
Received: 11 August 2020 Accepted: 12 August 2020 Published on: 25 September 2020

DOI: 10.1002/net.21993

S P E C I A L I S S U E A R T I C L E

Secure and efficient routing on nodes, edges, and arcs of
simple-graphs and of multi-graphs

Georg E. A. Fröhlich1 Karl F. Doerner1,2 Margaretha Gansterer1,3

1Department of Business Decisions and Analytics,

University of Vienna, Vienna, Austria
2Data Science, University of Vienna, Vienna,

Austria
3Department for Operations Management and

Logistics, University of Klagenfurt, Klagenfurt,

Austria

Correspondence
Georg E. A. Fröhlich, Department of Business

Decisions and Analytics, University of Vienna,

Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

Email: georg.erwin.adrian.froehlich@univie.ac.at

Funding information
This research was supported by the FWF, the

Austrian Science Fund, Grant/Award Number:

P26973-N15.

Abstract
Many security companies offer patrolling services, such that guards inspect facili-

ties or streets on a regular basis. Patrolling routes should be cost efficient, but the

inspection patterns should not be predictable for offenders. We introduce this setting

as a multi-objective periodic mixed capacitated general routing problem with objec-

tives being cost minimization and route inconsistency maximization. The problem

is transformed into an asymmetric capacitated vehicle routing problem, on both a

simple-graph and a multi-graph; and three multi-objective frameworks using adap-

tive large neighborhood search are implemented to solve it. As tests with both

artificial and real-world instances show that some frameworks perform better for

some indicators, a hybrid search procedure, combining two of them, is developed

and benchmarked against the individual solution methods. Generally, results indi-

cate that considering more than one shortest path between nodes, can significantly

increase solution quality for smaller instances, but is quickly becoming a detriment

for larger instances.

KEYWORDS

adaptive large neighborhood search, inconsistency, multi-objective optimization,

vehicle routing, epsilon box splitting heuristic, multi-graph

1 INTRODUCTION

Security companies offer a range of services to protect objects (e.g., buildings, cash, other valuables) and people (e.g., personal

protection, patrolling services). To plan for and assign their personnel efficiently, these companies must resolve challenging

routing problems. Attacks theoretically could take place anywhere during the route; either at a point being serviced, or while

traversing between these point. Sometimes service points might make good targets to intercept transports, but not always;

military facilities, central banks, or locations with a high proximity to police stations are well-guarded and, therefore, not

attractive targets. In those cases, attacking vehicles while they are moving between them might be the more rational choice.

To complicate this for robbers, times of traversing the street segments or the street segments themselves can be varied. We

would argue that varying times alone is not sufficient, since this can cause street segments that are always traversed, but only

at different times, allowing for easy ambushes. Instead more emphasis should be put on how often street segments are used in

combination by how often the sequence of services show similarities.

Both visited nodes and traversed edges are relevant for solving this problem, which accordingly reflects a type of the general

routing problem (cf. [32]) and the node, edge, and arc routing problem introduced in [36].

We propose to model this problem as a multi-objective periodic mixed capacitated general routing problem

(MO-P-MCGRP), in which nodes, edges, and arcs must be visited regularly but with inconsistent routes to ensure the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2020 The Authors. Networks published by Wiley Periodicals LLC.

Networks. 2020;76:431–450. wileyonlinelibrary.com/journal/net 431

https://orcid.org/0000-0002-6653-5820
https://orcid.org/0000-0001-8350-1393
https://orcid.org/0000-0002-0039-4519
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.21993&domain=pdf&date_stamp=2020-09-25

432 FRÖHLICH ET AL.

FIGURE 1 Example of multi-graph with two arcs going from node C to node A [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Example of a node-based routing problem (3 tours) with low inconsistency over 2 periods (period 1 left; period 2 right) [Color figure can be

viewed at wileyonlinelibrary.com]

unpredictability of visiting or service patterns. This problem is NP-hard, since it is a generalization of the capacitated vehicle

routing problem (CVRP). Its two objectives are to minimize the cost and to maximize the route inconsistency. Because max-

imizing route inconsistency and minimizing route consistency are interchangeable, we model the problem with consistency;

a multi-objective problem becomes easier to represent if all objectives must be either maximized or minimized. But we will

refer to maximizing inconsistency, while measuring route consistency by how often an edge/arc gets traversed and how often

pairs of required nodes, edges, and arcs are serviced directly after one another. Since for most street segments ambushes could

be set on either side with nearly the same effect, we deemed the direction in which edges are traversed irrelevant for the route

consistency.

For solving the problem, we also use a conversion into a multi-graph, where several arcs with the same orientation can exist

between two nodes. Although MCGRPs often get converted into simple-graphs, this conversion can lead to a loss in solution

quality, whereas this issue can be mitigated with the use of a multi-graph. Figure 1 depicts a simple multi-graph with two arcs

from node C to A. Figures 2 and 3 both depict solutions for two periods, in which only the nodes need to be serviced. Figure 2

shows a very poor solution for inconsistency in that the sequence of nodes and used edges is the same in both periods. The

solution in Figure 3 is 7.25% worse for costs but 50% better in terms of inconsistency, because fewer edges are repeated, and

the sequence of nodes gets changed.

Although any multi-objective problem can be converted into a single-objective problem by weighting the individual objec-

tives and adding them, objectives that differ in their nature might be more difficult to combine, such as a monetary objective

(costs) and a non-monetary objective (inconsistency). Therefore, it might be more practical to solve the multi-objective problem

by finding the Pareto set, or a set of non-dominated solutions, and then suggesting rules for choosing from this set. Further-

more, decision makers might not want to share their precise preferences regarding objectives a priori (cf. [15]), in which case

the appropriate conversion of a multi-objective problem into a single-objective more difficult.

Dominance in the context of multi-objective problems arises in the following way: Assume two solutions S1 = {s11, … , s1n}

and S2 = {s21, … , s2n}, where sij refers to the individual objective values that must be minimized. Solution S1 dominates S2

if the following holds: s1j ≤ s2j for all objectives and s1j < s2j for at least one objective. A solution not being dominated by any

solution, is part of the Pareto set. Solutions of the Pareto set can furthermore be classified into supported and non-supported

solutions. For this, the relevant criterion is whether there exists a combination of weights for a weighted sum of objectives such

that the solution is optimal. For example, assume {1, 0}, {0.51, 0.51}, and {0, 1} are non-dominated solutions for a problem;

{1, 0} and {0, 1} are supported, but {0.51, 0.51} is not. The conversion of a multi-objective problem into a single-objective

problem via weighing the objectives would therefore only allow supported solutions of the Pareto set to emerge and thus might

exclude or ignore some promising trade-off solutions.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

FRÖHLICH ET AL. 433

FIGURE 3 Example of a node-based routing problem (3 tours) with increased inconsistency (compared to Figure 2) over 2 periods (period 1 left; period 2

right) [Color figure can be viewed at wileyonlinelibrary.com]

In our effort to contribute to this field of research, we:

• Introduce our proposed MO-P-MCGRP as a means to minimize cost and consistency (maximize route inconsistency)

and mathematically formulate its conversion to a node-based formulation on a multi-graph.

• Develop an adaptive large neighborhood search (ALNS)-based algorithm for the single-objective problem and embed it

into three multi-objective frameworks.

• Analyze performance using artificial and real-world instances for simple- and multi-graphs. All instances are made

publicly available on the BDA homepage [3].

• Deliver insights on the trade-off between cost and inconsistency according to the real-world instances.

• Show that the solutions benefit from a higher degree of freedom provided by the multi-graphs and also specify how the

gain may differ with target performance indicators and problem sizes.

In Section 2 we discuss related literature. Then in Section 3, we provide a problem description for the MO-P-MCGRP

and the conversion of the MO-P-MCGRP, followed by the ALNS procedure and its incorporation into multi-objective

frameworks in Section 4. After we present the computational study in Section 5, we summarize the findings and their impli-

cations in Section 6. Additionally, the detailed mathematical model of the conversion of the MO-P-MCGRP can be found

in the Appendix.

2 LITERATURE REVIEW

Reflecting our focus on a MO-P-MCGRP and security aspects, we discuss research contributions pertaining to (1) routing with

security aspects, (2) MCGRP, (3) multi-graphs, and (4) multi-objective problems.

A safe and secure routing problem arises when cash or patrol guards must be transported or scheduled. In cash-in-transit

operations and patrolling, unpredictability is a crucial issue that usually is addressed by paths that are inconsistent in their

routes or times. Route inconsistency requires the adoption of different edges and arcs; time inconsistency implies performing

the service at different points in time. We focus on route inconsistency. The m-peripatetic vehicle routing problem (m-PVRP),

which aims at route inconsistency, is analyzed in [31], where a hybrid tabu search is used. In [50], the authors consider a security

problem with three service types and assume that some nodes must be visited only once, while others are served multiple times.

A third set of services refers to alarms, which are not known a priori. The authors use a two-stage approach, such that they first

cluster the alarms according to a capacitated p-median algorithm and then solve the routing and scheduling problems with an

adapted version of alternate k-exchange reduction, which builds a set of initial solutions and the improves them via local search

[51]. Cost-effective routing including security aspects is considered in [52], where the problem is split into subproblems, solved

with CPLEX. A solution is considered secure if not too many routes within it are similar, defined by the number of demand

points visited at similar points in time. In studies of a periodic VRP with time windows and time spread constraints, authors use

an iterated granular tabu search [21] or a multi-start iterated local search [30]. Visiting a node at a point in time that is too close

to a previous visit of the node is deemed insecure. Multiple heuristics, like iterated local search and an ant colony optimization

for the risk constrained cash-in-transit VRP [41, 42], might involve risk defined as the amount of money being transported at

a given point in time. The proposed methods aim to find cost effective solutions, at a risk level below a given threshold. The

methods’ authors provide several new benchmark instances for their problem. In [43], the authors introduce the multi-objective

risk-constrained problem with two objectives, namely cost and risk minimization. Risk in their case is the sum product of money

http://wileyonlinelibrary.com

434 FRÖHLICH ET AL.

and the distance it gets transported. Their multi-objective optimization method is based on iterated local search. However, they

do not focus on generating a Pareto set approximation but instead attempt to integrate the decision maker’s preference into the

optimization process by providing a subset of appropriate solutions.

