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Single crystals of PbZrO3 have been studied by Dynamic Mechanical Analysis measurements
in the low frequency range f=0.02 - 50 Hz. The complex Young’s modulus exhibits a quite rich
behaviour and depends strongly on the direction of the applied dynamic force. In pseudocubic
[100]c-direction we found intrinsic elastic behaviour as expected from Landau theory: At the an-
tiferroelectric transition Tc ≈ 510 K a downwards cusp anomaly in Y′ accompanied by a peak in
Y′′ points to a quadratic/linear order parameter/strain coupling in the Landau free energy. Both
anomalies are increasing with decreasing frequency showing that the measurements are performed
in the limit ωτth � 1. Frequency scans around Tc indicate that this dispersion originates from
heat-diffusion dynamics, which leads to a crossover from isothermal to adiabatic elastic behaviour
in this low frequency regime. Above Tc we observe a pronounced precursor softening, quite similar
as it was found in other perovskites, which can be perfectly fitted including isotropic order param-
eter fluctuations.
The low frequency elastic response in [110]c-direction is different. Below Tc we find in addition to
the intrinsic anomaly a strong contribution from ferroelastic domains, which leads to an additional
softening in Y′. With decreasing temperatures this superelastic softening gradually disappears, due
to an increasing relaxation time τDW for domain wall motion. From frequency dependent measure-
ments of Y′′(T,f) a Vogel-Fulcher like temperature dependence of τDW was found, indicating glassy
behaviour of domain freezing in PbZrO3. In contrast to the [100]c-direction, for forces along [110]c
we found a pronounced precursor hardening, starting at about 60 K above Tc. Since this anomaly is
of dynamic nature, starting at the same temperature as the observed birefringence and piezoelectric
anomalies [Ko, et al. Phys. Rev. B 87, 184110 (2013)], we conclude that it originates from slow
dynamic polar clusters that couple to strain.

PACS numbers: 77.80.-e, 77.80.Dj, 62.40.+i, 64.70.K-

I. INTRODUCTION

After decades of damnation domains and domain walls
became objects of increasing interest in physics and ma-
terials science. There are several reasons for this growing
importance. On the one hand it was discovered that do-
mains in ferroic or multiferroic materials can be tailored
to tune materials properties in a desired way by so called
”domain-geometry-engineering”1. In such samples the
spatial distribution of domains is tuned to adapt to the
wave-vectors of applied electric, optical or acoustic fields
giving rise to a qualitatively new kind of response which
is specified by the symmetry of the multidomain system.
With increasing number of the domains the response of
the sample to external fields is roughly described by ten-
sorial properties averaged over all of the domain states Si

(i=1,...,n) involved. The symmetry group H which de-
scribes the corresponding macroscopic tensor properties
of a so called ”domain-average-engineered” crystal is the
point group consisting of symmetry elements that leave
all domain states {S1, ..., Sn} invariant. Very interesting
effects occur if the domains get smaller and smaller, e.g.
due to a decrease of domain wall energy, or even above Tc
when they appear as dynamics precursor fluctuations. It
was shown that micro- or nano - domains can adapt very
easily to external boundary conditions and relax under
external forces if pinning is weak2. Such adaptive mi-

crostructures play important roles in a large number of
quite different systems, i.e. in martensitic alloys (e.g.
Cu-Au)3, in ferroelectric or ferroelastic systems with low
domain wall energies2,3, etc. Such a dense system of do-
mains and domain walls can lead to a giant macroscopic
response. One of the first examples, showing the influ-
ence of domain wall motion to the dielectric permittivity
was KH2PO4 (KDP)4. The contribution from the mo-
tion of N ferroelectric domains to the permittivity was
originally calculated by Kittel5 as

εDW ∝ NP 2
s

q
(1)

Quite generally the number N of domain walls, the
spontaneous polarization Ps as well as the restoring force
q can depend on temperature T , making it challenging
to calculate the domain wall contribution quantitatively
for a given system. Moreover, a finite measurement fre-
quency changes the domain wall response drastically6,7.
In some cases ”freezing” of the domain wall motion oc-
curs at lower temperatures Tf where the domain walls
can no longer follow the dynamically applied external
force. As a result the susceptibility falls down to a value
which corresponds to the domain-averaged limit. Promi-
nent examples, in which such a behaviour was found in
dielectric measurements are e.g. KDP8 and TGS9. Do-
main walls have also been shown to play an important
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role in ferroelastic materials. In SrTiO3 the domain wall
contribution to the elastic susceptibility is largely exceed-
ing the intrinsic elastic anomaly10, which is due to the
couplings between the order parameter and the strains.
Interestingly enough, no domain freezing was observed11

in SrTiO3 down to the lowest measured T=6 K. Do-
main wall induced elastic softening, so called ”superelas-
tic softening” was found over the years in many proper
and improper ferroelastic materials, e.g. KMnF3

