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Abstract: Suspended graphene samples are observed to be gently rippled rather than
being flat. In Friedrich et al. (Z Angew Math Phys 69:70, 2018), we have checked that
this nonplanarity can be rigorously described within the classical molecular-mechanical
frame of configurational-energyminimization. There, we have identified all ground-state
configurations with graphene topology with respect to classes of next-to-nearest neigh-
bor interaction energies and classified their fine nonflat geometries. In this second paper
on graphene nonflatness, we refine the analysis further and prove the emergence of wave
patterning. Moving within the frame of Friedrich et al. (2018), rippling formation in
graphene is reduced to a two-dimensional problem for one-dimensional chains. Specif-
ically, we show that almost minimizers of the configurational energy develop waves
with specific wavelength, independently of the size of the sample. This corresponds
remarkably to experiments and simulations.
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1. Introduction

Carbon forms a variety of different allotropic nanostructures. Among these a prominent
role is played by graphene, a pure-carbon structure consisting of a one-atom thick layer
of atoms arranged in a hexagonal lattice. Its serendipitous discovery in 2005 has been
awarded the 2010Nobel Prize in Physics to Geim andNovoselov and has sparkled an ex-
ponentially growing research activity. The fascinating electronic properties of graphene
are believed to offer unprecedented opportunities for innovative applications, ranging
from next-generation electronics to pharmacology, and including batteries and solar
cells. A new branch of Materials Science dedicated to lower-dimensional systems has
developed, cutting across Physics and Chemistry and extending from fundamental sci-
ence to production [8].

Despite the progressive growth of experimental, computational, and theoretical un-
derstanding of graphene, the accurate description of its fine geometry remains to date
still elusive. Indeed, suspended graphene samples are not exactly flat but gently rippled
[1,22] and waves of approximately one hundred atom spacings have been predicted
computationally [7]. Such departure from planarity seems to be necessary in order to
achieve stability at finite temperatures, in accordance with the limitations imposed by
the classical Mermin–Wagner Theorem [15,20,21]. Even in the zero-temperature limit,
recent computations [12] suggest that nonplanarity is still be expected due to quan-
tum fluctuations. Note that, beside the academic interest, the fine geometry of graphene
sheets is of a great applicative importance, for it is considered to be the relevant scattering
mechanism limiting electronic mobility [13,26].

The aim of this paper is to prove that the emergence of waves with a specific, sample-
size independent wavelength can be rigorously predicted. We move within the frame of
Molecular Mechanics, which consists in describing the carbon atoms as classical par-
ticles and in investigating minimality with respect to a corresponding configurational
energy. This energy is given in terms of classical potentials and takes into account both
attractive-repulsive two-body interactions, minimized at some given bond length, and
three-body terms favoring specific angles between bonds [2,3,24,25]. With respect to
quantum-mechanical models, Molecular Mechanics has the advantage of being simpler
and parametrizable, although at the expense of a certain degree of approximation. Re-
markably, it delivers the only computationally amenable option as the size of the system
scales up. In addition, it often allows for a rigorous mathematical analysis. In particular,
crystallization results for graphene in two dimensions have been proved both in the ther-
modynamic limit setting [5,6] and in the case of a finite number of atoms [4,19]. The fine
geometry of other carbon nanostructures has also been investigated [9,10,16–18,23].

Afirst step toward the understanding of rippling in graphene is detailed in the compan-
ion paper [11] where we investigate ground-state deformations of the regular hexagonal
lattice with respect to configurational energies including next-to-nearest-neighbor inter-
actions. (Note that pure nearest-neighbor interactions predict flat minimizers.) In such
setting, optimal hexagonal cells are not planar, see Fig. 1 left. The main result of [11] is a
classification of all graphene ground states into two distinct families: rolled-up and rip-
pled configurations. Rolled-up structures ideally correspond to carbon nanotubes. Their
optimality recalls remarkably the experimental evidence that free-standing graphene
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Fig. 1. Examples of rippled structures

π − ψ̄

b̄

Fig. 2. Effective description of the section of the rippled structure on the right of Fig. 1

samples tend to roll up [14]. Rippled configurations, see Fig. 1, would instead corre-
spond to suspended graphene patches, where the rolling-up is prevented by the adhesion
to a probing frame.

Our focus is here on rippled configurations. These are not planar and feature a spe-
cific direction in three-dimensional space along which they are periodic. The full three-
dimensional description of rippled configurations is hence completely determined by
orthogonal sections to such specific periodicity direction ( see the free edge at the bot-
tom of the samples in Fig. 1, for instance). The aim of this paper is to address the
geometry of such orthogonal sections (and hence of the whole rippled configuration)
from a variational viewpoint. In fact, such sections are nothing but one-dimensional
chains in two dimensions.

We introduce an effective energy for such sections by considering cell centers as
particles and favoring a specific distance b̄ between cell centers and a specific angle
π − ψ̄ between segments connecting neighboring cell centers. Figure 2 illustrates this
setting in the case of the rippled configuration on the left of Fig. 1.

Specific wave patterns of the rippled structure will then correspond to waves in the
chain of cell centers, as in the case of the rippled configuration on the right of Fig. 1. By
slightly abusing terminology, we shall hence call particles such cell centers and bonds
the segments between two neighboring cell centers.

In the following, two choices for the effective energy are considered. At first, we
analyze the reduced energy (3) taking into account nearest- and next-to-nearest-neighbor
interactions and favoring nonaligned consecutive bonds. This leads to a large variety of
energy minimizers with many different geometries, see Fig. 3. We then specialize the
description via the (general) energy (7) taking additionally longer-range interactions
into account. This second choice leads to a finer characterization of energy minimizers
since the energy accounts also for curvature changes of the chain.

Our main result (Theorem 2.4) states the possibility of finding an optimal wavelength
for energy minimizers. More precisely, for all prescribed overall lengths of the chain one
finds an optimal wavelength λ such that all almost minimizers of the energy with that
specific length can be viewed as compositions of λwaves, up to lower-order terms. Note
that by fixing a given length of the chain one actually imposes a boundary condition,
which corresponds to suspending the sample. Without such a boundary condition, no
optimal wavelength is to be expected, for the sample would be rolling up, an instance
which is indeed captured by our description. The crucial point of our result is that the
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optimal wavelength λ is independent of the size of the system. This corresponds to
experimental and computational findings [7,22]. It is worth at this point to emphasize
that the model features no ad-hoc addition of a mesoscopic lengthscale and that the
optimal wavelength exclusively arises from minimality.

All results of the paper are presented in Sect. 2. The corresponding proofs are based
on elementary arguments but are technically very involved and are detailed in Sects. 3–6.
A first step is achieved in Sect. 3 where we consider a cell energy depending just on three
consecutive particles. Here, convexity allows to check thatminimizers are configurations
where the two bonds between the particles are not aligned.

In Sect. 4 we consider the single-period problem of a chain which changes its curva-
ture only once. In particular, we identify the optimal wavelength λlmax depending on the
number of bonds l (later referred to as discrete-wave period). To this aim, it is instrumen-
tal to check for the concavity of themappings l �→ λlmax and l �→ λlmax/ l (see Lemma 4.3
and Lemma 4.5) where λlmax/ l represents the normalized wavelength. Eventually, by
convexity arguments we are able to control the deviation of the length of the chain from
the optimal wavelength λlmax in terms of the energy excess, see Lemma 4.9. The strategy
is then to identify candidate minimizers by composing more single-period chains, see
Fig. 8 for an illustration. This turns out to be properly doable for even discrete-wave
periods only. The treatment of odd discrete-wave periods is surprisingly much more
intricate, see e.g. Lemma 4.8. One resorts there in showing that the combination of two
single-period waves with odd discrete-wave periods is unfavored with respect to the
combination of two single-period waves with even discrete-wave periods having the
same overall length.

Once the single-period problem is settled, we tackle in Sect. 5 the multiple-period
problem, by allowing the chain to change curvature more than once. We show here that
the energy of the chain depends on the number of particles where the chain changes
its curvature, see Lemma 5.3. We also quantify the length of the chain in terms of the
number of different discrete-wave periods composing it (Lemma 5.1) and we show that
the length excess can be controlled in terms of the energy excess (Lemma 5.2).

Section 6 finally contains the proof of the main result. We firstly address the charac-
terization of theminimal energy (Theorem 2.2). The upper bound for theminimal energy
is obtained via an explicit construction composing single-period chains. The proof of
the matching lower bound is more subtle and relies on the fine geometry of almost
minimizers. In particular, we show that a chain with almost minimal energy essentially
consists exclusively of single-period chains with a specific discrete-wave period, which
only depends on the choice of the boundary conditions. The main underlying observa-
tion is made in terms of normalized wavelengths (wavelength divided by discrete-wave
period): (1) the normalized wavelength of chains with larger discrete-wave periods is too
short to accommodate the boundary conditions and (2) chainswith smaller discrete-wave
period, although having sufficiently large normalized wavelength, cost too much energy
due to a large number of curvature changes. The arguments rely on a fine interplay of the
longer-range contributions and the wavelength λlmax for different discrete-wave periods
l.

2. The Model and Main Results

2.1. Admissible configuration and configurational energy. We consider chains consist-
ing of n ∈ N particles and corresponding deformations y : {1, . . . , n} → R

2. We write
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yi = y(i) for i = 1, . . . , n and introduce the set of admissible configurations by

An = {y : {1, . . . , n} → R
2 | |yi − y j | > 1.5 for i, j : |i − j | ≥ 2,

|yi − yi+1| ≤ 1.5 for i = 1, . . . , n − 1}. (1)

The conditions above ensure that only consecutive points in the chain are bonded. In
particular, apart from i = 1 and i = n, each atom is bonded to exactly two other particles.
Here, the value 1.5 is chosen for definiteness only.

For two vectors a1, a2 ∈ R
2 we let �(a1, a2) ∈ [0, 2π) be the angle between a1 and

a2, measured counterclockwisely. We define the bond lengths and angles of the chain
by

bi = |yi − yi+1| for i = 1, . . . , n − 1,

ϕi = �(yi−1 − yi , yi+1 − yi ) for i = 2, . . . , n − 1. (2)

In the following we introduce the configurational energy En of a chain, and we
detail the hypotheses which we assume on En throughout the paper. The energy is given
by the sum of two contributions, respectively accounting for two-body and three-body
interactions among particles that are respectively modulated by the potentials v2 and
v3, see (3) and (7).

We assume that the two-body potential v2 : (0,∞) → [−1,∞) is smooth and attains
its minimum value only at 1 with v2(1) = −1 and v′′

2 (1) > 0. Moreover, we suppose
that v2 is strictly increasing right of 1. Referring to the modeling of graphene sheets
[11], this potential models the effective interaction between different graphene-lattice
cells, favoring a specific distance of cell centers, here normalized to 1.

The three-body potential v3 : [0, 2π ] → [0,∞) is assumed to be smooth and
symmetric around π , namely v3(π − ϕ) = v3(π + ϕ). Moreover, we suppose that the
minimum is attained only at π with v3(π) = v′

3(π) = v′′
3 (π) = v′′′

3 (π) = 0, and
v′′′′
3 (π) > 0. With reference to the modeling of graphene sheets, the latter potential
describes the energy associated with the flatness of adjacent graphene-lattice cells [11].
In particular, v3 is not related to angles between bonded carbon atoms but contributes
an effective descriptor of flatness of cells. The reader is referred to [11, Section 5] and
in particular to formula [11, (5.2)] for a discussion of this term.

We introduce a configurational energy by

E red
n (y) =

n−1∑

i=2

Ecell(yi−1, yi , yi+1) (3)

where the cell energy is defined as

Ecell(y
1, y2, y3) = v2(|y2 − y1|) + v2(|y3 − y2|)

+ v3(�(y3 − y2, y1 − y2)) + ρv2(|y3 − y1|) (4)

for y1, y2, y3 ∈ R
2. The constant ρ > 0 will be chosen to be suitably small later on.

More precisely, one could reformulate thewhole theory by prescribing a single two-body
potential ṽ2 and letting

Ecell(y
1, y2, y3) = ṽ2(|y2 − y1|) + ṽ2(|y3 − y2|) + v3(�(y3 − y2, y1 − y2))

+ ṽ2(|y3 − y1|). (5)
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b̄

π − ψ̄

Fig. 3. Energy minimizers of (3) with different geometries

In this setting, the dimensionless constant ρ > 0 would measure the ratio between the
energetic contributions of first and second neighbors. (Specifically, ṽ2(1) = −1 and
|ṽ2(2)| ≤ ρ in a neighborhood of 2.) Since our analysis is largely based on the smallness
of such ratio, we prefer to highlight this in the notation and stick to the equivalent form
in (4).

Since in the sequel we will consider also a more general energy, the configurational
energy (3) is called the reduced energy. Let us mention that due to the fact that E red

n is
written as a sum over cell energies, the two-body contributions at the left and right end
of the chain are counted only once and not twice. However, since we focus on the case
of large numbers of particles n and we are not interested in describing the fine geometry
close to the ends of the chain, this effect will be negligible for our analysis.

Our first result addresses the configurations with minimal reduced energy. In particu-
lar, we check that all configurations minimizing the reduced energy have bonds of equal
length and show exactly two possible bond angles.

Theorem 2.1 (Minimizers for the reduced energy). Let ρ > 0 be small depending only
on v2 and v3. Then there exist ecell ∈ R, 0 < b̄ < 1, and ψ̄ ∈ (0, π/8) such that

min
y∈An

E red
n (y) = (n − 2)ecell

and each configuration y ∈ An with minimal energy satisfies bi = b̄ for i = 1, . . . , n−1
and ϕi = π + ψ̄ or ϕi = π − ψ̄ for i = 2, . . . , n − 1.

The result relies on the properties of the cell energy (4) and is proved in Sect. 3. We
observe that there are many minimizers of the energy with very different geometries,
see Fig. 3. In particular, to exclude certain geometries, in the following we will take
given boundary conditions into account. This is realized by specifying the length of the
chain in direction e1. Indeed, let us fix the straining parameter μ in the set of admissible
values M , with M ⊂ (2/3, 1) being a closed interval, and define

An(μ) = {y ∈ An| (yn − y1) · e1 = (n − 1)μ}. (6)
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θ

Fig. 4. Almost minimizers of (3) consisting of single-period waves with different wavelengths (or in other
words: different discrete-wave periods), represented by smooth waves for illustration purposes. Observe that
the second and third configuration have different global geometries in spite of accommodating the same
boundary conditions. The last configuration is only an almost minimizer since the angle θ is not π ± ψ̄

Note that the length |yn − y1| of a minimizer of the reduced energy is necessarily strictly
smaller than n − 1, for b̄ < 1 and ψ̄ > 0. This implies that the choice of values of μ

close to 1 in An(μ) actually corresponds to straining the chain.
Even by restricting to the special subclass An(μ), (almost) minimizers of (3) may

have very different geometries, see Fig. 4.
To investigate the qualitative differences and different geometries of various con-

figurations with (almost) minimal reduced energy in more detail, we now introduce a
general, refined energy. For y ∈ An we let

En(y) = E red
n (y) + ρ̄

n−3∑

i=1

v2(|yi − yi+3|). (7)

The term on the right accounts for longer-range interactions. The constant ρ̄ > 0 will be
chosen suitably small with respect to ρ later on, again reflecting the different relevance
of the different contributions. We note that we could take more general interactions into
account, but the contributions of third neighbors are already sufficient for our subsequent
analysis and here we prefer simplicity rather than generality. Let us also mention that a
reformulation of (7) in terms of a single two-body potential ṽ2, similar to (5), is possible.

