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Abstract Opening-mode fractures, such as joints, veins, and dykes, frequently exhibit power-law
aperture-to-length scaling, with scaling exponents typically ranging from 0.5 to 2. However, published high
quality outcrop data and continuum-based numerical models indicate that fracture aperture-to-length
scaling may be nonuniversal, with scaling being superlinear for short fractures and sublinear for long
fractures. Here we revisit these published results by means of a particle-based lattice solid model, which
is validated using predictions from linear elasticity and linear elastic fracture mechanics. The triangular
lattice model composed of breakable elastic beams, with strengths drawn from a Weibull distribution, is
used to investigate the fracture aperture-to-length scaling that emerges in a plate subjected to extension.
The modeled fracture system evolution is characterized by two stages which are separated by the strain
at which peak-stress occurs. During the pre-peak-stress stage, aperture-to-length scaling is universal with
a power-law exponent of about one. Shortly after the material has attained its maximum load bearing
capacity, which coincides with the formation of a multiple-segment fracture zone, aperture-to-length
scaling becomes nonuniversal, with power-law exponents being consistent with earlier studies. The results
presented here confirm that deviation from universal scaling laws is a consequence of fracture interaction.
More specifically, the onset of nonuniversal aperture-to-length scaling coincides with the formation of a
multiple-segment fracture zone.

1. Introduction
The maximum displacement to length scaling of fractures is typically expressed as dmax = cLb (Bonnet et al.,
2001), where L is the fracture length, c the preexponential constant, b the power-law scaling exponent, and
in the case of opening mode fractures (e.g., joints and veins), dmax is the maximum opening displacement,
also referred to as fracture width or aperture. Analytical solutions, based on linear elastic fracture mechanics
(LEFM), for an isolated critically stressed crack subjected to a remote tension predict that the maximum
opening displacement is proportional to the square root of the crack length (e.g., Olson, 2003; Scholz, 2010)

dmax =
KIc(1 − 𝜈2)

E
√
π∕8

√
L, (1)

where E is the Young's Modulus, 𝜈 the Poisson's ratio, and KIc the mode I fracture toughness of the material.
Hence, maximum opening displacement and associated crack length measurements plotted on log dmax ver-
sus log L graphs are expected to fall onto a line with slope b equal to 0.5 if LEFM conditions apply. Such a
scaling law with b < 1 is sometimes referred to as sublinear (Olson, 2003).

The existence of such a universal scaling law and the value of the power-law exponent are however highly
debated topics (e.g., Olson & Schultz, 2011; Scholz, 2010, 2011; Schultz et al., 2008, 2013). Moreover, high
quality outcrop data suggest that aperture-to-length scaling may be nonuniversal, so that at a certain (criti-
cal or characteristic) length scale (x∗), a change of the power-law exponent occurs (Figure 1a). On the basis
of outcrop data from Icelandic fracture swarms, Hatton et al. (1994) suggest that up to a certain critical
crack length, resistance to crack growth is dependent on the local microstructure (in the form of columnar
jointing), while above the critical length scale, fracture growth is controlled by the bulk properties of the
material. The nonuniversal aperture-to-length scaling proposed for the Icelandic fracture swarms was suc-
cessfully reproduced by numerical modeling of fracture system growth (Renshaw & Park, 1997; Figure 1b).
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Figure 1. Nonuniversal aperture-to-length scaling of natural and numerically generated fractures plotted on log dmax
versus log L graphs. (a) Data from natural fracture populations at Kelduhverfi (crosses) and Mývatn (dots), Iceland
(data from Hatton et al., 1994). (b) Data derived from numerical models in which fractures grow from initially
equal-length, parallel flaws randomly distributed in a two-dimensional linear elastic medium subjected to a remote
stress boundary condition (data from Renshaw & Park, 1997). Both data sets are fitted using nonlinear least-squares
and a bilinear scaling law of the form given in Main et al. (1999; see also equation (9)). The best-fit slope values, b0 and
b1, and the changepoint, x∗, are given in each graph.

Since these models do not contain any local microstructure with a characteristic length scale, the break
in slope that emerged from these numerical models is interpreted as the length at which the apertures of
smaller fractures are affected by stress perturbations induced by larger fractures.

The numerical models by Renshaw and Park (1997) consist of initially equal-length, parallel flaws randomly
distributed in a two-dimensional linear elastic medium subjected to a remote stress boundary condition.
Analytical solutions for isolated cracks are used to solve the interaction between each pair of fractures from
which the energy available for each fracture tip, and hence, its propagation distance can be obtained. Anal-
ysis of the fracture system developments suggests that mechanical interaction between fractures reduce the
energy release rates, so that mechanical interaction within the fracture set restricts, rather than promotes,
fracture growth (Renshaw & Pollard, 1994).

Mechanical interaction between the fractures causes and is enhanced by clustering, affecting
aperture-to-length scaling as suggested by the field studies of Vermilye and Scholz (1995), who demon-
strated that single-segmented fractures follow a linear trend, whereas multiple-segmented fractures show
greater scatter and are marginally better fitted by a square-root function; individual segments compris-
ing multiple-segment fractures exhibit dmax∕L values greater than those of single-segment fractures. The
numerical spring models of Walmann et al. (1996) furthermore suggest that the power-law exponent may
depend on the amount of extension. Derivations from idealized power-law scaling laws are hence the result
of mechanical fracture interaction and fracture segmentation (Olson, 2003; Pollard et al., 1982), and the
degree of fracture clustering is thought to be a result of the propagation velocity distribution controlled by
the subcritical index (Olson, 2004).

Many of the above observations are derived from numerical models, which are either based on continuum
mechanics (e.g., boundary elements; Olson, 2004) so that fractures grow from preexisting flaws (their initial
density may be varied; e.g., Renshaw & Pollard, 1994) or are composed of a network of nodes connected by
springs (Spyropoulos et al., 2002; Walmann et al., 1996) where fractures grow by the progressive breakage
of springs (which in regular lattices typically have breakage threshold values taken from a probability den-
sity function; e.g., Hooker & Katz, 2015). In the present study an alternative method for simulating fracture
system growth, namely, a simplified two-dimensional Distinct Element Method (DEM) approach, is used.
In contrast to the widely used mass-spring-damper models used to date, the springs connecting the masses
(circular particles in the DEM) have a finite width and can resist relative rotation so that not only a force
but also a moment develops. Fracture systems are generated in a two-dimensional lattice with heteroge-
neous strength under quasi-static conditions with monotonically increasing boundary displacements, rather
than under constant remote stress conditions as often used in continuum mechanics based approaches.

MAYRHOFER ET AL. 3198



Journal of Geophysical Research: Solid Earth 10.1029/2018JB015960

Figure 2. (a) The particle-based lattice solid model composed of equisized particles (discs) bonded at their contacts. Light gray bonds are unbreakable, whereas
dark gray bonds can break (inset shows bonds between one particle and its neighbors). For clarity, the bonds are plotted with half of their actual width. Dashed
lines show the positions of the periodic boundaries. Arrows point in the direction of the applied velocity. The horizontal model dimension is the width W , and
the bold line represents a periodic, colinear fracture of length L = 2a, along which bonds are removed prior to extension. The initial model height H is the
distance between the particle centers comprising the top and bottom rows. (b) Probability density function of a two-parameter Weibull distribution (equation
(2)) for scale parameter 𝛼 = 5 MPa and varying shape parameters 𝛽. Bond strengths are drawn from these distributions via equation (3) in the fracture system
models (section 3.3).