12,13,
Ca1−xSrxTiO3

14, LaAlO3
15, La1−xNdxP5O14

16, etc. In
most of these materials domain freezing occurs at Tf <
Tc. A similarity of domain wall dynamics and glass be-
haviour was already noticed some time ago in ferroelec-
tric materials like KDP and TGS17. The authors pro-
posed a model of pinning of randomly distributed de-
fects to domain walls (DW’s), which becomes increas-
ingly collective at low temperatures, thereby restricting
the motion of DW’s. In a recent paper Kumar, et al.18

reported an electric field - induced transition between
locally pinned (rather strong glass-former) and clustered
(super-fragile glass-former) phases of domain-wall-matter
in KDP. Ren, et al.19,20 found evidence for so called
”strain glass” behaviour in TiNi-based alloys. The au-
thors found a crossover from a normal martensitic tran-
sition to a strain glass behaviour by point defect doping
in the Ti50−x Ni50+x system, around xc ≈ 1.1 where x
is the concentration of point defects (excess Ni). Ren
concluded that strain glass is the glass form of a fer-
roelastic/martensitic system due to point defect doping.
He mentioned the striking similarity between strain glass
and ferroelectric relaxor and cluster spin glass that leads
to the concept of ferroic glass. However, recently criti-
cism on the existence of ”strain glasses”21 appeared, giv-
ing room for further studies. Salje, et al.22 proposed
the existence of glasses in ferroelastic systems, appearing
without the need of any defects. They called it ”domain
glass”. The basic idea23 is that the domain boundaries
generate the defects intrinsically and at a certain density
of domain walls jamming leads to a Vogel-Fulcher type
slowing down of the dynamics around TVF.
There are not many systems where Vogel-Fulcher dynam-
ics was unambiguously detected for ferroelastic domains.
In one of the best studied systems, LaAlO3, a clear Ar-
rhenius behaviour was found from very detailed Dynamic
Mechanical Analysis measurements15. The opportunity
to study the physics of glasses in domain wall systems
brought us on the track to study the movement of do-
main walls in PbZrO3 (PZO). Lead Zirconate exhibits
a phase transition24–26 from a paraelectric phase with
cubic symmetry Pm3̄m (Z=1) to an antiferroelectric or-
thorhombic phase Pbam (Z=8) at Tc ≈ 503 − 510 K,
depending on crystal quality. The orthorhomic unit cell
is related to the cubic system (Fig.1) with ac=ac(1,0,0),
bc=ac(0,1,0), cc=ac(0,0,1) as ao=ac−bc, bo=2(ac+bc)
and co=2cc, with orthorhombic lattice parameters given
as ao=5.876 Å ≈

√
2ac, bo=11.771 Å ≈ 2

√
2ac and

co=8.219 Å ≈ 2ac, since ac=4.1597 Å27.

Although Lead Zirconate was regarded as a model

acac

FIG. 1. Crystal structure of PbZrO3 in orthorhombic Pbam
phase. The pseudocubic unit cell is indicated by blue dotted
lines in the upper right figure.

antiferroelectric crystal28, a theoretical model to ex-
plain the transition turned out to be far from being
easy. There is general agreement that the antiferroelec-
tric phase transition in PZO is driven by an interplay of
several modes29,30, and not simply by a zone-boundary
mode as would be expected in analogy to e.g. ferroelec-
tric transitions that occur in the BZ-center.
In addition, PZO attracted special attention due to the
existence of polar clusters in the high temperature cu-
bic phase. These polar micro- or nanoregions occur as
a result of anharmonic Pb ion hopping31 which leads
to a coupling of soft optic and acoustic phonon modes
above Tc

32. According to this model the polar clus-
ter dynamics sets in far above Tc at about T∗ ≈ 1.1Tc
and they grow rapidly on approaching Tc from the cu-
bic phase32,33. Such precursor phenomena present in
AFE PZO are suggested to be common to perovskite
ferroelectrics33 and have indeed been observed in many
other perovskite oxides34–36. Ko et al.37 studied precur-
sor effects in PZO and inferred that polar clusters grow
upon cooling in a temperature range of ∼ 80◦C above
Tc and show up as a finite birefringence and piezoelec-
tric coefficient above the structural instability. Salje, et
al.2,22 argued that such precursors can form glassy states
leading to a Vogel-Fulcher type elastic softening38.
In the present paper we report detailed results of Dy-
namic Mechanical Analysis (DMA) measurements of sin-
gle crystals PbZrO3 in the low frequency regime (f=0.05 -
50 Hz) in the temperature range from 220 - 580 K. In sec-
tion II we give an overview about the growth and prepa-
ration of PbZrO3 single crystals and the DMA-method.
The results are presented in section III and they are dis-
cussed in section IV.

