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1 INTRODUCTION 2

1 Introduction

In 1967, Charles Plott, showed in [27] that when an odd number of peo-
ple with smooth utility functions vote over arbitrary alternatives in Euclidean
space, each alternative is dominated by another alternative under majority
rule unless one voter gets her preferred alternative and the other voters can
be paired of so as to having utility gradients pointing in opposite directions
(See Figure 1).
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∇u1(x) = 0

Figure 1: Point x satisfies Plotts condition.

This situation seems highly unstable and such alternatives may seldom
exist. Almost never. That one may give a precise notion of "almost never"’ be-
came clear to economists after Gerard Debreu introduced economists in 1970
in [11] to a generic way of reasoning. Debreus analysis was based on the
notion of full Lebesgue measure. Something holding for generic economies
could be interpreted as holding for a randomly chosen economy with prob-
ability one. But these techniques were useless for studying Plotts problem.
There is no such thing as Lebesgue measure for spaces of utility functions, so
researchers had to use a topological notion of genericity. The first results ob-
tained on the core of some voting games being generically empty, that used
this topological notion of genericity, turned out to be wrong, and it was in 1995
when Jeffrey Banks gave the first rigorous theorem on generic core-emptiness,
something we will explain in more detail later. There were still some prob-
lems. The topology on the space of utility functions being used was quite
unintuitive, corresponding little to our intuitive notion of space. In addition,
topological notions of genericity don’t correspond to any probabilistic notion
of genericity. Help comes from the theory of prevalence, developed by Brian
Hunt, Tim Sauer and James Yorke. Their notion of genericity has a nice prob-
abilistic interpretation in terms of random distortions and corresponds to full
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Lebesgue measure in the finite dimensional case. This thesis shows that one
can give prevalent versions of the topological results, and discusses the ways
one can formulate and interpret notions of genericity. Furthermore, a very
simple to prove new generic core-emptiness result for Euclidean preferences
is given. The method of proof is instructive for the case of more general utility
functions. It is not the most powerful result one can give though. It makes
use of a well known result (Corollary 6.1, usually proven like Theorem 7.1)
for which an easy new proof is given, that draws on intuition from high school
geometry. Readers not interested in mathematical details can read the section
without following first a long discussion on topologies on function spaces for
the general case. They simply have to take it on face value that "almost all"
n × n-matrices have full rank. The prevalent core-nonemptiness results are
new, but straightforward modifications of existing results.

In the few cases were a gender pronoun is called for in a sentence, I use
female pronouns, which have as much claim to being generic as male ones.

2 Mathematical Preliminaries

This section is supposed to make the text reasonably self-contained. What is
presumed to be known is basic set theoretic notation and vocabulary, some
linear algebra and multivariable calculus. Remarks in footnotes may relate
to mathematical ideas not explained in the preliminaries, but the main text
should be readible after working through the mathematical preliminaries. They
are however meant to be more of a refresher than a solid introduction. In par-
ticular little motivation and no proofs are given. Readers looking for additional
sources will find the material on topology and measure theory in solid gradu-
ate textbooks on real analysis such as [31] or [7]. A readable introduction to
topics of the geometry chapter is [41], more on the projection theorem can be
found in [21], which covers the issues in a more general setting. The literature
on differential topology is much less accessible. One can find lots of motiva-
tion in [28], but for the meat one has to go elsewhere. A more solid book
is [14], but there’s little about the Thom transversality theorem and nothing
about jets. For this, [16] and the very demanding [13] are good sources.

2.1 Topology

A topology on a set X is a family τ⊂ 2X such that:
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(i) X ∈ τ and ; ∈ τ.

(ii) O1 ∈ τ and O2 ∈ τ implies O1 ∩O2 ∈ τ.

(iii) O ⊂ τ implies
⋃

O ∈ τ.

If τ is a topology on X , we call the pair (X ,τ) a topological space1. The ele-
ments of τ are the open sets. The complement (in X ) of an open set is a closed
set. For any subset S of a topological space, there is a largest open set con-
tained in S, its interior, int(S), and a smallest closed superset of S, its closure,
cl(S). A set S is a neighborhood of a point x if there exists an open set O such
that x ∈ O ⊂ S. If τ1 and τ2 are topologies on X then τ1 is weaker than τ2 or
τ2 stronger than τ1 if τ1 ⊂ τ2.

Let F be a family of subsets of X such that A ∈ F and B ∈ F implies
A∩B ∈ F . Then the family of unions of elements of F is a topology on X and
F is a basis for that topology. The collection of all open intervals forms a basis
for a topology on R, the natural topology. Every family of subsets S of a set
X generates a topology on X if one takes the set of all finite intersections of
elements of S as a basis. We call S a subbasis for the topology thus created. If
(X ,τ1) and (Y,τ2) are topological spaces, τ1×τ2 is the basis for a topology, the
product topology, on X×Y . We will always endow the product of finitely many
topological spaces with the product topology. We use the product topology to
define the natural topology on Rn for n > 1. A topology has the Hausdorff
property if for any two points x 6= y there exists open sets O1 and O2 such that
x ∈ O1, y ∈ O2 and O1∩O2 = ;. The natural topology on Rn has the Hausdorff
property. If S is a subset of a topological space (X ,τ), (S, {S ∩O : O ∈ τ}) is a
topological subspace. We always endow subsets with their subset topology.

A function f : X → Y from a topological space (X ,τ1) to a topological
space (Y,τ2) is continuous if we have f −1(O) ∈ τ1 for every O ∈ τ2. A bi-
jective continuous function with a continuous inverse is a homeomorphism.
If there is a homeomorphism between two topological spaces, we call them
homeomorphic and view them as topologically indistinguishable. A subset K
of a topological space is compact if we have for every family of open sets C
with K ⊂

⋃

C a finite family F ⊂ C with K ⊂
⋃

F . A topological space
(X ,τ) is separable if there exists a countable set D ⊂ X such that X = cl(D).

1We will often be sloppy and call X itself a topological space when it is clear or not impor-
tant what topology is being used. We will do the same thing with other spaces, like metric
spaces or measure spaces.
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One way to define a topology on a set is by using a metric. A metric (or
distance) d on a set X is a function d : X × X → R such that:

(i) d(x , y) = 0 if and only if x = 0.

(ii) d(x , y) = d(y, x).

(iii) d(x , z)≤ d(x , y) + d(y, z)

for all x , y, z ∈ X . One can easily show that a metric takes on only nonnegative
values. If d is a metric on X , the pair (X , d) is a metric space. For every
x ∈ X and ε > 0 we define the open ball with center x and radius ε to be
B(x ,ε) = {y ∈ X : d(x , y) < ε}. We call a subset of a metric space containing
an open ball around each of its points open. The collection of all open sets of
a metric space form a Hausdorff topology. If a topology can be obtained this
way from some metric, we call the topological space metrizable.

A sequence (xn)n∈N in a metric space converges to a point x if we have for
every ε > 0 a natural number N such that d(xn, x) < ε for all n > N . A
sequence in a metric space can converge to at most one point. A sequence
(xn)n∈N in a metric space is a Cauchy sequence if for every ε > 0 there is a
natural number N such that (xn, xm) < ε for all n, m > N . A metric space is
complete is every Cauchy sequence converges to some point.

A vector space2 V endowed with a topology that makes both addition + :
V × V → V and scalar multiplication R× V → V continuous, is a topological
vector space. There is only one topology with the Hausdorff property on a finite
dimensional vector space that makes it a topological vector space, and that is
the natural topology. This means that an n-dimensional topological vector
space has linear homeomorphism to Rn. An important class of topological
vector spaces is the class of normed spaces. A norm N on a vector space V is a
function N : V → R such that:

(i) N(x) = 0 implies x = 0.

(ii) N(αx) = |α|N(x).

(iii) N(x + y)≤ N(x) + N(y).