The single-objective MCGRP has been analyzed from several research groups. In [8], the authors use an integer program-

ming model and branch-and-cut algorithm to introduce the problem and provide benchmark instances (MGGDB). In [7], a

matheuristic is applied to the newly introduced problem. This method consists of a destroy-and-repair algorithm for diversifica-

tion, a variable neighborhood descent for local search, and the aforementioned branch-and-cut algorithm. A memetic algorithm

for the MCGRP as well as a new set of instances (CBMix) are introduced in [36]. Further instances (BHW and DI-NEARP)

as well as a lower bound procedure are provided in [1]. Most of the currently best known results for these instances have been

firstly published in [12], where an adaptive iterated local search is used, and [45], where the multi-start iterated local search

from [35] and the unified hybrid genetic search from [46, 47] are applied. Most of the best lower bounds for BHW, CBMix, and

MGGDB are either reproduced or found in [2]. The authors apply a branch-and-cut-and-price algorithm that combines cut gen-

eration and column generation. Multi-objective versions of the MCGRP are also studied in [19]. The authors focus on cost and

route balance, with multiple different measurements. A set-partitioning model and the box splitting method from [20] are used

to solve some of the smaller MGGDB instances. Besides those problems, MCGRPs with some more restrictions are studied in,

for example, [10], where a branch-price-and cut is applied to a MCGRP with time windows. A MCGRP with turn penalties is

presented in [45]. The same problem is investigated in [9], where it is transformed into a VRP and then solved via a memetic

algorithm. A MCGRP with stochastic demands is tackled in [6], where a branch-and-cut as well as a matheuristic combining

local search and branch-and-cut are proposed.

Several heuristics convert the MCGRP into a VRP with the shortest paths connecting the nodes of the VRP, but for some

routing problems conversion schemes into a simple-graph are not sufficient. This is pointed out in [16]. The authors note that

once multiple attributes are defined on arcs or edges, a transformation of a problem into a standard VRP can lead to the risk of

losing optimality and good solutions. They conduct experiments with simple- and multi-graphs and show that improvements

can be gained with the latter. In [24], the authors perform some similar experiments for a heterogeneous VRP with limited

duration with two arcs between any pair of vertices. They make similar observations as [16]. A multi-graph for a time dependent

alternative VRP, where time windows and travel times depend on the time of the day, is studied in [48]. From the two edges

between any pair of nodes, the first has a time-dependent travel speed distribution, while the second has an, except for peak

hours, far longer, but constant travel time. A multi-graph is also used in [40], where a VRP with arrival time diversification is

investigated. The authors assume that customers must be serviced multiple times. The aim is to optimize costs, while having

sufficiently different service times at each customer. It is shown that that the increased flexibility due to the multi-graph enables

for better solutions.

For multi-objective problems several solution approaches are developed. In [29], the authors compare the 𝜀-constraint

heuristic (ECH) and 𝜀-box splitting heuristic (EBSH) while using the hybrid genetic search from [46]. They then compare their

method to the greedy randomized adaptive search procedure with advanced starting point introduced in [33] and the multi-start

split-based path relinking in [23]. However, the results of [29] show that ECH and EBSH are significantly better than the

other two. Multi-directional local search (MDLS) is proposed in [44]. The authors show that they perform comparable to other

state-of-the-art methods for multiple problems like the non-dominated sorting genetic algorithm [13], the strength Pareto evo-

lutionary algorithm 2 [54], the multi-objective genetic local search [22], and the multi-objective evolutionary algorithm based

on decomposition [53]. MDLS, ECH, and EBSH need an underlying heuristic. For this, we use ALNS, which is a renowned

metaheuristic that has been successfully applied to several planning problems (e.g., [17, 34, 39]) including a multi-graph in [4].

Furthermore, an ALNS is presented in [12], where it is used to generate benchmark results for several of the MCGRP instances.

Hence, it is considered a valid approach for our extension.

Compared to the found literature on MCGRP we are, to the best of our knowledge, the first to tackle the MCGRP with

the two objectives cost minimization and route inconsistency in a multi-objective setting. Route inconsistency is measured by

the number of times an arc or edge is traversed, excluding service, and by how often required elements are visited in the same

order. The former aspect of route inconsistency has similarities to the m-PVRP (e.g., [31]), since it is based on edges and

arcs. Conversions of the MCGRP into a simple-graph are already performed in [12, 45], but not into a multi-graph, since their

problems are not facing the risk loss of optimality as pointed out in [16] when converting them. Additionally, MDLS, ECH, and

EBSH have not been used on a multi-graph before.

FRÖHLICH ET AL. 435

FIGURE 4 Transformation of a MCGRP to a CVRP. Full circles and lines represent required nodes/edges/arcs. Double-sided arrows represent two arcs

going in opposite directions [Color figure can be viewed at wileyonlinelibrary.com]

3 PROBLEM FORMULATION

3.1 Problem description
The MO-P-MCGRP can be represented on a graph GMO−P−MCGRP = (N ∪E ∪A), where N, E, and A are the sets of nodes,

edges, and arcs, respectively. Every period, subsets, composed of the required nodes NR ⊆N, edges ER ⊆E, and arcs AR ⊆A,

must be serviced by a fleet of vehicles that must start and end their routes at the depot, each with a limited capacity. Traveling

on edges and arcs causes costs. For the required nodes, edges, and arcs, we consider additional costs for service and demands.

The MO-P-MCGRP has two objectives: (1) cost minimization and (2) maximization of route inconsistency (expressed as

minimization of route consistency) between different periods.

For route inconsistency, we assume an adapted version of the R-type distance [28]. For two sequences p = (p1, … , pn) and

q = (q1, … , qm), the R-type distance d(p, q) is the number of times pi− 1 does not immediately follow pi in q for i = 1, … , n− 1.

We adapt this measure so that we can consider inconsistency in regard to nodes, edges, and arcs. We assume that inconsistency

diminishes if.

1. An edge or arc is used more than once ignoring the direction, in which edges are traversed. This point does not apply to

required edges or arcs (ER, AR), if they are serviced.

2. Two required nodes, edges, or arcs directly follow each other. This point applies even if non-required nodes, edges, or

arcs are traversed in between them.

For this, we determine how often (x) every edge and arc is traversed (excluding service) and set the generated consistency

vl of the individual segment l to x− 1. Similarly, we determine how often (y) a specific required node, edge, or arc i is serviced

directly before servicing a second required node, edge, or arc j, and set the generated consistency vij to y− 1.

3.2 Transformation of the Mixed Capacitated General Routing Problem to the Capacitated
Vehicle Routing Problem
The MCGRP can be transformed to an asymmetric CVRP on a complete graph GCVRP = (V , A) [45]. The union set of required

nodes, edges, and arcs (NR, ER, and AR) and the depot N0 composes a set of nodes V ≔NR ∪ER ∪AR ∪N0. We use the term point

of interest (POI) to refer to any node resulting from this transformation, to differentiate them from the nodes on the original

graph. The paths between all POIs in V are calculated to create a complete set of arcs A. However, POIs that were edges before

need special consideration. They can be represented as two sub-POIs, from which only one must be visited, or there might be

multiple shortest paths between them and other POIs, which would result in a multi-graph.

Figure 4 shows such a transformation. The three full nodes, the full edge, and the full arc require service. The arc is converted

into a POI, and the edge is converted into one POI with two sub-POIs, of which only one must be visited. The double-sided

arrows simplify the figure and do not represent edges but instead reflect two arcs going in opposite directions. It is important

to note that paths of the conversion often consist out of several edges and arcs from the original problem. This information has

to be stored, to calculate route inconsistency. Figure 5 shows the original edges and arcs used for the path from node 3 (N3) to

node 1 (N1) and for the path from node 1 (N1) to node 2 (N2).

http://wileyonlinelibrary.com

436 FRÖHLICH ET AL.

FIGURE 5 Paths of created CVRP on the original MCGRP. Bold dotted and dashed line in the MCGRP illustrate the paths used for the bold dotted and

dashed line in the CVRP [Color figure can be viewed at wileyonlinelibrary.com]

3.3 Transformation of the multi-objective periodic mixed capacitated general routing problem
The transformation in Section 3.2 has some limitations when being applied in the same manner to the MO-P-MCGRP. In the

case of the standard MCGRP, the objective is to minimize costs and calculating the shortest paths between the new POIs is

sufficient to guarantee that an optimal solution on GCVRP is an optimal solution on GMCGRP. This outcome does not hold for the

MO-P-MCGRP. Instead, it requires a multi-graph, in which multiple arcs can exhibit the same orientation between two nodes.

To guarantee that the non-dominated solutions on the multi-graph are also non-dominated on the original graph, all

non-dominated paths between two POIs for a given orientation must be included in the multi-graph, which is easy to show:

1. When having all possible paths a non-dominated solution on the multi-graph is non-dominated on the original graph.

2. Exchanging a dominated path with a path that dominates it only improves a solution.

In this case, a path pij = {v1, … , vm} between POIs i and j, consisting of segments v1 to vm, dominates a path

qij = {w1, … , wm}, if there exists at least one segment of qij that is not in pij, and every segment of pij is in qij.

