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Summary 
 

The leader protease Lbpro of the Foot-and-Mouth Disease Virus (FMDV) 

belongs to the family of papaine-like cysteine proteinases and is an important 

virulence determinant of the virus. It is the first encoded protein on the viral 

genome. During expression in the host cell it is autocatalytically cleaved from 

the growing polypeptide. Subsequently, it shuts down eukaryotic translation 

by cleavage of eukaryotic initation factor 4GΙ and ΙΙ thus preventing among 

others IFN synthesis. The protein synthesis from the viral genome is not 

affected as translation is initiated from an internal ribosomal entry site 

(IRES). 

 

Crystal structures of Lbpro (1QOL.pdb) as well as of a shortened mutant 

sLbpro (1QMY.pdb), lacking six C-terminal residues, already existed. They 

revealed dimerisation of Lbpro by binding of the C-terminal residues to the 

active site of an adjacent Lbpro molecule and vica versa. This dimerisation 

was not observed for the shortened mutant. Furthermore the C-terminus was 

not observable indicating that it is fexible and disordered. 

NMR studies of Lbpro (2JQF.pdb) and sLbpro (2JQG.pdb) confirmed the 

dimerisation of Lbpro but they revealed that Lbpro forms a completely symetric 

dimer in solution. Additionally the C-terminus of sLbpro was shown to be 

indeed unstructured and flexible 

 

The aim was to refine the NMR structures of Lbpro as well as of sLbpro. More 

complete assignment could be achieved with the use of triple resonance 

TROSY experiments. TROSY experiments have a more favourable 15N 

relaxation behaviour resulting in spectra whose peaks have smaller widths 

allowing more accurate peak assignment. For the refinement of the 

structures, residual dipolar couplings (RDCs) were measured. RDCs 

provided long range orientational restraints. In the case of Lbpro they are not 
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only useful to refine the structure but also to determine the precise 

orientation of the two halves of the dimer to each other.  

 

For both proteins, Lbpro and sLbpro, various dipolar couplings were measured. 

The proteins were oriented via the phage PF1 in the magnetic field. The 

alignment tensor elements were determined by least square fitting of the 

measured dipolar couplings using the coordinates from the crystal structures. 

The dipolar couplings were then used as additional restraints for structures 

calculation. 

 

The structures obtained show a better convergence compared with the 

existing NMR structures. Their precision is a least as good as the precision of 

the crystal structures. Additionally the frequency of amino acid residues with 

energetically favorable dihedral angles, φ and ψ, is higher especially for 

sLbpro. The quarternary structure of the obtained Lbpro compared to the NMR 

structure (2JQF.pdb) has the same twist angle but differs in the bending 

angle of about 20-25°. 
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Zusammenfassung 
 

Die Leader Protease Lbpro des Maul-und-Klauenseuche Viruses gehört zu 

der Familie der Papain-Cysteinproteasen und ist ein wichtiger Virulenzfaktor 

des Viruses. Es ist das erste Protein das am Genom des Viruses codiert ist. 

Während der Expression in der Wirtszelle spaltet es sich autocatalytisch vom 

wachsenden Polypeptid ab. Danach stoppt es die eukaryotische Translation 

durch die proteolytische Spaltung des eukaryotischen Translations-

initiationfaktors 4GΙ and ΙΙ, wodurch unter anderem die Synthese von IFN 

verhindert wird. Die Proteinsynthese des viralen Genoms ist nicht 

beeinträchtigt, da die Translation von einer 'Internal Ribosome Entry Site' 

(IRES) initiiert wird.  

 
Kristallstukturen von Lbpro (1QOL.pdb), als auch von einer verkürzten 

Mutante, sLbpro (1QMY.pdb), der sechs C-terminale Aminosäuren fehlen, 

existierten bereits. Diese zeigten, dass Lbpro durch die Bindung der              

C-terminalen Aminsäuren im aktiven Zentrum eines benachbarten Lbpro 

Moleküles und umgekehrt dimerisiert. Diese Dimerisierung konnte bei der 

verkürzten Mutante nicht beobachtet werden. Zusätzlich war bei dieser der 

C-Terminus nicht sichtbar, was daraufhin weiste, dass dieser unstrukturiert 

und flexible ist 

Untersuchungen mittels NMR von Lbpro (2JQF.pdb) und sLbpro (2JQG.pdb) 

bestätigten die Dimerisierung von Lbpro, zeigten aber, dass Lbpro in Lösung 

ein symmetrisches Dimer bildet. Zusätzlich konnte gezeigt werden, dass der 

C-Terminus von sLbpro wirklich unstrukturiert und flexibel ist. 

 

Das Ziel dieser Arbeit war die NMR Strukturen von Lbpro und sLbpro zu 

verfeinern. Vollständigere Zuordnung konnte durch die Verwendung von 

dreifach Resonanz TROSY Experimenten erzielt werden. TROSY 

Experimente haben ein verbessertes 15N Relaxationsverhalten. Dadurch 
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haben die Peaks dieser Spektren eine geringere Peakbreite, wodurch diese 

Peaks einfacher und genauer zugeordnet werden können. Für die 

Verfeinerung der Strukturen wurden dipolare Kopplungen gemessen. 

Dipolare Kopplungen erstellten Orientierungsbeschränkungen über große 

Distanzen. Im Fall für Lbpro sind sie daher nicht nur nützlich um die Struktur 

zu verfeinern, sondern auch um die genaue Orientierung der beiden Hälften 

des Dimers relativ zueinander zu bestimmen. 

 

Für beide Proteine, Lbpro and sLbpro wurden unterschiedliche dipolare 

Kopplungen gemessen. Die Proteine wurden durch den Phagen PF1 im 

Magnetfeld orientiert. Die Elemente des Orientierungstensors wurden durch 

least square fitting der gemessenen dipolaren Kopplungen unter der 

Zuhilfenahme der Kristallstrukturen berechnet. Die dipolaren Kopplungen 

wurden dann als zusätzliche Orientierungsbeschränkungen für die 

Berechnung der Strukturen eingesetzt. 

 
Die erhaltenen Strukturen zeigen eine bessere Konvergenz verglichen mit 

den existierenden NMR Strukturen. Zusätzlich ist die Anzahl von 

Aminosäuren, welche energetisch günstigere dihedarale Winkel, φ und ψ, 

aufweisen höher. Dies ist vor allem bei sLbpro der Fall. Die quartäre Struktur, 

die von Lbpro erhalten wurde, zeigt verglichen mit der NMR-Struktur 

(2JQF.pdb), dass beide Strukturen denselben Drehungswinkel haben, jedoch 

unterscheidet sich ihr Beugungswinkel um ca. 20-25°. 
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1. Introduction 

1.1 Foot-and-Mouth Disease Virus (FMDV) 

FMDV is a member of the family Picornaviridae. Picornaviruses are 

nonenveloped viruses with a single stranded RNA genome of positive sense. 

The RNA is covaletly linked to a VGP protein at its 5'end and is infectious, 

meaning it can be directly translated in a host cell. Picornaviruses have an 

icosahedral capsid with a diameter of about 30nm. Because of this small size 

the virus has its name, Pico. 

 

Genus Serotypes Spezies 

Rhinovirus 
102 

3 

Human Rhinovirus (1A, 1B – 100)  

Bovine Rhinovirus (1 – 3) 

Aphthovirus 
7 

 

1 

Foot-and-Mouth Disease Virus (A, C, O, SAT-1, 

SAT-2, SAT-3, Asia-1)  

Equine Rhinitis A Virus 

Enterovirus 

3 

23 

6 

30 

4 

2 

1 

2 

1 

Poliovirus (1 – 3) 

Coxsackie Virus A (1 - 22, 24) 

Coxsackie Virus B (1 – 6) 

Echovirus (1 - 7, 9, 11 - 21, 24 - 27, 29 - 34) 

Human Enterovirus (68 – 71) 

Bovine Enterovirus (1, 2) 

Porcine Enterovirus A (PEV-8) 

Porcine Enterovirus B (PEV-9, PEV-10) 

Simian Enterovirus A 

Parechovirus 
6 

1 

Human Parechovirus (1, 2, 3, 5, 5, 6) 

Ljungan virus 

Cardiovirus 
1 

4 

 

Enzephalomyocarditis Virus (EMCV) 

Theilovirus (Theiler’s Murine Encephalomyelitis Virus 

(TMEV), Vilyuisk Human Encephalomyelitis Virus  
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 (VHEV), Theiler-like Virus (TLV), Scaffold virus (SAF-V) 

Hepatovirus 
2 

1 

Hepatitis A Virus (HAV)  

Avian encephalomyelitis-like viruses (AEV) 

Teschovirus 1 Porcines Teschovirus (PTV-1 bis -11) 

Kobuvirus 1 
Aichi Virus 

Bovine Kobuvirus 

Erbovirus 1 Equine Rhinovirus B 

 
Table1: Family of the Picornaviradea 1

 

There are seven serotypes of FMDV (A, O, C, Asia1, SAT1, SAT2 and 

SAT3). Together with Equine rhinitis A virus they constitute the genus 

Aphtho-virus.(Li et al., 1996; Wutz et al., 1996) 

 

1.1.1 Foot and Mouth Disease  

FMDVs are highly contagious. They infect cloven-hoofed animals, causing 

foot-and-mouth disease. This disease was first described by Frasastorius in 

1546 (Fracastorius, 1546). In 1897 Loeffler and Frosch demonstrated foot-

and-mouth disease (FMD), as the first disease to be caused by a filterable 

agent (Loeffler and Frosch, 1897). FMD disease is very infectious and can 

easily be transmitted by aerosols among infected animals. Also abrasions on 

the skin or mucous membrane and the oral route by eating FMDV 

contaminated food can lead to FMDV infections. The incubation period can 

be between 2 and 14 days, depending on the infection dose and route of 

infection (Grubman and Baxt, 2004) and the infection can last at least about 

seven to ten days. The disease is characterized by the appearance of 

vesicles on the feet and in or around the mouth (Alexandersen et al., 2001) 

causing foamy salivation and lameness. Adult animals are not as threatened 
                                                 

1 http://www.med.uni-jena.de/virologie/zell/lehre/picornaviren/picornaviren.html
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by the disease as younger animals where the disease can lead to 

inflammation of the heart. A big danger emanates from infected animal which 

retain asymptotic. They can act as carriers of the disease which is a risk for 

healthy animals (Hughes et al., 2002). 

After an outbreak the only way of getting rid of the disease is achieved by 

slaughtering of the complete animal live stock in the areas where the disease 

occurred. Together with additional trading controls an outbreak of the 

disease lead to high financial losses. Therefore much effort was invested in 

the development of vaccines. Nowadays vaccines and fast diagnostics are 

available, leading to improved control of the disease in developed countries.  

Nevertheless due to the great economic impact of the disease there is 

interest in completely understanding the molecular mechanisms underlying 

infection and transmission of the virus.  

 

1.1.2 Structure  

First studies with electron microscopy of the FMDV revealed a rather smooth 

round particle. (Bachrach, 1968) Later x-ray crystallographic studies could 

determine its structure at atomic resolution (Chan and Wool, 1990). The viral 

capsid is build up of four structural proteins (VP1-4). From each protein 60 

copies assemble forming a T3 icosahedral architecture (Jackson et al., 

2003).  

VP1-3 are located on the outside and fold into wedge shaped β-barrels. VP4 

is located at the inner surface and possesses a myristoyl group which may 

be involved in capsid assembly or in entry of virus into cells (Belsham et al., 

1991; Chow et al., 1987). 
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Fig.1: Iscosahedral capsid of the FMDV  
VP1-4 build one protomer. 5 protomer assemble of one pentamer. 12 pentamers assemble 

to a T3 iscosahedral architecture. VP4 is not visible as it is inside the particle. Adapted from 

(Oliveira et al., 1999) 

 

At a pH below seven the capsid dissociates into twelve pentamers by 

protonating histidine residues of VP3 leading to weakened polar interaction 

between the pentamers. (Brown and Cartwright, 1961; van Vlijmen et al., 

1998). VP1 consist of a hypervarible sequence (the GH loop) containing a 

highly conserved tripeptide Arg-Gly-Asp (RGD). This motive is important for 

attachment on the cellular receptor, integrin. (Berinstein et al., 1995; Jackson 

et al., 2000; Neff et al., 2000). It is also known that after several passages 

through cell lines the virus can bind to heparansulfate proteoglycanes (Sa-

Carvalho et al., 1997). 

 

1.1.3 Viral infectious Cycle 

1.1.3.1 Entry 

The first event in infection is the binding of the virus to its cellular receptors. 

After penetration into the cell the virus enters the acidic endosome. The 

lowering pH mediates the capsid disassembling and the RNA is released into 

the cytoplasm. The Vpg protein of the viral RNA is cleaved by cellular 
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proteases.  

 

1.1.3.2 Translation 

The translation of the viral RNA is mediated via an IRES whereas the 

eukaryotic host cell protein synthesis is shut off by cleavage of both isoforms 

of eIF4G, I and II, by the viral leader protease L  pro (Kuehnel et al., 2004). 

eIF4G acts as a scaffold protein in eukaryotic translation initiation. Its N-

terminal part interacts with eIF4E which binds to the 5´cap of the host cell 

mRNA and its C terminal part interacts with eIF3 binding to the 40S 

ribosomal subunit. Thus eIF4G is involved in the connection of the 40S 

ribosomal subunit with the host cell mRNA. After cleavage, the host cell 

translation is disabled, which also impairs the host cell immune response. 

The C-terminal part of eIF4G can bind to the IRES, resulting in an interaction 

of the 40S ribosomal subunit with the viral RNA (Lopez de Quinto and 

Martinez-Salas, 2000). 

