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1 Introduction 

Tropical forests are systems with the highest diversity of the world. Those systems are 

in a permanent flow regarding abundance, local extinction and reimmigration. Changes 

are caused by exogenous (e.g. climatic, geological, anthropogenic) forces and 

endogenous ecological and evolutionary variation. The rates of change in space and 

time, the existence of regulation factors and responses of communities are very difficult 

to answer, especially in such complex systems like tropical forests (CONDIT et al. 1992, 

2005). 

Different studies have shown that some trends occured in the last years (PHILLIPS & 

GENTRY 1994; PHILLIPS 1996, 2004). E.g. turnover and biomass as well as rising 

dominance of fast growing species have increased in tropical forest census plots in the 

late twentieth century.  

Tropical forests are an important part in the global carbon cycle. Over a third of the 

global carbon stock is retrieved in those ecosystems (DIXON et al. 1994). They 

contribute 30 % of terrestrial net primary production (FIELD et al. 1998). Athmospheric 

changes (e.g. increasing CO2, increasing temperatures and nitrogen deposition) could 

possibly change environments or ecosystems. But to quantify answers of ecosystems to 

athmospheric changes is a difficult issue and could only be monitored by long term 

censuses (PHILLIPS et al. 2004). 

Disturbance regimes are one of the basics of ecosystem progression. After disturbances 

several different phases of succession take place. Advantages and problems of each 

succession step (e.g. arrival, regeneration, establishment) take place (WHITMORE 1989). 

The presence and absence as well as spatial distribution will be influenced by physical 

and biotic conditions created in the different phases of succession (HERNANDEZ 

STEFANONI 2005). Both biotic and abiotic factors affect growth and survival, these 

factors are often autocorrelated (e.g. treefall gaps, soil nutrients) (URIARTE et al. 2004). 

To validate reasons of changes due to athmospheric changing or responses to natural 

disturbances would be part of further studies. 
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To obtain such realizable results establishing forest census plots is essential. In this case 

assessment of biodiversity and comparative and absolute estimates of species diversity 

could be provided (CONDIT 1998). 

 

Such study areas have been established in several tropical forests (CONDIT 1998, 

WHITMORE 1978; HUBBEL &  FOSTER 1990; HARTSHORN 1980, 1990; DENSLOW &  

HARTSHORN 1994; LIEBERMANN &  LIEBERMANN 1994; HUBER 1996; WEISSENHOFER 

1996).  

 

This thesis focuses on diversity and dynamic aspects of a one hectare plot on an inland 

slope in a primary tropical lowland wet forest in southern Costa Rica in the Piedras 

Blancas National Park (Esquinas forest). 
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2 Study area 

 

The Piedras Blancas National Park, where the research plot is located, lies between 

8°27'-8°41' North and 83°15'-83°45' West in the southern part of the Puntarenas 

province. The park has a size of 148 km² and a maximum level of 579 msm 

(WEISSENHOFER 2005). 

The area is characterized by strong erosion processes which results in narrow ridges and 

steep slopes with dense drainage networks (HERRERA et al. 1997, MALZER et al. 2008). 

Such intensive removal of soil material due to a huge amount of streams inside the park 

occurs.  

 

Fig. 2.1: The Golfo Dulce region (Corcovado and Piedras Blancas, from WEBER et al. 
2001). 
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The primary forest remained nearly exclusively on slopes because lowlands are the most 

suitable areas for logging (WEISSENHOFER 2005). The plains consist mainly of 

secondary forests and farmland. 

 

Costa Rica as one of the Central American countries is part of the isthmus between 

North and South America. This narrow stretch of land was formed at the end of the 

tertiary. Sedimentation and deposition of volcanic and volcanoclastic material endures 

until now (MALZER 2001 & 2008). Volcanism is induced by the motions of the 

lithosphere due to convergent plate boundaries. In Central America four tectonic plates 

are important, the North American plate, the Caribbean plate, the Cocos plate, and the 

Nazca plate. The Cocos plate is subducted under the North American and Caribbean 

plate and causes in this way the tectonical activities (MALZER 2008). 

 

The soil formation in tropical forests is driven by the tropical climate. High temperature 

and precipitation all over the year lead to chemical weathering of rock and the soil 

(PAMPERL 2001). Local climate and microhabitat conditions cause different soil 

modifications and lead furthermore to different stands and ecological niches 

respectively (PAMPERL 2001). Relationships between plants and soils in tropical forests 

were described by RICHARDS (1961). Studies of correlations between soils and tree 

species distribution showed a connection between soils and their characteristics and 

plant species and their topographical location. Nutrient poor and acidic soils with a high 

aluminium saturation showed higher, nutrient rich soils lower diversity (PAMPERL 

2001). 

 

In the Piedras Blancas National park three soil types predominate: Ultisols, Inceptisols 

and Entisols (VASQUEZ 1989). Ultisols, the main type, are old soils which have been 

formed over a long period of undisturbed time. They are characterized as highly 

weathered, clayey, yellowish-red and high acidic thick layer. Due to the erosion effects 

steep slopes and lateral movements occur. Inceptisols can be found in ravines and flatter 

slopes. Those soils are younger and less weathered than Ultisols (PAMPERL 2001). 

Entisols are of less importance. 
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The Esquinas forest is one of the wettest lowland forests in Costa Rica and is influenced 

by the rain gradient caused by the mountains of the Fila Cruces range (WEISSENHOFER 

2008b). Rainfall occurs nearly every day. A few days without rain can only be found in 

the dryer month January till March.  

The average annual precipitation at the field station is about 6000 mm, with the highest 

monthly average in September (WEISSENHOFER 2008b).  

The average yearly temperature is about 28°C, the average humidity about 88% on the 

open land (WEISSENHOFER 2001 &  2008b) and 98% in the forest (ASCHAN 1998). 

 

 

27.8°   5951

23.2
20.0

39.0
32.7

 

Fig. 2.2: Climatic diagram of the Tropenstation La Gamba, 70m 
(WEISSENHOFER 2001).  

 

 
Several studies described the high diversity in tropical forests (KRICHER 1997, GENTRY 

1988b). The Corcovado and Esquinas region additionally excels in the Neotropics 

despite their small geographic territory (VAUGHAN 1981). INBio counted nearly 2400 

species out of nearly 1000 genera in over 180 families for the region. This region is 

described to have a strong relationship to South American tropical forests (GENTRY 

1978 & 1982, STANDLEY  1937, HARTSHORN 1983, HARTSHORN &  HAMMEL 1986, 

HUBER 1996a), to the Amazonian and Atlantic coastal rainforests (ALLEN 1956) and 
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less affinity to the flora of Panama or Guanacaste (ALLEN 1956). This area was a refuge, 

cut off during glacial periods. Speciation was accelerated so many new species evolved 

in the fragmented forests (WEISSENHOFER 2005).  
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3 Methods 

 

3.1 The Research Plot 
 

The research on this plot started in 1993 by HUBER (1996) AND WEISSENHOFER (1996). 

It has following characteristics:  

300-336 msm 

south east exposed slope 

well drained 

average inclination of 27 (55) % 

several gorges 

 

The research plot is 1 hectare in size and is subdivided into 100 10 x 10 m subplots. For 

differentiation the subplots got identifications with ascending numbers down the slope 

(1 to 10) and parallel to slope with ascending letters (A to J). 

 

 

3.2 Field work 
 

The studies were performed from 2000 to 2001. Inside the plot all trees ≥ 2 cm up to 10 

cm dbh were monitored. Hereby the exact location was plotted in a site map. Additional 

physical and physiological parameters were also collected.  

Beside those data all individuals formerly monitored by HUBER &  WEISSENHOFER 

(1993) with a dbh ≥ 10 cm were reevaluated and compared by means of data from 1993, 

all trees which survived, all which died in that period and all recruits that reached dbh ≥ 

10 cm. 
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Fig. 3.1: Relief of the research plot. A. 3D view. B. Map and subplots. Colours 
represent elevation differences (WEISSENHOFER 1993). 
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It was important to collect relevant material for herbar issues. Due to high number of 

individuals it was not possible in logistics to collect parts from all trees. Species with 

high abundance and easy determination were not always collected. 

Field work was performed with knives or stake saws for low plants. The parts from 

medium high trees were collected by self made collecting stakes (hoover tubes with 

pruning shears). The mature stand was determined by binocular and telescope, verified 

by the data from 1993. 

Collections were done in 3 to 5 fold, depending on available tree material. As far as 

possible predetermination was performed on the study site. 

Collected parts were numbered (subplot, individual number according to site plan). 

Further tentative determination was performed in the research station by photo herbar 

and a Field Guide (GENTRY 1993). Final determination was carried out in the Museo 

Nacional de Costa Rica (San José) and the herbar of the University of Vienna. 

Species difficult in determination were verified with specialists of the University of 

Vienna and the Instituto Nacional de Biodiversidad (INBio). 

 

Following parameters were monitored: 

 
• Dbh 
• Height (if possible) 
• Latex (color, taste, consistence, amount) 
• Plants or fruits (if applicable) 
• Other specifics (e.g. aromatics) 
• Date 
 

Illustration in the site map was verified by control survey of each fifth individual. 

 

Diameter at breast height (dbh) 

Dbh was measured at 1.3 m height above ground with a caliper, individuals with a 

higher dbh by a π-tape. 

Trees with buttress or stilt roots were measured 30 cm above the roots. 

In multiple stemmed plants each stem was measured. 
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Height 

The height was measured in all small and medium heigh trees (dbh ≤ 10 cm). For those 

measurements the length of the collecting stakes were used for comparison. 

 

Latex 

Existing latex or resin were checked for colour and taste. 

 

3.3 Basic forest structure 
 

3.3.1 Size class distribution 
 

Size classes were compiled in 5 cm steps. For comprehensive study sites (CONDIT et al. 

1992; PHILLIPS et al. 2004) where greater research areas are established calculations 

with size classes in 10 cm steps were usually performed. Here a smaller resolution was 

selected to get more detailed information due to smaller sample pool. 

 

3.3.2 Average dbh and BA 
 

The average dbh was calculated via arithmetric mean value. A comparison with the 

data from HUBER &  WEISSENHOFER (1993) was performed. 

 

BA was calculated by following formula: 

 

BA  =  d2 x π  /  4 

 

with dbh for d or the diameter 30 cm above the roots in trees with buttress or stilt roots.  

The calculations were performed for individuals ≥ 10 cm dbh for comparability with the 

data from 1993 as well as with all individuals from 2 cm dbh up. 
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3.3.3 Biomass 
 

Biomass was calculated according to a commonly used logarithmic regression model 

(CHAVE et al, 2001): 

 

ln (AGTB)  =  α  +  b ln (D) 

 

AGTB (aboveground dry biomass of a tree) is measured in kg, D is the measured dbh in 

cm, with 2.42 for b (the best-fit allometric exponent), and -2.00 +/- 0.27 for α. 

This model is an estimation method specialized for a tropical lowland forest following 

the allometric relationship between biomass and dbh. The parameter tree height is not 

measured. This parameter is not necessary for calculation. Tree height is generally 

questionable to be a good estimator of the aboveground biomass due to the high 

variability of tree architectures in tropical forests (HALLE  et al, 1978). 

 

A comparison with the data from HUBER &  WEISSENHOFER (1993) was performed. 

Therefore those data had been recalculated with this regression model. 

 

Further NEP (net ecosystem production) and NPP (net primary production) were 

determined.  

The calculations were performed for individuals ≥ 10 cm dbh for comparability with the 

data from 1993, as well as with all individuals from 2 cm dbh up. 

 

3.3.4 Turnover and mortality 
 

Mortality 

m  =  ln n0  -  ln St  /  t 

 

with the census interval be t, the population size at time zero be n0, the number of 

survivors at time t be St. 
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Recruitment 

r  =  ln nt  -  ln St  /  t 

 

with the population size at time t be nt. 

 

Population growth 

λ  =  ln nt  -  ln n0  /  t 

 

Those standard methods were used in several former studies (e.g. CONDIT et al 1992). 

 

The calculations were performed for trees dbh ≥ 10 cm for comparability with the data 

from 1993. No previous data from dbh 2 to 10 cm exist. 

 

3.4 Floristic diversity 
 

Diversity consists of two components, the variety and the relative abundance of species. 

So diversity can be measured by recording the number of species, by describing their 

relative abundances or by using a measure which combines the two components. 

 

Diversity was calculated for individuals ≥ 10 cm dbh for comparability with the data 

from 1993 as well as with all individuals ≥ 2 cm dbh. 

 

3.4.1 Species Density 
 

Species density is a common species richness index and is defined as the measure of the 

number of species in a defined sampling unit. (MAGURRAN 1988) 

It is used if the study area can be delimited in space and time and the constituent species 

can be enumerated and identified. 

Species density describes the number of species per specified collection area 

(HURLBERT 1971), e.g. species / m². A density calculated via 1 hectare is common. 
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The following indices are based on the proportional abundances of species trying to 

combine richness and evenness in a single figure (MAGURRAN 1988). 

 

3.4.2 Simpson´s Index 
 

The Simpson index (SIMPSON 1949) takes the number of species present as well as the 

relative abundance of each species into account. It represents the probability that two 

randomly selected individuals in the area belong to the same species. 

 

It´s a reciprocal index 1 / D, or an index of diversity 1 – D, where D is calculated by D 

= 1/(Sum (pi
2)) and further for a finite community as follows: 

 

D  =  sum n x (n-1)  /  sum N x (N-1) 

 

where n is the number of individuals of a specific species and N is the total number of 

individuals. 

Due to the reciprocal character of that index 1/D, it starts with the value 1 (if only one 

species occurs) and raises up to the total number of species (if each individual belongs 

to a different species). 

The index of diversity 1-D lies between 0 and 1. 

 

3.4.3 Shannon Wiener/Weaver Diversity Index 
 

The Shannon index (SHANNON &  WEAVER 1949) assumes that individuals are randomly 

sampled or distributed from an indefinitely large population. 

It is calculated from following equation: 

 

H´ =  -  Σ pi ln pi 

 

The quantity pi is the proportion of individuals found in the ith species. 