4 METHODS

The preprocessing of the multi-graph and the ALNS and the three multi-objective frameworks (MDLS, ECH, EBSH) and a

combination of them (EBSH*), which share the former two as basic components, are described in the following subsections. We

decided to use an ALNS with similar mechanism as presented in [12]. The dominance of this method is shown on the SINTEF

homepage [38], where benchmarks for several instances along with the respective publications are presented.

Note that in [45] slightly better results with an alternative solution representation are presented. This representation is used

in the genetic algorithm by [46] and the iterated local search by [35]. These results are, however, not provided on the SINTEF

homepage. According to [45], the approach relies on the solution representation and very efficient move evaluation tailored for

the single-objective problem. Since an adaption to the multi-objective problem is not straightforward, and ALNS comes very

close in terms of solution quality, we decided to stay with ALNS.

4.1 Basic component: Multi-graph generation
For creating multi-graphs, we reimplemented an algorithm described in [26] to determine the k-shortest paths with a specified

diversity. Note that other recent research on multi-graphs, where non-dominated solutions are created, does exist (e.g., [5, 25]).

However, they focus on a VRP with time windows, where cost and traversal time are taken into account. This allows for far

easier and stronger cuts based on domination during the paths generation. Furthermore, it should be noted that the road-network

of our real-world instances contains more than 20 000 nodes and 50 000 edges and arcs. This is by far larger than the largest

networks in [25], where 500 nodes and 744 edges and arcs are included. Besides the problem of computational complexity

in producing large networks, additional paths cause a higher computational effort during the ALNS. Therefore, we decided

to rather generate a low number of high quality paths; results in Section 5.3 indicate that this was already sufficient for even

slightly larger instances, as they deteriorate for some indicators when using three paths.

For the individual multi-graph segments between two nodes s and t with k-diverse shortest paths, we start with generating

the first shortest path via the Dijkstra algorithm [14]. From this path {s, x1, … , xn, t} we generate all partial, deviating parts

without loops and enter them into a priority queue (see Algorithm 1, lines 1-4). For this, first all partial parts pi = {s, x1, … , xi}

http://wileyonlinelibrary.com

FRÖHLICH ET AL. 437

are generated. Then every partial path is extended from the end node xi to every possible neighbor nj(xi), except to the for-

mer successor. The resulting sets of deviating partial paths could be described as P(pi) = {{s, x1, … , xi, nj(xi)}| nj(xi)≠ xi+ 1}.

Thereafter, we enter a loop for extending the most promising partial path in the priority queue until we have either generated

the remaining k− 1 paths or there are no paths to extend. The partial paths are extended in the same manner as above, unless

they do not have a successor. Obviously, paths that create loops ({s, … , xi, … , xi, … }) or that are already dominated by other

paths are removed (see Algorithm 1, lines 5-13).

To determine the most promising path, a lower bound for the minimum length required to satisfy the diversity is calculated.

To measure similarity between two paths Si and Sj, we use the intersection length
(

L(Si∩Sj)
L(Si∪Sj)

)
, where we assume a maximum of

80%. This measure of similarity deviates from the one in the multi-objective frameworks later used, but also strengthens the

bounds. Thus, the path generation algorithm is accelerated significantly. Therefore, we would receive the lower bound (LB) for

a partial path p due to an already accepted path Si of.

L(Si ∩ p)
L(Si ∪ p)

≤ 0.8 ⇒ LB(p) ≥ 2.25 × L(Si ∩ p) − L(Si). (1)

In addition to the lower bounds from already accepted paths, there is also the lower bound for the shortest distance from the

current end node x of a partial path p to t, resulting in.

LB(p) ≥ L(p) + L(x, t). (2)

Algorithm 1. Multi-graph generation for k paths between s and t

1: S1←performDijkstraAlgorithm(s, t)
2: S← S1

3: PQ←generateAllPartialPaths(S1)

4: PQ←filterLoopingPathsAndSetLowerBounds(PQ, S)

5: while !PQ. empty ∧ S.size < k do
6: NP←extendMostPromisingPath(PQ)

7: NP←filterLoopingPathsAndSetLowerBounds(NP, S)

8: PQ←PQ∪NP
9: if SS. size + 1←includesNewFullPathSatisfyingDiversity(NP) then

10: S← S∪ SS. size + 1

11: PQ←setLowerBounds(PQ, S)

12: end if
13: end while
14: return S

4.2 Basic component: Adaptive large neighborhood search
Using destroy and repair operators (d and r), ALNS iteratively selects pairs to apply to the incumbent solution s. The selection is

based on scores updated in regular intervals of size 𝜈, assigned to the used operators on the basis of their performance. Finding

a new best solution s*, a new incumbent solution s, or a previously unidentified solution are events that prompt the awarding

of a score to the pair of operators. Following any updates, the old scores are replaced by new scores. The new solution s′ then

undergoes an acceptance test via simulated annealing (SA) to determine, whether it is accepted as new incumbent solution or

not. SA has a temperature and a cooling parameter. As long as the temperature is high, the likelihood of solutions being worse

than the current one to be accepted is also high - promoting diversification. Cooling indicates how much the temperature is

lowered in each iteration. This process repeats until it reaches a given stopping criterion (see Algorithm 2, lines 1-4, 8, 14-20).

For the operators, we mostly follow [34]:

1. Destroy Random: Random POIs are removed.

2. Destroy Worst: The most beneficial removals are executed.

3. Destroy Related: A random POI r is selected and removed together with a number of POIs that are closest in distance to r.

4. Destroy Small: POIs with the smallest demands are removed.

5. Destroy Route: A route is randomly selected. All POIs included in this route are removed.

6. Destroy Historical Pair: A pair of POIs ij with the largest historical values is removed. The historical value of ij is the

best objective value observed for a route that includes ij.
7. Repair Random: POIs are inserted into random positions.

438 FRÖHLICH ET AL.

8. Repair Greedy: POIs are sequentially inserted into the position that leads to the smallest increase in cost.

9. Repair Regret: POIs are sequentially inserted into the position with the highest opportunity cost.

For all operators except for 1, 5, and 7, we include noise factors u, which we randomly draw from an interval

U = [1−𝜓 , 1+𝜓]. The values used to select POIs are multiplied by 1+ u, which increases diversification, because operators

1 and 7 are only used if no new best solution has been found for several iterations.

For further diversification, we design the operators such that promising but infeasible solutions are generated as well. For this

effort, capacity and vehicle violations are included but penalized. We adjust penalties during the search procedure, depending

on the number of observed violations. The objective values used for determining whether a new solution should be accepted or

not are as follows:

1. s.objValue = s. cost+𝜔cap × s.vCap+𝜔route × s.vRoute
2. s.objValue = s.cons+𝜔cap × s.vCap+𝜔route × s.vRoute
3. s.objValue = s.cost+𝜔cap × s.vCap+𝜔route × s.vRoute+𝜔cons × s.vCons

The first and second values apply to the MDLS, and the third applies to the EBSH and ECH. Here, 𝜔cap, 𝜔route, and 𝜔cons
are the penalties for each unit of capacity, route, and consistency violation, respectively.

The ALNS is strengthened by a variable neighborhood decent (VND), which initiates if an incumbent solution is within a

given percentage of the best solution or better. Hence, the VND intensifies good solutions (see Algorithm 2, lines 5-7). The

following operators then follow the first fit procedure:

1. Swap: Two POIs are swapped.

2. Or-Opt Route: Three paths of a route are removed and reconnected such that the POI sequences remain unchanged.

3. 2-Opt Route: Two paths of a route are removed and reconnected.

4. 2-Opt Different Routes: Two paths of different routes are removed and reconnected.

5. Flip: A path is removed and reinserted after the sequence being flipped.

If no new best solution results after a given number of iterations 𝜙, operators 1 and 7 as well as VND are applied to the

incumbent solution (see Algorithm 2, lines 9-13).

Considering route inconsistency increases the amount of stored data for the ALNS significantly, because we store for every

path a vector of components, whose average size typically increases with larger instances. Furthermore, the move evaluation

becomes far more costly, since for every path to be changed, the changes in inconsistency due to its components (i.e., edges and

arcs of the original MO-P-MCGRP) must be calculated.

Consequently, by using a multi-graph, the average computation time of almost all operators is increased as well. In particular

because of the increased number of operations that must be evaluated. For destroy operators (besides operator 2), the increase

is negligible, since only disruptions in the routes after removing POIs must be fixed. This is done by finding the path, where

the smallest increase in objective value is observed. For destroy operator 2, the best path to reconnect the multi-graph has to be

determined, every time removal benefits are observed. Complexity increases of repair operators 8 and 9, where calculation of

insertion costs requires to determine the pair of paths yielding the smallest increase in objective value. These time consuming

operations, quadruple on a multi-graph with two paths, and increase by a factor of 9 if three paths are considered. We tried to

reduce this increase by cutting-off calculations once we observe that insertion costs will not decrease. However, computational

complexity is still huge. The same applies to VND’s neighborhoods, where, however, the impact is reduced due to VND’s share

of computation time being smaller.

4.3 Solution approach: Adaptive large neighborhood search-based multi-directional local search
For MDLS, introduced in [44], first a set S of non-dominated solutions is created. This is followed by a random selection of

a solution out of this set. A single-objective heuristic for every objective is applied, such that a new solution per objective is

created. Non-dominated solutions are added to S. The procedure is repeated until a stopping criterion is met (see Algorithm 3

and Figure 6).

The ALNS described in Section 4.2 is used to optimize costs and inconsistency. To create the initial set of non-dominated

solutions, we use the proposed ALNS, such that we generate:

• 3 solutions using the single-objective ALNS for costs.

• 1 solution by iteratively including previously non-inserted POIs in each period, to fulfill capacity and inconsistency

restrictions. If there is no such position available, then we insert the POI at a random position.