It is easily shown that a norm takes on only nonnegative values. If N is a norm
on V , one can define a metric d : V × V → R by setting d(x , y) = N(x − y).

2We will assume all vector spaces to be real vector spaces.



2 MATHEMATICAL PRELIMINARIES 6

This metric makes the normed space into a Hausdorff topological vector space.
If the corresponding metric space is complete, we call the normed space a
Banach space. The Euclidean Norm of an x ∈ Rn is ‖x‖ =

�
∑n

i=1 x2
i

�1/2. It
gives a complete metric. A useful result for normed spaces is Riesz’ lemma. It
says that if S is a closed proper subspace of a normed space and θ ∈ (0,1),
then there exists a vector x of norm 1 such that N(x − y) > θ for all y ∈ S.
Together with the fact that finite dimensional subspaces of normed spaces
are closed, this implies that compact subsets of infinite dimensional normed
spaces contain no open ball. A subset of Rn on the other hand is, according to
the Heine-Borel theorem, compact if and only if it is a closed set contained in a
sufficiently large open ball.

2.2 Geometry

Let V be a vector space and v1, v2, . . . , vn be a finite number of elements of V . A
vector v ∈ V is an affine combination of v1, v2, . . . , vn if there are real numbers
α1,α2, . . . ,αn with

∑n
i=1αi = 1 such that v =

∑n
i=1αi vi. Le S be a subset of V .

The affine span of S, denoted by aff(S), is the set of all affine combinations of
elements of S. A set that equals its affine hull is called a flat. A nonempty set
is a flat if and only if it is the translate of a vector subspace. A set of vectors is
affinely independent if no vector in it is an affine combination of other vectors
in the set. The dimension of a flat F is the (unique) number of elements3 in a
minimal set of vectors having affine span F .

Let V be a vector space and v1, v2, . . . , vn be a finite number of elements
of V . A vector v ∈ V is a convex combination of v1, v2, . . . , vn if there are real
numbers α1 ≥ 0,α2 ≥ 0, . . . ,αn ≥ 0 with

∑n
i=1αi = 1 such that v =

∑n
i=1αi vi.

The convex hull of S, denoted by con(S), is the set of all convex combinations
of elements of S. Clearly con(S) ⊂ aff(S). A convex set is a set that equals its
convex hull.

A hyperplane H is a maximal flat smaller than V . That is H is a flat other
than V and any flat containing H equals either H or V . In an n-dimensional
vector space, hyperplanes have dimension (n−1). A real valued linear function
p on V is a linear functional. A linear functional is nondegenerate if it takes on

3At least in the finite dimensional case. But even for infinite dimensional flats, the cardi-
nality of a minimal set having the flat as affine span is uniquely determined. This follows from
the corresponding theorem for the dimension of a vector space and the fact that each flat is
the translate of a vector subspace.
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values other than zero. If p is a nondegenerate linear functional on V , the
set {x ∈ V : p(x) = c} for some c ∈ R is a hyperplane. Any hyperplane can
be written this way as the level set of a linear functional. A closed halfspace
is a set of the form {x ∈ V : p(x) ≤ c} with p being a nondegenerate linear
functional and c a real number.

For the rest of this section let V = Rn, endowed with the natural topology.
The convex hull of a finite set is compact. Given any point x and a closed
convex set C , there is a unique point c ∈ C that is closest to x . Given a closed,
convex set C and a convex, compact set K such that C ∩ K = ;, there is a
linear functional p and a constant c such that p(x) < c < p(y) for all x ∈ C
and y ∈ K . This result is known as the separating hyperplane theorem. An
important consequence is that a convex, closed set C equals the intersection
of all halfspaces containing C .

Two vectors x , y ∈ Rn are normal to each other if their inner product
∑n

i=1 x i yi is 0. The Pythagorean theorem says that if x and y are normal to
each other, then ‖x + y‖2 = ‖x‖2 + ‖y‖2. Let S be a proper vector subspace
and x /∈ S. A necessary and sufficient condition for a point y in S being clos-
est to x is that (x − y) is normal to each element of S. This is known as the
projection theorem.

A cone is a subset V of a vector space such that V + V ⊂ V , V ∩−V = {0}
and αV ⊂ V for all α ≥ 0.4 An open cone is the interior of a cone. A semi-
positive combination of vectors v1, . . . , vn is a linear combination with nonneg-
ative weights of which at lest one is larger than zero. The semi-positive span
of a subset S of a vector space is the set of all semi-positive combinations of
elements of S.

2.3 Measure Theory

A σ-algebra B on a set X is a nonempty family of subsets of X closed under
complementation and countable unions. That is

(i) B 6= ;.

(ii) B ∈B implies X − B ∈B .

(iii) If Bi ∈B for all i ∈ N then
⋃∞

i=1 Bi ∈B .

4Many authors call that a proper convex cone pointed at zero.
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For any family F of subsets of X , there is a smallest σ-algebra containing
all elements of F . We call it the σ-algebra generated by F . If (X ,τ) is a
topological space, then the σ-algebra generated by τ is called the Borel σ-
algebra on (X ,τ) and its elements are the Borel sets. A pair (X ,B)with X being
a set andB being a σ-algebra on X is a measurable space and the elements of
B are measurable sets.

The extended real line R is the set R∪{−∞,∞} endowed with an extension
of the usual order on R so that −∞< r <∞ for all r ∈ R.

A measure µ on a measurable space (X ,B) is a function µ : B → R such
that:

(i) µ(B)≥ 0 for all B ∈B .

(ii) µ(;) = 0.

(iii) If Bi ∈ B for all i ∈ N and Bi ∩ B j = ; for i 6= j then µ(
⋃∞

i=1 Bi) =
∑∞

i=1µ(Bi).

If µ is a measure on (X ,B), we call the triple (X ,B ,µ) a measure space. We
call µ a probability measure if µ(X ) = 1. A measure defined on the Borel σ-
algebra of a topological space is a Borel measure. A measure space (X ,B ,µ)
is complete if any subset of a set with measure zero is measurable.

An outer measure µ∗ on a set X is a function µ∗ : 2X → R such that:

(i) µ∗(;) = 0.

(ii) A⊂ B implies µ∗(A)≤ µ∗(B).

(ii) B ⊂
⋃∞

i=1 Bi) implies µ∗(B)≤
∑∞

i=1µ
∗(Bi).

According to Caratheodory’s extension theorem, the family

B = {A⊂ X : µ∗(A) = µ∗(A∩ E) +µ∗(A∩ X − E) for all E ⊂ X }

is a σ-algebra on X and (X ,B ,µ∗) is a complete measure space if µ∗ is an
outer measure on X .
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2.4 Differential Topology

A function from an open set of Rn to Rp is said to be C r if all partial derivatives
up to order r exist at all points and are continuous. A function is C∞ or smooth
if it is C r for all r ∈ N. A C r diffeomorphism is a C r homeomorphism with a
C r inverse. A subset M of Rn is a C r manifold of dimension d if every point
in M has an open neighborhood U that has a diffeomorphism φ with an open
subset V of Rn so that φ(M ∩ U) = (Rd × {0}) ∩ V , where 0 ∈ Rn−d .5 So a
manifold has a local diffeomorphism around each point. If M ⊂ Rn is a C r

manifold of dimension d, its codimension is n− d. Manifolds can locally be
approximated by some Rd . The surface of the earth looks pretty flat, so a
sphere is a two-dimensional manifold. To say what space a manifold looks
like locally, we use the notion of a tangent space. The tangent space of a C r

manifold M at a point x ∈ M , denoted by Tx M , is the inverse image of the
differential of a local diffeomorphism. One can show that the choice of the
diffeomorphism doesn’t matter which makes the tangent space well defined.
We write the differential of a C1 map from Rn to a manifold M ⊂ Rm as a linear
map with D fx = Rm→ Tf (x)M .

