
1

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Who is asking? humans and machines
experience a different scholarly Web

Martin Klein

Los Alamos National Laboratory USA
mklein@lanl.gov

https: // orcid. org/ 0000-0003-0130-2097

Lyudmila Balakireva

Los Alamos National Laboratory USA
ludab@lanl.gov

https: // orcid. org/ 0000-0002-3919-3634

Harihar Shankar
Los Alamos National Laboratory USA

harihar@lanl.gov
https: // orcid. org/ 0000-0003-4949-0728

Libraries and archives are motivated to capture

and archive scholarly resources on the web. However,
the dynamic nature of the web in addition to frequent
changes at the end of scholarly publishing platforms
have crawling engineers continuously update their
archiving framework. In this paper we report on
our comparative study to investigate how scholarly
publishers respond to common HTTP requests that
resemble typical behavior of both machines such as
web crawlers and humans. Our findings confirm that
the scholarly web responds differently to machine
behavior on the one hand and human behavior on the
other. This work aims to inform crawling engineers
and archivists tasked to capture the scholarly web of
these differences and help guide them to use appro-
priate tools.

Scholarly Web, Web Crawling, Scholarly Publishing
Designing and Delivering Sustainable Digital Preserva-

tion; The Cutting Edge: Technical Infrastructure
and Implementation

i. introduction

Web archiving has become an essential task for

libraries worldwide. However, scoping this endeavor
is a non-trivial issue. Fortunately, academic libraries
may take guidance from a collection develop-
ment policy that specifies, among other aspects,
which part of the web to focus on for crawling and
archiving. The collection development plans from
Stanford University Libraries [1] and from Purdue
University [2] are great examples that can help
steer libraries’ archiving efforts. National libraries,
for example the National Library of Finland [3] or

the Library and Archives Canada [4], on the other
hand, often have a mandate to collect and archive
(national) web resources. Ideally, those documents
also narrow down the scope and provide direction
as to which pockets of the web to focus resources
on. For both types of libraries, the scholarly web
typically is in scope of their archiving efforts. This
can, for example, be because they are authored by
representatives of the university/country or because
it is understood that members of the respective
communities will benefit from the long-term avail-
ability and accessibility of such resources. We refer
to the scholarly web as a space where scholarly
resources can be deposited (a pre-print server, for
example) and where these resources have a URL and
are accessible to a reader. For the remainder of this
paper, we limit our definition of the scholarly web
to the latter aspect, a part of the web from which
scholarly resources can be consumed.

These individual web crawling and archiving

efforts are organized and conducted by libraries
themselves. They are more narrow in scope, smaller
at scale, and run with fewer resources compared
to, for example, large programs such as LOCKSS1 or
Portico2, which are specialized in the preservation of
journal publications. However, with the constantly
changing nature of the web [5]–[7] and the reali-
zation that online scholarly resources are just as
ephemeral as any other resource on the web [8],

[1] https://www.lockss.org/

[2] https://www.portico.org/

https://creativecommons.org/licenses/by/4.0/
mailto:mklein@lanl.gov
mailto:ludab@lanl.gov
mailto:harihar@lanl.gov
https://www.lockss.org/
https://www.portico.org/

2

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

[g], libraries are facing the challenge to keep up with
their crawling and archiving frameworks.

When it comes to identifying scholarly resources

on the web, the Digital Object Identifier (DOI)1has
become the de facto standard. In order to make a
DOI actionable in a web browser, the recommended
display is in the form of a HTTP DOI e.g, https://doi.
org/10.1007/ 978-3-540-87599-4_38. When a user
dereferences this HTTP DOI in a web browser, the
server at doi.org (operated by the Corporation for
National Research Initiatives (CNRI)2) responds with
a redirect to the appropriate URL at the publisher.
From there, the browser often follows further redi-
rects to other URLs at the publisher and eventually to
the location of the DOI-identified resource. The HTTP
redirection is done automatically by the browser
and the user often does not even notice it. In the
above example the browser redirects to the article’s
Springer landing page hosted at https://link.springer.
com/chapter/10.1007%2F978-3-540-87599-4_38.
This scenario is very typical in a way that the DOI
identifies an academic journal article and, unlike the
HTTP DOI, the landing page itself is controlled by the
journal’s publisher.