II. EXPERIMENTAL

Pure lead zirconate, because of its incongruent melt-
ing, has to be grown by a high-temperature solution
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growth (flux) method. Mainly spontaneous crystalliza-
tion is used. The resulting crystals can be divided into
three groups. The first group of crystals have a good
performance for optical studies (thin plates) but a rela-
tively high electrical conductivity, so these crystals are
not suitable for testing of electrical and electromechan-
ical properties. Another attempt at growing of crystals
was taken in order to decrease their electrical conduc-
tivity. Relatively large dark crystals were obtained with
very good electrical properties. Unfortunately, dark and
large crystals were not good enough to study the opti-
cal properties (e.g. birefringence). To obtain crystals of
both high optical quality and good electrical properties
we used self-flux containing lead oxide and small amounts
of B2O3 to diminish evaporation of the solvent and ex-
tend the temperature range of crystallization. Boron ions
did not contaminate growing crystals due to big differ-
ences in ionic radii and different valency compared to Pb
and Zr ions. Instead of PbO we used pure Pb3PO4 as
a source of lead ions, contrary to most of the previous
works. Its content was matched in molar ratio to pure
PbO. Oxidizing properties of this mixed lead compound
had positive influence on optical as well as electrical prop-
erties of as-grown crystals. The detailed description of
PZO crystallization can be found in Ref.29.
The low frequency elastic measurements were performed
with a Dynamic Mechanical Analyser (Diamond DMA,
Perkin Elmer). We used ”parallel plate geometry” (PP)
where the sample is placed between two parallel plates
and subject to a static force Fstat with an additional
smaller dynamic force Fdyn whose frequency can be var-
ied between f=0.01 - 100 Hz. The DMA registers the
amplitude u and phase shift δ between applied force and
amplitude via a linear variable differential transformer
(LVDT), which is used to calculate the real and imagi-
nary part of the samples Young’s modulus Y ∗ = Y ′+iY ′′

Y ∗(p) =
h

u

Fdyn

A
exp(iδ) (2)

where h denotes the sample thickness, A its area and
p denotes the direction of the applied force, with respect
to the crystal axes. For p in [100]c- and [110]c-direction
the Young’s modulus can be written in cubic phase as

Y[100] = (C11 − C12)
C11 + 2C12

C11 + C12
(3)

Y[110] = 2(C11 − C12)
C11 + 2C12

C11

Using the values of elastic constants at Tc+151 K
(and at about Tc), recently measured with Brillouin
Scattering39, i.e. C11=212.3 GPa (180.3 GPa) and
C11−C12=143,2 GPa (125.2 GPa), we find that the mag-
nitudes of Y[100] and Y[110] as well as their temperature
dependencies in cubic phase are to main extent deter-
mined by C11 − C12. In the orthorhombic phase the
Young’s modulus includes a combination of additional

FIG. 2. Models of domain walls in AFE orthorombic phase
of PbZrO3. The 90◦ domain boundary sited on (100)c, corre-
sponding to (120)o, plane and 60◦ domain boundary sited on
(101)o, corresponding to (122)c plane. The coordinate sys-
tems label the axis directions of the orthorombic cell. (Note
that oxygen atoms have been omitted in these images for sim-
plicity.)

elastic constants, getting even more complicated when
domains are involved.

In previous electron microscopy studies of the domain
structure of PZO48 two different types of domain con-
figurations corresponding to 90◦ and 60◦ domains were
observed in the orthorhombic phase. Figure 2 sketches
the 90◦ and 60◦ domains and the corresponding domain
boundaries. As the polarization direction is parallel to
ao its direction is switched by 90◦ in case of 90◦ domains
with the domain wall being a pseudo-cubic {100}c. If the
polarization direction is switched by 60◦ in a {101}c this
plane is referred to as 60◦ domain wall. Such 60◦ do-
mains are transformed to each other by rotation around
a 〈111〉c axis by 120◦.

The dimensions of the two measured samples were
A ≈ 5 mm2 (≈ 2.3 mm2) and h ≈ 3 mm (≈ 1.8 mm).
The resolution of the apparatus is ∆u ≈ 10 nm and
∆δ ≈ 0.1◦. Although the relative accuracy of DMA mea-
surements is within 0.2-1%, the absolute accuracy is usu-
ally not better than about 20%. For this reason all plots
here are shown in terms of normalized Young’s modulus
Y′n=Y′/Y′para and Y′′n=Y′ntan(δ), where Y′para is the sat-
uration value of the Young’s modulus in the cubic phase.
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FIG. 3. Sketch of the geometrical situation and elastic re-
sponse for two different directions of applied force (red and
blue arrows) during a parallel plate measurement of a PbZrO3

crystal containing two domain states and a domain wall (green
line) oriented in [010]o-direction, corresponding to [12̄0]c. Top
left image shows a polarized light microscopy image of the
measured sample with domain walls. The black arrow indi-
cates the direction of applied force during the measurement
of Y[110]c, corresponding to red arrows in sketch.

A more detailed description of this method and its appli-
cation for the study of phase transitions is given in Refs.
40 and 41.