Let O ⊂ Rn be open and f : O → Rm a C r function. For k ≤ r define the
k-jet of f at x , denoted by jk f (x) to be (x , f (x), D f (x), . . . , Dk f (x)), which
is x together with its kth order Taylor expansion. We can view jk f as a C r−k

function from O to the jet space (of order k) J k(Rn,Rm) = Rn × Pk(Rn,Rm)
with Pk(Rn,Rm) being the space of polynomials from Rn to Rm with degree
at most k. The jet space J k(Rn,Rm) is a finite dimensional vector space and
will therefore be endowed with the natural topology. It is possible to define a
jet space of infinite order. The construction is a little bit involved (see [24]).
For our purposes it suffices to know that it admits a completely metrizable
topology.

Two lines in a plane intersect usually in exactly one point, and two lines
in three dimensional space not at all. Two planes in three dimensional space
usually intersect on a whole line and a plane and a line in three dimensional
space usually intersect in a point. These intersections have the property of
being transversal.

Definition 2.1 Let M , N ⊂ Rn be C1 manifolds. They intersect transversally
if their tangent spaces jointly span Rn at each point of intersection. So for all

5There is a more involved definition of a manifold that does not assume the manifold to be
embedded in some Rn, but in our applications this will never be necessary.
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x ∈ M ∩ N one has:
Tx M + Tx N = Rn.

Observe that two manifolds intersect transversally if they do not intersect at
all. If the sum of their dimensions is smaller than n, this is the only possi-
ble type of tranversal intersection. The condition that the dimensions of the
manifolds is smaller than n is equivalent to one manifold having codimension
larger than the dimension of the other manifold. One can also define what it
means for a manifold and a function to intersect transversally.

Definition 2.2 Let M ⊂ Rm and N ⊂ Rn be C1 manifolds and f : M → Rn be a
C1 function. We say that f intersects N transversally if for all x ∈ f −1(N)∩M
one has

Tf (x)N + D fx Tx M .

This definitions are basically equivalent. If M , N ⊂ Rn intersect transversally,
than the inclusion map ιM : M → Rn given by ι(x) = x intersects N transver-
sally. Conversely, one can interpret a transversal intersection of a function and
a manifold as the transversal intersection of its graph and some manifold. We
will later give theorems that will give mathematical content to the idea that
intersections are usually transversal.

3 Notions of Genericity

3.1 Lebesgue Measure

It’s natural to define the length of an interval [a, b] in R as b−a, the area of an
rectangle [a1, b1]×[a2, b2] in R2 as (b1−a1)(b2−a2) and the volume of a block
[a1, b1]× [a2, b2]× [a3, b3] in R3 as the product (b1 − a1)(b2 − a2)(b3 − a3).
Generalizing this, the measure λ of a n-fold Cartesian product of intervals in
Rn is the product of the lengths of these intervals, so that

λ

� n
∏

i=1

[ai, bi]
�

=
n
∏

i=1

(bi − ai).

Let I be the collection of n-fold products of intervals in Rn. So far, λ is a
function defined on I . We can extend λ to all of 2R

n
by defining

λ(S) = inf
�

∑

I∈C

λ(I) :C ⊂ I , S ⊂
⋃

C , and C countable
�

for every S ⊂ Rn.
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One can verify that λ is an outer measure, it is called Lebesgue outer measure.
We can use Caratheodory’s extension theorem to define a complete measure
from it, Lebesgue measure. It is straightforward to show that all sets in I are
measurable. Since countable unions of elements of I form a basis for the
natural topology on Rn, every Borel set is measurable too.

Moving objects around in space shouldn’t change their volume. Lebesgue
measure6 λ respects this requirement by being translation invariant; that is
for every measurable set S and every x ∈ Rn we have λ(S) = λ(S + x). A
(tedious) way to see this is by noting that Lebesgue outer measure is obviously
translation invariant, and showing that the construction used in the proof of
Caratheodory’s extension theorem is invariant with respect to translations. We
will not bother with the details of the verification here.

If a property P of elements of Rn holds only on a set of Lebesgue measure
zero, that is λ({x ∈ Rn : P(x)}) = 0, we say that P holds almost nowhere and
non-P holds almost everywhere and that {x ∈ Rn : ¬P(x)} has full Lebesgue
measure. One can easily show that every set having Lebesgue measure zero is
contained in a Borel set having Lebesgue measure zero.

Full Lebesgue measure is the natural candidate for genericity for finite
dimensional parameter spaces. We run, however, into trouble when trying to
define an infinite dimensional version of Lebesgue measure7:

Theorem 3.1 If µ is a translation-invariant measure on an infinite-dimensional,
separable, normed space, then µ is identically zero or infinite on every open set.

Proof:
Suppose O is an open set with finite measure. O contains an open ball

with radius ε. By Riesz’ Lemma, there is a sequence of disjoint open balls with
radius ε/4 contained in this ball. Since O has finite measure, these balls all
have the same measure, zero, and so does every ball with radius ε/4 since µ
is translation invariant. Now the whole space is covered by countably many
balls with radius ε/4, since it is separable, and has therefore measure zero.
�

If we drop separability, we still have nonempty open sets with zero mea-
sure, something very strange.

6From now on we will reserve the letter λ for Lebesgue measure.
7The result is taken from [17].
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3.2 Residual Sets

The lack of a translation invariant measure for infinite dimensional spaces has
led mathematicians to define topological notions of genericity. A residual set
is the countable intersection of open dense sets. The Baire category theorem
asserts that residual subsets of complete metric spaces are dense. Any space
which has this property is called a Baire space.

Residual sets have often been used in economics as the notion of genericity.
Donald Saari for example wrote (in [33]) that something true for a residual
set of preferences should be interpreted as

everything except improbable, carefully concocted examples which
are not indicative of what can happen because the conclusion can
fail with even a slight change in the preferences.

If we accept full Lebesgue measure as the natural notion of genericity in the
finite dimensional case, residual sets should have full Lebesgue measure there.
This can fail completely8:

Theorem 3.2 There exists a residual Lebesgue measure zero subset S of R.

Proof:
Let D = {d1, d2, . . .} be a countable dense subset of R. Define Ii, j to be the

open interval with center di and length 1/2i+ j, and let S =
⋂∞

j=1(
⋃∞

i=1 Ii, j).
Let ε > 0 and choose j so that 1/2 j < ε. Then λ(S) ≤ λ(

⋃∞
i=1 Ii, j) ≤

∑∞
i=1λ(Ii, j) =

∑∞
i=1 1/2 j+i = 1/2 j < ε. So S has Lebesgue measure zero.

The set
⋃∞

i=1 Ii, j is open and dense for every j, so S is residual as the
intersection of countably many of these sets.
�

A somewhat stronger topological notion of genericity is given by identi-
fying open dense sets with generic sets. Still, it is clear from the proof of
Theorem 3.2 that open dense subsets of R can have arbitrarily small positive
Lebesgue measure.

3.3 Prevalence and Shyness

While it is not possible to generalize Lebesgue measure to infinite dimensional
spaces, one can generalize the notion of Lebesgue measure zero using a char-

8The exaple is taken from [26].
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supp p

v

r

v+ r
S

Figure 2: Any vector v plus a distortion lies almost surely outside S.

acterization that is applicable in both settings. This is what Brian Hunt, Tim
Sauer and James Yorke did (in [17]).

Theorem 3.3 A set S ⊂ Rn has Lebesgue measure zero if and only if there exists
a Borel probability measure p with compact support such that every translate of
S has p-measure zero.
�

Theorem 3.3 provides a nice intuition on Lebesgue measure zero: Interpret
the support of p as a set of distortions, and take any vector v ∈ Rn (see Figure
2). Then by distorting the vector v by a random distortion, we land outside S
with probability one. More exactly, for all v ∈ Rn, one has

p
�

�

r ∈ supp p : v+ r /∈ S
	

�

= 1.