Like Simpson´s reciprocal Index it ranges from 1 to the total number of species. 
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3.4.4 Shannon´s Evenness 
 

Evenness shows how similar abundances of similar species are. It is derived from 

Shannon and is calculated as follows: 

 

E = H/ln(S) 

 

with H as Shannon Index and S as total number of species. 

 

3.4.5 Alpha index 
 

Alpha index or log series or Fisher´s α (FISHER et al, 1943) is a common diversity index. 

It assumes that samples are reasonable fit to a log-series. 

 

α = N (1-x) / x 

 

x is estimated from: 

 

S / N= (1-x) / x [-ln (1-x)] 

 

with N for the total number of individuals and S for the total number of species 

(MAGURRAN 1988). 

 

3.4.6 Importance Value Index 
 

The IVI is an indicator for the importance of a species in a research area. It contains 

relative frequency, relative density and relative dominance. 

 

The relative frequency is calculated by general dispersal of the species, based on its 

presence in the sample units. 

The sum of all relative frequency values for all counted species in a plot will be 100%. 

 



 15 

The relative density is the proportion of each individual of species in the subplot.  

The sum of all relative density values for all counted species in a plot will be 100%. 

 

The relative dominance is the proportion of the BA in m2 of the total BA in a plot. 

The sum of all relative dominance values for all counted species in a plot will be 100%. 

 

3.4.7 Family Importance Value Index 
 

FIVI shows the importance of the families in a research area. Calculation is similar to 

IVI but instead of relative diversity relative frequency is used (MORI 1983). 

 

The relative diversity is the number of species of a family divided by total number of 

species. 

The sum of all relative diversity values for all species of a family in a plot will be 100%. 

 

The relative density is the total number of individuals of each family divided by the 

total number of individuals in a plot. 

The sum of all relative density values for all counted individuals of each family in a plot 

will be 100%. 

 

The relative dominance is the total amount of BA in m2 covered by each family, divided 

by the total BA of the plot. 

The sum of all relative dominance values for all families in a plot will be 100%. 
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4 Results 

 

4.1 Basic Forest Structure 

4.1.1 Size Class Distribution 
 

The size class distributions were compiled in 5 cm steps in Table 4.1 and Fig. 4.1 and 

showed the anticipated J graph. Most individuals are in the dbh range of the smaller size 

classes.  

 

 

Size classes [dbh] Individuals % 
´2-4.9 1999 66,66 
´5-9.9 544 18,14 

´10-14.9 135 4,50 
´15-19.9 108 3,60 
´20-24.9 69 2,30 
´25-29.9 31 1,03 
´30-34.9 28 0,93 
´35-39.9 13 0,43 
´40-44.9 13 0,43 
´45-49.9 12 0,40 
´50-54.9 9 0,30 
´55-59.9 7 0,23 
´60-64.9 6 0,20 
´65-69.9 2 0,07 
´70-74.9 5 0,17 
´75-79.9 2 0,07 
´80-84.9 5 0,17 
´85-89.9 3 0,10 
´90-94.9 0 0,00 
´95-99.9 3 0,10 

´100-104.9 2 0,07 
´105-109.9 0 0,00 
´110-114.9 2 0,07 
´115-119.9 0 0,00 
´120-124.9 0 0,00 
´125-129.9 1 0,03 

Tab. 4.1. Size class distributions (total individuals & %). 
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Size Class Distribution
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 Fig. 4.1: Size class distributions (dbh in cm) of the plot in % 

 

The most important class was 2 to 4.9 cm dbh. Here 1999 individuals (or 66.66 %) out 

of 190 species were found in this group. The dominant species was Welfia regia 

(Arecaceae) with 175 individuals. Psychotria elata (Rubiaceae) with 173 individuals 

and Henriettea tuberculata (Melastomataceae) with 106 individuals follow.  

Carapa guianensis (Meliaceae) was the tree with the highest number of individuals 

(59). 

The family with the highest abundance was the Rubiaceae with a total of 370 

individuals, followed by the palms with 319, the Melastomataceae with 221 and the 

Euphorbiaceae with 175 individuals. 

 

In size class dbh 5 to 9.9 cm 544 individuals (or 18.14 %) out of 109 species were found 

in this group. 

The dominant species was Iriartea deltoidea (Arecaceae) with 46 individuals, 

Henriettea tuberculata (Melastomataceae) and Welfia regia (Arecaceae) follow with 37 

individuals each. 
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Mabea occidentale (Euphorbiaceae) was the tree with the highest number of individuals 

(19), followed by Brosimum alicastrum (Moraceae) with 14 individuals. Carapa 

guianensis (Meliaceae) was found ten times in this class. 

The dominant families were the Arecaceae with 136 individuals, the Melastomataceae 

with 44 and the Euphorbiaceae with 28 individuals. From the Rubiaceae remained only 

27 individuals. 

 

In size class dbh 10 to 14.9 cm 135 individuals (or 4.5 %) out of 50 species were found. 

Iriartea deltoidea was the tree with the highest number of individuals (50), followed by 

Socrathea exorrhiza with 11 individuals. 

The dominant tree species was Carapa guianensis (Meliaceae) with 5, followed by 

Symphonia globulifera (Clusiaceae) with 4 individuals. 

The family with highest abundance was the palms with 67 individuals. Rubiaceae did 

not occur any more. 

 

Climax families like Meliaceae or Moraceae remained in most bigger size classes. 
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4.1.2 Average dbh and BA 
 

4.1.2.1 Individuals dbh ≥ 10 cm 
 

The average dbh of all individuals ≥ 10 cm dbh in 1993 was 23.5 cm (WEISSENHOFER 

1994). 

In 2001 the average dbh of all remaining individuals ≥ 10 cm without recruits was 24.8 

cm, including the recruits dbh was 25.9 cm. 

In the size classes dbh ≥ 10 cm 128 individuals died with an average dbh of 19.5 cm, 43 

individuals exceeded 10 cm dbh with an average dbh of 12 cm. 

 

BA of all individuals ≥ 10 cm dbh in 1993 was 35.5 m² (WEISSENHOFER 1994). 

In 2001 the BA of all individuals ≥ 10 cm was 35.9 m². 

The size class with highest BA was 80-84.9 cm with a total amount of 7.26 % of the 

total BA. 

The BA of all size classes was similar with a mean amount of 1.79 m² (SD 0.49). 
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 Fig. 4.2: BA, weighted for all plants dbh ≥10cm 
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4.1.2.2 Individuals dbh ≥ 2 cm 
 

The average dbh of all individuals ≥ 2 cm was 7.0 cm. 

 

The BA of all individuals dbh ≥ 2 cm was 38.7 m². This calculation also led to the most 

important size class 80-84.9 cm with a total amount of 6.73 % of the total BA. The size 

class up to 4.9 cm had an amount of 3.49 %, the class 5 to 9.9 cm 3.79 % of total BA. 

In this case the mean BA of all size classes was 1.76 m² (SD 0.49). 
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 Fig. 4.3: BA, weighted for all plants dbh ≥ 2 cm 
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4.1.3 Biomass 

4.1.3.1 Individuals dbh ≥ 10 cm 
 

For trees dbh ≥ 10 cm the biomass was 330 Mg ha-1.  

 

Biomass of all individuals ≥ 10 cm dbh in 1993 was 315 Mg ha-1 (WEISSENHOFER 1994, 

recalculated with the formula from CHAVE et al, 2001). 

 

Only 25 % of all trees were greater than 30 cm dbh, but they represented 85 % of the 

aboveground biomass and as much as 77 % of the BA. 

The effect of larger trees on biomass was considerably more pronounced. Only 5 % of 

the trees were above dbh 70 cm, but 50 % of aboveground biomass and 40 % of the BA 

belonged to this size class. 

 

The estimated biomass rose from 315 Mg ha-1 in 1993 to 330 Mg ha-1 in 2001. This 

meant a NEP of 1.9 Mg ha-1 y-1.  

The net loss due to mortality was 6.3 Mg ha-1 y-1, and the increase due to recruits was 

0.3 Mg ha-1 y-1. Therefore the biomass accumulation (NPP) was 7.9 Mg ha-1 y-1. 

 

4.1.3.2 Individuals dbh ≥ 2 cm 
 

For all trees dbh ≥ 2 cm the biomass was 339 Mg ha-1. So all the plants smaller than 10 

cm dbh contributed only 2,8 % (9 Mg ha-1) to the whole aboveground biomass, although 

they represented 84 % of all individuals. 
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4.1.4 Growth and Mortality 
 

Mortality was 3.54 % y-1 for all stems ≥ 10cm dbh. Recruitment was 1.29 % y-1. 

Mortality mainly occured in the lowest size classes. Nearly 60 % of all dead individuals 

were below dbh 15 cm. 30 % of them belonged to the Arecaceae. 

In larger size classes mortality was nearly constant or rose slightly with dbh. 

 

There was a wide range of mortality and recruitment among the different species. 

The palm Iriartea deltoidea for example had a mortality of 4.64 % y-1 and recruitment 

of 2.11 % y-1.  

Dendropanax arboreus (Araliaceae) had a mortality of 8.66 % y-1 and recruitment of  

0 % y-1.  

Elaeoluma glabrescens (Sapotaceae) had recruitment and in this case a growth rate of 

1.67 % y-1. No individual died. 

Carapa guianensis (Meliaceae) had a mortality of 2.79 % y-1 and recruitment of  

4.35 % y-1. Therefore a growth rate of 1.56 % y-1 occured. 
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 Fig. 4.4: Mortality, recruitment and growth rates including all individuals of all species. 

 Points are placed above the midpoint of each size class. 
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Annual Growth [mm]
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 Fig. 4.5: Annual growth rates in mm y-1, all individuals of all species included. 
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4.2 Floristic diversity 
 

4.2.1 Species Density 
 

The research plot comprised 527 individuals of 133 spp. in 1993 (HUBER 2005). 

2001 there were 453 individuals dbh ≥ 10 cm out of 108 species and 43 families, 

including all the recruits. 

Including all reported individuals dbh ≥ 2 cm 2849 individuals out of 232 species and 

59 families were found. 
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 Fig. 4.7: Number of individuals per species of all individuals dbh ≥ 10 cm 

 

The most frequent species of all trees dbh ≥ 10 cm were Iriartea deltoidea with 62, and 

Welfia regia (both Arecaceae) with 43 individuals. The Clusiaceae Symphonia 

globulifera and Marila laxiflora were presented with 20 individuals each. Carapa 

guianensis (Meliaceae) with 17, the palm Socratea exorrhiza with 16 and Brosimum 

utile (Moraceae) with 15 individuals also were frequent. 

42 species were represented with only 1 individual (see Figure 4.7). 
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Individuals per Species  Dbh >= 2 cm
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 Fig. 4.8: Number of individuals per species of all individuals dbh ≥ 2 cm 

 

The most abundant species of all individuals dbh ≥ 2 cm was the palm Welfia regia 

with 255 individuals. The understorey species Psychotria elata (Rubiaceae) with 184 

and Henriettea tuberculata (Melastomataceae) with 145 plants were also very frequent. 

The palm Iriartea deltoidea with 124 and Carapa guianensis (Meliaceae) with 86 

individuals followed up. 

57 species were represented with only 1 individual (see Figure 4.8). 

 

 

4.2.2 Simpson´s Index 
 

The diversity measure according to Simpson´s index gave the value D = 0.039. 

So the index of diversity was 1-D = 0.961 and the reciprocal index 1/D = 25.9 for all 

individuals dbh ≥ 10 cm. 

In 1993 the diversity measure according to Simpson´s index gave the value D = 0.035, 

the index of diversity was 1-D = 0.965 and the reciprocal index 1/D = 28.6 for all 

individuals (HUBER 2005). 
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For all individuals dbh ≥ 2 cm Simpson´s index gave the value D = 0.024. 

So the index of diversity 1-D = 0.976 and the reciprocal index 1/D = 41.3. 

 

 

4.2.3 Shannon Wiener/Weaver Diversity Index 
 

The Shannon-Weaver index gave the value H’ = 5.693 for all individuals dbh ≥ 10 cm. 

In 1993 Shannon-Weaver index gave the value H’ = 4.119 (HUBER 2005). 

 

For all individuals dbh ≥ 2 cm Shannon-Weaver index gave the value H’ = 6.427. 

 

 

4.2.4 Shannon´s Evenness 
 

The evenness index gave the value E = 1.21 for all individuals dbh ≥ 10 cm. 

In 1993 the index gave 0.84 (HUBER 2005). 

 

For all individuals dbh ≥ 2 cm evenness index was about 1.18. 

 

 

4.2.5 Alpha index 
 

Alpha index or log series or Fisher´s α gave the value α = 45.552 for all individuals 

dbh ≥ 10 cm. 

In 1993 alpha index gave the value α = 57.953 (HUBER 2005). 

 

For all individuals dbh ≥ 2 cm alpha index gave α = 59.699. 
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4.2.6 Importance Value Index 
The IVI is an indicator for the importance of a species in a research area. It is the sum of 

relative frequency, relative density and relative dominance. 