III. RESULTS

A. Domain wall motion - domain freezing

Temperature and frequency dependent DMA measure-
ments of PbZrO3 single crystals with forces applied in
two different directions (Fig.3) are presented in the fol-
lowing figures. Figure 4 shows real (Y′[100]c) and imag-

inary (Y′′[100]c) parts of the Young’s modulus measured

along one of the main cubic crystallographic axes. In
this direction the force is perpendicular to the domain
walls orientations and as a result the elastic anomaly re-
sembles the intrinsic behaviour (right plot in Fig.3).

A pronounced softening of the elastic constant is
already detected in the cubic phase, followed by a dip
in Y′[100]c and a peak in Y′′[100]c at Tc. Both anomalies

decrease with increasing frequency. It is evident that the
decrease of both anomalies with increasing frequency
implies that ωτsl >∼ 1, leading to τth ≈ 1 s.

A quite different pattern is found (Fig.5) when the ap-
plied force is rotated by 45◦ to measure Y[110]c, as shown
in Fig.3. Instead of the narrow dip in Y′ of Fig.4 a broad
softening is now detected in this direction which is ac-
companied by a broad peak in Y′′ much below the nar-
row peak at Tc. With increasing frequency the peak
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FIG. 4. Temperature dependencies of real and imaginary
parts of Young’s modulus of PbZrO3 measured in [100]c-
direction at various frequencies. Insets show magnifications
near the phase transition.

maximum of the broad peak shifts to higher tempera-
tures. It is quite evident that the low frequency elastic
behaviour in this direction is dominated by domain wall
motion that induces the additional softening10,11. At suf-
ficiently low frequencies the domain walls can follow the
externally applied stress as long as the characteristic re-
laxation time τDW for DW movement is small enough,
leading to an efficient ”superelastic softening”. With de-
creasing temperature τDW increases and the DW’s can no
longer follow the applied stress, implying that the elas-
tic response turns back to the domain averaged value.
To analyse the underlying dynamics in more details we
have fitted the data of S′′= 1/Y′′ in the crossover region
where ωτDW(T) < 1 → ωτDW(T) > 1 using a Cole-Cole
relaxation, i.e.

S∗(ω) = S∞ +
∆SDW

1 + (iωτDW)1−α (4)

where S∞ denotes the elastic compliance in the high
frequency limit where ωτDW >> 1 and ∆SDW refers to
the DW-induced softening. The exponent 1− α leads to
a broadening (if α > 0) of the Debye relaxation, which
is obtained in the limit α = 0. A Cole-Cole relaxation
function fits the data quite well (Fig.5), yielding α ≈ 0.8.
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FIG. 5. Temperature dependencies of real and imaginary
parts of Young’s modulus of PbZrO3 measured in [110]c-
direction at various frequencies. Red lines show Cole-Cole
fits using Eq.4.

From these fits we extracted the temperature dependence
of the relaxation time, shown in Fig.6.

It is evident that the temperature dependence of τDW

deviates from a simple Arrhenius behaviour. It can be
well fitted with a Vogel-Fulcher law

τDW = τ0 exp [E/kB(T− TVF)] (5)

Various measurements in this crystal direction yielded
similar relaxation behaviour of the DW freezing with fit
parameters E=0.23 eV, τ0 = 10−7 − 10−6s and TVF =
120± 10 K.
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FIG. 6. Temperature dependence of the relaxation time τDW

of domain wall motion plotted in semi-logarithmic scale.

B. Precursor dynamics

In all experiments where the effect of domain wall
motion leads to a softening of the corresponding Young’s
modulus we observe quite interesting features in the high
temperature cubic phase of PbZrO3, never seen in any
ferroic material before. Starting from about 60 K above
Tc a hardening in Y′ occurs (instead of the precursor
softening in [100]c-direction), which is accompanied by
a peak in Y′′ (Fig.7). With decreasing frequency both
anomalies shift to lower temperatures.
It seems evident that these high temperature anomalies
are related to precursor clusters and we will discuss it in
some details in the next section.

IV. DISCUSSION

We do not intend to calculate the measured elastic re-
sponse of PbZrO3 quantitatively. Our aim is to disen-
tangle the various contributions which enter the dynamic
elastic behaviour in different temperature regions. To get
an idea of the expected intrinsic elastic anomalies we use
the Landau free energy expansion given in Ref. 42. It
turned out that the structural changes to the antiferro-
electric phase in PZO cannot be completely described by
one order parameter. An interplay of several modes is
responsible for the symmetry breaking29,30. To describe
the antiferroelectric phase in PZO the free energy con-
sists at least of contributions from the following mode
branches

