
1

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Saving Data JournaliSm

Using ReproZip-Web to Capture Dynamic Websites for Future Reuse

Katherine Boss

New York University, USA
katherine.boss@nyu.edu

0000-0003-2148-8386

Vicky Steeves

New York University, USA
vicky.steeves@nyu.edu
0000-0003-4298-168X

Rémi Rampin

New York University, USA
remi.rampin@nyu.edu
0000-0002-0524-2282

Fernando Chirigati
New York University, USA

fchirigati@nyu.edu
0000-0002-9566-5835

Brian Hoffman
Independent, USA

brianjhoffman@gmail.com
0000-0003-2333-0603

Abstract – While dynamic and interactive Web

applications are becoming increasingly common to
convey news and stories to people all around the
world, their technological complexity makes it hard
to archive and preserve such applications, and as
such, they are being lost. We present ReproZip-Web,
an open-source prototype aimed at saving these news
applications from extinction. ReproZip-Web leverages
ReproZip, a computational reproducibility tool, and
Webrecorder, a tool for recording Web resources, to
automatically and transparently capture and replay
dynamic Websites. The prototype creates a bundle
that contains all the information needed to repro-
duce a news application, and its lightweight nature
makes it ideal for distribution and preservation. We
will present our ongoing work on the prototype, and
also discuss some use cases and avenues for future
development.

Keywords – Web archiving, Emulation, Data
Journalism, Emulation-based web archiving, ReproZip

i. IntroductIon

Data journalism stories are among the most

complex, innovative, and original stories being
produced by newsrooms today. These projects,

created by news organizations in dozens of coun-
tries, are custom-built websites that display content
dynamically in the browser. On the back end,
many of these works also allow readers to explore,
query, and inspect data related to a news story.
Iconic examples of data journalism projects include
“Dollars for Docs” by ProPublica, “Gun Deaths in Your
District” by The Guardian, and the stories produced
by The Upshot team at The New York Times [1]–[3].
These works are often called interactives or “news
applications,” and have increased dramatically in
production and popularity as societies have become
more data-driven [4, p. 154]. Yet because of their
technological complexity, these sites cannot be fully
or systematically captured by current web archiving
tools. Current web archiving technologies, which
have been successful in capturing snapshots of
static news content, fail to capture the look, feel,
and functionality of a significant amount of dynamic
content, including social media feeds, interactive
maps, visualizations, and database-reliant websites.
While technologies like WebRecorder and Perma.
cc (which is built on WebRecorder) have alleviated
some aspects of this problem, there are several
limitations to these tools [4], [5]. WebRecorder
records resources as they are loaded by the browser
and stores them as Web ARChive (WARC) files, but

https://creativecommons.org/licenses/by/4.0/
mailto:katherine.boss@nyu.edu
mailto:vicky.steeves@nyu.edu
mailto:remi.rampin@nyu.edu
mailto:fchirigati@nyu.edu
mailto:brianjhoffman@gmail.com
http://Perma.cc
http://Perma.cc

2

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

at this time the capture and record process is not
automated; users must click on each link of a site to
initiate recording. For database-driven websites this
is an untenable solution to capture content at scale,
as it would require an archivist to click thousands
to hundreds of thousands of links to fully capture a
single project. Scalable web archiving of dynamic
content requires an “emulation-based” approach
that could capture assets located on the web server,
many of which are protected, rightly, by firewalls and
other security measures [6].

Beyond the technical challenges of capturing and

archiving dynamic websites, there are organizational
barriers to advancing a solution. In the majority of
newsrooms in the United States, newsroom libraries
have long been shuttered [7], [8]. This trend, which
accelerated in the 2000s as newspapers became less
profitable and budget cuts became common, has
left newsrooms bereft of any archiving or preserva-
tion expertise within the organization. Few, if any,
newsroom staff wake up each day thinking about
how to save their digital content. Consequently,
web archiving has always been an afterthought; in
2002 only 7% of newsrooms with libraries (already a
minority) were conducting any sort of web archiving
[7, p. 44]. Though outside organizations such as the
Internet Archive have stepped in to save millions of
pages of articles [9], much more content has been
lost.

