
1

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Towards a Universal virTUal inTeracTor (Uvi)
for digiTal objecTs

Euan Cochrane

Yale University Library
United States of America

euan.cochrane@yale.edu
0000-0001-9772-9743

Klaus Rechert

OpenSLX GmbH
Germany

klaus@openslx.com
0000-0002-8807-018X

Seth Anderson

Yale University Library
United States of America

seth.r.anderson@yale.edu
0000-0003-3304-8484

Jessica Meyerson

Educopia Institute
United States of America
jessica@educopia.org
0000-0002-0180-9616

Ethan Gates

Yale University Library
United States of America
ethan.gates@yale.edu
0000-0002-9473-1394

Abstract – Practitioners generally agree that
providing a service to enable opening and interacting
with born digital objects in their “original” software
is valuable for historians, researchers and the general
public so that they can experience full-fidelity experi-
ences of the objects. Enabling this has, to date, been
a difficult, time-consuming, relatively resource inten-
sive, and tedious. In this paper, we show how we are
on the verge of creating a new method and series of
tools to simplify and automate the process of inter-
acting with digital objects in their original software
and greatly reduce the time and resource costs of
doing so. We outline the history of the developments
in the areas of emulation and software preservation
that we have built on and we outline the concept of
this set of tools and processes we call the “Universal
Virtual Interactor”. We also discuss how the UVI is
being created, and finally we discuss how it may be
improved upon in the future and how it may be imple-
mented in access and discovery tools.

Keywords – Emulation, Access, Rendering, Interactivity
Conference Topics – 2. Designing and Delivering

Sustainable Digital Preservation; 5. The Cutting Edge:
Technical Infrastructure and Implementation.

i. inTrodUcTion and backgroUnd

From at least the 1980s, many years prior to the

publication of Jeff Rothenberg’s seminal article and
paper “Ensuring the Longevity of Digital Documents”
[1] in 1995 there have been advocates amongst digital

preservation practitioners for preserving software as
both information in itself but also, and importantly,
as a utility for accessing other/existing digital objects
over the long term [2]. As Rothenberg said:

“they [future generations] should be able to generate

an emulator to run the original software that will display
my document.“[1 p47]

As the National Library of the Netherlands so

eloquently articulated in 2003:

“There is a difference between paper and digital

records. Any paper record can be perceived through the
five human senses; no digital record can be perceived
without going through computer hardware and soft-
ware……. .

….Digital records are software dependant. They rely

upon the software that was originally intended to inter-
pret (or display) them. When that software becomes
obsolete, perhaps within the space of a few years, the
problem arises of how to read that record without its
original software application. It is unlikely that different
versions of the application will read the file in the same
way, and this may well result in a change in the inter-
preted record (the visible or available view of the file)
that affects its archival integrity. Some data may be lost
altogether; in other areas, data may be gained. There
may be no way to compare a new version with the orig-
inal, so changes may go unnoticed. Any changes to the

https://creativecommons.org/licenses/by/4.0/
mailto:euan.cochrane@yale.edu
mailto:klaus@openslx.com
mailto:seth.r.anderson@yale.edu
mailto:jessica@educopia.org
mailto:ethan.gates@yale.edu

2

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

record may affect its authenticity and integrity, which in
turn may affect its archival and legal status. Depending
on the nature of the record and its use, this can cause
problems, not least that of losing or misrepresenting
history.”[3]

This was further illustrated in the “Rendering

Matters” [4] research undertaken in 2011 at Archives
New Zealand which demonstrated (with visual exam-
ples [5]) the necessity of ensuring we can interact with
preserved digital objects using the original or repre-
sentative contemporaneous software environments.

While there continue to be many valiant efforts to

preserve computing hardware for future generations,
particularly for pedagogical purposes[1] this approach
is unfortunately neither economically scalable nor
likely to be sustainable over long time frames [6]. For
this reason, practitioners over the last 20+ years have
instead focused on preserving the software compo-
nent(s) and ensuring we can continue to maintain the
ability to run legacy software as the hardware that
supports it has become obsolete.

In Jeff Rothenberg’s 1995 article [1], and his

subsequent work with the National Library and the
National Archives of the Netherlands, Rothenberg
argued that emulation was likely to be the only effec-
tive general strategy for preserving the complete
full-fidelity experience of digital objects over time.
Rothenberg has also argued that emulation is
cost-effective as a just-in-time rather than a just-in-
case approach.