 

 
 
Fig.2: Cleavage of eIF4G by Lbpro  
Lbpro cleaves both isoforms of eIF4G thus disabling host cell translation. The C-terminal part 

of eIF4G is still able to forms an initiation complex with IRES-containing mRNAs. Adopted 

from (Guarne et al., 1998)
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The viral RNA is translated into a single polyprotein which is subsequently 

cleaved by the viral proteases, Lpro, 2Apro and 3Cprocreating the individual 

viral proteins. Then the replication cycle starts.  

 

1.1.3.3 Replication 

In this procedure the viral proteins 2B, 2C (putative helicase) 3A, 3B (primer) 

3Cpro and 3D (viral RNA polymerase) are involved (Lyle et al., 2002; Nayak et 

al., 2006; Suhy et al., 2000). First the minus RNA strand synthesis takes 

place leading to the formation of a double stranded RNA molecule. On the 

basis of this replicative form further plus RNA strands are produced, which 

are used for further translation and for the assembly of new virus particles.  

 

1.1.3.4 Assembly 

The synthesized positive RNA strands are packed within a capsid that is 

formed by the structural proteins (VP0-3). A maturation cleavage of VP0 into 

VP2 and VP4 yields fully infectious viral particles which are subsequently 

released from the cell by cell lysis. 

 

1.1.4 Genome of FMDV 

The genome of the foot and mouth disease virus is single stranded RNA of 

positive sense. It consists of about 8500bp.  

 

 
Fig.3: Genome organization of the foot and mouth disease virus (Guarne et al., 1998) 

 

Every genomic RNA strand is covalently linked to a protein (VPG) at its 
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5´terminus. This is the primer (encoded from 3B) which remains on the RNA 

after replication (Wimmer, 1982). After the VPG protein the 5'-UTR follows. 

Downstream of the 5'-UTR the polyprotein is encoded followed by the 3'-

UTR. At the 3' end the RNA consists of a polyA tail. 

 

1.1.4.1 5'-UTR 

The 5-'UTR is over 1300bp in length (Forss et al., 1984). The first fragment is 

a long stem loop with about 360bp in length. This is the S-fragment which is 

assumed to prevent the RNA genome from digestion by exonucleases which 

are incident in the infected cell (Grubman and Bachrach, 1979). Investigation 

on the poliovirus genome suggest that a structured 5' end plays a role in 

genome stability and is presumably implicated in replication (Barton et al., 

2001). Downstream the S-fragment is a polyC tract which consists of 90% 

Cytosines and is over 100bp long. Studies on the poliovirus genome 

revealed that the polyC tract might be involved in regulating the switch from 

translation to replication (Walter et al., 2002). After the polyC tract are RNA 

psuedoknot structures whose function are still undiscovered. Then a hairpin 

loop structure follows which is known as the the cis-acting replicative element 

(cre). The cre element consists of a conserved AAACA sequence which is 

required for genome replication (Mason et al., 2002). The last part on the 5'-

UTR is the internal ribosome entry site (IRES). For picornaviridae three 

different IRES have been identified (Pilipenko et al., 1989) and the foot and 

mouth disease virus consists an IRES of type two. An IRES binds with eIFs, 

who interact with the cellular RNA polymerase enabling transcription of the 

uncapped RNA. In the case of FMDV the C-terminal cleavage product of 

eIF4G generated by Lbpro is responsible for this task. Via eIF3 it connects the 

cellular RNA polymerase to the viral RNA. Downstream of the IRES there are 

two AUG startcodons, where the translation of the viral polyprotein can start. 
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1.1.4.2 Encoded Polyprotein Region 

The first encoded protein is the leader protease Lpro. Due to the two AUG 

startcodons which are separated by 84nt the leader protease can exist in two 

forms, the longer form Labpro and the 28aa shorter form Lbpro (Kuhn et al., 

1990; Sangar et al., 1987). Investigations by Cao et al suggest that in vivo 

the shorter form, Lbpro is the functionally important form (Cao et al., 1991).  

Downstream of Lpro the P1, the P2 and the P3 regions follows. The P1 region 

encodes the four structural virus proteins - VP1, VP2, VP3 and VP4. The P2 

and the P3 region code for the nonstructural proteins which participate in 

RNA replication, structural protein folding and assembly.   

The viral proteins are translated as a single polyprotein which is 

subsequently cleaved by encoded viral proteases - Lbpro, 2Apro and 3Cpro. 

The leader protease cleaves itself off the polyprotein during translation. The 

second cleavage is performed by 2Apro between 2A and 2B but investigations 

from Donnelly et al. suggests that this could also be a premature release of 

the polyprotein during translation (Donnelly et al., 2001a; Donnelly et al., 

2001b)  The other cleavages (except the maturation cleavage, which is an 

autocatalytic cleavage (Harber et al., 1991; Knipe et al., 1997; Lee et al., 

1993) are performed by the protease 3Cpro to obtain the viral proteins.  

 

1.1.4.3 3'-UTR 

The 3'-UTR is folded into a stem loop structure and ends with a polyA tail. 

Both features are required for replication. The stem loop structure is able to 

bind viral proteins which are involved in replication (Melchers et al., 1997; 

Pilipenko et al., 1996; Rohll et al., 1995) and the poly A tail is thought to be 

involved in the initiation of replication (Barton et al., 2001; Herold and Andino, 

2001). Furthermore it has been suggested that the polyA tail is also involved 

in translation (Lopez de Quinto et al., 2002). Investigtigation by (Saiz et al., 

2001) indicated that the 3'UTR is specific for each picornavirus.  
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1.1.5 The Leader Protease 

The leader protease is an important determinant of virulence. It is 

responsible for the shut off of host cell protein translation including INF-γ 

synthesis which is important for antiviral host defense. As mentioned, the 

leader protease can exist in two forms, Lab  and Lb  whereby pro pro (Cao et al., 

1991) revealed that Lb  is the preferentially synthesized form in vivo. For 

this reason Lb  is the more interesting form to investigate.  

pro

pro

 

The crystal structures of the inactive mutant Lbpro C51A as well as a 

shortened form lacking the six C-terminal amino acids, sLbpro C51A, were 

studied by x-ray crystallography (Guarne et al., 2000; Guarne et al., 1998). 

These structures confirmed that Lbpro is related to the family of papain-like 

cysteine proteinases. Although sequence identity of Lbpro shared with papain 

is no higher than 15% (Gorbalenya et al., 1991; Skern et al., 1998) 

characteristic structural features are conserved. The active site of papaine 

like cysteine proteinases is characterized by a catalytic triad of cysteine, 

histidine and asparagine. In Lbpro this is Cys51, His148 and in place of an 

asparagine is Asp163, which fulfills the same task as the asparagine in 

papain.  

 

Lbpro has, like other papain-like proteases, a globular region from which a 

unique 18aa C-terminal extension (CTE) extrudes. In the crystal structure the 

last six amino acids of this extension reach into the active site of an adjacent 

molecule, forming a dimer, which is slightly asymmetric. In the six amino acid 

shortened form, dimer formation was not observed. Further the CTE was not 

observable in the crystal structure, indicating that it is disordered.  

To prove that the dimer formation of Lbpro is not an artefact of crystal 

packaging and to address the issue of the characteristics of the C-terminus 

of sLbpro, the solution structures of Lbpro C51A as well as sLbpro C51A were 

studied by NMR (Cencic et al., 2007). They revealed that dimer formation of 
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Lbpro also occurs in solution. But in contrast to the crystal structure, the dimer 

was found to be symmetric. In the NMR structures of sLbpro C51A the CTE 

was observable indicating that it is indeed flexible. This was additionally 

proved by NMR relaxation studies.  

 

 
 
Fig.4: Illustration of the difference between the crystal structure and the NMR 
structure of the dimeric Lbpro C51A
The crystal structure 1QOL.pdb is coloured blue and the NMR structure 2JQF.pdb is 

coloured in green. One half of each dimer was overlayed to show the difference in 

orientation of the monomers to each other. Enforcement of the observed 2-fold symmetry 

results in a change of the bending angle by about 25-30°. 
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Fig.5: NMR structure (2JQF.pdb) of the dimeric Lbpro C51A 

In one half of the dimeric Lbpro C51A α-helices are colored in green and β-sheets in violet. 

The active side residues are presented as a ball-and–stick model. The C-terminus of each 

monomer reaches into the active site of an adjacent molecule, resulting in dimer formation. 

 

The globular region of the leader protease ranges from Met29 to Tyr183. It 

can be divided into two subdomains, a α-helical and a β-sheet subdomain. 

The α-helical domain starts at the N-terminus. At the N-terminus there are 

two short β-sheets, β1-β2, followed by four α-helices, α -α , whereby the 

longest 

1 4

α-helix, α1, contains the catalytic Cys51. The β-sheet subdomain 

contains seven β-strands, six parallel (β4-β9) and one antiparallel (β3 and β4). 

In the turn, connecting β5 and β6 the catalytic His148 is located. Between the 

two subdomains there is a deep cleft, where Cys51 and His148 are located 

at the top, facing each other to allow interaction. The orientation of His148 

with respect to Cys51 is stabilized by a hydrogen bond to the side chain 

oxygen of Asp163. As mentioned before, in papain this task is usually fulfilled 

by an asparagine residue. Furthermore the fact that this hydrogen bond is 

exposed to solvent is unusual for papain-like proteases is. Usually this 

hydrogen bond is protected by two tryptophan residues. During proteolysis, 

the negative charge development on the carbonyl oxygen is stabilized by the 
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backbone amide of Cys51 and also (unlike compared to papain) by the side 

chain amide of Asn46. In papain, a glutamine residue fulfills this task. 

Despite differences between papain like proteases and Lb ; the spatial 

arrangement of the catalytic residues in the active site of Lb  is well 

preserved. The differences that have evolved result in different specificity of 

the protease allowing for three different proteolytic reactions: the self-

processing and the cleavage of the eIF4GI

pro

pro

 and II  

 

Self-processing 

The fact that the CTE of Lbpro is found in the active site of an adjacent 

molecule leads to the alternative assumption that this reaction is 

intermolecular, but modeling studies showed that the CTE is flexible enough 

to fold back into the active site of the same protein. This suggests that the 

reaction can also occur intramolecularly. Actually both reactions are possible, 

however (Glaser et al., 2001) indicated that self-processing is much more 

efficient if Lbpro is part of the same chain as the cleavage site, suggesting that 

this reaction is an intramolecular one in vivo.  

 

Cleavage of eIF4GI and II 

The eIF4GI and II are functionally homologues proteins which share an 

amino acid identity of about 46% (Gradi et al., 1998). The cleavage of both 

proteins occurs simultaneously and rapidly within virus infected cells (Gradi 

et al., 2004). eIF4GI is cleaved between Gly674 and Arg675 (Kirchweger et 

al., 1994) and eIF4GII is cleaved between Gly700 and Ser701 (Gradi et al., 

2004). Although the two proteins are homologous, the cleavage site of each 

protein does not correspond to the homologous site of the other protein. The 

cleavage of both eIF4G proteins can also take place, if Lb  is still bound to 

the polyprotein chain before self-processing 

pro

(Glaser et al., 2001).  
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Cleavage sites of Lbpro

 

 eIF4GI SFANLG RTTLST 

 eIF4GII PLLNVG SRRSQP 

Lbpro/VP4 VQRKLK GAGQSS 

 

By comparing the sequences surrounding the three cleavage sites it is 

obvious that Lb  requires (like all other papain like enzymes) a hydrophobic 

residue at P2 (coloured in blue) for substrate binding. Before the discovery of 

eIF4GII it was assumed that an additional basic residue providing a positive 

charge (coloured in orange) is necessary at either the P1 or the P1' position 

pro

(Glaser et al., 2001). However, it seems possible that the arginine (R) at the 

P2' site of eIF4GII fulfills this task.  

 

1.1.5.1 CTE –Unique Feature of Lbpro

In the prototype protease (papain), no comparable feature like the CTE was 

found. The development of the CTE prepares Lb  for self-processing. 

Furthermore it is involved in efficient cleavage of both eIF4G homologues. 

This is a multiple step process, involving initial recognition and cleavage. For 

the recognition Lb  interacts via the C-terminal residues 183-195 and the 

Cys133 with the eIF4G homologues. Cys133 is located in the loop 

connecting the 

pro

pro

β-sheets four and five, which is close in space to residues at 

the beginning of the CTE (Foeger et al., 2002). Out of all CTE residues, that 

are involved in binding of eIF4G homologues, Asp184 and Glu186 are 

especially highly conserved in all seven FMDV serotypes, (George et al., 

2001; van Rensburg et al., 2002). The binding site on the eIF4GI is already 

identified and includes the residues 645-657 (Foeger et al., 2005), which is 

located 17 amino acid residues apart from the cleavage site. For the 

following cleavage step none of the initial recognition residues, of neither 

Lb  nor eIF4Gpro I, take part. 
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Lbpro forms a dimer by linking the two molecules via their CTEs. Thereby the 

six C-terminal amino acids are found in the active site of an adjacent 

molecule. In the shortened form (lacking the six C-terminal amino acids) Lbpro 

remains monomeric and the CTE is flexible and disordered.  
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1.2 NMR Spectroscopy 

NMR spectroscopy is a powerful method for studying the structure and also 

dynamic properties of biomolecules. This is important for the understanding 

of their functions. NMR measurements are usually performed in solution. The 

advantage of measuring in solution is that biomolecules experience nearly 

physiological conditions. Recently NMR experiments in the solid state have 

become an important method too, although the experiments are more 

complicated and difficult to interpret. 