Bringing both of these considerations together,

we are motivated to investigate how scholarly
publishers respond to common HTTP requests that
resemble typical behavior of machines such as web
crawlers. We therefore send such HTTP requests
against thousands of DOIs, follow the HTTP redi-
rects, and record data the publishing platforms
respond with. To put responses to machine requests
in context, we compare them to responses we
received from requests that more closely resemble
human browsing behavior.

In this paper we report on the results of this

comparative study. Our findings provide insight into
publishers’ behavior on the web and inform crawling
engineers and archivists motivated to capture the
scholarly web to use appropriate tools for the task
at hand. With the insight that popular web servers
do not necessarily adhere to web standards or
best practices [10], we have no reason to assume

[1] https://www.doi.org/

[2] https://www.cnri.reston.va.us/

that scholarly publishers are any different. To the
contrary, various reports document the sometimes
complex relationship between publishers and web
crawlers [11], [12]. We therefore believe our work
is a worthwhile contribution to the crawling and
web archiving as well as to the digital preservation
community at large.

We aim to address the following research

questions:
RQ1: Do scholarly publishers send the same response

to different kinds of HTTP requests against
the same DOI? If not, what are the noticeable
differences?

RQ2: What characteristics does an HTTP request
issued by a machine have to have in order to
obtain the same result as a human?

RQ3: Does the DOI resolution follow the same paths
for different HTTP requests?

ii. related Work

A study of the support of various HTTP request

methods by web servers serving popular web pages
was conducted by Alam et al. [10]. The authors issue
OPTIONS requests to web servers and analyze the
“Allow” response header used by servers to indi-
cate which HTTP methods are supported. The study
finds that a large percentage of servers either erro-
neously report supported HTTP methods or do not
report supported methods at all. While this study is
related in concept, both its scope and methodology
are significantly different from our here presented
work. The focus of our work is on DOI redirects
from the scholarly domain and not just web servers
serving popular pages. Unlike Alam et al. we are
actually sending a variety of HTTP requests against
resources and analyze the responses where they
only sent OPTIONS requests and analyzed responses
for claims of supported requests.

DOIs are the de facto standard for identifying

scholarly resources on the web and therefore a
common starting point for crawlers of the scholarly
web. We have shown previously that authors, when
referencing a scholarly resource, use the URL of the
landing page rather than the DOI of the resource
[13]. These findings are relevant, for example, for
web crawling engineers that need to avoid duplicate
crawled resources.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/
https://doi.org/10.1007/
http://doi.org
https://link.springer.com/chapter/10.1007%2F978-3-540-87599-4_38
https://link.springer.com/chapter/10.1007%2F978-3-540-87599-4_38
https://www.doi.org/
https://www.cnri.reston.va.us/

3

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Similarly, the motivation behind the recent study

by Thompson and Jian [14] based on two Common
Crawl samples of the web was to quantify the use
of HTTP DOIs versus URLs of landing pages. They
found more than 5 million actionable HTTP DOIs in
the 2014 dataset and roughly 10% of them as their
corresponding landing page URL in the 2017 dataset

Various efforts have proposed methods to make

web servers that serve (scholarly) content more
friendly to machines. There is consensus in the
scholarly communication community that providing
accurate and machinereadable metadata is a large
step in this direction [15], [16]. Aligned with this
trend, sitemap-based frameworks have recently
been standardized to help machines synchronize
metadata and content between scholarly platforms
and repositories [17].

iii. experiment setup

A. Data Gathering

Obtaining a representative sample of the schol-
arly web is not a trivial endeavor. Aside from the
concern that the sample should be large enough, it
should also reflect the publishing industry landscape
since, as for example outlined by Johnson et al. [18],
the Science, Technology, and Medicine (STM) market
is dominated by a few large publishers.

The Internet Archive (IA)1 conducted a crawl of

the scholarly domain in June of 2018 that lasted
for a month and resulted in more than 93 million
dereferenced DOIs. The IA crawler followed all redi-
rects, starting from the HTTP DOI to the URL of the
DOI-identified resource and recorded relevant data
along the way. We refer to the result of derefer-
encing a DOI as a chain of redirects consisting of one
or more links, each with their own URL.

We obtained a copy of the recorded WARC files

([1g]) from this crawl and extracted the entire redi-
rect chain for all 93, 606, 736 DOIs. To confirm that
this crawl captures a representative bit of the schol-
arly landscape, we were motivated to investigate
the distribution of publishers in this dataset. We
approached this by extracting the URLs of the final
link in the redirect chains and examined their hosts.