These losses have a detrimental impact on the

collective cultural record and the future of research
based on journalism [10, p. 1208]. News stories are
known as the “first draft of history,” and this makes
them an important and frequent object of study for
scholars across the academy. News websites are an
important research artifact [11], and demand for
them will likely only grow, given that the way the
public finds, reads, and shares news is increasingly
online [12], [13].

To address this problem and save interactive

news websites, our research team has built an
emulation-based web archiving tool, which, to our
knowledge, is the first of its kind.

ii. About the project

Emulation as an archiving and preservation

strategy was introduced as a concept decades ago
by Rothenberg [14], though the infrastructure, skill,
and knowledge to create emulators has only recently
made it a feasible, economical, or practical option
[15, p. 2]. Advances in cheaper and more abundant
digital storage in the last decade have paved the
way for emulation projects, and coincided with the
belief in the digital archiving community that to save
digital objects for the long term, we must emulate
them in their original computational environment
[15]–[19]. Preservation of encapsulated projects,
rather than websites (both static and interactive), is
currently underway at several institutions, including
Rhizome, the Internet Archive, Carnegie Mellon, New
York University, Yale and the Software Preservation
Network, Deutsche Nationalbibliothek, and the
British Library [15], [20], [21],. These pioneering proj-
ects have advanced the capture and preservation of
system images and the frameworks that allow users
to replay them on modern machines [10]. However,
none of these initiatives have yet addressed a scal-
able, full-stack, emulation-based web archiving tool
that could systematically capture the large volume
of interactive news projects being published daily.
Our project addresses this need.

iii. a PrototyPe to PreServe newS aPPS

To this end, we extended an existing open-source

project, ReproZip, originally designed for computa-
tional reproducibility [22]. ReproZip is a tool that
automatically captures all the dependencies of a
software application originally run in a Linux envi-
ronment, and creates a single, distributable bundle
that can be used to reproduce the entire experiment
in another environment (e.g., on Linux, Windows, or
Mac). ReproZip works in two steps:

Packing. In the packing step, the tool traces all

system calls related to the execution of the appli-
cation, capturing all of the dependencies at the
OS level, including software, data files, databases,
libraries, environment variables, and OS and hard-
ware information. Using this information (which
can optionally be customized by the user), ReproZip
creates a bundle for it: an .rpz file containing all of
the dependencies.

Unpacking. In the unpacking step, given an .rpz

file, other users can use ReproZip to automatically

https://creativecommons.org/licenses/by/4.0/

3

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

and transparently set up the packaged application in
their environment, even if their OS is different than
the one used for the creation of the application. This
is possible thanks to emulation- and container-based
tools leveraged by ReproZip.

ReproZip successfully captures and reproduces

the software environment, including involved
scenarios such as the client-server ones that are
common to news apps. One of the current limita-
tions of ReproZip, however, is that it cannot capture
front-end remote dependencies. As we discovered in
the course of this research, news apps often depend
on remote front-end files, e.g., JavaScript, cascading
style sheets (CSS), fonts, and other resources.
Consequently, the bundle created during the packing
step is incomplete. When unpacking, these front-end
files will only work assuming they are still accessible
and live: if they become inaccessible, the look, feel,
and interactivity of these news apps is entirely lost.

Our extension to ReproZip, called ReproZip-Web,

aims to address this limitation, and therefore to fully
capture and preserve news apps. To capture these
remote resources and add them to the .rpz bundle,
we leverage the Core Python Web Archiving Toolkit
(pywb) software library from Webrecorder [4], [23].

