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Abstract: We show that any 3 + 1-dimensional Milne model is future nonlinearly,
asymptotically stable in the set of solutions to the Einstein–Vlasov system. For the
analysis of the Einstein equations we use the constant-mean-curvature-spatial-harmonic
gauge. For the distribution function the proof makes use of geometric L2-estimates
based on the Sasaki-metric. The resulting estimates on the energy-momentum tensor
are then upgraded by employing the natural continuity equation for the energy density.
The combination of L2-estimates and the continuity equation reveals a powerful tool
to analyze massive transport equations with potential applications beyond the result
presented here.

1. Introduction

1.1. Cosmological spacetimes and stability. We consider the following class of cosmo-
logical vacuum spacetimes. Let the M be a closed 3-manifold admitting an Einstein
metric γ with negative Einstein constant μ = − 2

9 , i.e.

Ri j [γ ] = −2

9
γi j , (1.1)

where the specific value of μ is chosen for convenience. A spacetime of the form
((0,∞) × M, g) with

g = −dt2 +
t2

9
· γ (1.2)

is known as a Milne model and is a solution to the vacuum Einstein equations. Its
future nonlinear stability under the vacuum Einstein flow has been shown in [AM-2]
and constitutes the second stability result for the vacuum Einstein equations without
symmetry assumptions beside the corresponding one for Minkowski space [CK]. While
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the stability of the Minkowski spacetime under the vacuum Einstein flow has been
generalized to several Einstein-matter systems [BZ,LR,LM,T,FJS17-2,LT17] this is
not the case for the Milne model. We address this problem for the Einstein–Vlasov
system and prove the first stability result for the Milne model in the presence of matter.

1.2. The stability problem for the Einstein–Vlasov system. The Einstein–Vlasov system
(EVS) reads

Rμν − 1

2
Rgμν = 8π

∫
Px

f pμ pνμPx

Xg f = 0,
(1.3)

where Xg denotes the geodesic spray and f a distribution function with domainPx ⊂
T M , the mass-shell of future directed particles for a fixed mass m. It models spacetimes
containing ensembles of self-gravitating, collisionless particles and constitutes an accu-
ratemodel for spacetime on large scales, where collisions are negligible and galaxies and
galaxy clusters indeed interact solely be their mutual self-gravitation. Its mathematical
study in the context of the Cauchy problem dates back to the first works by Rein and
Rendall on the evolution of spherically-symmetric perturbations of Minkowski space
[RR] and the construction of static nonvacuum solutions [RR-2]. Substantial progress
in the study of the EVS happened since then. For a complete overview we refer to the
review article by Andréasson [A]. Regarding the nonlinear stability problem, in par-
ticular without symmetry assumptions, first results have appeared recently considering
different geometric scenarios. Ringström’s monumental work, which in particular con-
tains a detailed local-existence theory, addresses the stability problem for exponentially
expanding cosmological models [Ri]. These correspond to the presence of a positive
cosmological constant in the Einstein equations, which in his case is realized by a scalar
field with suitable potential. This has later been extended by Andréasson and Ringström
to prove stability of T 3 Gowdy symmetric solutions (in the class of all solutions with-
out symmetry assumptions) [AR]. Furthermore, the stability of Minkowski space for
the Einstein–Vlasov system for massless particles has been proven by Taylor [T]. The
stability of 2 + 1-dimensional cosmological spacetimes for the Einstein–Vlasov system
has been proven by the second author [F-1,F-2].

We remark that in the physically interesting case of 3 + 1 dimensions, nonlinear
stability results until very recently either required a positive cosmological constant or a
restriction to the massless case. A recent series of works then established the stability
of Minkowski space for the Einstein–Vlasov system by a vector-field-method approach
[FJS15,FJS17,FJS17-2] and also independently [LT17].
In the present paper iswe establish the first stability result for the Einstein–Vlasov system
in 3 + 1 dimensions in the cosmological case with vanishing cosmological constant.
Moreover, to our knowledge, the present work presents the first stability result to an
Einstein-matter system with vanishing cosmological constant in the cosmological case.

Further stability results for cosmological spacetimes with matter models exist but to
our knowledge consider the case of a positive cosmological constant. We refer here to
the works of Rodnianski-Speck and Speck on the Einstein-Euler system [RS13,S12],
Hadžić-Speck on the Einstein-dust system [HS15], Friedrich on the Einstein-dust system
[Fr17] and Olyniyk on the Einstein-fluid system [Ol16].
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1.3. Nonvacuum stability of the Milne model: main theorem. Toprove nonlinear stability
of any Milne model within the class of solutions to the Einstein–Vlasov system we first
extend the rescaling of the geometry by the mean curvature function as done in [AM-2]
to the nonvacuum case by rescaling the momentum variables p̃ accordingly. The choice
of rescaling here is motivated by the behavior of the momentum support for solutions
to the transport equation on the background (1.2), which decreases as p̃ ≈ t−2. The
mass-shell relation of massive particles, however, prevents from obtaining a system of
autonomous equations, as it occurs for the vacuum system. In the present case, some
explicit time functions remain in the rescaled equations, which appear in conjunction
with the energy-momentum tensor.We then combine the technique of corrected energies
to control the perturbation of the geometry as developed for the vacuum case in [AM-2]
with the technique of L2-Sobolev-energies for the distribution function based on the
Sasaki metric on the spatial tangent bundle derived in [F-1].

1.3.1. Rescaling As in [AM-2] we use here a rescaling of the geometric variables (and
in addition of the matter quantities) in terms of the mean curvature τ . This rescaling is
introduced in (2.8). Moreover, a logarithmic time variable T is then introduced in (2.10).
The following discussion and statement of the main theorem is conducted with respect
to these variables.

1.3.2. Difficulties in 3+1 dimensions A fundamental difference to the 2+1-dimensional
case considered in [F-1] is the different structure of the matter quantity appearing in the
elliptic equation for the lapse function (cf. τη in equation (2.15)). In dimension 3 + 1,
after the appropriate rescaling, we find that this quantity does not decay faster than e−T .
This occurs already on the level of the unperturbed background geometry and implies
that Sobolev norms of the gradient of the lapse function only decay as e−T . In view of this
slow decay a critical problem arises when the L2-Sobolev estimates for the distribution
function are considered. In the transport equation the critical term reads

eT · N∇a N p0
∂ f

∂pa
, (1.4)

written in rescaled variables. Roughly analyzed,1 the decay of the lapse, of the form
∇N ≈ εe−T , where ε denotes the smallness of the initial perturbation, then leads to a
small growth of the L2-Sobolev energy of the distribution function as eεT . The problem
is then apparent if this growth of the matter perturbation couples back into the lapse
equation, where it reduces the decay of the gradient of the lapse to εe(−1+ε)T . This
cannot be closed in the sense of a suitable bootstrap argument or by an appropriate
energy estimate. A correction mechanism for the L2-Sobolev energy of the distribution
function as used to deal with problematic shift vector terms in the 2 + 1-dimensional
case in [F-1] seems unavailable as the critical terms here do not necessarily appear as
an explicit time derivative, which allowed for the correction in [F-1].

1.3.3. A new estimate for the energy density We resolve the problem of slow decay of
the lapse gradient by a different idea. A crucial observation therefore is the fact that the
matter term in the lapse equation decomposes as

Nτη = Nτ(ρ + τ 2η) (1.5)

1 For details we refer to the L2-estimates for the distribution function, which immediately clarify this
conclusion.
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in rescaled variables, where ρ is the rescaled energy density (cf. (2.22)). For Vlasov mat-
ter, the remaining term τ 2η has stronger decay properties due to the explicit τ variable,
which can be used to compensate a growth of the L2-Sobolev energy of the distribution
function. This implies that accepting a small growth for the L2-Sobolev energy still
yields a decay of τ 2η ≤ εe(−3+ε)T , which is sufficiently fast. The problematic term is in
fact the rescaled energy density ρ.

The crucial idea is not to estimate the energy density by the L2-Sobolev energy of
the distribution function but to use an explicit evolution equation for ρ, which originates
from the divergence identity of the energy momentum tensor, ∇μT μν = 0. One obtains
the evolution equation for the energy density or continuity equation, which in rescaled
form (cf. Appendix B) reads

∂T ρ = (3 − N )ρ − Xa∇aρ + τ N−1∇a(N 2ja) − τ 2
N

3
gabT ab − τ 2N�abT ab,

(1.6)

where in the setting we consider the last three terms have improved decay from the
additional τ factors. This seems to be a particular feature of massive collisionless matter
but this structure may also be relevant for other massive matter models. If those terms are
estimated by the L2-Sobolev energies this additional decay can be used to compensate
for the small growth and yields a uniform estimate for the standard Sobolev norm of
ρ without the problematic loss. This mechanism allows to close the estimates. It is
important to remark that the regularity loss of the evolution equation (1.6) for ρ is
compensated by the elliptic regularity of the lapse equation which requires the energy
density only at one order of regularity below the top order. The elliptic nature of the
CMCSH gauge is crucial for this compensation.

1.3.4. Structure of the proof The small growth of the L2-Sobolev energy of the distri-
bution function, which results from the lapse term, implies that we do not correct this
energy as done in [F-1], where we required uniform boundedness. The corresponding
energy estimates here are done with respect to the rescaled variables and require higher
orders of regularity but are except for these aspects similar to the ones in [F-1]. Also
similarly to [F-1] we consider initial data with compact momentum support. We expect
that considering non-compact momentum support results in similar decay properties of
the system. However, to analyze this issue in detail another additional structural esti-
mate for the transport equation is necessary which is subject to future works on the
topic. Regarding the estimates for the perturbation of the geometry we use energy esti-
mates and elliptic estimates according to the vacuum case [AM-2], where in the present
case additional terms due to the matter quanitities appear. For the sake of brevity we
derive most estimates under smallness assumptions on the perturbation, which allows
us to suppress higher order terms in the perturbation in the estimates and absorb them
into uniform constants. Global existence is eventually shown by a bootstrap argument,
which implies that for a sufficiently small initial perturbation the smallness assumptions
persist throughout the evolution and almost optimal decay holds, if we compare with
the vacuum case.

Main theorem We formulate the main theorem using the terminology of the remainder
of the manuscript. The theorem is formulated with respect to the rescaled metric and
second fundamental form. After the theorem we clarify the notation used therein.
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Theorem 1. Let (M, γ ) be a 3-dimensional, compact, Einstein manifold without bound-
ary with Einstein constant μ = − 2

9 and εdecay > 0. Then there exists an ε > 0 such that
the future development of the rescaled initial data (g0, k0, f0) ∈ H6(M) × H5(M) ×
HVl,5,3,c(T M) at t = t0 with compact momentum support of the initial particle distri-
bution and

(g0, k0, f0) ∈ B 6,5,5
ε

(
γ,

1

3
γ, 0

)
(1.7)

under the Einstein–Vlasov system is future complete and the rescaled metric and trace-
free fundamental form (g, �) converge as

(g, �)−→ (γ, 0) for τ ↗ 0 (1.8)

with decay rates determined by εdecay as in (10.10). In particular, any 3+1-dimensional
Milne model is future asymptotically stable for the Einstein–Vlasov system in the class
of initial data given above.

The symbols (g, k, �, f ) denote the Riemannian metric, the second fundamental form,
the tracefree part of k and the distribution function, respectively. τ < 0 is the mean
curvature and is related to the time variable in (1.2) via t = −3τ−1 with τ ↗ 0 being
the future direction.B6,5,5

ε (. , . , .) denotes the ball of radius ε centered at the argument
in the set of H6(M) × H5(M) × HVl,5,3,c(T M) with the canonical Sobolev norms
defined further below. Here, HVl,5,3,c denotes the space of distribution functions on T M
corresponding to the standard L2-Sobolev norms, cf. [F]. HVl,5,3,c(T M) is the subset
of this space with distribution functions of compact momentum support.

1.4. Remarks. The decay rates (10.10) can be achieved for arbitrarily small εdecay by
choosing the perturbation sufficiently small depending on εdecay. This implies that one
can get arbitrarily close to the vacuum decay rates which correspond to the case εdecay =
0.
The corresponding higher dimensional stability results, which for the vacuum equations
have been considered in [AM-2], are likely resolvable similarly to the case presented
herein. In particular, the decay of the matter quantities is expected to be stronger than in
the present case. In this sense the 3 + 1-dimensional case is more difficult.