[1] https://archive.org//

For example, dereferencing the HTTP DOI shown in
Section I leads, after following a number of links in
the redirect chain to the final URL of the resource
at https://link.springer.com/article/10. 1007/s00799-
007-0012-y. The host we extracted from this URL is
springer.com.

Figure 1 shows the distribution of all hosts
extractedfrom the IA crawl dataset. The x-axis lists
all hosts and the y-axis (log scale) shows their corre-
sponding frequency. We expected to see a pattern
as displayed in Figure 1, given the market dominance
of a few publishers and a long tail of small publishers
with less representation in the overall landscape.
Table 1 lists the top 10 hosts by frequency extracted
from the dataset6. We can observe a good level of
overlap between top publishers shown by Johnson
et al. [18] (cf. Table 1, p. 41) and hosts shown in Table
1. These observations lead us to believe that we have
a dataset that is representative of the broader schol-
arly publishing landscape.

In order to scale down the dataset to a manage-

able size, we randomly picked 100 DOIs from each
of the top 100 hosts, resulting in a dataset of 10, 000
DOIs2.

Figure 1: Dataset domain frequency

B. HTTP Requests

[2] The dataset is available at:

https://doi.org/10.6084/m9.figshare.7853462.v1

https://creativecommons.org/licenses/by/4.0/
https://archive.org/
https://link.springer.com/article/10
http://springer.com
https://doi.org/10.6084/m9.figshare.7853462.v1

4

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

HTTP transactions entail request headers sent
by the client (such as a web browser) and response
headers sent by the web server and received by
the requesting client. For a detailed description of
defined request and response headers we refer
to RFC 7231 [20]. RFC 7231 also specifies all HTTP
request methods including the two very frequently
used methods GET and HEAD. For detailed infor-
mation about these methods we again refer to the
RFC but note from its text that: “The GET method
requests transfer of a current selected representa-
tion for the target resource.” and “The HEAD method
is identical to GET except that the server MUST
NOT send a message body in the response...”. With
respect to the response headers, RFC 7231 states:
“The server SHOULD send the same header fields in
response to a HEAD request as it would have sent if
the request had been a GET...”.

Domain Frequency

elsevier.com 15, 631, 553

springer.com 11, 011, 605

wiley.com 8, 533, 984

ieee.org 3, 941, 252

tandfonline.com 3, 780, 553

plos.org 2, 386, 247

oup.com 2, 199, 106

jst.go.jp 2, 162, 502

sagepub.com 2, 126, 063

jstor.org 2, 060, 760

Table 1: Top 10 domains of final URLs of

dereferenced DOIs in our dataset

cURL1 is a popular tool to send HTTP requests

and receive HTTP responses via the command line.
Listing 1 shows cURL sending an HTTP HEAD request
against a HTTP DOI. The option -I causes the HEAD
request method and the added L forces cURL to
automatically follow all HTTP redirects. The Listing
also shows the received response headers for both
links in the redirect chain. The first link has the
response code 302 (Found, see [20]) and the second
link shows the 200 (OK) response code, which means
this link represents the end of this redirect chain.

[1] https://curl.haxx.se/

Listing 1: HTTP HEAD request against a DOI

Listing 2: HTTP GET request against a DOI

Listing 2 shows cURL sending an HTTP GET

request against the same DOI and we can see the
web server responding with the same response
headers but now the last link in the redirect chain
(response code 200) also includes the response
body. Due to space constraints, we have removed
most of the content and only show the basic HTML
elements of the response body in Listing 2.

C. Dereferencing DOIs
For our experiment, we deployed four different

methods to dereference each of the DOIs in our
dataset. All four methods were run automatically
by a machine since manually dereferencing 10, 000
DOIs and recording data for each link in the redi-
rect chain is not feasible. However, since it is our
intention to investigate how scholarly publishers
respond to a variety of requests, we implemented
two methods that resemble machines crawling the

https://creativecommons.org/licenses/by/4.0/
https://curl.haxx.se/

5

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

web and two that resemble humans browsing the
web. Our methods are:

1. HEAD: Use cURL to send an HTTP HEAD
request against the DOI. This lightweight
method resembles machine behavior on the
web as humans usually do not send HEAD
requests.