“few organizations can justify the cost of translating

documents that they no longer use.” [7 p13]

Emulation also couples well with other long-term

digital preservation tools and strategies, such as
normalization and migration, with the former facil-
itating cost-effective preservation of fidelity and
authenticity (and “digital patina” [8]), and the latter

[1]  Such as the work of the Living Computers Museum + Labs

(https://livingcomputers.org/), Computer History Museum

(https://www.computerhistory.org/), Media Archaeology Lab at

University of Colorado Boulder (https://mediaarchaeologylab.

com/), Maryland Institute for Technology in the Humanities

(https://mith.umd.edu/0), retroTECH at GeorgiaTech University

(http://retrotech.library.gatech.edu/)

facilitating reuse of components of digital objects
that can be easily extracted (potentially on-demand)
from their native contexts. Emulation can also
become a tool for performing just-in-time migra-
tion when coupled with macros that interact with
emulated software environments to run “open-file-
then-save-as-a-new-format” operations [9].

A fruitful way of interpreting the history of emula-

tion tools in digital preservation is to consider it as an
attempt to maximise the preservation impact of our
preservation tools while minimizing long-term support
costs. To this end, in 2001 Raymond Lorie, while
working at IBM, developed the initial design concept
for what he called a “Universal Virtual Computer”:

“We propose to save a program P that can extract

the data from the bit stream and return it to the caller
in an understandable way, so that it may be transferred
to a new system. The proposal includes a way to specify
such a program, based on a Universal Virtual Computer
(UVC). To be understandable, the data is returned with
additional information, according to the metadata
(which is also archived with the data).

...we propose to describe the methods as programs

written in the machine language of a Universal Virtual
Computer (UVC). The UVC is a Computer in its func-
tionality; it is Virtual because it will never have to be
built physically; it is Universal because its definition is
so basic that it will endure forever. The UVC program
is completely independent of the architecture of the
computer on which it runs. It is simply interpreted by
a UVC Interpreter. A UVC Interpreter can be written for
any target machine.” [10]

The UVC had quite a few pitfalls, primarily that

new UVC code had to be written for every new file
format. But the general approach, that of stabilizing
and preserving the functionality at the “highest”
possible level in the interpretation set in order to
minimise the number of code revisions required to
keep the overall functionality operating, was sound.

Building on this the Koninklijke Bibliotheek,

National Library of the Netherlands (the KB) devel-
oped “Dioscuri” a “modular emulator” that could run
anywhere the Java Virtual Machine (JVM) could run [11].

https://creativecommons.org/licenses/by/4.0/
https://livingcomputers.org/
https://www.computerhistory.org/
https://mediaarchaeologylab.com/
https://mediaarchaeologylab.com/
https://mith.umd.edu/0
http://retrotech.library.gatech.edu/

3

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Figure 1: The Dioscuri Modular Emulator Design

Dioscuri was intended to be extensible over time
with new modules being created for newer systems
as needed. In the Dioscuri model the component
that was to be stabilized and preserved was the Java
Virtual Machine, i.e. future generations would only
have to re-enable write the JVM code in the new
computing system in order to maintain access to all
the modular emulators and the systems and soft-
ware that they support.

Following from and incorporating the Dioscuri work,
the Keeping Emulation Environments Portable (KEEP)
project [12] developed a desktop application that
bundled a set of emulators with a configuration GUI
that incorporated the concepts of Preservation Layer
Models and “View Paths” from early IBM/KB work [13]:

“The PLM outlines how a file format or collection of
similar objects depends on its environment. A PLM consists
of one or more layers of which each layer represents a
specific dependency. The most common PLM consists of
three layers: application layer, operating system layer
and hardware layer. However, other variations can also
be created. Based on a PLM, different software and hard-
ware combinations can be created. Each such combina-
tion is called a view path. In other words, a view path is
a virtual line of action starting from the file format of a
digital object and linking this information to a description
of required software and hardware” [14 p148].

To implement this the KEEP developers included a

method for associating file formats with configured
emulated environments such that you could submit
a file and it would “automatically” be attached to

an environment and that environment be loaded
on your desktop to be interacted with. Overall
the approach of the KEEP project was less efficient
than that outlined by the UVC or Dioscuri alone as
it incorporated multiple emulators that would have
to be supported over time. However, it did intro-
duce the dramatic efficiency of being able to use
existing file-interpreters (E.g. commercial software
applications) and the ability to reuse off-the-shelf
emulators developed by third parties. Concepts and
approaches that are included in the contemporary
work we discuss further below.

At the same time as the KEEP, the Planets Project

[15] had a sub-project to build the Global Remote
Access to Emulation Services (GRATE) service [14].
A method for remotely accessing emulated environ-
ments via a web browser. This approach enables
resource-intensive emulation to be managed and
executed remotely while the user interacts with it
through a browser-based viewer.

