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Kurzfassung

Wir untersuchen das Verhalten von Wasser in engen, unpolaren Poren,

deren geringer Durchmesser die Wassermoleküle zwingt, sich hintereinan-

der anzuordnen. Aufgrund dieser fast eindimensionalen räumlichen Ein-

schränkung der Moleküle zeigt sich neuartiges physikalisches Verhalten im

Vergleich zu Wasser in makroskopischen Volumina. Um diese Eigenschaften,

die unter anderem von der Länge der Pore abhängen, zu untersuchen, ent-

wickeln wir ein eindimensionales Dipol-Gittermodell, für welches wir drei

mathematisch äquivalente Darstellungen ableiten. Diese bilden die Grund-

lage für unsere theoretischen Überlegungen und ermöglichen es uns, Poren

von nanoskopischen bis makroskopischen Längen zu simulieren. Das Dipol-

modell, welches wir mit Resultaten von molekularen Simulationen para-

metrisieren, beschreibt die freie Energetik und die Struktur von Wasser in

Nanoporen quantitativ. Wir untersuchen das Füllverhalten von Kohlenstoff-

nanoröhren und die Ordnung der sich bildenden Wasserketten, in welchen die

Moleküle durch Wasserstoffbrücken miteinander verbunden sind. Es stellt

sich heraus, dass eine enge Kohlenstoffröhre in Kontakt mit einem Wasser-

bad bei Raumtemperatur und unter atmosphärischem Druck vollständig

mit einer praktisch ununterbrochenen Wasserkette gefüllt ist, die bis zu

einer makroskopischen Länge von ∼ 0.1 mm dipolar geordnet ist. Um die

Konsequenzen dieser Ordnungseigenschaften für das dielektrische Verhalten

zu untersuchen, erweitern wir das Gittermodell um die Kinetik von Orien-

tierungsdefekten und bestimmen die lineare Antwort von Wasserketten auf

ein zeitlich veränderliches elektrisches Feld in Richtung der Röhrenachse.

Die Ketten zeigen für alle Längen Debye-Relaxation, deren Ursache die Dif-

fusion von nahezu unkorrelierten Defekten ist. Aus diesem Verhalten leiten

wir einfache Ausdrücke für die statische Suszeptibilität und die Relaxations-

zeit für die Grenzfälle von kurzen, geordneten und langen, ungeordneten

Ketten ab. Diese Ausdrücke ermöglichen es, die Ordnungseigenschaften mit

Impedanzspektroskopie experimentell zu bestimmen und die grundlegenden

Größen von Wasser in Nanoröhren zu messen.





Abstract

We investigate the behavior of single-file water in narrow nanopores.

The quasi one-dimensional confinement changes the dynamical and struc-

tural properties of nanopore water compared to bulk water and new prop-

erties emerge. To explore these properties, which depend on the length

of the pore, we develop a one-dimensional dipole lattice model and derive

three mathematically equivalent representations. These pictures form the

basis of our theoretical considerations and allow the simulation of pores

from nanoscopic to macroscopic lengths. Parameterized with results from

atomically detailed simulations, this model reproduces the free energetics

and structure of nanopore water quantitatively. We investigate the filling

transition of carbon nanotubes and explore the order properties of hydro-

gen bonded chains of water molecules within the pore. We find that narrow

carbon nanotubes, which are in contact with a water bath at room tempera-

ture and atmospheric pressure, fill completely with an essentially continuous

chain of water molecules, that is predominately dipole ordered up to a tube

length of ∼ 0.1 mm. We explore the consequences of these order properties

for the dielectric behavior by determining the linear response of a single

chain of water molecules to a time-dependent electric field in direction of

the tube axis. To this end, we include the kinetics of orientational defects in

the dipole lattice model. At all chain lengths, nanopore water shows Debye

relaxation due to the diffusion of essentially uncorrelated defects. We derive

simple expressions for the static dielectric susceptibility and the relaxation

time in the limits of short, ordered and long, disordered chains and suggest

how dielectric loss spectroscopy can be used to determine the order proper-

ties and to measure the fundamental quantities that determine the behavior

of nanopore water.
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mich sehr herzlich bei meinen Kolleginnen und Kollegen für die anregende
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licher Institutionen nicht möglich gewesen. Ich danke dem Fonds zur Förder-



ung der wissenschaftlichen Forschung, dem Wissenschaftskolleg Computa-

tional Materials Science, der Universität Wien (Forschungsschwerpunkt Ma-

terials Science: Multiscale Simulations of Materials Properties and Processes

in Materials), der European Science Foundation (Molecular Simulation in

Biosystems and Material Science) und den National Institutes of Health der

USA für ihre Unterstützung.
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letzten Jahren sehr dankbar. Ich danke meinen Eltern Rosa und Walter,

die wohl den grundlegendsten Beitrag zu dieser Arbeit geleistet haben. Ich

danke Beatrix Aigner für ihre Unterstützung, für den Ausgleich und die
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1. Bernhard Reischl, Jürgen Köfinger, and Christoph Dellago

The statistics of electric field fluctuations in liquid water

Mol. Phys. in print (2009)
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Chapter 1

Introduction

Our day to day lives rely on the transport of fluids through pipes and tubes

with flows controlled by pumps and valves. Life itself depends on similar

flows of water through channels in plants and trees or of blood through

veins and arteries [1, 2]. Less obvious, but essential for all living beings is

the role of pores with diameters in the order of the size of molecules formed

by transmembrane proteins in biological cells. The physical properties of

fluids confined to such molecularly narrow pores no longer comply with our

every day experience with fluids in tubes of macroscopic diameters [3–5].