Following Hunt, Sauer and Yorke we can use this characterization as a defini-
tion of genericity based on probabilistic intuition:9

9Jens Peter Reusen Christensen has already defined an equivalent notion in the separable
case in [9]. A Haar zero subset of a separable, completely metrizable topological vector space
(or, more generally, topological abelian group) V is a universally measurable set S such that a
measure µ on V exists with µ(S + x) = 0 for all x ∈ V . The equivalence of shyness and Haar
zero in the separable case is explained in [39].
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Definition 3.1 Let V be a completely metrizable topological vector space. A Borel
set E ⊂ V is said to be shy if there exists a probability measure µ with compact
support such that E + x has µ-measure zero for every x ∈ V . A subset of a shy
set is also said to be shy. The complement of a shy set is said to be prevalent.

Hunt, Sauer and Yorke prove that shyness has properties similar to the ones of
Lebesgue measure zero:

Theorem 3.4 Shyness satisfies the following conditions:

(i) A shy set has empty interior.

(ii) Every translate of a shy set and every subset of a shy set is shy.

(iii) A countable union of shy sets is shy.

�

We omit the proof. But (ii) is trivial and (i) relatively easy. The proof of (iii) is
rather complicated.

Even though prevalence and shyness have a probabilistic intuition behind
them, prevalence is unrelated to probabilistic beliefs. Maxwell Stinchcombe
pointed out (in [39]) that every probability measure on a separable, com-
pletely metrizable topological vector space assigns measure zero to some preva-
lent set.

It should be noted that we need the measure µ in the definition of shyness
only to be positive and finite on some compact set. If the definition is satisfied
with such a measure we can restrict it to a compact set and normalize it to
be a probabilty measure on the compact set. A very useful measure for this
purpose is Lebesgue measure on a finite dimensional subspace. We call such
a subspace a probe. The nice thing with probes is that when working with
probes, we can forget about the details of the vector space topology being
used since the topology of a finite dimensional subspace is always Euclidean.

4 Spaces of Preferences and Utility Functions

Here we study ways of topologizing spaces of preferences and spaces of utility
functions. We are mainly concerned with preferences and utility functions on
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Rn. We will see that spaces of preferences usually don’t allow for the metriz-
able topological vector space structure needed to apply the theory of preva-
lence. For this reason we will directly work with spaces of utility functions10.
These may seem to be less "fundamental" than preferences, but what space
preferences are "really" drawn from is moot metaphysics, so we will not spend
time on discussing this.

At the end of the section, we present transversality theorems, which are
useful for proving results on the genericity of some property in spaces of utility
functions.

4.1 Preferences

The most general class of preferences we will look at in this section is the class
of continuous preferences on Rn. A continuous preference relation is a complete
and transitive relation on Rn that has a graph closed in Rn×n. We call the class
of continuous preferences C .

A topology on C that has been used for stuying core emptyness for major-
ity rule is the Kannai topology introduced by Yakar Kannai in [18] for study-
ing markets. The Kannai topology is the weakes topology that makes the set
{(x , y,�) : x �� y} open in Rn×n × C for all P ∈ C . Equivalenty it is the
weakest topology satisfying that if xn → x , yn → y , �n→� and x � y then
xn �n yn for n large enough. The Kannai topology was used by Ariel Rubin-
stein in [32] who showed that if the choice space is a convex, compact subset
of Rn with nonempty interior and there are at least three voters, then the ma-
jority rule core fails to exist on an open dense set of preference profiles in the
Kannai topology. The Kannai topology has however a strong defect: C with
the Kannai topology is not a Hausdorff space. The following example is in-
spired by [29]: Take � as the preference relation that ranks all alternatives
as indifferent and let (�n) be any (!) sequence in C . Then (�n) converges to
�. The problem with the Kannai topology is its reliance on the existence of
enough strict rankings locally11.

Another approach one can take is working with so called hyperspace topolo-
gies, these are topologies defined on subsets of some topological space. Since

10Another way of getting generic results in a probabilitsic sense would be to work with
random variables taking values in a space of preferences as in [15]. It is not clear to the
author of this thesis wether such an approach would be workable four our purposes.

11This is of course no problem for the theory of markets, where local non-satiation is usually
assumed.
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the graph of a continuous preference relation on a set X is a closed subset of
X × X , we can directly apply topologies on the set of closed subsets of X × X .
The most popular such topology in economics is the Fell topology developed
by James M. G. Fell (in[12]), who called it the H-topology. We define this
topology by giving a basis for it. Let X be a topological space and let C L(X )
be the set of closed subsets of X . For every compact subset C of X and ev-
ery finite set F of nonempty open subsets of X let U(C ,F ) be the set of all
Y ∈ C L(X ) such that Y ∩ C = ; and Y ∩ A 6= ; for all A ∈ F . It can be shown
that the collection of all such sets U(C ,F ) is a basis for a topology, namely
the Fell topology. Provided every neighborhood of every point in X contains
a compact neighborhood, we call X locally compact. The Fell topology makes
C L(X ), for a locally compact space X , into a compact Hausdorff space. If X is
completely metrizable and locally compact, then C L(X ) is compact, separable
and completely metrizable (for a proof, see [2]). In this case, the Fell topol-
ogy is also known as the topology of closed convergence. This is also the name
usually used in the economics literature. When working with satiated pref-
erences, the Fell topology is arguably too weak. There’s an example in [29]
where a sequence of prefences that is arguable not supposed to be convergent
still converges.

Since we are eventually going to apply the powerful tools of differential
topology, we are going to work with "smooth preferences". Preferences can
basically be described by a partition giving all the indifference curves and a
total order12 on the partition cells. It is then possible to endow the indifference
surfaces with some differential structure. One can for example demand that
they are manifolds of a certain class. This approach is developed for example
by Graciela Chichilnisky in [8], such topologies don’t admit a linear structure
though.

4.2 Utility Functions

If X and Y are topological spaces, denote the set of continuous functions from
X to Y by C(X , Y ).

Definition 4.1 Let X , Y be topological spaces. The compact-open topology on
C(X , Y ) is generated by the subbasis
�

{ f ∈ C(X , Y ) : f (K)⊂ O} : K ⊂ X , O ⊂ Y with K compact and O open
	

.
12A total order is a preference ordering satifying anti-symmetry. That is, a preference order-

ing in which all indifference curves are singletons.
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The compact-open topology was introduced by Richard Arens (in [3]), who
called it the k-topology. Arens gave the following useful result:

Theorem 4.1 If Y is metrizable by a metric d, then C(X , Y ) with the compact-
open topology is metrizable if and only if there exists a countable family K =
{K1, K2, . . .} of compact subsets of X such that X =

⋃∞
i=1 Ki and every compact

subset of X is covered by finitely many elements of K . It can be metrized by the
metric

m( f , g) =
∞
∑

i=1

min{1/2n,max{d( f (x), g(x)) : x ∈ Ki}}.

The metric m makes C(X , Y ) into a complete metric space, if and only if d makes
Y into a complete metric space.
�

From this we get that C(Rn,R) with the compact-open topology is a com-
pletely metrizable topological vector space. We simply take K to be the set
{[0, 1]n + z : z ∈ Zn}. What we are really interested in are, however, not just
continuous functions, but differentiable functions. There exists a natural map-
ping indentifiying C r(Rn,R) with a subset of C(Rn, J r(Rn,R)) (see [16] for
the details). When we endow the latter set with the compact-open topology
we can endow C r(Rn,R) with the subspace topology13. We call the result-
ing topology the C k compact-open topology on C r(Rn,R). Now we have the
following useful result due to Peter W. Michor (from [24]):

Theorem 4.2 The C k compact-open topology on C r(Rn,R) is completely metriz-
able if k ≤ r. It makes C r(Rn,R) into a topologial vector space.
�

A sequence of functions ( fn) in C r(Rn,R) converges to f in this topology if and
only if all derivatives up to the r th and converge in the sup-metric14 on every
compact set to the corresponding derivative of f and fn on every compact set
to f . We will use this topology when looking at prevalent and shy subsets of
C r(Rn,R).