 

1.2.1. Principles 

1.2.1.1 Nuclear Spin  

Subatomic particles, such as electrons neutrons and protons possess a 

quantum mechanic phenomena, called spin. A nucleus only has a spin if 

either the number of neutrons or the number of protons or both are odd. 

Nuclei with spins ≠ 0 have an angular momentum p. These nuclei produce 

due to their charge a magnetic moment μ.  

 
(1) p*γμ =

 

For a given spin I there are 2I+1 possible spin states (m=-1,…0…+1). For 

NMR studies of biomolecules only nuclei with a spin quantum number I=½ 

are important. Theses are mainly H, N, C and P. For those spins there 

are 2 possible spin states, m=+½ referred as 

1 15 13 31

α state and m=-½, referred as β  

state. 

 

If nuclei with a magnetic moment experience a magnetic field, their magnetic 

moments orient and the originally degenerate energy levels of the spin states 

split. Nuclei with spin state m=+½ orient parallel to the magnetic field and 
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nuclei with m=-½ orient antiparallel. The energy difference of the split spin 

states linearly depends on the strength of the applied magnetic field B0. 

 

 
 
Fig.6: Energy levels for a nucleus with spin quantum number I=1/2 

 

It can be described by the following equation:  

 

(2) 00 2 νπγ hhBE ==Δ
 

where B0 is the applied magnetic field strength and γ is the gyromagnetic 

ratio. 

Due to the angular momentum the spins precess around the magnetic field. 

The frequency of this precession is given by 

 

πγν 200 B=        [ ]srad  (3) 

or 

00 Bγω −=        [ ]Hz  (4) 

 

This frequency is called lamor frequency. 
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The equilibrium populations of the energy levels are described by the 

Boltzmann equation:  

 

kT
E

up

low

e
N
N

Δ
−

=  (5) 

 

At equilibrium temperature the lower energy state is more populated but 

there is only a very small difference. For example for protons in a 18.8 Tesla 

magnetic field (ν0 = 800 MHz) at room temperature, the population ratio will 

be 0.999872. Because every spin produces a magnetic field this population 

difference gives rise to a net magnetization which is aligned along the 

direction of the static magnetic field (also described as z-direction). Such a 

small population difference presents a significant sensitivity problem for NMR 

because only the net magnetization can be detected. 

 

If electromagnetic energy is applied which equals the difference between the 

energy levels (∆E) of the spin states, a transition between these energy 

levels is induced. After a short time, populations of the spin states return to 

equilibrium. This process is called relaxation.  

 

1.2.1.2 NMR Spectroscopy 

In NMR spectroscopy, high magnetic field strengths are used to enhance the 

sensitivity of the method. The energy difference between the α and the β spin 

states lies in the radio frequency (RF) range. If an RF-pulse with resonance 

frequency corresponding to the Lamor frequency of a distinct nuclei type is 

applied to spins in equilibrium, the magnetization vector is rotated, depending 

on the duration of the pulse. Usually 90° and 180° pulses are used. The 

magnetization can be transferred between nuclei to obtain information about 

the molecule. Finally the magnetization is rotated back to the xy-plane for 
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detection. As the magnetization precesses it induces a small current in a coil 

(this coil is acting as transmitter and also as receiver), which is dedected. 

The decaying magnetization is measured as a time dependent signal. This is 

recorded as so called free induction decay (FID). Fourier transformation 

converts the recorded time domain signal into a frequency domain signal – a 

NMR spectrum. In NMR-spectroscopy many different types of spectra, which 

are described below, can be recorded to obtain important structural 

information.  

 

1.2.1.3 Chemical Shift 

In an NMR spectrum every nucleus has its specific resonance frequency 

according to its chemical environment. The chemical environment of a 

nucleus is presented in its electron cloud. As electrons are moving charges, 

a magnetic filed will induce currents in this electron cloud. These currents 

produce a small local magnetic field which is proportional to B0. Every 

nucleus experiences the sum of both, the external magnetic field and its local 

field. As a result every spin in a molecule has a different resonance 

frequency  

 

( ) 0,0 1 Bjj σγω −−=  (6) 

 

σ is the shielding constant, which reflects the chemical environment.  

To compare spectra from different sources the dependence on the magnetic 

field has to be removed. Therefore the chemical shift δ is calculated relative 

to the frequency of a reference compound and it is typically quoted in ppm. 

 

( ) 6
0 10*refref ωωωδ −=  (7) 
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1.2.1.4 Scalar Coupling  

Scalar coupling is an interaction of two nuclei via their chemical bonds 

mediated by electrons. The magnetic moment of a spin interacts with the 

electron spin inducing a weak polarization of the electron cloud of the binding 

electrons. This influences the energy of the second spin involved in the 

chemical bonding. Depending on the spin state of one nucleus there are two 

resonance frequencies for the second nucleus resulting in two peaks in the 

spectra. The peaks are separated by the coupling constant J of the two 

nuclei. The frequencies of the two peaks are the lamor frequency of the 

nuclei plus ½ J and the lamor frequency minus ½ J splitting the resonance 

line into a doublet. If only one peak for a certain nuclei should be observed in 

a NMR spectrum then the coupling partner has to be decoupled (as 

described lower). 

Via scalar coupling, magnetization from one nucleus can be transferred to a 

second nucleus through their chemical bond. Therefore correlation of the 

frequencies of different nuclei can be achieved which is at the basis of 

multidimensional NMR-spectroscopy.  

 

1.2.1.5 Dipolar Interaction 

Two spins can interact directly via their magnetic moments, through space. 

This interaction is dependent on the distance between the two nuclei, rAB, on 

their gyromagnetic ratios, γΑ,Β and on the orientation of their internuclear 

vector with respect to the static magnetic field.  

 

The energy of this interaction is  

 

[ ]θμμ
π

μ
μμ

2
3

0 cos311
4

−= BA
ABr

E
BA

 (8) 
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μΑ,Β is the magnitude of the magnetic dipole moments and is proportional to 

the respective gyromagnetic ratios. μ0 is the magnetic permittivity of the 

vacuum, γA and γB are the gyromagnetic rations of the spins A and B and rAB 

is the distance between the spins. 

 

An important application of dipole-dipole interaction for structure 

determination is the measurements of residual dipolar couplings (RDCs) and 

the Nuclear Overhauser Effect-effect (NOE). 

 

1.2.1.5.1 NOE (Nuclear Overhauser Effect) 

The dipolar interaction mechanism gives rise to magnetization transfer during 

longitudinal relaxation between spins interacting via their magnetic moments. 

This is the so called Nuclear Overhauser Effect. The magnitude of the 

magnetization transfer depends on the distance between the nuclei, making 

the NOE a powerful tool for distance determination. The magnetization 

transfer rate follows 1/r6 making NOEs observable only for nuclei that are in 

close spatial proximity. In practice, for two protons this means a distance of 

max. 6Å. As a proton in a folded protein is surrounded by numerous other 

protons within this distance many NOE correlations may occur. This provides 

local distance information which is essential for structure determination. 

NOEs for protons in a protein are measured in multidimensional NOESY 

(NOE-SpectroscopY) experiments. 

 

1.2.1.5.2 Dipolar Coupling  

1.2.1.5.2.1 Introduction  

If two spins interact through space each spin is influenced by the magnetic 

field produced from the magnetic moment of the other spin. The energy level 

of one spin is dependant only on the z-component (either α or β) of this field. 

Due to this fact dipolar coupling like scalar coupling can only be observed in 

   29



spectra which are not decoupled. 

The Hamiltonian for heteronuclear dipol dipol coupling is given by: 

 

( ) 21cos32 2
max −= θB

Z
A
Z

AB
dd IIDH  (9) 

 

whereby θ is the angle between the internuclear vector and the static 

magnetic field, the anguler brackets denote time average over motions and 

 

( ) 32
0max 42 ABBA

AB rShD πγγπμ−=  (10) 

 

is the magnitude of the static dipole dipole coupling constant in SI units. h is 

the Planck's constant and γA and γB are the gyromagnetic rations of the spins 

Dipolar couplings are influenced by internal dynamics. They are scaled by 

the order parameter S which can be derived by relaxation studies. For 

structured proteins S is nearly one and can be neglected. (Tjandra et al., 

1997) 

 

1.2.1.5.2.2 Alignment and RDC (Bax et al., 2001) 

As mentioned, dipolar interaction between 2 spins depends on the orientation 

of their internuclear vector with respect to the static magnetic field.  

In isotropic solution, as the molecules tumble quickly around, the dipolar 

coupling between two spins averages to zero. If the proteins are in a medium 

where preferential orientation in a magnetic field exists, the dipolar couplings 

no longer fully average to zero and residual dipolar couplings can be 

measured. These contain information about how particular internuclear 

vectors of two distinct nuclei are oriented with respect to the static magnetic 

field. Therefore residual dipolar couplings provide structure and importantly 

long range orientational information  
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B0

 
 

Fig.7: Orientation of the internuclear vector rNH with respect to the static magnetic 
filed  

 

1.2.1.5.2.3 Order matrix 

In anisotropic solution the molecules orientate in the magnetic field due to 

the magnetic susceptibility of the alignment media. The preferential 

orientation of the molecule is described by the order matrix or also called 

Saupe matrix (Saupe and Englert, 1963) 

 

ijjiijS δββ
2
1coscos

2
3

−=  

 

The order matrix is traceless ( Sxx + Syy + Szz = 0) and symmetric ( Sij = Sji ), 

and therefore contains only five independent elements. βι defines the 

orientation of the three axes of an arbitrary molecular coordinate system 

relative to the static magnetic field and δij is the Kronecker delta function. 

 

 

15N 

1H 

C´

θ 
Cα

(11) 
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Fig.8: Orientation of a internuclear vector rAB with respect to the static magnetic field  

The angles αx αy and αz describes the orientation of an internuclear vector with respect to 

the molecular coordinates x, y, z. βx, βy, and βz are the time-dependent angles between the 

molecular coordinates and the static magnetic field. 

 

The residual dipolar splitting between two spins can be described in the 

following way: 

 

( )
{ }
∑

=

=
zyxji

jiij
AB

zyx
AB SDD

,,,
max coscos,, ααααα  (12) 

 

where αi are the angles between the internuclear vector and the molecular 

coordinate frame. 

 

1.2.1.5.2.4 Alignment Tensor  

As the order matrix is real and symmetric it can be diagonalized. In this 

principal axis frame of the alignment tensor equation 12 simplifies to  

 

( )
{ }
∑

=

=
zyxi

iiii
AB

zyx
AB SDD

,,

2
max cos,, αααα  (13) 

 

The five independent parameters are an axial and a rhombic component, that 
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correspond to the eigenvalues of the order matrix and three Euler angles that 

accomplishes the diagonalization of the order matrix. As only the anisotropic 

part of molecular orientation contributes to residual dipolar couplings the 

directions of the alignment tensor Axx, Ayy and Azz is defined by 

 

3
1cos 2 −= iiiiA β  (14) 

 

and the following definitions are valid: 

 

(15) xxyyzz AAA >>  

(16) zzxxyy AAA −=+  

 

The axial and the rhombic component are defined as the following: 

 

ZZa AA
2
3

=  (17) 

(18) yyxxR AAA −=  

 

The direction of an internuclear vector cosαii with respect to the principal axis 

frame of the alignment tensor an also be expressed in polar coordinates 

using the angles φ and θ. 

 

 

   33



 
 
Fig.9: Internuclear vector with respect to principal axis of the alignment tensor. 
Adopted from (Ramirez and Bax, 1998) 

 

Using this expression dipolar splitting can be described as follows (Clore et 

al., 1998b): 

 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−= φθφθ 222 cossin

2
31cos3, RDD ABAB  (19) 

 

Da is the magnitude of the alignment tensor describing the degree of 

alignment (which correlates with the amount of the alignment media). 

 

a
AB

a ADD max2
1

=  (20) 

 

R is referred as the rhombicity. 

 

(21) ar AAR =  

 

 
 
 
 

   34



1.2.1.5.2.4.1 Determination of the Alignment Tensor Components: 

If the structure is known the five independent elements of the order matrix 

can be calculated if at least five dipolar couplings are available. Usually the 

number of measured dipolar couplings is much higher. Therefore the system 

is overdeterminated and the elements of the order matrix are then calculated 

by singular value decomposition.  

Another possibility is the prediction of the orientation tensor of the molecule 

directly from its three-dimensional structure and its charge distribution 

(Zweckstetter and Bax, 2000; Zweckstetter et al., 2004). Knowledge of the 

elements of the order matrix allows the calculation of Da and R. Both 

parameters are needed for refinement of the existing structure using 

observed residual dipolar couplings. 

 

For unknown structures the components of the alignment tensor can be 

obtained from a histogram showing the frequencies of measured RDCs 

(Clore et al., 1998a). In the case of uniform and isotropic distribution of the 

internuclear vectors the histogram has the shape of a powder pattern of 

chemical shift anisotropy observed in solid state NMR (Fig.10). As individual 

types of internuclear vectors are oriented slightly different the probability of 

isotropic uniform distribution of the internuclear vectors is higher for an 

ensemble of different internuclear vector types (Lee et al., 1997). To be 

comparable the different types of dipolar couplings are normalized relative to 

a distinct dipolar coupling, usually 1DNH
N: 

 

( )33 −−= ABBANHHN
ABNH rrDD γγγγ  (22) 

 

The extreme values of this histogram (the highest, the lowest and the most 

frequent dipolar coupling) correspond to the x-, y- and z-component of the 

alignment tensor. The largest absolute value describes the z-component, the 
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opposite extreme value describes the y-component and the most frequent 

value describes the x-component.  