Transmembrane proteins control the transport of water, protons, and

ions [6]. Aquaporins, for example, are found in nearly all life forms and are

permeable for water molecules but not for protons [7]. Gramicidin A chan-

nels in phospholipid bilayer membranes are selective for monovalent cations

[8–10]. Other prominent examples for nanopores are the proton pumps cy-

tochrome c oxidase [11] and bacteriorhodopsin [12], and cytochrome P450

[13]. The diverse properties of these biological pores are essentially due to

their different structures. What these pores have in common is that they

are nonpolar or weakly polar and that they are filled with water at least

temporarily [14].

Carbon nanotubes lend themselves for the study and application of these

properties as they confine water in a relatively non-specific way to a nearly

cylindrical volume [15]. Molecular dynamics simulations of a short and

molecularly narrow carbon nanotube immersed in water at ambient condi-

tions showed that although hydrophobic, the tube is filled with a single-

file chain of hydrogen bonded molecules [16]. The filling with water of

carbon nanotubes with diameters in the nanometer range has been con-

firmed with neutron diffraction experiments [17] and transmission electron

microscopy [18]. Due to their smooth inner tube wall carbon nanotubes allow

1
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Figure 1.1: Snapshot of a molecular dynamics simulation of water in a car-

bon nanotube. The tube is completely filled with a single chain of hydrogen

bonded molecules, oriented in the same direction.

for high, nearly friction-less fluxes as observed in gas and water flow mea-

surements [16, 19, 20]. Additionally, these tubes can be functionalized with

charges to mimic the special properties of transmembrane proteins [21,22].

The chain of molecules that is formed within a short (6,6) type single-

wall carbon nanotube is orientationally and dipolarly ordered as each water

molecule donates a hydrogen bond to the molecule on the left and accepts

one from the right, or the other way round, as illustrated in Fig. 1.1 [16].

Flips of the chain occur via the diffusion of orientational defects that pre-

serve the number of hydrogen bonds and connect ordered domains of water

molecules of opposite direction [23].

Such water wires allow for fast proton transport via the so-called Grot-

thus mechanism [8,9,23]. A hydronium ion within a water wire donates two

hydrogen bonds to ordered domains of opposite direction. A proton donat-
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ing such a bond can hop along the bond to a next neighbor molecule, thus

forming a new hydronium ion, from which a different proton can hop to the

next molecule. Since no water molecules have to be displaced, the proton

mobility in a one-dimensional water wire exceeds that in bulk water by a

factor of 40 [23]. This is in agreement with observations of gramicidin A,

where the proton transport is faster than the transport of other cations [8,9].

The precondition for fast water-mediated proton transport is that the water

wire is orientationally and translationally ordered [23].

This leads to the seemingly simple but fundamental question as to what

tube length the translational and orientational order observed for short

tubes is maintained. Based on the statistical mechanics of one-dimensional

systems, one would expect this microscopic order to disappear on macro-

scopic length scales. In a single-file arrangement, dipole-dipole interactions

dominate the energetics, decaying as 1/r3 with distance r. For a true or-

der/disorder phase transition in the thermodynamic limit, that decay would

have to be slower than 1/r2 [24,25]. Thus, strictly speaking, long-range or-

der cannot exist in one-dimensional water chains, and defects destroying the

order are bound to occur at any finite temperature for a sufficiently large

system. But despite this exact result, valid in the thermodynamic limit,

water chains in narrow pores may support order to large distances.

To this end, we have developed a one-dimensional dipole lattice model

based on the insights of Dellago et al. in Ref. [23]. Parameterized against

detailed molecular simulations, it quantitatively captures the free energetics

of nanopore water, including particle number and defect number fluctuations

[26,27].

In this dipole lattice model molecules within ordered domains are repre-

sented by dipoles parallel to the tube axis and defects by orthogonal dipoles,

located on the sites of a one-dimensional lattice. We find two additional,

mathematically equivalent formulations of this dipole picture of the model.

In the segment picture the total energy depends on the interactions of dipole

ordered domains of water molecules. It is not only of practical use for com-

puter simulations, as it allows for an efficient implementation of the model,

it is also an important step in the derivation of the charge picture. In this

charge picture all long-range (in the sense of non-nearest neighbor) interac-

tions are given by Coulomb-like interactions of charges located at the ends

of dipole ordered domains. Defects are formed by pairs of charges of the

same magnitude and sign and interact approximately Coulombically with

each other and chain ends [23]. The charge picture is the physically most

appealing representation and allows for a very efficient calculation of the

total energy. The dipole lattice model in its different representations al-
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lows us to do highly efficient Monte Carlo simulations spanning huge length

scales (and in its kinetic extension also huge times scales) and builds the

framework for our theoretical considerations.

For small tube lengths we observe bistable behavior of the occupancy

number with similar free energies of the completely filled and the nearly

empty state [16,28]. Using the dipole lattice model we quantify this behavior

with respect to tube length and chemical potential and find that bistability

vanishes for tube lengths & 300 nm. Tubes longer than approximately 10

nm in contact with a water reservoir at atmospheric pressure and room

temperature are almost completely filled, forming a nearly contiguous chain

of water molecules. In the thermodynamic limit the filling transition occurs

at about 8.4% relative humidity and thus we expect strong capillary action.

At ambient conditions the chain remains dipolarly ordered up to a macro-

scopic tube length of ∼ 0.1 mm corresponding to about ∼ 105 molecules.

Only then, defects occur that destroy the orientational order and for tube

lengths of ∼ 1 cm the chain is completely disordered. Due to the low defect

density the order properties are well described by assuming uncorrelated de-

fects and defect pairs, which provides a connection to the one-dimensional

Ising model, allowing the analytic calculation of the canonical partition func-

tion for fixed total dipole moment.