The GRATE project was led by a team at the

University of Freiburg and evolved into what became
the Baden-Württemberg Functional Long-Term
Archiving (bwFLA) project [16]. The bwFLA project,
in turn, developed the suite of tools now commonly
referred to as Emulation as a Service or “EaaS”. The
EaaS tools follow the basic approach pioneered
with KEEP, but implemented with a browser-based
interface, while adding features such as enabling
the definition of derivative disk images (more on
this below), the separation of objects, environments
and emulators, and the addition of many reliability
improvements. The browser-based approach is
transformative from a user-perspective as it democ-
ratizes access. All one needs to interact with an
emulated computer is a web interface.

It is upon the EaaS infrastructure that we are

building the EaaSI program of work. We’re expanding
on the concepts of a PLM and view path to create
what we are calling a Universal Virtual Interactor.
The goal of the UVI project is to develop a frame-
work into which organizations and consortia can add
legacy software and metadata in order to automate
presenting digital objects to users for interaction in a
web browser. The objects are presented in “original”
or representative interactive computing environ-
ments utilizing original or representative software

https://creativecommons.org/licenses/by/4.0/

4

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

from a time period that is appropriate to the object.
Or, more succinctly, the UVI automates opening old
files in their “original” software in a web browser.

ii. configUring environmenTs in The

emUlaTion as a service infrasTrUcTUre
(eaasi) program of work

A. The EaaSI Program of Work

In the Emulation as a Service Infrastructure
(EaaSI) program of work we are working with partner
organizations who are hosting EaaSI nodes running
instances of Emulation as a Service: the “EaaSI
Network [17]”. Together with a local team at Yale
University Library we are configuring and docu-
menting emulated computing environments and
enabling the environments to be shared between
nodes in the EaaSI network. Upon that base we are
building services, workflow interfaces, and APIs to
perform various digital preservation and curation
functions. One of these services is the UVI that relies
on this set of configured computing environments
for its core functionality.

B. Hardware Research and Configuration

The configuration of computing environments
within the EaaSI program is a fairly involved process
that is time consuming and deliberately thorough. We
have a team recruited from students at Yale University
who are performing this important role. The workers
in the environment configuration and documentation
team start by selecting an application and check to
see what hardware and operating system it requires.
Assuming the required environment doesn’t exist,
they next create a virtual hard disk that is stored as
an image on our servers. The workers then configure
an emulated computer that has the hardware spec-
ifications required to run the dependent operating
system and also to run the application itself.

We do our best to match the emulated hardware

specification to representative hardware from the
period during which the software was most popular,
or the period we are targeting to emulate. For
example, for a Windows 98 computer we can choose
to emulate a contemporaneous CPU (e.g. Pentium 3),
volume of RAM (e.g. 256 megabytes), and compat-
ible sound (e.g. a SoundBlaster 16), video (e.g. a
Cirrus CLGD 5446 PCI) and network cards (e.g. an
AMD PCNet PCI). Sometimes this requires historical

research and we have consulted various online
resources from old advertisements to compiled lists
of hard drive prices over time.

Figure 2. An advertisement for Cybermax Personal Computers

from the late 1990s, via user @foone on twitter

Historical and performative accuracy is also

weighed against long-term costs. We aim to mini-
mize the hardware variants that we support in order
to reduce the long-term cost of moving the environ-
ments to new or migrated emulators.

C. Documentation Operating System Configuration

The configured computer is then documented as
structured metadata and defined as a configured
“hardware environment”. These “hardware envi-
ronment” combinations can be saved as templates
in our system[1], allowing future users to reuse that

[1]  The hardware environments are also matched to the software

applications that we later install on the hardware environments and

confirm their compatibility with. These applications also have their pub-

lished hardware requirements documented and associated with them.

In the future we hope to use these two sets of data to automate match-

ing newly added software applications to pre-configured “compatible”

hardware environments by matching the published hardware require-

ments of the new software with pre-configured environments that we

have confirmed are compatible with the same requirements set.

https://creativecommons.org/licenses/by/4.0/

5

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
DOI: 10.1145/nnnnnnn.nnnnnnn

configuration when selecting their requirements
(either automatically or manually using a GUI)
without having to configure every sub-component
(for example, they might just select the most popular
pre-configured hardware environment template
that supports Windows 98 SE). Next a disk (image)
is connected to that emulated computer, the oper-
ating system installation media is also attached, and
the computer is switched on (“booted”). The config-
uration user can then run through the operating
system installation and configuration. Throughout
this process the configuration user has to make a
number of decisions about operating system config-
uration and settings. These decisions can affect the
functions of the operating system and the applica-
tions that come bundled with it, or may be run on
it, in the future. For example, setting the resolution
of the desktop will affect how software displays,
or choosing a language or set of locale settings can
dramatically change the user experience. EaaSI
configuration users select from menus and pick lists
to document each of the decisions they make and add
new metadata options to those pick lists where neces-
sary. This ensures consistency and machine-read-
ability of the captured documentation/metadata.