F = F0 + FΣ + FR + FΣR + FεΣR + Fε (6)

where F0 is the background free energy of the cubic
phase, FΣ is written in invariants of order parameters
(ρx, ρy, ρz) of the antiferroelectric Σ(TO)-mode, FR in
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terms of the R25-mode order parameters (Φx,Φy,Φz),
FΣR describe couplings between Σ and R25-mode, Fε is
the pure elastic energy and FεΣR includes the couplings
between strains εi, Σ and R25-mode. For a given ori-
entational domain state of the orthorhombic phase, the
displacement pattern can be described by a superposition
of two lattice modes, i.e. (ρx, ρy, ρz) = (0, 0, ρ(kΣ)), with

kΣ = (2π/ac)(1/4, 1/4, 0) describing mainly displace-
ments of Pb-ions along y-direction and (Φx,Φy,Φz) =
(Φ(kR),Φ(kR), 0) describes antiphase rotations of oxy-
gen octahedra with kR = (2π/ac)(1/2, 1/2, 1/2), where
ac is the cubic lattice constant.
For a given domain state the various free energy contri-
butions (6) are

FΣ =
αρ
2
ρ2 +

βρ
4
ρ4 +

γρ
6
ρ6 (7)

FR =
αΦ

2
Φ2 +

βΦ

4
Φ4 +

γΦ

6
Φ6

FΣR = δΦρ
2Φ2

F εΣR = ρ2{aρ(ε1 + ε2) + cρε3}+ Φ2{aΦε1 + bΦε2 + cΦε3 + dΦε6}

F ε =
C0

11

2

(
ε2

1 + ε2
2 + ε2

3

)
+ C0

12 (ε1ε2 + ε1ε3 + ε2ε3) +
C0

44

2

(
ε2

4 + ε2
5 + ε2

6

)

In principle the condensation of the Σ- and R25-modes
are sufficient to describe the symmetry reduction into
the Pbam space group, but there are several important
experimental facts calling for a more complicated free
energy expansion. First, to describe the observed Curie-
Weiss type anomaly of the dielectric constant43,44 in the
paralectric phase, the free energy should in addition to
(7) contain a contribution with respect to polarization P
of the form

FP =
αρ
2

(T − TF )P 2 + δPP
2ρ2 (8)

where the repulsive coupling δP > 0 suppresses the
Γ-point ferroelectric instability which would occur other-
wise at TF .
The condensation of the Σ-mode at Tc ≈ 510 K would
trigger the condensation of the R25-mode due to the ”Ho-
lakowsky” mechanism45, i.e. the δΦρ

2Φ2-term in (7) with
δΦ < 0. But the problem appeared that no critical soft-
ening was measured except for the Γ relaxational mode.
To overcome this problem two quite different scenarios
have been developed. Tagantsev, et al.29 assumes that
the antiferroelectric transition is driven by a flexoelec-
tric coupling fαkl(Pk

∂εα
∂xl
− εα ∂Pk∂xl

), which would induce

an incommensurate phase with k=k0(1,1,0) that how-
ever is suppressed by strong ”Umklapp -terms”. In this
picture the antiferroelectric phase of PZO is a ”missed”
incommensurate phase. In the model of Hlinka, et al.30

it is assumed that the whole phonon branch related to
Pb displacements softens, and a corresponding trilinear
term triggers the AFE phase transition.
Both models are in some sense appealing and we should
be aware of these complications with respect to the de-
scription of the AFE phase transition in PZO, when we
try to disentangle the various contributions to the dy-
namic elastic anomalies. However, at the same time it

is also clear that a quantitative analysis is very difficult
due to the relatively large number of unknown model pa-
rameters which limits any quantitative analysis.
Fig.8 sketches the temperature dependence of the real
and imaginary parts of Young’s modulus to show the
various contributions. The ρ2ε- or Φ2ε-coupling terms
in (7) are known to produce a negative dip anomaly (in-
trinsic anomaly in Fig.8) in the antiferroelectric phase for
a sixth order expansion of the free energy52. As shown in
Fig.4 such an anomaly was indeed measured in the direc-
tion where domain walls do not contribute. It is known,
that domain wall motion leads to an additional softening
of the elastic constants in directions, where the applied
stress can move the domain walls. The domain wall con-
tribution to the Young’s modulus (Fig.8) can be most
conveniently calculated46,47 for the compliance S=1/Y
as

∆SDW ∝ Nwε
2
sd

2
we

x0/dw
1

1 + (iωτDW)1−α (9)

where Nw is the number of domain walls, x0 the
average domain width, dw is the domain boundary
thickness and εs the spontaneous strain, which due
to the quadratic-linear order parameter-strain coupling
in Eq.(7) is proportional to the square of the order
parameter28. Here a Cole-Cole type response for the do-
main wall relaxation is assumed with a T-dependent do-
main wall relaxation time τDW. In principle all terms
in Eq.(9) can depend on temperature and without de-
tailed knowledge of the temperature dependence of e.g.
the domain wall width dw(T) or the number of domain
walls the temperature dependence of ∆SDW(T ) can only
be estimated semi-quantitatively. Let us look at the
various terms in Eq.(9). Electron Microscopy studies48

revealed a small domain wall thickness of the order of
unit cell dimensions. Thus dw(T) is not expected to
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FIG. 7. Temperature dependencies of real and imaginary
parts of Young’s modulus of PbZrO3 measured in [110]c-
direction at various frequencies. The plot region is changed
with respect to Fig.5 to focus on the high temperature region.