To date, these order properties lack experimental verification. For this

reason, we investigate the dielectric response of water in nanopores and show

how the order properties can be probed with dielectric spectroscopy. Based

on the diffusive dynamics of orientational defects we extend the dipole lat-

tice model to study the kinetics of a single chain of water molecules. Using

this kinetic dipole lattice model, we are able to investigate the linear re-

sponse of single-file water to a periodically varying electric field in direction

of the tube axis, over huge length and time scales. We find that nanopore

water exhibits Debye behavior due to the diffusion of highly uncorrelated

defects. The dipole lattice model in the charge picture allows us to derive

simple expressions for the static susceptibility and the relaxation time in

the limits of small and large system sizes from which the defining proper-

ties of single-file water, like the excitation energy and diffusion constant of

orientational defects, might be deduced. In the thermodynamic limit, we

expect the dielectric susceptibility of a membrane of carbon nanotubes with

an experimentally feasible tube density of about 2.5×1011 cm−2 to be about

100 times larger than that of bulk water although the water density in the

membrane is more than 3000 times smaller than in bulk water.

Our findings strengthen and extend the important role of carbon nan-

otubes as promising building blocks for filter, desalination, and separation
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devices [5, 29–31], fuel cells [23,32,33], and sensing devices [34].

We are optimistic that with the current advances in the production of

carbon nanotubes, long, molecularly narrow, and pristine tubes will be avail-

able in the near future [20, 35]. Furthermore, other materials might serve

as containers for macroscopically ordered water, such as water-filled boron-

nitride tubes, which show very similar properties [36–39]. Another inter-

esting possibility to confine water in molecularly narrow pores are silanized

channels in silicon wafers [40].

The dipole lattice model is general and should be applicable to other

quasi-one dimensional systems with dipolar interactions, including polar flu-

ids other than water as well as magnetic nanoparticles and colloids [41–44].

It should also prove useful in studies of three-dimensionally packed arrays

of one-dimensional chains, such as those formed in membranes of parallel

nanochannels [26,29].

This work is organized as follows. In Chapter 2 we introduce the dipole

lattice model and derive the segment and charge picture. Based on the latter

we derive approximations that neglect Coulomb-like interactions and pro-

vide additional insight in the thermodynamic properties of nanopore water.

In Chapter 3 we parameterize and validate the dipole lattice model against

detailed molecular simulations and present simulation and analytical results

for the filling/emptying transition and the order properties of a completely

filled tube. We introduce the kinetic dipole lattice model in Chapter 4 and

present analytical, numerical, and simulation results for the linear dielec-

tric response of a chain to a time-dependent homogenous electric field in

direction of the tube axis.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Model

2.1 Introduction

Single-file water in narrow pores can be modelled using lattice models with

discrete degrees of freedom, due to the reduced mobility of the water mole-

cules in one-dimensional (1D) confinement. Such simplified models capture

the essential physics of diverse phenomena ranging from tube filling to pro-

tonic conduction and water diffusion [23, 28, 45–47]. Here, we introduce

such a one-dimensional lattice model, in which water molecules are repre-

sented as point dipoles oriented either parallel or orthogonal to the tube

axis [23,26]. In contrast to other lattice models, our dipole model quantita-

tively reproduces the structure of quasi one-dimensional water in the tube

interior including the formation of defects and their interactions. Moreover,

simulations of this model are computationally inexpensive, making studies

of large systems possible that would not be feasible otherwise.

We present a detailed derivation of our lattice model and its various,

mathematically equivalent representations. In this model, dipoles are ar-

ranged on a regular 1D-lattice and interact via 1/r3 dipole-dipole interac-

tions. This dipole picture can be simplified by grouping domains with equal

orientation into segments. In the resulting segment picture, the total energy

of the system is written as a sum of the internal energies of the segments and

their interactions, which are of the dipole-dipole type. As we shall see, this

segment picture is especially useful for the design of Monte Carlo moves that

satisfy the configurational constraints dictated by the model. Resummation

of the energy of the ordered segments finally leads to the charge picture, in

which the total energy is expressed as a sum of Coulomb-like interactions

of effective charges placed at the endpoints of the ordered segments. In

this physically appealing picture the Coulomb-like interactions account for

7
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all effective interactions of defects, chain ends, and protons. Because of its

reduced computational complexity, the charge representation permits simu-

lations of tubes of macroscopic length and investigations of the approach of

the thermodynamic limit.

The charge picture lends itself to approximations in which the long-range

interactions of the effective charges are neglected and which allow the inves-

tigation of the role of the Coulomb-like interactions. These approximations

have a low dimensional phase space, with three and four dimensions re-

spectively, for which we can derive analytical expressions for the density of

states.

Finally, we show how the dipole lattice model and its approximations

are efficiently implemented in a Monte Carlo simulation using non-local trial

moves.

2.2 One-dimensional dipole lattice model

Water in nanopores forms hydrogen bonded chains of molecules. Such a

chain is dipole ordered if all molecules accept a hydrogen bond from the

neighboring molecule on the left and donate a hydrogen bond to a molecule

on the right (or the other way round). This order is destroyed by ori-

entational defects. Note, however, that hydrogen bonding defects within

a contiguous chain preserve the total number of hydrogen bonds. Figure

2.1(a) shows a chain of water molecules that consists of three ordered seg-

ments connected by defect molecules. The segments consist of two molecules

each and are orientationally ordered. The D-defect connects two segments

pointing towards each other and an L-defect connects two segments pointing

away from each other. In contrast to molecules within ordered segments,

which donate a single hydrogen bond and accept a single hydrogen bond,

the D-defect molecule accepts two hydrogen bonds without donating any

and the L-defect donates two hydrogen bonds without accepting any. This

also means, that defects cannot be located at chain ends. Another config-

urational constraint is that defects can not be located next to each other,

because the corresponding molecular configurations are unstable and lead

to immediate recombination of the defects. Note, that the defect structures

shown in Fig. 2.1(a) are the most typical configurations, but others can

occur as well.