1.5. Overview on the paper. The remainder of the paper is concerned with the proof of
Theorem 1. To simplify the presentation we derive all estimates - hyperbolic and elliptic
ones - under smallness assumptions on the solution. These smallness assumptions are
compatible with the decay properties of the system and this consistency is then shown in
the course of a bootstrap argument. In Sect. 2 we discuss the eigenvalue estimate for the
Einstein operator for 3-dimensional negative Einstein metrics, recall the rescaling for
the Einstein equations and introduce the rescaling for the matter variables. All relevant
equations are collected in Sect. 2 and referred to in the course of the following sections.
In Sect. 3 we introduce all relevant norms for the geometric quantities and for the
distribution function. In view of these, we introduce the notion of smallness which is a
prerequisite for establishing all estimates to follow in their respective concise versions. In
the global existence argument this notion of smallness is realized in terms of a suitable
bootstrap assumption (cf. (10.3)). In Sects. 4 and 5 we prove the L2-energy estimate
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and the evolutionary inequality for the bound on the momentum support, respectively.
In Sect. 6 we derive the direct energy estimate for the standard Sobolev norm of the
energy density ρ of the distribution function. In Sect. 7 we prove elliptic estimates for
lapse and shift and their time derivatives. Section 8 contains the energy estimate for
the perturbation of the metric and the tracefree part of the second fundamental form.
In Sect. 9 we use the elliptic estimates to reduce all evolutionary estimates to a system
of estimates solely containing metric, second fundamental form and matter quantities.
Basing on these estimates Sect. 10 presents the proof on Theorem 1, which also contains
a number of technical remarks on local existence and existence of initial data in the
appropriate sense. The appendix contains a collection of formulae used throughout the
paper.

2. Preliminaries

We fix for the remainder of the paper a 3-dimensional Einstein manifold (M, γ ) with

Ric[γ ] = −2

9
γ. (2.1)

2.1. 3-Dimensional negative Einstein metrics. Necessarily, γ is of constant scalar cur-
vature

R[γ ] = −2

3
. (2.2)

We consider the Einstein operator associated with γ ,

�E ≡ ∇∗∇ − 2
◦
R, (2.3)

where
◦
Rhi j = Rik jlhkl for symmetric 2-tensors h and ∇∗ denotes the formal adjoint of

the covariant derivative ∇ (cf. Chapter12D of [B] for more details). The lowest positive
eigenvalue of�E plays a crucial role for the construction of suitably decaying energies in
the stability problem for the vacuum Einstein flow as demonstrated in [AM-2]. A similar
consideration will be relevant for the nonvacuum problem considered below. We denote
the lowest positive eigenvalue of�E by λ0. The following is an immediate consequence
of Kröncke’s lower bound on eigenvalues of the Einstein operator (cf. [Kr15]).

Proposition 2. Let (M, γ ) be a hyperbolic Einstein 3-manifold with Einstein constant
μ = −2/9. Then

λ0 ≥ 1

9
. (2.4)

Proof. From Proposition 3.2 [Kr15] we deduce that the smallest eigenvalue of �E
∣∣
T T ,

�E restricted to TT-tensors on (M, γ ), which we denote by λ0,T T , obeys

λ0,T T ≥ 1

9
. (2.5)

This holds, as γ is necessarily of constant scalar curvature and therefore has vanishing
Weyl tensor.
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We show that this can be upgraded to (2.4) as follows. We observe that if an eigenvalue
λ of �E obeys (2μ + λ) < 0 or with the present choice λ < 4

9 , then its corresponding
eigentensor hλ is TT. This follows as in the proof of Lemma 2.7 in [AM-2]. In particular,
the lowest eigenvalue λ0 either fulfills λ0 ≥ 4/9 or is in the spectrum of �E

∣∣
T T and in

turn fulfills λ0 ≥ 1/9. ��
A relevant corollary of the above reads

Corollary 3. Let (M, g) be a 3-dimensional Einstein manifold with Einstein constant
μ = −2/9, then

ker�E = {0}. (2.6)

This condition assures that the energy to control the perturbation of the geometry defined
below is coercive and allows to avoid introducing a shadow-gauge analog to [AM-2].

2.2. Variables and setup. We use standard index conventions. Roman letters denote
spatial indices {1, 2, 3} andgreek letters denote spacetime indices {0, 1, 2, 3}. In addition,
we use bold roman letters to denote indices on the tangent bundle of T M . This notation
is introduced in Sect. 4.

2.2.1. Standard variables and gauge We consider the 3 + 1-dimensional spacetime in
the standard form (M, g) = (R× M,−Ñ 2dt ⊗ dt + g̃ab(dxa + X̃adt)⊗ (dxb + X̃bdt)),
where Ñ , g̃ and X̃ denote the lapse function, the induced Riemannian metric on M and
the shift vector field.2 For the derivation of the Einstein equations in ADM formalism
we refer to [Re].We denote by τ the trace of the second fundamental form k̃ with respect
to g and decompose k̃ = �̃ + τ

3 g̃. We then impose the CMCSH gauge via

t = τ

g̃i j (�̃a
i j − �̂a

i j ) = 0,
(2.7)

where �̃ and �̂ denote the Christoffel symbols of g̃ and γ , respectively.

2.2.2. Rescaled variables and Einstein’s equations We rescale the geometry with re-
spect to the mean curvature function τ analogous to the vacuum case [AM-2]. This
leaves explicit time-factors as coefficients of the matter variables. We rescale those by
rescaling the p̃-variables (cf. Sect. 2.3). The variables with respect to mean curvature
time t = τ are denoted by (g̃, �̃, Ñ , X̃), while the rescaled variables are (g, �, N , X).
We rescale according to

gi j = τ 2 g̃i j N = τ 2 Ñ
gi j = τ−2 g̃i j �i j = τ�̃i j

pa = τ−2 p̃a Xi = τ X̃ i
(2.8)

so the spacetime metric takes the form

g = −τ−4N 2dτ 2 + τ−2gi j (dxi + τ−1Xi dτ) ⊗ (dx j + τ−1X j dτ). (2.9)

2 Note that the coordinate t here does not coincide with the same symbol in the explicit Milne model (1.2).
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Then we introduce the logarithmic time T = − ln(τ/τ0), (↔ τ = τ0 exp(−T )) with

∂T = −τ∂τ , (2.10)

and dτ = −τdT , which implies

g = −τ−2N 2dT 2 + τ−2gi j (dxi − Xi dT ) ⊗ (dx j − X j dT ). (2.11)

Note that the Milne solution reads in these coordinates, with the choice τ0 = −3,

gMilne = e2T (−dT 2 +
1

9
γ ). (2.12)

We use the notation Ẋ = ∂T X , Ṅ = ∂T N for convenience throughout the manuscript.
Also, we denote N̂ = N

3 − 1 and X̂ = X/N . After these modifications the Einstein
equations in CMCSH gauge with respect to the rescaled variables take the following
form.

R(g) − |�|2g + 2
3 = 4τ · ρ (2.13)

∇a�ab = τ 2jb (2.14)(
� − 1

3

)
N = N

(
|�|2g + τ · η︸︷︷︸

(�)

)
− 1 (2.15)

�Xi + Ri
m Xm = 2∇ j N� j i − ∇ i ( N

3 − 1
)

︸ ︷︷ ︸
(�)

+2Nτ 2j i

−(2N�mn − ∇m Xn)(�i
mn − �̂i

mn) (2.16)

∂T gab = 2N�ab︸ ︷︷ ︸
(��)

+2
( N
3 − 1

)
gab − LX gab (2.17)

∂T �ab = −2�ab − N
(
Rab + 2

9gab
)

︸ ︷︷ ︸
(��)

+∇a∇b N + 2N�ai�
i
b

− 1
3

( N
3 − 1

)
gab − ( N

3 − 1
)
�ab

−LX�ab + Nτ · Sab︸ ︷︷ ︸
(�)

(2.18)

∇, Rab and R(g) denote the covariant derivative, the Ricci tensor and the Ricci scalar
w.r.t. g. � is the Laplacian of g. For later purposes we denote the Riemann tensor of g
by Riem. We denote by LX the Lie-derivative with respect to X . Moreover, we recall
the decomposition of the curvature term in the spatial harmonic gauge (cf. [AM-2]),

Rab +
2

9
gab = 1

2
Lg,γ (g − γ )ab + Jab, (2.19)

where

‖J‖Hs−1 ≤ C‖g − γ ‖Hs (2.20)
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and

Lg,γ = −�g,γ − 2
◦
Rγ , (2.21)

where �g,γ = μ−1
g ∇[γ ]m(gmnμg∇[γ ]n ·) and

◦
Rγ has been defined below (2.3).

The rescaled matter quantities are connected to the unrescaled versions via

ρ := 4πρ̃ · τ−3

η := 4π(ρ̃ + g̃abT̃ab) · τ−3

η := 4π g̃abT̃ab · τ−5

jb := 8π |τ |−5 j̃ b

Sab := 8πτ−1
[
T̃ab − 1

2 g̃abT̃
]
.

(2.22)

We recall that ρ̃ = Ñ 2T̃ 00 is the energy density and j̃a = −Ñ T̃ 0a is the matter current.
We also denote T ab = T ab = |τ |−7T̃ ab for later purposes. An important identity, which
follows immediately from the definitions above is

η = ρ + τ 2η. (2.23)

The decomposition is crucial since the second term on the right-hand side in (2.23)
decays fast while the first term is handled differently using the continuity equation as
explained in the introduction.

Remark 4. The right-hand sides of the elliptic system for lapse and shift as well as those
for the evolution equations decouple into principal terms (with regards to their decay
properties) and terms which can be considered as perturbative and which turn out to
decay faster than the leading order terms. To give some orientation about which terms
are considered to be principal terms, we have marked those terms by the symbol (�) or
(��). The latter case refers to those terms, which are relevant to establish the decay for
the energy measuring the perturbation of the geometry. Terms denoted by (�) are for
different reasons principal. In the lapse equation, the ρ-term within the η-term has the
slowest decay, while in the shift equation, precisely this slow decay is inherited from
the lapse equation through the (�) term therein. The final principal term to consider is
the one in the equation for �, where due to regularity conditions we cannot estimate the
ρ-term in S by the ρ-energy but we have to use the L2-Sobolev energy of the distribution
function to estimate this term. This results in a small loss of decay, which is the reason
why this term is of worst decay in the respective equation.

2.3. Vlasov matter. We introduce the structures relevant to Vlasov matter and then
rescale the energy-momentum tensor and transport equation according to the previous
section.

2.3.1. The mass-shell relation We consider particles of positive mass m = 1 modeled
by distribution functions with domain being the mass-shell
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P =
{
(x,p) ∈ T M

∣∣|p|2g = −1, p0 < 0
}
, (2.24)

where p = p̃α∂α . In particular, p̃α are canonical coordinates on the tangent bundle. We
use the .̃–notation, since below we introduce rescaled variables. A distribution function
f : P → [0,∞) has the associated energy-momentum tensor

T̃ αβ [ f ](x) =
∫
Px

f p̃α p̃βμPx , (2.25)

whereμPx is the volume form corresponding to the induced metric onPx . We consider
the projection of the distribution function under π : (t, x, p0, p) → (t, x, p), which is
f = f ◦ (π

∣∣
P )−1, and which we refer to as distribution function in the following. We

rescale the momentum variables according to

τ 2 pa = p̃a, ∂ p̃a = τ−2∂pa . (2.26)

Then we express the unrescaled mass-shell relation in (2.24) in coordinates (cf. for
instance Section iv in [SZ], equation (37)), which reads

p̃0 = (Ñ 2 − |X̃ |2g̃)−1
(

X̃ j p̃ j +
√

(X̃ j p̃ j )2 + (Ñ 2 − |X̃ |g̃)(1 + | p̃|2g̃)
)

, (2.27)

and replace all variables by their rescaled counterparts. This yields an expression for
p0 := τ−2 p̃0 as a function of the pa variables and the metric components in the form

p0 = N−1(1 − |X̂ |2g)−1
[
τ X̂ j p j +

√
τ 2(X̂ j p j )2 + (1 − |X̂ |2g)(1 + τ 2|p|2g)

]
.(2.28)

An alternative expression is given by

p0 = 1

N

1

p̂ − τ 〈X̂ , p〉g
(1 + τ 2|p|2g), (2.29)

where

p̂ =
√

τ 2(X̂ j p j )2 + (1 − |X̂ |2g)(1 + τ 2|p|2g) (2.30)

is just defined for convenience and does not necessarily have a specific geometric mean-
ing. In addition, p̃0 = g0ν p̃ν = −Ñ p̂. We derive some useful estimates for p0 using
elementary manipulations. We furthermore use the simplifying notation

p = N p0. (2.31)

Remark 5. Note, that the rescaledmass-shell relation (2.28) reduces to p0 =
√
1 + τ 2|p|2g ,

when X = 0, N = 1, which corresponds to the background solution. In particular, the
constant term under the squareroot, which originates from the mass term, scales like a
constant, while the second term decays fast in expanding direction (τ ↗ 0).