play an important role in Eq.9. By the way, in the
frame of Landau-Ginzburg theory, thin domain walls
would fit quite well into the picture of a flat phonon
branch30. To study possible variations of the domain
wall density with temperature we inspected the samples
using a polarizing microscope (AXIOPHOT, ZEISS) and
a heating/cooling chamber (THMS600, LINKAM), with
no remarkable temperature dependence of Nw. We thus
expect the main temperature dependence in Eq.(9) to
come from the square of the spontaneous strain, imply-
ing ∆SDW ∝ Φ(T )4 +ρ(T )4, sketched by the blue dashed
line in Fig.8. With decreasing temperature the domain
wall relaxation time τDW increases and the domain walls
can no longer follow the dynamical stress, i.e. they are

FIG. 8. Sketch of the different contributions to the overall
elastic anomalies in PbZrO3.

frozen. A simultaneous fit of Y′′ for different frequencies
(Fig.5) yields a Vogel-Fulcher temperature dependence of
the relaxation time (Fig. 6). This implies that ”domain
freezing” in PbZrO3 is most probably a collective process,
quite similar to glass forming liquids49 or polymers50.

Attention should also be paid to the observed devia-
tions from mean-field elastic behaviour. Fig.4 shows that
the Young’s modulus decreases when the transition point
of the cubic-orthorhombic transformation is approached
from above. Such precursor softening of longitudi-
nal elastic constants were previously reported for many
perovskites, including PbZrO3

37, PbZr0.78Sn0.22O3
51,

PbHfO3
35 and BaTiO3

38, etc. Using Landau-Ginzburg
theory the fluctuation correction to the elastic suscepti-
bility can be calculated52,53 as

∆Cfl(q = 0, ω) =
2kBT

(2π)3
a3

∫
d3k

1 + iωτ2
χ2(k, 0) (10)

In this approach, the temperature dependence of ∆Cfl

depends mainly on the form of the susceptibility χ(k).
For isotropic fluctuations, i.e. χ(k) = χ(k = 0)/(1+k2ξ2)
one obtains a power-law in the so called ”Ising-limit”

∆Cfl(q = 0, ω) ∝ −(T − T0)−1/2 (11)

For the case of a ferroelectric soft mode, the polar-
ization fluctuations are strongly suppressed in the direc-
tion of the spontaneous polarization and as a result the
susceptibility becomes anisotropic54, leading to logarith-
mic corrections. Depending on the temperature range
one can expect a crossover55 from Ising (power-law at
T� T0 + TK) to dipolar (logarithmic at T� T0 + TK)
behaviour at T≈ T0 + TK as

∆Cfl ∝ log{1 + [TK(T − T0)]
−1/2} (12)

As already mentioned above, a rather complicated
mode-coupling mechanism29,30 drives the antiferroelec-
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FIG. 9. Magnified view of the high temperature region of
Y′[100]c to show the behaviour above Tc more clearly. The
line is a fit using isotropic fluctuation corrections in mean-
field approximation, yielding an exponent of 1

2
.

tric phase transition in PbZrO3. Moreover, in the cu-
bic phase a considerable amount of diffuse scattering is
detected56 at the M and R points of the Brillouin zone.
The question on the behaviour of the fluctuation con-
tributions is intimately connected with the type of cou-
pling, because it finally determines the shape of the cor-
responding susceptibility in Eq.(10) and with it the T-
dependence of ∆Cfl. This problem becomes even more
transparent if we look at the more intensively investi-
gated case of BaTiO3. This material shows also elas-
tic softening in a broad temperature range above Tc.
Several models have been tried to explain this soften-
ing. Salje, et al.38 have shown that a power-law Eq.(11)
cannot fit the data at all. Instead they used a Vogel-
Fulcher type temperature dependence to fit the elastic
constant, ∆Cfl ∝ exp[Ea/(T−TV F )]. The Vogel-Fulcher
temperature TV F , turns out to be below the transition
temperature and the activation energy, Ea, corresponds
to the typical hopping energy of disordered Ti positions
in BaTiO3. The empirical observation of the large pre-
cursor softening and the corresponding glassy dynamics
inspired the authors to the concept of ”domain glass”22.
This is a very appealing concept and Vogel-Fulcher type
elastic softening was also observed in other systems, e.g.
in PbSc0.5Ta0.5O3(PST)57. Moreover, this concept may
pave the way for a description of Relaxors. However,
Ko, et al.37 found logarithmic fluctuation corrections in
BaTiO3 to be valid in a broad temperature range of 80 K
above Tc. Also in PST a power-law type fluctuation con-
tribution fits the data well.