2. GET: Use cURL to send an HTTP GET request

against the DOI. This method also resembles
machine behavior as these GET requests
do not include typical parameters set by
common web browsers.

3. GET+: Use cURL to send an HTTP GET request

against the DOI along with the typical browser
parameters:
• user agent,
• specified connection timeout,
• specified maximum number of HTTP

redirects,
• cookies accepted and stored, and
• tolerance of insecure connections.
This method, while also based on cURL,
resembles a human browsing the web with
a common web browser due to the setting of
these typical parameters.

4. Chrome: Use the Chrome web browser
controlled by the Selenium WebDriver1 to
send an HTTP GET request against the DOI.
This method is virtually the same as a human
browsing the web with Chrome. This method
is typically used for web functionality testing
[21]–[23] and is therefore commonly consid-
ered a proper surrogate for humans browsing.

Each of our four methods automatically follows

all HTTP redirects and records relevant data for
each link in the redirect chain. The recorded data
per link includes the URL, the HTTP response code,
content length, content type, etag, last modified
datetime, and a link counter to assess the total
length of the redirect chain. Each redirect chain
ends either successfully at the final location of the
resource (indicated by HTTP code 200), at an error
(indicated by HTTP response codes at the 400or

[1] https://docs.seleniumhq.org/projects/webdriver/

500-level), or when an exit condition of the corre-
sponding method is triggered. Examples for an exit
condition are a timeout (the response took too long)
and the maximum number of redirects (links in the
chain) has been reached. For our methods HEAD and
GET these two values are the defaults of the utilized
cURL version 7.53.1 (300 seconds and 20 redirects)
and both values are specifically defined for our GET+
method as 30 seconds and 20 redirects. For our
Chrome method we use the default settings of 300
seconds for the timeout and a maximum of 20 redi-
rects. The GET+ and the Chrome methods further
have the user agent:

“Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36”

specified for all their requests. This user agent

mirrors the settings of a desktop Chrome browser to
further resemble a human browsing the web. These
parameters are based on inspiration from conver-
sations with representatives from the LOCKSS plat-
form. They are therefore based on real-world use
cases and hence not subject to an individual evalua-
tion in this work.

It is worth mentioning that we ran our exper-

iments on a machine operated by Amazon Web
Services, which means we expect the machine to not
have access to paywalled content identified by a DOI.
This implies that, just like for the example shown
in Section I, for the most part our redirect chains,
if successful, ends at a publisher’s landing page for
the DOI-identified resource. We do not obtain the
actual resource such as the PDF version of the paper,
for example. The IA crawl, on the other hand, was
conducted on IA machines that may have access to
some paywalled resources.

iV. experiment results

Our four methods dereferencing each of the

10, 000 DOIs results in 40, 000 redirect chains and
recorded data along the way. For comparison we
also include the data of redirect chains recorded by
the IA during their crawl of the DOIs in our analysis.
We therefore have a total of 50, 000 redirect chains
to evaluate.

https://creativecommons.org/licenses/by/4.0/
https://docs.seleniumhq.org/projects/webdriver/

6

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

A. HTTP Response Codes Across Methods
Our first investigation was related to our RQ1 and

the HTTP response code of the last link in all redirect
chains. In an ideal world, all redirect chains would end
with a link that indicates “success” and returns the
HTTP response code 200, regardless of the request

 Figure 2: HTTP response codes of the last link in all redirect chains per request method

method used. However, from experience navigating
the web and educated by previous related work
[10], we anticipated to observe a variety of different
responses, depending on our four methods.

Figure 2 shows all observed response codes for

last links and their frequencies distinguished by
requesting method. Each set of five bars is assigned
to one individual response code and each bar within
a set represents a request method. Within a set,
from left to right, the blue bar represents the HEAD
method, the yellow bar GET, the pink bar GET+, the
green bar Chrome, and the red bar the IA crawl.

We notice a spectrum of 15 different response

codes from dereferencing our 10, 000 DOIs across
five different methods. The distribution of our
observed 50, 000 response codes is almost binary
with 27, 418 being 200s and 19, 459 being 302s. Our
two methods that resemble a human browser, GET+
(pink bars) and Chrome (green bars) requests result
in more than 63% and 64% 200 response codes,
respectively. These numbers are disappointing as we
would expect more than two out of three HTTP DOIs
to resolve to a successful state. The HEAD request
method results in even fewer successful responses

(53%). The IA crawl scores much better with 83%
successful responses. We can only speculate as to
the reasons why, especially since their crawls are
done with the Heritrix web crawler1 and this soft-
ware is more closely aligned with our GET+ than our
Chrome method, which returns the most successful
results of any of our methods. It is possible though
that the crawl parameters were more “forgiving”
than ours, for example allowing for a longer timeout.