The free energetics of such a chain of water molecules are captured with

great accuracy by a one-dimensional dipole lattice model. Molecular sim-

ulations show that, due to the hydrogen bonds, the water molecules are

on average located on the sites of a one-dimensional lattice and that the
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Figure 2.1: 1D water wires in nanopores. (a) Chain configuration with a D-

defect and an L-defect, and the corresponding lattice model in the (b) dipole

representation, (c) the segment representation, and (d) the effective charge

representation. In the lattice model, sites are marked by filled circles, dipoles

are represented by short arrows, segments by long arrows, and effective

charges by circles with their sign at the center. (a) The D-defect molecule

accepts two hydrogen bonds from the two neighboring water molecules; in

contrast, the L-defect molecule donates two hydrogen bonds. (b) The next

neighbor dipoles of the defect sites point to the defect site for the D-defect

and away from it for the L-defect. (c) The configurational energy of the

water wire due to the dipoles is determined by the length, orientation, and

distance of segments. (d) In the effective charge representation, the seg-

ments are replaced by charges at the their ends with signs according to their

orientations. As a consequence, defects are formed by pairs of equal charges

which are positive for the D- and negative for the L-defect.

long-range interaction of water molecules in an ordered chain is given by

the dipole-dipole interaction. The magnitude of the dipoles is given by the

average of the component of the dipole moment along the tube axis of a

water molecule in an ordered chain. As a consequence, in the dipole model

an ordered segment consists of equally oriented dipoles parallel to the tube

axis, located on the site of a one-dimensional lattice [Fig. 2.1(b)]. The dipole

moments of defect molecules are on average perpendicular to the tube axis

and we only include their next-neighbor interactions.

On this basis, we can formulate an effective Hamiltonian with a reduced

number of degrees of freedom. This Hamiltonian describes the free energet-

ics of arbitrarily filled tubes that in general consist of ordered or disordered

hydrogen bonded chains of water molecules (or fragments), with gaps be-
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tween them.

Let us assume that our lattice has N sites. The lattice spacing is a and

the dipole moment p. A dipole located on site ν has a direction σν = 1 if it

points “up”, and σν = −1 if it points “down” the tube axis. The interaction

potential of two dipoles located on sites ν and µ separated by a distance

dνµ = |ν − µ|a 6= 0 is given by

φνµ = −ǫ
σνσµ

|ν − µ|3 . (2.1)

If a site ν carries a defect or if it is empty, we assign this site σν = 0. In these

cases Eq. (2.1) remains valid as φνµ = 0. Here, we introduced the energy

ǫ = 2p2/(4πε0a
3), where ε0 is the dielectric constant, setting the scale for

the dipole-dipole interaction. In the following, we use reduced units, i.e., ǫ

as unit for the energy, a as unit for the length, and p as unit for the dipole

moment.

2.2.1 Dipole picture

Molecular simulations show that the interaction energy of next neighbor

molecules, the so-called contact energy, is different from the dipole-dipole

interaction energy of next neighbors, which is given by φν,ν+1 = −1 for

σνσν+1 = 1. It will be useful to include the next neighbor dipole-dipole

interaction in the Hamiltonian and correct for it to get the right contact

energies. Let the configuration consist of n water molecules (occupied sites),

nc hydrogen bonded chains of molecules (fragments), and nd defects. We add

the contact energy Ec for each of the (n−nc) hydrogen bonds and subtract

the next neighbor dipole interaction for the (n − nc − 2nd) next neighbor

pairs of parallel dipoles. This leads to the following effective Hamiltonian

for water in nanopores

H =
N−1
∑

ν=1

N
∑

µ=ν+1

φνµ + (n − nc)(1 + Ec) − 2nd + ncSc , (2.2)

where the double sum extends over all pairs of sites. Sc is an entropic contri-

bution that accounts for the different contributions to the phase space vol-

ume of molecules at the chain ends and at defect sites compared to molecules

within the chain. These different contributions are related to the number of

dangling OH bonds (see Sec. 3.2). As we will see, this Hamiltonian is just

one of three equivalent descriptions of the system. We will refer to this way

of calculating the Hamiltonian as the dipole picture [see Fig. 2.1(b)], as we

sum over all dipole-dipole interactions.
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2.2.2 Segment picture

We can also formulate the Hamiltonian of Eq. (2.2) in terms of the ns =

nc + nd segments, numbered from left to right, leading to the so-called

segment picture [see Fig. 2.1(c)].

For this purpose, we need the dipolar internal energy of a segment, which

stems from the interaction of the dipoles within a segment, and the dipolar

interaction energy of two segments, which stems from the interaction of

dipoles belonging to two different segments. For the sake of brevity, we will

drop the term “dipolar” and speak only of internal and interaction energies

of segments in the following.

The beginning of the segment with index i is given by its coordinate xi

and its length is denoted by li. The coordinates of the dipoles of segment i

are given by xi + n − 1/2 with 1 ≤ n ≤ li. As all dipoles within a segment

i have the same direction, i.e., σν = si for all dipoles within the segment i,

we assign each segment a direction si = ±1. The internal energy E(li) of a

segment i is given by the sum over all pair interactions of dipoles ν within

the segment, i.e. ,

E(li) = −
li−1
∑

ν=1

li
∑

µ=ν+1

1

|µ − ν|3 . (2.3)

The interaction energy I(li, lj , sisj,∆lij) ≡ Iij of segments i and j, with

i < j, is defined as

Iij = −sisj

li
∑

ν=1

lj
∑

µ=1

1

(µ − ν + ∆lij + li)3
, (2.4)

with the size of the gap between the two segments given by ∆lij = xj −
(xi + li) > 0.