Having configured and documented the operating

system the configuration user shuts down the emulated
computer and saves the results into the disk image
file. This disk image and its documented contents are
defined as a new “software environment”[1]. This soft-
ware environment is documented by the configuration
user as structured metadata and assigned a unique
identifier. Together with the hardware environment
they are defined as a “computing environment” which is
also documented and assigned a unique identifier. We
use these concepts to organize and enable discovery of
assets within the EaaSI interface.

[1]  An important tangential benefit of this approach is that by

preserving just one of these environments, such as a Microsoft

Windows 98 computing environment running Microsoft Office

97, we have ensured that the very many digital objects created

by and made accessible using the applications in the Office

suite are able to be accessed for future generations. Once we

have one of these environments configured we can reuse it to

re-enable interaction with all of those countless digital objects

at minimal incremental cost and on an on-demand basis that is

useful from a financial planning perspective as it matches the

burden of cost to the time of access.

D. Installing and Documenting the Application
Software

Our next step is to install the selected application

onto the existing software environment to create a
new software environment. Fortunately, the EaaS
software facilitates minimising the incremental cost
and associated environmental impact of this by
enabling the creation of “derivative” disk images that
are “derived from” an existing image (either a full disk
image or a derivative itself) [87]. The changes that a
configuration user makes when installing and config-
uring the added application are all that is captured
onto disk in the resultant derivative file. When the
associated new software environment needs to be
used in the future the full disk image (or hierarchy
of image and derivatives) and the derivative file are
brought together at the time of execution and inte-
grated in real-time by the EaaS software.

Figure 3. An illustration of the storage cost savings enabled by

the use of derivative disk images

This greatly reduces the storage burden of
preserving multiple software environments and
frees configuration users to pre-configure soft-
ware environments with only minor differences
between them without raising significant concerns
about storage costs. Given that it can take a number
of minutes to load a computing environment and
make even a small (but potentially very useful)
settings change, the benefit of this becomes clear:
by pre-configuring multiple environments just once
each and then sharing them, this greatly reduces the
time required for future users to provision a soft-
ware environment appropriate to their use case, i.e.
users can just pick the pre-configured software envi-
ronment they want from a list.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

6

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

While installing and configuring the application
in the software environment the configuration user
documents a number of facts about it in order to
facilitate automated interaction with the environ-
ment in the future. For example, the configura-
tion user will document every relevant executable
program included in the application and various
facts about it such as:

1. Where the executable is located within the file

system
2. How the executable itself can be initiated pro-

grammatically (at system start up)
3. How the executable can be made to open a

digital object programmatically during the ini-
tiation process

4. What file formats the application can open
a. This includes documenting the exact descrip-

tion of the format and its extension (where ap-
plicable) as displayed in the application’s user
interface[1]

Figure 4: Save-as types as presented in Microsoft Excel 97

5. What file formats the application can import
• As above - including the specific displayed pa-

rameter.
6. What file formats the application can save to
• As above - including the specific displayed pa-

rameter.
7. What file formats the application can export
• As above - including the specific displayed

parameter.

The configuration user also makes an attempt

[1]  Such detailed application-specific metadata may be useful

for distinguishing between functionally different file format

variants such as “Excel 4.0 created by Microsoft Excel 97” vs.

“Excel 4.0 as created by Quattro Pro 8”.

to research when the application was first released,
when it was most popular, when it was first super-
seded (and by what software) and when it went out
of general use or was no longer supported. And
finally, they document the default mime-types or file
extensions (depending on the operating system) that
the software is configured to automatically open at
the operating system level within the software envi-
ronment (i.e. which types of files the application will
automatically open when the file is double clicked
within the operating system).

The configuration user then shuts down the

emulated computer and saves a derivative envi-
ronment which gets added to the pool of available
software environments. Where possible the configu-
ration user will then publish the environment so that
others participating in the EaaSI network can add
the environment to their local pool.

The software behind the EaaSI network is open

source and available on GitLab [19], and while the
current EaaSI network is using the fair-use rights
available under copyright law in the United States
of America to facilitate the sharing of environments
outlined here [20] there is no technological reason
the software and approach couldn’t be extended
internationally. The Software Preservation Network
[21], an international cooperative of stakeholders in
software preservation, is working with international
partners to explore avenues for expanding the EaaSI
network beyond the United States and/or to enable
similar networks to be established in other legal
jurisdictions.

iii. The Universal virTUal inTeracTor (Uvi)

The Universal Virtual Interactor or UVI is a

concept built on the history outlined above. Its name
is descriptive of its functionality: it is intended to be
Universal and apply to all digital objects. It is Virtual
as it uses emulation and/or virtualization (“Virtual”
is also included in homage to the UVC concept
described above). And it, like the objects it is used
with, is Interactive.