Our second observation from Figure 2 is that our

GET request method results in a very poor success
ratio (11%), rendering this method effectively useless
for dereferencing DOIs. The majority of DOIs (84%)
result in a 302 response code as indicated by the
yellow bar in Figur 2. A redirect HTTP response code
for the final link in a redirect chain intuitively does
not make sense. However, after close inspection of
the scenarios, we noticed that this response code is

[1]  https://webarchive.jira.com/wiki/spaces/Heritrix/overview

https://creativecommons.org/licenses/by/4.0/
https://webarchive.jira.com/wiki/spaces/Heritrix/overview

7

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

indeed from the last link as the request most often
times out. This means the web server simply takes
too long to respond to such requests and our method
cancels the request at some point. Since this GET
method very closely resembles requests that would
typically be made by machines, the suspicion arises
that this web server behavior is designed to discourage
crawling of scholarly publishers’ resources. All other
response codes do not play a significant role as they
are returned in less than 5% of requests.

Figure 2 provides first strong indicators to answer
RQ1: the scholarly web indeed responds differently
to machines and humans.

B. HTTP Response Codes by DOI

Figure 3 offers a different perspective on the inves-
tigation into response codes of final links. The figure
does not distinguish between individual response
codes anymore but clusters them into four groups:
200-, 300-, 400-, and 500-level represented by the
colors green, gray, red, and blue, respectively. Each
horizontal line in Figure 3 represents one DOI in our
dataset and each of them consists of five horizontal
segments. Each segment represents one request
method and its coloring indicates the corresponding
response code. The image confirms that very few
DOIs return with the same response code for all four
of our methods. For example, only 880 DOIs return a
200 response code across all four request methods.
If we take the IA crawl into consideration as well, the
numbers drop even further, in our example to 777

 Figure 3: HTTP response codes of the last link in all redirect

chains per request method by DOI

DOIs. It is interesting to note that, from visual

inspection, the majority of 400 and 500-level
responses for HEAD requests (690 and 286, respec-
tively) indeed turn into 200 responses for GET+ and
Chrome requests.

The impressions of Figure 3 provide further

indicators that machine-based and human-based
requests indeed result in different responses. They
further hint at similarities between the responses
for our GET+ and the Chrome method, which is rele-
vant for crawl engineers and also part of answering
our RQ2.

C. HEAD vs GET Requests

With our observation of the significant differ-
ences between our two machine-resembling
request methods, we were motivated to investigate
this matter further. In particular, we were curious
to see how publishers respond to the lightweight
HEAD requests compared to more complex GET
requests. Figure 4 shows all DOIs that resulted in
a 200 response code (indicated in green) for the
HEAD method. The leftmost bar (HEAD requests)
therefore is green in its entirety. The bar mirrors the
5, 275 DOIs (53% of the total) previously shown in
Figure 2 (blue bar in the 200 category). The second,
third, fourth, and fifth bar in Figure 4 represent the
corresponding response codes of these DOIs for
the respective request methods. We can observe
that the vast majority of DOIs that result in a 200 for
HEAD requests also result in a 200 for GET+ (93%),
Chrome (96%), and the IA crawl (85%). This finding is
not counterintuitive and it is encouraging in way that
it would be a huge detriment to web crawling engi-
neers if this picture was reversed, meaning we could
not rely on response codes from HEAD requests
being (mostly) the same for more complex GET
requests. It is telling, however, that the simple GET
request method does not echo the HEAD request
but results in 83% 300level response codes instead.

The fraction of non-200 responses for the

GET+, the Chrome, and the IA crawl are curious. As
mentioned earlier, RFC 7231 states that web servers
should respond with the same data for HEAD and
GET requests but the shown differences indicate
that the publishers’ web servers do otherwise. The
5% of 400-level responses for the IA crawl (rightmost
bar of Figure 4) might be explained by the different

https://creativecommons.org/licenses/by/4.0/

8

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

time at which the crawl was conducted (June 2018)
compared to our experiments (February/March
2019).