• 30 solutions using a random construction heuristic, such that the POIs are selected randomly and inserted into a random

route that can meet capacity restrictions.

We then filter the non-dominated solutions from this set of 34 solutions.

FRÖHLICH ET AL. 439

FIGURE 6 MDLS—initialization and first iteration. Top left: Initially generated solutions. Top right: Non-dominated solutions from the initial set. Bottom

left: Old solutions with two newly created solutions D and E from the randomly selected solution B. Bottom right: Non-dominated solutions from the old and

newly created solutions [Color figure can be viewed at wileyonlinelibrary.com]

Algorithm 2. Adaptive-Large-Neighborhood-Search

1: {s′, s, s*}←generateInitialSolution()

2: while stoppingCriterionNotReached do
3: {d, r}←selectDestroyAndRepairOperators(D, R, scores)

4: s′ ← r(d(s))

5: if s′. objective <𝜇 × s*. objective then
6: s′←VND(s′)
7: end if
8: {s, s*, scores′, f }←acceptanceTest(s′, s, s*, scores′, d, r, f)

9: if f = 𝜙 then
10: s←randomDestroyAndRepair(s)

11: s←VND(s)

12: f ← 0

13: end if
14: n← n + 1

15: if n = 𝜈 then
16: {scores, scores′}←updateScores(scores, scores′)
17: n← 0

18: end if
19: end while
20: return s

Algorithm 3. Multi-Directional-Local-Search

1: S←generateInitialSolutions()

2: while stoppingCriterionNotReached do
3: s←selectRandom(S)

4: for objective∈Objectives do
5: s′←ALNSobjective(s)

6: S← S∪ s′
7: end for
8: S←filterNonDominatedSolutions(S)

9: end while
10: return S

http://wileyonlinelibrary.com

440 FRÖHLICH ET AL.

4.4 Solution approach: Adaptive large neighborhood search-based ε-constraint heuristic
The second multi-objective solution approach for the MO-P-MCGRP is ECH, which is based on the 𝜀-constraint method

[18]. First, it generates an initial solution by solving the single-objective problem with the aim to minimize costs using

ALNS (see Section 4.2). This solution’s consistency (secondObjective) provides a constraint (𝜀-constraint), when solving the

single-objective problem for the cost objective via ALNS, which has a time limit. This step repeats with the least consistent

solution found so far (S.last) until no new solution fulfilling the 𝜀-constraint can be found or a time limit for the ECH has been

reached (see Algorithm 4).

Algorithm 4. 𝜀-Constraint-Heuristic

1: S←generateInitialSolution()

2: 𝜀← S.last.secondObjective
3: do
4: newSolutionFound ← false
5: s′← ALNScost(S.last, 𝜀)

6: if s′.secondObjective < 𝜀 then
7: S← filterNonDominatedSolutions(S∪ s′)
8: newSolutionFound ← true
9: 𝜀← S.last.secondObjective

10: end if
11: while newSolutionFound
12: return S

4.5 Solution approach: Adaptive large neighborhood search-based ε-box-splitting-heuristic
Similar to ECH, EBSH starts by solving the single-objective problem for the first objective heuristically (see Section 4.2).

After determining a box of the non-dominated area, an iterative procedure starts, in which: (1) parameter 𝜀 is calculated on the

largest box by splitting the box in two equal halves, (2) the single-objective problem including the 𝜀-constraint gets solved via

ALNS, and (3) the boxes and solutions are updated [29]. The algorithm stops if no boxes are left or a time limit is reached (see

Algorithm 5).

To set the box sizes, this procedure assumes that both objectives are to be minimized. The first box uses the initial solution

as one corner point and the lower/upper bound for the second/first objective. If a new solution emerges, all boxes are updated,

and the dominated area is removed. If a box is split and no new solution emerges, the examined area can be removed as well,

because there is thus a high probability that no Pareto solution is included (see Figure 7).

Algorithm 5. 𝜀-Box-Splitting-Heuristic

1: S←generateInitialSolution()

2: B←initializeBoxes()

3: whilestoppingCriterionNotReached do
4: {s, 𝜀}←findLargestBox()

5: s′←ALNScost(s, 𝜀)

6: if s′.secondObjective < 𝜀 then
7: {S, B}←filterNonDominatedSolutionsAndUpdateBoxes(S, s′, B)

8: end if
9: end while

10: return S

4.6 Solution approach: Adaptive large neighborhood search-based two-stage approach
of ε-box-splitting-heuristic and consistency-ALNS
Our results for the real-world instances in Section 5.3 indicated that EBSH was delivering on average the best results for all

except one indicator (range covering). For this indicator, MDLS performed better. This was mostly due to MDLS finding more

FRÖHLICH ET AL. 441

FIGURE 7 EBSH—Updating boxes. Top left: Box of solution A before splitting with blue line representing 𝜀-constraint. Top right: Boxes of solutions A

and B after splitting. Bottom: Boxes of solutions A and B after splitting and removing examined solution space of A’s box [Color figure can be viewed at

wileyonlinelibrary.com]

inconsistent solutions, and a few instances where MDLS found more cost-efficient solutions. Therefore, we decided to combine

EBSH with just the consistency-ALNS of the MDLS to a two-stage approach. This approach is denoted as EBSH* from now

on. First, the EBSH is performed as before (see Algorithm 6, lines 1-9). Then the least consistent solution and solutions being

within a certain percentage of it are used as initial solutions S′ for the second stage (see Algorithm 6, line 10). For the second

stage similarly to MDLS, solutions are picked at random and improved via the consistency-ALNS until a stopping criterion is

reached (see Algorithm 6, lines 11-15), after which the non-dominated solutions from both stages are determined and returned

(see Algorithm 6, lines 16-17).

Algorithm 6. 𝜀-Box-Splitting-Heuristic*

1: S←generateInitialSolution()

2: B←initializeBoxes()

3: while stoppingCriterionNotReached do
4: {s, 𝜀}←findLargestBox(S, B)

5: s′←ALNScost(s, 𝜀)

6: if s′.secondObjective < 𝜀 then
7: {S, B}←filterNonDominatedSolutionsAndUpdateBoxes(S, s′, B)

8: end if
9: end while

10: S′←filterLeastConsistentSolutions(S)

11: while stoppingCriterionNotReached do
12: s←selectRandom(S′)

13: s′←ALNSconsistency(s)

14: S′←filterNonDominatedSolutions(S′ ∪ s′).
15: end while
16: S←filterNonDominatedSolutions(S∪ S′)

17: return S

http://wileyonlinelibrary.com

442 FRÖHLICH ET AL.

TABLE 1 Parameters for single-objective case without any tuning

Destroy and repair operators 2-6 and 8-9

Noise 𝜓 0.05

Starting violations for capacity 𝜔cap, consistency 𝜔cons, and routes 𝜔route {1000, 200, 1000}

Adaption for violations Increase/decrease by 5%

Scores for ALNS {10, 3, 1}

Cooling factor SA 0.999

Threshold of VND 𝜇 1.05

TABLE 2 ALNS results for single-objective standard instances. We report average gaps

Instance type Best Gap (%) Avg. Gap (%) Worst Gap (%)

MGGDB 0.00 0.00 0.00

BHW 0.00 1.57 4.74

CBMix 0.00 2.23 6.35

DI-NEARP 1.84 3.05 4.60

5 COMPUTATIONAL STUDY

In the first part of the computational study, we apply the proposed ALNS to publicly available, standard MCGRP instances

[1,8,36]. We show that the algorithms yield good results for single-objective problems. In the second part, we focus on

multi-objective problems and apply MDLS, EBHS, and ECH to both artificial and real-world instances. Tables 1 and 3 list the

parameter settings for the single- and multi-objective results; for the single-objective case, they were set similar to ones found

in the literature, whereas we tuned them via Irace [27] for the multi-objective case.

5.1 Single-objective results
We use several benchmarks to assess the performance of proposed ALNS for the single-objective problem: MGGDB [8], BHW

[1], CBMix [36], and DI-NEARP [1]. These sets comprise a total of 205 instances, and except for the MGGDB, none of the

instance types limits the number of vehicles.

The instances of MGGDB are rather small, ranging between 8 and 48 POIs, created from the 23 GDB instances. Six vari-

ations were created for each of those instances, by shifting the demand from required edges and arcs to adjacent nodes. The

percentage of shifted required edges and arcs is indicated in the name by the middle part called 𝛽 (e.g., mggdb_0.50_1 has 50%

shifted). Therefore, instances with a higher 𝛽 tend to have fewer POIs than those with a lower 𝛽. Furthermore, required nodes

have higher demand than required edges and arcs, on average. Both BHW and CBMix represent medium size instance sets, such

that CBMix instances range from 20 to 212 POIs, and BHW instances range from 20 to 410 POIs, though most are within the

span of 110 to 240. The 24 DI-NEARP instances are the largest, with 240, 422, 442, 447, 699, and 833 POIs, and 4 capacities

for each. However, they do not include required arcs.

The ALNS was applied 15 times to every instance with a time limit after preprocessing of 1 hour, which is similar to [12, 45].

Table 2 lists the best, average, and worst percentage gap, relative to the best known results of the instances (
resALNS−resbench

resbench

). The

ALNS, sharing all the core components presented in [12], delivers results very close to the benchmarks. Thus, we deem our

implementation well-suited for the multi-objective frameworks.