The UVI is intended to automatically present a

digital object for interaction by a user in a software
environment that is either the original that the
object was created and used within, or a software

https://creativecommons.org/licenses/by/4.0/

7

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

environment that represents one that would have
been in use at the time the object was created (and/
or soon after). To enable this functionality the UVI
attempts to automatically map attributes of digital
objects to pre-configured software environments
that could be used to interact with them. It dynami-
cally generates view-paths based on analysis of the
digital objects that are submitted to it and the meta-
data available about the configured environments
that exist within the EaaSI network. For example,
the UVI might analyse a “.doc” file and identify that
it was created with WordPerfect 5.1 for MS-DOS and
automatically match it to an available emulated envi-
ronment containing that software. Similarly, it might
identify that a “.xls” file was created in OpenOffice Calc
1.0 and match the file to a pre-configured emulated
environment containing that software, as it is most
likely to be the “best” option to use for interacting
with that file (despite .xls being the default format
for Microsoft Excel and not OpenOffice Calc 1.0).

The UVI’s algorithm analyses a number of factors

to identify these view-paths including:

1. It analyses the dates associated with files in
the digital object (e.g. last edited and earliest
created) and the available file format informa-
tion and attempts to identify which environ-
ments can be used to interact with the object.
The dates may come from file system metada-
ta or embedded metadata and are evaluated
for trustworthiness using a variety of tests.

2. It attempts to match the data ranges within
the digital objects to first identify what soft-
ware was in use and popular at the time the
object was created and in use.

3. It then identifies, of that set, which of the ap-
plications could open or import the objects.

4. In additional steps, it then uses further meta-
data (where available) to attempt to further
reduce the list of possible interaction environ-
ments, details such as which applications were
popular at the time, which application created
the object (information that may be inferred
from metadata within the file and from infor-
mation about applications that were available
contemporaneously with the file), or which ap-
plication created those files by default and was
also generally used to interact with them.

The algorithm evolves in response to additional

configuration metadata contributed by EaaSI Network
users. The result is a list of environments that are
available in the EaaSI network with weightings asso-
ciated with how likely they are to be an appropriate
representative (representing an environment that
would have been used at the time the object was in
use) environment to interact with the object.

Developers of discovery and access systems can

choose how they want to use that list of environ-
ments. They may choose to present all options to
a user, only the highest weighted option, randomly
assign an environment, or use some other approach.
The UVI is agnostic about this decision.

Once the files have been mapped to environ-

ments the system has a number of options for
ensuring the objects are made interactable to users.
In all cases the object is made available to the envi-
ronment either by:

1. Including the object in a disk image that is
attached to an environment

2. Editing the disk image to insert the object into
a location in the file system.

We then have multiple options for enabling the

content to be opened in the target software applica-
tion within the emulated software environment.

1. The environment can be presented to a user

with text instructions indicating how to open
the object using the interface of the emulated
environment

2. The disk image of the core operating system
can be edited to force the object to execute on
start-up (e.g. by placing the file or a link to it in
the “startup” folder of a Windows environment
or by inserting a script into a Linux boot process
that utilizes the executable syntax metadata
referenced above to open the digital object with
a particular executable upon system start-up.

3. A mouse/keyboard input macro can be run
after the system has loaded in order to open
the object in the appropriate software.

The end result of all of these configurable options

is that after a user clicks on a link to an object in a web
browser they are quickly presented with the ability
to interact with it in an “original” or representative
software environment from the era of the object.

https://creativecommons.org/licenses/by/4.0/

8

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

A. Progress
The EaaS and EaaSI teams already have some of

the components available to enable this automation
and are rapidly building and creating more. The basic
tooling to automate the steps of connecting an object
to an available software environment and editing the
disk image to make the object execute at system boot
time are already available. A limited version of this
approach is used in the German National Library to
automatically present CD-ROMs to users in emulated
computers running operating systems that the CDs
should be compatible with [22].

The EaaSI team have acquired a large software

collection and have begun configuring and docu-
menting software environments using the approach
outlined above. The initial prospects are promising
and we’re aiming to have 3000 software environ-
ments configured by July 2020.

iv. fUTUre work

Programmatic Interaction with Environments

Early work with migration by emulation was
completed as part of the PLANETS project by the
partners at the University of Freiburg. This approach
involved automating attaching a file to a computer
environment, within a disk image, loading the envi-
ronment, then running a macro/program that uses
pre-recorded and automated mouse and keyboard
inputs to open the file in an application and save the
contents into a new file with a different format. This
tooling still exists behind the scenes in the Emulation
as a Service software that is a direct descendant from
the work of the PLANETS project and a core part
of the UVI. Using these features the environments
created for the UVI could be re-purposed not just to
serve as tools for “manual” interaction but also to be
used as tools for automated interaction with at least
two potential use cases:

1. The aforementioned migration by emulation,
including daisy-chaining migration steps using
multiple software environments.