 

4.2.6.1 IVI dbh ≥ 10 cm 

4.2.6.1.1 Relative Frequency 
 

Species Family Nr of Individuals Nr of Subplots Rel Frequency [%] 
Iriartea deltoidea Arecaceae 62 40 10,000 
Welfia regia Arecaceae 43 34 8,500 
Marila laxiflora Clusiaceae 20 18 4,500 
Symphonia globulifera Clusiaceae 20 18 4,500 
Carapa guianensis Meliaceae 17 16 4,000 
Socratea exorrhiza Arecaceae 16 14 3,500 
Brosimum utile Moraceae 15 14 3,500 
Mabea occidentale Euphorbiaceae 10 9 2,250 
Brosimum lactescens Moraceae 8 8 2,000 
Compsoneura sprucei Myristicaceae 10 8 2,000 
Otoba novogranatensis Myristicaceae 8 8 2,000 
Other Species   224   53,250 
        100,000 

Tab. 4.2: Relative Frequency for all individuals, dbh ≥ 10 cm  

4.2.6.1.2 Relative Density 
 

Species Family Nr of Individuals Relative Density [%] 
Iriartea deltoidea Arecaceae 62 13,687 
Welfia regia Arecaceae 43 9,492 
Marila laxiflora Clusiaceae 20 4,415 
Symphonia globulifera Clusiaceae 20 4,415 
Carapa guanensis Meliaceae 17 3,753 
Socratea exorrhiza Arecaceae 16 3,532 
Brosimum utile Moraceae 15 3,311 
Mabea occidentalis Euphorbiaceae 10 2,208 
Humiriastrum diguense Humiriaceae 8 1,766 
Brosimum lactescens Moraceae 8 1,766 
Compsoneura sprucei Myristicaceae 8 1,766 
Otoba novogranatensis Myristicaceae 8 1,766 
Elaeoluma glabrescens Sapotaceae 8 1,766 
Guarea grandifolia Meliaceae 7 1,545 
Other Species   203 44,812 

      100,000 

Tab. 4.3: Relative Density for all individuals, dbh ≥ 10 cm 
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4.2.6.1.3 Relative Dominance 
 

Species Family Basal Area [m²] Nr of Individuals  Rel Dominance [%] 
Brosimum utile Moraceae 5,10 15 14,233 
Carapa guianensis Meliaceae 3,77 17 10,530 
Humiriastrum diguense Humiriaceae 1,63 8 4,548 
Vochysia megalophylla Vochysiaceae 1,36 6 3,796 
Elaeoluma glabrescens Sapotaceae 1,24 8 3,469 
Welfia regia Arecaceae 1,23 43 3,444 
Bombacopsis sessilis Bombacaceae 1,19 6 3,311 
Symphonia globulifera Clusiaceae 1,12 20 3,136 
Byrsonima crispa Malpighiaceae 1,00 3 2,803 
Marila laxiflora Clusiaceae 0,96 20 2,690 
Parkia pendula Fabaceae-Mimos. 0,84 2 2,351 
Iriartea deltoidea Arecaceae 0,82 62 2,284 
Otoba novogranatensis Myristicaceae 0,77 8 2,161 
Other Species   14,78 235 41,245 
        100,000 

Tab. 4.4: Relative Dominance for all individuals, dbh ≥ 10 cm 

 

4.2.6.1.4 IVI dbh ≥ 10 cm 
 

The IVI for all individuals dbh ≥ 10 cm is listed in Tab. 5.5. 

 

Species Family IVI 
Iriartea deltoidea Arecaceae 25,971 
Welfia regia Arecaceae 21,436 
Brosimum utile Moraceae 21,044 
Carapa guianensis Meliaceae 18,283 
Symphonia globulifera Clusiaceae 12,051 
Marila laxiflora Clusiaceae 11,605 
Humiriastrum diguense Humiriaceae 8,064 
Socratea exorrhiza Arecaceae 7,650 
Elaeoluma glabrescens Sapotaceae 6,985 
Vochysia megalophylla Vochysiaceaeara 6,371 
Bombacopsis sessilis Bombacaceae 6,135 
Otoba novogranatensis Myristicaceae 5,927 
Brosimum lactescens Moraceae 5,288 
Mabea occidentale Euphorbiaceae 5,259 
Compsoneura sprucei Myristicaceae 4,559 
Byrsonima crispa Malpighiaceae 4,215 
Guarea grandifolia Meliaceae 4,182 
Other Species   124,977 
    300,000 

 Tab. 4.5: IVI for all individuals, dbh ≥ 10 cm 
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4.2.6.2 IVI dbh ≥ 2 cm 
 

4.2.6.2.1 Relative Frequency 
 

Species Family Nr of Individuals Nr of Subplots Rel Frequency [%] 
Welfia regia Arecaceae 255 84 4,504 
Henriettea tuberculata Melastomataceae 145 65 3,485 
Psychotria elata Rubiaceae 184 60 3,217 
Iriartea deltoidea Arecaceae 124 59 3,164 
Carapa guianensis Meliaceae 86 54 2,895 
Mabea occidentale Euphorbiaceae 76 49 2,627 
Euphorbia elata Euphorbiaceae 86 38 2,038 
Socratea exorrhiza Arecaceae 52 37 1,984 
Marila laxiflora Clusiaceae 43 36 1,930 
Compsoneura sprucei Myristicaceae 57 36 1,930 
Brosimum utile Moraceae 38 34 1,823 
Faramea sessifolia Rubiaceae 39 32 1,716 
Symphonia globulifera Clusiaceae 39 31 1,662 
Protium aracouchini Burseraceae 37 30 1,609 
Other Species   1588   65,416 
        100,000 

Tab. 4.6: Relative Frequency for all individuals, dbh ≥ 2 cm 

 

4.2.6.2.2 Relative Density 
 

Species Family Nr of Individuals Relative Density [%] 
Welfia regia Arecaceae 255 8,951 
Psychotria elata Rubiaceae 184 6,458 
Henriettea tuberculata Melastomataceae 145 5,090 
Iriartea deltoidea Arecaceae 124 4,352 
Euphorbia elata Euphorbiaceae 86 3,019 
Carapa guianensis Meliaceae 86 3,019 
Mabea occidentale Euphorbiaceae 76 2,668 
Psychotria officinalis Rubiaceae 65 2,282 
Asterogyne martiana Arecaceae 62 2,176 
Compsoneura sprucei Myristicaceae 57 2,001 
Socratea exorrhiza Arecaceae 52 1,825 
Psychotria solitudinum Rubiaceae 45 1,580 
Marila laxiflora Clusiaceae 43 1,509 
Symphonia globulifera Clusiaceae 39 1,369 
Faramea sessifolia Rubiaceae 39 1,369 
Brosimum utile Moraceae 38 1,334 
Other Species   1453 51,071 
      100,000 

Tab. 4.7: Relative Density for all individuals, dbh ≥ 2 cm 
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4.2.6.2.3 Relative Dominance 
 

Species Family Basal Area [m²] Nr of Individuals  Relative Dominance [%] 
Brosimum utile Moraceae 5,14 38 13,275 
Carapa guianensis Meliaceae 3,84 86 9,924 
Humiriastrum diguense Humiriaceae 1,63 11 4,219 
Welfia regia Arecaceae 1,48 255 3,822 
Vochysia megalophylla Vochysiaceae 1,35 9 3,480 
Elaeoluma glabrescens Sapotaceae 1,26 18 3,254 
Bombacopsis sessilis Bombacaceae 1,19 11 3,087 
Symphonia globulifera Clusiaceae 1,17 39 3,023 
Iriartea deltoidea Arecaceae 1,04 124 2,676 
Byrsonima crispa Malpighiaceae 1,00 3 2,595 
Marila laxiflora Clusiaceae 0,99 43 2,548 
Parkia pendula Fabaceae-Mimos. 0,84 2 2,177 
Otoba novogranatensis Myristicaceae 0,78 15 2,016 
Other Species   16,99 2195 43,905 
        100,000 

Tab. 4.8: Relative Dominance for all individuals, dbh ≥ 2 cm 

 

4.2.6.2.4 IVI dbh ≥ 2 cm 
 

The IVI for all plants dbh ≥ 2 cm is listed in Tab. 5.9. 

 

Species Family IVI 
Welfia regia Arecaceae 17,277 
Brosimum utile Moraceae 16,432 
Carapa guianensis Meliaceae 15,838 
Iriartea deltoidea Arecaceae 10,192 
Psychotria elata Rubiaceae 9,998 
Henriettea tuberculata Melastomataceae 9,080 
Mabea occidentale Euphorbiaceae 6,295 
Symphonia globulifera Clusiaceae 6,054 
Marila laxiflora Clusiaceae 5,988 
Euphorbia elata Euphorbiaceae 5,194 
Humiriastrum diguense Humiriaceae 5,141 
Compsoneura sprucei Myristicaceae 4,830 
Elaeoluma glabrescens Sapotaceae 4,637 
Socratea exorrhiza Arecaceae 4,573 
Vochysia megalophylla Vochysiaceae 4,171 
Bombacopsis sessilis Bombacaceae 4,063 
Asterogyne martiana Arecaceae 3,742 
Other Species  166,566 
  300,000 

 Tab. 4.9: IVI for all individuals, dbh ≥ 2 cm 
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4.2.7 Family Importance Value Index 
 

The FIVI shows the importance of families in a research area. It is the sum of relative 

diversity, relative density and relative dominance. 

 

 

4.2.7.1 FIVI, dbh ≥ 10 cm 
 

4.2.7.1.1 Relative Diversity 
 

Family Nr of Individuals Nr of Species Relative Diversity [%] 
Moraceae 35 9 8,333 
Clusiaceae 52 7 6,481 
Sapotaceae 20 7 6,481 
Fabaceae-Mimosoideae 8 6 5,556 
Arecaceae 125 5 4,630 
Myristicaceae 25 5 4,630 
Annonaceae 4 4 3,704 
Burseraceae 10 4 3,704 
Chrysobalanaceae 9 4 3,704 
Melastomataceae 9 4 3,704 
Meliaceae 30 4 3,704 
Fabaceae-Caesalpinioideae 4 3 2,778 
Flacourtiaceae 4 3 2,778 
Lauraceae 3 3 2,778 
Sapindaceae 4 3 2,778 
Other Families 111 37 34,259 
      100,000 

Tab. 4.10: Relative Diversity for all families, dbh ≥ 10 cm  
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4.2.7.1.2 Relative Density 
 

Family Nr of Individuals Nr of Species Relative Density [%] 
Arecaceae 125 5 27,594 
Clusiaceae 52 7 11,479 
Moraceae 35 9 7,726 
Meliaceae 30 4 6,623 
Myristicaceae 25 5 5,519 
Sapotaceae 20 7 4,415 
Euphorbiaceae 13 2 2,870 
Burseraceae 10 4 2,208 
Chrysobalanaceae 9 4 1,987 
Vochysiaceae 9 2 1,987 
Melastomataceae 9 4 1,987 
Myrsinaceae 9 2 1,987 
Fabaceae-Mimosoideae 8 6 1,766 
Humiriaceae 8 1 1,766 
Violaceae 7 2 1,545 
Other Families 84 44 18,543 
      100,000 

Tab. 4.11: Relative Density for all families, dbh ≥ 10 cm 

 

 

4.2.7.1.3 Relative Dominance 
 

Family Nr of Individuals  Nr of Species BA [m²] Relative Dominance [%] 
Moraceae 35 9 6,04 16,865 
Meliaceae 30 4 4,68 13,052 
Clusiaceae 52 7 2,59 7,215 
Myristicaceae 25 5 2,37 6,619 
Arecaceae 125 5 2,34 6,525 
Sapotaceae 20 7 1,93 5,381 
Humiriaceae 8 1 1,63 4,548 
Vochysiaceae 9 2 1,60 4,456 
Chrysobalanaceae 9 4 1,27 3,538 
Fabaceae-Mimosoideae 8 6 1,23 3,430 
Bombacaceae 6 1 1,19 3,311 
Other Families 126 57 8,98 25,059 
        100,000 

Tab. 4.12: Relative Dominance for all families, dbh ≥ 10 cm 
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4.2.7.1.4 FIVI, dbh ≥ 10 cm 
 

 

The FIVI for all plants dbh ≥ 10 cm is listed in Tab. 5.13. 

 

 

Family Nr of Individuals Nr of Species FIVI 
Arecaceae 125 5 38,749 
Moraceae 35 9 32,925 
Clusiaceae 52 7 25,175 
Meliaceae 30 4 23,379 
Myristicaceae 25 5 16,768 
Sapotaceae 20 7 16,278 
Fabaceae-Mimosoideae 8 6 10,752 
Chrysobalanaceae 9 4 9,228 
Vochysiaceae 9 2 8,295 
Burseraceae 10 4 8,160 
Humiriaceae 8 1 7,240 
Melastomataceae 9 4 6,061 
Fabaceae-Caesalpinioideae 4 3 5,918 
Euphorbiaceae 13 2 5,744 
Annonaceae 4 4 5,636 
Bombacaceae 6 1 5,561 
Myrsinaceae 9 2 4,409 
Malpighiaceae 3 1 4,391 
Lauraceae 3 3 4,200 
Sapindaceae 4 3 4,199 
Olacaceae 4 2 4,009 
Other Families 63 29 52,924 
      300,000 

 Tab. 4.13: FIVI for all families, dbh ≥ 10 cm 
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 Fig. 4.9: Family Diversity for all individuals, dbh ≥ 10 cm  

 

4.2.7.2 FIVI, dbh ≥ 2 cm 
 

4.2.7.2.1 Relative Diversity 
 

Family Nr of Individuals Nr of Species Relative Diversity [%] 
Rubiaceae 398 17 7,328 
Fabaceae-Mimosoideae 58 16 6,897 
Moraceae 120 15 6,466 
Clusiaceae 170 14 6,034 
Arecaceae 580 13 5,603 
Melastomataceae 275 12 5,172 
Sapotaceae 82 9 3,879 
Annonaceae 44 8 3,448 
Euphorbiaceae 217 8 3,448 
Lauraceae 23 8 3,448 
Burseraceae 78 7 3,017 
Chrysobalanaceae 26 7 3,017 
Flacourtiaceae 55 7 3,017 
Meliaceae 115 6 2,586 
Fabaceae-Caesalpinioideae 21 5 2,155 
Myristicaceae 103 5 2,155 
Sapindaceae 11 5 2,155 
Vochysiaceae 39 5 2,155 
Other Families 473 65 28,017 
      100,000 

Tab. 4.14: Relative Diversity for all families, dbh ≥ 2 cm 
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4.2.7.2.2 Relative Density 
 

Family Nr of Individuals Nr of Species Relative Density [%] 
Arecaceae 580 13 20,344 
Rubiaceae 398 17 13,960 
Melastomataceae 275 12 9,646 
Euphorbiaceae 217 8 7,611 
Clusiaceae 170 14 5,963 
Moraceae 120 15 4,209 
Meliaceae 115 6 4,034 
Myristicaceae 103 5 3,613 
Sapotaceae 82 9 2,876 
Burseraceae 78 7 2,736 
Fabaceae-Mimosoideae 58 16 2,034 
Violaceae 57 3 1,999 
Flacourtiaceae 55 7 1,929 
Annonaceae 44 8 1,543 
Myrtaceae 42 4 1,473 
Other Families 457 88 16,029 
      100,000 

Tab. 4.15: Relative Density for all families, dbh ≥ 2 cm 

 

 

4.2.7.2.3 Relative Dominance 
 

Family Nr of Individuals Nr of Species BA [m²] Relative Dominance [%] 
Moraceae 120 15 6,18 15,974 
Meliaceae 115 6 4,76 12,309 
Arecaceae 580 13 3,06 7,899 
Clusiaceae 170 14 2,74 7,078 
Myristicaceae 103 5 2,46 6,357 
Sapotaceae 82 9 2,03 5,233 
Humiriaceae 11 1 1,63 4,219 
Vochysiaceae 39 5 1,62 4,178 
Chrysobalanaceae 26 7 1,30 3,363 
Fabaceae-Mimosoideae 58 16 1,28 3,309 
Bombacaceae 11 1 1,19 3,087 
Other Families 1536 140 10,45 26,995 
        100,000 

Tab. 4.16: Relative Dominance for all families, dbh ≥ 2 cm 
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4.2.7.2.4 FIVI, dbh ≥ 2 cm 
 

 

The family importance value index for all plants dbh ≥ 2 cm is listed in Tab. 5.17. 