In the segment picture we obtain for the Hamiltonian

H =

ns
∑

i=1

E(li) +

ns−1
∑

i=1

ns
∑

j=i+1

Iij +

+ (n − nc)(1 + Ec) − 2nd + ncSc . (2.5)

The calculation of the energy according to Eq. (2.5) in the segment

picture can be simplified considerably by deriving an explicit functional

form for the internal energy and expressing the interaction energies in terms

of the internal energy. First, we can avoid the double sum in the calculation

of the internal energy of Eq. (2.3) by counting all pairs of dipoles separated

by a certain distance. In a segment of length l, the interaction potential of
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dipoles separated by a distance j with 1 ≤ j < l appears (l− j) times. This

leads to

E(l) = −
l−1
∑

j=1

(l − j)j−3 =

=
l−1
∑

j=1

j−2 − l
l−1
∑

j=1

j−3 (2.6)

for Eq. (2.3).

For l → ∞, the two sums in Eq. (2.6) can be expressed in terms of

Riemann’s zeta function [48]

ζ(m) =
∞
∑

j=1

j−m . (2.7)

Accordingly, for long segments we can approximate the internal energy E(l)

as

El≫1(l) = ζ(2) − lζ(3) . (2.8)

The difference, Φ(l) = El≫1(l) − E(l) , between the above approximation

and the exact internal energy is given by

Φ(l) =
∞
∑

j=l

1

j2
− l

∞
∑

j=l

1

j3
(2.9)

and can be rewritten as

Φ(l) = Ψ′(l) +
l

2
Ψ′′(l) (2.10)

using the polygamma function [48]

Ψ(m)(l) = (−1)m+1m!

∞
∑

j=0

1

(l + j)m+1
. (2.11)

Hence, the internal energy of a segment of length l can be written as the

sum of a linear part, Eq. (2.8), and a non-linear part, Eq. (2.10), leading to

the exact expression

E(l) = ζ(2) − lζ(3) − Φ(l) . (2.12)

The next step towards a simpler energy calculation in the segment pic-

ture is to express the interaction energy of two segments i and j in terms

of internal energies (see Fig. 2.2). As the directions of the segments only
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Figure 2.2: Calculation of the interaction energy. The interaction energy I

of configuration (e), consisting of two chains of length li and lj, separated by

a distance, ∆lij , of four sites, can be calculated by subtracting the internal

energies E of configurations (b) and (c) from the internal energy of (a), and

adding the internal energy of the configuration (d).

determine the sign of their interaction energy, we assume, for the moment,

that the two segments of length li and lj have the same direction, as depicted

in Fig. 2.2 (e).

In the following we use the simple fact that the internal energy E(l) of

a chain of length l can be calculated from its parts of length l′ and l′′, with

l = l′ + l′′, as

E(l) = E(l′) + E(l′′) + I(l′, l′′, 1, 0) . (2.13)

For brevity we drop sij and ∆lij as arguments of I(li, lj , sij,∆ij) ≡ I(li, lj)

here. Using the equation above the internal energy of a segment with length

l = li + lj + ∆lij [Fig. 2.2 (a)] can be written as

E(l) = E(li) + E(lj) + E(∆lij) +

+ I(li, lj) + I(li,∆lij) + I(∆lij , lj) . (2.14)

To get the desired interaction energy, I(li, lj) on the right hand side of

Eq. (2.14), we subtract the internal energies of a segment of length li + ∆lij
and of a segment of length ∆lij + lj [Fig. 2.2 (b) and (c)] . These two

energies, given by

E(li + ∆lij) = E(li) + E(∆lij) + I(li,∆lij) (2.15)

and

E(∆lij + lj) = E(∆lij) + E(lj) + I(∆lij , lj) , (2.16)



14 CHAPTER 2. MODEL

include the internal energies of the two segments i and j, and the interaction

energies of the segment i and j with the segment of length ∆lij separating

them. They also include twice the internal energy E(∆lij) of the segment

in the middle. To correct for this double subtraction, we have to add this

energy once, Fig. 2.2 (d). As the linear terms of Eq. (2.12) cancel, we obtain

for the interaction energy

Iij = −sisj [Φ(li + lj + ∆lij) + Φ(∆lij)+

−Φ(li + ∆lij) − Φ(lj + ∆lij)] . (2.17)

Note that this expression for the interaction energy is also valid for contin-

uous gap distances ∆lij ≥ 0.

This result can also be obtained by simply inserting the expressions for

the interaction energies I(li,∆lij) and I(∆lij, lj) following from Eqs. (2.15)

and (2.16),

I(li,∆lij) = E(li + ∆lij) − E(li) − E(∆lij) (2.18)

I(∆lij , lj) = E(∆lij + lj) − E(∆lij) − E(lj) (2.19)

into Eq. (2.14).

Using Eqs. (2.12) and (2.17) we can write the total energy in the segment

picture, Eq. (2.5), as

H = −
ns−1
∑

i=1

ns
∑

j=i+1

sisj [Φ(li + lj + ∆lij) + Φ(∆lij)+

−Φ(li + ∆lij) − Φ(lj + ∆lij)] −
ns
∑

i=1

Φ(li) +

+ndcd + nccc + nc . (2.20)

This Hamiltonian contains terms linear in the number of defects nd, the

number of fragments nc, and the number of occupied sites n. The corre-

sponding coefficients cd, cc, and c, which depend on the contact energy Ec

and the entropic contribution Sc, are given by

cd = ζ(2) + ζ(3) − 2 , (2.21)

cc = ζ(2) − 1 − Ec + Sc , (2.22)

c = 1 + Ec − ζ(3) . (2.23)

2.2.3 Charge picture

We can use this expression for the Hamiltonian in the segment picture to

derive another equivalent description of the system, the so-called charge
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Figure 2.3: Comparison of the Coulomb interaction with the non-linear part

of the internal energy. Whereas the Coulomb interaction diverges for r → 0,

Φ(0) = ζ(2).

picture [see Fig. 2.1(d)]. The first few terms of the series expansion of the

non-linear part of the internal energy,

Φ(l) ≈ 1

2l
− 1

12

(

1

l

)3

+
1

20

(

1

l

)5

−O
[

(

1

l

)7
]

, (2.24)

show that for large chain lengths l the non-linear part is proportional to

1/l, i.e., Coulombic. Thus, we replace all segments by charges at their

beginnings and their ends according to their orientations. As each segment

carries two charges, the indices of the charges are given by 2i − 1 for the

charge at the beginning and 2i for the charge at the ends of segment i.