2.2. Characterization of minimal energy. We will now identify the minimal energy En
for given μ ∈ M . We set

En,μ
min = 1

n − 2
min

y∈An(μ)
En(y). (8)

Theorem 2.2 (Characterization of the minimal energy). For ρ and ρ̄/ρ small enough
(depending on v2, v3, and M) we find a constant egencell ∈ R and an increasing, convex,
piecewise affine function erange : M → R, both only depending on v2, v3, ρ, and ρ̄, such
that

|egencell + ρ̄erange(μ) − En,μ
min | ≤ c

(
ρ̄2 + 1/n

)
(9)

for all μ ∈ M, where c = c(v2, v3, ρ) > 0.

The energy has a zero order term egencell which is constant for all values μ ∈ M and is
a small perturbation of ecell given in Theorem 2.1, i.e., |egencell − ecell| ≤ cρ̄. Differences
in the minimal energy in terms of μ appear only in the first order term ρ̄erange which is
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associated to the longer-range interactions. For the exact definitions of egencell and erange we
refer to (54) and (58) below, respectively. For an illustration of the graph of the function
erange we refer to Fig. 10.

InTheorem2.3 belowwewill see that almostminimizers of theminimization problem
(8) can be interpreted as waves (in a discrete sense). Then, ρ̄erange is essentially related
to the wavenumber of the minimizer. In particular, smaller values of μ correspond to
a smaller wavenumber or, respectively, to a larger wavelength. Compare also the first
and the second configuration in Fig. 4. Roughly speaking, this effect corresponds to the
waves having ‘constant curvature’, induced by the angle ψ̄ from Theorem 2.1. In this
context, the finite set

Mres = {μ ∈ M | erange is not differentiable in μ} (10)

of resonant lengths plays a pivotal role since forμ ∈ Mres minimizers of (8) are (almost)
periodic waves, cf. Theorem 2.3 below.

We remark that the minimal energy can be characterized only up to small error terms
of the form 1/n and ρ̄2. The term 1/n accounts for boundary effects at the left and
right end of the chain, induced by the longer-range interactions. The term ρ̄2 on the
right-hand side of (9) reflects the fact that periodic waves with different wavelengths
lead to a different longer-range interaction. This effect will be discussed in more detail
in Lemma 5.3.

2.3. Characterization of almost minimizers. We now proceed with the characterization
of almost minimizers. Recalling (2) we define

C(y) := {i ∈ {2, . . . , n − 2} | ϕi > π, ϕi+1 < π}, (11)

which can be interpreted as particles where the chain ‘changes its curvature’. For con-
venience, we write

C(y) = {i1, . . . , iN (y)}
for a strictly increasing sequence of integers, where N (y) ∈ N depends on y. We will
interpret |yik+1 − yik |, k = 1, . . . , N (y) − 1, as the wavelength of a wave.

In the following, we say y ∈ An(y) is an almost minimizer of (8) if

1

n − 2
En(y) ≤ En,μ

min + c
(
ρ̄2 + 1/n

)
, (12)

where c is the constant from Theorem 2.2. We now present two results on the character-
ization of almost minimizers, starting from the resonant case μ ∈ Mres.

Theorem 2.3 (Characterization of almost minimizers, μ ∈ Mres). Let Mres be defined
in (10) and let ε > 0. Then for ρ and ρ̄/ρ small enough, depending on v2, v3, and M,
there are a finite, decreasing sequence λ(μ), μ ∈ Mres, only depending on v2, v3, ρ, and
a constant c = c(v2, v3, ρ, ε) > 0 such that following holds for all n ≥ ρ̄−2:
For eachμ ∈ Mres every almostminimizer y ∈ An(μ)of (8), withC(y) = {i1, . . . , iN (y)},
satisfies

∣∣|yik+1 − yik | − λ(μ)
∣∣ ≤ ε (13)

for ik ∈ K ⊂ C(y), where

#(C(y) \ K)/n ≤ cρ̄. (14)
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Theorem 2.3 states that, despite of nonuniqueness, the minimizers can be character-
ized in terms of the wavelength λ(μ). We remark that the parts of the chain satisfying
(13) correspond to a fixed number of bonds, also referred to discrete-wave period in the
following, i.e., lμ := ik+1−ik is constant for all ik ∈ K. More precisely, wewill show be-
low in Lemma 4.3 that the connection betweenμ, the wavelength, and the discrete-wave
period is given by the formula

λ(μ) = μlμ = 2b̄ sin(ψ̄lμ/4)/ tan(ψ̄/2) (15)

with the bond length b̄ and the angle ψ̄ from Theorem 2.1. Notice that the fact that the
sequence λ(μ) is decreasing inμ (or equivalently, lμ is decreasing inμ) is in accordance
with the above remark that smaller values of μ correspond to larger wavelengths, see
again Fig. 4.

Let us remark that the assumption n ≥ ρ̄−2 can be dropped at the expense of a more
complicated estimate (14). We however prefer to keep this assumption for simplicity
since we are indeed interested in the case of a large number of particles.

In Corollary 6.1, we will explicitly provide an example of a chain involving waves
of different discrete-wave periods in order to show that in general it is energetically
favorable that #(C(y) \ K) is positive. In particular, minimizers are not expected to be
periodic, but only periodic ‘outside of a small set’, controlled in terms of ρ̄. In particular,
Corollary 6.1 will show that (a) the minimal energy in Theorem 2.2 can be characterized
only up to a higher order error term of the form ρ̄2 and that (b) the characterization given
in Theorem 2.3, see (14), is sharp.

Let us now drop the resonance assumption and present a characterization result for
almost minimizers for general μ.

Theorem 2.4 (Characterization of almost minimizers, general case). Let M ⊂ (2/3, 1)
be the closed interval introduced right before (6) and let ε > 0. For ρ and ρ̄/ρ small
enough, let λ(μ), μ ∈ Mres, be the sequence and let c = c(v2, v3, ρ, ε) > 0 be the
constant from Theorem 2.3. Suppose that n ≥ ρ̄−2.
Let μ ∈ M with μ ∈ [μ′, μ′′] for μ′, μ′′ ∈ Mres with (μ′, μ′′) ∩ Mres = ∅. Then every
almost minimizer y ∈ An(μ) of (8), with C(y) = {i1, . . . , iN (y)}, satisfies

∣∣|yik+1 − yik | − λ(μ′)
∣∣ ≤ ε for ik ∈ K′,

∣∣|yik+1 − yik | − λ(μ′′)
∣∣ ≤ ε for ik ∈ K′′,

(16)

where K′,K′′ ⊂ C(y) satisfy

|σ#C(y) − #K′|/n ≤ cρ̄, |(1 − σ)#C(y) − #K′′|/n ≤ cρ̄, (17)

where σ only depends on μ, but not on y. In particular, in accordance with Theorem
2.3, we have σ = 1 for μ = μ′ and σ = 0 for μ = μ′′.

This result states that, for μ between two resonant lengths μ′ and μ′′, the almost
minimizer shows essentially the two wavelengths λ(μ′) and λ(μ′′) in proportion σ and
1 − σ , respectively, where σ depends just on μ.

The proofs of Theorems 2.3–2.4 are contained in Sects. 4–6.We start with the analysis
of a single-period problem in Sect. 4, move on to the problem of multiple periods in
Sect. 5, and finally give the proof of the main results in Sect. 6. We warn the Reader that
in the following all generic constants may depend on the potentials v2 and v3 without
explicit mentioning. Dependencies on other constants such as ρ, ρ̄, or ε, will always
be indicated in brackets after the constant. Moreover, we will often use the notation
�x
 = max{z ∈ Z : z ≤ x} and �x� = min{z ∈ Z : x ≤ z} for x ∈ R.
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θ1

θ2

θ3

θ4

θ5

θ6

θ7

1

Fig. 5. Configurations in the simplified setting of Sect. 2.4: juxtaposition of arcs of a circle of radius 1,
determined by the respective lengths θ1, . . . , θ7 ∈ [0, π)

2.4. An illustration on a simpler model. We close this section by discussing a simpler
model, where configurations are made of the juxtaposition of arcs of a circle of a fixed
radius, see Fig. 5.

This continuous, simplified setting is still capable of illustrating some of the main
features of the general model. In particular, it allows to identify an optimal wavelength,
independently of the sample size. On the other hand, it avoids many technicalities and,
correspondingly, it is much less detailed.

As said, configurations correspond to curves consisting of a finite number of arcs of
a circle, whose radius is normalized to 1, and having non-overlapping secants on some
given axis. The configuration is hence identified by the lengths {θ1, . . . , θk} ∈ [0, π)k

of the corresponding arcs. The total length of the curve is given by


 =
k∑

i=1

θi .

On the other hand, the projection of the curve on the axis has length

� =
k∑

i=1

2 sin(θi/2).

Note that, for all k ∈ N given, the maximal length of the projection � is achieved by
the configuration made of k equal arcs with length 
/k. In fact, the concavity of sin on
[0, π ] entails that � ≤ 2k sin(
/(2k)), where equality holds iff θi = 
/k for all i .

We now reformulate the variational problems by restricting to those curves of fixed
length 
 > 0 fulfilling the boundary condition � = μ
, where the given straining
parameter μ ∈ (0, 1) has the exact same meaning as in (6). As all arcs have the same
curvature, to minimize the energy in this case corresponds to minimize the number of
curvature changes, i.e., k − 1. Let f : [2/π, 1] → [0, π/2] be the inverse function of
τ �→ sin(τ )/τ , which is concave and strictly decreasing. The minimal value kmin can
be computed in terms of μ as

kmin =
⌈




2 f (μ)

⌉
.

In case μ is such that 
/(2 f (μ)) ∈ N, we have that the configuration with minimal
energy is the juxtaposition of kmin arcs of equal length θ∗ := 
/kmin. For allμwhich do
not belong to such discrete set, the optimal curve consists of kmin arcs, which necessarily
cannot be all of equal length.

Note that the optimal arc length θ∗ is invariant with respect to the length 
 of the
curve: given μ with 
/(2 f (μ)) ∈ N, among curves with length 
′ := 
m/kmin for
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m ∈ N, the optimal configuration is the juxtaposition of m arcs of the same optimal
length 
′/m = 
/kmin = θ∗. This in particular illustrates in this simplified setting the
onset of a specific, sample-size independent optimal wavelength.

3. The Cell Problem

In this short section we focus on the cell energy (4) and prove Theorem 2.2. Let us firstly
note that the cell energy can be written equivalently in terms of bond lengths and angles.
More precisely, we introduce

Ẽcell(b1, b2, ϕ) := Ecell(y
1, y2, y3) = v2(b1) + v2(b2)

+ρv2

(√
b21 + b22 − 2b1b2 cosϕ

)
+ v3(ϕ),

where b1 = |y1 − y2|, b2 = |y2 − y3|, and ϕ = �(y3 − y2, y1 − y2). Owing to this
notation, we can now state the following.

Lemma 3.1 (Minimizers and convexity of the cell energy). We have that

(i) For ρ > 0 small enough (depending only on v2 and v3) there exist 0 < b̄ < 1 and
ψ̄ ∈ (0, π/8) such that the minimizers of Ẽcell are given by

(b̄, b̄, π + ψ̄) and (b̄, b̄, π − ψ̄).

(ii) The cell energy Ẽcell is smooth in a neighborhood of the minimizers and there exists
cconv = cconv(ρ) > 0 such that its Hessian at the minimizers satisfies

D2 Ẽcell(b̄, b̄, π ± ψ̄) ≥ cconv I, (18)

where I ∈ R
3×3 denotes the identity matrix.

Proof. Ad (i). Fix ε > 0 small. Since for ρ = 0 the energy is uniquely minimized
by (1, 1, π), for ρ small (depending on ε) the minimizers of Ẽcell lie in (1 − ε, 1 +
ε)2 × (π − ε, π + ε). For all fixed (b1, b2) ∈ (1 − ε, 1 + ε)2, we consider the mapping
f (ϕ) = Ẽcell(b1, b2, ϕ) for ϕ ∈ (π − ε, π + ε). The second derivative of f reads as

f ′′(ϕ) = v′′
3 (ϕ) + ρv′′

2

(√
b21 + b22 − 2b1b2 cosϕ

) (b1b2 sin ϕ)2

b21 + b22 − 2b1b2 cosϕ

+ ρv′
2

(√
b21 + b22 − 2b1b2 cosϕ

) (b21 + b22 − 2b1b2 cosϕ)b1b2 cosϕ − (b1b2 sin ϕ)2

(b21 + b22 − 2b1b2 cosϕ)3/2
.

Consequently, f ′′(π) < 0 since v2 is strictly increasing right of 1 and v′′
3 (π) = 0.

Moreover, as v3 is symmetric around π , f is symmetric around π as well. Thus, it
suffices to identify a unique minimizer of (b1, b2, ψ) �→ Ẽcell(b1, b2, π + ψ) on (1 −
ε, 1 + ε)2 × (0, ε). After a transformation, this is equivalent to show that

G(b1, b2, θ) = Ẽcell(b1, b2, π +
√

θ) (19)

has a unique minimizer on Dε := (1 − ε, 1 + ε)2 × (0, ε2).
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We set g1(b1, b2, θ) = v2(b1) + v2(b2) + v3(π +
√

θ) and g2 = (
G − g1

)
/ρ.