 

 

Family Nr of Individuals Nr of Species FIVI 
Arecaceae 580 13 33,846 
Moraceae 120 15 26,648 
Rubiaceae 398 17 22,134 
Clusiaceae 170 14 19,075 
Meliaceae 115 6 18,929 
Melastomataceae 275 12 15,847 
Euphorbiaceae 217 8 12,572 
Fabaceae-Mimosoideae 58 16 12,240 
Myristicaceae 103 5 12,125 
Sapotaceae 82 9 11,988 
Burseraceae 78 7 8,039 
Vochysiaceae 39 5 7,701 
Chrysobalanaceae 26 7 7,292 
Annonaceae 44 8 6,089 
Flacourtiaceae 55 7 5,406 
Fabaceae-Caesalpinioideae 21 5 5,055 
Lauraceae 23 8 5,040 
Humiriaceae 11 1 5,035 
Malpighiaceae 5 3 4,065 
Violaceae 57 3 3,928 
Bombacaceae 11 1 3,904 
Other Families 363 62 53,041 
      300,000 

 Tab. 4.17: FIVI for all families, dbh ≥ 2 cm 
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Fig. 4.10: Family Diversity for all individuals, dbh ≥ 2 cm 
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5 Discussion 

 

5.1 Basic Forest Structure 
 

5.1.1 Size Class Distribution 
 

Forest research plots are periodically monitored using size classes for better description, 

presentation and visualization. Monitoring varies in scope. Several studies cover a range 

from dbh ≥ 10 cm, some contain individuals from dbh ≥ 1 cm or dbh ≥ 2 cm. The 

corresponding size classes are frequently stated in 10 cm intervals, smaller research 

plots occasionally in 5 cm steps. 

Size classes usually give the base for parameters of structure, e. g. for BA, biomass and 

turnover variables and make them comparable with other forest sites and areas.  

 

The distribution on the research plot showed the anticipated J graph. Most of the 

individuals were found in the smaller size classes, a common feature of primary forests 

(GENTRY &  TERBORGH 1990, HUBBEL &  FOSTER 1990, LIEBERMANN &  LIEBERMANN 

1994).  

453 individuals dbh ≥ 10 cm out of 108 species were found on the research plot. In 1993 

527 individuals out of 133 species were present (HUBER 2005). Many species are 

represented with very few individuals. For example, on this research plot 57 species had 

only one individual. If disturbances occur species with low density are more influenced 

than species with a higher number of individuals. Especially the lower size classes 

showed higher mortality and loss of those individual poor species. So a decrease of 

species richness at the moment of the inventory occurred. 

With all plants dbh ≥ 2 cm there were 2849 individuals out of 232 species. 

Compared with research areas in other neotropical regions that number of individuals 

was more or less average. E. g. Barro Colorado Island, Panama, had about 415 

individuals dbh ≥ 10 cm per ha in a 50 ha plot (CONDIT 1995), Paracou, French Guiana 

about 615 individuals per ha in a 19 ha plot (FAVRICHON 1994). For further data see 

Tab. 6.2. 
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Density could be influenced by the dominant soil type. Hereby it is stated that highest 

density occured on depressions and floodplains on flatter areas (LIEBERMANN & 

LIEBERMANN 1985). DEWALT (2003) showed no significant differences in total number 

of trees on different soil types in La Selva, Costa Rica. WEISSENHOFER (2005) showed 

that the research areas with highest amount of individuals were on the poorest soils in 

Esquinas forest, Costa Rica. 

Another alternative reason for reducing or limiting density was a higher number of taller 

trees. Those could reduce the number of smaller individuals by e. g. shadowing or 

killing in treefall events (LIEBERMANN &  LIEBERMANN (1994). On the plot several 

larger trees were present. 

 

Due to treefall of large trees in the recent years smaller individuals were killed and 

relative huge gap areas formed. So some plants which had reached a dbh ≥ 10 cm 

disappeared and less individuals could reach that border. Otherwise the high number of 

individuals in the lowest size classes were caused by the colonization of the gap areas 

by several species meanly of Rubiaceae (e.g. Psychotria spp., Isertia laevis, Faramea 

sessiliflora) and Arecaceae (Iriartea deltoidea, Welfia regia). The high density of palms 

causes difficulties for regeneration. First, large palm leaves reduce light transmission for 

smaller plants and second, dying and falling leaves could possibly kill most of the 

young regeneration standing below. Especially very large and heavy leaves like those of 

Welfia regia could cause such effects. 

 

Location Author Density Range (Dbh) 

Costa Rica, Esquinas Present Study 2849 2cm up 

Costa Rica, La Selva DEWALT 2003 3360 1cm up 

Panama, BCI DEWALT 2003 4910 1cm up 

Peru, Cocha Cashu DEWALT 2003 5377 1cm up 

Brazil, KM41 DEWALT 2003 6150 1cm up 

Ecuador, Yasuni VALENCIA  2004 6094 1cm up 

Malaysia, Pasoh PLOTKIN 2002 6705 1cm up 

Tab. 5.1: Comparison of tropical forests: Density 
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5.1.2 Basal area 
 

The BA (dbh ≥ 10 cm with 35.9 m², dbh ≥ 2 cm with 38.7 m²) of the plot had an amount 

more or less found in similar studies in Latin American forests and was higher than the 

average respectively. DEWALT & CHAVÉ (2004) showed BA in four different forests in 

Brazil, Peru, Panama and Costa Rica, VALENCIA  (2004) in an Ecuadorian forest (see 

Table 6.1). Here the nutrient poor Peruvian and Brazilian forests showed surprising high 

BA, whereas the Central American forests were comparatively low despite its relative 

high fertile soils. Usually the growth of trees is greater on soils with high nutrition 

status (GENTRY &  TERBORGH 1990). Those nutrient poor south American forests 

showed a very high density of medium sized trees whereas the Central American forests 

showed a higher amount of trees with higher dbh.  

 

The research plot suffered several severe disturbances in the past years with loss of 

many bigger trees. The remnants of the boulders could be seen for years on the plot. So 

a good part of the area showed gap phase characteristics with dense understorey, low 

dbh´s and few canopy trees. A loss of few plants with high dbh caused lower BAs.  

 

Relief was deciding the amount of BA and therefore of growth. WEISSENHOFER (2005) 

showed highest BA on plots with higher slopes and on ridges (up to 43.5 m²). 

HARTSHORN (1983) confirmed this statement with BA of 45.8 m² on those stands and 

lower values on sites with lower gradients in the same area. 

Low values on flat landscapes in La Selva, Costa Rica, were approved by HARTSHORN 

&  HAMMEL (1994) and LIEBERMANN et al. (1996). BA varied between 23.5 and 27.1 

m²/ha.  

 

Location 
Costa Rica 

Research Plot 
Esquinas 

Costa Rica 
La Selva 

Panama 
BCI 

Peru 
Cocha Cashu 

Brazil 
KM41 

Ecuador 
Yasuni 

Author Present Study DEWALT 2003 DEWALT 2003 DEWALT 2003 DEWALT 2003 VALENCIA 2004 

Ind. Density 2849 3360 4910 5377 6150 6094 

Basal Area (m²) 38.7 29.2 27.9 45.3 38.6 33.4 

Range (Dbh) 2cm up 1cm up 1cm up 1cm up 1cm up 1cm up 

Tab. 5.2: Comparison of Neotropical forests: Density and BA. 
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5.1.3 Biomass 
 

Biomass strongly varies dependent on the way of calculation. Differences of two 

slightly different calculations may result in deviations caused by the square sum 

deviation of two measurement uncertainties. Due to great variations of the crown shape 

and the tree architecture in general exact calculations seem difficult (HALLE  et al 1978). 

Also the height measurement of tropical trees has an error due to estimation differences 

which often ranges up to 10 m (CHAVÉ et al 2001). So a regression model excluding the 

height was chosen. A derivation of the formula was provided by CHAVE (2001). Those 

regression model is commonly used in biomass estimation nowadays (FEELEY et al 

2007; DEWALT  et al 2004; CHAVÉ et al 2001). 

Previous studies on biomass resulted in a range from 148 Mg ha-1 up to 669 Mg ha-1 

(KIRA 1971). The Esquinas research plot showed average biomass (339 Mg ha-1) 

compared to other tropical forests. Biomass for about 300 Mg ha-1 are common in 

tropical forests (CHAVE et al, 2001). 

CHAVE (2001) measured values from 309 up to 345 Mg ha-1 in French Guiana. FEELEY 

(2007) obtained data from 4 different research areas: BCI, Panama; Pasoh, Malaysia; 

Lambir, Malaysia; Huai Kha Khaeng, Thailand, with estimations of 301 Mg ha-1 for 

BCI, 326 Mg ha-1 for Pasoh, 490 Mg ha-1 for Lambir and 211 Mg ha-1 for Huai Kha 

Khaeng. CHAVE (2008) obtained data from the same research plots with 307 Mg ha-1 for 

BCI, 340 Mg ha-1 for Pasoh, 497 Mg ha-1 for Lambir and 211 Mg ha-1 for Huai Kha 

Khaeng.  

 

The biomass accumulation (NPP) was high with 7.9 Mg ha-1 y-1. Usually 2 to 4 Mg ha-1 

y-1 were reported (BROWN 1990; LUGO 1992; CHAVE 2001).  

The ingrowth rate (NEP or uptake of biomass minus losses through death) was with 1.9 

Mg ha-1 y-1 in the usual range. Literature described values from 0.7 up to 1.9 Mg ha-1 y-1 

(e. g. PHILLIPS et al 1998; CHAVE 2001).  

The high NPP could be explained with the great gap-similar area in the lower part of the 

research plot. High NPP values are typical for secondary forests and primary forests 

with high areal amount of gaps. 
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The increase of biomass from 1993 to 2001 had an amount of 15 Mg ha-1. This result 

complied with the increasing average dbh and BA. That increment corresponded with 

the assumption of increasing biomass in tropical forests in the late twentieth century 

(PHILLIPS & GENTRY 1994; PHILLIPS 1996). The root cause could not be detected. First, 

possibilities were disturbances and increment of fast growing species due to distinct gap 

formation, and second, athmospheric changes like increasing CO2, increasing 

temperatures or nitrogen deposition. This thesis could not answer that question. It could 

be part of further analyses. 

 

All the plants smaller than 10 cm dbh contributed only 2,8 % (9 Mg ha-1) to the whole 

aboveground biomass, although they represented 84 % of all individuals. This 

corresponded with LESCURE (1983) who stated an amount of 2 to 4 % of the total 

biomass for such size classes. 

 

Only 25 % of all trees were greater than dbh 30 cm, but they represented 85 % of the 

aboveground biomass and as much as 77 % of the BA. Larger tree affect on biomass 

was considerably more pronounced. Only 5 % of the trees were above dbh 70 cm, but 

50 % of aboveground biomass and 40 % of the BA belonged to this class. 

So a potential loss of only one greater individual reflected in a strong decrease in 

biomass. 

 

 

5.1.4 Growth and mortality 
 

Growth and mortality rates generally vary through ontogeny and therefore influence 

size distribution (WRIGHT et al 2003). Mortality generally declines with age or tree size 

(HARCOMBE 1987). This decline is highest for light demanding species because they are 

rare as seedlings and treelets due to their quick dying when shaded, or their rapid 

growing into higher size classes if high light levels remain high (WRIGHT et al 2003). 

Shade tolerant species in contrast are very frequent as seedlings and treelets because of 

their persistence and slow growth behaviour (WRIGHT et al 2003). 

Some species produce an ontogenetic shift, therefore they need high levels of light for 

establishment as seedling. When established they switch to a shade tolerant growth 
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(CLARK &  CLARK 1992; DALLING  et al 2001, WRIGHT et al 2003). But generally the 

mortality rates tend to be consistent across all juvenile stages (WRIGHT et al 2003). 

Size distributions with many small individuals and rare large individuals characterize 

prevailing of shade tolerant species with lower fertility, slower growth in smaller size 

classes and lower mortality of seeds and seedlings (WRIGHT et al 2003). 

Rates and therefore size class distribution varies in relation to disturbances (e.g. 

drought, pathogens, predation, windfall and others) (GILBERT et al 1994; CONDIT et al 

1996). 

Former studies showed different results. HARTSHORN (1980) showed a dominance of 

species with high light requirements with an amount of 71 % of all canopy tree species. 

At BCI, Panama, several studies demonstrated converse results with a dominace of over 

80 % of species regenerated in the shaded understorey (HUBBELL &  FOSTER 1986, 

CONDIT et al 1996).  

