemented
at the logical level within the OCFL. The OCFL client
software can then handle versioning, deduplication
and other features transparently but present the AIP
structure when queried by other software.

Fixity
As stated previously, the OCFL supports SHA512

or SHA256 as the default digests for its content
addressability, however other algorithms are
permitted and the fixity section of the inventory
allows storage of hashes generated by additional
algorithms. These could be extracted from an AIP
(by parsing METS files or manifest.txt, if it exists) as
part of object creation or version updating. Using a
SHA256-based implementation of OCFL obviously
aligns well with the E-ARK AIP since these values can
be shared.

The OCFL can technically support the use of other

hash functions for manifest content addressing, but
validity checks will generate errors for fixity algo-
rithms that are considered broken/deprecated (e.g.
MD51). As a result, using the other fixity algorithms
in place of SHA512 or SHA256 is not advised.

Copying digests from the OCFL inventory into the

AIP is also possible but requires a little more care,
since OCFL includes digests for every part of the AIP.
Such a process would therefore need to exclude the
METS and/or manifest files that would be updated.

Versioning and Deduplication
The OCFL differs from the AIP specification in

the way that versions are treated, since it makes no
assumptions about the types of changes that may
occur. It also makes the version history explicit in the
manifest with state sections for every version.

The E-ARK AIP versioning model is, in some

respects, analogous to the OCFL model, in that the
parent AIP can be seen as equivalent to the OCFL
Object Root with child AIP’s equivalent to OCFL
versions. However, the AIP model is somewhat
encumbered by the requirement for the parent to
be compliant with the CSIP which results in addi-
tional complexity. In addition, using the AIP model
can require multiple file parsing operations to deter-
mine version differences whereas the OCFL requires
minimal processing.

This can become a significant overhead when

objects are referenced externally, since, for

[1]  G. Ramirez, MD5: The broken algorithm, https://blog.avira.

com/md5-the-broken-algorithm/

https://creativecommons.org/licenses/by/4.0/
https://blog.avira.com/md5-the-broken-algorithm/
https://blog.avira.com/md5-the-broken-algorithm/

8

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

referential integrity, the version of an object current
at the time of citation should be readily accessible,
using a protocol such as Memento1. Being able
to easily identify the difference between any two
versions is also essential for the efficient synchro-
nisation of distributed storage systems that are
maintained asynchronously. This was a bottleneck
encountered, in practice, with systems that use the
MOAB layout.

Thus, while it is perfectly possible to implement

the parent-child AIP versioning model as distinct
AIP’s in the OCFL, a more efficient approach would be
to create new versions of an AIP within a single OCFL
Object, allowing the OCFL client to deduplicate the
common elements between versions and providing
quick access to the version history. This also elimi-
nates the duplication of information between parent
and child IP’s, along with the consequent mainte-
nance overheads.

The OCFL is constructed so that all changes to an

OCFL Object are additions to its contents. This allows
AIP’s to be updatable but, at the same time, forces
each version to be immutable but without incurring
undue storage overheads. Using the reinstatement
mechanism described earlier, it also allows rollback
of failed DP actions such as migration at any point
after the event2.

Logging
The OCFL expects new versions to be created

when a meaningful change is made to an object. A
periodic virus scan or fixity check with a null result
thus does not automatically result in the genera-
tion of a new version. In practice, there are a wide
variety of events that may impact storage but which
are largely invisible to preservation systems without
explicit action. Examples would include operating
system file system maintenance, and hard drive
replacement and subsequent array rebuilding
operations.

In practice, then, these can be potentially

numerous and creating a new AIP each time would

[1]  HTTP Framework for Time-Based Access to Resource

States -- Memento, https://mementoweb.org/guide/rfc/

[2]  You will thanks us for this, believe me! (Neil Jefferies)

not make sense either. However, there is merit in
capturing this information for recovery and audit
purposes. In the OCFL, these can be captured in the
logs directory which is outside the object version
structure. PREMIS is suggested, but not mandated
for this purpose in the OCFL, but it would be sensible
to do so if using E-ARK AIP’s. If desired, these logs
could then be periodically added to a new version of
the AIP to embed this audit trail without undue AIP
version proliferation.