The results presented here illustrate that LEFM behavior emerges from simple beam breakage laws and con-
firm that deviation from universal scaling laws are a consequence of fracture interaction. More specifically,
the onset of nonuniversal aperture-to-length scaling coincides with the formation of a multiple-segment
fracture zone.

2. Methods
2.1. The Particle-Based Lattice Solid Model
Numerical simulations are performed with the commercially available DEM software Particle Flow Code
in two dimensions (Itasca Consulting Group, Inc, 2008), which is widely used to numerically solve prob-
lems in geomechanics. The DEM is a procedure that allows finite displacement and rotations of discrete
bodies (particles). Particle movement, caused by externally applied forces and body forces and particle inter-
action, is treated as a dynamic process, with states of equilibrium developing whenever the internal forces
balance (Cundall, 1988; Hart et al., 1988). Typically, the discontinuum is represented by a dense packing
of nonuniform-sized circular rigid particles, which occupy a finite amount of space and have a finite mass.
The rigid particles can only interact via their soft contacts, which possess normal and shear stiffness and
optional strength parameters (e.g., friction). Particles may also be bonded at contacts (bonded particle model
[BPM]); these bonds carry load and break if their strength is exceeded. A detailed description of the DEM
and the BPM approach is provided in Potyondy and Cundall (2004).

Here a simplified BPM approach is used. The circular, equisized particles (diameter d = 1 m) are packed
regularly to form a triangular (hexagonal) lattice (Figure 2a), which, as shown later, behaves as an isotropic
linear elastic solid. The principal reason for using a triangular rather than a square lattice is that the former
is elastically isotropic and the latter orthotropic (this is strictly speaking just the case when only the nearest
neighbors are bonded; a square lattice becomes isotropic when neighbors are additionally bonded diago-
nally; Monette & Anderson, 1994). In an earlier study, we have run a similar suite of models with a square
lattice which yielded, in terms of aperture-to-length scaling (section 3.3), very similar results (Mayrhofer et
al., 2014). However, the square lattice could not reproduce theoretical displacement profiles derived from
linear elasticity (section 3.1) so that the square lattice approach, which at the particle-scale provides planar
cracks, was discarded. In the triangular lattice, fractures are hence, at the particle scale, “jagged,” which
under pure opening poses however no problem; the jaggedness results in shear displacements which, if a
fracture closes, would result in shear tractions at frictional contacts, which is however avoided in the present
study by setting the post-failure contact friction coefficient to zero (Table 1).
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Table 1
Properties of Lattice Model

Symbol Descriptiona Value
Particle properties

R Particle radius 0.5 m
𝜌p Particle densityb 1,000 kg/m3

Pre-failure contact properties
Ēc Bond Young's modulus 14 GPa
�̄� Bond stiffness ratio 2.5
�̄� Bond width multiplier 1.0
�̄�c Bond tensile strengthc 5 MPa
𝜏c Bond shear strength ∞
Ec Contact Young's modulusd 0.0

Post-failure contact properties
Ec Contact Young's modulusd 14 GPa
𝜇c Contact friction coefficient 0.0

Bulk properties
E Young's modulus (equation (A2)) 19.52 GPa
𝜈 Poisson's ratio (equation (A2)) 0.15
T Tensile strength (equation (A4)) 9.815 MPa

KIc Mode I fracture toughness (for R ≪ W) ∼10 MPa m0.5

aA full definition of particle/bond properties is given by Potyondy and Cundall (2004).
bParticles must have a finite mass for the computation of a time step. In quasi-static
systems without gravitational acceleration, the actual particle mass does not effect the
model outcome. cIn the fracture system models, bonds have random strength values
drawn from a Weibull distribution (equation (2)) with scale parameter 𝛼 = �̄�c. dSetting
the contact modulus to zero ensures that the entire contact force is carried by the bonds.
After bond breakage, a finite contact modulus is assigned so that the “fracture walls”
have a stiffness.

Particles are bonded together with so-called parallel bonds, which, prior to failure, carry the entire contact
load. Bond failure occurs when the maximum tensile/shear stress acting on the parallel bond periph-
ery, which is calculated from beam theory using relative velocities and rotation between bonded particles
(Potyondy & Cundall, 2004), exceeds the predefined bond's tensile/shear strength; fracture propagation
within the lattice hence does not require the computation of near crack-tip stress intensity factors. Although
schemes exist for implementing stress corrosion permitting the modeling of subcritical crack growth (e.g.,
Potyondy, 2007), such a time-dependent behavior via a damage-rate law in the bond formulation is, for sim-
plicity's sake, not implemented in the present study but could be an interesting avenue for future research.
A linear contact model is assigned to contacts after bond breakage has occurred, so that the fracture walls
have a finite stiffness in case of fracture closure. Bonds normal to the extension direction have infinite
strengt h and cannot break (light gray in Figure 2a). Strength heterogeneity is introduced by selecting bond
strength values randomly from Weilbull distributions (Figure 2b). This model setup results in stacked par-
allel unbreakable linear elastic beams which are glued together with finite strength cement, where, in the
present context, the breakage of cement corresponds to fractures in rock. The advantage of this approach
is that model generation and analysis is greatly simplified. The disadvantage is that fractures developing
between one pair of particle rows cannot link with adjacent fractures, so that only tip-to-tip linkage of col-
inear fractures is possible. In that respect, our models are comparable to the models by Olson (2004) or
Renshaw and Pollard (1994). Importantly, it has been shown by others that “soft linkage” gives a very simi-
lar opening distribution to actual linkage in en échelon arrays, but the details are dependent on the amount
of fracture overlap relative to their separation (e.g., Olson, 2003; Pollard et al., 1982).

In order to avoid boundary effects (the stress intensity factor of an edge crack is greater than of an internal
crack; Tada et al., 2000), periodic boundaries are used so that the medium is effectively infinite normal to
the extension direction (Figure 2a). Forces, moments, and displacements of the outermost particles on the
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right side are assigned to the particles on the left side of the model. This means that if a fracture propagates
through a periodic boundary, it will automatically reappear on the other side of the model. Extension of this
“plate” is achieved by applying outward directed velocities to the bottom and top particle rows (Figure 2a).
The boundary velocity is low enough to ensure quasi-static conditions throughout the model run, so that
at any point, during the model run, the fracture configuration is stable, implying that a sudden halt of the
boundary displacement would not result in further fracture propagation or opening.

The bulk properties of the lattice model, such as elastic constants, tensile strength, and mode I fracture
toughness, are described in detail in Appendix A. The particle/contact properties used in the present study
and the resulting bulk properties are summarized in Table 1.