 

Generally pioneer species show rapid growth and short longevity, subcanopy trees have 

slow growth and high longevity, and canopy and emergent species have moderate to 

high growth and high longevity (LAURANCE et al, 2003; KORNING &  BALSLEV 1994; 

LIEBERMAN &  LIEBERMAN 1987; CONDIT et al 1996).  

 

Mortality was 3.54 % y-1 for all stems dbh ≥ 10 cm. Plants from 2 to < 10 cm could not 

be included because they were not evaluated in 1993 and therefore no comparison was 

possible. 

LAURANCE (2003) calculated mortality rates of 0.86 % y-1 in a forest near Manaus, 

Central Amazonia. CONDIT (1995) found mortality rates in 2 censuses from 2.26 up to 

2.66 % y-1 at BCI, Panama. PHILLIPS (2004) described nearly 100 research plots in 

Bolivia, Brazil, Ecuador, French Guiana, Peru and Venezuela and reported mortality 

rates from 0.44 up to 3.36 % y-1. LEWIS et al (2004b) showed mortality rates of 0.86 % 

y-1 for seven stands in Panama, French Guiana, Australia, Brazil, Peru, Cameron and 

Malaysia. 

Mortality rates are usually higher in pioneer species (CONDIT 1995). But this could not 

be verified with the Esquinas data. No absolute trend occurred which ecological group 

has high and which has low mortality. In contrary, the Esquinas data showed slightly 

higher mortality in the climax or canopy species. This corresponded with the conclusion 
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of CONDIT (1995) who recognized similar results in BCI, Panama, and WEISSENHOFER 

(2005) for four different Esquinas research plots, Costa Rica. 

 

Iriartea deltoidea (Arecaceae), the most abundant species on the plot, had a mortality of 

4.64 % y-1, Welfia regia (Arecaceae), the second abundant species, 2.02 % y-1, Marila 

laxiflora (Clusiaceae), the most abundant canopy species, 2.03 % y-1. 

Some species occurring in the Esquinas and BCI, Panama, showed very different 

mortality rates: 

Beilschmiedia pendula (Lauraceae) for example had 8.66 % y-1, in BCI 1.95 % y-1.  

Brosimum alicastrum (Moraceae) had 5.07 % y-1, in BCI 1.85 % y-1. 

Protium panamense (Burseraceae) had 1.93 % y-1, in BCI 9.00 % y-1. 

Symphonia globulifera (Clusiaceae) had 1.47 % y-1, in BCI 10.39 % y-1. 

Virola sebifera (Myristicaceae) had 0 % y-1, in BCI 3.27 % y-1. 

 

The reason of those differences might be different disturbances in the two forests, as 

well as different level of climatic influences, as well as the timing of the census. 

Generally understorey plants or plants of smaller size classes could be killed by other 

falling trees or parts of them (DENSLOW &  HARTSHORN 1994). That could explain the 

higher mortality rates of the palms and Melastomataceae. Mortality occured mainly in 

the lowest size classes. Nearly 60 % of all dead individuals were below dbh 15 cm.  

30 % were palms. Canopy plants could be eliminated by lightning, a very important 

mortality factor, windthrow or snapping. 

Climatic influences are a widely discussed theme. Is global warming and additional 

carbon and nitrogen input responsible for accelerating growth rates? That could not be 

identified for sure. LEWIS (2004) could not certainly show an influence of warming on 

tropical growth. Events with a greater impact (e.g. ENSO, El Nino Southern 

Oscillation) certainly affect different growth and mortality rates, but those influences 

strongly vary depending on variables like region, year, species composition, slope. 

PHILLIPS (2004) could not exclude an influence of additional carbon input on 

accelerated growth rates. Further studies and simulations should take place. 

The timing of the census could possibly affect the measured rates, because climate 

fluctuations could affect stem hydrations, growth rates and mortality probabilities 

(PHILLIPS et al 2004). 
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Another reason could be different soil fertilities. Recent studies showed a strong 

correlation between fertility, mortality and growth rates. Those rates are higher with 

increasing soil fertility (PHILLIPS et al 1994; MAHLI  et al 2004; PHILLIPS et al 2004). 

Especially on pioneer species soil fertility has an enormous impact (CONDIT 1999). But 

that growth driver is generally too poorly characterized and too spatial localized. 

 

Growth rates varied strong among species and among years. This corresponds with 

other publications (LAURANCE et al, 2003; CLARK &  CLARK 1992; CLARK &  CLARK 

1994; DA SILVA  et al 2002). 

The growth rates in mm y-1 range from 0 up to 7.5. The dbh growth in mm y-1 was 

inclining with higher size classes. LAURANCE (2008) found growth rates of 0.25 up to 

6.39 mm y-1. Here pioneer species also had no higher growth than canopy species.  

 

The weighted growth rate as a function of mortality and recruitment was negatively 

correlated (–2.35%) due to the higher mortality rate.  

 

The relation between climate, soils and disturbances with growth are very complex. In 

La Selva, Costa Rica, dry years often tend to produce over averaged growth of canopy 

trees possibly due to higher availability of photosynthetically active radiation during 

years or periods with lesser cloud cover (CLARK &  CLARK 1994). 

 

 

5.2 Floristic diversity 
 

5.2.1 Species Diversity 

5.2.1.1 Species Density 
 

Tropical forests are characterized for having hundreds of species per single hectare 

(CONDIT et al 2005). The research plot in the Esquinas belongs to one of the forests with 

highest species diversity in Central America (QUESADA & al 1997, WEBER &  al. 2001, 

(HUBER 2008)). In Central America those forests are in the wet Pacific and Caribbean 

lowlands of Costa Rica. 
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Diversity can be measured generally on different levels ranging from genes to 

ecosystems (GASTON 2000). Most analyses measuring diversity are performed by 

observation of the number of species in a specific area (CONDIT et al 2005). 

One of the primary purposes of tree censuses is to assess biodiversity with the intent of 

providing absolute and comparative estimates of species diversity (CONDIT et al 1998). 

Terrestrial systems have a significant higher species richness in tropical forests than in 

temperate regions. While 200 or more species per hectare are no curiosity for tropical 

forests, temperate forests contain only more or less 10 species per hectare. The whole 

northern Europe has approximately 50 tree species. 

 

In the research plot 108 species out of 43 families dbh ≥ 10 cm and 232 species out of 

59 families dbh ≥ 2 cm respectively occurred.  

The palms Iriartea deltoidea and Welfia regia as well as the Clusiaceae Symphonia 

globulifera and Marila laxiflora and Carapa guianensis (Meliaceae) were very 

common. Many understorey and disturbance species of the families Rubiaceae and 

Melastomataceae (eg. Psychotria elata, Isertia laevis) were also characterized by a very 

high abundance. Due to the high disturbance degree of the research plot palms were 

very frequent in succession, a characteristic where disturbances frequently occur and 

results in gaps or gap areas in the forests. 

 

5.2.1.2 Diversity Indices 
 

The best practice and measure respectively of diversity would be independent of 

frequency for comparing diversity of smaller with larger areas or plots. But species 

richness is clearly dependent on sample size. All indices usually increase with 

increasing sample size.  

 

The Simpson diversity index (D) showed similar results within the censuses 1993 and 

2001. 1-D lied between 0.965 and 0.961. Including all individuals dbh ≥ 2 cm the index 

was about 0.976. The reciprocal index 1/D lied between 25.9 and 28.6. Here including 

all individuals dbh ≥ 2 cm resulted in an index of about 41.3. These higher indices 

including the smaller plants were caused by higher species density (232 species per 

hectare and nearly 3000 individuals).  
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You should sometimes be careful using the Simpson index in tropical forests because it 

represents evenness but nearly no part of richness. 

 

Shannon-Weaver diversity index (H’) is usually the least variable and most stable 

index containing information about both richness and evenness. 

The plot showed a H’ index 5.693 and was slightly higher than in 1993 (H’ = 4.119). 

Including all individuals dbh ≥ 2 cm resulted in an index of H’ = 6.427. 

 

The Evenness E = 1.21 compared to 1993 with E = 0.84 and with all individuals  

dbh ≥ 2 cm E = 1.18. 

 

Compared with other tropical forests these indices attest the Esquinas forest its high 

diversity. LIEBERMANN et al (1996) calculated indices from H’ = 2.556 to H’ = 4.508 

and the Evenness (E) ranges from 0.759 to 0.901 for forests of the Carribean sites of 

Costa Rica. CONDIT et al (1998) showed indices for Pasoh, Malaysia, BCI, Panama and 

Mudumalai, India from H’ = 1.3 up to H’ = 1.6. LAFRANKIE (2006) calculated H’ = 

3.91 for Korup, Cameroon, H’ = 3.65 for BCI, Panama, H’ = 5.59 for Yasuni, Ecuador, 

H’ = 5.39 for Lambir, Malaysia, H’ = 5.28 for Pasoh, Malaysia and H’ = 4.57 for 

Palanan, Philippines. 

 

The Alpha Index gave the value α = 45.552. That index was lower than 1993 (α = 

57.953) and lower than with all individuals dbh ≥ 2 cm (α = 59.699). 

The range found in Fisher’s α in the Esquinas forest (HUBER 2005) was from 38.82 

(coastal slope) to 70.49 (ridge forest). CONDIT et al (1998) showed indices for Pasoh, 

Malaysia, BCI, Panama and Mudumalai, India with α = 125.2, α = 36.0 and α = 5.6. 

VALENCIA  et al (1994) showed indices for the Ecuadorian Cuyabeno forests from α = 

211.0 to α = 230.8. PHILLIPS et al (1994b) showed α = 221.1 for Yanamono, Peru, α = 

87.3 for Tambopata, Peru and 52.5 for Sepilok, Malaysia. GENTRY (1982b) showed α = 

146.9 for Manaus, Brazil. LAFRANKIE (2006) calculated α = 44.4 for Korup, Cameroon, 

α = 34.6 for BCI, Panama, α = 190.5 for Yasuni, Ecuador, α = 158.0 for Lambir, 

Malaysia, α = 120.0 for Pasoh, Malaysia and α = 47.7 for Palanan, Philippines. 

Highest diversity was shown for Neotropical forests with a hot spot in the areas of Peru 

and Ecuador. But the tropical forests of Central America showed also high diversity, 

especially in the Esquinas forest. 
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5.2.1.3 Importance Value 
 

This index is considerable important because it includes three calculations. It is the sum 

of relative frequency, relative density and relative dominance. 

The species with the highest Importance Values were from the Arecaceae (Iriartea 

deltoidea, IV 25.971; Welfia regia, IV 21.436), the Clusiaceae (Symphonia globulifera, 

IV 12.051; Marila laxiflora, IV 11.605), the Meliaceae (Carapa guianensis, IV 18.283) 

and the Moraceae (Brosimum utile, IV 21.044). In 1993 Huber found the same species 

on top of the importance scale. 

For all species (dbh ≥ 2 cm) the understorey species Henriettea tuberculata 

(Melastomataceae) and Psychotria elata (Rubiaceae) are additionally in the top ranking. 

 

The three included indices showed the dominance of those species in all cases (but in 

various order). Merely the relative dominance (defined by BA) showed increasing 

relevance of the bigger canopy species like Vochysia megalophylla (Vochysiaceae), 

Humiriastrum diguense (Humiriaceae) and Elaeoluma glabrescens (Sapotaceae). 

Palms are very abundant in Central American and northern South American tropical 

forests. Especially a few genera like Welfia, Iriartea and Socratea are typical. There is 

nothing equivalent found in lowland forests of Asia. There palms are abundant as 

caespitose understorey plants and especially climbers, a fact that is largely missing in 

America (LAFRANKIE 2006). Generally no absolute dominance of one species in 

whatever case could be recognized on the plot. On the contrary extreme non-dominance 

was given, no species had such occurrence that it could be designed as leading species, 

although palm species were frequent and a very high amount of understorey or pioneer 

trees (many Rubiaceae, Melastomataceae, Euphorbiaceae) were found on the large gap 

areas. 
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5.2.1.4 Family Importance Value 
 

No family showed absolute dominance on the research area. On top of both (dbh ≥ 10 

cm, dbh ≥ 2 cm) calculations were the palms. They were not very diverse and did not 

have highest BA but had the highest relative density (20 to 30 %). The Moraceae were 

second in both ways and had generally a high importance in the Esquinas forest (HUBER 

2005). While Clusiaceae, Meliaceae, Myristicaceae and Sapotaceae were important in 

the greater size classes, the calculation including the smaller classes showed increasing 

dominance of families with a high amount of understorey species (e.g. Rubiaceae, 

Melastomataceae, Euphorbiaceae, Chrysobalanaceae). 

 

 

The results showed that the Esquinas forest is one of the highest diverse tropical forests. 

The forest itself is very dynamic with high amounts of turnover rates. Due to this 

characteristics the stands are spatially divided in many microhabitats like a mosaique. 

So many species with very diverse ecological requirements could establish.  

The forest is said to be in a “state of dynamic equilibrium” that may be subdivided into 

three phases: the gap phase, the building phase, and the mature phase. Gap phase has 

great importance for diversity, especially in the highly diverse tropical forests 

(WHITMORE 1978, HUBBELL &  FOSTER 1986, HUBBELL & al. 1990). The Esquinas 

forest is very dynamic and therefore all phases between gap and climax were found in 

all plots. 



 50 

 

6 Abstract 

 

The Esquinas rainforest in Costa Rica is among the plant communities with the highest 

number of species in Central America (QUESADA et al 1997). The thesis describes the 

structure and the floristic diversity of a research plot of an undisturbed primary forest in 

the Piedras Blancas / Esquinas National Park ("Regenwald der Österreicher").  

The data were collected between 2000 and 2001. Analyses were performed collecting 

and identifying woody plants of ≥ 10 cm and ≥ 2 cm dbh respectively. A detailed site 

map was generated, data were collected and calculated of each tree and the whole plot 

with individual number, diameter in breast height (dbh), tree height, basal area (BA), 

and biomass. Further growth and mortality rates were calculated. Furthermore species 

density, diversity indices (Simpson, Shannon-Wiener, Fisher´s α), Importance Value 

(IVI) and Family Importance Value (FIVI) were calculated. 