The following lemma contains two useful pointwise estimates on the momentum
variable p0.

Lemma 6.
|p|g
p0

≤ C(|X |g|τ |−1 + N |p|g) (2.32)

p0 ≤ 1

N

1

1 − |X̂ |2g

[
2|τ ||X̂ |g|p|g +

√
1 − |X̂ |2g

√
1 + τ 2|p|2g

]
. (2.33)
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2.3.2. The transport equation We introduce the transport equation and its rescaling. The
transport equation

p̃α∂α f − �̃a
μν p̃μ p̃ν∂ p̃a f = 0 (2.34)

is rescaled via (2.26). To express the transport equation only in terms of the rescaled
variables, we require the rescaled Christoffel symbols �. The non-rescaled Christoffel
symbols read (cf. [Re])

(4)�̃a
bc = �̃a

bc(g) + Ñ−1k̃bc X̃a, (2.35)
(4)�̃a

00 = ∂t X̃ a + X̃b∇b X̃a − 2Ñ k̃a
c X̃ c + Ñ ∇̃a Ñ

− Ñ−1(∂t Ñ + X̃b∂b Ñ − k̃bc X̃b X̃ c)X̃a, (2.36)
(4)�̃a

0b = −Ñ k̃a
b + ∇b X̃a − Ñ−1 X̃a∇b Ñ + Ñ−1k̃bc X̃ c X̃a, (2.37)

where ∇̃a = g̃ai∇i . In terms of the rescaled variables the Christoffel symbols are of the
form

(4)�̃a
bc = �a

bc(g) + N−1
(

�bc +
1

3
gbc

)
Xa,

(4)�̃a
00 = τ−2�a,

(4)�̃a
0c = τ−1 (−δa

c + �a
c

)
,

(2.38)

where we denote

�a = −∂T Xa − Xa − 2
3 (N − 3)Xa + Xb∇b Xa − 2N�a

c Xc + N∇a N

+
(

N−1∂T N − N−1Xb∂b N + N−1 (�bc + 1
3gbc

)
Xb Xc

)
Xa,

�a
b = −N�a

b + δa
b (1 − N

3 ) + ∇b Xa − N−1Xa∇b N + N−1 (�bc + 1
3gbc

)
Xc Xa .

(2.39)

We refer to the latter terms also by the symbols�∗ and�∗∗ , respectively, when the indices
are suppressed. The fully rescaled transport equation then reads

∂T f = τ N pa/pAa f − p

N
τ−1�a︸ ︷︷ ︸

(�)

Ba f + 2piBi f︸ ︷︷ ︸
(��)

−2�e
u puBe f

− τ

(
�ab +

1

3
gab

)
Xe pa pb

p
Be f,

(2.40)

where we denote

Aa = ∂a − pi�k
aiBk,

Ba = ∂pa ,
(2.41)

which correspond to the natural horizontal and vertical derivatives on T M . The two
marked terms are leading order in the sense that term (�), among the small terms, has
the slowest decay as �a contains in particular ∇N , which in combination with τ−1

is of the order of ε. Term (��) is the dilution term, driving the downscaling of the
momentum support in expanding direction of spacetime and thereby the dilution of the
matter variables.
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2.4. Energy momentum tensor. The rescaled matter quantities as appearing in the Ein-
stein equations take the following form in terms of the distribution function f .

ρ( f ) = 4π N 2
∫

f
(p0)2

p̂

√
gdp (2.42)

ja( f ) = 8π N
∫

f
pa p0

p̂

√
gdp (2.43)

η( f ) = 4π
∫

f
|p + τ−1 p0X |2g

p̂

√
gdp (2.44)

T ab( f ) =
∫

f
pa pb

p̂

√
gdp (2.45)

Sab( f ) = 8π |τ |2
∫

f
(pi gia + |τ |−1 p0Xa)(p j g ja + |τ |−1 p0Xb)

p̂

√
gdp

+gabρ( f ) − gab|τ |2η( f ). (2.46)

Remark 7. Recall the definition of the rescaled energy-momentum tensor (2.22) for the
identities above. Note, that the expressions for the energy-momentum variables are a
consequence of their definition (2.22) and the rescalings (2.8) and (2.26).

2.5. Preview on the decay rates. For the study of the estimates to follow it is important
to have an idea about smallness and decay of the rescaled quantities. The quantities

N − 3, �, g − γ and X (2.47)

are small and decay with the rates

‖�‖2H5 + ‖g − γ ‖2H6 � ε exp
(−(2 − εdecay)T

)
‖N − 3‖H6 + ‖X‖H6 � ε exp(−T ).

(2.48)

For the matter terms we have

‖ρ‖H4 � ε,

‖ρ‖H5 + ‖j‖H5 + ‖η‖H5 + ‖T ‖H5 + ‖S‖H5 � ε exp (CεT ) .
(2.49)

These decay rates are shown to be valid for sufficiently small initial data, where ε is
the smallness of the initial perturbation and εdecay > 0 can be chosen arbitrarily small.

3. Norms and Smallness

We introduce all relevant norms for measuring the perturbation of the geometry and
the distribution function. Some norms are defined with respect to the fixed Einstein
metric γ and others are defined with respect to the rescaled dynamical norm g. As we
impose a uniform smallness assumption all these norms are equivalent. We assume for
the remainder of the paper that T0 > 1.
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3.1. Constants. We use the symbol C to denote any positive constant, which is uniform
in the sense that it does not depend on the solution of the system once a smallness
parameter ε for the initial data and an initial time T0 are chosen. Furthermore, if ε is
further decreased or T0 is increased, C keeps its value.

3.2. Norms: tensor fields. For functions and symmetric tensor fields on M we denote
the standard Sobolev norm with respect to the fixed metric γ of order � ≥ 0 by ‖.‖H� .
The corresponding function spaces are denoted by H � = H �(M).

3.3. Norms: distribution function. We introduce different metrics on T M and related
notation necessary for the definition of L2-Sobolev energies for the distribution function.
This construction is based on the themetric γ on M . In the following section we consider
the case when the corresponding construction is based on the rescaled metric g.

The metric γ induces the related Sasaki metric γ on T M via

γ ≡ γi j dxi ⊗ dx j + γi j Dpi ⊗ Dp j , (3.1)

where Dpi = dpi + �̂i
jk p j dxk . Recall that �̂ denotes the Christoffel symbols of γ . The

covariant derivative on the tangent bundle corresponding to γ is denoted by γ ∇. We
consider the volume form on T M ,

μγ = |γ |dx3 ∧ dp3. (3.2)

We define a weighted version of the Sasaki metric by

γ = γi j dxi ⊗ dx j + p−2
γ γi j Dpi ⊗ Dp j , (3.3)

where we denote pγ =
√
1 + |p|2γ . This metric is necessary to take the norm in the

energies to be defined below, which require a weight in the momentum-direction. We
define the L2-Sobolev energy of the distribution function with respect to Sasaki metric
corresponding to the fixed metric γ by

||| f |||�,μ ≡
√√√√∑

k≤�

∫
T M

p2μ+4(�−k)
γ |γ ∇k f |2γ μγ . (3.4)

The corresponding function spaces are denoted by HVl,�,μ(T M). Pointwise estimates
are taken with respect to the following L∞

x L2
p-norm,

||| f |||∞,�,μ ≡ sup
x∈M

{√∫
Tx M

p2μ+4(�−k)
γ |γ ∇k f |2γ

√
γ dp

}
, (3.5)

which obeys the following lemma.

Lemma 8. For f sufficiently regular

||| f |||∞,�,μ ≤ C ||| f |||�+2,μ (3.6)

holds.
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3.4. Smallness. We define a set of smallness conditions for the dynamical quantities.
These are designed to include weights in terms of the time-function to incorporate some
decay properties indirectly. These are chosen in away that in the proof of global existence
the smallness conditions serves as a part of the bootstrap assumptions and leaves room
to be improved for sufficiently small data and sufficiently large times. We define

B6,5,5
δ,τ (γ, 0, 0)

≡
{
(g, �, f ) ∈ H6 × H5 × HVl,5,4

∣∣∣
√|τ |−1

(‖g − γ ‖H6 + ‖�‖H5) + ‖ρ( f )‖H4 +
√|τ |||| f |||5,4 < δ

}
.

(3.7)

We say a triple (g(τ ),�(τ), f (τ )) is δ-small when (g, �, f ) ∈ B6,5,5
δ,τ (γ, 0, 0).

Also, we mostly suppress the dependence on (γ, 0, 0) in the notation. In addition we
use the term smallness assumptions if we refer to δ-small data.

3.5. Some immediate estimates. Smallness in the above sense implies smallness of the
perturbation for lapse function and shift vector. The following corollary uses the elliptic
estimates proven in Sect. 7.

Corollary 9. For any δ > 0 there exists a δ such that

(g, �, f ) ∈ B6,5,5
δ,τ

⇒ |τ |−1 (‖N − 3‖H6 + ‖X‖H6
)

< δ. (3.8)

Proof. This is an immediate consequence of Proposition 17. ��

4. L2: Estimates for the Distribution Function

We define the L2-Sobolev energy for the distribution function in terms of the Sasaki
metric associated with g. Under the present smallness assumptions this energy is equiv-
alent to the norm ||| f |||�,μ. We define the corresponding metrics on T M with respect to
g as follows. The metric g induces the related Sasaki metric g on T M via

g ≡ gi j dxi ⊗ dx j + gi j Dpi ⊗ Dp j , (4.1)

where Dpi = dpi + �i
jk p j dxk . The covariant derivative corresponding to g is denoted

by ∇. We consider the volume form on T M ,

μg = |g|dx3 ∧ dp3. (4.2)

We define a weighted version of the Sasaki metric by

g = gi j dxi ⊗ dx j + p−2gi j Dpi ⊗ Dp j , (4.3)

where we denote p =
√
1 + |p|2g . For explicit computations including the Sasaki metric

on the tangent bundle we use indices a, b, . . . ∈ {1, . . . , 6}, where 1, 2, 3 correspond to
horizontal directions and 4, 5, 6 to vertical directions.We introduce the frame {θa}a≤6 =
{A1,A2,A3,B1,B2,B3} and we denote the connection coefficients of the Sasaki metric
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in this frame by � (cf. (10.22)). We define the L2-Sobolev energy of the distribution
function by

E�,μ( f ) ≡
√√√√∑

k≤�

∫
T M

p2μ+4(�−k)|∇k f |2gμg. (4.4)

Remark 10. The choice for the weights, to increase with decreasing level of regularity,
is necessary to absorb terms with high weights, which result from the connection co-
efficients of the Sasaki metric, where momentum weights appear in conjunction with
horizontal derivatives. This is discussed in more detail below.

Lemma 11. For δ-small data with δ sufficiently small the energies E5,4( f ) and ||| f |||5,4
are equivalent.

The main energy estimate for the distribution function is given in the following.

Proposition 12. For δ > 0 sufficiently small, (g, �, f ) ∈ B6,5,5
τ,δ and f a solution to

the transport equation (2.40) the following estimate holds for 3 ≤ � ≤ 5, � ∈ Z.

∂TE
2
�,μ( f ) ≤ C

[
‖N − 3‖H� + ‖�‖H� + ‖X‖H�+1 + |τ−1|‖N−1�∗‖H�

+ ‖�∗∗‖H� + ‖(� + g)X‖H� + |τ |G
]

· E 2
�,μ( f ),

(4.5)

where G is defined in (5.5).