 

 
 

Fig.10: Theoretical distribution of residual dipolar couplings  
The components of the alignment tensor can be obtained out of the powder pattern of the 

histogram showing the frequencies of RDCs 

 

As it can be seen in Fig.9 the z-component of the alignment tensor is derived 

if θ=0°, the y-component is obtained if both θ=90° and φ=90° and the x-

component is derived if θ=90° and φ=0°. By insertion of the respective angles 

in equation 19 it follows that  

 

(25) 

(24) 

(23) NH
a

NH
zz DD 2=  

( )RDD NH
a

NH
yy 5.11+−=  

( )RDD NH
a

NH
xx 5.11−−=  

 

and so the rombicity R, and the magnitude Da
AB can be determined. Knowing 

these parameters restricts the orientation of the internuclear vector to lie on a 

double cone. Measurements of RDCs in different alignment media restricts 

this orientation to at least two directions (one and its inverse) which cannot 
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be distinguished.  

 

1.2.1.6 Relaxation 

For measuring NMR-spectra the magnetization is perturbed. Relaxation is 

the process by which the magnetization returns to equilibrium. For 

biomolecular NMR spectroscopy relaxation is the most important limiting 

factor. Long relaxation times are required for triple resonance experiments. 

Too fast relaxation leads to too large line widths of the signals in the final 

NMR spectra and as a consequence to small signal to noise ratios.  

 

1.2.1.6.1 Relaxation Processes 

Relaxation is described by two processes, the longitudinal relaxation, also 

called spin lattice relaxation and the transversal relaxation, also called the 

spin spin relaxation 

 

 

1.2.1.6.1.1 Longitudinal Relaxation 

After an RF pulse the equilibrium magnetization of particular spins is 

disturbed. Given time, the original equilibrium magnetization will be reached 

again. In equilibrium, only z-magnetization is present. The process that 

describes the return of the bulk magnetization to z-magnetization is called 

longitudinal relaxation. The longitudinal relaxation rate is 1/T1, whereby T1 

describes the average lifetime of a spin staying in the excited spin state 

before it returns to the lower energy spin state. The energy set free by this 

process is transferred to the surroundings (called lattice). Therefore 

longitudinal is an enthalpic process. During this relaxation process a second 

form of relaxation also occurs, the transverse relaxation.  
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1.2.1.6.1.2 Transverse Relaxation 

Transverse magnetization describes the net magnetization in the xy-plane 

which is zero in the equilibrium.. Transverse relaxation is an entropic process 

leading to dephasing, or loss of the phase coherence, of the magnetization in 

the xy-plane until there is no net magnetization left. This process is described 

with the time constant T2 whereby 1/T2 is the transverse relaxation rate. 

 

1.2.1.6.2 Origin of Relaxation 

The source of both relaxation processes are fluctuating local magnetic fields 

which influence individual magnetic moments resulting in induced transitions 

and finally relaxation. In small molecules these fluctuating fields average 

faster than in larger molecules because small molecules tumble very fast. 

Therefore their relaxation properties are very different from large molecules 

e.g. proteins. The major sources of local fields are the dipolar mechanism 

and the chemical shift anisotropy mechanism. 

 

1.2.1.6.2.1 Dipolar Relaxation Mechanism 

As described, two spins can interact via their magnetic dipole moments 

directly through space (equ. 8). The magnetic field of one spin interacts with 

the magnetic field of a second spin changing its orientation. The rotational 

tumbling of a molecule causes field fluctuation leading to relaxation. A further 

important point is that the magnetic field experienced by one nucleus 

depends on the spin state of the second nucleus. If the spin state of the 

second nucleus changes then the first spin experience a change in magnetic 

field, also leading to relaxation.  

 

1.2.1.6.2.2 Chemical Shift Anisotropy (CSA) 

As described before, the static magnetic field induces a small local field in 

the electron cloud of a nucleus. The size of this local field depends on the 
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orientation of the molecule. As the molecule tumbles in solution each nucleus 

experiences an average local field. So the nuclei of one molecule have 

average chemical shifts giving rise to their resonance frequencies. As every 

molecule tumbles in a different way there is a fluctuating spread of 

resonance frequencies which is a source of relaxation. The magnitude of the 

local field change with respect to orientation depends on the type of nucleus. 

Therefore the impact of this relaxation mechanism is different for different 

types of nuclei. 

 

1.2.1.6.3 Cross Correlated Relaxation 

Cross correlation is the interference of dipolar relaxation and relaxation due 

to chemical shift anisotropy if one spin experiences both relaxation 

mechanisms. Both relaxation mechanisms are dependent on the orientation 

of the molecule. Therefore they have the same time dependence. As both 

relaxation mechanisms are correlated they can influence each other. This 

fact is called cross correlation. If one spin is considered it experience the 

local field from its CSA and a local field from a neighboring spin. The 

fluctuations of these fields due to the tumbling of a protein are correlated. As 

described the local dipolar field experienced by a spin depends on the spin 

state of a second spin. According to this spin state the local fields can 

reinforce or cancel each other, leading to a higher relaxation rate in the first 

case and to a lower in the second case, resulting in different relaxation rates 

within a multiplet. The effect that cross correlation can result in lower 

relaxation rates when exploited property is used in TROSY (Transverse 

Relaxation Optimized SpectroscopY) experiments where only multiplet 

components with slow effective relaxation rates are selectively detected. 
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1.2.2 Multidimensional NMR Experiments: 

1.2.2.1 Introduction 

For bimolecular NMR, multidimensional experiments are used in order to 

avoid overcrowded spectra.  

A general scheme for 1D-, 2D- and 3D-NMR experiments is presented in 

Fig.11 

 

 
 

Fig.11 Representative pulse schemes for 1D 2D and 3D spectra 2

 

All NMR-experiments start with a preparation period, where the equilibrium of 

the nuclear spin system is disturbed. In 1D-experiments this non-equilibrium 

is detected afterwards. In the preparation time of multidimensional 

experiments magnetization is transferred between nuclei (either by scalar 

coupling or via dipolar interaction) who then evolve during the evolution 

period t1. Next is the mixing period during which the magnetization is 

transferred to other nuclei. Depending on the dimension of the spectra there 

can be more evolution and mixing periods. The last mixing time transfers the 

magnetization to the nuclei, whose FIDs are recorded during the acquisition 

period. These are usually the most sensitive nuclei (H). 
                                                 

2 http://pubs.rsc.org/ej/AN/2004/b403435j/ 
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1.2.2.2 Applications for multidimensional NMR Experiments 

1.2.2.2 1 INEPT - Insensitive Nuclei Enhanced by Polarization 
Transfer (Morris and Freeman, 1979) 

For the magnetization transfer from one type of nuclei to another type of 

nuclei usually an INEPT pulse sequence is used. The magnetization is 

transferred via scalar coupling while the evolution of the chemical shift of 

both nuclei is refocused by a pair of 180° pulses in the middle of the transfer 

period τ. The time τ that is needed for complete magnetization transfer is 

equal to 1/2JAB. 

 

 
 
Fig.12: INEPT (Insensitive Nuclei Enhanced by Polarization Transfer)  
The INEPT sequence is used for magnetization transfer in multidimensional NMR 

experiments 

 

In multidimensional experiments sensitivity enhancement can be achieved if 

the magnetization is transferred from sensitive nuclei with a high gyro 

magnetic ratio to less sensitive nuclei during the preparation time. 

 

1.2.2.2.2 Decoupling 

As described, coupling (scalar and dipolar) between two spins changes the 

energy of a spin dependent on the spin state of the coupling partner resulting 

in peak splitting. This leads to overcrowded spectra with reduced intensity 

which presents an obstacle for peak assignment. In order to obtain only one 

   41



peak per recorded spin the coupling partners have to be decoupled during 

the evolution and acquisition periods. This decoupling can be achieved with a 

180° pulse in the middle of the evolution time or with a series of alternating 

180° pulses leading to rotation of the respective magnetization during 

acquisition of a FID. Now the recorded spins experience the overall averaged 

magnetization of their coupling partners, resulting in only one peak. This 

peak has the average frequency and the sum of the intensities of the split 

peaks. 

 

1.2.2.2.3 TROSY Experiments (Pervushin et al., 1997) 

TROSY experiments take advantage of cross correlation to reduce relaxation 

rates by selectively detecting the slowly relaxing multipltt component. For 

biomolecules that are large in size this is a big advantage because relaxation 

here is an extensive limiting factor. 

As described, fluctuation of local fields due to CSA and dipolar relaxation 

mechanisms can reinforce or cancel one another. The magnitude of the 

reinforcement or cancellation depends on the field generated by CSA and the 

field of the dipolar interaction partner. When they are parallel then the cross 

correlation is at its maximum.  

This is the case of the 15N-1H bond in proteins whatever the orientation of the 

molecule is. If a 15N doublet (where 15N is coupled to the 1H) is considered 

the different relaxation rates become apparent in the different widths of the 

two peaks (see Fig.13). 
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Fig.13: 15N doublet (15N coupled to 1H) 
The different peak widths represent the different relaxation rates due to cross correlation. 

 

One peak corresponds to the 1H spin being in the α state and one peak 

corresponds to spin 1H being in the β state. Because the relaxation rate of 
15N is dependant on the spin state of 1H, one peak is sharp and high and one 

peak is broadened. The same effect also occurs for the proton.  

If a 15N-1H spectrum, where the frequencies of 1H and 15N are correlated, is 

recorded, allowing coupling of 15N and 1H with each other, 4 peaks occur per 
15N-1H-group (two in each dimension).  

 

 
 

Fig.14: Signals of a 15N-1H-group in a 15N-1H spectrum with 15N-1H-coupling 
Due to cross correlation one component of a doublet has a smaller width in each dimension. 

The trosy component is the peak that has the smallest width in each dimension, which 

makes the peak the most intense of the multiplet. 
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One peak of a doublet in each dimension has a smaller width, resulting in 

one peak having a small width in each dimension due to the decreased 

effective relaxation rates. In TROSY experiments only this peak will be 

recorded, resulting in spectra with much higher signal to noise ratios. 

 

1.2.2.3 Assignment  

Assignment is the process where the resonances of each signal in the NMR 

spectra are associated with the corresponding nucleus of the molecule which 

is investigated. The resonance frequency of a nucleus is the same in each 

spectrum. By comparing different spectra where the resonance frequencies 

of nuclei are correlated to each other in various complementary ways 

assignment can be achieved and different types of nuclei are correlated to 

each other. 

 

1.2.2.3.1 Backbone Assignment 

Different types of triple resonance experiments have to be performed, 

recording the signals of the backbone HN, N and CO and Cα/β. Via scalar 

coupling these nuclei are correlated. For backbone assignment, spectra 

which have signals from both, inter- and intra-residual atoms and spectra 

which detect only inter-residual atoms are recorded. By comparison of these 

pairs of spectra spin systems can be linked. Using residue specific chemical 

shifts they can be mapped onto the primary sequence thereby assignment 

can be achieved.  

 

1.2.2.3.2 Side Chain Assignment  

Intraresidual signals of aliphatic amino acid side chains can be correlated via 

scalar coupling using COSY/TOCSY methods and combined with intra and 

interresidual NOE signals of the respective groups.  
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1.2.2.4 Measurement of Residual Dipolar Couplings. 

As already described, residual dipolar couplings can only be measured in 

anisotropic solution because in isotropic solution they average to zero. The 

residual dipolar coupling between two nuclei leads to additional peak splitting 

in the recorded spectrum. The observed splitting results from scalar coupling 

(J) plus dipolar coupling (D). In order not to impair the magnetization transfer 

via the INEPT only a small degree of alignment is desired. This also makes 

sure that only nearby nuclei give rise to dipolar couplings. In isotropic 

solution the peak splitting results only from the scalar coupling between the 

two spins. Therefore each experiment has to be performed once in isotropic 

solution and once after addition of alignment media. In order to obtain distinct 

coupling constants the experiments have to be recorded without decoupling 

of the respective atoms. 
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2 Materials and Methods 

2.1 Protein Expression and Purification 

For protein expression the pET System of Novagen was used. A pET11d 

vector carrying the protein sequence under control of a T7 promotor was 

introduced in E.coli BL21(DE3)pLysS cells. These cells have a coding 

sequence for the T7 RNA polymerase under control of a lac operator. The 

overexpression of the protein was initiated by addition of IPTG, as 

expression of the T7 polymerase was induced. The T7 promoter is a viral 

promoter, leading to a rapid expression of the target protein. 

 

As the protein should be analyzed by NMR triple resonance measurements it 

has to be labelled with 15N and 13C. To achieve this, the bacteria which were 

used to express the target protein were grown in M9 minimal medium with 
15NH4Cl as nitrogen source and 13C6-D-glucose as carbon source.  
 

2.1.1 Expression of Lbpro and sLbpro 

2.1.1.1 Solutions and Buffers 

 
LB medium: LB-ampicillin-agar-plates:

10g tryptone 1L LB medium 

5g yeast extract 1ml 100μg/ml ampicillin 

10g NaCl 1ml 100μg/ml canamycin 

1L H2O,  15g agar-agar 

⇒ autoclaved at 20°C for 20min  
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M9-medium

6g Na2HPO4x2H2O  

3g KH2PO4  

0.5g NaCl  

1g 15NH4Cl (sole 

nitrogen source) 

 

⇒ filled up to 1l with millipore H2O and autoclaved for 20 minutes at 120°C. 