2.2. Selection of Model Properties
Using the relations given in Appendix A, contact properties (stiffness and strength) were selected in order
to mimic the behavior of brittle rock with a plane strain Young's modulus of 20 GPa, a Poisson's ratio of 0.15,
and a tensile strength of 10 MPa, resulting in a mode I fracture toughness of ∼10 MPa m0.5 (as summarized
in Table 1). Note that bond stiffness and bond strength are contact properties, whereas fracture toughness,
for example, is an emergent property. The elastic properties were not varied in any of the models presented
here, but different bond strength values and distributions were used resulting in heterogeneous fracture
toughness. Fully elastic behavior (section 3.2) is achieved by setting the bond strength to infinity. Constant
finite bond strength values, resulting in constant fracture toughness, were used for comparing lattice model
results with LEFM predictions (section 3.1). For the fracture system models (section 3.3), strength hetero-
geneity is introduced by random variation of the bond strength using a two-parameter Weibull distribution
(e.g., as in the models of Hooker & Katz, 2015). The probability density function We of a Weibull random
variable x ≥ 0 is

We(x) = 𝛽

𝛼

( x
𝛼

)𝛽−1
exp

(
−
( x
𝛼

)𝛽
)
. (2)

The Weibull distribution is a continuous probability distribution, which only returns positive values and has
two dimensionless input parameters, the scale parameter 𝛼 and the shape parameter 𝛽. The parameter 𝛼
changes the scale along the x axis (bond strength in the present study), whereas the parameter 𝛽 determines
the function's shape. Certain values of 𝛽 provide other well-known distributions: If 𝛽 = 1, the Weibull
distribution is identical to the exponential distribution; if 𝛽 = 2, the Weibull distribution is identical to
the Rayleigh distribution; and if 𝛽 = 3.6, the Weibull distribution approximates the normal distribution
(Figure 2b).

Tensile bond strength values (�̄�c) with a Weibull distribution are achieved using random values X drawn
from a uniform size distribution between 0 and 1:

�̄�c = 𝛼[− log(X)]
1
𝛽 X ∼ U([0, 1]). (3)

In the present study the fracture system models were run using a constant scale parameter 𝛼 equal to
the bond strength used in the homogeneous models and 𝛽 values equal to 1, 2, and 3.6, so that “strength
heterogeneity” increases with decreasing 𝛽 value.

3. Results and Discussion
In this section the main results of the present study are presented. First, we present the scaling for critically
stressed, collinear, periodic fractures and illustrate that LEFM behavior emerges from our lattice model
(section 3.1). Then we illustrate the aperture-length scaling of parallel, randomly positioned nonpropagating
fractures (section 3.2). Finally, we present model results of fracture system development in materials with
heterogeneous strength, subjected to constant boundary displacement conditions, and show the effects of
the degree of strength heterogeneity and strain on aperture-to-length scaling (section 3.3).

3.1. Scaling of Collinear, Periodic Cracks at Incipient Propagation
The purpose of the models presented in this subsection is twofold: First, they illustrate that displacement
profiles derived from linear elasticity can be reproduced with our lattice model. Second, they show that the
aperture-to-length scaling predicted for critically stressed cracks emerges from these models.
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Figure 3. Scaling of collinear, periodic cracks at incipient failure. (a) Displacement profiles extracted from lattice models (white dots) and comparison with
analytical solution (equation (4)). (b) Log-log plot of maximum normalized aperture dmax∕2R versus fracture length 2a, normalized by crack spacing W . Model
results (white dots) are compared with analytical solutions for isolated cracks (dashed line; equation (1)) and collinear, periodic cracks (solid curve; equation
(6)) using the bulk properties listed in Table 1.

Tada et al. (2000) provide stress and displacement solutions for a wide range of crack geometries and loading
configurations, including collinear periodic fractures in an infinite plane. The displacement profile for this
particular geometry is given by

d = 𝜔

G
𝜎

W
π

cosh−1
[

cos (xπ∕W)
cos (aπ∕W)

]
, (4)

where 𝜎 is the applied (remote) stress, W the distance between the crack centers (model width in the present
study; Figure 2a), a the crack half length, G the shear modulus, and 𝜔 given by

𝜔 = 2(1 − 𝜈) for plane strain,
𝜔 = 2∕(1 + v) for plane stress.

The maximum crack opening, that is, aperture, occurs at the crack center (x = 0) and given by

dmax = 𝜔

G
𝜎

W
π

cosh−1
[
sec

(aπ
W

)]
. (5)

For a constant ratio of crack half length to crack center distance (a∕W), the maximum aperture to crack cen-
ter distance ratio (dmax∕W) hence only depends on remote stress and elastic constants. Note that in the case
of stepping (noncollinear) cracks, the maximum aperture depends, under constant driving stress conditions,
also on overlap and separation (Olson, 2003; Pollard et al., 1982).

For a constant mode I fracture toughness (KIc), the maximum aperture at incipient failure is obtained by
setting KI = KIc and substituting the stress intensity factor—remote stress relation (KI = f(𝜎)) for this
geometry (as given by equation (A6)) into equation (5)

dmax = 𝜔

G
KIc√

W tan
(

πa
W

) W
π

cosh−1
[
sec

(aπ
W

)]
, (6)

which for an isolated crack (when W → ∞) yields the plane strain solution given by equation (1) (with
G = E∕[2(1 + 𝜈)]) so that aperture scales with the square root of the crack length under constant stress
intensity factor conditions (as derived by Olson, 2003). For collinear periodic cracks with a constant crack
half length to crack center distance ratio (a∕W), aperture scales with the square root of the crack center
distance (W), that is, the length scale. On the other hand, for a constant crack center distance, aperture
scales with the square root of crack length only up to a certain a∕W ratio, beyond which dmax asymptotically
approaches zero as 2a → W (Figure 3b).

We validated our lattice approach by running high-resolution models with constant crack center distance,
that is, model width W , and varying crack half length a. The lattice models were extended until the first
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bond failed. Displacement profiles and the maximum opening at incipient propagation are then compared
with equations (4) and (6), respectively (Figure 3), for which the bulk properties listed in Table 1 are used.
The results are in excellent agreement with LEFM solutions and illustrate, for example, that with increasing
crack length the displacement profiles become flat-topped due to tip-to-tip fracture interaction (Figure 3a;
see also Martel & Shacat, 2013). At this point it is also worth mentioning that for a periodic set of “stacked”
parallel fractures of equal length and of constant spacing arranged like rungs on a ladder, the displace-
ment profiles also become more flat-topped as spacing decreases (Martel & Shacat, 2013). Interestingly, in
a nonperiodic array of such stacked fractures, the outermost fractures exhibit opening, whereas the inner
fractures close once a critical spacing is reached, even though the array is subjected to remote extensional
load (Germanovich & Astakhov, 2004), a result which has direct implications for the models presented later.

3.2. Aperture-to-Length Scaling of Nonpropagating Cracks
Noninteracting and nonpropagating opening mode fractures in a linear elastic medium subjected to a
remote tension 𝜎 are expected to exhibit aperture-length ratios that only depend on remote stress and elastic
constants (Pollard & Segall, 1987; Olson, 2003):

dmax

L
= 𝜎

2(1 − 𝜈2)
E

. (7)

Mechanical interaction will lead to deviations from this scaling law (Olson, 2003), as discussed below.

We tested our modeling approach by randomly positioning parallel cracks into the lattice model with crack
lengths drawn randomly from a uniform size distribution with Lmin = 10R and Lmax = 100R. The only
restrictive condition evoked in the random crack placement is that the distance between the tips of two
colinear cracks must be at least 6R. The models are composed of 40,000 particles (200 particles per row;
200 rows). Cracks are randomly placed until a certain crack density is reached. Here we use the following
definition of crack density widely used in effective medium theories and introduced by Bristow (1960):

𝜌 = 1
A

n∑
i=1

a2
i , (8)

where A denotes the reference area, ai the half-length of the ith crack, and n the number of cracks in A
(Kachanov, 1992; Orlowsky et al., 2003). The squared crack half-length reflects the fact that the compliance
contribution of the ith crack is proportional to its size squared (cubed in the case of circular shaped cracks in
3-D), a relation that however is strictly speaking only valid for noninteracting cracks (see critical comment
by Kachanov, 2007). A selection of pre-cracked models (out of a total of 30 realizations) for two different
fracture densities is shown in Figure 4a. Importantly, the predefined fracture densities used cover the range
of densities observed in the fracture system models (section 3.3) in which fractures were not predefined but
nucleated and propagated within a heterogeneous material.