13What we really do is using an embedding of C r(Rn,R) in C(Rn, J r(Rn,R)). We endow
the image of the embedding with the subspace topology and give C r(Rn,R) the topology that
makes the embedding a homeomorphism with its image.

14The sup-metric for bounded functions on some set S is defined by the rule d( f , g) =
sup{| f (x)− g(x)| : x ∈ S}. Continuous, real-valued functions on compact sets are bounded,
so we can apply the definition.
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Another topology is widely used in the area this thesis is concerned with,
the Whitney topology. We can construct it in a similar way. We start with
another topology:

Definition 4.2 Let X , Y be topological spaces. The wholly open topology on
C(X , Y ) is generated by the basis

�

{ f ∈ C(X , Y ) : f (X )⊂ O} : O ⊂ Y with O open
	

.

This topology isn’t very nice, it’s not even Hausdorff. But the Whitney topol-
ogy is. The Whitney C k topology on C r(Rn,R) for k < ∞ is constructed in
exactly the same way as we have constructed the C k compact-open topology
by replacing the compact-open topology by the wholly open topology (see
[24]). We define the Whitney C∞ topology or simply Whitney topology as the
topology having the union of all Whitney C k topologies with k < ∞ as a ba-
sis. The Whitney C k topologies on C r(Rn,R) are Hausdorff and have actually
much more open sets than the compact-open C k topologies. The Whitney C k

topologies are not metrizable, which makes it useless for studying prevalent
and shy properties. A sequence of functions ( fn) in C r(Rn,R) converges to f
in the Whitney topology if and only if there exists a compact set K so that all
r + 1 first derivatives of ( fn) converge in the sup-metric to the corresponding
derivative of f on K and all but finitely many elements of ( fn) equal f out-
side of K . This implies that C∞(Rn,R) is not a topological vector space. For
example in C∞(R,R) the sequence of functions defined by fn(x) = x/n does
not converge to 0 although we have (1/n) f converging to 0 for every function
f in a topological vector space. The reason that the Whitney topology is still
very popular is that C∞(Rn,R) with the Whitney topology is a Baire space. So
one has lots of open sets but it is still relatively easy to be dense. This is nice
for topological genericity results.

Now we are ready to give theorems to the effect that a function usually
intersects a manifold transversally. The classical transversality result is the
Thom transversality theorem. Here’s a slightly weaker version sufficient for
our purposes:

Theorem 4.3 Let Z ⊂ Rn be a smooth manifold, and 1 ≤ r ≤ ∞. Then the set
of functions in C r(Rm,Rn) that are transversal to Z is residual and hence dense
in the space C r(Rm,Rn) endowed with the Whitney topology or the compact-open
topology. Furthermore,if Z is closed, then the set of functions in C r(Rm,Rn) that
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are transversal to Z is open in the space C r(Rm,Rn) endowed with the Whitney
topology.
�

The proof can be found in [16]. We will also make use of the following preva-
lent version of the Thom transversality theorem due to Hunt, Sauer and Yorke:

Theorem 4.4 Let Z ⊂ Rm be a C r manifold of codimension c, with r >max{n−
c, 0}. For max{n− c, 0} < k ≤ ∞, a prevalent set of functions in C k(Rn,Rm) is
transversal to Z.
�

We don’t give the proof here, but note that it relies completely on a probe.
For this reason, the result is independent of the specific topology employed,
as long as it makes the space into a completely metrizable topological vector
space.

5 Basic Concepts from Social Choice Theory

This section introduces some basic notions used later on15. In the following,
we will assume that there is a finite set I of agents, N in number, whose mem-
bers have to make a collective choice from a set X of alternatives. Nonempty
subsets of I are coalitions. Each agent i has a preference ordering �i on X
that is represented by an utility function ui : X → R. When we specify a utility
function for every agent, we have a profile u : I → RX . There is a set of admis-
sible profiles U ⊂ RX I . We will assume that all profiles we are talking about
lie in such a set U .

An aggregation rule f : U → 2X×X associates an asymmetric relation ≺
on X , the social ordering, to every utility profile such that the ordering of two
alternatives only depends on how each agent orders the two alternatives. An
aggregation rule satisfies what is commonly called independence of irrelevant
alternatives, the social ordering of two alternatives depends only on how the
individuals in a profile rank the two alternatives.

The core of an aggregation rule f under a profile u is the set of elements
in X that are maximal under the social ordering. An alternative is in the core
if and only if no alternative is socially preferred.

15The material of this section can be found in [5] and [36].
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Given an aggregation rule f and a profile u there is a set of decisive coali-
tions D( f , u) ⊂ 2I such that D ∈ D( f , u) if and only if a ≺ b holds whenever
a ≺i b holds for all i ∈ D for any alternatives a, b. The intersection of all
decisive coalitions for a utility profile u,

⋂

D∈D( f ,u) D, is called the collegium of
f under u. The collegium of f can be interpreted as the set of voters who can
veto every policy change under f . An aggregation rule f is non-collegial if the
collegium is empty for all u ∈ U . Given a nonempty family D ⊂ 2I such that
C ∈ D implies I−C /∈ D and such that every superset of a set in D is also in D,
we can define a aggregation rule fD with decisive coalitions D for all u ∈ U
such that for any alternatives a, b we have a ≺ b whenever a ≺i b for all i in
an element of D. An aggregation rule f is simple if f = fD( f ,u) for all u.

For any r ∈ R, r ≥ 0 let [r] be the largest natural number not larger than
r. A q-rule is defined by the set of decisive coalitions D = {C ⊂ I :| C |≥ q}
for some q ≥ [N/2+ 1]. It is clearly simple and is non-collegial if and only
if q ≤ N − 1. Unanimity rule is the q-rule with q = N and majority rule is the
q-rule with q = [N/2+ 1].

An alternative a is (weakly) Pareto optimal for coalition D if there is no
alternative b that is strictly preferred to a for all members of D. If we say a is
Pareto optimal without mentioning for which coalition, it is understood that
we mean the grand coalition I . If an alternative a is in the core, then a is
Pareto optimal for all decisive coalitions. If a rule is simple, then this actually
characterizes the core.

The following simple lemma will be useful later on. It is implicit in [6]:

Lemma 5.1 Given an profile u, the core either exists for the (N − 1)-rule or it
exists for no non-collegial aggregation rule.

Proof:
Let D( f , u) be the set of decisive coalitions for a non-collegial aggregation

rule f under profile u and suppose there is no core for the (N − 1)-rule. Since
f is non-collegial there exists a coalition not containing i for every i ∈ I . So
I−{i} ∈ D( f , u) for every i ∈ I . So every coalition with at least N−1 members
is decisive. But no alternative is accepted by all such coalitions.
�
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6 Instability in Voting: Euclidean Preferences

We first prove an instability theorem for the special parametric case of Eu-
clidean preferences, in which each voter i has a favorite alternative, her bliss
point bi ∈ X = Rn, and wants the chosen alternative to be as close as possible
to bi in Euclidean distance, so that her preferences can be represented by a
utility function that gives utility −‖x − bi‖ for alternative x . The approach
will be instructive for what we are doing when working with general smooth
utility functions. Since utility functions depend only on the bliss points, we
can do with a finite dimensional parameter space and full Lebesgue measure
as our notion of genericity. Euclidean preferences have been introduced by
Otto Davis and Melvin Hinich in 1966 in [10] There are some problems with
Euclidean preferences. Jeffrey Milyo for example has shown that standard eco-
nomic preferenes over two public goods cannot be represented by Euclidean
preferences in [25].