Afterwards the following chemicals were added: 

2ml 1M MgSO4  

0.3ml CaCl2  

10ml trace elements trace elements:

20ml 20% 12C6-D- glucose solution 

or 4g 13C6-D_glucose 

5g EDTA 

0.83g FeCl3x6H2O 

1ml 100μg/ml of 

appropriate  

antibiotics (ampicillin, canamycin) 

84mg ZnCl2
13mg CuCl2x2H2O 

10mg CoCl2x6H2O 

1ml biotin (1mg/ml) 10mg H3BO3

1ml thiamine (1mg/ml) 1.6mg MnCl2x6H2O 

⇒ filled up to 1l with  

millipore H2O 

  

IPTG-solution 

1M isopropyl-β-D- thiogalactoside 

 

 
2.1.2.2 Transformation 

100μl of competent E. coli BL21(DE3)pLysS cells were thawed on ice for 10 

minutes. Then 1μl of the pET11d plasmid containing the target protein was 

added and mixed. After 30minutes incubation the bacteria were heat 

shocked for 90 seconds at 42°C. Immediately 300μl Lb medium was added 

and the cells were incubated in the air shaker at 37°C at 225rpm for 45 
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minutes. 100μl of the cells suspension was plated on LB agar-plates 

containing ampicillin and canamycin which were incubated over night at 

37°C. 

 

2.1.2.3 Starter Culture 

One well separated colony was selected and suspended in 20ml LB-medium 

containing 20μl ampicillin and 20μl canamycin (100μg/ml). The bacteria 

solution was incubated in the air shaker at 37°C until a OD600 of 

approximately 1.2 was reached. 

 

2.1.2.4 Expression Culture 

10ml from the starter culture was added to 1l M9 media and incubated in the 

air shaker at 37°C. After reaching an OD600 of between 0.4 and 0.5 IPTG was 

added to induce protein expression. The cells were grown overnight and 

harvested on the next day by centrifugation for 15 minutes at 4000rpm at 

4°C. The bacterial cell pellet was resuspended in 30ml lysis buffer A. For 

storage the bacterial suspension was frozen in liquid nitrogen and stored at -

20°C.  

 

2.1.2.5 Expression Control  

1ml of the 1l bacterial culture (before harvesting the cells) was taken and 

centrifuged for 5 minutes at 4000rpm. The cell pellet was resuspended in 

200μl lysis buffer A. From this suspension 10μl was separated. The 

remaining suspension was centrifuged at 18000rpm for 5 minutes at 4°C. 

Then 10μl from the supernatant were separated. Both samples were 

analysed by SDS-PAGE 
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2.1.3 Purification of Lbpro and sLbpro 

2.1.3.1 Solutions and Buffers 

 
Lysis buffer A Lysis buffer B

50mM TRIS-HCl, pH 8.0 50mM TRIS-HCl, pH 8.0 

50mM NaCl 1M NaCl 

1mM EDTA 1mM EDTA 

5% glycerol 5% glycerol 

5mM DTT 5mM DTT 

  

NMR buffer  

50mM NaCl  

5mM DTT  

20mM NaH2PO4/Na2HPO4 pH 7.0  

 

2.1.3.2 Cell Lysis 

The harvested cells were cooled on ice and lysed by ultrasound using a 

Bandelin Sonopuls sonicator, (5 cyles at 60% power) for at least 15 minutes, 

until there were no lumps in the suspension. This suspension was 

centrifuged at 18000rpm for 20 minutes at 4°C. The supernatant was used 

for the following purification of Lbpro, whereby the pellet was discarded. 

 

2.1.3.3 Protein Precipitation 

The first purification step was the precipitation of unwanted proteins in the 

supernatant with 30% ammoniumsulfate. After 40 minutes cooling on ice the 

protein suspension was centrifuged at 18000rpm for 20 minutes at 4°C. The 

second precipitation with 60% ammoniumsulfate was performed for 40 

minutes on ice. This time Lbpro was precipitated. Again the protein 

suspension was centrifuged at 18000rpm for 20 min at 4°C. The pellet was 
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resuspended in 5-8ml lysis buffer A. Insoluble proteins were pelleted by 

centrifugation at 18000rpm for 20 minutes at 4°C in order to discard them.  

 

2.1.3.4 Protein Purification 

The Lbpro and sLbpro was purified from the protein solution by fast protein 

liquid chromatography (FPLC). An ÄKTA-explorer system with UV-detector 

was used. The salt of the sample was removed using an size exclusion 

column (HiPrep 26/10 desalting) separating low molecular weight substances 

form high molecular weight substances. The column was equilibrated with 

lysis buffer A. The sample was loaded on the column and eluted with lysis 

buffer A. From the protein containing fractions, Lbpro was purified by anion 

exchange using the resource Q column. Equilibration was done with lysis 

buffer A and B according to the instructions of the manufacturers. Fractions 

containing proteins were pooled and loaded on the column. The proteins 

were eluted with an gradient starting from 100% lysis buffer A going to 100% 

lysis buffer B. The obtained fractions were analyzed with SDS-PAGE to find 

out which of them contained Lbpro. These fractions were pooled. It the volume 

was over 10ml and it was concentrated with Amicon Ultra–15 Centrifugal 

Filter Unit 10kDa from Millipore  

The next purification step was achieved by size exclusion using the superdex 

26/60 gel filtration column. Equilibration and eluation were both performed 

with the NMR buffer. The fractions containing protein were again analysed by 

SDS-PAGE in order to find out if Lbpro was obtained in its pure form, or if it 

was contaminated with other proteins. These fractions were pooled, and 

again concentrated with the 10kDa centrifugal filter to a final protein 

concentration of at least 1mM, required to use the protein for NMR triple 

resonance measurements.  
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2.1.4 SDS-Polyacrylamid Gel Electrophorese (PAGE) 

SDS-PAGE (containing 16% polyacrylamide) was used to detect Lbpro and 

sLbpro in the collected fractions from the FPLC and in the expression control. 

The samples used for SDS-PAGE were mixed with sample buffer. The 

mercaptoethanol reduces disulfide bonds if present and SDS unfolds the 

proteins and charges them negatively. Therefore the proteins migrate to the 

positive cathode. Due to size, smaller proteins migrates faster in the 

polyacrylamide gel, larger proteins are more retained. This causes 

separation of the proteins according to sizes. The proteins were stained with 

Commassie blue. In order to determine the size of the proteins, a SDS-7 

protein marker for comparison was used. 

 

Stacking Gel Separation Gel

5% polyacrylamide 16% polyacrylamide 

125mM Tris-HCl, pH 6.6 0.15M Tris-HCl, pH 9.0 

0.05% SDS 0.01% SDS 

0.125% TEMED 0.05% TEMED 

0.05% APS 0.07% APS 

 

2.1.5 Determination of the Protein Concentration 

The concentration of the protein in the solution was analyzed by absorbance 

measurements at 280nm using an Eppendorf Biophotometer. At 280nm the 

π-electrons of the double bonds are excited, therefore the absorption mainly 

depends on the content of aromatic amino acids tyrosine and tryptophan and 

phenylalanine. Knowing the extinction coefficient of the protein (Lbpro, sLbpro: 

ε280=43555M/1cm-1) and the diameter of the cuvette the concentration can 

easily be calculated from the measured absorption using the Lambert-Beer 

law. 
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2.1.6 NMR Sample Preparation 

The NMR sample contains about 400μl of concentrated protein solution. If a 

Shigemi tube is used 250μl are sufficient for measurement. The buffer that is 

used should not give signals during NMR measurements. So phosphate 

buffers are preferred for the last purification step of the protein. The protein 

solution is mixed with about 5% D2O to provide the frequency lock signal. 

The verification of the stability of this signal is necessary to ensure 

stabilization of the NMR instruments during measurement. Additionally, a 

very low amount (about 2.5%) of NaN3 is added to prevent microbial growth 

in the sample.  

 

For measurement of dipolar couplings the proteins have to be aligned. As 

alignment media the filamentous Phage Pf1 of the strain LP11-92 solved in 

potassiumphosphate buffer was used.  
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2.2. NMR Experiments and Structure Determination 

2.2.1 Experiments for Backbone Assignment 

2.2.1.1 15N-HSQC (Heteronuclear Single Quantum Correlation) 

The 15N-HSQC correlates the frequencies of the amide nitrogen atom with its 

attached amide proton. Therefore every backbone peptide group (except 

proline) of a protein gives rise to a signal. Additionally also the side chain 

aminde groups of asparagine, glutamine and arginine side chains as well as 

tryptophan indole 15N-1H are observable. The 15N-HSQC serves as a starting 

point in spin system classification in the process of sequential amino acid 

assignment.  

The magnetization is transferred in the following way: 

 
1HN

i ⎯⎯ →⎯ NNH
J 15N  (t ) 1

i 1 ⎯⎯ →⎯ NNH
J HN

i(t2) 
 

2.2.1.2 Triple Resonance Experiments 

 

2.2.1.2.1 HN(CO)CA (Bax and Ikura, 1991) 

The HNCOCA correlates the frequencies of an amide proton and an amide 

nitrogen with the 13Cα of the preceding amino acid. 

The magnetization is transferred in the following way: 

 
1HN

i  ⎯⎯ →⎯ NNH
J 15Ni  ⎯⎯ →⎯ 'NC

J 13C’i-1  ⎯⎯ →⎯ αCC
J ' 13Cα

i-1(t1)  ⎯⎯ →⎯ αCC
J ' 13C’i-1  ⎯⎯ →⎯ αNC

J

15Ni(t2)  ⎯⎯ →⎯ NNH
J 1HN

i(t3) 
 

2.2.1.2.2 HNCA (Kay et al., 1990) 

The HNCA correlates the frequencies of a amide proton and the nitrogen 
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with and the 13Cα of the same amino acid and the 13Cα of the preceding 

amino acid because the J coupling constant of N to 13Cα is similar for intra 

(1JNiC
α

i) and inter (2JNiC
α

i-1) residues. 

The magnetization is transferred in the following way: 

 
1Hi ⎯⎯ →⎯ NNH

J  15Ni  ⎯⎯ →⎯ αNC
J 13Cα

i,i-1(t1)  ⎯⎯ →⎯ αNC
J 15Ni(t2)  ⎯⎯ →⎯ NNH

J 1Hi(t3) 
 

Together with the HNCOCA the HNCA provides a method for sequential 

assignment, as it can be used to sequentially link residues. But usually 
13Cα shift degeneracy precludes complete sequential assignment. 

 

2.2.1.2.3 CBCA(CO)NH (Grzesiek and Bax, 1992) 

The CBCA(CO)NH correlates the frequencies of a 13Cα and a 13Cβ of an 

amino acid with the amide proton and nitrogen of the next amino acid. 

The magnetization is transferred in the following way: 

 
1Hα

i/1Hβ
i  ⎯⎯⎯ →⎯ HC

J βα / 13Cα
i/Cβ

i(t1)  ⎯⎯ →⎯ βα CC
J 13Cα

i  ⎯⎯ →⎯ αCC
J ' 13C'i+1   ⎯⎯ →⎯ αNC

J

15Ni+1(t2) 1⎯⎯ →⎯ NNH
J HN

i+1(t ) 3

 

2.2.1.2.4 HNCACB (Wittekind and Mueller, 1993) 

The HNCACB correlates the amide proton and nitrogen with the Cα and Cβ of 

the same amino acid and the 13Cα and 13Cβ of the preceding amino acid 

The magnetization is transferred in the following way: 

 
1HN i ⎯⎯ →⎯ NNH

J  15Ni  ⎯⎯ →⎯ αNC
J 13Cα

i,i-1  ⎯⎯ →⎯ βα CC
J 13Cα

i,i-1/13Cβ
i,i-1(t1)  ⎯⎯ →⎯ βα CC

J

13Cα
i,i-1  ⎯⎯ →⎯ αNC

J 15Ni(t2)  ⎯⎯ →⎯ NNH
J 1Hi(t3) 

 

Used together with the CBCA(CO)NH the HNCACB provides a method for 
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sequential assignment due to larger 13Cβ shift ranges. In combination with 
13Cα shifts almost complete assignment can be obtained. The disadvantage 

of both experiments is that there is a long time during which the 

magnetization is transverse on a 13C atom. During this time period much 

magnetization is lost by transverse relaxation. This can lead to sensitivity 

problems, especially for large molecules. 

 

2.2.1.2.5 HNCO (Kay et al., 1990)  

The HNCO correlates the frequencies of the amide proton and the nitrogen 

of an amino acid with the 13C' of the preceding amino acid. 