Packing and Recording the News App. The

prototype assumes that the back-end of the news
app (e.g., databases, web framework) has already
been packed by ReproZip, thus creating a .rpz
bundle. Given this .rpz file as input, our proto-
type simultaneously launches the emulated news
app, a Webrecorder server, and an instance of the
Chromium browser, which is controlled via the
Chrome DevTools Protocol (CDP). With the applica-
tion unpacked and being reproduced, the browser
makes requests to Webrecorder, which acts as a
proxy while it builds a WARC archive containing all the
resources that were requested. Once the browser
has finished loading the news app, our tool consoli-
dates the .rpz and WARC data into a single package:
a new .rpz file. Figure 1 depicts the full workflow for
packing and recording a news app.

Figure 1: Packing and recording a news app with ReproZip-Web.

Replaying the News App. When a user replays

the .rpz package with the prototype, the two servers
are again launched simultaneously: the emulated
news app in a Docker container (via reproun-
zip-docker), and a Webrecorder server providing the
web resources archived in the package’s embedded
WARC data. A proxy server (Nginx) receives all
network requests from the browser and routes them
to the appropriate server, using the domain of the
request URI to determine which server can fulfill the
request. This configuration requires a browser with
customized proxy settings pointing at the docker-
ized nginx server; our tool also has a mode in which
the requests are handled directly by the Wayback
server, allowing archival packages to be played back
over the internet and without modification to the
researcher’s browser. Figure 2 depicts the full work-
flow for replaying a news app.

Figure 2: Replaying a news app with ReproZip-Web.

Our final product is a tool that effectively

harnesses ReproZip and Webrecorder simultane-
ously to create a single archival package emulating
both the state of the web server on which the news
app runs, and the state of the relevant parts of the

https://creativecommons.org/licenses/by/4.0/

4

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

world wide web at the time the app was published.
Our prototype is available at https://github.com/
reprozip-news-apps/reprozip-web.

iv. use cAses

Our primary test case for the tool was a data-

driven news app called Dollar for Docs, from
ProPublica [2]. This news app was built using Ruby
on Rails, MySQL, and Elasticsearch on a Linux server.
Our first step, prior to development, was to capture
the app and its environment using ReproZip, and to
review the emulated site. Our first observation was
that the look and feel of the app broke entirely when
the browser was restricted from accessing resources
on the world wide web (as expected).

When we implemented ReproZip-Web, we found

that we could indeed view the news app with the
correct look and feel, and began to drill down to
specific limitations. One unexpected issue was the
inoperability of the paginated search feature, which
led us to the realization that certain Ruby on Rails
files had not been captured by ReproZip due to their
“lazy loading”: one of the search results pages raised
a server error because the HTML template had
never been captured in the original package. This led
to our decision to modify ReproZip with additional
rules aimed at capturing a complete Ruby on Rails
application, and the recognition that such rules may
be required for each major web publishing platform

We also tested our prototype on The Guardian’s

Elections Poll Projection, an open-source news app
from The Guardian that was built using Node.js [24],
[25]. We were able to successfully reproduce and
replay this news app as well, even when restricting
the browser from accessing external resources. A
demonstration video of our prototype using this
news app is available at http://bit.ly/2O3Q4Ee.

v. Future dIrectIons

Much work is needed in testing, developing, and

generalizing the prototype. ReproZip was developed
to only capture what is executed during an appli-
cation, but many interactive websites require that
all parts of the environment (e.g., gems for Ruby)
be included, and front-end content to be recorded
and packaged. To account for this, we implemented

an extra rule in ReproZip-Web to detect and auto-
matically capture Ruby gems even if they were not
executed while the application was running. In the
next phase of development, we plan to implement
more rules for other languages, optimizing for
languages commonly used in data journalism proj-
ects. This will generalize the tool for a wider range of
dynamic websites.

In the course of this project, while assessing

different news apps, we also found that some news
apps require access to external APIs and data (e.g.:
sites that dynamically upload and download data
from Amazon S3 stores). Reproducing this scenario
is challenging and we plan to investigate different
solutions in the future.