Figure 4: DOIs returning a 200 HTTP response code for HEAD

requests and their corresponding response codes for other

request methods

 Figure 5: DOIs not returning a 200 HTTP response code for

HEAD requests and their corresponding response codes for

other request methods

Figure 5, in contrast, shows all DOIs (4, 725 in
total) that resulted in a response code other than
200 for the HEAD request method. Consequently,
the leftmost bar does not show any green portion at
all. We find that 30% and 29% of these DOIs return a
200 code for the GET+ and Chrome method, respec-
tively, and even 80% for the IA crawl. This picture
does represent the above mentioned scenario
where a developer can not trust the response to a
HEAD request since publishers’ web platforms seem
to respond differently to other request methods.

Figures 4 and 5 clearly show different responses

received when dereferencing the same resource
with distinct request methods. They also confirm
earlier findings related to answering RQ2 that the
GET+ method seems to receive similar responses
compared to the humanresembling Chrome method.

D. Redirects

Our next exploration was into the redirect chains
and the number of links they consist of. The goal
was to gain insights into whether the “path to the
resource” as directed by the publisher is the same
for machines if they even get that far and humans.
As a first step we analyzed the total number of redi-
rects for all chains per request method and show
the results in Figure 6. We observe that the majority
of chains for the HEAD, GET, GET+, and Chrome
request methods are of length three or less. Given
that the latter two methods result in more than 60%
200 response codes, this is relevant information for
crawling engineers. The HEAD method has a notice-
able representation with chains of length four (8%)
and five (11%) where GET+ or Chrome methods rarely
result in such long chains (around 3%). The GET
method that mostly results in 300-level responses
seems to fail quickly with more than 90% of chains
being of length one or two. Note, however, that it
may actually take a long time for a GET request to
fail if it in fact waits for the timeout to expire. We can
only speculate why the ratio of chains with length
one is rather small for the IA crawl compared to our
methods. Possible explanations are that the user
agent used by the IA crawler makes a difference and
that the partial access to paywalled content causes
a different response and hence a different chain
length. More analysis and further experiments run
from different network environments are needed to
more thoroughly assess this theory though. Figure 6

https://creativecommons.org/licenses/by/4.0/

9

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

also shows 186 DOIs with a chain length of 21 links.
87 of them were returned from the HEAD request,
two each from GET+ and Chrome, and 95 from the
IA crawl. All of those DOIs are cases where the web
server responds with one 302 code after another and
virtually never stops. These scenarios are known as
crawler traps and considered a serious detriment to
crawler engineering as they can be diZcult to avoid.
In our case, the maximum number of redirects was
reached and hence the transaction was terminated
by the client.

Figure 7 follows the same concept as Figure 6 but

only shows the frequencies of chain lengths where

the final link returned a 200 response. This data
provides insight into how long (in terms of links, not
seconds) it is worth waiting for the desired response
and how many redirects to expect. We note that the
majority of chains for the HEAD, GET+, and Chrome
request methods are of length two, three, or four
and, in addition, the HEAD method has a strong
showing with chains of length four (8%) and five (10%).
We also see a similar pattern with the IA crawl and a
higher frequency of longer chains. It is interesting to
note, however, that no chain in Figure 7 is recorded
at length one. At the other end of the scale, there are
indeed 15 chains of length 14 that all eventually result
in a 200 response code for the HEAD request method.

 Figure 6: Frequency of number of redirects overall per request method

 Figure 7: Frequency of number of redirects that lead to the final link with a 200 response code per request method

https://creativecommons.org/licenses/by/4.0/

10

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

Figures 6 and 7 show that responses not only
differ in terms of the provided response code but also
in terms of length of the redirect chain, depending
on the request method. This finding confidently
answers our RQ3, DOI resolutions do not follow the
same path for different HTTP requests, at least not
as analyzed by path length.