Proof. The derivation of the energy estimate is a straightforward and technical com-
putation. It follows the lines of the analogous computations in ([F-1], section 5). We
discuss some exemplary steps, which are more general herein.

We take the time derivative of the square of the energy,which yields four leading order
terms. The first term results from the time-derivatives hitting the distribution function
and reads

2
∫

T M
p2μ+4(�−k)ga1b1 · . . . · ga�b�∇a1 . . . ∇a�

f · ∂T ∇b1 . . . ∇b�
f μg. (4.6)

The second leading order term arises from the time-derivative of the volume form,which,
when the derivative acts on the time-function in the rescaled momentum variables and
reads

6 · E 2
μ,�( f ), (4.7)

since μg = |g|τ−6d3 p̃d3x , where p̃ is time-independent. The third leading order term
occurs when the time derivative hits the time function in the momentum-weight factor
and yields

2(2μ + 4(� − k))

∫
T M

p2μ+4(�−k)−2|p|2g|∇k f |2gμg. (4.8)

The fourth leading order term results from the time-derivative hitting the momentum
variable in the inverse gaibi , when ai ,bi ≥ 4 and reads

∫
T M

4|p|2g
1 + |p|2g

p2μ+4(�−k)|∇k f |2gμg (4.9)
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for each pair with ai ,bi ≥ 4. The non-explicitly listed terms arise when the time-
derivative hits the rescaled metric g, which yields terms of the first three types listed in
(4.5). We evaluate term (4.6) in the following.

∂T ∇a1 . . . ∇ak f = ∂T

⎛
⎝θa1∇a2 . . . ∇ak f −

∑
2≤i≤k

�̂e
aia1∇a2 . . . ∇e . . . ∇ak f

⎞
⎠

= [∂T , θa1 ]∇a2 . . . ∇ak f −
∑

2≤i≤k

(∂T �̂e
aia1)∇a2 . . . ∇e . . . ∇ak f

+ ∇a1∂T ∇a2 . . . ∇ak f

= [∂T , θa1 ]∇a2 . . . ∇ak f︸ ︷︷ ︸
(1)

−
∑

2≤i≤k

(∂T �̂e
aia1)∇a2 . . . ∇e . . . ∇ak f

︸ ︷︷ ︸
(2)

+
∑

j≤k−2

∇a1 . . . ∇a j

(
[∂T , θa j+1]∇a j+2 . . . ∇ak f︸ ︷︷ ︸

(3)

−
∑

j+2≤i≤k

(∂T �̂e
aia j+1

)∇a j+2 . . . ∇e . . . ∇ak f

︸ ︷︷ ︸
(4)

)

+ ∇a1 . . . ∇ak−1[∂T , θak ] f︸ ︷︷ ︸
(5)

+∇a1∇a2 . . . ∇ak ∂T f︸ ︷︷ ︸
(6)

.

(4.10)

We first analyze the terms containing commutators of ∂T with θai . Since θai is not
affected from the rescaling when ai ≤ 3 (all time-factors cancel) the commutator can
be estimated by terms arising from ∂T �(g), which yields terms of the form ∇�, ∇2X
and ∇(N − 3). When ai ≥ 4, i.e. θai = Bai −3 we have [∂T , θai ] = −2θai . This implies
that in the case of ai ≤ 3, term (1) can be estimated by terms included in the first three
terms on the right-hand side of (4.5). In the complementary case this results in a term
of the form

− 2θa1∇a2 . . . ∇ak f, (4.11)

which requires to be canceled for the estimate to hold, as we see below. The terms (3)
and (5) again give rise to terms of the form of the three first terms on the right-hand side
of (4.5) if a j+1 ≤ 3 and ak ≤ 3. In the complementary case, terms of the form

− 2
∑

j≤k−2

∇a1 . . . ∇a j θa j+1∇a j+2 . . . ∇ak f and − 2∇a1 . . . ∇ak−1θak f (4.12)

occur, which are canceled by terms arising below. Regarding terms (2) and (4), from
(10.22) we observe that these terms yield time derivatives of � or of the Riemann tensor
Riem, which in combination again yields terms of the form of the first three terms
on the right-hand side of (4.5) and terms that arise when the time derivative hits the
rescaled momentum variable in the respective cases in (10.22). From these we again
obtain leading order terms, which are of the form

− 2�̂e
aia1∇a2 . . . ∇e . . . ∇ak f (4.13)
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when e ≤ 3 and 4 < ai + a1 ≤ 10 or when e ≥ 4 and ai , a1 ≤ 3; and

− 2∇a1 . . . ∇a j �̂
e
aia j+1

∇a j+2 . . . ∇e . . . ∇ak f, (4.14)

when e ≤ 3 and 4 < ai + a j+1 ≤ 10 or when e ≥ 4 and ai , a j+1 ≤ 3. Both types of
terms are cancelled by terms arising below.

It remains to consider term (6), where ∂T f is replaced by the transport equation
yielding the following term.

∇a1∇a2 . . . ∇ak

(
τ N pa/pAa f − p

N
τ−1�aBa f + 2piBi f︸ ︷︷ ︸

(�)

− 2�e
u puBe f − τ

(
�ab +

1

3
gab

)
Xe pa pb

p
Be f

)
.

(4.15)

We begin with the most important term to evaluate, which is here marked by (�). This
term is relevant for the cancellation of all non-perturbative terms above. Before we start
the computation we derive a few simple commutators. The following identities hold.

[B j , piBi ] f = B j f

[A j , piBi ] f = 0

[�c
ab, piBi ] f =

{
−�c

ab if c ≥ 4; a,b ≤ 3 or c ≤ 3; 4 ≤ a + b ≤ 9
0 else

.

(4.16)

We evaluate now the term from above.

2∇a1∇a2 . . . ∇ak piBi f = 2∇a1∇a2 . . . ∇ak−1 piBi∇ak f − 2∇a1∇a2

. . . ∇ak−1 [piBi ,∇ak ] f.
(4.17)

According to the commutators above, the second term in the previous line vanishes if
ak ≤ 3 or cancels the second term in (4.12). We proceed with the first term.

2∇a1∇a2 . . . ∇ak−1 piBi∇ak f

= 2∇a1∇a2 . . .
(
θak−1 piBi∇ak f − �e

akak−1
piBi∇e f

)

= 2∇a1∇a2 . . .
(

piBi∇ak−1∇ak f − [piBi , θak−1 ]∇ak f

+ [piBi ,�
e
akak−1

]∇e f
)
.

(4.18)

According to the previous step, the second term cancels the corresponding term from
(4.12) and the third term on the right-hand side cancels the corresponding term from
(4.14).

Continuing with the first term on the right-hand side of the previous equation and
further commuting piBi to the left, we obtain terms cancelling all terms in (4.12) and
(4.14). Then we are left with the term
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2
∫

T M
p2μ+4(�−k)ga1b1 · . . . · ga�b�∇b1 . . . ∇bk f · 2piBi∇a1∇a2 . . . ∇ak−1∇ak f μg

= 2
∫

T M
p2μ+4(�−k)ga1b1 · . . . · ga�b� piBi

(
∇b1 . . . ∇bk f · ∇a1 . . . ∇ak f

)
μg.

(4.19)

Integration by parts yields three types of terms. The first term arises when Bi acts on
pi and cancels (4.7). The second term results from Bi acting on p and cancels (4.8).
Finally, the term arising from Bi acting on gaibi when ai ,bi ≥ 4 cancels (4.9).

It remains to consider the remaining terms in (4.15). When estimating the term
corresponding to the first term in (4.15) we use the estimate

|p|g
p

≤ G . (4.20)

The corresponding term in the estimate (4.5) is |τ |G . Note that compact support is
necessary for this. Otherwise we would obtain an additional factor |τ |−1, which would
leave no decay for this term. To outline the estimates in more detail we consider one
particular term from (4.15) and claim the other terms can be handled in a similar way.

We sketch

∇a1∇a2 . . . ∇ak

(
pu�e

uBe f
)

=
⎛
⎝θa1∇a2 . . . ∇ak −

∑
2≤ j≤k

�e
a ja1∇a2 . . . ∇e . . . ∇ak

⎞
⎠(pu�e

uBe f
)

= θa1 . . . θak (pu�e
uBe f ) + . . .

. . . + (−1)k−1�e1
aka1�

e2
e1a2 . . . �

ek−1
ek−2ak−1θek−1(pu�e

uBe f ),

(4.21)

where we suppress all mixed terms. Commuting the operator pu�e
uBe to the front we

obtain a term of the form

pu�e
uBe

(∇a1∇a2 . . . ∇ak f
)
. (4.22)

The corresponding integral, after an integration by parts, yields the term ‖�∗∗‖H� in (4.5).
The remaining terms, after commuting pu�e

uBe to the front, are schematically of the
form

pu(∇k1�e
u)
(

pi∇k2Riem
)k3 ∇k4 f, (4.23)

where
∑

ki = k. Note that the momentum variables in front of the Riemann tensor,
which arises as part of the � terms, can increase while appearing as coefficients of ∇i
with i ≤ 3. In this case, the weights in the energy, appearing for lower numbers of
derivatives, allow for these terms to be estimated by the energy. All the remaining terms
arising from (4.15) can be estimated similarly. ��
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4.1. Estimating the energy momentum tensor.

Lemma 13. Under smallness assumptions and � ≥ 4 the following estimates hold.

‖ρ( f )‖H� + ‖j ( f )‖H� ≤ C · E�,3( f )

‖η( f )‖H� + ‖T ( f )‖H� ≤ C · E�,4( f )

‖S( f )‖H� ≤ C
(
��( f ) + |τ |2E�,4( f )

)
.

(4.24)

Proof. Webegin by estimating an integral of the form
∫

T M F ·G(|p|g)μT M for functions
G, F on T M to explain the number of momentum weights. Let μ ≥ 2, then∫

T M
F · GμT M =

∫∫
F · G

√
gdp

√
gdx

≤
∫ (∫

F2G2 p2μ
√

gdp

)1/2

·
(∫

p−2μ√
gdp

)1/2 √
gdx

≤
(∫∫

F2G2 p2μ
√

gdp
√

gdx

)1/2

·

⎛
⎜⎜⎜⎝
∫∫

p−2μ√
gdp

√
gdx

︸ ︷︷ ︸
≤C=C(volg(M),μ)

⎞
⎟⎟⎟⎠

1/2

.

(4.25)

Depending on the additional momentum factors in G, which are of order one for ρ and
j and two for the other quantities, this explains the order of weights, necessary in the
energies. In the above computation F represents the term where derivatives have acted
on the distribution function and other quantities in the matter variables. We discuss how
to estimate these terms in the following.

Covariant derivatives of matter quantities correspond to horizontal derivatives under
the momentum-integral by the following identity,

∇a

∫
f
√

gdp =
∫

∂a f
√

gdp + f ∂a
√

gdp

=
∫

(∂a f + �i
ia f )

√
gdp

=
∫

(∂a f − pi�e
iaBe f )

√
gdp =

∫
Aa f

√
gdp.

(4.26)

Similar identities hold, for f replaced by f p0 etc. and for higher derivatives. For higher
derivatives,we obtain not the full covariant derivative of the Sasakimetric. The additional
terms arising from the Riemann tensor in (10.22) can however be added and substracted
where the additional terms are lower order and due to the smallness condition, can
be absorbed into the constants. Finally, if the horizontal derivative hits the momentum
variables such as p or p0 we use the formulae

Aa(X̂i pi ) = pi∇a X̂i

Aa( p̂) = 1

p̂

(
τ 2 X̂ j p j pi∇a X̂i − 1

2
∂a(|X̂ |2g)(1 + τ 2|p|2g)

)
(4.27)

and estimate the arising shift vector terms using the smallness condition by the constants.
��
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5. Control of the Momentum Support

Using the characteristic system associated with the rescaled transport equation we derive
an estimate on the supremum of the outer radius of the support of the distribution in
momentum space.