All data were compared with former studies performed by HUBER (1996a, 2005) and 

WEISSENHOFER (1996, 2005) 

 

In total 2849 individuals of 232 species ≥ 2 cm dbh and 453 individuals of 108 species 

≥ 10 cm dbh were recorded. Palms were very abundant with the most frequent species 

Iriartea deltoidea (62 individuals) and Welfia regia (43 individuals) for all trees dbh ≥ 

10 cm. In the lower size classes understorey species like Henriettea tuberculata 

(Melastomataceae) and Psychotria elata (Rubiaceae) were very frequent with 184 and 

145 individuals respectively. 

The graph of the size class distribution showed the anticipated  J graph. The average 

dbh of all individuals ≥ 10 cm was 25.9 cm, in 1993 23.5 cm. The average dbh of all 

individuals ≥ 2 cm was 7.0 cm. 

 

The BA was 35.9 m² (dbh ≥ 10 cm) and 38.7 m² (dbh ≥ 2 cm), an amount found on the 

lower range in similar studies in Latin American forests. Compared to WEISSENHOFER 

(2005) who calculated 35.5 m² in 1993 similar values could be reported. Root causes of 

lower BA were suffering several severe disturbances in the past years with loss of many 
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bigger trees. Also relief was deciding the amount of BA. WEISSENHOFER (2005) showed 

highest BA on plots with higher slopes and on ridges (up to 43.5 m²). HARTSHORN 

(1983) confirmed this statement with BA of 45.8 m² on those stands and lower values 

on sites with lower gradients in the same area. 

The Esquinas research plot showed average biomass (339 Mg ha-1) compared to other 

tropical forests. WEISSENHOFER calculated 315 Mg ha-1 in 1993. Biomass accumulation 

(net primary production NPP) was high with 7.9 Mg ha-1 y-1. Ingrowth rate (net 

ecosystem production NEP or uptake of biomass minus losses through death) was with 

1.9 Mg ha-1 y-1 in the range of comparable tropical forests. The high NPP could be 

explained with the great gap-similar area in the lower part of the research plot. High 

NPP values are typical for secondary forests and primary forests with high amount of 

gap areal.  

 

The mortality rate was 3.54 % y-1for all stems dbh ≥ 10 cm. The size class distribution 

for mortality was different. Lower size classes showed a higher rate. Nearly 60 % of all 

dead individuals were below dbh 15 cm. In the higher size classes mortality was nearly 

constant. Recruitment was 1.29 % y-1 for all stems dbh ≥ 10 cm.  

 

In the research plot 232 species out of 59 families occurred. The palms Iriartea 

deltoidea and Welfia regia as well as the Clusiaceae Symphonia globulifera and Marila 

laxiflora as well as Carapa guianensis (Meliaceae) were very common. Many 

understorey and disturbance species of the families Rubiaceae and Melastomataceae 

(eg. Psychotria elata, Isertia laevis, Henriettea tuberculata) were also characterized by 

a very high abundance. Due to the high disturbance degree of the research plot palms 

were very frequent in different succession phases, a characteristic where disturbances 

frequently occur and results in gaps or gap areas in the forests. 

57 ssp. were represented with only one individual.  

The Shannon-Wiener index was H´= 6.427, Simpson index gave D = 0.035, Simpson 

index of diversity 1-D = 0.965 and Alpha index α = 59.699.  

The families with the highest FIVI were the Arecaceae (33.846), Moraceae (26.648) 

Rubiaceae (22.134) and the Clusiaceae (19.075). The species with the highest IVI were 
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Welfia regia (Arecaceae; 17.277), Brosimum utile (Moraceae; 16.432), Carapa 

guianensis (Meliaceae; 15.838) and Iriartea deltoidea (Arecaceae; 10.192). 

Probably due to the high precipitation, the missing dry season, the strong structured 

landscape and soil heterogeneity the Esquinas forest has a very high species diversity 

for a tropical forest. 
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7 Zusammenfassung 

 

Der Esquinas Regenwald in Costa Rica gehört zu den artenreichsten 

Pflanzengesellschaften in Mittelamerika (QUESADA et al 1997). Diese Diplomarbeit 

beschreibt die Struktur und floristische Diversität eines Forschungsplots in einem 

Primärwald im Piedras Blancas Nationalpark (“Esquinas rainforest” oder "Regenwald 

der Österreicher"), welcher in einer Seehöhe von 300-336 msm und einer 

geographischen Lage von  N 8°41’ und W 83°12’ auf einem gut drainagierten 

südwestlich exponierten Hangwald liegt. Der durchschnittliche jährliche Niederschlag 

liegt bei etwa 6000 mm, die jährliche Durchschnittstemperatur bei ca. 28°C. Diese 

Eigenschaften sowie die Abwesenheit einer ausgeprägten Trockenzeit führten zur 

Ausbildung eines „Perhumid tropical lowland wet forest“ gemäß HOLDRIDGE et al 1971. 

Die Feldaufnahmen wurden zwischen 2000 und 2001 durchgeführt. Diese wurden in 

Form von Besammlungen und Bestimmungen von holzigen Pflanzen mit einem 

Brusthöhendurchmesser (dbh) ≥ 10 cm sowie ≥ 2 cm dbh durchgeführt. Ein detaillierter 

Lageplan wurde erstellt, Daten jedes einzelnen Individuums und der gesamten 

Untersuchungsfläche erhoben mit laufender Nummer, dbh, Baumhöhe, 

Bestandesgrundfläche und Biomasse. Weiters wurden Wachstums- und Mortalitätsraten 

sowie verschiedene Artendichte- und Diversitätsindices (Simpson, Shannon-Wiener, 

Fisher´s α), Importance Value (IVI) und Family Importance Value (FIVI) berechnet. 

Alle Berechnungen wurden mit jenen aus früheren Studien von HUBER (1996a, 2005) 

und WEISSENHOFER (1996, 2005) verglichen. 

 

Insgesamt 2849 Individuen aus 232 Arten ≥ 2 cm dbh sowie 453 Individuen aus 108 

Arten ≥ 10 cm dbh wurden ermittelt. Palmen wiesen eine ausgesprochene Häufigkeit 

vor allem mit den Arten Iriartea deltoidea (62 Individuen) und Welfia regia (43 

Individuen) für alle Individuen dbh ≥ 10 cm auf. Bei den niederen Größenklassen traten 

Unterbauarten wie Henriettea tuberculata (Melastomataceae) und Psychotria elata 

(Rubiaceae) sehr häufig auf (184 bzw. 145 Individuen). 
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Die graphische Darstellung der Größenklassenverteilung zeigt die typische reverse J-

Kurve mit den meisten Individuen in den niederen Größenklassen. Der 

durchschnittliche dbh aller Individuen ≥ 10 cm betrug 25.9 cm, im Jahr 1993 23.5 cm. 

Der durchschnittliche dbh aller Individuen ≥ 2 cm betrug 7.0 cm. 

 

Die Bestandesgrundfläche betrug 35.9 m² (dbh ≥ 10 cm) beziehungsweise 38.7 m² (dbh 

≥ 2 cm). Dieses Ergebnis liegt im unteren Bereich verglichen mit ähnlich designten 

Studien in lateinamerikanischen Wäldern. Es wurde ein ähnliches Ergebnis wie bei 

WEISSENHOFER (2005) erzielt, welcher 35.5 m² in 1993 ermittelte. Hauptgrund einer 

niedrigeren Bestandesgrundfläche sind schwere Störungen in den vergangenen Jahren 

mit Ausfällen von Individuen mit höherem dbh. Das Relief ist ebenfalls ein für die 

Bestandesgrundfläche entscheidender Parameter. WEISSENHOFER (2005) zeigte höchste 

Bestandesgrundfläche auf steileren Untersuchungsflächen sowie auf Rücken (bis zu 

43.5 m²). HARTSHORN (1983) ermittelte ebenfalls höhere Bestandesgrundflächen auf 

Steilhängen und Rücken (bis zu 45.8 m²), sowie niedrigere in flacheren Beständen 

desselben Areals. 

 

Der Esquinas Forschungsplot weist mit 339 Mg ha-1 eine durchschnittliche Biomasse im 

Vergleich mit anderen tropischen Wäldern auf. WEISSENHOFER ermittelte 315 Mg ha-1 

in 1993. Die Biomasseakkumulation (Nettoprimärproduktion) war mit 7.9 Mg ha-1 y-1 

hoch. Die Zuwachsrate (Netto-Ökosystemproduktion oder Biomassezunahme abzüglich 

Verluste durch Absterben) lag mit 1.9 Mg ha-1 y-1 im typischen Bereich vergleichbarer 

tropischer Wälder. Die hohe Nettoprimärproduktion kann durch den hohen Anteil an 

gap-Fläche im unteren Bereich des Plots erklärt werden. Hohe Produktionswerte 

charakterisieren typische Sekundärwälder und Primärwälder mit einem höheren Anteil 

an gap-Areal.  

 

Die Mortlitätsrate betrug 3.54 % y-1 für alle Individuen dbh ≥ 10 cm. Mortalität war 

ungleich über die Größenklassen verteilt. Höhere Raten traten in den niedrigeren 

Klassen auf. Beinahe 60 % aller ausgefallenen Individuen wiesen einen dbh unter 15 cm 

auf. Über die höheren Klassen verlief die Mortalität nahezu konstant. Die 

Einwuchsraten betrugen 1.29 % y-1 für alle Individuen dbh ≥ 10 cm.  
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Auf der Untersuchungsfläche wurden 232 Arten aus 59 Familien bestimmt. Die Palmen 

Iriartea deltoidea und Welfia regia wie auch die Clusiaceae Symphonia globulifera und 

Marila laxiflora sowie Carapa guianensis (Meliaceae) waren sehr häufig. Viele 

Unterwuchspflanzen sowie Besiedler von Störungsregimes, Arten der Familien 

Rubiaceae und Melastomataceae (eg. Psychotria elata, Isertia laevis, Henriettea 

tuberculata) traten ebenfalls ausgesprochen oft auf. Eine hohe Abundanz an Palmen ist 

charakteristisch für sehr humide Wälder sowie Bestände in denen Störungen häufig 

auftreten.  

57 Arten traten nur mit einem Individuum auf. 

Der Shannon-Wiener Index betrug H´= 6.427, Simpson Index ergab D = 0.035, der 

Simpson Diversitätsindex 1-D = 0.965 und Alpha Index betrug α = 59.699.  

Die Familien mit dem höchsten FIVI waren die Arecaceae (33.846), Moraceae (26.648), 

Rubiaceae (22.134) und die Clusiaceae (19.075). Die Arten mit dem höchsten IVI 

waren Welfia regia (Arecaceae; 17.277), Brosimum utile (Moraceae; 16.432), Carapa 

guianensis (Meliaceae; 15.838) und Iriartea deltoidea (Arecaceae; 10.192). 

Diese ausgesprochen hohe Diversität des Esquinas Regenwalds ist darauf 

zurückzuführen, dass hohe Niederschläge, keine ausgeprägte Trockenzeit, stark 

strukturierte Bestände sowie heterogene Böden dieses System charakterisieren. 

 

 



 56 

 

8 References 

ALLEN, P.H. 1956. The rainforests of Golfo Dulce. - Stanford: Univ. Press. 

ASCHAN, G. 1998. Mikroklima, Energiebilanz und Wasserumsatz von tropischen und 
extratropischen Wäldern. Dissertation and der Mathematisch-
Naturwissenschaftliche Fakultät der Heinrich-Heine-Unversität Düsseldorf.  

ASHTON, P.S. 1982. Dipterocarpaceae. - In: VAN STEENIS, C.G.G.J. (ed.). Flora 
Malesiana ser. I, 9: 237-552. 

BERGOEING, J.P. 1998. Geomorphologia de Costa Rica. - San José: Instituto Geografico 
Nacional. 

BORGAARD, O.K. 1983. The influence of iron oxides on phosphate adsorption by soils. - 
J. Soil Sci. 34: 333-342.  

BORHIDI, A. 1991. Phytogeography and vegetation ecology of Cuba. - Akadémiai 
Kiadó, Budapest.  

BOZA, M.A., MENDOZA, R. 1981. Costa Rica National Parks. - Madrid: Incafo. 

BROWN, S., LUGO, A.E. 1990. Tropical secondary forests. – Journal of Tropical Ecology 
6: 1-32.  

CHAVE, J., RIÉRA, B., DUBOIS, M.A. 2001. Estimation of biomass in a neotropical forest 
of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 
17: 79-96. 

CHAVE, J., CONDIT, R., MULLER-LANDAU , H.C., THOMAS, S.C., ASHTON, P.S. 2008. 
Assessing evidence for a pervasive alteration in tropical tree communities. PloS 
Biology 6(3): e-45.doi:10.1371/journal.pbio.0060045 (Jun 12, 2008). 

CLARK, D.A., CLARK, D.B. 1992. Life history diversity of canopy and emergent trees in 
a neotropical rain forest. Ecological Monographs 62: 315-344. 

CLARK, D.A., CLARK, D.B. 1994. Climate-induced annual variation in canopy tree 
growth in a Costa Rican tropical rain forest. Journal of Ecology 82: 865-872. 

CONDIT, R., HUBBELL, S.P., FOSTER, R.B. 1992. Short-Term Dynamics of a Neotropical 
Forest. BioScience 42: 822-828. 

CONDIT, R., HUBBELL, S.P., FOSTER, R.B. 1995. Mortality rates of 205 neotropical tree 
and shrub species and the impact of a severe drought. Ecological Monographs 
65: 419-439. 

CONDIT, R., HUBBELL, S.P., FOSTER, R.B. 1996. Assessing the response of plant 
functional types to climatic change in tropical forests. Journal of Vegetation 
Science 7: 405-416. 

CONDIT, R., FOSTER, R.B., HUBBELL, S.P., SUKUMAR , R., LEIGH, E.G., MANOKARAN , N., 
LOO DE LAO, S., LAFRANKIE, J.V., ASHTON, P.S. 1998. Forest biodiversity, 
research, monitoring and modelling. Man and the Biosphere series 20: Chapter 
14. 