With this in mind we applied the above proposed mod-
els to our data. The best fits were obtained (Fig.9) for
isotropic fluctuations (Eq.11) with a T0 about 2 K below
Tc. Since the non occurring ferroelectric phase transi-
tion temperature TF is about 30 K below Tc it indi-
cates that the precursor softening observed here in Y′ in

0 2 4 6 8 10 12 14
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FIG. 10. Frequency scans revealing Y′[100]c(f) and Y′′[100]c(f)
in the vicinity of the antiferroelectric phase transition. The
inset shows the Cole-Davidson behaviour of the relaxation at
509 K, yielding an exponent β=0.27.

the low frequency regime has its origin in fluctuations
of order parameters corresponding to fluctuations in an-
tiphase rotations Φ(kR) of oxygen octahedra or lead ion
displacements ρ(kΣ) and not in polarization fluctuations
P (k = 0). But this implies that the corresponding mode
should also soften at T0, i.e. αΦ or αρ ∝(T-T0), which
would be in agreement with Hlinka’s30 scenario. The fact
that we observe a peak in Y′′ only in the close vicinity
of Tc shows that the corresponding order parameter dy-
namics is too fast to be detected in the low frequency
range, i.e. ωτρ,Φ � 1.

The detection of a strong peak in Y′′ in the close vicin-
ity of Tc together with a pronounced frequency depen-
dence of the anomalies in Y′ and Y′′ indicate that the
corresponding dynamic process is on the time scale of
τ > 1/2πf , where f=0.1-10 Hz. Detailed frequency scans
of Y′ and Y′′ in the close vicinity of Tc revealed a non-
Debye behaviour (Fig.10), that can be fitted with a Cole-
Davidson type relaxation function. A possible origin of
this low frequency relaxation is heat diffusion59, which
leads to a crossover from isothermal (ωτth < 1) elastic
behaviour to adiabatic one (ωτth > 1) at ωτth ≈ 1

c−1
µν (ω) = c−1 S

µν − Tαµαν
Cp

Ω(ωτth) (13)
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FIG. 11. Y′′[110]c in the precursor region above Tc together
with the temperature dependence of the relaxation time τ
calculated from the positions of the peak maxima.

where Voigt notation is used, αµ is the thermal expan-
sion coefficient, Cp the specific heat and τth = 1/Dq2 is
the characteristic thermal diffusion time, i.e. the time
needed to transfer heat over a distance of d = 2π/q,
where d is the size of the sample. For a typical sam-
ple size of few mm τth ≈ 1s, in good agreement with
our findings (Fig.10). The specific form of the function
Ω(ωτth) describing the crossover between isothermal and
adiabatic behaviour depends generally on the boundary
conditions, but as was shown61 for elastic measurements
of monodomain samples in parallel plate and three point
bending geometry to be a Debye-like function. For heat
diffusion in polydomain crystals and heterogeneous sys-
tems one expects dispersions of a non-Debye type. Thus
it seems likely that the low frequency relaxation pro-
cess observed here in the very close vicinity of Tc origi-
nates from an isothermal - adiabatic crossover, which is
strongest (Eq.13) at Tc

12,60, where the thermal expan-
sion coefficients are largest.

Finally let’s discuss the dynamic hardening observed in
Y′[110]c in the paraelectric phase of PbZrO3, which is ac-

companied by a distinct peak in Y′′ (Fig.7). Interestingly,
the effect starts around 60 K above Tc, very similar to the
onset of birefringence and piezoelectric coefficient d11,
recently detected37 in PbZrO3. Ko, et al. relate these
observations which apparently disagree with cubic sym-
metry to the presence of large polar clusters. They how-
ever did not exclude the possibility that the symmetry
breaking may be due to some strains and other static de-
fects in the crystal. We think that our observation of the
pronounced dynamic stiffening (Fig.7, Fig.3) is related
to the onset of dynamic polar clusters which increase in

size with decreasing temperature. Phenomenologically
the effect can be described by taking into account the
difference between the elastic constants at constant elec-
tric field CEµν and constant polarization CPµν as25

C−1 P
µν = C−1 E

µν − djµdlνε−1
lj (14)

j = 1− 3;µ = 1− 6

Eq.14 explains how the observed hardening in Y′[110]c

may be related to the piezoelectric anomaly37. Accord-
ing to Eq.14 polarization fluctuations lower the elastic
constant, since CPµν > CEµν and thus Y P > Y E . With
decreasing temperature the relaxation time τ increases
rather strongly and we observe a crossover between Y P