2. Enabling “distant reading” [23] of a variety of
different software environments or of sets of
diverse digital objects using the same soft-
ware environment.

a. For example, a researcher may be interested
in comparing changes in user interfaces over
time by automatically loading, automatically

interacting with, and analysing the output of
the environments over time. Or a researcher
may be interested in automatically comparing
the rendering of one digital object in a diverse
variety of different software environments
by automatically opening the same object in
a variety of different software environments,
interacting with them automatically, and
analysing the outputs.

We are also following the work of the Preservation

Action Registry (PAR) project [24] with great interest.
As we develop persistent identifiers for computing
environments there is the potential to incorporate
emulation view paths into PAR with the UVI as the
“tool” involved. As discussed in [25] this would
enable digital preservation system developers to
match digital objects to UVI compatible software
environments during the ingest process and to use
this information to enable access tools to automati-
cally present the object in the appropriate environ-
ment when it is requested for access. Additionally
the migration pathways enabled by the migra-
tion-by-emulation functionality should expand the
PAR dataset extensively.

Our UVI is machine/algorithm driven and so the

more environments that are available and the greater
diversity between them, the more powerful the
UVI becomes. However, we don’t yet have Artificial
Intelligence (AI) algorithms available to do the kind
of configuration and documentation tasks described
in section C. above. We are currently manually
pre-configuring multiple slightly different environ-
ments and describing them with machine readable
metadata. For example, we configure the same
environment with multiple different pre-configured
display resolutions to enable users/machines to just
pick a pre-configured option rather than having to
make the configuration change themselves. In the
future we would like to explore using programmatic
interaction with the environments to both configure
and document new environments in order to further
reduce the cost of populating the EaaSI network and
improve the effectiveness of the UVI.

https://creativecommons.org/licenses/by/4.0/

9

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

B. Integration into Discovery and Access Systems

The UVI is being built as a set of APIs that enable

developers to either:
1. Request an object opened in a specific environ-

ment and get back the information required to
embed the environment for interaction in a
browser window.

2. Submit an object and request a list of poten-
tially appropriate environments for use in
interacting with the object, with weighting
data to aid in selection/presentation to a user

3. Submit metadata (dates and file format infor-
mation) and request a list of potentially appro-
priate environments for use in interacting with
the object, with weighting data to aid in selec-
tion/presentation to a users

4. Submit a file or metadata and receive back the
information required to embed the likeliest
appropriate environment in a web browser.

This flexibility provides developers with a number

of options for how they integrate the UVI into their
discovery and access workflows. They may wish to
provide more or less options to end-users and may
already know which environments they want to use
for particular digital objects.

As discussed above, a version of this approach

is already in use in the German National Library
[22] and the EaaSI nodes are aiming to explore
integrating the UVI into their access and discovery
systems beginning in 2020.

C. Reducing time to load environments

The EaaS team at the University of Freiberg and
their commercial offshoot OpenSLX GmbH have
been working to enable computing environments to
be paused at a point in time and restarted instanta-
neously. That functionality coupled with macro-based
interaction with environments would enable reducing
the time from clicking on a digital object in a finding
aid or catalogue and having it presented to you in
your web browser. An environment could be instanta-
neously loaded with an object attached in a disk image
and a macro immediately run that opens the file using
keyboard/mouse interactions. This could also be
managed such that the user doesn’t get presented
with the environment in their browser until the macro
has been completed ensuring no conflicts between

the macro-driven inputs and the user’s manual inputs.

v. conclUsion

The UVI is the conceptual legacy of more than

two decades of applied research on emulation in
cultural heritage contexts including the Planets
Project, the UVC project and Jeff Rothenberg’s early
work and research with the Dutch National Library
and Archives. Our current work on/within the EaaSI
program further reduces barriers to using emulation
and preserved software as a means of interacting
with preserved digital objects. While detail-heavy
and time-intensive, the collective efforts of the EaaSI
Network will pay dividends in the future through
economies of scale. When the environments and
tooling we are developing re-enable access to poten-
tially limitless digital objects that might otherwise be
inaccessible or lose significant fidelity and content,
their value will be clear. Additionally, once the UVI is
standardised we will have the opportunity to open
up additional services and integration points to
spread the benefits throughout the digital preserva-
tion community and on to the public at large.

https://creativecommons.org/licenses/by/4.0/

10

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

references

[1] J. Rothenberg, “Ensuring the Longevity of Digital Documents”,

Scientific American, Vol. 272, Number 1, pp. 42-7. 1995.