Let the functions λ1 and λ2 denote the smallest eigenvalues of D2g1 and D2g2, re-
spectively. Using a Taylor expansion for v3 around π , we compute D2g1(1, 1, 0) =
diag(v′′

2 (1), v
′′
2 (1), v

′′′′
3 (π)/12). Thus, for ε small enough, λ1 is positive on Dε by the

assumptions on v2 and v3. Consequently, for ρ small enough, depending only on v2 and
v3, we find a constant cG > 0 such that

λ1(b1, b2, θ) + ρλ2(b1, b2, θ) ≥ cG (20)

for all (b1, b2, θ) ∈ Dε. For such small ρ, G is therefore strictly convex on Dε.
This implies that the minimizer of G is uniquely determined and, by the symmetry

of G in the variables b1 and b2, it has the form (b̄, b̄, θ̄ ). We conclude that Ẽcell is
minimized exactly at (b̄, b̄, π ± ψ̄) with ψ̄ =

√
θ̄ . The first order optimality condition

∂b1G(b̄, b̄, θ̄ ) = 0 implies

v′
2(b̄) + ρv′

2

(
b̄
√
2(1 − cos ϕ̄)

) √
(1 − cos ϕ̄)/2 = 0,

where ϕ̄ = π + ψ̄ . Since b̄
√
2(1 − cos ϕ̄) > 1 for ε > 0 small, we get b̄ < 1 by the

assumptions on v2. Similarly, possibly taking ε small enough, we find ψ̄ ∈ (0, π/8).
Ad (ii). The smoothness of the cell energy Ẽcell in a neighborhood of the minimizers

follows directly from the assumptions on v2 and v3. For brevity we set d = (b1, b2, ϕ)

and T (d) = (b1, b2, (ϕ − π)2). For ϕ in a neighborhood of π + ψ̄ we can write
Ẽcell(d) = G(T (d)) with G from (19). For each v ∈ R

3, an elementary computation
yields DẼcell(d)v = DG(T (d))DT (d)v and

D2 Ẽcell(d)[v, v] = D2G(T (d))[DT (d)v, DT (d)v] + DG(T (d))D2T (d)[v, v].
Set d0 = (b̄, b̄, π + ψ̄). Since DG(T (d0)) = 0 by the first order optimality conditions,
we obtain

D2 Ẽcell(d0)[v, v] = D2G(T (d0))[DT (d0)v, DT (d0)v].
This together with (20) and the fact that DT (d0) = diag(1, 1, 2(ϕ −π)) yields (18) and
concludes the proof. ��
Remark 3.2. (Smallness of ψ̄) The proof shows that ψ̄ → 0 as ρ → 0. In the following
sections, we will frequently assume that ψ̄ is small with respect to constants depending
on v2, v3, and the closed interval M introduced before (6). This will amount to choosing
ρ sufficiently small.

We conclude this section with the proof of Theorem 2.1.

Proof of Theorem 2.1. The statement follows immediately fromLemma3.1 and (3)with
the constant ecell = Ẽcell(b̄, b̄, π + ψ̄). ��

4. The Single-Period Problem

The goal of this section is to consider chains y ∈ An , n fixed and small, so that we expect
minimizers to be represented by a wave consisting of one single period. In this section,
we will only consider the reduced energy introduced in (3). We will first investigate the
geometry and the length of configurations withminimal energy. Here, it will turn out that
the analysis is considerably different for even and odd numbers of bonds. Afterwards,
we study small perturbations of energy minimizers and show that the length excess can
be controlled by the energy excess.
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yi0

Fig. 6. A single-period chain y ∈ U6

4.1. Geometry and length of energy minimizers. We investigate the geometry and the
length of configurations y ∈ An with minimal energy, i.e., E red

n (y) = (n − 2)ecell, see
Theorem 2.1. Let n = l + 1, where l will stand for the discrete-wave period. Recall the
definition of the bond lengths bi and the angles ϕi in (2). Moreover, let b̄ and ψ̄ be the
values found in Lemma 3.1. By U l we denote the family of configurations y ∈ Al+1
such that the bond lengths coincide with that of minimizers of the cell energy, namely

bi = b̄, i = 1, . . . , l, (21)

and such that there exists i0 ∈ {2, . . . , l − 1} with

ϕi = π − ψ̄ for i ∈ {2, . . . , i0}, ϕi = π + ψ̄ for i ∈ {i0 + 1, . . . , l}. (22)

Note that, in particular, all configurations in U l are minimizers of E red
l+1. Moreover, given

the index i0, the position of the points y ∈ U l is determined uniquely up to a rotation and
a translation. In particular, the length of the chain, denoted by |yl+1 − y1|, is completely
determined by the choice of i0.

To identify the length of the chain, we will frequently use the formulas

m∑

k=1

sin(θ − kψ̄) = sin(mψ̄/2)

sin(ψ̄/2)
sin(θ − (m + 1)ψ̄/2),

m∑

k=1

cos(θ − kψ̄) = sin(mψ̄/2)

sin(ψ̄/2)
cos(θ − (m + 1)ψ̄/2)

(23)

for θ ∈ [0, 2π) which can be derived by using a geometric series argument and the
representations cos(x) = (eix + e−i x )/2, sin(x) = (eix − e−i x )/2i .

We recall that the angle between two vectors a1, a2 ∈ R
2, measured counterclock-

wisely, is denoted by �(a1, a2). We define the maximal possible discrete-wave period
by

lmax = 2�2π/ψ̄� − 4 (24)

and show that configurations U l for l ≥ lmax are not admissible.

Lemma 4.1 (Maximal discrete-wave period). The index i0 from (22) satisfies i0 ≤
�2π/ψ̄� − 2 and l + 1 − i0 ≤ �2π/ψ̄� − 2. In particular, we have U l ∩ Al+1 = ∅
for each l ≥ lmax.
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Proof. Consider y ∈ U l . We first show that y /∈ Al+1 if i0 ≥ �2π/ψ̄� − 1. Let j =
�2π/ψ̄� and θ = �(e1, y2 − y1). We observe that j − 1 ≤ i0. Then we compute by
(21), (22), and (23)

|y j − y1| = b̄
∣∣∣
j−1∑

i=1

(
cos(θ + ψ̄ − iψ̄), sin(θ + ψ̄ − iψ̄)

)∣∣∣

= b̄ sin
(
( j − 1)ψ̄/2

)
/ sin

(
ψ̄/2

) ≤ 1, (25)

where the last step follows from b̄ ≤ 1 (seeTheorem2.1) and ( j−1)ψ̄/2 ∈ [π−ψ̄/2, π ].
Thus, the assumption in (1) is violated and therefore y /∈ Al+1. Likewise, we argue to
find y /∈ Al+1 if l + 1 − i0 ≥ �2π/ψ̄� − 1.

Combining the two conditions on the choice of i0, we find that l + 1 = l + 1 − i0 +
i0 ≤ 2�2π/ψ̄� − 4 for each y ∈ U l ∩ Al+1. This implies U l ∩ Al+1 = ∅ for each
l ≥ lmax. ��

Recall that the length of the chain |yl+1 − y1| is completely determined by the choice
of i0 from (22). Thus, we can interpret |yl+1 − y1| as a function of i0. More precisely,
recalling also Lemma 4.1 we introduce

λl : {
l + 3 − �2π/ψ̄�, . . . , �2π/ψ̄� − 2

}

∩ {2, . . . , l − 1} → (0,∞), λl(i0) = |yl+1 − y1|, (26)

where y ∈ U l ⊂ Al+1 is a configuration satisfying (22) for i0. The maximum of the
function will be denoted by λlmax. Since the length is invariant under inversion of the
order of the labels of the particles, we get λl(i) = λl(l − i + 1) for i ≤ �l/2�.

After a rotation we may suppose that (yl+1 − y1) · e2 = 0 and (yl+1 − y1) · e1 > 0.
In this case, letting

φi = �(e1, yi+1 − yi ) (27)

for i = 1, . . . , l, we note that

|yl+1 − y1| =
∑l

i=1
b̄ cos(φi ),

∑l

i=1
sin(φi ) = 0. (28)

We now determine the maximizer of λl .

Lemma 4.2 (Maximizer of λl ). For l ∈ {2, . . . , lmax} the maximum of λl is attained
exactly for i0 = �l/2� and i0 = �(l + 1)/2�.
Proof. We argue by contradiction. Suppose that the maximum is attained by a con-
figuration y ∈ U l with i0 �= �l/2�, �(l + 1)/2�. After a rotation we may assume that
(yl+1 − y1) · e2 = 0 and observe that (28) holds. In view of (22), a short computation
yields

φl = (
φ1 + (l + 1 − 2i0)ψ̄

)
mod2π

with the angles φi defined in (27). Recall the symmetry λl(i) = λl(l − i + 1) for
i ≤ �l/2�, see right after (26). Using i0 �= �l/2�, i0 �= �(l + 1)/2�, i0 ∈ [2, l − 1] ∩ [l +
3−�2π/ψ̄�, �2π/ψ̄�−2], and distinguishing the cases whether l is larger than �2π/ψ̄�
or not, one may prove that |(φ1 − φl)mod2π | ≥ 2ψ̄ after some tedious but elementary
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computations. This then implies cos(φ1) < cos(φl + ψ̄) or cos(φl) < cos(φ1 + ψ̄). After
possibly inverting the labeling of the particles, it is not restrictive to assume that

cos(φ1) < cos(φl + ψ̄). (29)

We define a configuration ȳ ∈ U l with index i0 = i0 − 1 (see (22)) and φ̄1 = φ2, where
we indicate the angles in (27) corresponding to ȳ by φ̄i . Note that the configuration is
characterized uniquely up to a translation. More precisely, we obtain

φ̄i = φi+1 for i = 1, . . . , l − 1, φ̄l = φl + ψ̄.

By (28) and (29) this gives

|ȳl+1 − ȳ1| ≥
l∑

i=1

b̄ cos(φ̄i ) =
l∑

i=1

b̄ cos(φi ) + b̄ cos(φl + ψ̄) − b̄ cos(φ1) > |yl+1 − y1|.

Consequently, the length |yl+1− y1| is not maximal among all configurations in U l . This
contradicts the assumption and shows that the maximum is attained for i0 = �l/2� or
i0 = �(l +1)/2�. The fact that λl(�l/2�) = λl(�(l +1)/2�) by symmetry of λl concludes
the proof. ��

The previous result shows that for even l ∈ 2N ∩ [2, lmax] the maximum of λl is
attained at i0 = l/2, i0 = l/2 + 1 and we call λlmax = λl(l/2) the wavelength of a
wave with discrete-wave period l. The following lemma provides the relation between
wavelength and even discrete-wave periods.Odd discrete-wave periods have to be treated
differently, cf. Lemma 4.8 below.

Lemma 4.3 (Length for even discrete-wave periods). For all l ∈ 2N∩ [2, lmax] we have
λlmax = 2b̄ sin(ψ̄l/4)/ tan(ψ̄/2).

Proof. Fix l ∈ 2N∩[2, lmax] and consider a configuration y ∈ U l as in (27) and (28)with
i0 = l/2. This leads to the choice φi = (l/4 − i)ψ̄ for i ≤ l/2 and φi = (−3l/4 + i)ψ̄
for l/2 + 1 ≤ i ≤ l. Indeed, we obtain

∑l
i=1 sin(φi ) = 0 since φ j = −φl/2+ j for

1 ≤ j ≤ l/2. Moreover, we compute

λlmax = λl(l/2) =
l/2∑

i=1

b̄ cos
(
(l/4 − i)ψ̄

)

+
l∑

i=l/2+1

b̄ cos
(
(−3l/4 + i)ψ̄

) = 2
l/2∑

i=1

b̄ cos
(
(i − l/4)ψ̄

)
.

With the help of (23), we then indeed get λlmax = 2b̄ sin(ψ̄l/4)/ tan(ψ̄/2). ��
Remark 4.4. The proof shows that a configuration y ∈ U l as in (27) and (28) which
realizes the maximal length λlmax necessarily satisfies φ1, φl ∈ {(l/4 − 1)ψ̄, lψ̄/4}.

Let lmid = �6/ψ̄
 for brevity. In the following a distinguished role will be played
by the normalized wavelength (normalized with respect to the number of bonds) � :
[2, lmax] → R, being the function which satisfies

�(l) = 1

l
λl(l/2) = 1

l
λlmax (30)
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l

Λ(l)

lmaxlmid2 4

1

2/3

Fig. 7. The normalized wavelength �

for l ∈ 2N∩[2, lmid], is affine on [l−2, l], l ∈ 2N∩[4, lmid], and affine on [lmid−2, lmax],
see Fig. 7. The fact that the function is affine on the intervals between two even discrete-
wave periods will be crucial (a) to identify the function erange in Theorem 2.2 and (b) to
give the characterization (17) in Theorem 2.4. Indeed, it will turn out that

{μ = �(l)| l ∈ 2N ∩ [2, lmid]}
is the set of resonant lengths Mres introduced in (10). We now study the properties of
the normalized wavelength �.

Lemma 4.5 (Properties of the normalized wavelength �). The mapping � is strictly
decreasing and concave on [2, lmax]. Moreover,�(l) = λlmax/ l for all l ∈ 2N∩[2, lmid]
and �(l) ≥ λlmax/ l for all l ∈ 2N ∩ (lmid, lmax]. Finally, for ρ small enough we find
�([2, lmid]) ⊃ (2/3, b̄ cos(ψ̄/2)).

Proof. It is elementary to check that themapping f (x) := sin(x)/x is strictly decreasing
and concave on [0, 3/2]. Thus, recalling Lemma 4.3, the definition of � in (30), and the
fact that lmidψ̄/4 ≤ 3/2, we obtain that � is strictly decreasing and concave. Moreover,
one can check that

f (3/2) + f ′(3/2)(x − 3/2) ≥ f (x) for allx ∈ [3/2, π ].
From this we deduce that �(l) ≥ λlmax/ l for all l ∈ 2N ∩ (lmid, lmax]. Moreover, note
that �(l) = λlmax/ l for all l ∈ 2N ∩ [2, lmid] by definition. Finally, by Lemma 4.3 we
compute �(2) = b̄ cos(ψ̄/2) and �(�6/ψ̄
) = 2/3 sin(3/2)b̄ + O(ψ̄), which shows
that �([2, lmid]) ⊃ (2/3, b̄ cos(ψ̄/2)) for ρ (and thus ψ̄ , cf. Remark 3.2) sufficiently
small. ��
Remark 4.6. [Strict concavity of�] Clearly, as piecewise affine function, the normalized
wavelength � is not strictly concave. However, the strict concavity of x �→ sin(x)/x
implies �(νl1 + (1 − ν)l2) > ν�(l1) + (1 − ν)�(l2) for all ν ∈ (0, 1), whenever � is
not affine on [l1, l2] with l1, l2 ∈ [2, lmid]. When we speak of strict concavity of � in
the following, we refer exactly to this property.

Before we proceed with the case of odd discrete-wave periods, we briefly note that
configurations U l can be connected to longer chains.