V. discussion and future Work

This experimentation is in its early stages and

we see potential for improvements and aspects for
future work. As alluded to earlier, we ran our exper-
iments outside the institutional network. We are
very interested in seeing how our results compare
to those obtained when running the experiment
from within an organization that has access to
paywalled content. We hypothesize that differences
in responses can still be observed between machine
and human requests. Further, a logical extension
to our series of experiments is to utilize existing
infrastructure, for example, the CrossRef APIs to reli-
ably identify individual publishers and make better
assessments of their specific behavior on the web.
Our dataset consists of 10, 000 DOIs obtained from
a crawl by the IA. Our tests have shown that open
science platforms that issue DOIs such as Figshare
or DataCite are underrepresented in our sample.
We are interested in repeating our analyses for
these publishers as well, hoping that they might be
friendlier to machines. We have utilized the estab-
lished understanding that a Chrome browser that
is controlled by the Selenium WebDriver is indeed
virtually the same as a human browsing the web.
We are motivated, however, to provide empirical
evidence that this is in fact true. We are planning
to pursue several approaches such as comparing
screenshots taken by a human and by the Chrome
method and comparing textual representations (or
DOM elements) of the final link in the redirect chain.
Such an extension of the experiment may also call
for the inclusion of other crawling frameworks, for
example, systems based on headless browsers.

Vi. conclusions

In this paper we present preliminary results

of a comparative study of responses by scholarly
publishers to common HTTP requests that resemble
both machine and human behavior on the web. We

were motivated to find confirmation that there indeed
are differences. The scholarly web, or at least part
of it, seems to analyze characteristics of incoming
HTTP requests such as the request method and the
user agent and responds accordingly. For example,
we see 84% of simple GET requests resulting in the
302 response code that is not helpful to crawling
and archiving endeavors. 64% of requests by our
most human-like request method result in desired
200 responses. These numbers are somewhat
sobering we would expect a higher percentage of
successful responses but they do serve developers
in managing their expectations, depending on the
tool and request method used. In addition, they
help to address our question raised earlier: “Who is
asking?” as it nowcan clearly be answered with: “It
depends!”.

acknoWledgments

We would like to thank Bryan Newbold and

Jefferson Bailey at the Internet Archive for their
contributions to this work. We are particularly
thankful for the provided dataset and input about
their crawling approach. We are also grateful to
Nicholas Taylor from Stanford University Libraries
for his input regarding approaches implemented
by the LOCKSS framework. Lastly, we appreciate
Herbert Van de Sompel’s contributions to this work
in its early conceptual stages.

references

[1] Stanford University Libraries, Collection development,

http://library.stanford.edu/projects/webarchiving/collec-

tion development.

[2] Purdue University, Web Archive Collecting Policy, https://

www.lib.purdue.edu/sites/default/files/spcol/purduear-

chiveswebarchiving-policy.pdf.

[3] National Library of Finland, Legal Deposit OZce, https://

www. kansalliskirjasto.fi/en/legal-deposit-office.

[4] Library and Archives Canada, Legal Deposit, https://www.

baclac.gc.ca/eng/services/legaldeposit/Pages/legal-de-

posit.aspx.

[5] J. Cho and H. Garcia-Molina, “The Evolution of the Web and

Implications for an Incremental Crawler,” in Proceedings of

VLDB ’00, 2000, pp. 200–20g.

[6] J. Cho and H. Garcia-Molina, “Estimating frequency of

change,” ACM Transactions on Internet Technology, vol. 3,

pp. 256–2g0, 3 2003, ISSN: 1533-53gg.

https://creativecommons.org/licenses/by/4.0/
http://library.stanford.edu/projects/webarchiving/collection
http://library.stanford.edu/projects/webarchiving/collection
https://www.lib.purdue.edu/sites/default/files/spcol/purduearchiveswebarchiving-policy.pdf
https://www.lib.purdue.edu/sites/default/files/spcol/purduearchiveswebarchiving-policy.pdf
https://www.lib.purdue.edu/sites/default/files/spcol/purduearchiveswebarchiving-policy.pdf
http://kansalliskirjasto.fi/en/legal-deposit-office
https://www.baclac.gc.ca/eng/services/legaldeposit/Pages/legal-deposit.aspx
https://www.baclac.gc.ca/eng/services/legaldeposit/Pages/legal-deposit.aspx
https://www.baclac.gc.ca/eng/services/legaldeposit/Pages/legal-deposit.aspx

11

L O N G
P A P E R

16th International Conference on Digital Preservation
iPRES 2019, Amsterdam, The Netherlands.
Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).

[7] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins,

“Sic Transit Gloria Telae: Towards an Understanding of

the Web’s Decay,” in Proceedings of WWW ’04, 2004, pp.

328–337.