The charge at the beginning of segment i is q2i−1 = −si and the charge at

the end is q2i = si. The coordinates of these charges are z2i−1 = xi and

z2i = xi + li. The interaction potential of two charges qm and qn separated

by a distance zmn = |zn − zm| is given by Φc(zmn) = qmqnΦ(zmn). This

interaction is Coulombic in character for large distances and we can rewrite

this interaction as

ǫΦc(zmn) ≈ ǫ
qmqn

2zmn
=

1

4πε0

QmQn

zmna
, (2.25)

with the magnitude of the charges then given by |Qm| = p/a. Figure

2.3 shows a comparison of this Coulomb-like interaction, Φ(r), with the

Coulomb interaction 1/r. The main difference is that for a distance r → 0

the Coulomb-like interaction converges to a finite value, Φ(0) = ζ(2), whereas

the Coulomb interaction diverges to −∞. Note that for all possible distances

zmn ≥ 1 the difference is small.



16 CHAPTER 2. MODEL

Rearranging the Hamiltonian in the segment picture given by Eq. (2.20)

we obtain the Hamiltonian in the charge picture as

H =

2ns−1
∑

m=1

2ns
∑

n=m+1

qmqnΦ(zmn) +

+ndcd + nccc + nc . (2.26)

The sum in Eq. (2.26) includes the interaction of the charges belonging to

the same defect. Using Eq. (2.12) and E(1) = 0 we obtain Φ(1) = ζ(2) −
ζ(3) for this interaction, which occurs nd times in the above Hamiltonian.

Introducing the defect excitation energy, i.e., the energy (the free energy

in the molecular model) needed to introduce a single defect in an infinitely

long chain,

ED = cd − φ(1) = 2ζ(2) − 2 (2.27)

we can write the Hamiltonian in the charge picture as

H =

2ns−1
∑

m=1

2ns
∑

n=m+1

′

qmqnΦ(zmn) +

+ndED + nccc + nc . (2.28)

where the prime indicates that the sum does not include the interactions

between two charges belonging to the same defect. The coefficient cc corre-

sponds to the energy needed to break an infinitely long chain, and move the

resulting fragments infinitely far apart from each other. The coefficient c is

the energy required to add a single dipole to an infinitely long chain. The

Hamiltonian in the charge picture depends on the charge positions, zj , the

number of particles n, the number of chains nc, and the number of defects

nd. We note that these quantities are not sufficient to specify a configuration

of the dipole model unambiguously.

The Hamiltonian in the charge picture [Eq. (2.28)] highlights the Cou-

lomb-like effective interactions of defects and chain ends. L- and D- defects

attract each other Coulombically whereas defects of the same kind repel

each other. Defects next to a chain end are always attracted by the charge

at this end.

2.3 Approximate representations

If the distances between charges are large we should be able to neglect their

Coulomb-like interactions that decay as 1/r. Then, only the linear terms of
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Eq. (2.28) remain. The Hamiltonian in this simplest approximation, which

we refer to as the no-charge-approximation (NCA), is given by

H0 = nc + nccc + ndED . (2.29)

For small distances between effective charges, the Coulomb interaction

is strong and cannot be neglected. This is the case for short chains and

segments which carry charges at their ends. In particular, chains and seg-

ments of length one are represented by two charges of opposite sign which

are separated by one lattice constant only. At the next higher level of ap-

proximation, we add the interaction energy −Φ(1) = −ζ(2) + ζ(3) between

the charge pairs associated with each of the nI segments of length one. The

resulting Hamiltonian is

H1 = nc + nccc + ndED + nI[−ζ(2) + ζ(3)] . (2.30)

We will refer to this Hamiltonian as the singlet-charge-approximation (SCA),

since we include the interaction of charge pairs associated with single dipoles.

The NCA and SCA do not depend on the lengths, positions, or ori-

entations of the segments. States specified by the particle number n and

n0 = {nc, nd} for the NCA, and by n and n1 = {nc, nd, nI} for the SCA

are thus degenerate. Calculating the degeneracy of these states requires to

count the number of states for these approximations as a function of these

variables. For the NCA, the number of states, Γ0(N,n,n0), is given by

Γ0 = 2nc

(

n − nd − 1

ns − 1

)(

ns − 1

nc − 1

)(

N + 1 − n

nc

)

(2.31)

with the number of segments, ns = nc + nd, being a function of the de-

fect number and the chain number. For the SCA the number of states,

Γ1(N,n,n1), is given by

Γ1 = 2nc

(

n − 2ns + nc − 1

ns − nI − 1

)(

ns

nI

)(

ns − 1

nc − 1

)(

N + 1 − n

nc

)

(2.32)

for n > 0. If ns = nc = n then Γ0 = Γ1 = 2n
(N+1−n

n

)

. For a derivation of

these equations, see App. A.