Theorem 6.1 Let C ⊂ Rn be a nonempty, closed, covex set and x /∈ C. Then
there is a point y ∈ C such that ‖y − z‖ ≤ ‖x − z‖ for all z ∈ C.

Proof:
Let y be the unique point in C closest to x . Without loss of generality, we

can assume C to be a closed halfspace bounded by a hyperplane H containing
y , so that y is still closest to x in this halfspace. By the projection theorem,
(x − y) is normal to H. Now let z be any point in C and y1 be the projection
of z on H. The vectors (y − y1) and (y1 − z) are normal to each other, so by
the Pythagorean theorem ‖y − z‖ =

p

‖y − y1‖2+ ‖y1− z‖2. Now let y2 be
the projection of z on H + (x − y). Again, since (x − y2) and (y2 − z) are
normal to each other, we have ‖x − z‖ =

p

‖x − y2‖2+ ‖y2− z‖2. Now since
H and H + (x − y) are parallel, we have (x − y2) = (y − y1) and ‖y2 − z‖ =
‖y2− y1‖+ ‖y1− z‖> ‖y1− z‖.
�

The following corollary is common knowledge in the literature:

Corollary 6.1 If an alternative x is Pareto optimal for coalition L, then x is in
con{bi : i ∈ L}.

Proof:
Suppose X /∈ con{bi : i ∈ L}. By Theorem 6.1 there is a point y in con{bi :

i ∈ L} closer to every point in con{bi : i ∈ L} than x , especially closer to
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Figure 3: Theorem 6.1 illustrated.

{bi : i ∈ L}. So all members of L prefer y to x and x cannot be Pareto optimal
for L.
�

This implies that for simple rules with D being the set of decisive coalitions,
the core is a subset16 of

⋂

C∈D

con{bi : i ∈ D} ⊂
⋂

C∈D

aff{bi : i ∈ D}.

So if X = R2 and there are three voters, the majority rule core will be empty
if the bliss points are not lying on a line. Generalizing this example leads to a
generic core-emptyness theorem.

Lemma 6.1 Take N , n ∈ N with n 6= N and let π1, . . . ,πN be projections, where
π j projects RnN to the jth Rn. For almost every point p ∈ RnN it is true that any
n points in U = {πi(p) : 1≤ i ≤ N} are affinely independent.

Proof:
It clearly suffices to show that they are linearly independent. Take S to

be any subset of {1, . . . , N} with n elements. Now RnS has rank n almost
everywhere in RnS, a space of n×n matrices, because according to Proposition

16Actually, the core equals
⋂

C∈D con{bi : i ∈ D} (see [33]), but we are only interested in
core-emptiness results here and make no use of the full equality.



6 INSTABILITY IN VOTING: EUCLIDEAN PREFERENCES 23

2 in [20], all subsets of lower rank n × n matrices are lower dimensional
manifolds which have measure zero according to Lemma 1.5 in [13]. Let S
be the set of n-element subsets of {1, . . . , N}, and RS be the set of non-full
rank matrices in RnS for all S ∈ S . So for all S ∈ S we have RS ×RNn−n has
measure zero, by Fubinis theorem (see for example [31]). Now S has finitely
many elements, so

⋃

S∈S RS ×RNn−n has measure zero.
�

Theorem 6.2 Suppose X is Rn. For almost all profiles, the core of the q-rule
with q ≤ n< N is empty.

Proof:
There are at least N pivotal coalitions. The affine span of the blisspoints in

these N coalitions has dimension at most q−1< n. Without loss of generality,
assume that there are N such coalitions and that the affine span of the bliss
points of its members, denoted by Ai has dimension n− 1. Now for any m+ 1
such flats, the dimension of

⋂m
i=1 Ai ∩ Am+1 is at most dim(

⋂m
i=1 Ai) − 1, by

Lemma 6.1. So dim(
⋂N

i=1 Ai) ≤ (n − 1) − (N − 1) < 0. It follows that this
intersection is empty.
�

The intuition behin the theorem is straightforward. Intersecting more than
n flats of dimension n−1 leads to an empty intersection, for every intersection
makes one lose one dimension. The intersection of two plane is a line that
intersected with a plane again is a point that has no intersection with the next
plane. That this works follows from the affine independence of the points.

Corollary 6.2 Suppose X is Rn and n= N−1. Then the core of any non-collegial
rule is empty for almost all profiles.

Proof:
From Theorem 6.2 we know that in this case, the core is generically empty

for the N − 1-rule. By Lemma 5.1, it is then empty for all non-collegial rules.
�

One can easily strengthen the theorem to allow any convex subset of Rn

with nonempty interior as the alternative space X .17 If one restricts inter-
sections to lie in a smaller set, they are certainly not becoming more likely.
Convexity is needed in order to get Lemma 6.1. In order to show that the

17This has been suggested by Egbert Dierker.
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blisspoints are almost always affinely independent, it suffices to note that
nonempty open subsets of Rn have positive Lebesgue measure and using the
fact that the boundary of a convex set has Lebesgue measure zero18.

The emptiness of the core has grave consequences in the model with Eu-
clidean preferences. Richard McKelvey has shown in [22] that the emptiness
of the core for simple majority voting implies that there exists a "path of im-
provement" in the social preference ordering between any two points of Rn.
So for any alternatives a and b there exists finitely many elements a1, . . . , an

such that a ≺ a1 ≺ . . . ≺ an ≺ b for the social preference ordering ≺. Maria
Tataru has generalized this result to hold for arbitrary q-rules in [40].

7 Instability in Voting: Smooth Preferences

In this section, we give a necessary condition for the core of a q-rule to be
empty and use it to show that the core is almost always empty. The condition
was initially derived by Richard McKelvey and Norman Schofield (in [23]),
who tried to show that core emptiness holds on a residual set in the Whitney
topology for certain dimensionality conditions. Their proof contained a mis-
take that was pointed out by Jeffrey Banks (in [6]) who also showed that the
correct, implied, dimensionality conditions are less tight. We will follow Banks
in this section. Giving a measure theoretic version of the result is a straight-
forward extension. Tighter conditions have been derived by Donald Saari (in
[33]). We will not give the (extremely lengthy) proof for his conditions19, but
they allow for stronger results on the generic non-emptiness of the core.

Theorem 7.1 If an alternative x is Pareto optimal for coalition L, then 0 is in
the semi-positive span of all gradient vectors at x of members of L.

Proof:
Suppose 0 is not in the semi-positive span of all gradient vectors at x of

members of L. Then 0 is not an element of Y = con{∇ui(x) : i ∈ L}. Since {0}
is convex and compact and Y convex and closed, we can apply the separating
hyperplane theorem and get a vector p ∈ Rn such that p · y > 0 for all y ∈ Y .
In particular, we have p ·∇ui(x)> 0 for all i ∈ L. Setting t p ≡ h we get by the

18See [19] for a proof of this fact.
19An exposition of the central ideas can be found in [35].
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0

∇u1(x)

∇u2(x)

p

Figure 4: Theorem 7.1 illustrated.

definition of the derivative for all i ∈ L

0< p · ∇ui(x) = p lim
h→0

ui(x + h)− ui(x)
h

= lim
t→0

ui(x + t p)− ui(x)
t

,

so a small move in the direction p is a Pareto improvement over x for members
of L.
�
This was first shown by Stephen Smale (in [38]). Geometrically, this means
that the utility gradients are not allowed to lie in an open cone. Any vector in
such a cone would be a direction of common improvement for all members of
the coalition. Under appropriate convexity conditions, the converse holds too.

The core is the set of all alternatives that are Pareto optimal for all decisive
coalitions. So if an alternative x is in the core, the set of utility gradients
is semi-positively dependent for every decisive coalition and hence linearly
dependent. Checking this for q-rules is relatively easy. So, given a q-rule, let
D be the set of all decisive coalitions and for each K ∈ D define

ΛK(u)≡ {x ∈ X : {∇ui(x) : i ∈ K} is linearly dependent}.