 57 

 

CONDIT, R., ASHTON, P.S., MANOKARAN , N., LAFRANKIE, J.V., HUBBELL, S.P., FOSTER, 
R.B. 1999. Dynamics of the forest communities at Pasoh and Barro Colorado: 
comparing two 50-ha plots. Royal Society London, Biol. Sci. 354(1391): 1739–
1748. 

CONDIT, R., ASHTON, P.S., BALSEV, H., BROKAW, N., BUNYAVEJCHEWIN, S., CHUYONG, 
G., CO, L., DATTARJA, H.S., DAVIES, S., GUNATILLEKE , S., HERNANDEZ, C., 
HUBBELL, S.J.R., JOHN, R., KENFACK, D., KIRATIPRAYOON, HART, P.T., ITOH, 
A.V., LAFRANKIE, J.V., LEINGOLA, I., LAGUNZAD, D., DE LAO, S.L., LOSOS, E., 
MAGARD, E., MAKANA , J., MANOKARAN , N., NAVARRETE, H., NUR, S.M., 
OKHUBO, T., PEREZ, R., SAMPER, C., SENG, L.H., SUKUMAR , R., SVENNING, J., 
TAN, S., THOMAS, D., THOMPSON, J., VALLEJO, M.I., MUNOZ, G.V., VALENCIA , 
R., YAMAKURA , T., ZIMMERMAN , J.K. 2005. Tropical α-diversity: results from a 
worldwide network of large plots. Biol. Skr. 55: 565-582. 

CROAT, T.B., BUSEY, P. 1975. Geographical affinities of the Barro Colorado Island 
Flora. - Brittonia 27: 127-135.  

DALLING , J.W., WINTER, K., NASON, J.D., HUBBELL, S.P., MURAWSKI, D., HAMRICK, J. 
2001. The unusual life history of Alseis blackiana: a shade persistent pioneer 
tree? – Ecology 82: 933-945. 

DA SILVA , R.P., DOS SANTOS, J., TRIBUZY, E.S., CHAMBERS, J.Q., NAKAMURA , S., 
HIGUCHI, N. 2002. Diameter increment and growth patterns for individual trees 
growing in central Amazon, Brazil. – Forest Ecological Management 166: 295-
301. 

DENSLOW, J., HARTSHORN, G. 1994. Tree-fall gap environments and forest dynamic 
processes. - In: La Selva: Ecology and natural history of a neotropical rainforest. 
- Univ. of Chicago press.  

DEWALT, S. J., CHAVE, J. 2004. Structure and Biomass of Four Lowland Neotropical 
Forests. Biotropica 36: 7-19. 

DI MARCO, G., BAUMGARTNER P.O., CHANNEL, J.E.T. 1995. Late Cretaceous - Early 
Tertiary paleomagnetic data and a revised tectonostratigraphic subdivision of 
Costa Rica and Western Panama. - Special Pap. Geol. Soc. Amer. 295: 1-27. 

DIXON, R.K., BROWN, S., HOUGHTON, R.A., SOLOMON, A.M., TREXLER, M.C. 1994. 
Carbon pools and flux of global forest ecosystems. - Science 263: 185-190. 

FAO, ISRIC &  ISSS 1998. World Reference Base for Soil Resources. - World Soil 
Resources Reports 84, Rome.  

FAVRICHON, V. 1994. Classification of Guiana tree species into functional groups for a 
dynamic community matrix of vegetation. Revue D Ecologie – la Terre et la Vie 
49: 379-403. 

FEELEY, K.J., DAVIES, S.J., ASHTON, P.S., BUNYAVEJCHEWIN, S., NUR SUPARDI, M.N., 
KASSIM, A.R., TAN, S., CHAVE, J. 2007. The role of gap phase processes in the 
biomass dynamics of tropical forests. Proceedings of The Royal Society B 274: 
2857-2864. 

FIELD, C.B., BEHRENFELD, M.J., RANDERSON, J.T., FALKOWSKY , P. 1998. Primary 
production of the biosphere: integrating terrestrial and oceanic components. – 
Science 281: 237-240. 



 58 

 

FISHER, R. A; CORBET A. S.; C.B. WILLIAMS C.B. 1943. The relation between the 
number of species and the number of individuals in a random sample of an 
animal population. - J. Anim. Ecol. 12: 42-58. 

FOY, C.D. 1974. Effects of aluminium on plant growth. - In: CARSON, E.H. (ed.): The 
plant root and its environment. - Carlottsville: Virginia Univ. Press. 

FOSTER, R.B, HUBBEL, S.P. 1990. The floristic composition of the Barro Colorado 
Island forest. - In: GENTRY, A.H. (ed.): Four Neotropical rainforests. - New 
Haven: Yale Univ. Press.  

GARTLAN , J.S., NEWBERY, D.M., THOMAS, D.W., P. WATERMAN, G. 1986. The influence 
of topography and soil phosphorus on the vegetation of Korup Forest Reserve, 
Cameroon. - Vegetatio 65: 131-148. 

GASTON, K.J. 2000. Global patterns in biodiversity. – Nature 405: 220-227. 

GENTRY, A.H. 1978. Floristic knowledge and needs in Pacific Tropical America. - 
Brittonia 30: 134-153.  

GENTRY, A.H. 1982. Phytogeographic patterns in northwest South America: a 
phytogeographical perspective. - In: HEDBERG, I. (ed.): Systematic botany, plant 
utilization and biosphere conservation: Symposium - Uppsala. - Stockholm: 
Almqvist & Wiksell Intl.  

GENTRY, A.H. 1982b. Patterns of neotropical plant species diversity. – Evolutionary 
Biology 15: 1-84.  

GENTRY, A.H. 1988b. Changes in plant community diversity and floristic composition 
on environmental and geographical gradients. - Ann. Missouri Bot. Gard. 75: 1-
34. 

GENTRY, A.H.; TERBORGH, J. 1990. Composition and dynamics of the Cocha Cashu 
"Mature" floodplain forest. - In: GENTRY, A.H.; (ed.): Four Neotropical rain 
forests. 

GENTRY, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of 
Northwest South America (Colombia, Ecuador, Peru) with supplementary notes 
on herbaceous taxa. – Chicago: Univ. Chicago Press. 

GILBERT, G.S., HUBBELL, S.P., FOSTER, R.B. 1994. Density and distance-to-adult effects 
of a canker disease of trees in a moist tropical forest. – Oecologia 98: 100-108. 

GÓMEZ, L.D. 1986. Vegetación de Costa Rica: apuntes para una biogeografía 
costarricense. - San José: Universidad Estatal a Distancia. 

GOMEZ, L.D., FOURNIER, L.A.O. 1985. Las familias y los generos de plantas lenosas de 
Costa Rica. - Brenesia 24: 37-54.  

GRAYUM , M.H., CHURCHILL, H.W. 1987. An introduction to the pteridophyte flora of 
Finca La Selva. - Amer. Fern J. 77: 73.  

HALLÉ , F.; OLDEMANN , R.A.A.; TOMLINSON, P.B. 1978. Tropical trees and forests. - 
Berlin, Heidelberg, New York: Springer. 

HAMMEL , B.H. 1986. Characteristics and phytogeographical analysis of a subset of the 
flora of La Selva. - Selbyana 9: 149-155.  

HAMMEL , B.H., GRAYUM , M.H. 1982. Preliminary report on the flora project of La Selva 
field station, Costa Rica. - Ann. Missouri Bot. Gard. 69: 420-425.  



 59 

 

HAMMEL , B.E., GRAYUM , M.H., HERRERA, C., ZAMORA, N.V. 2004. Manual de plantas 
de Costa Rica. - St. Louis: Missouri Bot. Gard.  

HARCOMBE, P.A. 1987. Tree life tables. – Bioscience 37: 557-568. 

HARTSHORN, G.S. 1980. Neotropical forest dynamics. - Biotropica 12 (suppl.): 23-30. 

HARTSHORN, G.S. 1983. Plants: introduction. pp. 118-157. - In: JANZEN, D.H. (ed.): 
Costa Rican natural history. - Univ. Chicago Press.  

HARTSHORN, G.S. 1990. An overview of neotropical forest dynamics. - In: GENTRY, 
A.H.; (ed.): Four neotropical rainforests, pp. 585-599. - New Haven, London: 
Yale University Press. 

HARTSHORN, G.S.; HAMMEL , B.E. 1994. Vegetation types and floristic patterns. - In: MC 

DADE, L.A.; BAWA , K.S.; HESPENHEIDE, H.A.; HARTSHORN, G.S.; (eds.): La 
Selva-Ecology and natural history of a neotropical rain forest, pp. 73-89. - 
Chicago: The University of Chicago Press. 

HEBBELN, D., BEESE D., CORTES, J. 1996. Morphology and sediment structures in Golfo 
Dulce, Costa Rica. - In: Pacific Coastal Ecosystems of Costa Rica with emphasis 
on the Golfo Dulce and adjacent areas: a synoptic view based on the RV Victor 
Hensen expedition 1993/1994 and previous studies. - Revista Biol. Trop. 44, 
Univ. de Costa Rica. 

HERNANDEZ STEFANONI, J.L. 2005. Relationships between landscape patterns and 
species richness of trees, shrubs and vines in a tropical forest. – Plant Ecology 
179, 53-65. 

HERRERA-MACBRYDE, O., MALDONADO, T. R., JIMÉNEZ V., THOMSEN, K. 1997. Osa 
Península and Corcovado National Park, Costa Rica. - In: DAVIS, S.D., 
HEYWOOD, V.H., HERRERA-MACBRYDE, O., VILLA -LOBOS, J., HAMILTON , A.C. 
(eds.): Centres of plant diversity. A guide and strategy for their conservation. 
Vol. 3. - WWF, IUCN. 

HERWITZ, S.R. 1981. Regeneration of selected tropical tree species in Corcovado 
National Park, Costa Rica. - Univ. Calif. Publ. Geogr. 24.  

HOLDRIDGE, L.R., GRENKE, W.C., HATHEWAY , W.H., LIANG, T., TOSI, J.A. 1971. Forest 
environments in tropical life zones - A pilot study. - Oxford: Pergamon Press 
Ltd.  

HUBBEL, S.P., FOSTER, R.B. 1986. Canopy gaps and the dynamics of a neotropical 
forest. - In: CRAWLEY, M.J. (ed.): Plant ecology, pp. 77-96. - Oxford: Blackwell 
Scientific Publications.  

HUBBEL, S.P., FOSTER, R.B. 1986. Biology, chance, and history and the structure of 
tropical rain forest tree communities. Pages 314-329 in DIAMOND , J. &  CASE, 
T.J., editors. Community Ecology. Harper and Row, New York, New York, 
USA:  

HUBBELL, S.P.; FOSTER, R.B. 1990. Structure, dynamics, and equilibrium status of Old - 
Growth Forest on Barro Colorado Island. - In: GENTRY, A.H.; (ed.): Four 
neotropical rainforests, pp. 522-541. - New Haven, London: Yale University 
Press. 

HUBER, W. 1996a. Floristische und biogeographische Untersuchungen in einem 
Tieflandregenwald in der pazifischen Region von Costa Rica. - Diploma Thesis: 
University of Vienna.  



 60 

 

HUBER, W. 1996b. Untersuchungen zum Baumartenreichtum im „Regenwald der 
Österreicher“ in Costa Rica. - Carinthia II 186: 95-106. 

HUBER, W. 2005. Tree diversity and biogeography of four one-hectare plots in the 
lowland rainforest of the Piedras Blancas National Park ("Regenwald der 
Österreicher"), Costa Rica. PH.D.: Unversity of Vienna.  

HUBER, W., WEISSENHOFER, A.; ZAMORA, N., WEBER, A. 2008. Plant diversity and 
biogeography of the Golfo Dulce region, Costa Rica. In: WEISSENHOFER, A.; 
HUBER, W., MAYER, V., PAMPERL, S., WEBER, A., AUBRECHT, G. (eds.): Natural 
and Cultural History of the Golfo Dulce Region, Costa Rica. - Linz: Staphia 88: 
97-104. 

HURLBERT, S.H. 1971. The non-concept of species diversity: a critique and alternative 
parameters. Ecology 52: 577-586. 

IMN.  1982. Mapa de la Precipitatión Promedio Anual en Costa Rica. Escala 
1:1.000.000. IMN - Mag. San José.  

JANZEN, D.H. (ed.) 1983. Costa Rican natural history. - Chicago: University Chicago 
Press.  

KIRA, T. 1971. Biomass and NPP for Pasoh research station, Malaysia. – Oak Ridge 
National laboratory Server, http://daac.ornl.gov/ 

KORNING, J., BALSLEV, H. 1994. Growth rates and mortality patterns of tropical lowland 
tree species and the relation to forest structure in Amazonian Ecuador. - J. Trop. 
Ecol. 10(2): 151-166.  

KORNING, J., THOMSEN, K., DALISGAARD, K., NØRNBERG, P. 1994. Characters of three 
Udults and their relevance to the composition and structure of virgin forest of 
Amazonian Ecuador. - Geoderma 63: 145-164. 

KRICHER, J. 1997. A neotropical companion. - Princeton, New Jersey: Princeton Univ. 
Press.  

KUBOTA, D., MASUNGAGA, T., HERMANSAH, RASYIDIN , A., HOTTA, M., SHINMURA , Y., 
WAKATSUKI , T. 1998. Soil environment and tree species diversity in tropical rain 
forest, West Sumatra, Indonesia. - In: SCHULTE, A., RUHIYAT , D. (eds.): Soils of 
Tropical Forest Ecosystems. - Berlin: Springer. 

LAFRANKIE, J.V., ASHTON, P.S., CHUYONG, G.B., CO, L., CONDIT, R., DAVIES, S.J., 
FOSTER, R., HUBELL, S.P., KENFACK, D., LAGUNZAD, D., LOSOS, E.C., NOR, 
N.S.M., TAN, S., THOMAS, D.W., VALENCIA , R., VILLA , G. 2006. Contrasting 
structure and composition of the understory in species-rich tropical rain forests. 
– Ecology 87(9): 2298-2305. 