2.4 Proton defects

Up to now we have only considered chains of intact water molecules. If

an excess proton is introduced into the system, it forms a hydronium ion

consisting of one oxygen atom and three hydrogen atoms. In a single-file
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chain, this hydronium ion donates two hydrogen bonds without accepting

any. Thus, structurally, the hydronium ion corresponds to an L-defect with

an additional proton [23]. In the charge picture, the effective interaction of

this protonated L-defect is given by the sum of the effective interaction of a

regular L-defect and the effective interaction of the proton with defects and

chain ends.

In Ref. [23] an approximate expression for this effective interaction was

derived. For completeness we show next how the effective interaction of an

additional proton located on an L-defect is included in the charge picture.

In the dipole model the interaction of a proton located on an L-defect at

site i and a dipole with direction σj = ±1 at site j is given by

Wij =
1

4πε0

σjpe(j − i)

a2|j − i|3 = ǫ′
σj(j − i)

|j − i|3 , (2.33)

where e is the elementary charge and ǫ′ = ǫae/(2p) the unit of the energy

for the rest of this subsection.

Following the same approach as in the derivation of the segment and

the charge picture, we calculate the interaction energy of a proton and an

ordered segment with l dipoles of relative orientation s = σj(j − i)/|j − i|
with respect to the position of the proton, i.e., s = 1 (s = −1) for dipoles

pointing away (towards) the proton. Let us assume the proton is located at

the site with index zero, the first dipole of the segment is located at j1, and

the last at j2 = j1 + l − 1. Using the polygamma function, we obtain

W (j1, l) =

j2
∑

j=j1

Wij = s

j2
∑

j=j1

j−2 =

= s

∞
∑

j=j1

j−2 − s

∞
∑

j=j2+1

j−2 =

= s
[

−Ψ′(j1) + Ψ′(j1 + l)
]

(2.34)

for the interaction energy of the proton with the segment. In the charge

picture, the charges are located at the beginnings and ends of segments, i.e.,

between dipoles, whereas the above expression depends on the positions of

the first and the last dipole of the segment. To be consistent with the charge

picture, we rewrite this interaction energy as a function of the distance

x = j1 − 1/2 from the proton to the beginning of the segment,

W (x, l) = s
[

−Ψ′(x + 1/2) + Ψ′(x + l + 1/2)
]

=

= s
[

Φ̄ (x) + Φ̄ (x + l)
]

, (2.35)
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where x + l is the end of the segment. The Coulomb-like interaction Φ̄ (x)

is given by

Φ̄(x) = Ψ′

(

x +
1

2

)

≈ 1

x
− 1

12

(

1

x

)3

+ O
(

x−5
)

. (2.36)

Thus, the interaction energy of a proton with the dipoles of a segment

is equal to a Coulomb-like interaction of the proton with charges at the

beginning and the end of the segment. For a protonated L-defect in an

infinitely long chain we obtain a proton energy of Ep = −2ζ(2), stemming

from the two charges next to the defect.

For large distances, the interaction energy of a hydronium ion with a

defect can be written as

ΦPL(z) =
1

4πε0

∓Q

az
(e − Q) , (2.37)

where Q = 2p/a is the magnitude of the total effective charge of a defect.

The plus sign is valid for the interaction with a D-defect and the minus

sign for that with an L-defect. Since the proton charge is larger than Q,

a hydronium ion is repelled by D-defects and attracted to L-defects, in

agreement with Ref. [23]. Also, the hydronium is repelled by the endpoints of

an otherwise ordered water chain. As a consequence, the preferred position

of an excess proton in an isolated water wire is at the chain center.

2.5 Monte Carlo simulation

Next, we examine the thermodynamic behavior of water in nanopores in con-

tact with a heat bath and a particle reservoir. Thus, we perform canonical

and grand-canonical Monte Carlo simulations of the dipole model.

For the Monte Carlo simulations of the dipole model, we describe con-

figurations in the segment picture and include gaps of unoccupied sites as

segments with s = 0. Thus, a configuration consists of occupied sections

(segments) and empty sections (gaps). (In the following we use the term

“segments” only for segments of chains and the term “section” for segments

of chains and empty gaps.) Between segments one finds either a defect or

an empty section. The boundary conditions are given by two empty gaps

at the beginning and the end of the lattice (see App. A). A configuration

is unambiguously defined by the beginning xi, the length li, and the value

of si for each section i. Defects are located between next neighbor sections

with s 6= 0. Including the empty end sections, there are n0 = nc +1 sections

with s = 0 corresponding to gaps.



20 CHAPTER 2. MODEL

With a configuration given by Ci = {{xj , lj , sj} : 1 ≤ j ≤ ns + n0} the

canonical partition function can be written as

ZN (β, n) =
∑

{Ci}

e−βH(Ci) . (2.38)

The grand canonical partition function is given by

ΞN (β, z) = 1 +

∞
∑

n=1

ZN (β, n)zn . (2.39)

The fugacity is defined as z = eβµ, where µ is the chemical potential and β =

1/(kBT ) the reciprocal temperature with kB being Boltzmann’s constant.

To enhance the sampling, we use non-local Monte Carlo moves. Monte

Carlo simulations with only local moves, in which individual dipoles are

flipped, are inefficient for large systems. Here, we apply efficient non-local

trial moves with asymmetric generation probabilities for which we have to

correct in the acceptance probability. These trial moves change the lengths

of sections and their orientations for the generation and recombination of

defects, for the displacement of defects and chains, and for the insertion and

deletion of particles. For details see App. B.1.