We also plan to gather more information about

the needs of data journalists, system administra-
tors, and other stakeholders that would use this tool.
We will work closely with potential users in testing
the prototype and gathering their feedback on its
usability, the time commitment it would require, and
the types of software that users would be willing
and able to install on the production servers where
ReproZip-Web would be deployed. This will also
include an investigation of packing multiple apps
at one time. All the feedback will be instrumental in
building a finished tool that fits the needs and work-
flows of newsrooms.

Finally, a graphic user interface (GUI) is neces-

sary to make the tool user-friendly and simple to
deploy. While secondary users of ReproZip-Web
have access to a GUI to replay the news applica-
tions from the .rpz file, there is currently no GUI for
those originally packing the work, though there are
in-depth command line utilities. Acknowledging that
the command line is a high learning curve, adding
a packing GUI would allow newsrooms to utilize
ReproZip-Web to capture and archive their inter-
active news content at scale, potentially packing
dozens of projects each month.

vi. dIscussIon

Cultural heritage institutions can leverage

ReproZip-Web to create distributable and preser-
vation-quality bundles of complex web applications
that can be replayed in-browser or on desktop

https://creativecommons.org/licenses/by/4.0/
https://github.com/reprozip-news-apps/reprozip-web
https://github.com/reprozip-news-apps/reprozip-web
http://bit.ly/2O3Q4Ee

5

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

machines. ReproZip-Web not only captures the appli-
cations and all their dependencies, but also automat-
ically re-configures these in any other environment.
This has not only simplified the process of capturing
these important cultural artifacts for posterity, but
allows anyone, on any type of computer, to access
and replay them in their original computational
environment — seeing the applications as they were
experienced from the onset.

The .rpz is ideal for preserving complex applica-

tions such as these because it is extensible, light-
weight, and open. The ReproZip ecosystem is such
that after a journalist or archivist captures a news
application with ReproZip-Web, they can then use
any current or future ReproZip unpacker to replay
it. Currently, to replay a news app from an .rpz file,
users can choose four unpackers: reprounzip-direc-
tory, reprounzip-chroot, reprounzip-vagrant, and
reprounzip-docker. However, a fifth is on the way
(reprounzip-singularity, to unpack via Singularity
containers), and a sixth has been contributed to the
project from an outside colleague (reprounzip-ben-
chexec), only possible because ReproZip and it’s file
format are open source. ReproZip bundles can be
unpacked and replayed with any virtual machine or
container software; so as these software wax and
wane out of popularity and use, so can the ReproZip
ecosystem be adjusted to create new unpackers,
or depreciate old ones, without compromising the
ability to use and replay old .rpz files [26].

Additionally, unless the size of the input data for

a news application is on the Terabyte scale, the .rpz
files are quite small and easily distributable. To date
in our testing, we have yet to create an .rpz file over
800MB. These archival bundles are easily shared and
distributed, as well as stored at a much lower cost,
without compromising on the ability to reuse, replay,
and preserve the contents of the news applications.

Likewise, the capturing process is scalable in that

it captures an entire manifold of search results (or
other database-driven content) without requiring
the manual web recording of every possible search.
However, our application isn’t without a need for
some case-by-case attention; it includes an exten-
sible library of language and platform specific heuris-
tics to address capturing issues arising from the
idiosyncrasies of web publishing tools. ReproZip-Web

allows newsrooms and archives to package complex
news applications with all their dependencies into
a single distributable and preservable .rpz bundle,
from which users can replay the news application
and archivists can ensure long-term preservation.
Wide-scale adoption of this software and archiving
practice would be a giant leap forward in saving data
journalism projects for history, posterity, and the
cultural record.