The model boundaries are moved outward until a finite strain 𝜀y = 10−4 is reached, and the tensile load
𝜎y (which is taken as the remote stress 𝜎 in the present context, although a strain boundary condition is
used) is computed by dividing the summed out-of-balance forces of the boundary particles by the model
width. The fractures' aperture-length data, normalized by particle diameter 2R, are shown, together with
the analytical expression for noninteracting and nonpropagating cracks (equation (7)), in Figure 4b. The
results indicate that aperture-to-length scaling is approximately linear (b ≈ 1) and therefore consistent with
equation (7), reflecting that, on average, the competing effects of stress shielding and stress amplification
cancel out (Kachanov, 1992). However, there is a hint that long cracks are typically “overdisplaced,” meaning
their apertures are greater than expected for an isolated (noninteracting) crack, reflecting stress amplifica-
tion as expected for colinear cracks or stepping cracks with small overlap lengths relative to the crack length.
On the other hand, short cracks appear to be slightly “underdisplaced” as they often lie in the stress shad-
ows of larger cracks. These two effects lead to aperture-to-length scaling that is slightly superlinear, that
is, b > 1. It is hence expected that in fracture systems with randomly located cracks that are not critically
stressed, aperture-to-length scaling should be, on average, approximately linear or slightly superlinear.

The main purpose of the models illustrated in Figure 4a is investigating the aperture-to-length scaling of non-
propagating cracks. However, this series of models can also be used to compare the effective modulus normal
to the cracks Ey with theoretical predictions from effective medium theory for randomly positioned parallel
cracks (see section A5 for details). The results (Figure A4) indicate that so-called “differential schemes” fit
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Figure 4. Scaling of predefined, nonpropagating cracks in models with fracture densities of (a) 𝜌 = 0.05 and (b) 𝜌 = 0.1 (as defined by equation (8)). In the left
column, the crack patterns in four selected models (out of a total of 30) are shown (n is number of cracks). The fractures' aperture-length data (mean ± one
standard deviation) from all realizations are compared with analytical solution (equation (7)). The tensile load 𝜎y at a finite strain 𝜀y = 10−4 is taken as a proxy
for remote stress (dashed line is relation for the mean tensile load, gray patch spans ± one standard deviation). Solid lines are best-fit linear relations with slope,
that is, power-law exponent, b.

the lattice model data well. Moreover, analysis of “outliers” indicates that stacked cracks lead to a less than
average reduction in stiffness, whereas collinear cracks or narrow multiple-segment zones lead to a greater
than average stiffness reduction, results that are again consistent with stress shielding and stress amplifi-
cation, respectively. On average, however, these competing effects cancel out when and only when crack
positions are random.

3.3. Fracture Systems Models
The purpose of earlier sections was to illustrate aperture-to-length scaling of predefined fractures and to
validate our numerical modeling scheme. In this section we focus on the modeling of fracture systems in
materials with various degrees of strength heterogeneity, which is implemented by randomly picking bond
strengths from a Weibull distribution (see section 2.2 and Figure 2b). All models presented in this subsec-
tion are composed of 216,000 particles, with 600 particles per row and 360 rows. As in the earlier described
models, extension is achieved by applying outward directed velocities to the bottom and top row of par-
ticles (monotonically increasing boundary displacements as considered by Segall, 1984). The tensile load
𝜎y (out-of-balance force of boundary particles divided by model width) is continuously monitored, and the
locations of broken bonds is exported in regular intervals for later analysis. The finite strain is 2 × 10−4 at
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Figure 5. Modeled fracture systems for three different strength heterogeneities (decreasing with increasing Weibull shape parameters 𝛽) at a normalized strain
𝜀norm of 0.2 (left) and 0.3 (right). Gray patches in right column mark fracture zone width, which is determined by finding the maximum and minimum y
position of those fractures with maximum apertures (dmax) exceeding the aperture at the changepoint x∗ (see Figure 10b and text for further explanation).

which all models have significantly strain weakened. Model results are presented in terms of normalized
strain, defined as 𝜀norm = 𝜀yE∕T, where the tensile strength T is taken to be strength of a material without
heterogeneity (𝛽 → ∞). Similarly, the tensile load 𝜎y is normalized by the tensile strength T. Hence, in a
perfectly homogeneous medium, failure occurs at 𝜀norm = 𝜎y∕T = 1. All length measures are normalized
by particle diameter 2R.

3.3.1. Fracture Zone Development
Figure 5 shows the fracture patterns of two models (out of a total of 30 realizations) at two stages, namely,
before (𝜀norm = 0.2) and after (𝜀norm = 0.3) the formation of fracture zones, which are highlighted as gray
patches. Cumulative length-frequency distributions of fractures and fracture zone width data of all realiza-
tions are shown in Figures 6a and 6b, respectively. The fracture zone width was determined for each model
by finding the maximum and minimum y position of those fractures with a maximum aperture dmax exceed-
ing a certain cutoff value. As described later (section 3.3.2), fracture zone formation leads to nonuniversal
aperture-to-length scaling, so that fractures with lengths greater than the changepoint (x∗, i.e., the kink in
the bilinear relation for the logarithmic aperture-length data) exhibit sublinear scaling. The aperture at that
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Figure 6. Influence of Weibull shape parameter 𝛽 on fracture length
distributions and fracture zone width (data from 30 realizations at a strain
of 𝜀norm = 0.3). (a) Cumulative length-frequency distributions of fractures
per model (the total fracture number N is normalized by the number of
realizations). (b) Fracture zone width (mean ± one standard deviation)
versus shape parameter.

changepoint, that is, dmax(L = x∗), as given by the best-fit
(strain-dependent) relation (Figures 10b and 10c), proofed to be a good
choice for objectively determining fault zone width.

The models show, as perhaps expected, that in a relatively homoge-
neous material (𝛽 = 3.6), one narrow fracture zone composed of
relatively long segments develops, whereas in a very heterogeneous mate-
rial (𝛽 = 1), several stepping fracture zones composed of shorter
segments form. The cumulative length-frequency distributions support
this observation and show that with increasing strength heterogeneity,
fracture lengths decrease, whereas the number of fractures increases
(Figure 6a; average fracture densities are discussed later), a trend con-
sistent with the results of Renshaw and Pollard (1994), who systemati-
cally varied initial flaw density. The width of the fracture zone, which
always forms after the remote peak stress is reached, hence reflects
material heterogeneity (Figure 6b). However, irrespective of material
heterogeneity, ultimately always one geometrically and kinematically
coherent zone develops due to the nature of the boundary condition used,
that is, constant boundary displacement. In a natural system, such a frac-
ture development is expected within a layer subjected to extension which
is completely decoupled from its surrounding layers, implying either
infinitely tall fractures or layers where the interfacial boundaries are fric-
tionless and there is no top and bottom crack tip per se. The absence of
possible 3-D effects (e.g., layer-confined fractures) on aperture-to-length
scaling should hence be borne in mind in the interpretation of our mod-
els (e.g., lower aperture-length ratios for longer fractures, as shown by the
pseudo-3-D models of Olson, 2003).