5.2 Performance indicators for multi-objective results
In accordance to [37], we select four indicators to evaluate the multi-objective results, using a wide spectrum of criteria. The

solutions were normalized to the range [1.0,2.0], where 1.0 and 2.0 are the best and worst results of the non-dominated solutions,

respectively. Hence, a normalized result of an individual instance can be larger than 2.0, if the result is worse than the worst

solution regarding this objective of the non-dominated solutions. Furthermore, since the set of all Pareto optimal solutions

could not be generated for most instances - even when using a MIP-model - we created reference sets R for the instances by

taking all solutions from all runs and methods together and determining the non-dominated solutions. For details on the selected

performance indicators, see [37].

FRÖHLICH ET AL. 443

5.2.1 Range covering
This indicator gives the closeness of an approximation set A to the minimum and maximum value for individual objectives. The

closer the value to 1.0, the more the solutions reach the extreme points for the objectives.

5.2.2 Hypervolume
The hypervolume indicator measures the weakly dominated area by a set A. We generally allow for normalized values above

2.0, so any larger values are set to 2.0, considering that (2.0,2.0) represents the nadir point with the worst objective values for

the non-dominated solutions. Accordingly, the results of the indicator must be within [0.0,1.0], and a higher values indicate

better solutions than lower ones.

5.2.3 Multiplicative unary ε
This indicator gives the multiplicator 𝜀 being applied to the objectives of solutions of reference set R such that approximation

set A weakly dominates R. The smaller the value of this indicator, the better, with the best value being 1.0.

5.2.4 R3
The R3 indicator calculates, for an approximation set A and a reference set R, the utility values given a set of weight vectors Λ.

If the indicator is close to 0.0, set A yields similar utility to R.

IR3(A,R) =

∑
𝜆∈Λ

u∗(𝜆,R)−u∗(𝜆,A)
u∗(𝜆,R)

∣ Λ ∣
(3)

u∗(𝜆,A) = max
z∈A

u𝜆(z) (4)

To calculate utility, we use an augmented Tchebycheff function (5) with 𝜌 and z* fixed to 0.01 and 1.0, respectively.

u𝜆(z) = −

(
max j∈1,… ,n𝜆j|z∗j − zj| + 𝜌

∑
j∈1,… ,n

|z∗j − zj|
)

(5)

We assess the proposed multi-objective frameworks on the basis of all performance indicators.

5.3 Multi-objective results
We test the proposed multi-objective frameworks with both the MGGDB instances and real-world instances. We decided to

only elaborate on the tests for the smaller artificial instances due to the heavy increase in problem complexity from the MCGRP

to the MO-P-MCGRP. The real-world instances cover 748 banks and automated teller machines (ATMs) located in the city of

Vienna. To determine paths between these locations, we gathered street network data from an open source [11]. All instances

can be downloaded from the BDA homepage [3].

Using these data, we created three paths between all banks and ATMs using an algorithm found in [26] and explained

briefly in Section 4.2. Note that for the MO-P-MCGRP, including several shortest paths between POIs should increase solution

quality, reflecting the second objective of route inconsistency. Since they, however, also cause complexity increase and larger

computation times for the heuristics, it is important to limit the number of paths to a reasonable number.

MGGDB and real-world instances do not considerably differ regarding the number of POIs. Paths of the real-world instances,

however, include far more edges and arcs. This results in more data handling for the ALNS, but also increases the amount

of possible trade-offs between costs and consistency, resulting in larger Pareto sets and more complexity for instances with a

similar number of POIs.

Because no Pareto sets were available for the MGGDB and the proposed objectives, we used an approximation. This was

created by taking all results from all runs and methods and determining a set of non-dominated solutions. Before doing so, we

tried to determine Pareto sets via the MIP-model described in the Appendix. However, the complexity did not allow to find

these within time limits of 72 hours for any but two instances.

For parameter tuning, we used Irace [27]. However, due to rather long runtimes of the multi-objective frameworks, we

decided to tune the frameworks’ ALNSs by tuning the single-objective ALNS for costs with a time limit of 1 minute per run

and applying the results to them.

As test and training sets, real-world instances of different sizes were taken. Considering the amount of parameters, we

decided to perform two runs with a budget of 5000 each. First, a subset of parameters was tuned, then, while keeping the values

444 FRÖHLICH ET AL.

TABLE 3 Settings for parameter tuning in the multi-objective case

Parameter Subset Range Final setting

Noise 𝜓 1 [0; 0.5] 0.2

Capacity penalty 𝜔cap 1 [1; 2000] 1674

Route penalty 𝜔route 1 [1; 5000] 3445

Penalty increase 1 [1; 1.5] 1.49

Penalty decrease 1 [1; 1.5] 1.34

Cooling factor SA 1 [0.5; 0.9999] 0.9755

Threshold for VND 𝜇 1 [1; 1.5] 1.09

Iterations for random destroy and repair 𝜙 1 [50; 2500] 933

Score ALNS new best 2 [3; 100] 10

Score ALNS new incumbent 2 [2; 100] 3

Score ALNS new solution 2 [1; 100] 1

Update interval ALNS 𝜈 2 [10; 200] 40

TABLE 4 Average results for the basic multi-objective frameworks applied to MGGDB
instances

Methods

Indicator Objective MDLS ECH EBSH

Range covering ↑ 0.932◊⋆ 0.836 0.835

Hypervolume ↑ 0.217 0.648◊ 0.650◊⋆

Multiplicative unary 𝜀 ↓ 1.528 1.134◊ 1.132◊

R3 0 −1.034 −0.113◊ −0.109◊′

Note: Average indicator values are reported. Column Objective indicates whether the indicator

aims for high values (↑), low values (↓), or closeness to 0. Best and second best values per indicator

are displayed in bold and italic numbers, respectively. •, ◊, ′, ⋆ indicate significance according

to the Wilcoxon signed-rank test.

for the first subset, the second subset was tuned. Table 3 lists the tuned parameters, the classification to subsets, their ranges,

and the final setting after the tuning.

For EBSH and ECH, the time limit per iteration was set to 5 and 10 minutes, respectively. ECH’s higher limit was caused

by deeming it more important for ECH than EBSH to find a high-quality solution within each iteration. In case of EBSH, a box

and the solution space around it might be explored again later during the run, resulting in the chance to find formerly overlooked

solutions. ECH, in contrast, cannot return to a search space above the current 𝜀 anymore. For MDLS, we applied time limits of

1, 5, 10, 30, 60, 120, and 300 seconds for the ALNS.

Across all four indicators, the best average was achieved with a time limit of 1 second for the ALNS. The loss in solution

quality for larger time limits arises because the algorithm overlooks good solutions, while focusing on a single objective.

However, even with differing time limits for the ALNSs of the individual frameworks, we have equal global runtimes for

all three methods.

5.3.1 Results for artificial instances
In Table 4, we summarize results for the three basic multi-objective frameworks across the MGGDB instances, with a time

limit of 20 hours excluding preprocessing. The table also indicates whether the results are significant according to the Wilcoxon

signed-rank test [49]. A 99%-significance is shown by dot (•) and prime (′), whereas a 99.9%-significance is shown by diamond

(◊) and star (⋆). A dot (•) and diamond (◊) indicate a significant improvement compared to the first of the other two entries

in the subcolumn for the given indicator. A prime (′) and star (⋆) indicate a significant improvement compared to the second

of the other two entries in the subcolumn for the given indicator. For example, in Table 4, the R3 indicator of −0.109 for the

EBSH, marked by a diamond (◊) and prime (′), is with a significance of 99.9% different (better) than the first of the other two

entries (MDLS) and with a significance of 99% different (better) than the second of the other two entries (ECH).

For three of the four indicators, MDLS is outperformed by ECH and EBSH. However, MDLS shows very good solution

quality if we apply the range covering indicator, because ECH and EBSH have problems finding inconsistent solutions. When

just comparing ECH and EBSH, EBSH delivers better results for three of the four indicators, though the results in all cases

are rather close. Furthermore, the Wilcoxon signed-rank test does not show a significant difference in the range covering and

FRÖHLICH ET AL. 445

TABLE 5 Average results for the multi-objective frameworks applied to the real-world instances, where 10, 20, or 30 POIs must be visited

1 path 2 paths 3 paths

Size Indicator Obj. MDLS ECH EBSH MDLS ECH EBSH MDLS ECH EBSH

10 Range cov. ↑ 0.76• 0.67 0.72 0.85 0.84 0.89 0.9 0.82 0.94
Hypervol. ↑ 0.38 0.51 0.52◊ 0.34 0.6◊ 0.63◊⋆ 0.26 0.67◊ 0.69◊

Multipl. Unary 𝜀 ↓ 1.33 1.34 1.3 1.33 1.22• 1.16◊⋆ 1.38 1.12◊ 1.11◊

R3 0 −1.06 −1.15 −0.93 −0.85 −0.36◊ −0.27◊⋆ −0.89 −0.16◊ −0.05◊⋆

20 Range cov. ↑ 0.78◊ 0.62 0.63 0.87◊ 0.68 0.8′ 0.85◊ 0.7 0.75

Hypervol. ↑ 0.37 0.57◊ 0.61◊⋆ 0.32 0.58◊ 0.63◊⋆ 0.3 0.57◊ 0.62◊⋆

Multipl. Unary 𝜀 ↓ 1.34 1.3 1.27 1.36 1.27◊ 1.21◊ 1.38 1.26 1.22◊

R3 0 −0.85 −0.80 −0.64 −0.70 −0.68 −0.44′ −0.77 −0.67 −0.49⋆

30 Range cov. ↑ 0.82◊⋆ 0.63 0.6 0.87◊ 0.66 0.78′ 0.85◊ 0.65 0.78′

Hypervol. ↑ 0.28 0.5◊ 0.58◊⋆ 0.32 0.49◊ 0.54◊ 0.29 0.48◊ 0.53◊′

Multipl. Unary 𝜀 ↓ 1.38 1.33 1.27⋆ 1.36 1.31 1.26◊• 1.37 1.32 1.27◊

R3 0 −0.88 −0.95 −0.64◊⋆ −0.68◊ −0.92 −0.70⋆ −0.69◊ −0.99 −0.73⋆

Note: Average indicator values are reported. Column Obj. indicates whether the indicator aims for high values (↑), low values (↓), or closeness to 0. Best and

second best values per indicator are displayed in bold and italic numbers, respectively. •, ◊, ′, ⋆ indicate significance according to the Wilcoxon signed-rank test.