The characteristic system corresponding to the rescaled transport equation (2.40)
reads

dxa

dT
= −τ

pa

p0

dpa

dT
= τ−1�a p0 − 2pa + 2�a

i pi ,

+ τ

(
1

N
(�i j +

1

3
gi j )Xa + �a

i j

)
pi p j

p0
,

(5.1)

with (x, p) denoting the trajectory in phase space. We define the auxiliary quantity

G(T, x, p) ≡ |p|2g. (5.2)

Using the characteristic system we compute the derivative of G along a given charac-
teristic. This yields

dG
dT

= |p|2ġ + 2τ−1〈�∗, p〉g p0 + 4pi�
i
j p j

+
2τ

N

(
�i j

pi p j

p0
〈X, p〉g +

1

3

|p|2g
p0

〈X, p〉g

)
,

(5.3)

where it is important to recall that the rescaled momentum variables are time-dependent.
Invoking the corresponding estimates for p0 and |p|g(p0)−1 in (2.32), (2.33) we deduce
the following estimate.

Lemma 14. Under smallness assumptions, the following estimate holds for any char-
acteristic. ∣∣∣dG

dT

∣∣∣ ≤ C
(|ġ|g + |�∗|g + |�∗∗|g + |�|g|X |g + |X |g

)
G

+ C |τ |−1|�∗|g
√
G

(5.4)

We define the supremum of the values of G in the support of f at a fixed time T by

G [T ] ≡ sup{√G(T, x, p) | (x, p) ∈ supp f (T, . , .)}. (5.5)

From the estimate for individual characteristics above, we derive an estimate for G ,
which serves as a bound for momenta in the support of the distribution function.

Proposition 15. Under smallness assumptions we obtain

G
∣∣∣
T

≤
(
G
∣∣∣
T0

+ C
∫ T

T0
es‖�∗‖H2ds

)

× exp
[
C
∫ T

T0

(‖X‖H3 + ‖�‖H2 + ‖N − 3‖H3

+ ‖�∗‖H2 + ‖�∗∗‖H2
)
ds
]
.

(5.6)
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Proof. For any characteristic in the support of f we obtain an inequality of the form

d

dT

√
G ≤ C

(‖X‖H3 + ‖�‖H2 + ‖N − 3‖H3

+‖�∗‖H2 + ‖�∗∗‖H2
)√

G + C |τ |−1‖�∗‖H2 .

(5.7)

Gronwall’s lemma implies

√
G
∣∣∣
T

≤
(√

G
∣∣∣
T0

+ C
∫ T

T0
es‖�∗‖H2ds

)

× exp
[
C
∫ T

T0

(
‖X‖H3 + ‖�‖H2 + ‖N − 3‖H3

+ ‖�∗‖H2 + ‖�∗∗‖H2

)
ds
]
.

(5.8)

��

6. Energy Estimates from the Divergence Identity

The key quantity, which provides improved estimates for the energy density is the stan-
dard L2-Sobolev energy for the rescaled energy density ρ with respect to the dynamical
metric g on (M, g). This energy reads

��( f ) ≡
√√√√∑

k≤�

∫
M

|∇kρ( f )|2gμg. (6.1)

We derive the energy estimate for �� in the following. We denote

∂̂0 ≡ ∂T + LX (6.2)

as this combination of derivatives naturally appears when taking the time-derivative of
norms, which are taken w.r.t. the volume form μg (cf. below). A part of the divergence-
identity for the energy momentum tensor with 0-component reads

∂̂0ρ = (3 − N )ρ − τ N−1∇a(N 2ja) + Nτ 2(�ab +
1

3
gab)T

ab (6.3)

in its rescaled form (cf. (10.16)). Two identities relevant for the energy estimate in
rescaled form are

∂̂0gab = −2N�ab + 2(1 − N/3)gab (6.4)

and

∂T

∫
M

uμg = −
∫

M
(3 − N )uμg +

∫
M

∂̂0(u)μg (6.5)

for a function u on M (cf. [CC]). Moreover,

[̂∂0,∇i ]∇ j1 . . . ∇ jm u

= −
∑

1≤a≤m

∇ j1 . . . ∇ ja−1∇b∇ ja+1 . . . ∇ jm u

·
[
∇i (Nkb

ja ) + ∇ ja (Nkb
i ) − ∇b(Nk jai )

]
(6.6)



282 L. Andersson, D. Fajman

for a function u. This identity arises from the corresponding unrescaled one by multi-
plication with −τ .

Next, we derive the standard energy estimate for this energy.

Proposition 16. Let � ≥ 4

∣∣∂T ��( f )
∣∣ � (‖3 − N‖∞ + ‖N�‖∞ + ‖∇(Nk)‖H�−2 + ‖3 − N‖H�

) · ��( f )

+ |τ |2‖N (�ab +
1

3
gab)T

ab‖H� + |τ |‖N−1div(N 2j)‖H� .
(6.7)

Proof. We take the time derivative of one of the summands of the square of the energy,
which takes the following form.

∂T

∫
M

|∇k(ρ)|2gμg = −
∫

M
(3 − N )|∇k(ρ)|2gμg

+ 2
∫

M
(1 − N/3)|∇k(ρ)|2gμg

− 2
∑
i≤k

∫
M

N�cd gcai gdbi ga1b1 . . . gak bk ∇a1 . . . ∇ak (ρ) · ∇b1 . . . ∇bk (ρ)μg

+ 2
∫

M
ga1b1 . . . gak bk ∇a1 . . . ∇ak (ρ) · ∂̂0

[∇b1 . . . ∇bk (ρ)
]
μg

︸ ︷︷ ︸
≡I

.

(6.8)

The first three terms on the right-hand side contribute to the first line of the estimate. We
proceed with the evaluation of the term I.

Using the commutator formula above we obtain

I =
∫

M
ga1b1 . . . gak bk ∇a1 . . . ∇ak (ρ) · ∇b1 . . . ∇bk (̂∂0(ρ))μg

︸ ︷︷ ︸
≡II

+
∫

M
ga1b1 . . . gakbk ∇a1 . . . ∇ak (ρ)

·
[ ∑

i≤k−1

∑
i+1≤ j≤k

∇b1 . . . ∇bi−1

(
∇bi+1 . . . ∇b j−1∇c∇b j+1 . . . ∇bk (ρ) · K c

b j bi

)]
μg,

(6.9)

where we use the notation

K a
bc = [∇b(Nka

c ) + ∇c(Nka
b ) − ∇a(Nkcb)

]
. (6.10)

The second term on the right-hand side can be estimated by terms of the form

C�2
�( f ) · ‖K‖H�−2 , (6.11)

which yield the third term in the estimate. We continue with estimating the final term II
using (6.3).
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|II| =
∣∣∣
∫

M
ga1b1 . . . gak bk ∇a1 . . . ∇ak (ρ)

·∇b1 . . . ∇bk

(
(3 − N )ρ − τ N−1∇a(N 2ja) + Nτ 2(�ab +

1

3
gab)T

ab
)

μg

∣∣∣
≤ ��( f )

(
‖3 − N‖H� · ��( f ) + |τ |‖N−1div(N 2j)‖H�

+|τ |2‖N (�ab +
1

3
gab)T

ab‖H�

)
. (6.12)

��

7. Elliptic Estimates

We derive in this section elliptic estimates on the lapse function, the shift vector and
their respective time derivatives.

Proposition 17. Under smallness conditions and 3 ≤ � ≤ 6, � ∈ Z, for the lapse
function, a pointwise estimate of the form 0 < N ≤ 3 holds and moreover the following
two estimates.

‖N − 3‖H� ≤ C
(
‖�‖2H�−2 + |τ |‖ρ‖H�−2 + τ 3‖η‖H�−2

)

‖X‖H� ≤ C
(
‖�‖2H�−2 +‖g − γ ‖2H�−1 +|τ |‖ρ‖H�−3 +τ 3‖η‖H�−3 +τ 2‖Nj‖H�−2

)
.

(7.1)

Proof. The pointwise estimate for the lapse follows from the lapse equation and the
maximum principle, i.e. at a maximum of N , xM , the inequality �N (xM ) ≤ 0 holds.
The two following estimates are a straightforward consequence from elliptic regularity
applied to the elliptic system for lapse and shift, by which we mean ‖φ‖k+2 ≤ C‖(� −
1/3)φ‖k with k ≥ 0 for any suitably regular function φ, where C is a positive constant.

��
Furthermore we require estimates for the time derivatives of of the lapse function

and shift vector. These are given in the following lemma.

Lemma 18. The following estimates hold under smallness conditions, for T sufficiently
large and � ≥ 4.

‖∂T N‖H� ≤ C
[
‖N̂‖H� + ‖X‖H�+1 + ‖�‖2H�−1 + ‖g − γ ‖2H� + |τ |‖S‖H�−2

+ |τ |‖ρ‖H�−1 + |τ |3‖η‖H�−2 + |τ |2‖j‖H�−1 + |τ |3‖T ‖H�−1

+ |τ |3E�−1,4( f )
]

‖∂T X‖H� ≤ C
[
‖X‖H�+1 + ‖�‖2H�−1 + ‖g − γ ‖2H� + ‖N̂‖H�

+ |τ |‖ρ‖H�−1 + |τ |3‖η‖H�−2 + |τ |2‖j‖H�−1 + |τ |3‖T ‖H�−1

+ |τ |‖S‖H�−2 + |τ |3E�−1,4( f )
]
.

(7.2)
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Proof. Both estimates follow from standard elliptic regularity estimates and the elliptic
system for (∂T N , ∂T X), which is deduced from the elliptic system for (N , X) by taking
the derivative with respect to ∂T . This system reads
(

� − 1

3

)
∂T N = 2N 〈∇∇N , �〉 − 2N̂�N + 〈∇∇N ,LX g〉

+

(
2∇k(N�i

k) + ∇ i (N̂ ) − 1

2
�Xi − 1

2
∇k∇ i Xk

)
∇i N

+ 2N
(

− 2N |�|3g + 2N̂ |�|2g − 2〈∇ X, �,�〉 − 2|�|2g
− N 〈�,

1

2
Lg,γ (g − γ ) + J 〉 + 〈�,∇∇N 〉 + 2N |�|3g − N̂ |�|2g

− 2〈�,LX g〉 + 8π |τ |〈�, S〉
)

+ N
(
∂T (|τ |ρ) + ∂T (|τ |3η)

)
+
(
|�|2g + |τ |ρ + |τ |3η

)
∂T N

(7.3)

�(∂T Xi ) + Ri
m(∂T Xm)

= −(∂T Ri
m)Xm − [∂T ,�]Xi

+ 2∇ j (∂T N )�i j + 2∇ j N (∂T �i j ) − (∂T gik)∇k N̂ − 1

3
gik∇k(∂T N )

+ 2(∂T N )|τ |2jb + 2N∂T (|τ |2jb)

− 2(∂T N )�mn(�i
mn − �̂i

mn) − 2N (∂T �mn)(�i
mn − �̂i

mn)

− 2N�mn∂T �i
mn + (∂T gmk gnl)∇k Xl(�

i
mn − �̂i

mn)

+ ∇m(∂T Xn)(�i
mn − �̂i

mn) + ∇m Xn∂T �i
mn .

(7.4)

Here we use 〈., ., .〉 to denote any suitable contraction of a number of tensor fields, where
the specific structure of indices does not matter. Due to the time derivative of η and the
terms containing ∂T N explicitly in the equation for ∂T X we do the estimates in two
steps. Note furthermore, that we do not aim at the sharpest possible estimates and allow
rather rough but brief expressions where we absorb many terms into the constants.

From elliptic regularity and equation (7.3) we obtain

‖∂T N‖H� ≤ C
[
‖N̂‖H� + ‖X‖H� + ‖�‖2H�−1 + ‖g − γ ‖2H� + τ‖S‖H�−2

+ |τ |‖ρ‖H�−2 + |τ |3‖η‖H�−2

+ |τ |‖∂T ρ‖H�−2 + |τ |3‖∂T η‖H�−2

+
(
‖�‖2H�−2 + |τ |‖ρ‖H�−2 + |τ |3‖η‖H�−2

)
‖∂T N‖H�−2

]
.

(7.5)

Using the smallness we can absorb the last line of the previous equation into the left-hand
side and obtain a formally identical estimate where the last line is not present. The term
including the time derivative of ρ is treated using the evolution equation (10.16). This
yields

|τ |‖∂T ρ‖H�−2 ≤ C |τ |
(
‖ρ‖H�−1 + |τ |‖j‖H�−1 + |τ |2‖T ‖H�−2

)
. (7.6)
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Now, we estimate the remaining term using the corresponding formula (10.23). Invoking
the smallness assumption and the fact thatwhen taking derivatives of the explicit function
of the momentum only yields terms with an additional smallness factor, then reduces
the number of relevant terms to an estimate of the following form.

|τ |3‖∂T η‖H�−2 ≤ |τ |3C
[
|τ |E�−1,μ+3( f ) + E�−2,μ+3( f )

+ ‖∂T N‖H�−2 |τ |−1 · E�−2,μ+3( f )

+ ‖∂T X‖H�−2 |τ |−1 · E�−2,μ+3( f )
]
.