The evolution of a relatively narrow fracture zone from a 𝛽 = 3.6
model is illustrated in Figure 7a. The displacement profiles clearly illus-
trate how displacement is transferred between segments along “rock
bridges,” so that the cumulative displacement resembles the profile of
a single fracture (cf. to natural examples of Vermilye & Scholz, 1995).
Clearly, many of the segments are overdisplaced and exhibit flat-topped
displacement profiles as expected for crack arrays dominated by stress
amplification. A detailed analysis of the aperture-to-length scaling of
these multiple-segment zones that exhibit cumulative displacement dis-
tributions resembling those of a single fracture is however beyond the
scope of the present study, which focuses on the scaling of individual
segments. At this point it is worth recalling that our model approach per-

mits only propagation within the plane of a crack, so that failure of bridges is inhibited, similar to earlier
continuum-based studies (e.g., Olson, 2004; Renshaw & Pollard, 1994). This restriction is presumably the
reason for the frequent development of fracture overlaps, although both field evidence and theoretical stud-
ies provide evidence for why cracks propagate straight past one another without intersection (Olson &
Pollard, 1989, 1991) so that our approach is, for the small strains considered, justifiable. Because of this
in-plane propagation, the fracture segments forming the zone exhibit strong interactions. Importantly, due
to the displacement boundary conditions used, the maximum opening any fracture can exhibit equals the
boundary displacement (bold horizontal lines in Figure 7a). This statement is obviously only true in our
idealized two-dimensional models in which only one fracture zone develops and should therefore not be
generalized. In natural systems composed of more than one fracture zone, the cumulative opening (e.g.,
as determined along a scan line) will provide an estimate of the extension accommodated by fractures.
Ultimately, in our models the majority of fractures comprising a well-localized zone will have a maximum
opening equal to the boundary displacement, irrespective of fracture length, implying that, in the limit, the
scaling exponent approaches zero.

The fact that only one fracture zone develops is obviously a result of the boundary conditions and the 2-D
nature of our approach; in 3-D, the model mimics a layer that is completely decoupled from its surrounding
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Figure 7. Evolution of a fracture zone within a 𝛽 = 3.6 model. (a) Displacement profiles of individual fracture segments (light gray) and cumulative
displacements (dark gray), together with the imposed boundary displacement (bold horizontal line). The fracture pattern in model space is shown under each
displacement plot. (b) Maximum aperture versus fracture length graphs for the individual segments shown in (a). Solid horizontal line is the boundary
displacement. The earliest stage shown (𝜀norm = 0.278) is prior to peak stress; for this stage, the theoretical scaling for critically stressed and nonpropagating
isolated fractures are shown as dash-dot and dashed lines, respectively (equations (1) and (7), respectively).

material (zero friction on layer boundaries leads to infinite spacing, i.e., one fracture, e.g., Schöpfer et al.,
2011). However, this is possibly not the sole reason. For example, the degree of clustering and spac-
ing between clusters relate to subcritical crack propagation parameters, as has been shown in 2-D and
pseudo-3-D models (Olson, 1993, 2004, respectively). Future modeling with stress corrosion of the bonds
(Potyondy, 2007) could show whether our particle-based lattice model produces similar results, namely, that
clustering preferentially forms at a high subcritical index (Olson, 2004; Renshaw & Pollard, 1994).
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Figure 8. Evolution of a 𝛽 = 2 model with strain increasing from top to bottom (𝜀norm = 0.173, 0.193, and 0.217). In the left column, the system's normalized
stress-strain response is shown (dot corresponds to stage shown; perfect elastic behavior is shown as dashed line). In the right column, the aperture-length data
for all fractures are shown, together with the theoretical scaling for critically stressed and nonpropagating isolated fractures (equations (1) and (7), respectively)
for the pre-peak stress stages. In the dmax − L graphs, the imposed boundary displacement and the model width are shown as horizontal and vertical lines,
respectively.

Aperture-length data for the fractures comprising a zone are illustrated in Figure 7b, together with the the-
oretical scaling relations for isolated cracks for the stage prior to peak stress, that is, max(𝜎𝑦). Clearly, after
peak stress is reached, the tensile load cannot be taken as a proxy for driving stress and maximum opening
of the segments comprising the zone approaches the boundary displacement, as discussed earlier. Although
the number of fractures is relatively small at the last stage shown in Figure 7, one could argue for two scaling
relations, a superlinear scaling for short fractures (with L∕2R ≤ 20) and a sublinear scaling (that may, in
the extreme, yield a scaling exponent of zero) for longer fractures that take up most of the imposed bound-
ary displacement. Clearly, a greater sample size is required for a robust statistical analysis of the scaling
relations, as presented in the next section.

3.3.2. Universal and Nonuniversal Aperture-to-Length Scaling
In the preceding section we illustrated the formation of a localized fracture zone and presented
aperture-length data from segments comprising such a zone. This section focuses on fracture scaling
characteristic for a certain strength heterogeneity (as explained earlier, expressed in terms of Weibull shape
parameter 𝛽) within the entire modeled fracture system. A robust statistical analysis however requires the
analysis of multiple realizations, that is, models with identical statistical lattice properties, but different
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Figure 9. Aperture-length data from 30 realizations with 𝛽 = 2.0 for four stages of normalized strain 𝜀norm. Dots are
the mean values for each distinct fracture length, and error bars indicate ±one standard deviation. Prior to peak stress,
the theoretical scaling for critically stressed and nonpropagating isolated fractures are shown (equations (1) and (7),
respectively). The imposed boundary displacement and the model width are shown as horizontal and vertical lines,
respectively. Prior to peak stress, data are fitted with a universal power-law scaling relation with exponent b, whereas
after peak stress, nonuniversal scaling is observed (bilinear fit to logarithmic data) with exponents b0 and b1 (see
equation (9)). For the latter case, the 95% confidence bounds around the changepoint x∗ are shown as vertical gray bars.

sequence of random numbers used for assigning bond strengths (X in equation (3)). For each of the three 𝛽

values used, 30 realizations were run, and the pooled data are analyzed.

Key stages of one of the 𝛽 = 2 model realizations are shown in Figure 8, together with the system's normal-
ized stress-strain response and the aperture-length data. At peak stress, aperture-to-length scaling is clearly
linear, and the fractures' aspect ratios (dmax∕L) are slightly larger than for a nonpropagating isolated frac-
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Figure 10. Fracture densities and results of best-fit universal and nonuniversal aperture-to-length scaling as a function
of normalized strain for three different strength heterogeneities (expressed as Weibull shape parameter 𝛽). (a) Fracture
density 𝜌 (as defined by equation (8)) plotted as mean ± one standard deviation. (b) Changepoints x∗. (c) Slopes b, b0,
and b1. In (b) and (c), each best-fit parameter is plotted as point with error bar representing the 95% confidence bound.

ture (equation (7)). Shortly after peak stress, a localized zone develops (as shown for all 𝛽 values used in
Figure 5) and aperture-to-length scaling becomes clearly nonlinear.