TABLE 6 Average results for the multi-objective frameworks applied to the real-world instances, where 10, 20, or 30 POIs must be visited

10 POIs 20 POIs 30 POIs

Method Indicator Obj. 1 path 2 paths 3 paths 1 path 2 paths 3 paths 1 path 2 paths 3 paths

MDLS Range cov. ↑ 0.76 0.85• 0.9◊ 0.78 0.87• 0.85• 0.82 0.87 0.85

Hypervol. ↑ 0.38 0.34 0.26 0.37 0.32 0.3 0.28 0.32 0.29

Multipl. Unary 𝜀 ↓ 1.33 1.33 1.38 1.34 1.36 1.38 1.38 1.36 1.37

R3 0 −1.06 −0.85• −0.89 −0.85 −0.7 −0.77 −0.88 −0.68• −0.69

ECH Range cov. ↑ 0.67 0.84◊ 0.82◊ 0.62 0.68 0.7 0.63 0.66 0.65

Hypervol. ↑ 0.51 0.6◊ 0.67◊′ 0.57 0.58 0.57 0.5 0.49 0.48

Multipl. Unary 𝜀 ↓ 1.34 1.22◊ 1.12◊′ 1.3 1.27 1.26 1.33 1.31 1.32

R3 0 −1.15 −0.36◊ −0.16◊⋆ −0.8 −0.68 −0.67 −0.95 −0.92 −0.99

EBSH Range cov. ↑ 0.72 0.89◊ 0.94◊⋆ 0.63 0.8• 0.75 0.6 0.78◊ 0.78◊

Hypervol. ↑ 0.52 0.63◊ 0.69◊ 0.61 0.63• 0.62 0.58⋆ 0.54 0.53

Multipl. Unary 𝜀 ↓ 1.3 1.16◊ 1.11◊ 1.27 1.21◊ 1.22 1.27 1.26 1.27

R3 0 −0.93 −0.27◊ −0.05◊′ −0.64 −0.44◊ −0.49 −0.64 −0.7 −0.73

EBSH* Range cov. ↑ 0.73 0.92◊ 0.95◊ 0.7 0.83• 0.93◊⋆ 0.73 0.86• 0.91◊

Hypervol. ↑ 0.52 0.62◊ 0.65◊′ 0.63 0.64⋆ 0.61 0.57′ 0.58⋆ 0.53

Multipl. Unary 𝜀 ↓ 1.29 1.15◊ 1.13◊ 1.21 1.15 1.15 1.21 1.15 1.19

R3 0 −0.91 −0.25◊ −0.1◊⋆ −0.47 −0.29• −0.28• −0.47 −0.33 −0.41

Note: Average indicator values are reported. Column Obj. indicates whether the indicator aims for high values (↑), low values (↓), or closeness to 0. Best and second

best values per indicator are displayed in bold and italic numbers, respectively. •, ◊, ′, ⋆ indicate significance according to the Wilcoxon signed-rank test.

multiplicative unary 𝜀 indicators. These results for the artificial instances indicate that the ALNS-based EBSH is the method

of choice for the newly introduced problem. Except for cases where range covering is of a far greater importance.

5.3.2 Results for real-world instances
Tables 5-7 display the average results for the multi-objective frameworks applied to real-world instances with a time limit of

20 hours, excluding preprocessing. Again, we perform five iterations per framework and instance. For the real-world instances,

we distinguish between a simple-graph and a multi-graph setting. For the latter, we generate both the two and three shortest

paths with maximum similarity of 80% (as explained previously). In Table 5 we compare MDLS, ECH, and EBSH against each

other, while we compare MDLS and EBSH with EBSH*—a combination of the former two—in Table 7. Table 6 compares the

effects of using a multi-graph for all four frameworks.

The results for real-world instances keep the trend of ECH and EBSH being better regarding the hypervolume, multiplicative

unary 𝜀, and, except for larger instances, R3 indicator, while being worse regarding the range covering indicator, except for

the smaller instances with multiple paths. This indicates that ECH and EBSH explored far better the middle part of the Pareto

446 FRÖHLICH ET AL.

TABLE 7 Average results for the multi-objective frameworks applied to the real-world instances, where 10, 20, or 30 POIs must be visited

1 path 2 paths 3 paths

Size Indicator Obj. MDLS EBSH EBSH* MDLS EBSH EBSH* MDLS EBSH EBSH*

10 Range cov. ↑ 0.76 0.72 0.73 0.85 0.89 0.92 0.9 0.94 0.95
Hypervol. ↑ 0.38 0.52◊ 0.52◊ 0.34 0.63◊ 0.62◊ 0.26 0.69◊ 0.65◊

Multipl. Unary 𝜀 ↓ 1.33 1.3 1.29 1.33 1.16◊ 1.15◊ 1.38 1.11◊ 1.13◊

R3 0 −1.06 −0.93 −0.91 −0.85 −0.27◊ −0.25◊ −0.89 −0.05◊ −0.1◊

20 Range cov. ↑ 0.78 0.63 0.7 0.87 0.8 0.83 0.85 0.75 0.93⋆

Hypervol. ↑ 0.37 0.61◊ 0.63◊ 0.32 0.63◊ 0.64◊ 0.3 0.62◊ 0.61◊

Multipl. Unary 𝜀 ↓ 1.34 1.27 1.21◊′ 1.36 1.21◊ 1.15◊⋆ 1.38 1.22◊ 1.15◊⋆

R3 0 −0.85 −0.64 −0.47◊⋆ −0.7 −0.44 −0.29◊⋆ −0.77 −0.49 −0.28◊⋆

30 Range cov. ↑ 0.82◊ 0.6 0.73′ 0.87 0.78 0.86⋆ 0.85 0.78 0.91⋆

Hypervol. ↑ 0.28 0.58◊ 0.57◊ 0.32 0.54◊ 0.58◊ 0.29 0.53◊ 0.53◊

Multipl. Unary 𝜀 ↓ 1.38 1.27 1.21◊′ 1.36 1.26◊ 1.15◊⋆ 1.37 1.27◊ 1.19◊

R3 0 −0.88 −0.64◊ −0.47◊⋆ −0.68 −0.7 −0.33◊⋆ −0.69 −0.73 −0.41◊⋆

Note: Average indicator values are reported. Column Obj. indicates whether the indicator aims for high values (↑), low values (↓), or closeness to 0. Best and

second best values per indicator are displayed in bold and italic numbers, respectively. •, ◊, ′, ⋆ indicate significance according to the Wilcoxon signed-rank test.

frontier yielding far superior results for the hypervolume indicator and still reasonable better results for the multiplicative unary

𝜀 indicator. At the same time, however, MDLS was better at exploring the outside parts of the Pareto frontier due to having

better results for the range covering indicators. This is likely also the cause for the R3 indicator being less in favor of ECH

and EBSH, once they do not achieve competitive results for the range covering indicator, due to reaching a high utility, when

inconsistency is valued highly.

The outliers of MDLS not being the best for the range covering indicator when looking at the smallest instances and at

the same time using the multi-graph can be explained by ECH and EBSH being more capable of exploiting the benefits of the

multi-graph for the still simple, small instances due to the individual ALNS-runs of ECH and EBSH having far longer runtime

than MDLS’s.

When looking beyond the small instances, it can be examined that the multi-graph approach still increases the results for the

range covering indicator to a certain degree. This is not too surprising due to the inherent, before already explained limit of the

conversion and the inclusion of multiple paths allowing for more inconsistent solutions. When comparing the ECH and EBSH,

EBSH improved far more for the medium and large instance, while being roughly equal for smaller ones. We explain this by the

problem still being very simple for the smaller ones enabling the underlying ALNS for ECH and EBSH to converge against the

same value within the given time limit, while not being able to do so for medium and larger ones. Our implementation of the

ECH ends as soon as no new solution is found during an iteration, whereas the EBSH would continue with trying to split the

largest remaining box. Therefore, our EBSH, when given a lot of computation time, often used more computation time in total

allowing for more exploration. This furthermore explains the trend of EBSH being slightly better than ECH with the Wilcoxon

signed-rank test still showing high significance even for larger instances. There is almost no difference and especially no high

significance between using two or three paths. We explain this by the fact that there is not enough potential consistency increase,

when adding the third path. However, since MDLS still had far better results compared to ECH and EBSH, these latter two

methods still miss potential improvements. This implies that the additional complexity of the third path negated the potential

gains.

The effect on the hypervolume, multiplicative unary 𝜀, and R3 indicators seems even more mixed. When looking at ECH

and EBSH, having multiple paths significantly improves the results for the smaller instances. Medium sizes ones, however,

are only slightly improved and the Wilcoxon signed-rank test does not show such a high significance anymore, while larger

instances are even partially worsened; with even a significance of 99.9% for one specific comparison. This confirms that small

instances can easily be exploited even with the increased solution space, while the additional complexity of more paths destroys

the benefit of the Pareto set of the multi-graph dominating the Pareto set of the simple-graph. That this negative effect is more

visible for the hypervolume, multiplicative unary 𝜀 likely stems from them being more complex indicators than range covering.