 

The magnetization is transferred in the following way: 

 

1Hi  ⎯⎯ →⎯ NNH
J 15Ni  ⎯⎯ →⎯ αNC

J 13C’i-1(t1)  ⎯⎯ →⎯ αNC
J 15Ni(t2)  ⎯⎯ →⎯ NNH

J 1Hi(t3) 
 

2.2.1.2.6 HN(CA)CO (Clubb et al., 1992) 

The HN(CA)CO correlates the frequencies of the amide proton and the 

nitrogen of a amino acid with the 13C' of the same and the preceding amino 

acid 

The magnetization is transferred in the following way: 

 
1HN

i  ⎯⎯ →⎯ NNH
J 15Ni  ⎯⎯ →⎯ αNC

J 13Cα
i,i-1

 ⎯⎯ →⎯ αCC
J '  13C’i,i-1(t1)  ⎯⎯ →⎯ αNC

J 15Ni,i-1(t2) 

 ⎯⎯ →⎯ NNH
J 1HN

i,i-1(t3) 
 

With the HN(CA)CO residues can be linked by their 13C' shifts which can be 

useful for unfolded proteins. Together with the HNCO experiment sequential 

assigning can be achieved. 
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HNCA HN(CO)CA 

  

HN
i-Ni-Cα

i

Hi-Ni-Cα
i-1

 

HN
i-Ni-Cα

i-1

 

HN(CA)CO HNCO 

  

HN
i-Ni-C’I

HN
i-Ni-C’i-1

 

HN
i-Ni-C’i-1

 

HNCACB CBCA(CO)NH 

  

HN
i-Ni-Cα

i-Cβ
i 

HN
i-Ni-Cα

i-1-Cβ
i-1 

 

Cβ
i-1- Cβ

i-1-Ni-HN
i 

 

 
Table 2: Triple resonance experiments for backbone assignment
On the left side of the table experiments in which record intra and inter residual signals are 

listed. On the right side are the corresponding experiments which only record intra-residual 

signals. 
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2.2.1.8 NOESY-15N-HSQC  

A NOESY-15N-HSQC is a NOESY followed by a 15N-HSQC experiment. In 

the NOESY experiment magnetization is transferred between protons that 

are close in space. The magnetization that is transferred to a proton, 

attached to a nitrogen, is recorded by the following 1H-15N-HSQC. Therefore 

protons that are near backbone amide protons can be detected 

The correlation pathway is: 

 
1HA(t1) ⎯⎯ →⎯NOE 1HB ⎯⎯ →⎯ NNH

J 15NB(t2) ⎯⎯ →⎯ NNH
J 1HB(t3) 

 

This experiment provides distance restraints, and is also a good 

complementary experiment for backbone assignment because the amide 

protons of two neighboring amino acids also give rise to an NOE signal.  

 

2.2.2. Experiments for Side Chain Assignment 

2.2.2.1 13C-HMQC (Heteronuclear Multiple Quantum Correlation) or 
13C-HSQC (Heteronuclear Single Quantum Correlation) 

The 13C-HMQC or 13C-HSQC correlates the frequencies of a carbon atom 

with its attached proton. Therefore every CH, CH2 or CH3 group of a side 

chain of a protein gives rise to a signal. For this experiment either multiple 

quantum or single quantum correlation is chosen for the 13C evolution time 

depending which one has the slower effective relaxation rate. 

The magnetization is transferred in the following way: 

 
1Hi ⎯⎯→⎯ HCJ 13Ci(t1) ⎯⎯→⎯ HCJ 1Hj(t2) 
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2.2.2.2 HCCH-TOCSY (TOtal Correlation SpectroscopY)  
(Bax et al., 1990) 

A TOCSY experiment uses a spin lock element or isotropic mixing sequence 

to transfer the magnetization through scalar couplings within a whole spin 

system (e.g. one amino acid residue). This mixing sequence consists a 

series of 180° pulses, separated by very small delays, keeping the 

magnetization aligned in the transverse plane. This prevents evolution of the 

chemical shifts with all couplings interactions being active, leading to 

magnetization transfer. The spin lock is applied to 13C rather than for 1H for 

reason of better transfer efficiency (3JHH~7-8Hz, 1JCC~35-40Hz). The HCCH-

TOCSY experiment correlates all aliphatic 1H atoms within a side chain with 

each other. The signals are spread according to their 13C frequencies.  

The correlation pathway is: 

 

1Hi(t1) 13⎯⎯→⎯ HCJ C (t ) 13
i 2 ⎯⎯⎯⎯ →⎯ )( spinlockCCJ

Cj 1⎯⎯→⎯ HCJ H (t ) j 3

 

where 13Ci and 13Cj are part of the same side chain spin network. The JHC 

coupling is a one bond coupling whereby due to the spin lock sequence the 

JCC coupling evolve to every 13C atom in the side chain.  

 

2.2.2.3 NOESY-13C-HMQC or 13C-HSQC 

A NOESY-13C-HMQC or NOESY-13C-HSQC is a NOESY followed by a 13C-

HMQC or 13C-HSQC. In the NOESY experiment magnetization is transferred 

between protons that are close together. The magnetization that is 

transferred from protons to protons, attached to an aliphatic side chain 

carbon atom, is detected by the following 13C-HMQC or HSQC. 

The correlation pathway is: 

 

1Hi(t1) ⎯⎯ →⎯NOE 1Hj ⎯⎯→⎯ CHJ 15Cj(t2) ⎯⎯→⎯ CHJ 1Hj(t3) 
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In combination with a HCCH-TOCSY it can be examined which NOE signals 

arise from intraresidual protons and which arise from interresidual protons. 

Additionally, the NOE signals provide the important distance restrains for 

structure calculation. 

 

2.2.3. Experiments for Measuring Scalar (J)  

and Dipolar Couplings (D) 

Coupling interactions occur in NMR-experiments which are recorded without 

decoupling of the respective atoms during the evolution and, or the 

acquisition time of the respective coupling partners. In the resulting spectra 

the peaks are split according to the respective coupling. Under isotropic 

conditions only the J-couplings contribute to the peak splitting whereby under 

anisotropic conditions peak splitting accords to (J+D)-couplings. Each 

spectrum is measured once in isotropic and once in anisotropic solution. By 

taking the difference between anisotropic (J+D) and isotropic couplings (J) 

the dipolar couplings (D) are obtained. 

 
2.2.3.1 15N-1HN-Couplings - IPAP (In Phase Anti Phase) 15N-HSQC  

To obtain 15N-1HN-couplings a 15N-HSQC could be recorded without 

decoupling the proton during the nitrogen evolution time. The obtained 

spectrum would contain in the nitrogen dimension for every nitrogen 2 peaks, 

split by 1(J or J+D)NH
N. Because (J or J+D)  is1

NH
N  quite large it would be 

difficult to assign the spectrum. To overcome this problem an IPAP 15N-

HSQC (Fig.15) is recorded where two different spectra are obtained. It starts 

like a conventional 15N-HSQC with an INEPT where magnetization is 

transferred from the proton to the nitrogen. After the INEPT, magnetization is 

transverse on 15N and in anti-phase with respect to 1H. The red marked 

element allows generation of in phase 15N magnetization. One experiment is 

recorded with this element resulting in a spectrum with 15N anti-phase 
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doublets consisting one positive and one negative peak and one experiment 

is recorded without this element resulting in a spectrum with 15N in in-phase 

doublets where both peaks are positive. 

 

 
 
Fig.15: IPAP 15N-HSQC  
The red marked element allows generation of 15N in-phase with respect to the 1H. The 

spectrum is recorded twice, with and without this element, obtaining once anti-phase 15N 

doublets and once in-phase 15N doublets. Adapted from (Ottiger et al., 1998) 

 

By taking the sum and difference of the two subspectra, two spectra 

containing only one peak for each nitrogen are obtained, whereby the 

difference of the resonance frequencies of the peaks in both spectra 

corresponds to 1(J or J+D)NH
N. 
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Fig.16: IPAP-15N-HSQC  
The figure shows two spectra obtained under isotropic conditions (peaks coloured in red) 

and two spectra obtained after alignment of sLbpro (peaks coloured in orange). The spectra 

on the left side correspond to difference of the spectra obtained with an IPAP-15N-HSQC and 

the spectra on the right side correspond to the sum. The differences of the resonance 

frequencies of the spectra obtained under isotropic conditions correspond to 1(J)NH
N and the 

differences of the resonance frequencies of the spectra obtained after alignment correspond 

to 1(J+D)NH
N. Data are shown for selected residues of sLbpro. 

 

2.2.3.2 1HN-13C'- and 15N-13C'-Couplings -  
15N-HSQC-TROSY-13C'-coupled (Wang et al., 1998) 

The 15N-HSQC-13C'-coupled is a 15N-HSQC without decoupling the carbonyl 
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atom during the evolution time of the nitrogen and during the acquisition time 

of the proton. In the obtained spectrum cross peaks have an E.cosy type 

pattern (Griesinger et al., 1986). Peak splittings in the proton dimension 

correspond to 2(J or J+D)H
N
C' whereby peak splittings in the nitrogen 

dimension correspond to 1(J or J+D)NC'. 

 

 
 
Fig.17: 15N-HSQC-TROSY-13C'-coupled 

Peak splittings in the 1H dimension corresponds to 1HN-13C'-couplings and peak splittings in 

the 15N dimension correspond to 15N-13C'-couplings. Under isotropic conditions the left 

spectrum (peaks are coloured in red) is obtained from which 2JH
N
C' and 1JNC' can be extracted 

and after alignment the right spectrum (peaks are coloured in orange) is obtained from which 
2(J+D)H

N
C' and 1(J+D)NC' can be extracted. Data are shown for selected residues of sLbpro. 

 

2.2.3.3 13Cα-13C'- Couplings- HNCO-13Cα-coupled 

The HNCO-13Cα-coupled is a HNCO without decoupling of the 13Cα atom 

during the evolution time of the carbonyl atom. In the 3D spectrum obtained 

the 13C' peaks are split according to. 1(J or J+D)C
α
C'. 
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Fig.18: HNCO-13Cα-coupled  

The left spectrum shows a HNCO-13Cα-coupled obtained under isotropic conditions (peaks 

are coloured in red) and the right spectrum shows a HNCO-13Cα-coupled after alignment. 

Peak splittings in the left spectrum corresponds to 1JC
α

C' and peak splittings in the right 

spectrum corresponds to 1(J+D)C
α

C'. Data are shown for selected residues of sLbpro. 

 

2.2.4 Structural Restraints obtained by NMR Experiments 

2.2.4.1 Backbone Angle Restraints 

For backbone angle prediction from the chemical shift the program TALOS 

(Cornilescu et al., 1999) is used. TALOS is based on the principle that 

chemical shifts are dependent on the chemical environment of a nucleus and 

therefore on the secondary structure. As the chemical shifts of atoms of the 

protein backbone are not only depended on the residue type but also on the 

backbone angles, information about the dihedral angles of a protein 

backbone can be provided. TALOS combines the residue type information 

and the chemical shift for predicting backbone torsion angles. As input, the 

chemical shifts of Hα, Cα, Cβ, C' and NH for each residue are used. TALOS 

uses the secondary shifts (difference between measured chemical shifts and 

the corresponding random coil values) of 3 neighboring protein backbone 

residues and compares them to secondary shifts of proteins whose high 

resolution structures have been determined independently. From the 10 best 
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matches that have consistent values for φ and ψ average values for the 

dihedral angles and the standard deviation are calculated which are used for 

structure calculation. 

 

2.2.4.2 Distance Restraints - NOE 

NOE measurements supply information about the distances between 

protons. There are a lot of multidimensional NEOSY experiments. Depending 

on the NOESY experiments, NOEs between distinct protons can be 

measured. For biomolecular NMR NOESY experiments often used are a 

NOESY-15N-HSQC and a NOESY-13C-HSQC. With a NOESY-15N-HSQC 

NOEs between amide protons and protons, that are close in space, can be 

measured. A NOESY-13C-HSQC measures NOEs between protons, attached 

to a carbon atom. The distance information is derived from the intensities of 

the NOE crosspeaks which are proportional to 1/r6. This rapid decay allows 

observation of NOE crosspeaks only within a short range (<5-6Å). These 

local distance restraints provide information about the 3-dimensional 

structure of the molecule.  

 

2.2.4.3 Orientational Restrains - Residual Dipolar Couplings 

Residual dipolar couplings are obtained from measurements of dipolar 

splittings in anisotropic media (where the molecules can align in a preferred 

direction). This preferred direction is described by an alignment tensor which 

can be calculated from the residual dipolar coupling values. The degree of 

alignment is described by the magnitude of the alignment tensor. Residual 

dipolar couplings give information about the directions of distinct bonds with 

respect to the alignment tensor and therefore provide orientational 

constraints.  
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2.2.5 Structure Calculation  

For structure calculation the Xplor NIH package was used (Schwieters et al., 

2006; Schwieters et al., 2003). This program uses known geometric data and 

a force field and together with NMR data it calculates final structures with 

minimum energy. Inputs derived from NMR measurements can be e.g. 

backbone angle restraints obtained by TALOS or 3J-couplings, distance 

restraints from NOE measurements, and orientational restrains obtained by 

measurements of the residual dipolar couplings.  

The starting coordinates can be the protein in an arbitrary extended and 

randomized conformation or, if available, the pdb file of the crystal structure 

which should be refined. The energy minimization is performed by simulated 

annealing. Because there are often more local minima for a structure the 

procedure starts with a heating step in order to overcome the energy barriers 

between these minima. Due to high thermal energy the protein structure is 

almost completely randomized under these conditions. The temperature is 

then slowly reduced, resulting in a higher weight of the force field and the 

NMR restraints resulting that the molecule becomes more and more 

structured. The output is a bundle of low energy structures, satisfying the 

restraints as well as possible. 

 

2.2.6 Structure Validation 

The accuracy of a structure is assessed by a number of parameters. One 

quality parameter is the convergence of the structures. A small coordinate 

r.m.s.d (root mean square deviation) between rigid regions of the protein 

structures denotes a high convergence. This is usually a good sign but does 

not provide the information, if incorrect restraints led to false minima during 

structure determination. Another parameter reporting on the quality of the 

determined structures is the quality of covalent geometry ant the occurrence 

of the energetically favorable binding and torsion angles. There are distinct 
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angle combinations which are, as a result of steric conformation, more 

preferred than others, resulting in regions of the Ramachandran plot being 

more preferred than others. 

If RDCs are available the accuracy of a structure can also be assessed by 

evaluating the agreement of the structure with the observed RDCs. The 

RDCs of the structure are obtained after calculating its Saupe matrix by 

finding the best fit between the corresponding and the experimental RDCs. 