The core is a subset of Λ(u) ≡ ∩K∈DΛK(u). We want to show that Λ(u), and
hence the core, is empty for most utility profiles. For this we show that Λ(u)
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is a set of certain singularities of the Jacobian matrix

Ju(x) =









∇u1(x)
...

∇un(x)









Define Sp(u) to be the set of alternatives at which the Jacobian matrix has rank
p given the profile u. We have the following result:

Lemma 7.1 Λ(u) = ∪q−1
p=0Sp(u) holds for every q− rule.

Proof:
All decisive coalitions have at least q members, so any set of at least q

gradients in the profile is linearly dependent at an alternative x ∈ Λ(u). This
is the same as all sets of at least q rows of Ju(x) being linearly dependent. This
is the same as the rank of Ju(x) being at most q − 1 or x being in Sp(u) for
some p ≤ q− 1.
�

A Jacobian matrix Ju(x) can be interpreted as the value of the Jacobian
map20 Ju : Rn → RNn at x . Define Lp to be the subset of RNn whose elements,
interpreted as N × n-matrices, have rank p. Then

Sp(u) = J−1
u (Lp).

This means that x is in Sp(u) if the function Ju intersects Lp at x . According
to Proposition 2 in [20], Lp is a smooth manifold of codimension equal to
(n− p)(N − p)21.

Theorem 7.2 Suppose n > (N−q+1)(q−1)
(N−q)

and Ju is transversal to Lp for p =
0, . . . , q− 1. Then the core is empty.

Proof:
Since Lp has codimension (n − p)(N − p), the transversal intersection

J−1
u (Lp) = Sp is empty or has codimension (n−p)(N−p) and hence dimension

n− (n− p)(N − p). If n < (n− p)(N − p), the intersection has to be empty.
Now we are only interested in Sp(u) for p ≤ n, N , for no larger dimension can

20Ju(x) is simply the Fréchet differential of u at x .
21The proof is nontrivial. Levine shows that a certain point lies in Lp and that Lp is the orbit

of a group preserving rank and having differentiable orbits
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the rank be full. In that range (n− p)(N − p) is nonincreasing in p. By 7.1, we
have this to check for p = q− 1 in order to have an empty core. This gives us
the following equivalent inequalities

n< (n− q+ 1)(N − q+ 1)

n< n(N − q+ 1)− (q− 1)(N − q+ 1)

n− n(N − q+ 1)<−(q− 1)(N − q+ 1)

n(N − q+ 1)− n> (q− 1)(N − q+ 1)

n(N − q+ 1− 1)> (q− 1)(N − q+ 1)

n>
(N − q+ 1)(q− 1)

(N − q)
.

�
We are now ready for Banks main theorem:

Theorem 7.3 Suppose n> (N−q+1)(q−1)
(N−q)

and U is the set of C∞ functions on Rn.

Then the core is empty for an open dense subset of U N in the Whitney topology.

Proof:
By Theorem 7.2 and the Thom transversality theorem, the core is empty on

a residual and hence dense subset as the intersection of residual sets in a Baire
space. Now according to Proposition 1 in [20], we have cl(Lk) =

⋃k
j=0 L j.

Together, these results establish that the core fails to exist on a open dense
subset of U n in the Whitney topology.
�

We can easily give a prevalent version of Banks result:

Theorem 7.4 Suppose n> (N−q+1)(q−1)
(N−q)

and U is the set of C∞ functions on Rn.

Then the core is empty for a prevalent subset ofU N for any completely metrizable
(such as the compact-open topology) topology.

Proof:
Replace the Thom transversality theorem by its prevalent version.

�
Banks result is not the strongest result available. The sharpest results were

obtained by Donald Saari in [33]. Here’s the main result of Saari (slightly
simplified):
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Theorem 7.5 The core of a q−rule rule fails to exist in the Whitney topology for
residual set of utility profiles if n> 2q− N.
�

Moreover Saari shows that these results are as strong as possible. If n≤ 2q−N ,
there exists examples of nonempty open sets of preferences on which the core
exists. Since these examples are constructed with Euclidean preferencces, one
cannot get stronger results with the compact-open topology on utility pro-
files. The genericity proof is based on the jet-transversality theorem, a slightly
stronger version of the Thom transversality theorem we used. This result
works with prevalence as our notion of genericity, as shown in [17]. Saaris
proof is considerably more complicated, since his approach requires some case
distinctions. He’s working with normalized utility gradients, and analyses the
resulting patterns on the unit sphere. Since one cannot normalize the 0-vector,
he has to treat the case in which one voter may be infinitesimally satiated, so
called bliss core points independently of the non-bliss core points. A readable
overview of the central ideas of the proof can be found in [35].

We could strengthen our results by replacing the space of alternatives Rn

by some n-dimensional manifold. This allows us to use open sets, which may
be bounded, as spaces of alternatives, since unbounded sets of alternatives are
hard to interpret. If we want to strengthen the results to compact sets with
nonempty interior, we can can replace "residual" in Saaris theorem by "open".
When we want to apply prevalence methods in the case of compact sets with
nonempty interior, we have to work with so-called manifolds with boundary,
and the existing prevalence transversality theorems are not adopted for this
case. The complication is that for boundary points, utility gradients that point
outside the choice space are no hindrance to core existence.

8 Interpretation

So far we have shown that, generically, no alternative is undominated under
the ordering of a q-rule, given the preferences of the agents. In the first part
of this section we discuss what this implies for the desirability of certain ways
of social decision making and what boundaries this sets on normative criteria.
In the second part we discuss what the implications are for a positive theory
of political decision making.
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8.1 Normative Issues

The largest class of aggregation rules we have shown to have empty cores
generically are non-collegial aggregation rules. We discuss their normative
desirabilty and discuss alternative means of social decision making. There is
no apparent reason why the complicated structure of our choice space should
matter here, so we can discuss the major issues with examples with finitely
many alternatives and no particular algebraic or topological structure on them.
The normative content of non-collegial aggregation rule is basically this.

(i) The outcome of aggregation is an ordering of alternatives.

(ii) The preference ordering depends only on the preferences of the agents.

(iii) The nature of the alternatives does not matter.

(iv) The ranking of a pair of alternatives does not depend on how other
alternatives are ranked.

(v) Nobody can veto any change.

We will not spend much time discussing (ii) 22, (iii) and (v). There may
be reasons in which they do not seem reasonable. They ignore issues such
as rights or differences between altruistic or sadistic preferences. In many
contexts, these issues shouldn’t matter.

(i) is a little bit more controversial. An ordering is not really necessary, a
more general approach would be possible. Let X be some nonempty set and
define X = 2X/{;}. A choice function is a function C : X → 2X satisfying
C(X ) ⊂ X . We say that a choice function C is rationalizable by a relation
R⊂ X×X if C(X ) is the set of R-maximal elements of X for all X ∈ X . One can
show (see [1] for further information) that a choice function is rationalizable
if and only if for all X , X ′, X ′′ ∈ X :

(H) X ′ ⊂ X implies C(X ′)⊃ C(X )∩ X ′.

(C) X ′ ∪ X ′′ = X implies C(X ′)∩ C(X ′′)⊂ C(X ).
22An important class of ways of voting that violate this condition are systems of range voting,

the most important example being approval voting. In approval voting, each voter can either
approve or disapprove of each alternative. Alternatives are then ranked according to how
many voters approve of them.
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·

Figure 5: The ranking wheel.