and Y E at a temperature where ωτ ≈ 1 leading to the
observed hardening in Y′ as well as the peak in Y′′ above
Tc. From the peculiar anisotropy of this effect, which we
observe only in [110]-direction, we infer that it is prob-
ably a result of the strong flexoelectric coupling29 which
induces polarization fluctuations via strain gradients that
are present in the sample as ferroelastic precursors62. As
was shown theoretically32 for PbZrO3, elastic and polar
precursors start to develop more than 100 K above Tc
whose spatial extent increases, reaching more than 10 nm
at Tc. Quite recently, Salje, et al.63 demonstrated some
close links between different ferroelastic twin pattern and
electrical polarization via flexoelectric coupling, using an
atomistic toy model and continuum theory, which may
be used in future to explain such precursor effects. It
should be noted that the relaxation time τ increases very
rapidly with decreasing temperature (Fig. 11) and seems
to diverge at a temperature considerably higher than Tc.
However, without a detailed model no definite conclu-
sions can be drawn here. Nevertheless, it is obvious that
the dynamic nature of this effect rules out any kinds of
static defects to be responsible for it.

V. CONCLUSION

The paraelectric to antiferroelectric phase transition in
PbZrO3 is anything but simple64 and several mode cou-
pling schemes29,30,32,65 have been proposed to describe
all structural distortions of the orthorhombic phase. It is
far beyond the scope of this paper to fit our data quanti-
tatively and discriminate between different models, but
we used them to disentangle the various contributions to
the low frequency elastic constants of PbZrO3. The main
results are:

(1) For dynamic forces that are applied in the direc-
tion parallel or perpendicular to the domain walls,
the elastic response (Fig.4) reflects the intrinsic be-
haviour. The observed anomalies, i.e. a cusp in
Y′[100]c and a peak in Y′′[100]c at Tc are due to a

quadratic-linear coupling between order parameter
and strain, where most probably all order parameters
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that are active in the transition (lead displacements
+ oxygen octahedra rotations) contribute. The fact,
that the anomaly in Y′ is cusp-like instead of a neg-
ative step shows that the Landau free energy should
be expanded up to at least sixth order in the corre-
sponding order parameters.

(2) The observed precursor softening in this direction

can be perfectly fitted with a power-law ∆Y
′(fl)
[100]c ∝

(T − T0)−1/2 originating from isotropic fluctuations.
Since T0 is only slightly (one or two K) below Tc
these fluctuation contributions stem from fluctua-
tions in ρ and/or Φ, rather than from polarization
fluctuations. This is in agreement with the scenario
of Hlinka, et al.30 who proposed a softening of the
whole polarization branch, which was experimentally
proved by Burkovsky, et al? .

(3) In directions 45◦ with respect to domain walls some
signatures of polar clusters are found. Depending
on measurement frequency, at approximately 60 K
above Tc the Young’s modulus starts to increase with
decreasing temperature, before it drops down at Tc.
The corresponding imaginary part in Y′′ shows a dis-
tinct maximum, shifting to lower T with decreasing
frequency. The relaxation time of this process in-
creases with decreasing temperature by two orders
of magnitude within a 20 K interval, indicating that
the movement of the polar regions considerably slows
down. We are not aware of any other observation
of such a dynamic hardening, and a comprehensive
model to explain this behaviour is still missing. We
tentatively describe the effect to be due to a crossover
between C−1 E

µν and C−1 P
µν , whose difference is deter-

mined by the ratio of piezoelectric coefficients and di-
electric permittivity. In fact it was shown37 that the
piezoelectric coefficient d11 starts to increase from
zero to finite values at about Tc+50 K. At the same
temperature a clear onset of birefringence was ob-
served in PbZrO3. Similar precursor behaviour was
found in BaTiO3 in birefringence and central peak

intensity58, which most probably are all related to the
onset of polar clusters33,67 at a temperature T∗ ≈ 1.1
Tc. From the dynamic nature of the observed elastic
hardening we conclude that this is not an effect of
defects that break the symmetry statically, but the
polar clusters are an intrinsic dynamic effect of the
material.

(4) Below Tc, i.e. in the antiferroelectric phase of
PbZrO3 we have detected an additional contribution
to the elastic behaviour, which is due to domain
wall motion. This additional softening disappears
gradually with decreasing temperature. The domain
wall dynamics shows up in the imaginary part of the
complex Young’s modulus, which displays a peak
around the domain freezing temperature. From
a detailed analysis of this peak and its shift with
frequency we have determined the domain wall
relaxation time τDW. It follows a Vogel-Fulcher
temperature dependence with TVF ≈ 120 K, which
is considerably far below Tc. This implies, that
the domain freezing in lead zirconate bears some
similarities to glass freezing. Although recent large
scale computer simulations22 on similar systems
with ferroelastic domain walls gave valuable insights
into the physics of domain freezing, up to now it is
not clear what mechanism leads to the Vogel-Fulcher
type relaxation. In glass-forming liquids68 it seems
settled that the diverging relaxation time at finite
temperature (TVF) is due to the presence of dy-
namically correlated regions whose size ξ increases,
reaching infinity at TVF. It is a big challenge to
look for such dynamical correlations in systems with
domain freezing. The present study shows that Lead
Zirconate is a good candidate for this purpose.
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