[8] M. Klein, H. Van de Sompel, R. Sanderson, H. Shankar,

L. Balakireva, K. Zhou, and R. Tobin, “Scholarly Context

Not Found: One in Five Articles Suffers from Reference

Rot,” PLoS ONE, vol. g, no. 12, 2014. DOI: 10.1371/journal.

pone.0115253.

[9] S. M. Jones, H. Van de Sompel, H. Shankar, M. Klein, R.

Tobin, and C. Grover, “Scholarly Context Adrift: Three out of

Four URI References Lead to Changed Content,” PLoS ONE,

vol. 11, no. 12, 2016. DOI: 10.1371/journal.pone.0167475.

[10] S. Alam, C. L. Cartledge, and M. L. Nelson, “Support

for various HTTP methods on the web,” CoRR, vol.

abs/1405.2330, 2014. arXiv: 1405.2330. [Online]. Available:

http://arxiv.org/abs/1405.2330.

[11] C. Hayes, Wiley using fake DOIs to trap web crawlers...

and researchers, https://blogs.wayne. edu/scholar-

scoop/2016/06/02/wileyusingfake dois to trap web

crawlers and researchers/, 2016.

[12] L. A. Davidson and K. Douglas, “Digital object identifiers:

Promise and problems for scholarly publishing,” Journal of

Electronic Publishing, vol. 4, no. 2, 1gg8.

[13] H. Van de Sompel, M. Klein, and S. M. Jones,

“Persistent uris must be used to be persistent,” in

Proceedings of WWW ’16, 2016, pp. 11g–120. DOI:

10.1145/ 2872518. 2889352. [Online]. Available: https://

doiorg/10.1145/2872518.2889352.

[14] H. S. Thompson and J. Tong, “Can common crawl reliably

track persistent identifier (PID) use over time?” CoRR, vol.

abs/1802.01424, 2018. [Online]. Available: http://arxiv.org/

abs/1802.01424.

[15] M. L. Nelson, J. A. Smith, and I. G. del Campo, “EZcient,

automatic web resource harvesting,” in Proceedings of

the 8th Annual ACM International Workshop on Web

Information and Data Management, ser. WIDM ’06, 2006,

pp. 43–50. DOI: 10.1145/1183550.1183560.

[16] O. Brandman, J. Cho, H. Garcia-Molina, and N.

Shivakumar, “Crawler-friendly web servers,” SIGMETRICS

Perform. Eval. Rev., vol. 28, no. 2, pp. g–14, 2000. DOI:

10.1145/362883.362894.

[17] M. Klein, H. Van de Sompel, and S. Warner, ResourceSync

Framework Speciication (ANSI/NISO Z39.99-2017), http://

www.openarchives.org/rs/1.1/resourcesync,2017.

[18] R. Johnson, A. Watkinson, and M. Mabe, The STM Report An

overview of scientiic and scholarly publishing. International

Association of Scientific, Technical and Medical Publishers,

2018. [Online]. Available: https://www.stm-assoc.

org/2018_10_04_ STM_Report_2018.pdf.

[19] nternational Internet Preservation Consortium

(IIPC), WARC Speciication, https://iipc.github. io/

warc-specifications/.

[20] R. T. Fielding and J. Reschke, Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content, https://tools.ietf.org/

html/rfc7231, 2014.

[21] A. Bruns, A. Kornstadt, and D. Wichmann, “Web application

tests with selenium,” IEEE Software, vol. 26, no. 5, pp. 88–

g1, 200g, ISSN: 0740-745g. DOI: 10.1109/MS.2009.144.

[22] A. Holmes and M. Kellogg, “Automating functional tests

using selenium,” in AGILE 2006 (AGILE’06), 2006, 6 pp.–275.

DOI: 10.1109/AGILE.2006.19.

[23] C. T. Brown, G. Gheorghiu, and J. Huggins, An introduction

to testing web applications with twill and selenium. O’Reilly

Media, Inc., 2007.

https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1405.2330
https://blogs.wayne
http://arxiv.org/abs/1802.01424
http://arxiv.org/abs/1802.01424
http://www.openarchives.org/rs/1.1/resourcesync,2017
http://www.openarchives.org/rs/1.1/resourcesync,2017
https://www.stm-assoc.org/2018_10_04_
https://www.stm-assoc.org/2018_10_04_
https://iipc.github
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231