The pooled data for the 𝛽 = 2 models are shown in Figure 9, together with scaling relations for isolated
fractures. Prior to peak stress, the (average aperture) data are well-fitted with a universal scaling relation.
After peak stress, however, a bilinear relation is fitted to the logarithmic data. The relation has the form
(Main et al., 1999)

𝑓 (xi) = a0 + b0 [xi I(xi < x∗) + x∗ I(xi ≥ x∗)] + b1(xi − x∗)I(xi ≥ x∗), (9)

where a0 is the intercept, b0 and b1 are the slopes, x∗ is the changepoint, and I is the indicator function; if
the inequality in the brackets holds, then I = 1, otherwise I = 0. Fitting is performed using nonlinear least
squares as implemented in Matlab (lower/upper bound for x∗ is taken as the third smallest/largest value;
lower/upper bound for the b's is 0/5 and for a0 it is −∞∕ + ∞). Note that the same procedure was used to
fit the data shown in Figures 1a and 1b, which gives identical results (within the confidence bounds) to the
best-fit relations given in Main et al. (1999) and Renshaw and Park (1997), respectively.
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The best-fit parameters for the three different 𝛽-value models are shown as a function of normalized strain
in Figures 10b and 10c. Additionally, the fracture density (as defined by equation (8)) is shown as a func-
tion of strain, where the reference area A is taken to be the total model area. Prior to peak stress, that is,
the formation of a fracture zone, the scaling exponent b is approximately 1.0 (in the least heterogeneous
model, i.e., 𝛽 = 3.6, insufficient pre-peak-stress data are available). This linear (or slightly superlin-
ear; b > 1) scaling relation, together with the low fracture densities (𝜌 < 0.01), suggests that prior to
peak-stress, the majority of fractures are noninteracting and not critically stressed (section 3.2). Fracture
densities increase during fracture zone formation, where the most heterogeneous material (𝛽 = 1) shows
the “smoothest” increase. After fracture zone formation, the best-fit bilinear relation (equation (9)) yields
changepoint values that increase with model extension and decrease with increasing strength heterogene-
ity. As illustrated in Figure 7, the changepoint corresponds to the shortest fracture comprising the fracture
zone that accommodates the imposed boundary displacement. The shortest zone-forming fracture clearly
decreases with increasing strength heterogeneity (see also Figure 6a). In other words, the changepoint mag-
nitude “represents the maximum length scale at which the apertures of smaller fractures are affected by
stress perturbations induced by larger fractures,” as argued by Renshaw and Park (1997). Interestingly, Ren-
shaw and Park (1997) used a constant remote stress boundary conditions, whereas in our models a uniform
boundary displacement is specified (which arguably is more appropriate for the field data described by Hat-
ton et al., 1994), yet a similar bilinear scaling develops as the fractures interact, suggesting that this effect
does not depend on the nature of the boundary condition or the fracture growth rule.

Fracture densities are very similar after zone localization (𝜌 ≈ 0.05), although a slight increase with decreas-
ing heterogeneity is evident and in fact expected (a single fracture spanning the entire model would lead to
a fracture density 𝜌 = (W∕2)2∕(WH) ≈ 0.5). If the fractures were randomly located, then weak interactions
are expected for these relatively low fracture densities, that is, the effects of stress shielding and stress ampli-
fication cancel out (see section 3.2 and Figure 4). This is clearly not the case in the fracture system models,
which do show clustering and hence locally high crack densities resulting in strong interactions.

The best-fit slope b1 of the bilinear relation is typically <0.5 and increases with increasing strength hetero-
geneity (decreasing 𝛽 value). Again, this is consistent with the formation of fracture zones, which become
narrower and better localized in more homogeneous materials. As postulated earlier, in the extreme case, all
fractures comprising the zone have a maximum aperture equal to the boundary displacement that is inde-
pendent of fracture length (b1 → 0; see also Figure 7). Clearly, the sublinear scaling of the longer fractures
(L > x∗) cannot be interpreted in terms of the propagation of an individual crack (Scholz, 2011) but reflects
strong segment interaction (Pollard et al., 1982). On the other hand, the superlinear scaling relation of the
shorter fractures, with scaling exponents b0 ranging from 2 to 3, is due to stress shielding in the material
outside of the fracture zone.
3.3.3. Implications for the Interpretation of Natural Fracture Systems
Finally, it seems appropriate to discuss the preservation potential of these aperture-to-length scaling rela-
tions (see also in-depth discussion by Olson, 2003). In the present models, the linear scaling prior to strong
segment interaction is “lost” after fracture zone formation due to crack closure, a scenario which in natu-
ral systems may be possible if the fractures are fluid filled or empty and if the host rock behaves elastically.
Mineralization of fractures (or crystallization of the fluid inside the fractures) could inhibit fracture clo-
sure and hence preserve the early aperture-to-length scaling, so that the relatively large scaling exponents
(b0 ranging from 2 to 3) cannot develop and the linear scaling is preserved. On the other hand, the sub-
linear aperture-to-length scaling of the long fractures comprising the multiple-segment fracture zones is
expected to be preserved, even when the stress induced by the (remote tectonic) extension is relaxed. This
sublinear scaling, when encountered in the field, should however not be necessarily interpreted to reflect
a preserved active subcritical or critical propagation state, since such scaling can also result from strong
segment interaction under tectonic extension, as shown in the present study.

4. Conclusions
Using a simple lattice model, which is consistent with LEFM, quasi-static fracture systems restricted to
in-plane fracture propagation under constant displacement boundary conditions were modeled that lead to
the following principal conclusions:
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1. Prior to the formation of a fracture zone, aperture-to-length scaling is linear or slightly superlinear, sug-
gesting that in a heterogeneous material, the majority of fractures are not critically stressed and that effects
of fracture interaction (shielding and amplification) cancel out.

2. After the formation of a segmented fracture zone, aperture-to-length scaling becomes nonuniversal, with
long fractures comprising the multiple-segment zone exhibiting sublinear scaling and short fractures
exhibiting superlinear scaling.

3. The length scale at which a change from superlinear to sublinear aperture-to-length scaling occurs
increases with increasing extension and is therefore not related to a preexisting structure but reflects the
shortest segments that comprise the multiple-segment fracture zone.

4. The two competing effects of stress shielding and stress amplification, which typically cancel out up to
high crack densities when fractures are randomly located, lead to nonuniversal aperture-to-length scaling
in clustered fracture systems, where the long (colinear or stepping) fractures comprising the fracture zone
are dominantly affected by stress amplification and the shorter fractures in the stress shadow of the zone
are dominantly affected by stress shielding.

Appendix A: Bulk Properties of Lattice Model
A1. Introduction
In this appendix the bulk properties, such as elastic constants, tensile strength, and mode I fracture tough-
ness, of the lattice model are described. The elastic properties and strength are determined using fully
bonded models with constant bond strength. The inverse form of Hooke's law for plane strain is

𝜀x = (1 − 𝜈2)
E

𝜎x −
𝜈(1 + 𝜈)

E
𝜎𝑦,

𝜀𝑦 =
(1 − 𝜈2)

E
𝜎𝑦 −

𝜈(1 + 𝜈)
E

𝜎x,

(A1)

Figure A1. Comparison of “classical” 1-D spring contact model (so-called
“linear contact bond model”) and bonds with finite width (so-called “linear
parallel bond model”). See Potyondy and Cundall (2004) for
implementation details. An infinitely long array of overlapping fractures is
predefined in the lattice model with a fracture separation equal to one
particle diameter (fracture geometry is illustrated in (c)). Infinite bond
strength provides fully elastic behavior. The 1-D spring model leads to
linear displacement profiles (a), whereas the finite width bond provides
nonlinear (tapered) profiles as expected for a beam (b). Crack
displacements are normalized by boundary displacement.

where E is the Young's modulus, 𝜈 the Poisson's ratio, and the x and y axes
are principal axes of stress and strain (𝜎 and 𝜀, respectively). In the present
setup, periodic boundaries are used in the x direction so that 𝜀x = 0.
The nonzero strain and stress in the y direction, 𝜀y and 𝜎y, are readily
computed from the model boundary displacement and the tensile load,
respectively. The stress in the x direction 𝜎x, which has under 𝜀x = 0
conditions the same sign as 𝜎y if 𝜈 > 0, is computed using an averaging
procedure that permits estimating continuum quantities (such as stress)
from discrete media (so-called measurement circle; Potyondy & Cundall,
2004). This circular averaging region is positioned in the model center
and has a radius equal to 45% of the minimum model dimension, that is,
0.45 min(W ,H), where W and H is the model width and height, respec-
tively. From these nonzero quantities (𝜀y, 𝜎y, and 𝜎x), the effective elastic
constants of the lattice are then readily obtained from equation (A1). For
the fracture toughness tests, a preexisting crack is defined in the model
center (as illustrated in Figure 2a).