Acknowledgements

We wish to acknowledge the Institute for Museum

and Library Services for their support of this project
(LG-87-18-0062-18), as well as the PI of that grant Dr.
Michael Stoller, and our project partner ProPublica
for allowing us to test our prototype on their news
apps. Thanks to Dr. Juliana Freire, the PI of the
ReproZip project, for her continued support, and
to Bofei Zhang, our research assistant, for testing
the prototype and writing protocols. Thanks to
Rhizome and especially Ilya Kreymer for the work
on Webrecorder, without which this project would
have had even greater barriers to overcome. Lastly,
we would like to acknowledge the support from
the Gordon and Betty Moore Foundation as well as
the Alfred P. Sloan Foundation via the Moore-Sloan
Data Science Environment for supporting continuing
development of ReproZip.

reFerences

[1] K. Davis, R. Harris, N. Popovich, and K. Powell, “Gun deaths

in your district: what have your elected representatives

done?,” The Guardian, 2015. [Online]. Available: http://www.

theguardian.com/us-news/ng-interactive/2015/dec/14/

gun-control-laws-congress-shooting-deaths-nra-lobby-

campaign-donations. [Accessed: 12-Mar-2019].

[2] L. Groeger, C. Ornstein, M. Tigas, and R. G. Jones, “Dollars

for Docs,” ProPublica, 2010. [Online]. Available: https://proj-

ects.propublica.org/docdollars/. [Accessed: 12-Dec-2015].

[3] The New York Times Company, “The Upshot,” 2016.

[Online]. Available: http://www.nytimes.com/section/

upshot. [Accessed: 05-Apr-2016].

[4] I. Kreymer and D. Espenschied, “Webrecorder: A project

by Rhizome.” [Online]. Available: https://webrecorder.io/.

[Accessed: 10-Jan-2018].

[5] Harvard University Library Innovation Lab, “Websites

change. Perma Links don’t.,” Perma. [Online]. Available:

perma.cc. [Accessed: 28-Jun-2019].

https://creativecommons.org/licenses/by/4.0/
https://www.imls.gov/grants/awarded/lg-87-18-0062-18
http://www.theguardian.com/us-news/ng-interactive/2015/dec/14/gun-control-laws-congress-shooting-deaths-nra-lobby-campaign-donations
http://www.theguardian.com/us-news/ng-interactive/2015/dec/14/gun-control-laws-congress-shooting-deaths-nra-lobby-campaign-donations
http://www.theguardian.com/us-news/ng-interactive/2015/dec/14/gun-control-laws-congress-shooting-deaths-nra-lobby-campaign-donations
http://www.theguardian.com/us-news/ng-interactive/2015/dec/14/gun-control-laws-congress-shooting-deaths-nra-lobby-campaign-donations
https://projects.propublica.org/docdollars/
https://projects.propublica.org/docdollars/
http://www.nytimes.com/section/upshot
http://www.nytimes.com/section/upshot
https://webrecorder.io/
http://perma.cc

6

S H O R T
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

[6] K. Boss and M. Broussard, “Challenges of archiving and

preserving born-digital news applications,” IFLA Journal,

vol. 43, no. 2, pp. 150–157, Jun. 2017.

[7] N. Paul and K. A. Hansen, “Reclaiming News Libraries,”

Library Journal, vol. 127, no. 6, p. 44, 4/1/2002 2002.

[8] K. A. Hansen and N. Paul, Future-Proofing the News:

Preserving the First Draft of History. Lanham: Rowman &

Littlefield Publishers, 2017.

[9] The Internet Archive, “Wayback Machine Hits

400,000,000,000!,” Internet Archive Blogs, 09-May-2014. .

[10] M. Broussard and K. Boss, “Saving Data Journalism,” Digital

Journalism, vol. 6, no. 9, pp. 1206–1221, Oct. 2018.

[11] N. Brügger, “Website history and the website as an object

of study,” New Media & Society, vol. 11, no. 1–2, pp.

115–132, Feb. 2009.

[12] Pew Research Center, “Where People Get Their News,”

Pew Research Center | Global Attitudes & Trends,

04-Oct-2007. [Online]. Available: https://www.pewglobal.

org/2007/10/04/chapter-7-where-people-get-their-news/.

[Accessed: 20-Mar-2019].