(7.7)

The term in the second line can be absorbed in the constant in estimate (7.5) by the
largeness of T . Before concluding the estimate for ∂T N we require the estimate for ∂T X
to replace the corresponding terms in the previous estimate. We therefore turn to the
equation for ∂T X and apply elliptic regularity which yields the following first estimate,
where we again absorb several terms in the constant due to the smallness criterion.

‖∂T X‖H� ≤ C
[
‖X‖H�+1 + ‖∂T N‖H�−1 + ‖N̂‖H�−2 + |τ |2‖j‖H�−2 + |τ |2‖∂T j‖H�−2

+ ‖g − γ ‖H�−1‖�̇‖H�−2 + ‖�‖H�−2‖�̇‖H�−2 + ‖X‖H�−1‖g − γ ‖H�−1

+ ‖X‖H�−1‖�̇‖H�−2 + ‖∂T X‖H�−1‖g − γ ‖H�−1

]
.

(7.8)

The last term on the right-hand side can be absorbed into the constant by the smallness
assumption. The term containing the time derivative of j can be estimated using (10.16)
by

|τ |2‖∂T j‖H�−2 ≤ |τ |2C
[
‖j‖H�−1 + |τ |‖T ‖H�−1 + |τ |−1‖ρ‖H�−2‖N̂‖H�−1

]
. (7.9)

At this point the estimate for ∂T X is not complete, since there are still ∂T N terms on the
right-hand side. We return to the estimate for ∂T N and absorb the corresponding terms
in the estimate and then finish the estimate for ∂T X .

Plugging (7.8) without the last term on the right-hand side into (7.7) and the resulting
estimate into (7.5), without the last line on the right-hand side, we observe that every
∂T N term on the right-hand side comes with a |τ |3 and consequently can be absorbed
into the constant. This proves the estimate for ∂T N , which in particular is independent
of ∂T X . Then, in turn, plugging the final estimate for ∂T N into the estimate for ∂T X and
simplifying the estimates with respect to the smallness criteria finishes the proof. ��

8. Energy Estimate: Geometry

8.1. Decomposing the evolution equations. We decompose the evolution equations into
their principle parts and higher order terms, which are eventually treated as bulk terms.

The evolution equations can be rewritten to the following system.

∂T (g − γ ) = 2N� + Fg−γ

∂T 6� = −2 · 6� − 9
N

3
Lg,γ (g − γ ) + 6N |τ |S − Xi∇[γ ]i6� + F�,

(8.1)
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where∇[γ ] denotes the covariant derivative corresponding to γ and the bulk terms obey
estimates of the form

‖Fg−γ ‖Hs ≤ C
(‖N − 3‖Hs + ‖X‖Hs+1

)
‖F�‖Hs−1 ≤ C

(
‖g − γ ‖2Hs + ‖N − 3‖Hs+1 + ‖�‖2Hs−1 + ‖X‖Hs

) (8.2)

under the assumption that ‖�‖2
Hs−1 + ‖g − γ ‖2Hs < ε for ε sufficiently small. Using

the elliptic estimates for lapse and shift we obtain the following estimates for the bulk
terms.

‖Fg−γ ‖Hs ≤ C
(
‖�‖2Hs−1 + |τ |‖ρ‖Hs−2 + |τ |3‖η‖Hs−2 + ‖g − γ ‖2Hs + |τ |2‖Nj‖Hs−1

)

‖F�‖Hs−1 ≤ C
(
‖g − γ ‖2Hs + |τ |‖ρ‖Hs−1 + |τ |3‖η‖Hs−1 + ‖�‖2Hs−1 + |τ |2‖Nj‖Hs−2

)
.

(8.3)

8.2. Energy. We define the energy for the tracefree part of the second fundamental form
and the metric perturbation below. The choice is identical to the vacuum case considered
in [AM-2] and we briefly recall the relevant aspects and point out the improvements in
3+1 dimensions compared to the higher dimensional case. The definition of the energies,
which include a correction factor to obtain a suitable decay estimate, depends on the
lowest eigenvalue of the Einstein operator corresponding to the specific Einstein metric,
λ0. Due to the lower bound (2.4) we only distinguish between two cases here. We define
the correction constant α = α(λ0, δα) by

α =
{
1 λ0 > 1/9
1 − δα λ0 = 1/9,

(8.4)

where δα = √
1 − 9(λ0 − ε′) with 1 >> ε′ > 0 remains a variable to be determined

in the course of the argument to follow. By fixing ε′ once and for all, δα can be made
suitable small when necessary.

The corresponding correction constant, relevant for defining the corrected energies
is defined by

cE =
{
1 λ0 > 1/9
9(λ0 − ε′) λ0 = 1/9.

(8.5)

We are now ready to define the energy for the geometric perturbation. For m ≥ 1 let

E(m) = 1

2

∫
M

〈6�,Lm−1
g,γ 6�〉μg +

9

2

∫
M

〈(g − γ ),Lm
g,γ (g − γ )〉μg

�(m) =
∫

M
〈6�,Lm−1

g,γ (g − γ )〉μg.

(8.6)

Then, the corrected energy for the geometric perturbation is defined by

Es :=
∑

1≤m≤s

E(m) :=
∑

1≤m≤s

E(m) + cE�(m). (8.7)

Under the imposed conditions, the energy is coercive.
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Lemma 19. There exists a δ > 0 and a constant C > 0 such that for δ-small data
(g, �, f ) the inequality

‖g − γ ‖2H6 + ‖�‖2H5 ≤ C E6(g, �) (8.8)

holds.

Proof. The proof is analogous to the corresponding Lemma 7.2 in [AM-2]. The dif-
ference consists in the fact that in the 3 + 1 dimensional setting here, the kernel of the
Einstein operator consists only of the zero-tensor (cf. Corollary 3). This implies that the
projection operator necessary in Lemma 7.2 [AM-2] is not necessary in the present case.

In detail, we recall that (γ, 0) is a critical point of Em for m ≥ 0 and we therefore
consider the second derivative at (γ, 0). The Hessian of E(m) reads (cf. [AM-2]),

D2E(m)((h, k), (h, k)) =
∫

M
〈k,Lm−1

γ,γ k〉μγ + 9
∫

M
〈h,Lm

γ,γ h〉μγ

+2cE

∫
M

〈k,Lm−1
γ,γ h〉μγ , (8.9)

which, by considering the spectral decomposition of Lγ,γ , implies that D2E(m)((h, k),

(h, k)) ≥ 0 with equality if and only if (h, k) = (hker, 0), where hker ∈ kerLγ,γ .
But in contrast to the general case considered in [AM-2], in the present case of three
spatial dimension, we have by Corollary 3 kerLγ,γ = {0} as Lγ,γ reduces to the
Einstein operator �E of the background geometry (M, γ ). In particular, it follows that
‖h‖2Hs + ‖k‖2

Hs−1 ≤ C D2E(m)((h, k), (h, k)) and the Lemma follows by an application
of Taylor’s theorem. ��

The energy estimate for the corrected energy is given in the following.

Lemma 20. Under a smallness assumption on Es we have

∂T Es ≤ −2αEs + 6E1/2
s |τ |‖N S‖Hs−1

+ C E3/2
s + C E1/2

s

(
|τ |‖ρ‖Hs−1 + |τ |3‖η‖Hs−1 + |τ |2‖Nj‖Hs−2

)
.
(8.10)

Proof. We recall briefly the main mechanism of the proof from Lemma 7.6 in [AM-2],
which is explained by means of the first order corrected energy, E1. All terms of this en-
ergy are differentiated with respect to the time T . Then the time derivatives is commuted
inside the integral and when acting on � replaced by the second equation of (8.1). This
straightforward computation yields the following two identities,

∂T E(1) = −2
∫

M
〈6�, 6�〉μg + higher order terms

∂T �(1) = −2
∫

M
〈6�, g − γ 〉μg +

∫
M

|6�|2μg

− 9
∫

M
〈 N

3
Lg,γ (g − γ ), g − γ 〉μg + higher order terms.

(8.11)

Adding the quadratic energy term with the correction term with the correction constant
cE yields the decay inducing term with the factor α in the energy estimate. For higher
order energies the computation is analogous.
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The remainder of the proof is analogous to the proof of Lemma 7.6 in [AM-2]. The
only difference results from the additional matter term in the evolution equation for �.
As a direct consequence of the equation, this yields terms of the types

∫
M

〈Nτ S,Lm−1
g,γ �〉μg +

∫
M

〈�,Lg,γ (Nτ S)〉μg,

∫
M

〈Nτ S,Lm−1
g,γ (g − γ )〉μg,

(8.12)

which can straightforwardly be estimated by

|τ |‖N S‖Hs−1

√
Es, (8.13)

yielding the claim. ��

9. Total Energy Estimate

With the individual energy estimates for geometry and matter variables at hand these
require to be synchronized in view of their different decay inducing terms. For this
purpose we define a total energy with explicit weight functions in time and bound all
elliptic variables in terms of this energy. We then derive energy estimates under the
smallness assumption on �4( f ), G and the total energy which are the key estimates to
establish the global existence result further below.

9.1. Total energy. We define the total energy including the matter energy and the energy
for the metric perturbation.

Definition 21.

Etot(�, g − γ, f ) ≡ e(1+δE )T E6(g − γ,�) + e−δE ·TE 2
5,4( f ), (9.1)

where δE + δE < 1 and δE < 1/2, δE > 1/2.

We choose now all auxiliary constants in the following way. For a given εdecay < 1 we
choose positive constants (δα, δE , δE , εtot) such that

1 − 2δα − δE − εtot > 1 − εdecay

δE − εtot > 1 − εdecay
(9.2)

hold. For small εdecay this is achieved, when δE is almost one and δE is sufficiently small
relative to δE such that δE + δE < 1 holds. We define a uniform constant C , that bounds
all constants C in previous estimates from above by

10 · C3 ≤ C . (9.3)



Nonlinear Stability of the Milne Model with Matter 289

9.2. Preparations. We gather now a number of simplifying lemmas to reduce the length
of the final energy estimate. We express in the following all relevant norms in terms of
the energies Es , E5,4( f ), �4( f ) and G . For the norms appearing in the energy estimate
for the L2-energies we have

Lemma 22. Under suitable smallness assumptions the following estimates hold.

‖3 − N‖H6 ≤ C
(

e−(1+δE )TEtot + e−T �4( f ) + e−(3−δE /2)T
√
Etot

)

‖X‖H6 + ‖�∗‖H5 + ‖�∗∗‖H5 + ‖∂T X‖H5 + ‖∂T N‖H5

≤ C
(

e−(1+δE )TEtot + e−T �4( f ) + e−(3−δE /2)T
√
Etot + e−(2−δE /2)T

√
Etot

)
.

(9.4)

In total,

‖3 − N‖H6 + ‖X‖H6 + ‖�∗‖H5 + ‖∂T X‖H5 + ‖∂T N‖H5 + ‖�∗∗‖H5

≤ C
(

e−(1+δE )TEtot + e−T �4( f ) + e−(2−δE /2)T
√
Etot

)
.

(9.5)

9.3. Estimates for �4( f ). We begin with an estimate for the auxiliary energy of the
energy density.

Lemma 23. For δ-small data with δ sufficiently small, the folllwing estimate holds.