The correlation of the observed and the calculated dipolar couplings is 

assessed by their r.m.s.d. 

 

( ) ∑
=

−=−
N

i

calc
i

obs
i

calcobs DD
N

DDrms
1

2)(1  (26) 

 

In the best case the calculated dipolar couplings are equal to the observed 

values, then the r.m.s.d. is 0. 

Additionally, the quality factor Q is defined which indicates the goodness of 

the correlation (Clore and Garrett, 1999; Cornilescu et al., 1998) and is a 

more sensitive parameter than the linear correlation coefficient R. 

 

( )
obs

calcobs

rmsD
DDrmsQ −

=  (27) 

 

It can be shown that the rmsDobs for an assemble of randomized bond 

vectors, is:  

 

( ) 534 22 RDrmsD a
obs +=  (28) 

 

In the ideal case this value is also 0. 
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3. Results: 

3.1 Sample preparation of sLbpro and Lbpro  

for NMR measurements 

For structure determination of Lbpro and the 6 amino acid shortened from 

sLbpro both proteins were expressed as inactive mutants, C51A to provide 

better long term stability. The expression media contained 15NH4Cl and 13C6-

D-glucose for double labelling. Both proteins were purified and concentrated 

to a minimum concentration of 1mM, typical required for NMR triple 

resonance experiments. 

 

3.2 NMR - Measurements 

For the NMR-experiments Varian Unity Inova 800MHz and 500MHz 

spectrometers and a 600MHz spectrometer with a cryo cold probe was used. 

All measurements were performed at 25°C. Experiments, which involved the 
15N and 1HN frequencies, were recorded as TROSY experiments because of 

more favourable relaxation properties. 

 

3.3 Assignment 

Backbone assignment of sLbpro and Lbpro as well as side chains of sLbpro 

were already available (Cencic, 2005); (Mayer, 2007). The assignments of 

both structures are available in the BMRB database (Lbpro entry number: 

15277, sLbpro entry number: 152778)  
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In order validate the assignment of Lbpro and to assign the remaining signals 

of the backbone, triple resonance TROSY spectra for backbone assignment 

were recorded as the spectra were very crowded. The TROSY versions were 

used to obtain peaks with narrower line widths leading to a higher accuracy 

in peak picking. 

 

3.4 Determination of Residual Dipolar Couplings (RDCs) 

3.4.1 Sample preparation for measurements of the RDCs 

In order to measure the dipolar couplings of Lbpro and sLbpro alignment media 

was added to both samples. As sLbpro is smaller than Lbpro slightly more 

alignment media was added to achieve approximately the same degree of 

alignment. 

 

• Lbpro contained 16,9mg Pf1/ml 

• sLbpro contained 15,4mg Pf1/ml 

 

3.4.2 Measuring of isotropic (J) and anisotropic splittings (J+D) 

The following couplings were measured for sLbpro and Lbpro: 

 

• 15N-1HN: using an IPAP -15N-HSQC 

•   1H-13C' and  

• 15NH-13C': using a 15N-HSQC-TROSY-C'-coupled 

• 13Cα-13C' coupling constant using a HNCO-Cα-coupled 

 

Each spectrum was measured twice, once in the absence and once in the 

presents of alignment medium. From the measurements without alignment 

medium J and from the measurements with the alignment medium J+D was 
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obtained. The dipolar couplings D were obtained by taking the difference of 

the isotropic couplings values and the anisotropic couplings values. 

 

3.4.3 Determination of the alignment tensor components 

The alignment tensor was determined by least square fitting of the observed 

dipolar couplings to the calculated using the coordinates of the crystal 

structure. 

As calculated dipolar couplings tend to be smaller than observed values the 

alignment tensor parameters tend to be underestimated. 

 

Lbpro:  Da
NH: 10.2 

R: 0.28 

 

The corresponding fitted Dxx, Dyy and Dzz values for 1DNH
N are: 

 

Dxx: -5.9 

Dyy: -14.5 

Dzz: 20.3 

 

From the powder pattern of the histogram showing the frequencies of all 

observed RDCs of Lbpro normalized relative to 1DNH
N the following Dxx, Dyy 

and Dzz values observed: 

 

Dxx:  -10 

Dyy:  -25 

DZZ:  35 
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Fig.19: Histogram showing the frequencies of all observed RDCs of Lbpro

The values of the observed RDCs of Lbpro (1DNH
N, 1DC

α
C', 2DH

N
C' and 1DNC') were normalized 

relative to 1DNH
N and their frequencies of occurrence were plotted. 

 

sLbpro:  Da
NH: 8.4 

R: 0.55 

 

The corresponding fitted Dxx, Dyy and Dzz value are: 

 

Dxx: -1.5 

Dyy: -15.3 

Dzz: 16.8 

 

From the powder pattern of the histogram showing the frequencies of all 

observed RDCs of sLbpro normalized relative to 1DNH
N the following Dxx, Dyy 

and Dzz values observed: 

 

Dxx:  -5 

Dyy:  -25 

Dzz::  30 
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Fig.20: Histogram showing the frequencies of all observed RDCs of sLbpro

The values of the observed RDCs of sLbpro (1DNH
N, 1DC

α
C', 2DH

N
C' and 1DNC') were normalized 

relative to 1DNH
N and their frequencies of occurrence were plotted. 

 

3.5 Structure calculation 

Structure calculations were performed with the Xplor NIH package version 

2.17.0 using the alignment tensor parameters obtained by the fit. Additional a 

conformational database potential was used to bias structure towards 

energetically favourable dihedral angles (Kuszewski et al., 1996). NOE 

restraints (Mayer, 2007), as well as measured dipolar couplings were used 

as input. As starting structures the pdb files of the crystal structures 

(1QMY.pdb for sLbpro or 1QOL.pdb for Lbpro) were used.  

To prove, if the qualities of the structures change upon variation of the 

alignment tensor parameters, additional structure calculation were performed 

using the alignment tensor parameters obtained from the pattern of the 

histograms but there was no significant or systematic difference observed. 
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The RDCs contribute to the overall energy of the molecule during structure 

calculation with the following energy term: 

 

ABobscalcdipolardiploar kDDkE 2)( −=  

 

For different sets of RDCs different force constants (kAB) were used to 

consider that inaccuracies or measurements errors for small coupling 

constants are higher than for large coupling constants. 

Force constants kAB (empirically optimized): 

 

• kNH
N: 1 

• KC
α
C': 3 

• KH
N
C': 2 

• KNC': 3 

 

The simulated annealing process was performed with the following 

parameters: 

 

 

 

 

 

 

 

 

 

 

 

 

 

   72



  initial value final value 

temperature 

 800→0K 
800K   (30000 steps) 

(5000 steps) 
(20 cycles) 

covalent forces 

bond 0.1 1 

angle 0.1 1 

improper 0.1 1 

nonbonded 

radius 1 0.8 

van d. Waals  0.01 1 

ramachandran  

short range  0.002 0.1 

long range 0.0002 0.01 

noe 3 30 

dihedral 300 30 

dipolar 0.01 1 

harmonic (Cα) 10 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Table 3: Initial and final values of the force constants used for the simulated annealing 
procedure 
 

3.6 Solution Structure of Lbpro

10 lowest energy structures calculated for Lbpro were selected and an 

average structure was calculated. Regions with regular secondary structures 

of one half of the dimer were overlayd. The backbone r.m.s.d. of the average 

structure and the 10 lowest energy structure of Lbpro is 0.30+/-0.05Å. 
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Ramachandran plots of each amino acid residue show that the dihedral 

angles, ψ and φ are very similar for the crystal structure 1QOL.pdb (Guarne 

et al., 1998), the NMR structure 2JQF.pdb (Cencic et al., 2007) and the 

refined solution structures of Lbpro.  

 

The most noticeable deviations of the dihedral angles of Lbpro compared with 

the crystal structure 1QOL.pdb are listed: 

 

residue Δφ/Δψ residue Δφ/Δψ 

96 41/-24 71 41/-33 
144 -9/60 138 21/42 
145 56/-61 145 48/-99 
146 44/12 146 72/-4 

 
Table 4: Differences of the dihedral angles φ and ψ when compared the lowest energy 

structure of Lbpro with the crystal structure 1QOL.pdb 

 

Fig.21 and 22 show an overlay of one half of the dimer of the crystal 

structure of Lbpro 1QOL.pdb shown in blue, the NMR structure 2JQF.pdb 

shown in green and the lowest energy NMR structure shown in red. The 

secondary structure elements are in agreement with the previous published 

structures. As seen in Fig.21 the twist angle of one half of the dimer 

compared with the crystal structure is in agreement with the former published 

NMR structure as the red and the green α-helices (α3) are parallel. There is 

only a slightly sideward shift. But these two helices are moved parallel 

indicating that the structures differ in their bending angle. This is shown more 

clearly in Fig.22. The bending angle of about 20-25° is a result of the 

additional RDCs restraints used in structure calculation. 
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Fig.21: Overlay of 1QOL.pdb 2JQF.pdb and the lowest energy structure of Lbpro  
The crystal structure of Lbpro 1QOL.pdb (Guarne et al., 1998) is shown in blue, the NMR 

structure 2JQF.pdb published by (Cencic et al., 2007) is shown in green and the lowest 

energy NMR structure is shown in red. One half of each dimer was overlaid. The C2-

symmetry axis is marked with a cross. In this view the twist between the 2 halves of the 

dimer can be observed 

 
Fig.22: Side view of the overlay from above 

Only one half of the dimer shows the secondary structure elements, the other halve is just a 

trace of the backbone. The dashed line shows the C2-symetry axis. The α1-helix from each 

structure is coloured as described above to accentuate the difference in the bending angle 

between the structures 
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3.7 Solution Structure of sLbpro 

 
Regions of regular secondary elements of the 10 lowest energy structures 

obtained for sLbpro overlay with their average structure with a backbone 

r.m.s.d. of 0.27+/-0.07Å. 

For comparison, the bundle of equivalent structures of sLbpro calculated 

without RDCs has a backbone r.m.s.d. of 1.60+/-0.53Å (Cencic et al., 2007). 

This indicates that the additional restraints provided by the RDCs were 

competent for obtaining more precise NMR structures.  

 

 

(b) (a) 

 

 

 
Fig.23: Final converged structures of sLbpro

The α-helices are coloured in green and the β-sheets in magenta.  

(a) Lowest energy structure of sLbpro. (b) Bundle of the 10 lowest energy structures of sLbpro 

where regulary secondary elements are overlaid. As previously published (Cencic et al., 

2007) the C-terminus of sLbpro is unstructured and flexible. 
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The secondary structure elements are also in agreement with the former 

published structures. An overlay of the 10 lowest energy structures obtained 

for sLbpro shows that the C-terminus is, as expected, unstructured and 

flexible.  

 

Ramachandran plots of each amino acid residue show that the occurence of 

energetically favourable dihedral angles is higher in refined structures of 

sLbpro than in the NMR structure 2JQG.pdb (Cencic et al., 2007). Overally, 

the dihedral angles of the obtained structures of sLbpro are in closer 

agreement with the crystal structure 1QMY.pdb (Guarne et al., 1998) than 

with the NMR structure 2JQG.pdb.  

 

The most prominent deviations of the dihedral angels φ and ψ of lowest 

energy structure of sLbpro from the crystal structure 1QMY.pdb are listed: 

 

residue Δφ/Δψ residue Δφ/Δψ 

33 -68/-33 127 -104/280 
34  52/-18 128 -53/36 
45    1/-44 130 12/50 
49 25/60 132   14/-44 
50 -44/-31 145  -24/173 
67 10/43 146 -155/135 
71  36/-43 147 -143/500 
76  29/-44 158 36/42 
93 -40/-24 170   26/104 

108  45/-20 171 -105/-310 
126 23/86 182   2/18 

 
Table 5: Prominent differences of the dihedral angles φ and ψ when compared the 

lowest energy structures of sLbpro with the crystal structure 1QMY.pdb 
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Fig.24: Most prominent differences of the dihedral angles φ and ψ of the lowest energy 

structure of Lbpro with respect to the crystal structure 1QOL.pdb  
The figure shows an overlay of the crystal structure 1QMY.pdb (grey) and lowest energy 

structure of sLbpro (orange). The dihedral angles of the residues Gly145, Gln146 and Glu147 

have the largest differences between these two structures. They are located at the top of 

one active site loop which contains the catalytic residue His148 (loop shown as backbone 

trace from Gly140 to Ala152 and the backbone of the residues Lys144 to His148 are 

presented in ball-and-stick). At the other active site loop (containing the catalytic residue 

Cys51 which is mutated to Ala51) the dihedral angles of the two structures match each 

other. Therefore only the crystal structure 1QMY.pdb is shown as representative (backbone 

trace from Phe41 to Leu57 and ball-and-stick model from Asn46 to Ala51). 

3.8 Cross Validation of RDCs 

Validation of the RDCs was performed by calculating how well observed 

RDCs agree with RDCs predicted for the calculated low energy structures. 

This agreement is estimated by calculating either a linear correlation 
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coefficient R or better a quality factor Q (equ. 26). For RDCs that were used 

as restraints in structure calculation the dipolar energy term enforces this 

agreement. Therefore it can be always expected that the RDCs calculated for 

the obtained structures agree closely with the observed ones used for 

structure calculations.  

 

For structure validation a way has to be found to evaluate how good 

observed values not used as restraints agree with the obtained structures. In 

crystallography the quality of the structures is assessed by the Rfree factor. 

This factor is obtained be refinement of the structure without some 

reflections. The agreement of these reflections with those predicted from the 

crystallographic model is reflected in the Rfree factor.  