Remark 4.7. (Connecting two waves of maximal length) For l ∈ 2N ∩ [2, lmid] choose
the configuration ymax,l ∈ U l satisfying

ymax,l
1 = 0, ymax,l

l+1 = λlmaxe1 = l�(l)e1 (31)
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Fig. 8. Connection of three waves ymax,l minimizing the reduced energy

as well as �(e1, y
max,l
2 − ymax,l

1 ) = lψ̄/4 and �(e1, y
max,l
l+1 − ymax,l

l ) = (l/4 − 1)ψ̄/4
(see Remark 4.4). Consider the configuration y : {1, . . . , 2l + 1} → R

2 defined by
yi = ymax,l

i for i ∈ {1, . . . , l + 1} and yi = ymax,l
i−l + l�(l)e1 for i ∈ {l + 2, 2l + 1}. Then

recalling (21)–(22), we find that all bonds and angles of y (see (2)) satisfy bi = b̄ and
ϕ̄i = π ± ψ̄ . Thus, E red

2l+1(y) = (2l − 1)ecell with ecell from Theorem 2.1.

We now investigate in more detail the case of odd discrete-wave periods l ∈ 2N + 1.
From Lemma 4.2 we get that the maximum of λl is attained exactly for i0 = (l + 1)/2.
Without going into details, we remark that one can calculate for ψ̄ sufficiently small that

λl((l + 1)/2) >
1

2

(
(l − 1)�(l − 1) + (l + 1)�(l + 1)

)
+
1

2
(�(l − 1) − �(l + 1)) = l�(l).

This in particular shows that the normalized wavelength � does not capture correctly
the wavelength for odd l. We hence proceed here by remarking that, under suitable
conditions, the length for twoconsecutivewaveswith odd atomicperiod canbe controlled
in terms of the lengths of waves with even atomic period. This will eventually allow us
to control the wavelength in terms of the normalized wavelength � also for odd l.

More precisely, for odd l1, l2 ∈ (2N+1)∩[2, lmax]we let y : {1, . . . , l1+l2+1} → R
2

be a configurationwith (y1, . . . , yl1+1) ∈ U l1 , (yl1+1 . . . , yl1+l2+1) ∈ U l2 , and the junction
angle ϕl1+1 − π = ψ̄ (see (2)). In view of (22), we find (y1, . . . , yl1+2) ∈ U l1+1,
(yl1+2 . . . , yl1+l2+1) ∈ U l2−1. Consequently, by the definition of the function λl in (26)
and the triangle inequality we obtain

|yl1+l2+1 − y1| ≤ λl1+1max + λl2−1
max . (32)

This estimate can be obtained also for more general junction angles as the following
lemma shows.

Lemma 4.8 (Length for odd discrete-wave periods). Let l1, l2 ∈ (2N + 1) ∩ [2, lmax]
and let y : {1, . . . , l1 + l2 + 1} → R

2 be a configuration with (y1, . . . , yl1+2) ∈ U l1+1,
(yl1+2 . . . , yl1+l2+1) ∈ U l2−1 and the junction angle ϕl1+2 − π ∈ (1 + 2Z)ψ̄ . Then

|yl1+l2+1 − y1| ≤ max
t∈{−1,1}

(
λl1+tmax + λl2−t

max

) − cmix1[0,∞)(l1 − l2), (33)

where 0 < cmix < 1 depends only on lmax (and thus only on ρ) and 1A denotes the
indicator function of a set A.

Note that the right-hand side of (33) is well defined in the sense that l1+t, l2−t ≤ lmax
for t ∈ {−1, 1} since l1, l2 ≤ lmax and lmax is even (see (24)). Notice that in contrast
with the discussion before (32), the chains are connected at point yl1+2.

Proof. Let y be given as in the assumption. After a rotation we may suppose that
(yl1+l2+1 − y1) · e2 = 0. Similarly to (27), we define the angles φi , where the sum
now runs from 1 to l1 + l2. As ϕl1+2 − π ∈ (1 + 2Z)ψ̄ , we get

φl1+1 − φl1+2 ∈ (1 + 2Z)ψ̄. (34)
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As (y1, . . . , yl1+2) ∈ U l1+1 and (yl1+2 . . . , yl1+l2+1) ∈ U l2−1, we derive similarly to (32)

|yl1+l2+1 − y1| ≤ λl1+1max + λl2−1
max .

This shows (33) for l2 > l1. From now on we suppose l1 ≥ l2. In order to conclude the
proof, it suffices to show the strict inequality

|yl1+l2+1 − y1| < max
t∈{−1,1}

(
λl1+tmax + λl2−t

max

)
. (35)

Indeed, since the number of different admissible configurations (up to rigid motions)
and the number of different l1, l2 is bounded by a number only depending on lmax, we
obtain the statement for a positive constant cmix, which only depends on lmax (and thus
only on ρ).

It remains to show (35). First, suppose that l1 − l2 ≥ 2. Then we use Lemma 4.3,
(24), and the strict concavity of sin on [0, π ] to get

|yl1+l2+1 − y1| ≤ λl1+1max + λl2−1
max < λl1−1

max + λl2+1max .

If now l1 = l2, we assume by contradiction that the inequality in (35) was not strict.
Equalitywould imply (yl1+2−y1)·e2 = (yl1+l2+1−yl1+2)·e2 = 0, i.e., the two parts of the
chain, lying in U l1+1 and U l2−1, respectively, satisfy (27) and (28). But then Remark 4.4
gives φl1+1 ∈ {(l1/4−3/4)ψ̄, (l1/4+1/4)ψ̄}, φl1+2 ∈ {(l2/4−5/4)ψ̄, (l2/4−1/4)ψ̄}.
Since l1 = l2, we obtain a contradiction to (34). This establishes (35) and concludes the
proof. ��

4.2. Small perturbations of energy minimizers. In this section, we investigate the length
of single periods for configurations being small perturbations of energy minimizers. To
this end, we introduce the set of small-perturbed chains

U l
δ = {

y ∈ Al+1| ∃ ȳ ∈ U l : |bi − b̄| ≤ δ, |ϕi − ϕ̄i | ≤ δ for all i = 1, . . . , l
}
, (36)

where, as before, the angles ϕi and ϕ̄i corresponding to y and ȳ, respectively, are defined
in (2). Likewise, the bond lengths will again be denoted by bi . (For the angles the sum
runs only from 2 to l.) In the following, we use the notation (a)2+ = (max{a, 0})2 for
a ∈ R and the quantity ecell from Theorem 2.1. Recall also lmax defined in (24). We first
treat the case of even discrete-wave periods.

Lemma 4.9 (Energy excess controls length excess). There exist δ0 = δ0(ρ) > 0 and
C = C(ρ) > 0 such that for all 0 < δ ≤ δ0, for all l ∈ 2N ∩ [2, lmax], and all y ∈ U l

δ
one has

E red
l+1(y) − (l − 1)ecell ≥ C

(|yl+1 − y1| − |ȳl+1 − ȳ1|
)2
+ ≥ C

(|yl+1 − y1| − l�(l)
)2
+,

where ȳ ∈ U l is a configuration corresponding to y as given in the definition of U l
δ .
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Proof. Let y ∈ U l
δ and ȳ ∈ U l be given. By Lemma 3.1 and a Taylor expansion we get

for some c > 0

Ecell(yi−1, yi , yi+1) = Ẽcell(bi−1, bi , ϕi ) ≥ ecell +
cconv
2(|bi−1 − b̄|2 + |bi − b̄|2 + |ϕi − ϕ̄i |2

)

− c
(|bi−1 − b̄|3 + |bi − b̄|3 + |ϕi − ϕ̄i |3

)

≥ ecell +
cconv
4

(|bi−1 − b̄|2 + |bi − b̄|2 + |ϕi − ϕ̄i |2
)

(37)

for all i = 2, . . . , l, where the last step follows with the definition of U l
δ and the choice

cδ0 ≤ cconv/4. By (3) and Jensen’s inequality we get

E red
l+1(y) =

l∑

i=2

Ecell(yi−1, yi , yi+1) ≥ (l − 1)ecell +
cconv
4

( l∑

i=1

|bi − b̄|2 +
l∑

i=2

|ϕi − ϕ̄i |2
)

≥ (l − 1)ecell +
cconv

4(2l − 1)

( l∑

i=1

|bi − b̄| +
l∑

i=2

|ϕi − ϕ̄i |
)2

. (38)

For i = 1, . . . , l we let φi and φ̄i be the angles defined in (27), associated to y and ȳ,
respectively. Possibly after rotations, it is not restrictive to suppose that (yl+1−y1)·e2 = 0
and that φ1 = φ̄1. Clearly, we get |φi − φ̄i | ≤ ∑i

j=2 |ϕ j − ϕ̄ j | ≤ ∑l
j=2 |ϕ j − ϕ̄ j | for all

i = 2, . . . , l. Since, cos is Lipschitz with constant 1, we then derive for each i = 1, . . . , l

(yi+1 − yi ) · e1 = bi cos(φi ) ≤ b̄ cos(φi ) + |bi − b̄| ≤ b̄ cos(φ̄i ) + |bi − b̄| + b̄|φi − φ̄i |

≤ b̄ cos(φ̄i ) + |bi − b̄| +
l∑

j=2

|ϕ j − ϕ̄ j | (39)

where we also used the fact that b̄ < 1. We now get

|yl+1 − y1| =
∣∣∣

l∑

i=1

(yi+1 − yi ) · e1
∣∣∣ ≤

∣∣∣
l∑

i=1

b̄ cos(φ̄i )

∣∣∣ +
l∑

i=1

|bi − b̄| + l
l∑

i=2

|ϕi − ϕ̄i |

≤ |ȳl+1 − ȳ1| +
l∑

i=1

|bi − b̄| + l
l∑

i=2

|ϕi − ϕ̄i |

which together with (38) and the choiceC = cconv/(4(2l−1)l2) gives the first inequality
of the statement. The second inequality follows from Lemma 4.5. ��

Similarly to Lemma 4.8, we now consider two consecutive waves with odd discrete-
wave periods and provide a control on the length in terms of the junction angle.

Lemma 4.10. (Junction angle controls length excess) Let δ > 0 and l1, l2 ∈ (2N + 1) ∩
[2, lmax]. Let y, ȳ : {1, . . . , l1 + l2 + 1} → R

2 be configurations with

y1 := (y1, . . . , yl1+2) ∈ U l1+1
δ , y2 := (yl1+2 . . . , yl1+l2+1) ∈ U l2−1

δ ,

ȳ1 := (ȳ1, . . . , ȳl1+2) ∈ U l1+1, ȳ2 := (ȳl1+2 . . . , ȳl1+l2+1) ∈ U l2−1

and ȳi , i = 1, 2, are configurations corresponding to yi as given in (36). Then we have

|yl1+l2+1 − y1| ≤ |ȳl1+l2+1 − ȳ1| + 2lmax|ϕl1+2 − ϕ̄l1+2| + 4l2maxδ.
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Proof. We denote the angles φi and φ̄i as in the previous proof, where the sum now
runs from 1 to l1 + l2. We may again suppose that, possibly after a rotation, we have
(yl1+l2+1 − y1) · e2 = 0 and that φ1 = φ̄1. This implies |φi − φ̄i | ≤ ∑l1+l2

j=2 |ϕ j − ϕ̄ j | for
all i = 1, . . . , l1 + l2. Repeating the estimate in (39) and recalling (36) we find

(yi+1 − yi ) · e1 − b̄ cos(φ̄i ) ≤ |bi − b̄|

+
l1+l2∑

j=2

|ϕ j − ϕ̄ j | ≤ δ + (l1 − 1 + l2 − 1)δ + |ϕl1+2 − ϕ̄l1+2|.

The claim follows by taking the sum over i = 1, . . . , l1 + l2. ��
We close this section with the observation that also for configurations in U l

δ the
maximal discrete-wave period is given by lmax.

Lemma 4.11 (Maximal discrete-wave period). There exists δ0 = δ0(ρ) > 0 such that
for all 0 < δ ≤ δ0 we have U l

δ ∩ Al+1 = ∅ for each l ≥ lmax.

Proof. We argue by contradiction. Suppose that there exists y ∈ U l
δ ∩Al+1. Let ȳ ∈ U l

be an associated configuration from (36). As l ≥ lmax, we find i0 > �2π/ψ̄� − 2 or
l + 1 − i0 > �2π/ψ̄� − 2 with i0 from (22). Possibly after inverting the labeling of the
particles in the chain, we can assume that i0 ≥ �2π/ψ̄� − 1. With j = �2π/ψ̄�, we
repeat the proof of Lemma 4.1, see (25), to find |ȳ j − ȳ1| ≤ 1. Moreover, using (36) and
adapting the argument leading to (39), we get

|(ȳ j − y j ) − (ȳ1 − y1)| ≤ √
2
(
( j − 1)δ + ( j − 1)(l − 1)δ).

Consequently, for δ small enough depending only on lmax (and thus only on ρ, cf.
Remark 3.2), we derive |y j − y1| < 1.5, which contradicts (1). ��

5. The Multiple-Period Problem

In this section, we study the relation between length and energy for a chain consist-
ing of more than one single discrete-wave period. More precisely, we will investigate
configurations belonging to

Aδ
n := {

y ∈ An | |bi − b̄| ≤ δ,

min{|ϕi − π − ψ̄ |, |ϕi − π + ψ̄ |} ≤ δ for all i = 1, . . . , n − 1
}

for δ > 0 to be specified below, where the bond lengths bi and angles ϕi are defined in
(2). (As before, for the angles indices run only from 2 to n − 1.) For later purpose, we
note that by Lemma 3.1,(ii) we have

cconv
4

( n−1∑

i=1

|bi − b̄i |2 +
n−1∑

i=2

|ϕi − ϕ̄i |2
)

≤ E red
n (y) − (n − 2)ecell (40)

for cconv = cconv(ρ) > 0 and δ ≤ δ0 with δ0 from Lemma 4.9, cf. (37) for the exact
computation. We split our considerations into two parts concerning the reduced and the
general energy, respectively.
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5.1. The multiple-period problem for the reduced energy. We introduce the index set

Isgn = {i = 3, . . . , n − 2 | ϕi > π, ϕi+1 < π} ∪ {1}. (41)

The index set is denoted by ‘sgn’ to highlight that at the points yi , i ∈ Isgn, the sign of
ϕi −π changes from plus to minus. For the application in Sect. 6 it is convenient to also
take the index i = 1 into account. Sometimes we will also consider the ‘shifted’ index
set

I ′
sgn = {i = 3, . . . , n − 2 | ϕi−1 > π, ϕi < π}. (42)

We also define a decomposition of Isgn by

Il
sgn = {

i ∈ Isgn | i + k /∈ Isgn for k = 1, . . . , l − 1, i + l ∈ Isgn ∪ {n}} (43)

for l ∈ N, l ≥ 2.
For a minimizer y of E red

n , the length of the waves corresponding to even discrete-
wave periods (Il

sgn)l∈2N can be estimated by

∑

l∈2N
#Il

sgnλ
l
max ≤

∑

l∈2N
#Il

sgnl�(l),

where we used Lemma 4.5. In the previous section, see particularly Lemma 4.8, we
have also seen that the length of waves with odd discrete-wave period can be controlled
in terms of waves with even discrete-wave period. For later purpose, we introduce the
maximal length of odd discrete-wave periods L : 2N + 1 → (0,∞) by

L(
(#Il

sgn)l∈2N+1
) = max

{ ∑

l∈2N
rll�(l)

∣∣ rl ∈ N for l ∈ 2N :
∑

l∈2N
rl =

∑

l∈2N+1
#Il

sgn,
∑

l∈2N
lrl = 2

⌊ ∑

l∈2N+1
l#Il

sgn/2
⌋}

. (44)

Recall the definition of the maximal discrete-wave period lmax in (24). For convenience,
we introduce also a relabeling Isgn ∪ {n} = {i1, . . . , i J } for an increasing sequence
of integers (i j )Jj=1. The following lemma controls (up to some boundary effects) the
length of the chain in terms of the contributions ofwaveswith even and odd discrete-wave
periods.