[2] J. Meyerson, “Software Preservation Literature Review:

The Co-Determinacy of User Needs and Advances in

Preservation Methods”, 2014,https://www.softwarepres-

ervationnetwork.org/blog/software-preservation-litera-

ture-review-2014/, accessed 03/19/2019

[3] J. Slats Et al, “Digital Preservation Testbed White

Paper Emulation: Context and Current Status”, Digital

Preservation Testbed Project Koninklijke Bibliotheek,

National Library of the Netherlands, 2003, https://

web.archive.org/web/20050305150902/http://www.

digitaleduurzaamheid.nl/bibliotheek/docs/white_paper_

emulatie_EN.pdf, accessed 17/03/2019.

[4] E. Cochrane, Rendering Matters, Archives New Zealand,

2012, http://archives.govt.nz/rendering-matters-re-

port-results-research-digital-object-rendering, accessed

17/03/2018

[5] E. Cochrane, Visual Rendering Matters, Archives New

Zealand, 2012, http://archives.govt.nz/resources/

information-management-research/rendering-mat-

ters-report-results-research-digital-object-0, accessed

17/03/2018

[6] P. McGlone, “A guy in Minnesota is the museum

world’s answer to old technology”, The Washington

Post, 20/04/2018, https://www.washingtonpost.com/

entertainment/museums/a-guy-in-minnesota-is-the-

museum-worlds-answer-to-old-technology/2018/04/19/

78cae5aa-3dcd-11e8-8d53-eba0ed2371cc_story.html

accessed 17/03/2019

[7] J. Rothenberg, “Ensuring the Longevity of Digital

Information, Council on Library and Information

Resources, 1999, http://www.clir.org/wp-content/

uploads/sites/6/ensuring.pdf, accessed 3/17/19

[8] E. Cochrane, The Emergence of Digital Patinas, The

Digital Preservation Coalition Blog, 2017, https://dpcon-

line.org/blog/idpd/the-emergence-of-digital-patinas,

accessed 17/3/2019

[9] K. Rechert, D. von Suchodoletz, R. Welte, “Emulation

based services in digital preservation”, Proceedings of

the 10th annual joint conference on Digital libraries,

Pages 365-368, 2010

[10] R. Lorie, “Long term preservation of digital information”,

Proceedings of the 1st ACM/IEEE-CS joint conference on

Digital libraries, Pages 346-352, 2001.

[11] Dioscuri team, “Dioscuri: Ideas and Key Features”, 2007,

http://dioscuri.sourceforge.net/dioscuri.html, accessed

on 17/03/2019

[12] Keep Project Team, “Keeping Emulation Environments

Portable”, 2012, https://web.archive.org/

web/20120121170030/ http://www.keep-project.eu/

ezpub2/index.php, accessed 3/17/19

[13] E.Oltmans, R. van Diessen, H. van Wijngaarden,

“Preservation functionality in a digital archive”, JCDL ‘04

Proceedings of the 4th ACM/IEEE-CS joint conference on

Digital libraries, Pages 279-286, 2004.

[14] D. von Suchdoletz, J. van der Hoeven, “Emulation: From

Digital Artefact to Remotely Rendered Environments”,

The International Journal of Digital Curation, Issue 3, Vol

4, 2009.

[15] S. Bonin, “Preservation and Long-term Access via

NETworked Services: Keeping digital information alive

for the future”, 2009, https://planets-project.eu/docs/

comms/PLANETS_BROCHURE.pdf accessed 17/03/2019

[16] K. Rechert, I. Valizada, D. von Suchodoletz, J.

Latocha, bwFLA - A Functional Approach to Digital

Preservation. Praxis der Informationsverarbeitung und

Kommunikation 35(4): 259-267, 2012

[17] Scaling Software Preservation and Emulation as a

Service Infrastructure, “About EaaSI”, 2019 https://www.

softwarepreservationnetwork.org/eaasi/, accessed

17/03/2019

[18] T. Liebetraut, K. Rechert. “Management and

Orchestration of Distributed Data Sources to Simplify

Access to Emulation-as-a-Service”. iPRES 2014

[19] OpenSLX GmbH, “EaaSI Group”, Gitlab.com, 2019 https://

gitlab.com/eaasi, accessed 17/03/2019

[20] Association of Research Libraries et al, “Code of Best

Practices in Fair Use for Software Preservation”, 2019

https://www.arl.org/focus-areas/copyright-ip/fair-use/

code-of-best-practices-in-fair-use-for-software-preser-

vation, accessed on 17/03/2019

[21] Software Preservation Network, “Home” , 2019 https://

www.softwarepreservationnetwork.org/, accessed on

19/03/2019

[22] K. Rechert, T. Liebetraut, O. Stobbe, N. Lubetzki, T.