LAURANCE, W.F., NASCIMENTO, H.E.M., LAURANCE, S.G., CONDIT, R., D´ANGELO, 
S.G., ANDRADE, A. 2003. Inferred longevity of Amazonian rainforest trees based 
on a long-term demographic study. – WWW.elsevier.com/locate/foreco/ 
doi:10.1016/j.foreco.2003.09.011 (Jun 24, 2008) 

LESCURE, J.P., PUIG, H., RIERA, B., LECLERC, D., BEEKMAN, A., BENETEAU, A. 1983. La 
phytomasse epigee d´une foret dense en Huyane Francaise. – Acta Oecologica 4: 
237-251.  

LEWIS, S.L., MAHLI , Y., PHILLIPS, O.L. 2004. Fingerprinting the impacts of global 
change on tropical forests. Phil. Trans. R. Soc. London: 359: 437-462. (DOI 
10.1098/rstb.2003.1432.) 



 61 

 

LEWIS, S.L., PHILLIPS, O.L., SHEIL, D., VINCETI, B., BAKER, T.R., BROWN, S., GRAHAM , 
A.W., HIGUCHI, N., HILBERT, D.W., LAURANCE, W.F., LEJOLY, J., MALHI , Y., 
MONTEAGUDO, A., VARGAS, P.N., SONKE, B., NUR SUPARDI, M.N., TERBORGH, 
J.W., VASQUEZ MARTINEZ, R.2004b. Tropical forest tree mortality, recruitment 
and turnover rates: calculation, interpretation and comparison when census 
intervals vary. – Journal of Ecology (2004) 10.1111/j.1365-2745.2004.00923.x 
(Jun 12 2008) 

LIEBERMANN, M.; LIEBERMANN, D. 1994. Patterns of density and dispersion of forest 
trees. - In: MCDADE, L.A.; BAWA , K.S.; HESPENHEIDE, H.A.; HARTSHORN, G.S; 
(eds.): La Selva-Ecology and Natural History of a Neotropical rain forest, pp. 
106-119. - Chicago: The University of Chicago Press.  

LIEBERMANN, M., LIEBERMANN, D., HARTSHORN, G.S., PERALTA, R. 1985. Small-scale 
altitudinal variation in lowland wet tropical forest vegetation. - J. Ecol. 73: 505-
516.  

LIEBERMANN, D. LIEBERMANN, M. PERALTA, R. HARTSHORN, G.S. 1996. Tropical forest 
structure and composition on a large-scale altitudinal gradient in Costa Rica. - J. 
Ecol. 84: 137-152.  

LIEBERMANN, D. LIEBERMANN, M. 1987. Forest tree growth and dynamics at La Selva, 
Costa Rica (1969-1982). - J. Trop. Ecol. 3: 347-358. 

LUGO, A.E., BROWN, S. 1992. Tropical forests as sinks of atmospheric carbon. – Forest 
Ecology and Management 54: 239-255. 

MAGURRAN, A.E. 1988. Ecological Diversity and its Measurement. - London, Chapman 
and Hall.  

MAHLI , Y., WRIGHT, J. 2004. Spatial patterns and recent trends in the climate of tropical 
rainforest regions. Phil. Trans. R. Soc. London: 359: 311-329. (DOI 
10.1098/rstb.2003.1433.) 

MALZER, O. 2001. Geological history of Central America and the Golfo Dulce region. - 
In: WEBER et al. 2001. An introductory field guide to the flowering plants of the 
Golfo Dulce rain forests, Costa Rica. - Stapfia 78.  

MALZER, O., FIEBIG, M. 2008. Outline of the geology of the Golfo Dulce region (Costa 
Rica) and its surroundings in Central America. In: WEISSENHOFER, A.; HUBER, 
W., MAYER, V., PAMPERL, S., WEBER, A., AUBRECHT, G. (eds.): Natural and 
Cultural History of the Golfo Dulce Region, Costa Rica. - Linz: Staphia 88: 23-
30. 

MORI, S.A.; BOOM, B.M.; DE CARVALHO , A.M.; DOS SANTOS, T.S. 1983. Southern 
Bahian Moist Forest. - New York: The Botanical Review.  

PAMPERL 2001. Soils in the Golfo Dulce region. - In: WEBER et al. 2001. An 
introductory field guide to the flowering plants of the Golfo Dulce rain forests, 
Costa Rica. - Stapfia 78.  

PAMPERL, S. 2001. Der Boden als Standortsfaktor eines baumartenreichen 
Tieflandregenwaldes in Costa Rica. - Diploma Thesis , University of Vienna 

PHILLIPS, O.L. 1996. Long-term environmental change in tropical forests: increasing 
tree turnover. - Environm. Conservation 23: 235-248.  



 62 

 

PHILLIPS, O.L., MALHI , Y., HIGUCHI, N., LAURANCE, NÚNEZ VARGAS, P., VÁSQUEZ 

MARTÍNEZ, R., LAURANCE, S.G., FERREIRA, L.V., STERN, M., BROWN, S., GRACE, 
J. 1998. Changes in the carbon balance of tropical forests: evidence from long-
term plots. – Science 282: 439-442. 

PHILLIPS, O.L., GENTRY, A.H. 1994. Increasing turnover through time in tropical forests. 
- Science 263: 954-958. 

PHILLIPS, O.L., HALL , P. GENTRY, A.H., SAWYER, S.A., VASQUEZ, R. 1994. Dynamics 
and species richness of tropical rain forests. – Proceedings of the National 
Academy of Science 91: 2805-2809. 

PHILLIPS, O.L., BAKER, T.R., ARROYO, L., HIGUCHI, N., KILLEEN, T.J., LAURANCE, W.F., 
LEWIS, S.L., LLOYD, J., MALHI , Y., MONTEAGUDO, A., NEILL , D.A., NÚNEZ 

VARGAS, P., SILVA , J.N.M., TERBORGH, J., VÁSQUEZ MARTÍNEZ, R., ALEXIADES, 
M., ALMEIDA , S., BROWN, S., CHAVE, J., COMISKEY, J.A., CZIMCZIK , C.I., DI 

FIORE, A., ERWIN, T., KUEBLER, C., LAURANCE, S.G., NASCIMENTO, H.E.M., 
OLIVIER , J., PALACIOS, W., PATINO, S., PITMAN , N.C.A., QUESADA, C.A., 
SALDIAS , M., TORRES LEZAMA , A., VINCETI, B. 2004. Pattern and process in 
Amazon tree turnover, 1976-2001. – The Royal Society 359: 381-407. 

PRANCE, G.T., BENNTJE, H., DRANSFIELD, J., JOHNS, R. 2000. The tropical Flora remains 
undercollected. - Ann. Missouri Bot. Gard. 87: 67-71.  

QUESADA, F.J., JIMENEZ, QU., ZAMORA, N., AGUILAR, R., GONZALEZ, J. 1997. Arboles 
de la Península de Osa. - Heredia: INBio.  

RICHARDS, P.W. 1961. The types of vegetation of the humid tropics in relation to the 
soil. - Proc. Symp. Trop. Soils and Vegetation, Abijan, pp. 15-23. Paris: 
UNESCO. 

SHANNON, C.E.; WEAVER; W. 1949. The mathematical theory of communication. - 
Urbana: University of Illinois Press. 

SIMPSON, E. H. 1949. Measurement of diversity. - Nature 163: 688. 

SOIL SURVEY STAFF (1998): Keys to soil taxonomy (ed. 8), United States Department of 
Agriculture, Washington. 

STANDLEY , P.C. 1937. Flora of Costa Rica. - Publ. Field. Mus. Nat. Hist. Bot. Ser. 18: 1-
4.  

TAKHTAJAN , A. 1986. Floristic regions of the world. - Berkeley: Univ. Calif. Press.  

TOSI, J.A., JR. 1975. The Corcovado Basin on the Osa Península. - In: TOSI, J.A., Jr. 
(ed.): Potential national parks, nature reserves, and wildlife sanctuary areas in 
Costa Rica: a survey of priorities. - San José: Centro Científico Tropical. 
Separate pp. 12.  

TOURNON J., ALVARADO , G.E. 1997. Mapa Geologico de Costa Rica 1:500 000, Folleto 
explicativo. - Editorial Tecnologica de Costa Rica. 

URIARTE, M., CONDIT, R., CANHAM , C.D., HUBBELL, S.P. 2004. A spatially explicit 
model of sapling growth in a tropical forest: does the identity of neighbours 
matter? - Ecology 92: 348-360. 



 63 

 

VALENCIA , R., FOSTER, R.B., VILLA , G., CONDIT, R., SVENNINGS, C., HERNÁNDEZ, C., 
ROMOLEROUX, K., LOSOS, E., MAGARD, E., BALSLEV, H. 2004. Tree species 
distribution and local habitat variation in the Amazon: large forest plot in eastern 
Ecuador? – Journal of Ecology 92: 214-229. 

VALENCIA , R., BALSLEV, H., PAZ Y MINO, C.G.1994. High tree alpha-diversity in 
Amazonian Ecuador. – Biodiversity and Conservation 3: 21-28. 

VASQUEZ MORERA, A. 1989. Mapa de Suelos de Costa Rica (Base cartografica del 
Instituto Geografico Nacional); Escala 1:200 000 

VAUGHAN, C.S. 1981. Parque Nacional Corcovado: plan de manejo y desarrollo. - 
Heredia: Universidad Nacional. 

WERCKLÉ, C. 1909. La subregión fitogeográfica costarricense. - San José: Soc. Nacional 
de Agricultura.  

WEISSENHOFER, A. 1996. Ökologie und Struktur eines tropischen Tieflandregenwaldes 
an der Pazifikküste Costa Ricas. - Diploma Thesis: University of Vienna.  

WEISSENHOFER, A. 1997. Untersuchungen zur Ökologie und Struktur im “Regenwald 
der Österreicher” in Costa Rica. - Carinthia II: 187:67-80. 

WEISSENHOFER, A.; HUBER, W. 2001. Basic geographical and climatic features of the 
Golfo Dulce region. In: WEBER, A.; HUBER. W.; WEISSENHOFER, A.; ZAMORA, 
N.; ZIMMERMANN , G. (eds.): An introductory field guide to the flowering plants 
of the Golfo Dulce rain forests, Costa Rica. - Linz: Staphia 78: 11-14.  

WEISSENHOFER, A. 2005. Structure and vegetation dynamics of four selected one 
hectare forest plots in the lowland rain forests of the Piedras Blancas National 
Park ("Regenwald der Österreicher"), Costa Rica, with notes on the vegetation 
diversity of the Golfo Dulce region. – PH.D.: University of Vienna. 

WEISSENHOFER, A.; HUBER, W., KLINGLER, M. 2008a. Geography of the Golfo Dulce 
region. In: WEISSENHOFER, A.; HUBER, W., MAYER, V., PAMPERL, S., WEBER, A., 
AUBRECHT, G. (eds.): Natural and Cultural History of the Golfo Dulce Region, 
Costa Rica. - Linz: Staphia 88: 19-22. 

WEISSENHOFER, A.; HUBER, W. 2008b. The climate of the Esquinas rainforest. In: 
WEISSENHOFER, A.; HUBER, W., MAYER, V., PAMPERL, S., WEBER, A., 
AUBRECHT, G. (eds.): Natural and Cultural History of the Golfo Dulce Region, 
Costa Rica. - Linz: Staphia 88: 59-64. 

WEISSENHOFER, A.; HUBER, W., KOUKAL, T., IMMITZER, M., SCHEMBERA, E., SONTAG, 
S., ZAMORA, N., WEBER, A. 2008c. Ecosystem diversity in the Piedras Blancas 
National Park and adjacent areas (Coast Rica), with the first vegetation map of 
the area. In: WEISSENHOFER, A.; HUBER, W., MAYER, V., PAMPERL, S., WEBER, 
A., AUBRECHT, G. (eds.): Natural and Cultural History of the Golfo Dulce 
Region, Costa Rica. - Linz: Staphia 88: 65-96. 

WHITMORE, T.C. 1978. Gaps in the forest canopy. - In: TOMLINSON, P.B.; 
ZIMMERMANN , M.H.; (eds.): Tropical trees as living systems, pp. 639-656. - 
Cambridge: Cambridge University Press. 

WHITMORE, T.C. 1989. Canopy gaps and the mayor groups of forest trees. – Ecology 
70: 536-538. 



 64 

 

WRIGHT, S.J., MULLER LANDAU , S.C., CONDIT, R., HUBBELL, S.P. 2003. Fap dependent 
recruitment, realized vital rates, and size distributions of tropical trees. – 
Ecology 84 (12): 3174-3185. 

YOUNG, A. 1976. Tropical Soil and Soil Survey. - London: Cambridge Univ. Press. 
 



 

65

9 Appendices 

Tab. 8.1. Number of Individuals per Species and Size Class  
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Tab. 11.2. Number of Individuals per Family and Size Class  
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Tab. 11.3. Indices and Number of Diversity 

 

 

 Dbh ≥ 2 cm 
2001 

Dbh ≥ 10 cm 
2001 

Dbh ≥ 10 cm 
1993 

Total Nr of Species 232 108 133 
Total Nr of Families 59 43 50 
Total Nr of Individuals 2849 453 527 
Average dbh 7.0 24.8 23.5 
Basal Area 38.7 35.9 35.5 
Biomass 339 330 315 
Shannon H´  6.427 5.693 4.119 
Shannon J´ or Eveness (E) 1.18 1.21 0.84 
Simpsons Diversity (D) 0.024 0.039 0.035 
Simpsons Diversity (1/D) 41.3 25.9 28.6 
Simpsons Diversity (1-D) 0.976 0.961 0.965 
Alpha-Index 59.699 45.552 57.953 
Mean Individuals per Species 12.28 4.19 3.93 
Mean Species per Family 3.93 2.51 2.68 
Nr of only one Individual per Species 57 42 66 
Nr of Individuals of the most represented Species 255 62 71 
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