In the E-ARK AIP the use of PREMIS is manda-

tory, including the use of events. The full descrip-
tion of the PREMIS use in the specifications and the
eArchiving Building Block is not ready at the time of
the writing. The work is ongoing and the use of the
semantic units of PREMIS will be described in its own
document to allow it to be used in all the different
IP’s easily.

Pathname Mappings
Complex objects can contain paths that are not

supported by the file system being used for preser-
vation, especially if they have been imported from
another system. This can be for reasons of length,
number of directory levels or character encodings,
amongst others. The OCFL handles this by allowing
long Unicode logical paths while implementing
content paths on storage that may be shortened or
use different character encodings. No specific algo-
rithm is mandated since the mappings are explicit in
the OCFL inventory.

If the AIP is implemented at the OCFL logical level,

then complex AIP structures need not be subject to
such file system limits.

v. concluSion

The choices that can be made when creating a

digital archiving approach are numerous, starting
with what you consider to be the first AIP. Should
it be the SIP that has just been transferred and put
directly into preservation storage so you can go back
if everything gets demolished through a “bad deci-
sion in migration” further down the preservation
journey?

Are we concerned more with the preservation

of bitstreams as standalone entities or with the

https://creativecommons.org/licenses/by/4.0/
https://mementoweb.org/guide/rfc/

9

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

preservation of knowledge, where the meaning of
an object can be largely determined by its relation-
ships to other objects - relationships that necessarily
change over time as a result of human discourse?
Thus we need to consider how to design systems to
capture and preserve this metadata and when and
how often to capture this in new AIP versions.

At a technical level, we need to create systems

that support the curatorial requirements of digital
preservation yet also address the unavoidable
limitations of the underlying computational and
storage technologies.

Both OCFL and the E-ARK AIP standards go some

way to addressing these issues, whilst accepting that
not everyone will necessarily make the same deci-
sions about their approaches, for entirely logical
reasons. This preliminary analysis shows that, in many
respects, the standards are largely complementary in
that their primary foci are differ

ent aspects of the broader digital preservation
problem space - the structure of preserved digital
objects, and the efficient storage and management
of them, respectively. This, somewhat fortuitous,
“separation of concerns” is considered good practice
in terms of systems design.

It can be seen that abstracting the logical struc-
ture of an object from the storage structure with
the simple logic embodied in the OCFL inventory
permits the E-ARK AIP to be realised over a broader
range of platforms, very much in keeping with its
purpose. It even has the potential to allow the use
of object stores which do not implement hierarchical
path systems at all.

Both efforts are still in the development phase

and more work is required to bring them to fruition.
However, this paper shows that there is value in
working together, learning and contributing to each
other. One early recommendation from the OCFL
community to the E-ARK CSIP community is to look
further into the selection of checksum algorithms.
An area that probably requires further discussion on
both sides is the issue of object/AIP dependencies -
where one object, such as a collection, depends on
the existence of others.

More recommendations and comments will most
certainly pass between the groups as we move
forward, particularly once we begin to write code
and develop systems. Collaboration between efforts
can only be beneficial!

...Diversity and choice is always good for

Digital Preservation - as is discourse and align-
ment between concerns and communities.

https://creativecommons.org/licenses/by/4.0/

	_2k76d023185p
	_14umibqycqok
	_osh4w8jpd1hu
	_tq2yhdtic7af
	_nbjt724opfx
	_5ezhpri3mu13
	_ooox0hrqmvlr
	_14v93f77oob3
	_v3sqbkqz0dyo
	_4y7zl6ldgves
	_kpmxz7i7vvau
	_vpq14p8yv5p5
	_b2j2xdas3p5n
	_lo9r60c6b2fn
	_xk2awishjfrh
	_61dk4ii0devc
	_7lir461ez39j
	_amgbt3v4ug38
	_7sjzaqp98tuq
	_hor6anmn81xw
	_lbwmpkydrnlb
	_jvf2tzf8abmp
	_mdby3h5prxg4
	_t4ndb1wq19ox
	_n933pwo3lvd3
	_GoBack
	_ghp7jr3fawdu