�4( f )

∣∣∣
T

≤
(

�4( f )

∣∣∣
T0

+ C
∫ T

T0
e−(1−δE /2)·s

√
Etot

∣∣∣
s
ds

)

· exp
[

C
∫ T

T0
e−s/2

√
Etot

∣∣∣
s
ds

]
. (9.6)

Proof. From Proposition 16, using Lemma 13 and Proposition 17, we obtain

∂T �4( f ) ≤ C
(‖�‖H3 + |τ |E4,4( f )

) · �4( f ) + |τ |E5,4( f ). (9.7)

Estimating by the total energy and integrating yields

�4( f )

∣∣∣
T

≤ �4( f )

∣∣∣
T0

+ C
∫ T

T0
e−(1−δE /2)·s

√
Etot

∣∣∣
s
ds

+C
∫ T

T0
e−s/2

√
Etot

∣∣∣
s
· �4( f )

∣∣∣
s
ds. (9.8)

Then, Gronwall’s lemma yields the claim. ��

9.4. Estimate on G . For the bound on the support of the momentum variables we obtain
the following estimate.

Lemma 24. For T0 > 1 and under the δ-smallness assumption for δ sufficiently small,
the following estimate holds.

G
∣∣∣
T

≤
(
G
∣∣∣
T0

+ C
∫ T

T0

(
e−δE ·sEtot + �4( f ) + e−(1−δE /2)s

√
Etot

)
ds

)

× exp
[
C
∫ T

T0

(
e−δE ·sEtot + �4( f ) + e−(1−δE /2)s

√
Etot

)
ds
]
.

(9.9)

Proof. Theestimate followsdirectly fromProposition15 in combinationwithLemma22. ��
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9.5. Estimate: total energy. We proceed with an estimate on the total energy under a
smallness assumption on the auxiliary energy.

Proposition 25. Under the assumption of δ-smallness and the conditions

C�4( f ) ≤ εtot/3 (9.10)

and

C |τ |G ≤ εtot/3 (9.11)

and for T sufficiently large to assure

Ce−(1− 1
2 (1+δE+δE ))T

< εtot/3 (9.12)

the estimate

∂TEtot ≤ −[1 − εdecay
]
Etot + CE3/2

tot (9.13)

holds.

Proof. Taking the time derivative of the total energy, using the estimate for the energy
for the perturbation of the geometry, Lemma 20, and the estimate for the L2-Sobolev
energy of the distribution function, Proposition 12, we obtain

∂TEtot(�, g − γ, f ) ≤ −(2α − 1 − δE )e(1+δE )T E6︸ ︷︷ ︸
(1.1)

+ C(e(1+δE )T E6)
1/2e−(1− 1

2 (1+δE+δE ))T e−δE T/2E5,4( f )︸ ︷︷ ︸
(1.2)

+ Ce(1+δE )T E3/2
6︸ ︷︷ ︸

(1.3)

−δE e−δE TE 2
5,4( f )︸ ︷︷ ︸

(2.1)

+C2�4( f )e−δE TE 2
5,4( f )︸ ︷︷ ︸

(2.2)

+ C |τ |GE5,4( f )2︸ ︷︷ ︸
(2.3)

+C2E3/2
tot︸ ︷︷ ︸

(2.4)

.

(9.14)

The terms resulting from the energy estimate for E6 are denoted by numbers (1.i). The
term (1.1) results from the decay inducing term in the estimate (8.10) and the time
derivative of the time-weight function. The term (1.2) results from any matter term in
the estimate (8.10), where we have to estimate by the L2-norm since the regularity is up
to the order s − 1 = 5. Note that the time-weight function is distributed to re-obtain the
properly weighted energies as they appear in the total energy. Finally, term (1.3) results
from the higher order term.

The terms resulting from the energy estimate for E5,4( f ) are denoted by numbers
(2.i). Term (2.1) results from the time derivative of the time-weight function. Term (2.2)
bounds all terms from estimate (4.5), which result from the term τ−1N−1�∗, which is
estimated using (9.5) where only the term with ρ4( f ) is considered, all other terms are
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of higher order in energy and are absorbed into the term (2.4) except for the term τG ,
which is estimated by (2.3).

Using the smallness conditions appropriately, the previous estimate reduces to

∂TEtot(�, g − γ, f ) ≤ −(2α − 1 − δE )e(1+δE )T E6 − δE e−δE TE 2
5,4( f )

+ εtot Etot + CE3/2
tot .

(9.15)

Here, terms (1.1) and (2.1) appear as before and provide decay inducing terms. Terms
(1.3) and (2.4) are absorbed in the higher order term. Invoking smallness conditions
(9.10), (9.11) and (9.12) allows us to bound the sum of terms (1.2), (2.2) and (2.3) by
εtotEtot.

This yields

∂TEtot ≤ −[(min{2α − 1 − δE , δE } − εtot)Etot
]
+ CE3/2

tot , (9.16)

which under the conditions (9.2) on the auxiliary constants yields the claim. ��

10. Global Existence and Completeness

In this final section we present the proof of Theorem 1 based on the estimates in the
previous sections.

10.1. Preliminaries. We consider initial data at time T0, which is close to the induced
data of the Milne model at T = T0. The data is not necessarily CMC initial data. We
argue below why it is sufficient to consider only CMC initial data and consider this case
for now. The existence of a local-in-time solution for CMC initial data close to theMilne
geometry has been developed in [F] and we adapt the local-existence theory therein to
our present notation and variables.

The local existence theorem (Theorem 4.2, [F]) assures existence of a unique local
solutions for initial data (g0, k0, f0) ∈ H6×H5×H5

Vl,3, which is the regularity assumed
in the present case.Moreover, this solution is depending on the initial data in a continuous
sense, which allows to increase T0 suitably and assume smallness at the increased T0
without loss of generality. We denote the smallness parameter according to which we
express smallness of the initial data in the sense of B6,5,5

ε0
by ε0. To establish global

existence we require a continuation criterion analogous to Theorem 8.1 in [F]. It is
important to specify this to our present situation where we consider the rescaled system
in 3+1-dimensions. Ifwe replace the non-rescaled system in [F] by the rescaled equations
(2.15)–(2.18), the smallness, which has to be assured to continue the solution translates
to

Qcont = ‖g − γ ‖H5 + ‖�‖H4 + |τ |||| f |||4,3 + ‖N − 3‖H5 + ‖X‖H5

+‖Ṅ‖H4 + ‖Ẋ‖H4 < εloc, (10.1)

for a fixed εloc > 0. This means, either the maximal interval of existence is infinite or the
bound above is attained as this time is approached. In particular, startingwith sufficiently
small initial data, if this smallness persists throughout the evolution, global existence is
automatically assured. This persistence is shown for the initial data we consider, which
according to the previous discussion guarantees existence of the solution.
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10.2. Existence of a CMC surface. Considering sufficiently small initial data which is
not necessarily CMC, the maximal globally hyperbolic development under the Einstein–
Vlasov system is, locally in time, as close to the background geometry as desired in a
suitable regularity [Ri]. The existence of a CMC surface in such a spacetime can be
shown along the lines of the corresponding argument in the vacuum case presented for
instance in [FK15].

10.3. Guaranteeing the smallness condition on an open interval. From the local Cauchy
stability by choosing the initial data sufficiently small we can assure existence of the
solution up to T0 and smallness at T0 such that condition (9.12) holds at T0. We choose
the new initial data at T0 small such that

Etot

∣∣∣
T0

+ �4( f )

∣∣∣
T0

+ G
∣∣∣
T0

≤ ε0. (10.2)

Since all estimates are uniform in the sense that they do not depend on the smallness
of the initial data once ε0 is chosen sufficiently small, we can further decrease ε0 in the
course of the argument. The same holds for increasing T0.

We choose ε0 sufficiently small to assure that conditions (9.10) and (9.11) hold at
T0. We now define

T+ ≡ sup
{

T > T0
∣∣∣ The solution exists, is δ − small

and conditions (9.10) and (9.11) hold on [T0, T ).
}
.

(10.3)

By local existence T+ > T0 exists. Note that the condition (9.12) holds automatically at
later times.

10.4. Improving the bootstrap conditions: global existence. We show in the following
that if ε0 > 0 is sufficiently small then T+ = ∞.

Due to the validity of conditions (9.10), (9.11) and (9.12) Proposition 25 holds on
(T0, T+), which yields

d
√
Etot

dT
≤ −1

2
(1 − εdecay)

√
Etot + C · Etot (10.4)

and in turn

√
Etot

∣∣∣
T

≤ 1

2

1 − εdecay

C + e(1−εdecay)/2·(T −T0)
(

(1 − εdecay)/2
√
Etot
∣∣
T0

−1 − C

)

≤ 2

√
Etot

∣∣∣
T0

e−(1−εdecay)/2·(T −T0),

(10.5)

where in the second inequality we have further decreased ε0 to assure (1− εdecay)/2 −
ε0C > (1 − εdecay)/4 and ε0 < C

−1
(1 − εdecay)/2.
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Using the previous decay result in combination with Lemma 23 yields

�4( f )

∣∣∣
T

≤
(

�4( f )

∣∣∣
T0
+C
∫ T

T0
e−(1−δE /2)·s

√
Etot

∣∣∣
s
ds

)
· exp

[
C
∫ T

T0
e−s/2

√
Etot

∣∣∣
s
ds

]

≤ (ε0 + C ′ε0) · exp(C ′√ε0).

(10.6)

Choosing now ε0 sufficiently small, this implies (9.10) with a strict inequality.
Finally, we invoke Lemma 24, which, using the previous estimates, takes the form

G
∣∣∣
T

≤
(
G
∣∣∣
T0

+ C
∫ T

T0

(
e−δE ·sEtot + �4( f ) + e−(1−δE /2)s

√
Etot

)
ds

)

· exp
[
C
∫ T

T0

(
e−δE ·sEtot + �4( f ) + e−(1−δE /2)s

√
Etot

)
ds
]

≤ (ε0 + C
√

ε0(T − T0)
) · exp

[
C

√
ε0(T − T0)

]

≤ C
√

ε0 exp(C
√

ε0(T − T0)).

(10.7)

This implies

C |τ |G ≤ CC
√

ε0 exp(C
√

ε0(T − T0) − T )

< εtot/3,
(10.8)

by choosing ε0 sufficiently small. In total, we have shown that for sufficiently small ε0
the estimates (9.10) and (9.11) hold with strict inequalities on (T0, T+) and

Etot

∣∣∣
T

� Etot

∣∣∣
T0
exp
(

− (1 − εdecay)(T − T0)
)
. (10.9)

In particular, all relevant norms remain sufficiently small as T → T+ and by the contin-
uation criterion the solution can be extended to (T0, T+ + ε) for a small ε, where (9.10)
and (9.11) hold on this extended interval. A standard continuity argument then implies
T+ = ∞.

10.5. Decay and asymptotic stability. From the decay of the total energy the decay rates
of the individual quantities can be inferred to read

‖g − γ ‖H6 � √
ε0 exp

[(
−1 +

εdecay − δE

2

)
T

]

‖�‖H5 � √
ε0 exp

[(
−1 +

εdecay − δE

2

)
T

]

‖N − 3‖H6 � √
ε0 exp(−T )

‖X‖H6 � √
ε0 exp(−T )

E5,4( f ) � √
ε0 exp

[(
δE − (1 − εdecay)

2

)
T

]

�4( f ) � √
ε0,

(10.10)

where we recall εdecay > δE . As an immediate consequence of these estimates, the
rescaled metric converges against the Einstein metric γ while all other terms decay. In
total, the geometry converges in the above norms against theMilne geometry as T → ∞.
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10.6. Future completeness. For future completeness the rate of decay of the perturbation
of the unrescaled geometry matters. We use the completeness criterion by Choquet-
Bruhat and Cotsakis in [CM]. Therefore we change to inverse-CMC time ticmc = −τ−1,
in particular dτ = τ 2dt . The corresponding lapse and shift are related to the unrescaled
variables and rescaled variables via Nicmc = τ 2 Ñ = N and X icmc = τ 2 X̃ = τ X .
The metric and second fundamental form do not obtain additional factors of the mean
curvature and we remain with (g̃, �̃) = (τ−2g, τ−1�). Theorem 3.2 and Corollary 3.3
from [CM] provide as sufficient conditions for timelike and null geodesic completeness.
Those are given and verified in the following. (i) pointwise boundedness of the lapse
0 < Nm < Nicmc(t) < NM , which follows immediately from the pointwise estimate for
the lapse. (i i) uniform boundedness for themetric g̃ from below by some fixedmetric for
which we choose t20γ . (i i i)Uniform boundedness of the shift vector, |X icmc|g̃ � |X |g <√

ε0t−1 follows from the decay estimates. Finally, we need to assure integrability of (iv)

|∇Nicmc|g̃ = |τ ||∇N |g � √
ε0t−2 and (v) |�̃|g̃ = |τ ||�|g � √

ε0t−2+ε on the interval
t ∈ (t0,∞). The decay rates in terms of the time t immediately imply (iv) and (v). This
proves the future completeness by the Corollary 3.3. from [CM] and finishes the proof
of Theorem 1.
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Appendix

A Formulae: metric. We collect several formulae here which are used in the course of
the previous computations.