As explained in section 2.1, our model approach differs from ear-
lier mass-spring-damper models because of the usage of finite width
inter-particle bonds (so-called “parallel bonds”; Potyondy & Cundall,
2004). These bonds provide a more realistic behavior since in addition
to forces, a moment can develop at bonded particle-particle contacts,
leading to a fundamentally different behavior which is best illustrated
by the deformation of rock bridges between two overlapping fractures.
Figure A1 shows the fractures' opening displacement profiles for the
“classical” linear contact bond model (1-D spring) and the parallel bond
model (finite width cement) used in the present study. The predefined
fractures have a separation equal to one particle diameter, meaning that
the rock bridge is a string of bonded particles. Without any bending
resistance, the displacement profiles along the rock bridges are linear.
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Figure A2. Effective properties of particle-based lattice solid model under
extension as a function of the bond stiffness ratio �̄�. (a) Normalized Young's
modulus, (b) Poisson's ratio, and (c) normalized tensile strength. Analytical
solutions are shown as curves and numerical model results as dots. Elastic
properties are plotted for plane strain and plane stress conditions
(equations (A2) and (A3), respectively). The normalized tensile strength is
shown for two cases, infinite bond shear strength (𝜏c = ∞; equation (A4))
and infinite bond tensile strength (�̄�c = ∞; equation (A5)).

On the other hand, the parallel bond model provides the behavior of a
(linear elastic) beam and therefore nonlinear (tapered) displacement pro-
files along the rock bridges. Hence, even when the fracture separation is
equal to one particle row, realistic bulk behavior is achieved.

A2. Effective Elastic Properties of Intact Lattice
The effective elastic properties of a triangular lattice composed of lin-
ear elastic springs can be expressed analytically (Bathurst & Rothenburg,
1988; Griffiths & Mustoe, 2001; Liu et al., 2013; Rothenburg et al., 1991;
Toomey & Bean, 2000; Wang & Mora, 2008). Here we adapt existing rela-
tions to take into account the finite bond width using the notation given
by Potyondy and Cundall (2004) and assuming equisized discs of radius R
and unit thickness: The bond width 2R̄ is set by the so-called bond width
multiplier, �̄� = R̄∕R. The axial bond stiffness k̄n is set with the bond mod-
ulus via the relation Ēc = 2Rk̄n (note that 2R is the beam length), and the
tangential stiffness k̄s is set with the bond stiffness ratio, �̄� = k̄n∕k̄s. These
relation then lead to the following relations between the bond properties
�̄�, Ēc, and �̄� and the effective Young's modulus E and Poisson's ratio 𝜈:

E = λ̄Ēc

√
3

8
(5�̄� − 1)(�̄� + 1)

�̄�2 , 𝜈 = �̄� − 1
4�̄�

for plane strain, (A2)

E = λ̄Ēc2
√

3 �̄� + 1
3�̄� + 1

, 𝜈 = �̄� − 1
3�̄� + 1

for plane stress. (A3)

These analytical relations are plotted as a function of stiffness ratio �̄� in
Figures A2a and A2b and compared with results obtained from tension
tests on the numerical lattice model. It is worth recalling that a positive
Poisson's ratio requires �̄� > 1 (Gaspar, 2010; Rothenburg et al., 1991) and
that the maximum achievable Poisson's ratio (as �̄� → ∞) in a triangular
lattice model is 𝜈 = 1∕4 and 𝜈 = 1∕3 for plane strain and plane stress
conditions, respectively. Note that in a square lattice with bonds paral-
lel/normal to the extension direction E = λ̄Ēc and 𝜈 = 0 (the square
lattice is however orthotropic and hence not suited for modeling linearly
isotropic elastic solids).

A3. Tensile Strength
The maximum tensile and shear stresses acting on the parallel-bond
periphery are calculated from beam theory (equation 16 in Potyondy &
Cundall, 2004). If the maximum tensile stress exceeds the tensile strength
�̄�c or the maximum shear stress exceeds the shear strength 𝜏c, then the
parallel bond breaks, and it is removed from the contact along with its
accompanying force, moment, and stiffnesses (after failure, a linear con-
tact model with zero contact friction is assigned so that the “fracture
wall” has a stiffness in case of crack closure). The lattice's tensile strength
T under extension for the lattice orientation relative to the extension
direction as shown in Figure 2a is given by

T = λ̄�̄�c
1√
3

(
3 + 1

�̄�

)
for 𝜏c = ∞, (A4)

T = λ̄𝜏c(3�̄� + 1) for �̄�c = ∞. (A5)

These equations indicate that when �̄�c = 𝜏c, bonds fail in tension when �̄� > 1∕
√

3 (Figure A2c). In the limit
(when �̄� → ∞ and all load is carried in tension), the normalized tensile strength T∕(λ̄�̄�c) approaches

√
3.

Note that in a square lattice with bonds parallel/normal to the extension direction, T∕(λ̄�̄�c) = 1.
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Figure A3. Mode I fracture toughness of lattice models. (a) Normal stress profile ahead of crack 𝜎yy normalized by remote stress 𝜎 (solid curve) for a = W∕4
(equation (A7)). The boxes illustrate average normalized stress for different integration limits. (b) Illustration of dual-model similarity with square lattices.
Identical sample strength and fracture toughness is obtained for models (ii) and (iii). (c) Normalized sample strength versus model resolution a∕R for square
and triangular lattices with contact bonds (CB) and parallel bonds (PB). Dashed lines have a slope of −0.5. The solid thick curve is an estimate based on stress
integration ahead of the crack tip (as illustrated in (a)). For example, for a∕R = 2 (as illustrated in (i)), the average normalized stress ahead of the crack tip
equals 2.54, that is, the height of the box in (a) ranging from x∕a = 1 to 1.5. On the basis of this simple analysis, the sample's normalized strength is hence
expected to be 1/2.54 = 0.39. (d) Normalized fracture toughness calculated using the data shown in (c).