Lemma 5.1 (Length of chain with minimal energy). Let y : {1, . . . , n} → R
2 with

y ∈ An be a minimizer of E red
n . Then

|yn − y1| ≤
∑

l∈2N
#Il

sgnl�(l) + L(
(#Il

sgn)l∈2N+1
) − cmix

2

∑

l∈2N+1
#Il

sgn + 4lmax,

where cmix > 0 is the constant from Lemma 4.8.

Proof. Consider the labeling Isgn ∪ {n} = {i1, . . . , i J }. Moreover, we choose indices
j1 < j2 < . . . < jK such that

⋃
l∈2N+1 Il

sgn = {i j1, . . . , i jK }. Note that K =∑
l∈2N+1 #Il

sgn. In the following, we will consider pairs of indices i jk , i jk+1 for odd
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k with corresponding lengths lk1 = i jk+1 − i jk and l
k
2 = i jk+1+1 − i jk+1 . We will suppose

that

#K ≥ �K/2
 with K := {k | lk1 ≥ lk2}. (45)

The case #K < �K/2
 is very similar by considering the chain in reverse order. We
indicate the necessary adaptions at the end of the proof.

Consider a pair of indices i jk , i jk+1 for odd k. Recall that lk1 = i jk+1 − i jk , l
k
2 =

i jk+1+1 − i jk+1 are odd and lm,k := i jk+m+1 − i jk+m are even for all m ∈ {1, . . . , Mk − 1},
where Mk := jk+1 − jk . We can decompose the chain (yi jk , . . . , yi jk+1+1) into the parts

ŷ0,k = (yi jk , . . . , yi jk+1+1) ∈ U lk1+1

ŷm,k = (yi jk+m+1, . . . , yi jk+m+1+1) ∈ U lm,k for m ∈ {1, . . . , Mk − 1},
ŷMk ,k = (yi jk+1+1, . . . , yi jk+1+1) ∈ U lk2−1. (46)

Here, we have used Theorem 2.1 and the fact that i jk+m + 1 ∈ I ′
sgn (cf. (41)–(42)) to

see that the chains have the form introduced in (21)–(22). (We refer to Fig. 8 for an
illustration of composed single-period waves.) We also define the configuration ỹk :
{lk1 + lk2 + 1} → R

2 by (recall lk1 = i jk+1 − i jk and l
k
2 = i jk+1+1 − i jk+1 )

(ỹk1 , . . . , ỹ
k
lk1+2

) = ŷ0,k, (ỹk
lk1+2

, . . . , ỹk
lk1+l

k
2+1

) = ŷMk ,k + t (47)

for the translation t = (yi jk+1+1 − yi jk+1+1, . . . , yi jk+1+1 − yi jk+1+1) ∈ R
2×lk2 . By the

definition of the function λl in (26) and the triangle inequality we get

|yi jk+1+1 − yi jk | ≤ |ỹk
lk1+l

k
2+1

− ỹk1 | +
Mk−1∑

m=1

|ŷm,k
lm,k+1

− ŷm1 |

≤ |ỹk
lk1+l

k
2+1

− ỹk1 | +
Mk−1∑

m=1

λ
lm,k
max. (48)

From Theorem 2.1 we recall that each angle ϕi (see (2)) enclosed by two bonds is π + ψ̄

or π − ψ̄ . Due to the fact that the discrete-wave periods lm,k for m ∈ {1, . . . , Mk − 1}
are even, we find (i jk+1 + 1) − (i jk+1 + 1) ∈ 2N. Thus,

�(yi jk+1+2 − yi jk+1+1, yi jk+1+1 − yi jk+1) ∈ π+(1 + 2N)ψ̄,

i.e., the junction angle ϕ̃lk1+2
at ỹlk1+2

satisfies ϕ̃lk1+2
− π ∈ (1 + 2Z)ψ̄ . Consequently, we

can apply Lemma 4.8 and find together with (48)

|yi jk+1+1 − yi jk | ≤ max
t∈{−1,1}

(
(lk1 + t)�(lk1 + t) + (lk2 − t)�(lk2 − t)

)

− cmix1K(k) +
Mk−1∑

m=1

lm,k�(lm,k). (49)

Here, we have also used that the discrete-wave periods lk1 + t , lk2 − t , and lm,k are even
and have applied Lemma 4.5.
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We proceed in this way for all k ∈ {1, 3, . . . , 2�K/2
 − 1} and then we derive by
(45), (49), Lemma 4.5, and the triangle inequality

|yn − y1| ≤
∑

l∈2N
#Il

sgnl�(l) +
∑

k odd

max
t∈{−1,1}

(
(lk1 + t)�(lk1 + t) + (lk2 − t)�(lk2 − t)

) − �K/2
cmix

+ |yi2 − y1| + |yn − yiJ−1 | + |yi jK +1 − yi jK |,
where here and in the following the sum in k always runs over {1, 3, . . . , 2�K/2
 − 1}.
Note that the last three terms appear since Lemma 4.5 and the estimate (49) are possibly
not applicable. (The very last term is only necessary for odd K .) However, in view of
y ∈ An , Lemma 4.1, and the fact that b̄ ≤ 1 (see Theorem 2.1), their contribution can be
bounded by 3lmax.Moreover, note that �K/2
 ≥ ∑

l∈2N+1 #Il
sgn/2−1 and cmix ∈ (0, 1).

To conclude, it therefore remains to show
∑

k odd

max
t∈{−1,1}

(
(lk1 + t)�(lk1 + t) + (lk2 − t)�(lk2 − t)

) ≤ L(
(#Il

sgn)l∈2N+1
)
. (50)

For each k choose tk ∈ {−1, 1} such that the maximum is attained. If K is even, we set
rl = #{k | lk1 + tk = l}+ #{k | lk2 − tk = l} for l ∈ 2N. If K is odd, we replace rt by rt + 1,
where t = i jK +1 − i jK − 1 ∈ 2N. We then find

∑
l∈2N rl = K = ∑

l∈2N+1 #Il
sgn and∑

l∈2N lrl = 2�∑l∈2N+1 l#Il
sgn/2
. Then (50) follows from (44).

Finally, we briefly indicate the necessary changes if K − #K ≥ �K/2� (see (45)). In
this case, we consider the chain ŷ = (yn, . . . , y1) in reverse order and note that the index
set introduced in (41) corresponding to ŷ is given by I ′

sgn ∪ {n} (as defined in (42) for
the configuration y). The above reasoning is then applied on the pairs of indices i jk+1 + 1
and i jk + 1 for k ∈ {1, 3, . . . , 2�K/2
 − 1}, where we note that #{k | i jk+1+1 − i jk+1 ≥
i jk+1 − i jk } ≥ �K/2� ≥ �K/2
. ��

We now investigate the length of general configurations in Aδ
n . Recall the notation

(a)2+ = (max{a, 0})2 for a ∈ R.

Lemma 5.2 (Energy excess controls length excess) There exist δ0 > 0, codd > 0, and
cel > 0 only depending on ρ such that for all 0 ≤ δ ≤ δ0 and each y ∈ Aδ

n we have

E red
n (y) − (n − 2)ecell ≥ cel

n

(
|yn − y1| −

∑

l∈2N
#Il

sgnl�(l)

−L(
(#Il

sgn)l∈2N+1
)
+ noddcodd − 4lmax

)2
+
,

where Il
sgn as in (43) and nodd = ∑

l∈2N+1 #Il
sgnl.

Proof. Let y ∈ Aδ
n be given and define Isgn and Il

sgn as in (41) and (43), respectively.

Choose a configuration ȳ : {1, . . . , n} → R
2 minimizing the energy E red

n and satisfying
sgn(ϕi −π) = sgn(ϕ̄i −π) for i = 2, . . . , n−1, where sgn denotes the sign function and
ϕ̄i are the angles defined in (2) corresponding to ȳ. Note that ȳ is determined uniquely
by y up to a rigid motion.

We will follow the lines of the previous proof by taking additionally the deviation
from energy minimizers into account, where we will employ Lemma 4.9 and Lemma
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4.10. Similarly to the previous proof, we consider the labeling Isgn ∪ {n} = {i1, . . . , i J }
as well as

⋃
l∈2N+1 Il

sgn = {i j1, . . . , i jK }. For odd k we also define lk1 = i jk+1 − i jk and

lk2 = i jk+1+1 − i jk+1 . Moreover, let K be defined as in (45). Without loss of generality
we can reduce ourselves to the case #K ≥ �K/2
 since otherwise one may consider the
chain in reverse order, as commented at the end of the previous proof.

We consider the parts of the chain having odd discrete-wave period. For odd k, we
define the configuration ỹk : {1, . . . , lk1 + lk2 + 1} → R

2 as in (47). Accordingly, we
define the configuration ˜̄yk corresponding to ȳ. By the triangle inequality (cf. (48)) we
get that

|yi jk+1+1 − yi jk | ≤ |ỹk
lk1+l

k
2+1

− ỹk1 | +
Mk−1∑

m=1

|ŷm,k
lm,k+1

− ŷm1 |, (51)

where ŷm,k is defined in (46). We now estimate the various terms in the above right-hand
side by starting with the terms including ŷm,k . By Lemma 4.9, Hölder’s inequality, and
the fact that

∑
k(Mk − 1) ≤ ∑

l∈2N #Il
sgn ≤ n we obtain

∑

k odd

Mk−1∑

m=1

(|ŷm,k
lm,k+1

− ŷm1 | − lm,k�(lm,k))

≤ 1√
C

∑

k odd

Mk−1∑

m=1

(
E red
lm,k+1(ŷm,k) − (lm,k − 1)ecell

)1/2

≤
√
n√
C

( ∑

k odd

Mk−1∑

m=1

(
E red
lm,k+1(ŷm,k) − (lm,k − 1)ecell

))1/2

≤
√
n√
C

(
E red
n (y) − (n − 2)ccell

)1/2 (52)

with C > 0 from Lemma 4.9, where in the last step we have used Theorem 2.1.
We now consider the first term in the right-hand side of (51). The difference of the

junction angles ϕ̃k
lk1+2

and ˜̄ϕk
lk1+2

at ỹk
lk1+2

and ˜̄yk
lk1+2

, respectively, can be estimated by

|ϕ̃lk1+2 − ˜̄ϕlk1+2| ≤
i jk+1+1∑

i=i jk+1+1

|ϕi − ϕ̄i |.

Consequently, applying Lemma 4.10 and summing over all k ∈ {1, 3, . . . , 2�K/2
− 1}
we derive

∑

k odd

(|ỹk
lk1+l

k
2+1

− ỹk1 | − | ˜̄yk
lk1+l

k
2+1

− ˜̄yk1 |) ≤ 2l2maxK δ + 2lmax

n−1∑

i=2

|ϕi − ϕ̄i |.

Repeating the arguments in (48)–(50), in particular using Lemma 4.8 for | ˜̄yk
lk1+l

k
2+1

− ˜̄yk1 |,
we find

∑

k odd

|ỹk
lk1+l

k
2+1

− ỹk1 | ≤ L(
(#Il

sgn)l∈2N+1
) − �K/2
cmix + 2l2maxK δ + 2lmax

n−1∑

i=2

|ϕi − ϕ̄i |.
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For brevity we set E = E red
n (y) − (n − 2)ecell. Combining the previous estimate with

(51) and (52), and using again Hölder’s inequality together with (40), we get

∑

k odd

|yi jk+1+1 − yi jk | ≤ L(
(#Il

sgn)l∈2N+1
)
+

∑

k odd

Mk−1∑

m=1

lm,k�(lm,k) − �K/2
cmix

+ 2l2maxK δ +
( 1√

C
+

4lmax√
cconv

)√
n
√
E .

For the remaining parts with even period we repeat the argument in (52). All in all we
get

|yn − y1| ≤
∑

l∈2N
#Il

sgnl�(l) + L(
(#Il

sgn)l∈2N+1
) − �K/2
cmix + 2l2maxK δ

+
( 2√

C
+

4lmax√
cconv

)√
n
√
E + |yi2 − y1| + |yn − yiJ−1 | + |yi jK +1 − yi jK |,

where the last three terms appear since Lemma 4.9 is possibly not applicable on these
parts of the chain. (The very last term is only necessary for odd K .) Similarly to the
proof of Lemma 5.1, by Lemma 4.11 we can show that |yi2 − y1| + |yn − yiJ−1 | +
|yi jK +1 − yi jK | ≤ 3(b̄ + δ)lmax ≤ 3lmax for δ0 sufficiently small. Therefore, using also

�K/2
 ≥ ∑
l∈2N+1 #Il

sgn/2 − 1 and cmix ∈ (0, 1) we get

|yn − y1| ≤
∑

l∈2N
#Il

sgnl�(l) + L(
(#Il

sgn)l∈2N+1
) − cmix

2

∑

l∈2N+1
#Il

sgn + 4lmax + 2l2maxK δ

+

√
n√
cel

(
E red
n (y) − (n − 2)ccell

)1/2
,

where cel := (2/
√
C + 4lmax/

√
cconv)−2. Now choose δ0 so small that 2l2maxδ ≤ cmix/4

and set codd = cmix/(4lmax). This implies (cmix/2−2l2maxδ)K ≥ coddlmaxK ≥ coddnodd,
where the last step follows from nodd/ lmax ≤ ∑

l∈2N+1 #Il
sgn = K . From this, the

statement of the lemma follows. ��

5.2. The multiple-period problem for the general energy. Let y ∈ An and observe that
the general energy (7) including the longer-range interaction can be written as

En(y) =
n−3∑

i=1

Egen
cell(yi , yi+1, yi+2, yi+3) +

1

2

(
Ecell(y1, y2, y3) + Ecell(yn−2, yn−1, yn)

)
,

(53)

where Egen
cell denotes the generalized cell energy defined by

Egen
cell(yi , yi+1, yi+2, yi+3) = 1

2

(
Ecell(yi , yi+1, yi+2) +Ecell(yi+1, yi+2, yi+3)

)

+ ρ̄v2(|yi+3 − yi |).
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ψ̄b̄

�1(b̄, ψ̄)

�2(b̄, ψ̄)

Fig. 9. Two different geometries of four points with l1(b̄, ψ̄) < l2(b̄, ψ̄)

Let y ∈ An be a minimizer of E red
n . Choose i ∈ {1, . . . , n − 3} with sgn(ϕi+1 − π) =

sgn(ϕi+2 − π), where sgn denotes the sign function, and define

egencell := Egen
cell(yi , yi+1, yi+2, yi+3). (54)

Clearly, the value is independent of the particular choice of the configuration y and the
index i . Recalling Theorem 2.1, we also see |egencell − ecell| ≤ cρ̄ for some c > 0. Now
choose i ∈ {1, . . . , n − 3} with sgn(ϕi+1 − π) �= sgn(ϕi+2 − π) and define

eper := (
Egen
cell(yi , yi+1, yi+2, yi+3) − egencell

)
/ρ̄. (55)

As before, the value is independent of y and the choice of i . We find eper > 0, which
follows from the geometry of the four points yi , yi+1, yi+2, yi+3 determined by the con-
dition sgn(ϕi+1−π) = sgn(ϕi+2−π) and sgn(ϕi+1−π) �= sgn(ϕi+2−π), respectively,
and the fact that v2 is strictly increasing right of 1. (We refer to Fig. 9 for an illustration.)