∂T gab = −gacgbd∂T gcd (10.11)

∂T �i
jk = ∇ j (N�i

k) + ∇k(N�i
j ) − ∇ i (N� jk)

+ ∇ j N̂δi
k + ∇k N̂δi

j − ∇ i N̂ g jk − ∇ j∇(l X i)gkl (10.12)

[∂T ,�]Xi = (∂T gab)∇a∇b Xi

+ gab
(
∇a(�̇i

jb X j ) − �̇k
ab(∇k Xi ) + �̇i

ja(∇b X j )
)

. (10.13)

http://creativecommons.org/licenses/by/4.0/
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Also relevant for time differentiation of energies is the following formula for the time
derivative of the Christoffel symbols.

∂̂0�
c
ab = −∇c(Nkab) + ∇a(Nkc

b) + ∇b(Nkc
a). (10.14)

B Formulae: matter. The divergence identity of the energy momentum tensor in the
unrescaled form, ∇̃α T̃ αβ reads in unrescaled variables (cf. [Re], (2.66), (2.67))

∂t ρ̃ − X̃a∇a ρ̃ − Ñτ ρ̃ + Ñ−1∇a(Ñ 2 j̃ a) − Ñ k̃abT̃ ab = 0

∂t j̃ b − X̃a∇a j̃b − X̃b∇a j̃a − Ñτ j̃b + ∇a(Ñ T̃ ab) − 2Ñ k̃b
a j̃a + ρ̃∇̃b Ñ = 0.

(10.15)

With respect to the rescaled variables, ρ = 4πρ̃|τ |−3 and j = 8π |τ |−5j̃ these identities
read

∂T ρ = (3 − N )ρ − Xa∇aρ + τ N−1∇a(N 2ja) − τ 2
N

3
gabT ab − τ 2N�abT ab

∂T ja = 5

3
(3 − N )ja − Xb∇bj

a − (∇a Xb)j
b

+ τ∇b(N T ab) − 2N�a
b jb − |τ |−1ρ∇a N .

(10.16)

C Time derivatives: momentum functions.

∂T p̂ = 1

2 p̂

[
2τ 2〈X̂ , p〉2g + 2τ 2〈X̂ , p〉g

(
〈X̂ , p〉ġ +

1

N
〈p, ∂T X − X̂∂T N 〉g

)

− (1 + τ 2|p|2g)
(

|X̂ |2ġ +
2

N
〈X̂ , ∂T X − X̂∂T N 〉g

)

+ τ 2(1 − |X̂ |2g)
(
2|p|2g + pa pbġab

) ]
(10.17)

∂T p0 = 2p0 +
1

2N p̂

[
4(p0)2(−N 2 + |X |2g) + 6p0τ 〈p, X〉g

+ 2τ 2|p|2g + (p0)2∂T (−N 2 + |X |2g) + 2τ 〈X, p〉ġ p0

+ 2τp0〈p, ∂T X〉 + τ 2 pa pb∂T gab

] (10.18)

by [SZ]

∂T |p + τ−1 p0X |2g = |p + τ−1 p0X |2ġ + 4|p|2g + 4τ−1〈p0X, p〉g

+ 2τ−1〈p + τ−1 p0X, p0X〉g

+ 2τ−1〈p + τ−1 p0X, (∂T p0)X + p0∂T X〉g

(10.19)
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D Momentum derivatives.

Be p0 = τ X̂e p0 + τ 2N−1 pe

p̂
(10.20)

Be

( |p + τ−1 p0X |2g
p̂

)
= 2

p̂
(pe + τ−1Xe p0)

(
1 +

τ

N

〈p, X〉g

p̂
+

p0

N
|X |2g

)

− τ 2
|p + τ−1 p0X |2g

p̂3

(
〈X̂ , p〉g X̂e + (1 − |X̂ |2g)pe

)

(10.21)

D2 Curvature of the tangent bundle. The connection coefficients � of the Sasaki metric
g with respect to the connection basis Aa = Dxa ,Ba = ∂pa take the following form.

�a
bc = �a

bc � I
bc = 1

2 pkRiem I−3
kbc

�a
I c = 1

2 pkRiem a
I−3,kc �a

bI = 1
2 pkRiem a

I−3,kb

� I
Jc = � I−3

J−3c � I
bJ = �a

I J = � I
J K = 0

(10.22)

Here, we use small letters to denote indices in {1, 2, 3} and capital indices to denote
letters in {4, 5, 6}.

E Time derivative of the pressure.

∂T η = τ N
∫

paAa f

N p0
|p + τ−1 p0X |2g

p̂

√
gdp

+∂T Xa
[ ∫

2τ−1 f
p0

p̂
(pa + τ−1 p0Xa)

√
gdp

+
∫

2τ−1 f
p0

2N p̂2
〈p + τ−1 p0X, X〉g

(
2p0Xa + 2τpa

)√
gdp

−
∫

f
|p + τ−1 p0X |2g

N p̂3

(
τ 2〈X̂ , p〉g pa − (1 + τ 2|p|2g)X̂a

)√
gdp

]

+∂T N

[ ∫
τ−1 f X̂ eBe

(
p0

|p + τ−1 p0X |2g
p̂

)

−2τ−1 f
(p0)2

p̂2
〈p + τ−1 p0X, X〉g

√
gdp

+
∫

f
|p + τ−1 p0X |2g

N p̂3

(
τ 2〈X̂ , p〉2g − (1 + τ 2|p|2g)|X̂ |2g

)√
gdp

]

+
∫

f
1

p̂

(
|p + τ−1 p0|2ġ + 4τ−1 p0〈X, p〉g + 2τ−1〈p + τ−1 p0X, X〉g p0

)√
gdp

+τ(�ab +
gab

3
)Xe

∫
f Be

(
pa pb

N p0
|p + τ−1 p0X |2g

p̂

)
√

gdp
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+2�e
e

∫
f
|p + τ−1 p0X |2g

p̂

√
gdp + 2�e

u

∫
f puBe

( |p + τ−1 p0X |2g
p̂

)
√

gdp

+τ−1�e
∫

f Be

(
p0

|p + τ−1 p0X |2g
p̂

)
√

gdp

−2
∫

f

[
2
|p|2g

p̂

(
τ

N

〈p, X〉g

p̂
+

p0

N
|X |2g

)

+
2

p̂
τ−1〈p, X〉g p0

(
1 +

τ

N

〈p, X〉g

p̂
+

p0

N
|X |2g

)]√
gdp

+2τ 2
∫

f

( |p + τ−1 p0X |2g
p̂3

)(
〈X̂ , p〉2g + (1 − |X̂ |2g)|p|2g

)√
gdp

+4τ−1
∫

f

p̂
〈p + τ−1 p0X, X〉g

(
p0 +

1

2N p̂

(
2(p0)2(−N 2 + |X |2g)

+3τ 〈p, X〉g + τ 2|p|2g +
τ 2

2
|p|2ġ

))√
gdp

−
∫

f
|p + τ−1 p0X |2g

2 p̂3

(
2τ 2〈X̂ , p〉2g + 2τ 2〈X̂ , p〉g〈X̂ , p〉ġ

−(1 + τ 2|p|2g)|X̂ |2ġ + τ 2(1 − |X̂ |2g)(2|p|2g + |p|2ġ)
)√

gdp

+
∫

f
|p + τ−1 p0X |2g

p̂
gabġab

√
gdp

+2τ−1
∫

f
1

2N p̂2
〈p + τ−1 p0X, X〉g(p0)2|X |2ġ

√
gdp. (10.23)
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[HS15] Hadžić, M., Speck, J.: The global future stability of the FLRW solutions to the dust-Einstein
system with a positive cosmological constant. J. Hyperbolic Differ. Equ. 12, 87–188 (2015)

[Kr15] Kröncke, K.: On the stability of Einstein manifolds. Ann. Glob. Anal. Geom. 47, 81–98 (2015)
[LM] LeFloch, P.,Ma, Y.: The global nonlinear stability ofMinkowski space for self-gravitatingmassive

fields. arXiv:1511.03324 (2015)
[LR] Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge.

Ann. Math. (2), 171 (2010)
[LT17] Lindblad, H., Taylor, L.: Global stability of Minkowski space for the Einstein–Vlasov system

in the harmonic gauge. Arch Ration Mech Anal. https://doi.org/10.1007/s00205-019-01425-1,
arXiv:1707.06079 (2019)

[Ol16] Oliynyk, T.: Future stability of the FLRWfluid solutions in the presence of a positive cosmological
constant. Commun. Math. Phys. 346, 293–312 (2016)

[RS13] Rodnianski, I., Speck, J.: The nonlinear future stability of the FLRW family of solutions to the
irrotational Euler–Einstein system with a positive cosmological constant. J. Eur. Math. Soc. 15,
2369–2462 (2013)

[RR] Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov–
Einstein system with small initial data. Commun. Math. Phys. 150, 561–583 (1992)

[RR-2] Rein, G., Rendall, A.D.: Ann. Henri Poincaré 4, Smooth static solutions of the spherically sym-
metric Vlasov-Einstein system, 59 (1993)

[Re] Rendall, A.D.: Partial Differential Equations in General Relativity. Oxford Graduate Texts in
Mathematics. Oxford University Press, Oxford (2008)

[Ri] Ringström,H.:On theTopology andFuture Stability of theUniverse.Oxford Science Publications,
Oxford (2013)

[SZ] Sarbach, O., Zannias, T.: The geometry of the tangent bundle and the relativistic kinetic theory of
gases. Class. Quant. Grav. 31(8), 085013 (2014)

[S12] Speck, J.: The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein
system with a positive cosmological constant. Sel. Math. 18(3), 633–715 (2012)

[T] Taylor, M.: The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov
system. Ann. PDE 3, 9 (2017)

Communicated by W. Schlag

http://arxiv.org/abs/1704.05353
http://arxiv.org/abs/1707.06141
http://arxiv.org/abs/1504.00687
http://arxiv.org/abs/1511.03324
https://doi.org/10.1007/s00205-019-01425-1
http://arxiv.org/abs/1707.06079

	Nonlinear Stability of the Milne Model with Matter
	Abstract:
	1 Introduction
	1.1 Cosmological spacetimes and stability
	1.2 The stability problem for the Einstein–Vlasov system
	1.3 Nonvacuum stability of the Milne model: main theorem
	1.3.1 Rescaling
	1.3.2 Difficulties in 3+1 dimensions
	1.3.3 A new estimate for the energy density
	1.3.4 Structure of the proof

	1.4 Remarks
	1.5 Overview on the paper

	2 Preliminaries
	2.1 3-Dimensional negative Einstein metrics
	2.2 Variables and setup
	2.2.1 Standard variables and gauge
	2.2.2 Rescaled variables and Einstein's equations

	2.3 Vlasov matter
	2.3.1 The mass-shell relation
	2.3.2 The transport equation

	2.4 Energy momentum tensor
	2.5 Preview on the decay rates

	3 Norms and Smallness
	3.1 Constants
	3.2 Norms: tensor fields
	3.3 Norms: distribution function
	3.4 Smallness
	3.5 Some immediate estimates

	4 L2: Estimates for the Distribution Function
	4.1 Estimating the energy momentum tensor

	5 Control of the Momentum Support
	6 Energy Estimates from the Divergence Identity
	7 Elliptic Estimates
	8 Energy Estimate: Geometry
	8.1 Decomposing the evolution equations
	8.2 Energy

	9 Total Energy Estimate
	9.1 Total energy
	9.2 Preparations
	9.3 Estimates for 4(f)
	9.4 Estimate on mathscrG
	9.5 Estimate: total energy

	10 Global Existence and Completeness
	10.1 Preliminaries
	10.2 Existence of a CMC surface
	10.3 Guaranteeing the smallness condition on an open interval
	10.4 Improving the bootstrap conditions: global existence
	10.5 Decay and asymptotic stability
	10.6 Future completeness

	Acknowledgements.
	References