As the results indicate that the 𝜀-based methods and MDLS have different strengths, it might be reasonable to combine these

methods. When comparing the results of MDLS and EBSH (since EBSH and ECH are very similar in their design, while EBSH

performing better), we observe the following: almost all solutions of MDLS that are not of lower costs than EBSH’s solution

or less consistent than EBSH’s least consistent solution are dominated by one or more solutions of EBSH. Secondly, there are

on average very few solutions that are still more cost-efficient than EBSH’s (0.36) with an increasing but still small average for

the larger instances (0.83). In comparison, the number of less consistent solutions is rather large with 2.16 and 3.80 on average

FRÖHLICH ET AL. 447

TABLE 8 Trade-off between cost increase and consistency
decrease

Consistency decrease

Cost inc. 1 path 2 paths 3 paths

% −10.58 −13.18 −13.69

% −16.08 −17.80 −18.39

% −21.93 −24.03 −25.22

% −25.32 −28.56 −29.81

No limit (%) −25.49 −29.60 −31.31

for all instances and the larger instances, respectively. From these observations we conclude that the most promising combined

method (denoted as EBSH*), is to (i) start with EBSH followed by (ii) short runs of MDLS’s consistency-ALNS with the least

consistent solutions found as potential starting solutions. While there might also be more cost-efficient solutions remaining,

we consider it unlikely to find them within a short amount of time and only short ALNS runs. Instead it seems preferable to

increase the time for generating the initial solution.

For the combined approach (EBSH*), we assign 19 hours of runtime for EBSH and 1 hour for MDLS’s consistency-ALNS.

Hence, the total runtime is equal compared to the experiments of the individual approaches. Table 7 compares EBSH* to

MDLS and EBSH. For the smallest instances, the results of EBSH and EBSH* are almost the same. Thus, the added search

for inconsistent solutions does not yield any large improvements. However, for these instances we did not observe a large gap

regarding range for any of the methods, anyway. For larger instances, no significant changes are apparent when comparing the

hypervolume indiciator of EBSH and EBSH*, whereas significant improvements are revealed for the other three indicators.

This seems to stem from the fact that they are more influenced by a few less consistent solutions. However, even for the larger

instances when using one or two paths, EBSH* is on average still not significantly better than MDLS for the range covering

indicator. We assume that the significance when having three paths is due to the closeness toward the maximum value for

the objectives of EBSH*’s approximation sets, since MDLS’s approximation sets are still closer toward the minimum value.

Therefore, MDLS is still better at finding the extreme solutions for the single-objective problems, with EBSH* closing the gap

considerably.

5.4 Trade-off between cost and inconsistency
Table 8 shows the average improvement in inconsistency (i.e., decrease in consistency) if costs increase by a certain percentage

p, relative to the cheapest solution scheapest for an instance, which can be denoted as:

min
s∈S

{
s.cons − scheapest.cons

scheapest.cons
|s.cost ≤ scheapest.cost × (1 + p)

}
. (6)

We only consider the non-dominated solutions of the 13 real-world instances. The first column shows the percentage

increase, and of the lowest cost, while the remaining columns show the average reduction in consistency for the versions with

1 to 3 paths.

We observe that even a very small cost increase of 1% can lead to a considerable decrease in consistency, of at least 10%.

Further cost increases lead to additional consistency decreases, though these weaker trade-offs are weaker. Furthermore, the

trade-offs are more beneficial with multiple paths, and the maximum consistency reduction is reached with three paths.

6 CONCLUSION

We introduced the MO-P-MCGRP, which stems from vehicle routing problems for security guards and cash-in-transit oper-

ations. Objects and streets must be serviced or traversed such that cost and route inconsistency over multiple periods are

minimized and maximized, respectively. We have formulated the MO-P-MCGRP mathematically and transformed it to an

asymmetric CVRP. An ALNS-based search procedure, developed and benchmarked on single-objective MCGRP instances,

was embedded into three multi-objective solution frameworks (MDLS, ECH, and EBSH) to generate solutions for the

MO-P-MCGRP. We assessed the performance of these frameworks with four indicators taken from the literature. For almost all

instances, we found MDLS to be the best approach regarding the range covering indicator, while the 𝜀-based methods were on

average better for the other indicators. When comparing these two methods, we can additionally examine EBSH being signifi-

cantly better than ECH in many cases, without cases being the other way round. A combined approach of iteratively applying

448 FRÖHLICH ET AL.

MDLS’s consistency-ALNS within the EBSH framework, did not show an effect on small instances, but slightly improved

results for the larger instances. Furthermore, we observed that considering more than one shortest path between POIs might sig-

nificantly increase solution quality. However, the additional computational effort of handling multi-graphs for larger instances

caused them to have less benefits or even worse results, hinting strongly at a simple-graph being the method of choice for even

larger or more complex instances. The trade-off between cost and inconsistency revealed that the desired inconsistency increases

significantly with just a small cost increase, and these trade-offs grow even more beneficial when a multi-graph is used. All

real-world instances are made publicly available in order to stimulate more research in this challenging and practically relevant

area.

ACKNOWLEDGMENTS

This work has been supported by FWF, the Austrian Science Fund (Project number P26973-N15). The authors also want to

thank the anonymous referees for their comments and remarks that helped improve the methods.

ORCID
Georg E. A. Fröhlich https://orcid.org/0000-0002-6653-5820

Karl F. Doerner https://orcid.org/0000-0001-8350-1393

Margaretha Gansterer https://orcid.org/0000-0002-0039-4519

REFERENCES

[1] L. Bach, G. Hasle, and S. Wohlk, A lower bound for the node, edge, and arc routing problem, Comput. Oper. Res. 40 (2013), 943–952.

[2] L. Bach, J. Lysgaard, and S. Wohlk, A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem, Networks 68
(2016), 161–184.

[3] Bda.univie.ac.at, 2020. Data and instances. https://bda.univie.ac.at/research/data-and-instances/ (Accessed Mar 17, 2019).

[4] H. Ben Ticha, N. Absi, D. Feillet, and A. Quilliot, Multigraph modeling and adaptive large neighborhood search for the vehicle routing problem
with time windows, Comput. Oper. Res. 104 (2019), 113–126.

[5] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, and T. Van Woensel, A branch-and-price algorithm for the vehicle routing problem with time
windows on a road network, Networks 73 (2019), 401–417.

[6] P. Beraldi, M.E. Bruni, D. Lagana, and R. Musmanno, The mixed capacitated general routing problem under uncertainty, Eur. J. Oper. Res. 240
(2015), 382–392.

[7] A. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo, A matheuristic algorithm for the mixed capacitated general routing problem, Networks

64 (2014), 262–281.

[8] A. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo, Modeling and solving the mixed capacitated general routing problem, Optim. Lett. 7
(2013), 1451–1469.

[9] O. Bräysy, E. Martinez, Y. Nagata, and D. Soler, The mixed capacitated general routing problem with turn penalties, Expert Syst. Appl. 38
(2011), 12954–12966.

[10] C. Ciancio, L. Demetrio, and F. Vocatura, Branch-price-and-cut for the mixed capacitated general routing problem with time windows, Eur.

J. Oper. Res. 267 (2018), 187–199.

[11] Data.gv.at, 2019. Straßengraph Wien. https://www.data.gv.at/katalog/dataset/1039ed7e-97fb-435f-b6cc-f6a105ba5e09 (Accessed Apr 4, 2019).

[12] M. Dell’Amico, J. Diaz, G. Hasle, and M. Iori, An adaptive iterated local search for the mixed capacitated general routing problem, Transp.

Sci. 50 (2016), 1223–1238.

[13] K. Dep, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6
(2002), 182–197.

[14] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959), 269–271.

[15] K.F. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer, Pareto ant colony optimization with ILP preprocessing in multiobjective
project portfolio selection, Eur. J. Oper. Res. 171 (2006), 830–841.

[16] T. Garaix, C. Artigues, D. Feillet, and D. Josselin, Vehicle routing problems with alternative paths: An application to on-demand transportation,

Eur. J. Oper. Res. 204 (2010), 62–75.

[17] V. Ghilas, E. Demir, and T. van Woensel, An adaptive large neighborhood search heuristic for the pickup and delivery problem with time
windows and scheduled lines, Comput. Oper. Res. 71 (2016), 12–30.

[18] Y. Haimes, S. Lasdon, and D. Wismer, On a bicriterion formation of the problems of integrated system identification and system optimization,

IEEEE Trans. Syst. Man Cybernetics 1 (1971), 296–297.

[19] E.E. Halvorsen-Weare and M.W.P. Savelsbergh, The bi-objective mixed capacitated general routing problem with different route balance criteria,

Eur. J. Oper. Res. 251 (2016), 451–465.

[20] H.W. Hamacher, C.R. Pedersen, and S. Ruzika, Finding representative systems for discrete bicriterion optimization problems, Oper. Res. Lett.

35 (2007), 336–344.

[21] M. Hoogeboom and W. Dullaert, Vehicle routing with arrival time diversification, Eur. J. Oper. Res. 275(1) (2019), 93–107.

[22] M. Joao Alves and M. Almeida, MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem,

Comput. Oper. Res. 34 (2007), 3458–3470.

[23] P. Lacomme, C. Prins, C. Prodhon, and L. Ren, A multi-start split-based path relinking (MSSPR) approach for the vehicle routing problem with
route balancing, Eng. Appl. Artif. Intell. 38 (2015), 237–251.

[24] D.S. Lai, O.C. Demirag, and J.M. Leung, A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph, Transp. Res. E

86 (2016), 32–52.

https://orcid.org/0000-0002-6653-5820
https://orcid.org/0000-0002-6653-5820
https://orcid.org/0000-0001-8350-1393
https://orcid.org/0000-0001-8350-1393
https://orcid.org/0000-0002-0039-4519
https://orcid.org/0000-0002-0039-4519
https://bda.univie.ac.at/research/data-and-instances/
https://www.data.gv.at/katalog/dataset/1039ed7e-97fb-435f-b6cc-f6a105ba5e09

FRÖHLICH ET AL. 449

[25] A.N. Letchford, S.D. Nasiri, and A. Oukil, Pricing routines for vehicle routing with time windows on road networks, Comput. Oper. Res. 51
(2014), 331–337.