[13] Pew Research Center Journalism Project, “The Growth

of Digital Reporting,” Pew Research Center’s Journalism

Project, 26-Mar-2014. [Online]. Available: http://www.jour-

nalism.org/2014/03/26/the-growth-in-digital-reporting/.

[Accessed: 26-Mar-2014].

[14] J. Rothenberg, “Ensuring the Longevity of Digital

Documents,” Scientific American, vol. 272, no. 1, pp. 42–47,

Jan. 1995.

[15] D. S. Rosenthal, “Emulation & Virtualization as Preservation

Strategies,” 2015.

[16] S. Granger, “Emulation as a Digital Preservation Strategy,”

D-Lib Magazine, vol. 6, no. 10, Oct-2000.

[17] L. Johnston, “Preserving News Apps | The Signal,” 11-Mar-

2014. [Online]. Available: //blogs.loc.gov/thesignal/2014/03/

preserving-news-apps/. [Accessed: 16-Jul-2017].

[18] K. Rechert, I. Valizada, S. D. von, and J. Latocha, “bwFLA – A

Functional Approach to Digital Preservation,” PIK - Praxis

der Informationsverarbeitung und Kommunikation, vol. 35,

no. 4, pp. 259–267, 2012.

[19] D. von Suchodoletz and J. van der Hoeven, “Emulation:

From Digital Artefact to Remotely Rendered Environments,”

International Journal of Digital Curation, vol. 4, no. 3, pp.

146–155, Jul. 2009.

[20] S. Anderson, E. Cochrane, E. Gates, and J. Meyerson, “About

EaaSI – Saving Software Together,” About EaaSI – Saving

Software Together, 2018. [Online]. Available: https://www.

softwarepreservationnetwork.org/eaasi/. [Accessed:

13-Mar-2019].

[21] J. Kim, “Access and Discovery of Born-Digital Archives,” New

York University, Jun. 2015.

[22] F. Chirigati, R. Rampin, D. Shasha, and J. Freire, “ReproZip:

Computational Reproducibility With Ease,” presented

at the 2016 ACM SIGMOD International Conference on

Management of Data (SIGMOD), San Francisco, USA, 2016,

pp. 2085–2088.

[23] I. Kreymer, Core Python Web Archiving Toolkit for replay

and recording of web archives: webrecorder/pywb.

Webrecorder, 2013.

[24] C. Zapponi et al., “Election 2015: The Guardian poll projec-

tion,” The Guardian, 07-May-2015. [Online]. Available:

http://www.theguardian.com/politics/ng-interactive/2015/

feb/27/guardian-poll-projection. [Accessed: 16-Mar-2019].

[25] C. Zapponi, C.-J. (Apple) C.Fardel, and S. Clarke, Tracking the

UK election polls for 2015. The Guardian, 2016.

[26] V. Steeves, R. Rampin, and F. Chirigati, “Using ReproZip for

Reproducibility and Library Services,” 1, vol. 42, no. 1, pp.

14–14, 2018.

https://creativecommons.org/licenses/by/4.0/
https://www.pewglobal.org/2007/10/04/chapter-7-where-people-get-their-news/
https://www.pewglobal.org/2007/10/04/chapter-7-where-people-get-their-news/
http://www.journalism.org/2014/03/26/the-growth-in-digital-reporting/
http://www.journalism.org/2014/03/26/the-growth-in-digital-reporting/
http://blogs.loc.gov/thesignal/2014/03/preserving-news-apps/
http://blogs.loc.gov/thesignal/2014/03/preserving-news-apps/
https://www.softwarepreservationnetwork.org/eaasi/
https://www.softwarepreservationnetwork.org/eaasi/
http://www.theguardian.com/politics/ng-interactive/2015/feb/27/guardian-poll-projection
http://www.theguardian.com/politics/ng-interactive/2015/feb/27/guardian-poll-projection

	_GoBack
	_trolpei4irj9
	_hy7zsm1pda33