Recall the definition of Isgn in (41). The general energy (53) for a configuration
y ∈ An with E red

n (y) = (n − 2)ecell can now be estimated by

En(y) ≥ (n − 3)egencell + ecell + (2#Isgn − 3)ρ̄eper, (56)

where we used that #{i = 1, . . . , n−3 | sgn(ϕi+1 −π) �= sgn(ϕi+2 −π)} ≥ 2#Isgn −3.
We now formulate the main result of this section about the relation between the

reduced and the general energy.

Lemma 5.3 (Relation of reduced and general energy). There exist δ0 > 0 and crange > 0
only depending on ρ such that for all 0 ≤ δ ≤ δ0 and each y ∈ Aδ

n we get

1

2

(
E red
n (y) − (n − 2)ecell

) ≤ En(y) − (
(n − 3)egencell + ecell + (2#Isgn − 3)ρ̄eper

)
+ ncrangeρ̄

2.

Notice that the higher order error term ncrangeρ̄2 appears since due to the longer-
range interactions, the energy can be slightly decreased by small rearrangement of the
particles. Note that Lemma 5.3 together with Lemma 5.2 allows to control the length
excess in terms of the energy excess for the general energy.

Proof. Let y ∈ Aδ
n be given. Exactly as in the proof of Lemma 5.2, we choose a

configuration ȳ : {1, . . . , n} → R
2 minimizing the energy E red

n and satisfying sgn(ϕi −
π) = sgn(ϕ̄i − π) for i = 2, . . . , n − 1, where ϕi , ϕ̄i are the angles defined in (2)
corresponding to y and ȳ, respectively. Denote the bonds introduced in (2) again by bi
and b̄i . Recall that the energy En(ȳ) canbe estimatedby (56).Using (40) andTheorem2.1
we find

E := E red
n (y) − (n − 2)ecell = E red

n (y) − E red
n (ȳ) ≥ cconv

8

( n−1∑

i=1

|bi − b̄i |2

+
n−1∑

i=2

|ϕi − ϕ̄i |2
)
+
E

2
.
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For each i ∈ {1, . . . , n − 3} an elementary computation shows
∣∣|yi+3 − yi | − |ȳi+3 − ȳi |

∣∣ ≤ c
(|bi − b̄i | + |bi+1 − b̄i+1| + |bi+2 − b̄i+2|

+|ϕi+1 − ϕ̄i+1| + |ϕi+2 − ϕ̄i+2|
)

for some c > 0. (The argument is very similar to the one in (39) and we therefore omit
the details.) Consequently, we find a constant C̄ > 0 only depending on v′

2 such that

En(y) − En(ȳ) ≥ E red
n (y) − E red

n (ȳ) − C̄ ρ̄
( n−1∑

i=1

|bi − b̄i | +
n−1∑

i=2

|ϕi − ϕ̄i |
)

≥ cconv
8

( n−1∑

i=1

|bi − b̄i |2 +
n−1∑

i=2

|ϕi − ϕ̄i |2
)

+
E

2
− C̄ ρ̄

( n−1∑

i=1

|bi − b̄i | +
n−1∑

i=2

|ϕi − ϕ̄i |
)
.

Minimizing the last expression amounts to choosing each |bi − b̄i | and |ϕi − ϕ̄i |, equal
to 4C̄ ρ̄/cconv. Thus, we deduce

En(y) − En(ȳ) ≥ −(2n − 3)2C̄2ρ̄2/cconv + E/2.

This together with (56) yields the claim for crange = 4C̄2/cconv. ��

6. Proof of the Main Result

In this section we give the proofs of our main results Theorems 2.2–2.4. We firstly treat
the upper bound for the minimal energy. Afterwards, we tackle the lower bound and the
characterization of the almost minimizers.

Let us first define the function erange being the main object of Theorem 2.2. We
introduce the mapping ϒ : [2,∞) → ∞ by defining it on even periods as

ϒ(l) = 2/ l for l ∈ 2N (57)

and making it affine on [l, l + 2], l ∈ 2N. (Similarly to the definition of � in (30), the
fact that the function is piecewise affine is crucial for the characterization of minimizers
in Theorem 2.4.) Let M ⊂ (2/3, 1) be the closed interval introduced right before (6).
We now define the function erange : M → R by

erange(μ) = eperϒ(�−1(μ)) (58)

where the constant eper comes from (55). First, note that erange is well defined. Indeed,
�−1 exists due to the strict monotonicity of � and the image satisfies �([2, lmid]) ⊃ M
for ρ and thus ψ̄ sufficiently small (see Lemma 4.5 and recall that lmid = �6/ψ̄
).
Clearly, erange is piecewise affine since � and ϒ are piecewise affine. More precisely,
in view of (30), the points where erange is not differentiable are given by {μ = �(l)| l ∈
2N∩�−1(M)}. Recall that this set is denoted by Mres, cf. (10). Moreover, recall that the
values are given explicitly by formula (15), see also Lemma 4.3. Finally, the properties
that erange is increasing and convex follow from the facts thatϒ is decreasing and convex,
and �−1 is decreasing and concave.
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2/3 1
μ

1

erange(μ)

Fig. 10. The function erange

6.1. Upper bound for the minimal energy. Let us now address the upper bound for En,μ
min

in Theorem 2.2.

Proof of Theorem 2.2, upper bound. We first suppose that μ ∈ Mres, i.e., we find l ∈
2N ∩ [2, lmid] with μ = �(l). Let ymax,l ∈ U l be the configuration from Remark 4.7,
see (31). Now we consider the configuration ȳ ∈ An defined by

ȳi = ymax,l
1+(i−1)modl + �(i − 1)/ l
l�(l)e1 for 1 ≤ i ≤ n.

Similarly to Remark 4.7 and Fig. 8, recalling (21)–(22), we find that all bonds and angles
of ȳ (see (2)) satisfy bi = b̄ and ϕ̄i = π ± ψ̄ . Thus, E red

n (ȳ) = (n−2)ecell. By counting
the number of indices with sgn(ϕ̄i − π) �= sgn(ϕ̄i+1 − π), similarly to (56) we deduce

En(ȳ) ≤ (n − 3)egencell + ecell + 2�n/ l�ρ̄eper
≤ n

(
egencell + ρ̄erange(μ)

)
+ c (59)

for a constant c = c(ρ) > 0, where we used that 2eper/ l = eperϒ(l) = erange(μ), see
(57)–(58). Note that ȳ possibly does not satisfy the boundary conditions if n − 1 is not
an integer multiple of l. However, in view of the fact that b̄ ≤ 1, μ = �(l) ≤ 1 and
l ≤ lmax, we have ||ȳn− ȳ1|−(n−1)μ| ≤ 2lmax. Let ε = ((n−1)μ−|ȳn− ȳ1|)/|ȳn− ȳ1|
and note that y := (1 + ε)ȳ ∈ An(μ). It is not restrictive to suppose that n ≥ 8lmax as
otherwise (9) holds trivially. In that case, we find ε ∈ (−4lmax/(nμ), 4lmax/(nμ)) after
a short computation. Moreover, recalling the definition of the energy in (7) and the fact
that Ẽcell grows quadratically around (b̄, b̄, π ± ψ̄), we obtain

En(y) ≤ En(ȳ) + cn(ε2 + ρ̄ε)

for c = c(ρ) > 0. Thus, recalling the estimate for ε and (59), the minimal energy En,μ
min

introduced in (8) satisfies En,μ
min ≤ En(y)/(n − 2) ≤ egencell + ρ̄erange(μ) + c/n.

We now move on to the general case μ ∈ M . Choose μ′, μ′′ ∈ Mres such that
(μ′, μ′′)∩Mres = ∅ andμ = νμ′+(1−ν)μ′′ for some ν ∈ [0, 1]. Moreover, let l ′ ∈ 2N
such that μ′ = �(l ′) and μ′′ = �(l ′′), where l ′′ = l ′ + 2 ∈ [2, lmid]. For brevity, we set
N = l ′�νn/ l ′
 and consider the configuration ȳ ∈ An defined by

ȳi = ymax,l ′
1+(i−1)modl ′ + �(i − 1)/ l ′
l ′�(l ′)e1, for i ≤ N ,

ȳi = N�(l ′)e1 + ymax,l ′′
1+(i−N−1)modl ′′ + �(i − N − 1)/ l ′′
l ′′�(l ′′)e1 for i > N (60)
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for ymax,l ′ and ymax,l ′′ as introduced in (31). As before, we obtain E red
n (ȳ) = (n −

2)ecell + c for some c = c(ρ) > 0. Here, the extra term is due to the fact that
Ecell(ȳN , ȳN+1, ȳN+2) > ecell since ϕ̄N+1 �= π ± ψ̄ . Repeating the argument in (59), we
also find

En(ȳ) ≤ negencell + 2n(ν/ l ′ + (1 − ν)/ l ′′)ρ̄eper + c ≤ n
(
egencell + ρ̄erange(μ)

)
+ c,

where we used l ′ = �−1(μ′), l ′′ = �−1(μ′′), (57), (58), and the fact that erange is affine
on [μ′, μ′′]. Likewise, as in the first part of the proof, ȳ might not satisfy the boundary
conditions, but we find some ε ∈ (−c/n, c/n) such that y := (1 + ε)ȳ ∈ An(μ). Again
we can bound En,μ

min ≤ En(y)/(n − 2) ≤ egencell + ρ̄erange(μ) + c/n + cε2 + cρ̄ε. This
concludes the proof. ��

Asannounced right afterTheorem2.3, a chain involvingwaveswith different discrete-
wave periods (and wavelengths) can be energetically more favorable, even forμ ∈ Mres.
Consequently, almost minimizers cannot be expected to be periodic, but only essentially
periodic, i.e., periodic up to a small set of points, see (14). We close this section with an
example in that direction and show that the upper bound can be improved in terms of
the higher order error nρ̄2. Recall (11) and (12).

Corollary 6.1. Consider μ = �−1(l) ∈ Mres for l ∈ 2N ∩ [lmid/2, lmid]. Then for ρ

small enough the following holds:

(i) En,μ
min ≤ egencell + ρ̄erange(μ) + C2/n − C1ρ̄

2, where C1,C2 > 0 only depend on ρ.

(ii) For c = c(ρ) > 0 and ε > 0 small enough there exists an almost minimizer
y ∈ An(μ) with

#{ik ∈ C(y) | ∣∣|yik+1 − yik | − λ(μ)
∣∣ > ε}/n ≥ cρ̄.

Proof. We define the configuration ȳ as in (60) with l ′′ = l, l ′ = l − 2, and ν to be
specified below. It then turns out that

|ȳn − ȳ1| − (n − 1)�(l) ≥ −c + (n − 1)ν(�(l ′) − �(l ′′)),

where c = c(ρ) > 0 again accounts for boundary effects. For brevity, we write d =
�(l ′) − �(l ′′). Let ε = (n − 1)�(l)|ȳn − ȳ1|−1 − 1. For n large enough we find
1 ≤ (n − 1)/|ȳn − ȳ1| ≤ 2 by �([2, lmid]) ⊂ (2/3, 1), see Lemma 4.5. Thus, we
observe that ε ≤ 2c/(n − 1) − dν. We define y = (1 + ε)ȳ ∈ An(μ). Repeating the
arguments of the previous proof, we obtain

En(y) ≤ negencell + 2n(ν/ l ′ + (1 − ν)/ l ′′)ρ̄eper + c1 + nc1ε
2 + nc1ρ̄ε

= n
(
egencell + ρ̄erange(μ)

)
+ 2nρ̄eperν

(
1/ l ′ − 1/ l ′′

)
+ c1 + nc1ε

2 + nc1ρ̄ε (61)

for c1 = c1(ρ) ≥ 1. We further compute

c1ε
2 + c1ρ̄ε ≤ c1(8c

2/(n − 1)2 + 2d2ν2) + 2cc1ρ̄/(n − 1) − c1ρ̄dν

≤ c2/n + c2d
2ν2 − c1ρ̄dν (62)

for a larger constant c2 = c2(ρ) ≥ 1. By Lemma 4.3, (30), Lemma 4.5, and l ∈
[lmid/2, lmid] we find d ≥ c3 for a universal c3 > 0. Then in view of lmid = �6/ψ̄
,
l ≥ lmid/2, (55), and the fact that eper is independent of ρ, we derive

4eper
(
1/ l ′ − 1/ l ′′

)= 8eper/(l(l − 2)) ≤ c1d,
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provided that ρ is small enough (which implies that lmid is large). From (61)–(62) we
deduce

En(y) ≤ n
(
egencell + ρ̄erange(μ)

)
+ c1nρ̄dν/2 + c1 + c2 + nc2d

2ν2 − nc1ρ̄dν

= n
(
egencell + ρ̄erange(μ)

) − c1nρ̄dν/2 + c1 + c2 + nc2d
2ν2.

An optimization of the last expression in terms of ν leads to the choice ν = c1ρ̄/(4c2d)

and division by n − 2 gives (i). The configuration with ν = c1ρ̄/(4c2d) also satisfies
the property given in (ii), provided that c and ε are chosen sufficiently small. ��

6.2. Lower bound and characterization of minimizers. We first derive the lower bound
for the minimal energy (8). Afterwards, based on the lower bound estimates, we will
provide the characterization of configuration with (almost) minimal energy.