[26] H. Liu, C. Jin, B. Yang, and A. Zhou, Finding top-k shortest paths with diversity, IEEEE Trans. Knowl. Data Eng. 30 (2018), 488–502.

[27] M. Lopez-Ibanez, J. Dubois-Lacoste, L. Perez Caceres, M. Birattari, and T. Stützle, The irace package: iterated racing for automatic algorithm
configuration, Oper. Res. Perspect. 3 (2016), 43–58.

[28] R. Marti, M. Laguna, and V. Campos, Scatter search vs. genetic algorithms: An experimental evaluation with permutation problems, Oper.

Res./Comput. Sci. Interfaces Ser. (2005), 30.

[29] P. Matl, R.F. Hartl, and T. Vidal, Heuristic rectangle splitting: Leveraging single-objective heuristics to efficiently solve multi-objective problems,

Networks 73(4), (2019), 382–400, arXiv:1705.10174.

[30] J. Michallet, C. Prins, L. Amodeo, F. Yalaoui, and G. Vitry, Multi-start iterated local search for the periodic vehicle routing problem with time
windows and time spread constraints on services, Comput. Oper. Res. 41 (2014), 196–207.

[31] S. Ngueveu, C. Prins, and R. Wolfer Calvo, A hybrid tabu search for the m-peripatetic vehicle routing problem, Matheuristics 10 (2010),

253–266.

[32] C.S. Orloff, A fundamental problem in vehicle routing, Networks 4(1) (1974), 35–64.

[33] J. Oyola, A. Lokketangen, and V. Campos, GRASP-ASP: An algorithm for the CVRP with route balancing, J. Heuristics 20 (2014), 361–382.

[34] D. Pisinger and S. Ropke, A general heuristic for vehicle routing problems, Comput. Oper. Res. 34 (2007), 2403–2435.

[35] C. Prins, “A GRASP x evolutionary local search hybrid for the vehicle routing problem,” Bio-Inspired Algorithms for the Vehicle Routing
Problem, F.B. Pereira and J. Tavares (eds), Springer, Berlin, 2009, pp. 35–53.

[36] C. Prins and S. Bouchenoua, A memetic algorithm solving VRP, the CARP and general routing problems with nodes, edges and arcs, Recent

Adv. Memetic Algorithms 166, (2004), 65–85.

[37] M. Schilde, K.D. Doerner, R.F. Hartl, and G. Kiechle, Metaheuristics for the bi-objective orienteering problem, Swarm Intell. 3 (2009), 179–201.

[38] Sintef.no: NEARP/MCGRP, 2012. https://www.sintef.no/projectweb/top/nearp/ (Accessed Mar 15, 2020).

[39] A. Soriano, M. Gansterer, and R.F. Hartl, The two-region multi-depot pickup and delivery problem, OR Spectr. 40 (2018), 1077–1108.

[40] A. Soriano, T. Vidal, M. Gansterer, and K.F. Doerner, The vehicle routing problem with arrival time diversification on a multigraph, Eur. J. Oper.

Res. 286(2), (2020), 564–575.

[41] L. Talarico, J. Springael, K. Sörensen, and F. Talarico, A large neighbourhood metaheuristic for the risk-constrained cash-in-transit vehicle
routing problem, Comput. Oper. Res. 78 (2017), 547–556.

[42] L. Talarico, K. Sörensen, and J. Springael, Metaheuristics for the risk-constrained cash-in-transit vehicle routing problem, Eur. J. Oper. Res.

244 (2015), 457–470.

[43] L. Talarico, K. Sörensen, and J. Springael, A biobjective decision model to increase security and reduce travel costs in the cash-in-transit sector,

Int. Trans. Oper. Res. 24 (2017), 59–76.

[44] F. Tricoire, Multi-directional local search, Comput. Oper. Res. 39 (2012), 3089–3101.

[45] T. Vidal, Node, edge, arc routing and turn penalties: Multiple problems – one neighborhood extension, Oper. Res. 65 (2017), 992–1010.

[46] T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, A hybrid genetic algorithm for multidepot and periodic vehicle routing problems,

Oper. Res. 60 (2012), 611–624.

[47] T. Vidal, T.G. Crainic, M. Gendreau, and C. Prins, A unified solution framework for multi-attribute vehicle routing problems, Eur. J. Oper. Res.

234 (2014), 658–673.

[48] H. Wang and Y. Lee, Two-stage particle swarm optimization algorithm for the time dependent alternative vehicle routing problem, J. Appl.

Comput. Math. (2014).

[49] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1 (1945), 80–83.

[50] R. Wolfer Calvo and R. Cordone, A heuristic approach to the overnight security service problem, Comput. Oper. Res. 30 (2003), 1269–1287.

[51] R. Wolfer Calvo and R. Cordone, A heuristic for the vehicle routing problem with time windows, J. Heuristics. 7 (2001), 107–129.

[52] S. Yan, S. Wang, and M. Wu, A model with a solution algorithm for the cash transportation vehicle routing and scheduling problem, Comput.

Ind. Eng. 63 (2012), 464–473.

[53] Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 11 (2007),

712–731.

[54] E. Zitzler, M. Laumanns, and L. Thiele, “Improving the strength Pareto evolutionary algorithm for multiobjective optimization,” Evolutionary
Methods or Design, Optimisation, and Control, CIMNE, Barcelona, 2002, pp. 95–100.

How to cite this article: Fröhlich GEA, Doerner KF, Gansterer M. Secure and efficient routing on nodes, edges, and

arcs of simple-graphs and of multi-graphs. Networks. 2020;76:431–450. https://doi.org/10.1002/net.21993

APPENDIX: MATHEMATICAL MODEL

Besides using heuristics, we tried to use mixed integer programming to gain exact results; aiming to use them as benchmarks for

the heuristics. However, due to the high complexity of the MO-P-MCGRP, the complete Pareto-frontier could only be calculated

for two of the smallest MGGDB instances within the time limit of 72 hours.

For the mathematical formulation of the transformed MO-P-MCGRP, let N0/N, Kij, P, and L denote the set of POIs

with/without a depot, non-dominated paths between POIs i and j, periods, and arcs and edges of the original MCGRP, respec-

tively. For the paths, let xkp
ij be the decision variable indicating whether path k between POIs i and j has been used in period

p, and let ckp
ij indicate the costs. Furthermore, ts

ijk and te
ijk are binary values that denote the orientation of the POI at the start

and end of the path, respectively. For example, te
ijk = 1 would indicate that POI j has orientation 1 after arriving there through

https://www.sintef.no/projectweb/top/nearp/

450 FRÖHLICH ET AL.

xkp
ij , and ts

jik = 0 indicates that j is of orientation 0 after leaving it through xkp
ji . Let qip be the remaining capacity after visiting

POI i in period p, dip denote the demand, and Q represent the maximum capacity for a given set of vehicles V . For inconsis-

tency in regard of paths, edges or arcs, decision variables vij and vl are introduced. Via vij the number of times POI i is serviced

directly before j except for the first time is determined, while vl determines the number of times the edges and arcs of the orig-

inal MCGRP are used beyond the first time. Finally, wl is the weight of arc or edge l, and bkl
ij indicates whether l is part of path

k between POIs i and j.

min
∑
i∈N0

∑
j∈N0

∑
k∈Kij

∑
p∈P

ckp
ij xkp

ij (A1)

min
∑
i∈N0

∑
j∈N0

vij +
∑
l∈L

vlwl (A2)

∑
i∈N0

∑
k∈Kij

xkp
ij = 1 ∀j ∈ N, p ∈ P (A3)

∑
i∈N0

∑
k∈Kij

xkp
ij (t

e
ijk + 1) =

∑
i∈N0

∑
k∈Kji

xkp
ji (t

s
jik + 1) ∀j ∈ N0, p ∈ P (A4)

∑
k∈Kij

∑
p∈P

xkp
ij ≤ vij + 1 ∀i ∈ N0, j ∈ N0 (A5)

∑
i∈N0

∑
j∈N0

∑
k∈Kij

∑
p∈P

xkp
ij bkl

ij ≤ vl + 1 ∀l ∈ L (A6)

∑
j∈N0

∑
k∈K0j

xkp
0j ≤ V ∀p ∈ P (A7)

qip + M − 𝑑jp − qjp −
∑
k∈Kij

xkp
ij M ≥ 0 ∀i ∈ N0, j ∈ N, p ∈ P (A8)

q0p = Q ∀p ∈ P (A9)

The objectives, namely minimization of cost and consistency, which is equivalent to maximizing inconsistency, are formu-

lated in (A1) and (A2), respectively. Constraints (A3) denote that every POI has to be serviced exactly once by requiring to

have exactly one in-going path. This works together with constraints (A4), since it causes the left side to be the orientation after

arriving from j’s predecessor and the right side to be the orientation after leaving from j to its successor. By increasing all te
ijl

and ta
ijl by one, it furthermore guarantees that every node is left as well. The violations regarding the sequence of service are

determined in (A5). This is done by adding up the number of times POI j was serviced directly after i. Similarly, constraints

(A6) adds up the number of times edges and arcs of the original MCGRP were used to determine violations regarding street

segments. The number of vehicles is restricted in constraints (A7) via the sum of outgoing arcs from the depot. We handle load-

ing restrictions and also connectivity in constraints (A8), where the remaining capacity of the vehicle after servicing POI j is

calculated, and constraints (A9), where the base capacity for the vehicles is set.