Steinke, “The RESTful EMiL: Integrating emulation

into library reading rooms”, Alexandria: The Journal

of National and International Library and Information

Issues, Vol 27, Issue 2, pp 120-136, 2017.

[23] F. Moretti (2013). Distant Reading. Verso, London, 2013.

[24] M. Addis, J. O’Sullivan, J. Simpson, P. Stokes, J. Tilbury,

“Digital preservation interoperability through preserva-

tion actions registries: iPres 2018 – Boston” iPres 2018,

Boston, 2018

[25] E. Cochrane, J. Tilbury, O. Stobbe, “Adding Emulation

Functionality to Existing Digital Preservation

Infrastructure”, iPres Conference 2017, 2017

https://creativecommons.org/licenses/by/4.0/
https://www.softwarepreservationnetwork.org/blog/software-preservation-literature-review-2014/
https://www.softwarepreservationnetwork.org/blog/software-preservation-literature-review-2014/
https://www.softwarepreservationnetwork.org/blog/software-preservation-literature-review-2014/
https://web.archive.org/web/20050305150902/http
https://web.archive.org/web/20050305150902/http
http://www.digitaleduurzaamheid.nl/bibliotheek/docs/white_paper_emulatie_EN.pdf
http://www.digitaleduurzaamheid.nl/bibliotheek/docs/white_paper_emulatie_EN.pdf
http://www.digitaleduurzaamheid.nl/bibliotheek/docs/white_paper_emulatie_EN.pdf
http://archives.govt.nz/rendering-matters-report-results-research-digital-object-rendering
http://archives.govt.nz/rendering-matters-report-results-research-digital-object-rendering
http://archives.govt.nz/resources/information-management-research/rendering-matters-report-results-research-digital-object-0
http://archives.govt.nz/resources/information-management-research/rendering-matters-report-results-research-digital-object-0
http://archives.govt.nz/resources/information-management-research/rendering-matters-report-results-research-digital-object-0
https://www.washingtonpost.com/entertainment/museums/a-guy-in-minnesota-is-the-museum-worlds-answer-to-old-technology/2018/04/19/78cae5aa-3dcd-11e8-8d53-eba0ed2371cc_story.html
https://www.washingtonpost.com/entertainment/museums/a-guy-in-minnesota-is-the-museum-worlds-answer-to-old-technology/2018/04/19/78cae5aa-3dcd-11e8-8d53-eba0ed2371cc_story.html
https://www.washingtonpost.com/entertainment/museums/a-guy-in-minnesota-is-the-museum-worlds-answer-to-old-technology/2018/04/19/78cae5aa-3dcd-11e8-8d53-eba0ed2371cc_story.html
https://www.washingtonpost.com/entertainment/museums/a-guy-in-minnesota-is-the-museum-worlds-answer-to-old-technology/2018/04/19/78cae5aa-3dcd-11e8-8d53-eba0ed2371cc_story.html
http://www.clir.org/wp-content/uploads/sites/6/ensuring.pdf
http://www.clir.org/wp-content/uploads/sites/6/ensuring.pdf
https://dpconline.org/blog/idpd/the-emergence-of-digital-patinas
https://dpconline.org/blog/idpd/the-emergence-of-digital-patinas
http://dioscuri.sourceforge.net/dioscuri.html
https://web.archive.org/web/20120121170030/
https://web.archive.org/web/20120121170030/
http://www.keep-project.eu/ezpub2/index.php
http://www.keep-project.eu/ezpub2/index.php
https://planets-project.eu/docs/comms/PLANETS_BROCHURE.pdf
https://planets-project.eu/docs/comms/PLANETS_BROCHURE.pdf
https://www.softwarepreservationnetwork.org/eaasi/
https://www.softwarepreservationnetwork.org/eaasi/
http://Gitlab.com
https://gitlab.com/eaasi
https://gitlab.com/eaasi
https://www.arl.org/focus-areas/copyright-ip/fair-use/code-of-best-practices-in-fair-use-for-software-preservation
https://www.arl.org/focus-areas/copyright-ip/fair-use/code-of-best-practices-in-fair-use-for-software-preservation
https://www.arl.org/focus-areas/copyright-ip/fair-use/code-of-best-practices-in-fair-use-for-software-preservation
https://www.softwarepreservationnetwork.org/
https://www.softwarepreservationnetwork.org/