Proof of Theorem 2.2, lower bound. Let μ ∈ M and consider y ∈ An(μ). As before,
the bonds and angles (2) are denoted by bi and ϕi , respectively. Choose μ′, μ′′ ∈ Mres
such that (μ′, μ′′) ∩ Mres = ∅ and μ = νμ′ + (1 − ν)μ′′ for some ν ∈ [0, 1]. Let
l ′ = �−1(μ′), l ′′ = �−1(μ′′) = l ′ + 2 ∈ [2, lmid], and set l∗ = νl ′ + (1− ν)l ′′. We note
that l∗ = �−1(μ) since � is affine on [l ′, l ′′].

Outline of the proof: In Step 1 we identify the set of defects consisting of particles
where the cell energy deviates too much from the minimum. We will see that on the
complement of the defect set the results from Sect. 5 are applicable. In this context,
we partition the chain into various regions associated to even and odd discrete-wave
periods, where the periods l ′ and l ′′ will play a pivotal role. In Step 2 we estimate the
length of the various parts, particularly using the concavity of the mapping � (see (30)).
In Step 3 we provide estimates for the energy of the chain and based on Lemma 5.2,
Lemma 5.3, we derive relations between length and energy. Finally, in Step 4 we show
that it is energetically convenient if the chain consists (almost) exclusively of waves with
discrete-wave period l ′ and l ′′, from which we can deduce the statement.

Step 1: Partition of the chain. Choose 0 < δ ≤ δ0 with δ0 being the minimum of the
constants given in Lemma 4.9, Lemma 4.11, Lemma 5.2, and Lemma 5.3. We note that
δ0 only depends on the choice of v2, v3, and ρ, but is independent of ρ̄. Below in (84)
and (93) we will eventually choose ρ̄ sufficiently small in terms of δ0 whose choice then
only depends on v2, v3, and ρ.

Define the index set of defects by

Idef = {
i = 2, . . . , n − 1 | |bi−1 − b̄| > δ or |bi − b̄| > δ

or min{|ϕi − π − ψ̄ |, |ϕi − π + ψ̄ |} > δ
}

(63)

with b̄ and ψ̄ from Theorem 2.1. We introduce the set and the labeling

I∗
def = {1, n} ∪ Idef = {i1, . . . , i J }, J ∈ N. (64)

Notice that in the parts of the chain between indices I∗
def we will be in the position to

apply our results from Sect. 5. In particular,

Iwave = {i j | j = 1, . . . , J − 1, i j+1 − i j ≥ 2} (65)

denotes the indices of the first particles of these parts of the chain. Similarly to (41), we
let

Isgn = {
i = 3, . . . , n − 2 | i − 1, i, i + 1 /∈ Idef , ϕi > π, ϕi+1 < π

} ∪ Iwave. (66)
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We also introduce a decomposition of Isgn by (compare to (43))

Il
sgn = {i ∈ Isgn | i + k /∈ Isgn ∪ Idef for k = 1, . . . , l − 1, i + l ∈ Isgn ∪ Idef ∪ {n}}

(67)

for l ∈ N, l ≥ 2. We will also use the notation

Isgn, j = Isgn ∩ [i j , i j+1 − 2], Il
sgn, j = Il

sgn ∩ [i j , i j+1 − 2] (68)

for i j ∈ Iwave. As i j − 1 /∈ Isgn for i j ∈ I∗
def and i j /∈ Isgn for i j ∈ I∗

def \ Iwave, we
get

⋃
i j∈Iwave Isgn, j = Isgn and

⋃
i j∈Iwave Il

sgn, j = Il
sgn. Moreover, we introduce the

number of particles related to different discrete-wave periods by

n′
good = #Il ′

sgnl
′, n′′

good = #Il ′′
sgnl

′′, ngood = n′
good + n′′

good, Ngood = #(Il ′
sgn ∪ Il ′′

sgn)

(69a)

nodd =
∑

l∈2N+1
#Il

sgnl, Nodd =
∑

l∈2N+1
#Il

sgn (69b)

nbad =
∑

l∈2N,l �=l ′,l ′′
#Il

sgnl, Nbad =
∑

l∈2N,l �=l ′,l ′′
#Il

sgn (69c)

ndef = #Idef . (69d)

We indicate thewaveswith discrete-wave period l ′ and l ′′ as good since they are expected
to appear in a configuration minimizing the energy (7), cf. Theorem 2.4. On the other
hand, the other even discrete-wave periods are called bad. We also recall that in Sects. 4
and 5 we have seen that waves with odd discrete-wave period have to be treated in a
different way. Below we will show that the numbers nodd, nbad, and ndef are negligible
with respect to ngood. From the definitions in (64), (65), and (67) we also get

ndef + 1 ≥ #{i ∈ I∗
def | i + 1 ∈ I∗

def} = (n − 1) −
∑

i j∈Iwave
(i j+1 − i j )

= (n − 1) − ngood − nbad − nodd. (70)

Finally, we introduce the mean discrete-wave periods associated to the different parts.
First, for the even discrete-wave periods we set

lgood∗ = n−1
good

(
n′
goodl

′ + n′′
goodl

′′), lbad∗ = n−1
bad

∑

l∈2N,l �=l ′,l ′′
#Il

sgnl
2. (71)

On the other hand, for the odd discrete-wave periods we define

lodd∗ =
( ∑

l∈2N
rll

)−1 ∑

l∈2N
rll

2, (72)

where (rl)l∈2N is someadmissible sequence in (44)with
∑

l∈2N rll�(l) = L(
(#Il

sgn)l∈2N+1
)
.

Step 2: Length of the chain.Weconsider the indices Isgn and estimate the length of the
various contributions related to ‘good’, ‘bad’, and ‘odd’ discrete-wave periods. We start
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with the bad discrete-wave periods. Using the fact that � is concave (see Lemma 4.5)
and applying Jensen’s inequality, we deduce by (71)

∑

l∈2N,l �=l ′,l ′′
#Il

sgn l�(l) ≤ nbad�
(
n−1
bad

∑

l∈2N,l �=l ′,l ′′
#Il

sgn l
2
)

= nbad�(lbad∗ )

≤ nbad�(l∗) + nbad�
′(l∗)(lbad∗ − l∗),

where �′(l∗) denotes the right derivative of � at l∗. More precisely, if lbad∗ ∈ [l ′ −
1/2, l ′′ + 1/2], the strict concavity of � on [2, lmid] (see Lemma 4.5 and Remark 4.6)
imply

∑

l∈2N,l �=l ′,l ′′
#Il

sgn l�(l) ≤ nbad�(lbad∗ ) − nbadc�

≤ nbad�(l∗) + nbad�
′(l∗)(lbad∗ − l∗) − nbadc�

for a constant c� = c�(ρ) > 0. On the other hand, if lbad∗ /∈ [l ′ − 1/2, l ′′ + 1/2], using
again the strict concavity of � and l∗ ∈ [l ′, l ′′], we get

�(lbad∗ ) ≤ �(l∗) + �′(l∗)(lbad∗ − l∗) − c�,

possibly passing to a smaller constant c�. Summarizing, in both cases we get

∑

l∈2N,l �=l ′,l ′′
#Il

sgn l�(l) ≤ nbad�(l∗) + nbad�
′(l∗)(lbad∗ − l∗) − nbadc�. (73)

Likewise, again using (71) and the fact that � is affine on [l ′, l ′′], we get for the good
discrete-wave periods that

∑

l=l ′,l ′′
#Il

sgnl�(l) = n′
good�(l ′) + n′′

good�(l ′′) = ngood�(lgood∗ )

≤ ngood�(l∗) + ngood�
′(l∗)(lgood∗ − l∗). (74)

We now address odd discrete-wave periods. Recalling the definition of the maximal
length of odd discrete-wave periods in (44) and using (68), we derive

∑

i j∈Iwave
L(

(#Il
sgn, j )l∈2N+1

) ≤ L(
(#Il

sgn)l∈2N+1
)
.

Recall that � is concave. Then from (72), the fact that
∑

l∈2N lrl ≤ nodd (see (44) and
(69b)), and Jensen’s inequality we get

∑

i j∈Iwave
L(

(#Il
sgn, j )l∈2N+1

) ≤
∑

l∈2N
rll�(l) ≤

( ∑

l∈2N
lrl

)
�

(( ∑

l∈2N
lrl

)−1 ∑

l∈2N
rll

2
)

≤ nodd�(lodd∗ ) ≤ nodd�(l∗) + nodd�
′(l∗)(lodd∗ − l∗). (75)
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Now combining (73)–(75) and using (68) as well as ngood + nbad + nodd ≤ n − 1 (see
(70)) we derive

L := (n − 1)�(l∗) + ngood�
′(l∗)(lgood∗ − l∗) + nbad�

′(l∗)(lbad∗ − l∗)
+ nodd�

′(l∗)(lodd∗ − l∗)

≥
∑

i j∈Iwave

( ∑

l∈2N
#Il

sgn, j l�(l) + L(
(#Il

sgn, j )l∈2N+1
))

+ nbadc�. (76)

We close this step with an estimate about the contribution of Idef . Recall the defini-
tions of I∗

def and Iwave in (64)–(65). For each j ∈ {1, . . . , J − 1}, we define
λ j = (yi j+1 − yi j ) · e1. (77)

In view of the boundary conditions (yn − y1) · e1 = (n − 1)μ (see (6)) and the fact that
the length of each bond is bounded by 3/2 (see (1)), we find by (70)

∣∣∣(n − 1)μ −
∑

i j∈Iwave
λ j

∣∣∣ =
∣∣∣

∑

i∈I∗
def : i+1∈I∗

def

(yi+1 − yi ) · e1
∣∣∣ ≤ 3/2(ndef + 1). (78)

Step 3: Energy estimates. First, recalling (7), (64)–(65) and defining n j = i j+1 − i j +
1 ≥ 3 for i j ∈ Iwave, we get

En(y) =
J−1∑

j=2

E3((yi j−1, yi j , yi j+1)) +
∑

i j∈Iwave
En j

(
(yi j , . . . , yi j+1)

) − 2ρ̄ndef , (79)

where we used that, by the decomposition at each defect two longer-range contributions
are neglected and v2 ≥ −1. We consider the first sum. In view of the fact that the cell
energy Ẽcell is minimized exactly for (b̄, b̄, π + ψ̄) and (b̄, b̄, π − ψ̄) by Lemma 3.1,
(63) implies for j ∈ {2, . . . , J − 1}

J−1∑

j=2

E3((yi j−1, yi j , yi j+1)) =
J−1∑

j=2

Ecell(yi j−1, yi j , yi j+1) ≥ ndef(ecell + cdef) (80)

for a constant cdef = cdef(δ) > 0. As δ depends only on ρ, also cdef depends only on ρ.
On the other hand, if i j ∈ Iwave, we can apply Lemma 5.3 and get

En j

(
(yi j , . . . , yi j+1)

) ≥ (n j − 3)egencell + ecell + (2#Isgn, j − 3)ρ̄eper − n j crangeρ̄
2 +

E red
j

2
,

(81)

where for brevity we have set E red
j = E red

n j

(
(yi j , . . . , yi j+1)

) − (n j − 2)ecell. Here, we
have also used that the set Isgn, j coincides with the one considered in Sect. 5, see (41)
and (68).

Our goal is to estimate the sum in (79). As a preparation, we recall that |ecell−egencell| ≤
cρ̄, as observed below (54), and we calculate

∑

i j∈Iwave

(
(n j − 3)egencell + ecell

)
+ ndefecell ≥

( ∑

i j∈Iwave
(n j − 2) + ndef

)
egencell

− (ndef + #Iwave)cρ̄.
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Recalling n j = i j+1− i j +1, by an elementary computation, using (65) and (70), we find
that

∑
i j∈Iwave(n j − 2) = (n − 1) − #{i ∈ I∗

def | i + 1 ∈ I∗
def} − #Iwave = n − 2− ndef .

Thus, we obtain
∑

i j∈Iwave

(
(n j − 3)egencell + ecell

)
+ ndefecell ≥ (n − 2)egencell − (2ndef + 1)cρ̄, (82)

where we used that #Iwave ≤ ndef + 1, see (64)–(65). Similarly, we compute

−
∑

i j∈Iwave

(
n j crangeρ̄

2 + 3ρ̄eper
) ≥ −ncrangeρ̄

2 − #Iwave(2crangeρ̄2 + 3ρ̄eper)

≥ −ncrangeρ̄
2 − (ndef + 1)(2crangeρ̄

2 + 3ρ̄eper). (83)

Now combining (79)–(83) and using
∑

i j∈Iwave #Isgn, j = #Isgn, we derive

En(y) ≥ (n − 2)egencell + 2#Isgnρ̄eper − ncrangeρ̄
2

+ ndef(cdef − 2cρ̄ − 2crangeρ̄
2 − 3ρ̄eper − 2ρ̄)

− 2crangeρ̄
2 − 3ρ̄eper − cρ̄ +

∑

i j∈Iwave

1

2
E red

j .

As cdef = cdef(ρ) and crange = crange(ρ) are independent of ρ̄, we can select ρ̄ so small
that the last term in the first line can be bounded from below by ndefcdef/2 + ndef ρ̄eper.
Thus, we derive

En(y) ≥ (n − 2)egencell + 2#Isgnρ̄eper − ncrangeρ̄
2

+ ndef(cdef/2 + ρ̄eper) − crestρ̄ +
∑

i j∈Iwave

E red
j

2
(84)

for crest = 2crangeρ̄ + 3eper + c. The next steps will be to derive suitable lower bounds
for 2#Isgnρ̄eper and

∑
i j∈Iwave E

red
j /2 . We first estimate the latter. Recalling (68), (77),

and the definition of E red
j in (81), we find by Lemma 5.2

E red
j ≥ cel

n j

(
λ j −

∑

l∈2N
#Il

sgn, j l�(l) − L(
(#Il

sgn, j )l∈2N+1
)
+ n j

oddcodd − 4lmax

)2
+
,

where n j
odd = ∑

l∈2N+1 #Il
sgn, j l. Here, we have again used that the sets Isgn, j and Il

sgn, j
coincide with the ones considered in Sect. 5. By a computation similar to the one before
(82), using #Iwave ≤ ndef +1, we get

∑
i j∈Iwave n j = n−2−ndef +2#Iwave ≤ n+ndef ≤

2n. Then, taking the sum over all i j ∈ Iwave and using Jensen’s inequality, we derive

∑

i j∈Iwave
E red

j ≥ cel
2n

( ∑

i j∈Iwave

(
λ j −

∑

l∈2N
#Il

sgn, j l�(l)

−L(
(#Il

sgn, j )l∈2N+1
)
+ n j

oddcodd − 4lmax

))2
+
.
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Consequently, in view of (76), (78), and #Iwave ≤ ndef + 1, we find

∑

i j∈Iwave
E red

j

≥ cel
2n

(
(n − 1)μ − 3/2(ndef + 1) − L + nbadc� + noddcodd − 4(ndef + 1)lmax

)2
+
,

(85)

where we have also used
∑

i j∈Iwave n
j
odd = nodd, see (68) and (69b).