A4. Fracture Toughness
The mode I fracture toughness is determined numerically by predefining fractures in the model center as
schematically shown in Figure 2a. Since periodic boundaries are used, the predefined cracks (of half-length
a) are colinear and periodic (the model width W is hence the distance between the crack centers). The stress
intensity factor for this geometry is given by the following closed-form solution (e.g., Gross & Seelig, 2011)

KI = 𝜎

√
W tan

(πa
W

)
, (A6)

where 𝜎 is the remote tensile stress. Note that with increasing width, the well-known solution for an isolated
crack is obtained as W → ∞, that is, KI = 𝜎

√
𝜋a. The normal stress within the plane of the colinear periodic

cracks is given by (e.g., Schijve, 1996; Figure A3a)

𝜎𝑦𝑦

𝜎
=

√
2 sin(𝛼x)√

cos(2𝛼a) − cos(2𝛼x)
,where 𝛼 = π

W
, (A7)

which illustrates the well-known fact that continuum mechanics solutions for cracks in a linear elastic
medium predict stress singularities at the crack tip (at x = a; the crack center is at the origin). Such stress
singularities do not arise in lattice models, because the integral stress ahead of the crack tip is carried by
discrete bonds. A consequence of this discretization is that the fracture toughness depends on resolution,
that is, number of particles or bonds per crack length, as documented for DEM models similar to those pre-
sented here (Potyondy & Cundall, 2004) and the macroscopic properties of microarchitectured materials
(see review by Fleck et al., 2010).
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Figure A4. Effective Young's modulus normal to the cracks Ey normalized by the modulus of the intact material E
versus fracture density 𝜌 for the models described in section 3.2. Curves are theoretical predictions taken from the
noninteraction approximation (NIA), the differential scheme (DS), and the extension of the differential scheme (EDS).
Data (n = 30 per density) are plotted as a box and whisker diagram, where the boxes span from the 0.25 to 0.75
percentile and the whiskers from the 0.05 to 0.95 percentile. Median values are plotted as bold horizontal lines in each
box, mean values as white points, and outliers as black points. The insets show the crack patterns for selected 𝜌 = 0.2
models: (i) maximum; (ii) median; and (iii) minimum. Note “stacked” cracks in (i) and narrow zone in (iii), which both
were generated by chance (i.e., by random positioning of cracks).

An approximate relation between the strength of a cracked specimen (and therefore fracture toughness)
and model resolution can be obtained by computing the integral stress, or force, ahead of the crack tip as a
function of distance from the crack tip. The indefinite integral of equation (A7) is

∫
𝜎𝑦𝑦

𝜎
dx = −𝛼−1sin−1 cos(𝛼x)

cos(𝛼a)
+ C, (A8)

where C is the integration constant. The definite integral from a (= position of crack tip) to a + Δx, with Δx
being the distance ahead of the crack tip, is

∫
a+Δx

a

𝜎𝑦𝑦

𝜎
dx = W

2
− 𝛼−1sin−1 cos [𝛼(a + Δx)]

cos(𝛼a)
, (A9)

which is hence equal to the maximum force Fmax
n acting ahead of the crack tip on a line segment of length

Δx (equivalent to particle diameter in a square lattice; Potyondy & Cundall, 2004). Normalizing of equation
(A9) by Δx hence provides the average stress ahead of the crack tip (Figure A3a) and its inverse an estimate
of the specimen's normalized strength, 𝜎y∕T (Figure A3c). Clearly, the average stress ahead of the crack tip
increases with decreasing Δx so that the specimen's strength decreases with increasing model resolution
(Figure A3c).

From the above continuum-based analysis, it is clear that fracture toughness will depend on model reso-
lution. Based on a similar analysis, Potyondy and Cundall (2004) postulated that for a given size of a BPM
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KIc = T
√
π�̄�R, (A10)

where T is the tensile strength of the ensemble, and �̄� is a dimensionless factor that depends on parti-
cle packing, bond-strength heterogeneity, and other things (see also Cundall & Detournay, 2017; Huang &
Detournay, 2008). Note that the relation between fracture toughness and internal length scale was derived
on the basis of forces, rather than surface energy (as in the Griffith criterion, e.g.), which is more usual in
fracture mechanics.

Consequently, a series of models (with a = W∕4) and varying crack resolution (a∕R) was run using both
square and triangular lattices and both contact (1-D spring) and parallel (finite sized cement) bonds (results
from square lattice models are simply shown for comparison; as stated in section 2.1, a square lattice is elas-
tically orthotropic and was hence not used for the models shown here). In these models the applied stress
at which the first bond breaks is taken as the strength of the cracked specimen, which is normalized by
the tensile strength of equivalent uncracked specimens, that is, 𝜎y∕T. Note that identical model results are
obtained for models in which R is kept constant and W is varied and for models in which W is kept constant
and R is varied (so-called dual-model similarity; Potyondy & Cundall, 2004; Figure A3b). It is hence useful
to express the specimen's mode I fracture toughness in dimensionless form, that is, KIc∕(T

√
R) (Figure A3d).

As already noted by Potyondy and Cundall (2004), the strength versus resolution relations asymptotically
approach a slope of minus one half (as expected from equation (A10)), so that the normalized fracture tough-
ness asymptotically approaches a constant value at high model resolutions. Note that for the triangular
lattice used here, the fracture toughness increases with resolution by a factor < 1.5.

A5. Effective Elastic Properties of Lattice Containing Parallel Fractures
The models run for investigating aperture-to-length scaling of randomly placed parallel fractures (section
3.2 and Figure 4) also provide interesting results regarding the effective elastic properties. An elastic solid
containing parallel fractures is a transversely isotropic material (Kachanov, 1992) for which the plane
strain-stress relation can be written as

𝜀x = (1 − 𝜈2)
Ex

𝜎x −
𝜈(1 + 𝜈)

E
𝜎𝑦,

𝜀𝑦 =
(1 − 𝜈2)

E𝑦

𝜎𝑦 −
𝜈(1 + 𝜈)

E
𝜎x,

(A11)

where Ex and Ey are the effective Young's moduli in the x and y directions (which are planes of symmetry in
the orthotropic solid) and E and 𝜈 are the elastic constants of the unfractured material (matrix; e.g., Kushch
et al., 2009; Orlowsky et al., 2003). The effective moduli are determined from the pre-fractured models in
the same fashion as for the intact lattice (as described in section A1), and the properties of the intact solid
are computed using the plane strain analytical solutions (equation (A2)).

For one set of parallel fractures, Kachanov (1992) discusses three different theoretical descriptions, the non-
interaction approximation, the differential scheme, and the extension of the differential scheme (see also
summary in Orlowsky et al., 2003). For a solid containing a set of randomly distributed parallel cracks
aligned with the x direction, all three theories predict that Ex = E, whereas Ey = E∕(1 + 2𝜋𝜌) (noninterac-
tion approximation), E𝑦 = E exp(−2π𝜌) (differential scheme), and E𝑦 = E∕[1+2π𝜌 exp(π𝜌)] (extension of the
differential scheme), with 𝜌 being the fracture density as defined by equation (8). The normalized effective
moduli Ey∕E obtained from the lattice models illustrate that, on average, the differential schemes provide
the best fit, a result consistent with existing studies (Kushch et al., 2009; Orlowsky et al., 2003). The scat-
ter is however significant, given the relatively small number of fractures per model and the large range of
fracture lengths (see Figure 4). Nevertheless, outliers do illustrate that stacked cracks lead to stress shield-
ing resulting in a lower than average reduction of Ey, whereas cracks aligned in a narrow zone lead to stress
amplification causing a greater than average reduction of Ey (inset (i) and (iii) in Figure A4, respectively) as
predicted by theory (Kachanov, 2007) and shown by existing studies (Orlowsky et al., 2003). Clearly, the for-
mation of a fracture zone composed of colinear and stepping segments is the cause for the dramatic stress
drop recorded in the fracture systems models (Figure 8) and the onset of nonuniversal aperture-to-length
scaling, because stress amplification dominates the long fractures comprising the multiple-segment zone
and stress shielding dominates the shorter fractures outside the zone.
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