Both conditions have a natural interpretation as some form of optimality. (H)
means that any alternative that is optimal in the larger set X will be chosen
in the smaller set X ′ when available. (C) says that a choice that is optimal
for both X ′ and X ′′ has to be optimal when there are no elements available
better than the ones in X ′ and X ′′. Both seem to be necessary conditions for
rational decision making, so we gain little by using this more general frame-
work. Ideally, we would actually like to have transitivity, but that’s not possible
with non-collegial aggregation rules. We can show this by giving a preference
profile in which the (N − 1)- rule has a cyclic outcome. Now a strict rela-
tion on a finite set allows for maximal elements on all non-empty subsets if
and only if is acyclic (the proof is straightforward and standard). So Lemma
5.1 implies then the existence of a cycle for every non-collegial aggregation
rule for this preference profile. We take N > 2 and X = {1, . . . , N}. We il-
lustrate the construction of our preference profile with a "ranking wheel", an
idea due to Donald Saari (for example [35]). The ranking wheel is shown in
Figure 5. One may think of the problem as a group voting for a representative,
which explains why voters and alternatives coincide. Voter 1 has preferences
1 � 2 � . . . � N , voter 2 has preferences 2 � 3 � . . . � N � 1 and so on. Each
voter i has preferences with alternative i on top, followed by all other alter-
natives ordered clockwise on the ranking wheel. Now for every alternative,
the alternative that is next counterclockwise is preferred by N − 1 voters. So
there’s a cycle in the social preference. Donald Saari has actually shown that
every intransitivity in every aggregation rule comes necessarily from a prefer-
ence profile in which a subset of voters has preferences from a ranking wheel
on some subset of alternatives (at least if all voters have linear preference or-
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derings). The proof of this fact uses a heavy dose of linear algebra and can be
found in [34].

Now we arrive naturally at point (iv). The reason why non-collegial ag-
gregation rules necessarily lead to intransitivities under some profile of pref-
erences is that the ranking of any pair of alternatives depends only on how
all voters rank that pair, and these are exactly the rules that are influenced by
"ranking wheel profiles". But let’s take a look at why one may want to have
"independence of irrelevant alternatives", as this property is usually called, in
the first place. Here is what Kenneth Arrow, who popularized the condition,
wrote in its defense when he introduced it (in [4]):

[S]uppose an election is held, with a certain number of candidates
in the field, each individual filing his list of preferences, and then
one of the candidates dies. Surely, the social choice should be
made by taking each of the individual’s preference lists, blotting
out completely the dead candidate’s name, and considering only
the orderings of the remaining names in going through the pro-
cedure of determining the winner. That is, the choice to be made
among the set of surviving candidates should be independent of
the preferences of individuals for the nonsurviving candidates. To
assume otherwise would be to make the result of the election de-
pendent on the obviously accidental circumstance of whether a
candidate died before or after the date of polling. Therefore, we
may require of our social welfare function that the choice made by
society from a given set of alternatives depend only on the order-
ings of individuals among those alternatives.

So is there any reason we should rely on the ranking of dead candidates?23

One reason is that ignoring dead candidates forces us not to ignore the rank-
ings of a group of people whose preferences come from the ranking wheel.
A large class of voting rules, so called positional rules, do ignore them. A
positional rule for a problem with n alternatives consists of a list of weights
w1, . . . , wn and the alternative ranked mth by an individual gets wm points
by that individual24. Alternatives are socially ranked according to how many

23State laws in Missouri allow dead people to be elected, which happened in the case of
Melvin Eugene Carnahan, who was elected posthumously to the Senate (Guardian, November
8. 2000).

24If there are ties, there are various ways of extending these rules, we’ll ignore this issue
here.



8 INTERPRETATION 32

points they got in total then. Since an ordering of numbers is always transi-
tive, the corresponding ranking is transitive. A profile from the ranking wheel
gives the same number of points to each alternative, so positional rules are
unaffected by the ranking wheel. Positional rules suffer usually from another
defect. If two voters have "opposite" preferences (the preference ordering of
one voter reverses the ordering of the others), their absense can still effect the
outcome. A rule that avoids this problem is the Borda count. For the Borda
count wi − wi−1 is the same for i = 2, . . . , n. The Borda count is the rule least
affected by subprofiles that ought to "cancel out" (see [34]). On the other
hand, it is very easy to vote strategically with the Borda count, so it is seldom
used in actual decision making.

8.2 Positive Issues

Apart from normative questions, it is worth asking what our results tell us
about positive political theory. Insofar as the results have been negative and
considering the absence of total political chaos, the results tell us mainly what
models shouldn’t be used.

The easiest model we can think of is a model of two-party competition.
Two political parties position themselves in the "issue space" Rn. If q voters
prefer the position of one party to the positon of the other party, the first party
wins. If no q voters prefer one party over the other, there is a draw. Each utility
profile for voters defines such a game and a generic core-emptiness result can
be interpreted as proving the non-existence of pure-strategy Nash equilibria
for generic games of this type.

Cycles in voting are usually giving rise to agenda manipulation. If there are
n alternatives to be voted on and the social preference has a cycle of full length
n, someone can set an agenda, an order in which alternatives are pairwise
eliminated as in a tennis competition, so that her preferred alternative comes
out on top. Since one cannot vote on all, uncountably many, alternatives,
this way of manipulating agendas will not work directly. But it would be
possible to make "amendments". But in practice, proposing several competing
amendments seems implausible. But if all voters can make amendments to
some decision, we can expect an outcome with little structure. Donald Saari
observed that amendments seem inevitable in the real world too:

It always seems to be the case. No matter how hard you might
work on a proposal, no matter how polished and complete the



8 INTERPRETATION 33

final product may be, when it is presented to a group for approval,
there always seems to be a majority who wants to "improve" it.
[35]

Since the concept of a core is originally from cooperative game theory,
one might try to use weaker solutions concepts from cooperative game the-
ory, such as the bargaining set. Interestingly, this route hasn’t been followed
much. Positive political science has come up with many special purpose solu-
tion concepts for spatial voting. Most of them are inspired by some notion of
strategic voting. Some of them work only with Euclidean preferences or in low
dimensions. See [37] for a recent survey. So far, there is no consensus on an
appropriate solution concept. For applied researchers, a solution concept has
not only to have nice characteristica, it should be computable from empirical
data.

All solution concepts are based on alternatives and preferences. But one
can also explain political stability by looking at additional factors. William
Riker argues in [30] that the instability results simply force us to take a closer
look at institutions again. I think he’s right on that.
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Abstract

This work surveys work on the core of voting rules when the issue space can
be identified with some finite dimensional Euclidean space. It turns out that
the core is almost always empty. Making this precise has proven to be mathe-
matically challenging. The most commonly used notion of "almost always" is
the topological notion of being residual. This notion is hard to interpret and
depends strongly on the topology one imposes on the space of profiles. We
show that the major results obtained this way can be reformulated using a
more natural notion of "almost always", the notion of prevalence. Prevalence
was introduced by Hunt, Sauer and Yorke in 1992 and is easily interpreted
in terms of random distortions to a system. These techniques matter only for
large classes of preferences and utility function. In the case in which prefer-
ences are Euclidean and can be specified by a point in issue space, things are
much easier. A new theorem on the generic emptiness of the core of majority
and some supermajority rules is obtained in that case. The theorem, albeit
weak, has an easy proof, drawing on intuitions from elementary highschool
geometry, and is instructive in how one can prove related results in the case
where profiles lie in an infinite-dimensional space.

Zusammenfassung

Diese Arbeit gibt eine Übersicht über verschiedene Arbeiten über den Kern
von Wahlregeln wenn der Alternativenraum Euklidisch ist. Der Kern existiert
fast nie und es gibt mathematisch genaue Formulierungen dieser Aussage. Es
wird argumentiert dass die Standardformulierung konzeptionell unbefriedi-
gend ist und gezeigt dass eine befriedigendere Formulierung möglich ist. Für
den Spezialfall, in dem Präferenzen durch den Abstand zu einem Idealpunkt
charakterisiert werden können, wird ein neuer Satz über die gewöhliche Leere
des Kerns gegeben, dessen Beweis intuitiv verständlich ist und instruktiv für
den Fall allgemeinerer Präferenzen.
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