We now consider the term 2#Isgnρ̄eper. Recall that ϒ , defined in (57), is convex. By
Jensen’s inequality we compute with (69c) and (71)

∑

l∈2N,l �=l ′,l ′′
2#Il

sgn = nbad
∑

l∈2N,l �=l ′,l ′′
n−1
bad #Il

sgn lϒ(l) ≥ nbadϒ
(
n−1
bad

∑

l∈2N,l �=l ′,l ′′
l2#Il

sgn

)

= nbadϒ(lbad∗ ) ≥ nbad
(
ϒ(l∗) + ϒ ′(l∗)(lbad∗ − l∗)

)
, (86)

whereϒ ′(l∗) denotes the right derivative ofϒ at l∗. Likewise, for the good discrete-wave
periods using (69a), (71), and the fact that that ϒ is affine on [l ′, l ′′] we obtain

2Ngood = 2#(Il ′
sgn ∪ Il ′′

sgn) = n′
goodϒ(l ′) + n′′

goodϒ(l ′′) = ngoodϒ
(
n−1
good(n

′
goodl

′ + n′′
goodl

′′)
)

= ngoodϒ(lgood∗ ) ≥ ngood
(
ϒ(l∗) + ϒ ′(l∗)(lgood∗ − l∗)

)
. (87)

Finally, using (69b), (72), and the facts that
∑

l∈2N rl = ∑
l∈2N+1 #Il

sgn,
∑

l∈2N lrl ≥
nodd − 1 (see (44)) we obtain for the odd discrete-wave periods by ϒ(lodd∗ ) ≤ 1 and
Jensen’s inequality

∑

l∈2N+1
2#Il

sgn =
∑

l∈2N
2rl =

∑

l∈2N
rllϒ(l) ≥ (nodd − 1)ϒ(lodd∗ ) ≥ noddϒ(lodd∗ ) − 1

≥ nodd
(
ϒ(l∗) + ϒ ′(l∗)(lodd∗ − l∗)

) − 1. (88)

In view of (70), (84)–(88), the fact that μ = �(l∗), , and the definition of L in (76), we
now obtain the energy estimate

En(y) ≥ (n − 2)egencell + (n − 2)ϒ(l∗)ρ̄eper − ncrangeρ̄
2 + ndefcdef/2 − (crest + erange)ρ̄

+
(
ngoodϒ

′(l∗)(lgood∗ − l∗) + nbadϒ
′(l∗)(lbad∗ − l∗) + noddϒ

′(l∗)(lodd∗ − l∗)
))

ρ̄eper

+
cel
4n

(
(nodd + nbad)min{codd, c�} − 6(ndef + 1)lmax

− ngood�
′(l∗)(lgood∗ − l∗) − nbad�

′(l∗)(lbad∗ − l∗) − nodd�
′(l∗)(lodd∗ − l∗)

)2
+
. (89)

Step 4: Conclusion: We are now in the position of establishing the lower bound for
the energy. We will show that

1

n − 2
En(y) − (

egencell + ϒ(l∗)ρ̄eper
) ≥ −c

(
ρ̄2 +

ρ̄

n

)
(90)
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for a constant c = c(ρ) > 0. In view of the definition (58) and l∗ = �−1(μ), this
yields the claim. For brevity, we set β1 = ngood/(n − 2), β2 = (nbad + nodd)/(n − 2),
β3 = ndef/(n − 2), and l̃ = (nbadlbad∗ + noddlodd∗ )/(nbad + nodd). Moreover, we let

H = (
β1ϒ

′(l∗)(lgood∗ − l∗) + β2ϒ
′(l∗)(l̃ − l∗)

)
ρ̄eper and κ = �(l∗)/(ϒ ′(l∗)ρ̄eper).

(91)

Dividing (89) by n − 2, we see that, in order to derive (90), it suffices to show that

G := β3cdef/2 + H +
cel
8

(
β2 min{codd, c�} − 6(β3 + 2/n)lmax − κH

)2
+

≥ −C(ρ̄2 + ρ̄/n)

(92)

for C = C(ρ) > 0. (Without restriction, we have supposed that n ≥ 4 such that
n − 2 ≥ n/2.) To this end, we minimize the term on the right with respect to H and
observe that the minimum is attained when H satisfies

1 − κcel/4
(
β2 min{codd, c�} − 6(β3 + 2/n)lmax − κH

)
+ = 0,

which leads to

H = β2 min{codd, c�}/κ − 4/(κ2cel) − 6(β3 + 2/n)lmax/κ.

Thus, we obtain

G ≥ β3cdef/2 + β2 min{codd, c�}/κ − 4/(κ2cel) − 6(β3 + 2/n)lmax/κ + 2/(κ2cel).

We recall from (55) and (91) that 1/κ ≤ cρ̄ for a constant c = c(ρ) > 0. Consequently,
6lmax/κ ≤ cdef/4 when ρ̄ is chosen sufficiently small. (Recall that cdef = cdef(ρ), see
(80).) Since 1/κ ≤ cρ̄ and the constants cel, lmax depend only on ρ, this gives

G ≥ β3cdef/4 + β2 min{codd, c�}/κ − 2/(κ2cel) − 12lmax/(nκ)

≥ β3cdef/4 + β2 min{codd, c�}/κ − C(ρ̄2 + ρ̄/n) (93)

for C(ρ) > 0. The minimum is attained for β2 = β3 = 0 and thus (92) holds. This
concludes the proof. ��

We close with the characterization of almost minimizers.

Proof of Theorem 2.3 and Theorem 2.4. We treat the general case μ ∈ M considered
in Theorem 2.4, from which the proof of Theorem 2.3 can be deduced directly. Choose
μ′, μ′′ ∈ Mres such that (μ′, μ′′)∩Mres = ∅ andμ = νμ′+(1−ν)μ′′ for some ν ∈ [0, 1].
Let l ′ = �−1(μ′), l ′′ = �−1(μ′′) = l ′ + 2 and recall from (15) that λ(μ′) = l ′�(l ′)
and λ(μ′′) = l ′′�(l ′′). We also let l∗ = νl ′ + (1 − ν)l ′′ and observe that l∗ = �−1(μ)

since �−1 is piecewise affine. Suppose that nρ̄2 ≥ 1. In the following, C > 0 denotes
a generic constant which may always depend on ρ and lmax (and thus only on ρ, cf.
Remark 3.2).

Suppose that y ∈ An(μ) is an almost minimizer, see (12). From the proof of the
lower bound of Theorem 2.2 we derive that (84) and (89) hold. In particular, we recall
the notations G, H , β1, β2, and β3 in (91)–(92). By (89) and (58) we get

1

n − 2
En(y) ≥ egencell + ϒ(l∗)ρ̄eper − c

(
ρ̄2 + ρ̄/n

)
+ G

= egencell + ρ̄erange(μ) − c
(
ρ̄2 + ρ̄/n

)
+ G.
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Theorem 2.2, the fact that nρ̄2 ≥ 1, and (12) imply

En,μ
min + cρ̄2 ≥ 1

n − 2
En(y) ≥ En,μ

min − cρ̄2 + G (94)

which together with (93) gives β3cdef/4+β2 min{codd, c�}/κ ≤ C ρ̄2. As δ = δ(ρ) and
κ ≤ c′/ρ̄ for some c′ = c′(ρ) > 0 (see (91)), this yields

(nbad + nodd)/(n − 2) = β2 ≤ C ρ̄,

ndef/(n − 2) = β3 ≤ C ρ̄2,

ngood/(n − 2) = β1 ≥ 1 − C ρ̄. (95)

The last estimate follows from the fact that β1 + β2 + β3 ≥ (n − 2)/(n − 2) = 1, see
(70). Recall Ngood from (69a) and Isgn from (66). By (69b), (69c), and (95), we deduce

(#Isgn − Ngood)/ngood = (Nbad + Nodd)/ngood ≤ (nbad + nodd)/ngood ≤ C ρ̄. (96)

From (92), (94), and (95) we get H +(C ′ρ̄−κH)2+cel/8 ≤ C ρ̄2, whereC ′ = C ′(ρ) ∈ R.
Since 1/κ ≤ c′ρ̄ by (91), this implies |H | ≤ C ρ̄2 after some computations. Recalling
the definition of H in (91) and using (95), we find

|β1ϒ
′(l∗)(lgood∗ − l∗)ρ̄eper| ≤ C ρ̄2 + |β2ϒ

′(l∗)(l̃ − l∗)ρ̄eper| ≤ C ρ̄2

where lgood∗ was defined in (71). With (95) we get |lgood∗ − l∗| ≤ C ρ̄, which by (71) and
l∗ = νl ′ + (1 − ν)l ′′ implies

|lgood∗ − l∗| = |(n′
goodl

′ + n′′
goodl

′′)/ngood − (
νl ′ + (1 − ν)l ′′

)| ≤ C ρ̄. (97)

Using l ′′ − l ′ = 2 we obtain by a short computation

|n′
good/ngood − ν| + |n′′

good/ngood − (1 − ν)| ≤ C ρ̄. (98)

We introduce the parameter σ = 2ν/(l ′ϒ(l∗)) appearing in (17). Note that σ only
depends on μ, but is independent of y. Moreover, we have 1−σ = 2(1− ν)/(l ′′ϒ(l∗)).
This follows after some computations taking ϒ(l∗) = (2νl ′′ + 2(1 − ν)l ′)/(l ′l ′′) into
account, where the latter is due to l∗ = νl ′ + (1 − ν)l ′′ and the fact that ϒ , defined in
(57), is affine on [l ′, l ′′]. For later purpose, we also note that by 2Ngood = ngoodϒ(lgood∗ )

(see (87)), (96), and (97) we get

|2#Isgn − ngoodϒ(l∗)| ≤ |2Ngood − ngoodϒ(l∗)| + Cngoodρ̄

= ngood|ϒ(lgood∗ ) − ϒ(l∗)| + Cngoodρ̄ ≤ Cngoodρ̄ (99)

for a constant C depending also on the Lipschitz constant of ϒ . We now show that

|#Il ′
sgn − σ#Isgn|/n + |#Il ′′

sgn − (1 − σ)#Isgn|/n ≤ C ρ̄. (100)

Indeed, by using l ′#Il ′
sgn = n′

good, σ = 2ν/(l ′ϒ(l∗)), (98), and (99) we calculate

1

n
|#Il ′

sgn − σ#Isgn| = ngood
nl ′

|n′
good/ngood − σ#Isgnl ′/ngood| ≤ |n′

good/ngood

− ν| + C ρ̄ ≤ C ρ̄.
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For #Il ′′
sgn we argue likewise taking 1 − σ = 2(1 − ν)/(l ′′ϒ(l∗)) into account.

Now (100) is the starting point to prove (16)–(17). We have to show that most of the
waves satisfy (16). To this end, fix ε > 0 and recalling l ′�(l ′) = λ(μ′), l ′′�(l ′′) = λ(μ′′)
we define

Kbad =
⋃

l=l ′,l ′′
{i ∈ Il

sgn | ∣∣|yi+l − yi | − l�(l)
∣∣>ε},

as well as K′ = Il ′
sgn \Kbad and K′′ = Il ′′

sgn \Kbad. To conclude the proof of (16)–(17),
it now remains to show that

#Kbad/n ≤ Cερ̄ (101)

for a constant Cε = Cε(ε, ρ) additionally depending on ε. Indeed, the claim follows
from the definition of Kbad, (100), and the fact that |#C(y) − #Isgn| ≤ Cnρ̄2 (see (11),
(66), (69d), and (95)).

We now prove (101). Recalling (65), (67), and applying Lemma 4.9 we get

∑

l=l ′,l ′′

∑

i∈Il
sgn

(|yi+l − yi | − l�(l))2+ ≤ C
∑

i j∈Iwave
E red

j

for C = C(ρ), where the abbreviation E red
j was introduced in (81). Then, by using (84),

we find

∑

l=l ′,l ′′

∑

i∈Il
sgn

(|yi+l − yi | − l�(l))2+ ≤ C
(
En(y) − (n − 2)egencell − 2#Isgnρ̄eper

)
+ Cnρ̄2 + C ρ̄.

Then by (58), (95), (99), l∗ = �−1(μ), the fact that y is an almost minimizer (12),
Theorem 2.2, and nρ̄2 ≥ 1 we derive

∑

l=l ′,l ′′

∑

i∈Il
sgn

(|yi+l − yi | − l�(l))2+ ≤ Cnρ̄2.

By Hölder’s inequality we also derive

∑

l=l ′,l ′′

∑

i∈Il
sgn

(|yi+l − yi | − l�(l))+ ≤ C
√
Ngood

√
nρ̄2 ≤ Cnρ̄. (102)

In view of the boundary conditions (yn − y1) · e1 = (n − 1)μ (see (6)) and the fact that
the length of each bond is bounded by 3/2 (see (1)), we find by (70) and (95)

∑

l=l ′,l ′′

∑

i∈Il
sgn

|yi+l − yi | ≥ (n − 1)μ − 3

2
((n − 1) − ngood) ≥ (n − 1)μ

− 3

2
(ndef + nodd + nbad + 1)

≥ (n − 1)μ − C(nρ̄ + 1) ≥ (n − 1)μ − Cnρ̄, (103)
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where we again used that nρ̄2 ≥ 1. By (69a), (71), and (97) we find
∑

l=l ′,l ′′

∑

i∈Il
sgn

l�(l) = ngood�(lgood∗ ) ≤ (n − 1)�(l∗) + Cnρ̄ = (n − 1)μ + Cnρ̄ (104)

for a constant C depending on the Lipschitz constant of �. In the first equality we again
used that � is affine on [l ′, l ′′]. Combining (103) and (104) we get

−Cnρ̄ ≤
∑

l=l ′,l ′′

∑

i∈Il
sgn

(|yi+l − yi | − l�(l)).

This together with (102) shows
∑

l=l ′,l ′′
∑

i∈Il
sgn

∣∣|yi+l − yi | − l�(l)
∣∣ ≤ cnρ̄ and yields

(101). This concludes the proof of (16)–(17).
Finally, we recall that μ = νl ′ + (1− ν)l ′′ and σ = 2ν/

(
l ′ϒ(νl ′ + (1− ν)l ′′)

)
. Thus,

in case ν = 1 we have σ = 1 and in case ν = 0 we have σ = 0. Consequently, also the
special case described in Theorem 2.3 follows. ��
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