In NMR studies the accuracy of RCDs can be assessed in the same way. 

Structure calculations are performed by leaving out one set of RDCs. Then it 

is evaluated how well the resulting (low-energy) structures agree with those 

dipolar couplings that have not been used as restraints in the structure 

calculation. This agreement is again estimated by calculating a linear 

correlation coefficient R and a quality factor Q. The values are compared with 

the R and the Q values that are obtained when determining the agreement of 

the observed RDCs with the RDCs calculated from the crystal structures 

(Guarne et al., 2000; Guarne et al., 1998) and the previous published NMR 

structures (Cencic et al., 2007). If an improvement can be observed this is an 

unbiased way of assessing structural quality. 

This can be rationalized by considering four types of RDCs (1DNH
N, 1DC

α
C', 

2DH
N

C' and 1DNC') in one peptide plane. Three types of RDCs already uniquely 

define the orientation of a peptide plane. The fourth type is redundant and 

can be used for structure validation.  
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Fig.25: RDCs measured for one peptide plane 

The RDCs (1DNH
N, 1DC

α
C', 2DH

N
C' and 1DNC') are indicated with red dashed double arrow. They 

determine the precise orientation of each peptide plane. 

 

In practice this situation is even better due to the limitations for the 

orientation of the peptide planes imposed by covalent geometry. 
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3.8.1 Cross Validation of the RDCs of Lbpro 

3.8.1.1 Cross Validation of 1DNH
N  

 
 R Q 

1QOL.pdb 0.897 0.466 

2JQF.pdb 0,880 0,519 

Lbpro w. all Dobs 0.999 0.055 

Lbpro w.o. 1DNH
N

   0.824 0,701 
 

 
Fig.26: Correlation between observed 1DNH

N of Lbpro and calculated 1DNH
N of Lbpro

1DNH
N  were calculated from the crystal structure of Lbpro 1QOL.pdb (Guarne et al., 1998) 

(blue), the NMR structure 2JQF.pdb (Cencic et al., 2007) (green), the lowest energy 

structure of Lbpro, calculated with all sets of observed RDCs, (red) and the lowest energy 

structure of Lbpro calculated without 1DNH
N (yellow) 
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3.8.1.2 Cross Validation of 1DC
α
C'

 

 R Q 

1QOL.pdb 0.793 0.488 

2JQF.pdb 0,817 0,450 

Lbpro w. all Dobs 0.957 0.193 

Lbpro w.o. 1DC
α
C' 0.805 0.493 

 

 
Fig.27: Correlation between observed 1DC

α
C' and calculated 1DC

α
C' of Lbpro

1DC
α
C' were calculated from the crystal structure of Lbpro, 1QOL.pdb (Guarne et al., 1998) 

(blue), the NMR structure of Lbpro, 2JQF.pdb (Cencic et al., 2007) (green), the lowest energy 

structure of Lbpro, calculated with all sets of observed RDCs (red) and the lowest energy 

structure of Lbpro calculated without 1DC
α
C' (yellow) 
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3.8.1.3 Cross Validation of 2DH
N

C'

 

 R Q 

1QOL.pdb 0.854 0.382 

2JQF.pdb 0,844 0,417 

Lbpro w. all Dobs 0.957 0.194 

Lbpro w.o. 2DH
N

C' 0.865 0.362 
 

 
Fig.28: Correlation between observed 2DH

N
C' and calculated 2DH

N
C' of Lbpro

2DH
N
C' were calculated from the crystal structure of Lbpro 1QOL.pdb (Guarne et al., 1998) 

(blue), the NMR structure of Lbpro, 2JQF.pdb (Cencic et al., 2007) (green), the lowest energy 

structure of Lbpro, calculated with all sets of observed RDCs (red) and the lowest energy 

structure of Lbpro calculated without 2DH
N
C' (yellow) 
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3.8.1.4 Cross Validation of the 1DNC'

 

 R Q 

1QOL.pdb 0.749 0.236 

2JQF.pdb 0,773 0,214 

Lbpro w. all Dobs 0.848 0.177 

Lbpro w.o. 1DNC' 0.754 0.234 
 

 
Fig.29: Correlation between observed 1DNC' and calculated 1DNC' of Lbpro

1DNC' were calculated from the crystal structure of Lbpro 1QOL.pdb (Guarne et al., 1998) 

(blue), the NMR structure of Lbpro, 2JQF.pdb (Cencic et al., 2007) (green), the lowest energy 

structure of Lbpro, calculated with all sets of observed RDCs (red) and the lowest energy 

structure of Lbpro calculated without 1DNC' (yellow) 
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As expected, the NMR structures calculated with all sets of measured RDCs 

used as restraints agree with each set of RDCs better than the crystal 

structure (1QOL.pdb) and the NMR structure (2JQF.pdb).  

 

Independent cross validation of the RDCs shows that the remaining dipolar 

couplings could refine the structures to match each missing set of observed 

RDCs comparably well to the crystal structure (1QOL.pdb) or the NMR 

structure (2JQF.pdb). The structures calculated without 2DH
N

C' agree with 

these RDS even better than the other structures.  
 

The only exceptions in this trend of good cross validation is the omission of 
1DNH

N, because they are the most precise RDCs and such have the biggest 

impact on the structure calculation. Without them the remaining RDCs, which 

are very small and potentially affected by large relative errors, are not 

sufficient for convergence. 

The fact that the NMR structure, 2JQF.pdb agrees better with the observed 
1DNH

N than the structure calculated without 1DNH
N but with all the other RDCs 

is a trivial and slightly misleading result, because 1DNH
N have been used as 

restraints in structures calculations of 2JQF.pdb, where the dipolar energy 

term has enforced the agreement.  
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3.8.2 Cross Validation of the RDCs of sLbpro

3.8.2.1 Cross Validation of 1DNH
N

 
 R Q 

1QMY.pdb 0.863 0.603 

2JQG.pdb 0.666 1.150 

sLbpro w. all Dobs 0.992 0.147 

sLbpro w.o. 1DNH
N 0.851 0.640 

 

 
Fig.30: Correlation between observed 1DNH

N and calculated 1DNH
N of sLbpro

1DNH
N were calculated from the crystal structure of sLbpro 1QMY.pdb (Guarne et al., 2000) 

(blue), the NMR structure of sLbpro, 2JQG.pdb (Cencic et al., 2007) (green), the lowest 

energy structure of sLbpro, calculated with all sets of observed RDCs (red) and the lowest 

energy structure of sLbpro calculated without 1DNH
N (yellow) 
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3.8.2.2 Cross Validation of 1DC
α
C'

 

 R Q 

1QMY.pdb 0.778 0.489 

2JQG.pdb 0.596 0.857 

sLbpro w. all Dobs 0.848 0.347 

sLbpro w.o. 1DC
α
C' 0.754 0.511 

 

 
Fig.31: Correlation between observed 1DC

α
C' and calculated 1DC

α
C' of sLbpro

1DC
α
C' were calculated from the crystal structure of sLbpro 1QMY.pdb (Guarne et al., 2000) 

(blue), the NMR structure of sLbpro, 2JQG.pdb (Cencic et al., 2007) (green), the lowest 

energy structure of sLbpro, calculated with all sets of observed RDCs (red) and the lowest 

energy structure of sLbpro calculated without 1DC
α
C' (yellow) 
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3.8.2.3 Cross Validation of 2DH
N

C'

 

 R Q 

1QMY.pdb 0.731 0.569 

2JQG.pdb 0.623 0.853 

sLbpro w. all Dobs 0.879 0.304 

sLbpro w.o. 2DHNC' 0.776 0.499 
 

 
Fig.32: Correlation between observed 2DH

N
C' and calculated 2DH

N
C' of sLbpro

2DH
N
C' were calculated from the crystal structure of sLbpro 1QMY.pdb (Guarne et al., 2000) 

(blue), the NMR structure of sLbpro, 2JQG.pdb (Cencic et al., 2007) (green), the lowest 

energy structure of sLbpro, calculated with all sets of observed RDCs (red) and the lowest 

energy structure of sLbpro calculated without 2DH
N
C' (yellow) 
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3.8.2.4 Cross Validation of 1DNC' 

 
 R Q 

1QMY.pdb 0.841 0.222 

2JQG.pdb 0.658 0.429 

sLbpro w. all Dobs 0.851 0.219 

sLbpro w.o. 1DNC' 0.809 0.258 
 

 
Fig.33: Corellation between observed 1DNC' and calculated 1DNC' of sLbpro

1DNC' were calculated from the crystal structure of sLbpro 1QMY.pdb (Guarne et al., 2000) 

(blue), the NMR structure of sLbpro, 2JQG.pdb (Cencic et al., 2007) (green), the lowest 

energy structure of sLbpro, calculated with all sets of observed RDCs (red) and the lowest 

energy structure of sLbpro calculated without 1DNC' (yellow) 
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As expected again the NMR structures calculated with all sets of measured 

RDCs agree with each set of RDCs better than the crystal structure 

(1QMY.pdb) and the NMR structure (2JQG.pdb). 

 

Independent cross validation of the RDCs shows that the remaining dipolar 

couplings could refine the structure to improve the agreement with each 

missing set of observed RDCs in a way comparable to that how the crystal 

structure (1QMY.pdb) matches these sets of RDCs. Furthermore in the case 

of 2DH
N

C' the structures calculated omitting these RDCs agree better than the 

crystal structure. 

 

As the crystal structure is very precise with a resolution of 1.9Å these results 

indicate that also the NMR structures obtained for sLbpro are very precise 

structures and partially even better than the x-ray structure. 

Compared with the NMR structure (2JQG.pdb) the impact of the RDCs for 

structure refinement is obvious. 
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4 Discussion: 

Lbpro is an important viral protein in the life cycle of the foot and mouth 

disease virus.  

Crystallographic studies first revealed the structure of Lbpro as well as the 

shortened form sLbpro. Lbpro was observed in a dimeric form and the 

shortened form sLbpro remained monomeric. The C-terminus of sLbpro could 

not be observed suggesting that it is flexible. NMR studies (Cencic et al., 

2007) showed that the C-terminus of sLbpro is indeed flexible and that the 

dimer formation of Lbpro also occurs in solution. Additionally the dimer was 

observed to be completely symmetric, as opposed to an asymmetric dimer in 

the crystal. 

The fact that Lbpro forms a dimer in solution too is quite surprisingly since this 

was considered as an artefact of the crystal structure. Dimerisation occurs 

through the C-termini which lie in the active site of an adjacent molecule and 

vice versa. The relevance of this dimer formation is not completely clear 

althought it is suggested to be an inhibition mechanism of Lbpro, leading to 

dimer formation at a distinct concentration. It is also possible however, that 

the dimer could also be the biologically competent form of substrate 

recognition. The interaction with the substrate then dissociates the dimmer 

releasing the active form. 

 

In this study the structures of sLbpro and Lbpro were refined using residual 

dipolar couplings (RDCs) 1DNH
N, 1DC

α
C', 2DH

N
C' and 1DNC'. When compared to 

the structures calculated by (Cencic et al., 2007), the final structures 

demonstrate that the additional orientational restraints provided by RDCs are 

very powerful in obtaining more precise NMR structures, whose precisions 

are comparable to, or even exceeding that of x-ray structures. 

This makes RDC a useful tool to study the relative orientation of the two 
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halves of the Lbpro dimer relative to each other in a more detailed way. Due to 

the lack of NOE restraints between the two halves of the dimer their 

orientation is not very well defined by conventional NMR experiments. As 

RDCs define the direction of individual bond vectors within the whole Lbpro 

dimer orientational restraints for the whole molecule are provided. This led to 

a more precise determination of the relative orientation of the two halves of 

the dimer. 

 

Using TROSY triple resonance experiments more signals from residues in 

the active site of Lbpro could be assigned, leading also to a refinement with 

RDCs in this region. 

 

For cross validation of the observed RDCs of Lbpro, structures were 

calculated with one set of RDCs left out each time. The resulting structures 

agree with the missing sets of RDCs comparably well as the crystal structure 

1QOL.pdb and the NMR structure 2JQF.pdb agree with these RDCs. The 
2DH

N
C are even matched better by structures calculated without these RDCs.  

 

The only exceptions are structures calculated without 1DNH
N. The remaining 

RDCs are very small and as only a smaller number of them could be 

measured they were not sufficient for convergence. However, these results 

demonstrate that the quality of the calculated structure of Lbpro using all 

RDCs is at least as good as the crystal structure 1QOL.pdb which has a 

resolution of 3Å. 

 

In the case of sLbpro cross validation of the RDCs show that all sets of RDCs 

not involved in structure calculation can be matched by structures calculated 

with the remaining RDCs comparably to the agreement oft these RDCs with 

the crystal structure 1QMY.pdb. This is also true for structures calculated 

without 1DNH
N as enough remaining RDCs were availabel. Also for sLbpro 
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2DH
N

C' are matched better by structures calculated without 2DH
N

C' than by the 

crystal structure. This means that the quality of the structure of sLbprp 

calculated with all RDCs is at least as good and partially even better as the 

crystal structure of sLbpro which has a resolution of 1.9 Å. This is a very high 

resolution for a NMR structures and its precision far exceeds the precision 

usually achieved by routine NMR studies. 

 

Further investigations are concerned with creating a full length monomeric 

form of Lbpro. The longer relaxation time of a monomeric Lbpro should make it 

possible to find the remaining signals of the C-terminus. Another possibility to 

achieve a longer relaxation time is to deuterate Lbpro in the sidechaines. 

Knowing the signals of the C-terminus would allow to study the dimerisation 

of Lbpro and the behaviour of the C-terminus during substrate binding. 
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