We also perform Monte Carlo simulations for the NCA and SCA for

which the canonical partition functions are given by

Z(i)
N (n) =

∑

{Cj}

e−βHi(n,ni) (2.40)

with i = 0 for the NCA and i = 1 for the SCA, and ni implicitly depending

on the configurations Cj. Using the degeneracies given by Eqs. (2.31) and

(2.32), Eq. (2.40) can be rewritten as

Z(i)
N (n) =

∑

ni

Γi(N,n,ni)e
−βHi(n,ni) , (2.41)

which permits us to formulate new effective Hamiltonians

H′
i = Hi − T ln Γi(N,n,ni) , (2.42)

with canonical partition functions given by

Z(i)
N (n) =

∑

ni

e−βH′

i(n,ni) . (2.43)

We can calculate these partition functions either numerically by direct sum-

mation or perform Monte Carlo simulations in the space of n0 = {nc, nd}



CHAPTER 2. MODEL 21

for the NCA and of n1 = {nc, nd, nI} for the SCA. The applied trial moves

simply increase or decrease the values of the variables of the Hamiltonian

within the limits of the phase space given in App. A.

To study the system behavior over a broad range of the chemical poten-

tial we use the Wang-Landau algorithm [49,50] with the particle number as

order parameter to find a bias function w(n) corresponding to the negative

free energy as a function of the particle number. We use this function for a

biased simulation [51] at the fugacity z, resulting in a flat histogram of the

particle number, with the Hamiltonian in the biased system given by

H ′ = H − Tw(n) ln z . (2.44)

The output are samples of the total energy, chain number, defect number,

number of particles, and total dipole moment, {E(i), n
(i)
c , n

(i)
d , n(i),D(i)}. By

unfolding the bias function w(n) and reweighting [51], we obtain estimates

for observables that are functions of the above quantities (see App. B.2).
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Chapter 3

Water in narrow carbon

nanotubes

3.1 Introduction

Equipped with the dipole lattice model derived in the last chapter, we now

study water in narrow carbon nanotubes from nanoscopic to macroscopic

tube lengths. We parameterize the model with results of detailed molecular

simulations and briefly discuss their physical meanings. With this set of

parameters we validate our model concerning the particle number and its

fluctuations, the free energy of defect generation, and the dipolar order

properties of short tubes.

A key factor for the unique properties of 1D-confined water is the nearly

perfect molecular order, both translationally and orientationally, with unin-

terrupted chains of water molecules whose dipoles collectively point either

“up” or “down” along the pores [16, 52]. Here, we show that dipolar order

persists for water chains in pores up to macroscopic lengths. We quan-

tify the statistics of translational and orientational defects in filled pores,

and the particle number fluctuations associated with the first-order like fill-

ing/emptying transition.

As we have seen in Chapter 2, the charge picture lends itself to approx-

imations in which the long-range interactions of the effective charges are

neglected and which allow the investigation of the role of the Coulomb-like

interactions. In these approximations the filling of the tube is reproduced

correctly, but the defect number at the filling transition is not. For small sys-

tem sizes, the particle number distribution function is bimodal with peaks at

low and high densities and is captured nicely by the approximations. How-

ever, we find that neglecting Coulomb-like interactions qualitatively alters

23
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the form of the low density peak. We quantify the bimodal behavior with

respect to the tube length and the chemical potential.

As we shall see, long and completely filled tubes are well described by

a system of uncorrelated defects and uncorrelated defect pairs. The latter

consist of an L- and a D-defect separated by a single molecule and they

essentially lead to a degeneracy of the disordered states with respect to

the ordered states. Exploiting the isomorphism of a system of uncorrelated

defects to the one-dimensional Ising model, we derive analytical results for

the free energy as a function of the total dipole moment, and find them in

good agreement with simulation results.

3.2 Parameterization and validation

The parameters of the dipole model are determined by matching its proper-

ties to those of a molecular model of water inside a pore. We perform fully-

atomistic Monte Carlo simulations of a (6,6)-type carbon nanotube [14,16],

filled with up to 100 molecules. We used the TIP3P potential [53] for the

water-water interactions, and the carbon-water potential as in Ref. [16].

To minimize boundary effects, the tubes are considerably longer than the

water chain. Moreover, the lattice calculations are performed for equiv-

alent free boundary conditions. The lattice spacing of the dipole model

is given by the average distance along the tube axis of neighboring wa-

ter molecules in a hydrogen bonded chain, a = 0.265 nm. The dipole

strength of the model is determined by the average dipole moment of water

molecules in an “up” orientation projected onto the tube axis, µ = 1.9975

Debye. Using these values for a and µ, we obtain an energy constant of

ǫ = 2µ2/(4πε0a
3) = 25.8236 kJ/mol, such that βǫ = 10.42 at T = 298 K.

And finally, the contact energy Ec = −20.8 kJ/mol is obtained as the aver-

age interaction energy of two neighboring water molecules.

To perform grand canonical simulations of the dipole model, we have to

determine the effective tube-water interaction. Since it couples to the par-

ticle number we can absorb it in the chemical potential. We also need the

entropic contribution which couples to the number of chains. We determine

both quantities by comparing the transfer free energy of the molecular and

the dipole model and tuning the fugacity and the entropic contribution to

obtain agreement between these two models. The transfer free energy, given

by βA(n) = − ln[P (n)/P (0)], where P (n) is the particle distribution func-

tion, is the free energy needed to put n water molecules in a tube of length L

at the inverse temperature β. We obtain for a tube of length L = 30a in con-

tact with a heat bath and a particle reservoir at ambient conditions, i.e. , at
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Figure 3.1: The transfer free energy as a function of the density for different

system sizes for the molecular model (solid lines) and the dipole model

(dashed lines). The excellent agreement renders the curves for the different

models nearly indistinguishable.

room temperature and atmospheric pressure, a fugacity z0 = 0.000327 and

an entropic contribution βSc = −3.96.

Figure 3.1 shows a comparison of the transfer free energy of the molecular

and the dipole model for system sizes N = 5, 10, 15, and N = 30 as a

function of the density ̺ = 〈n〉/N . Since the dipole model is a coarse-grained

description of the molecular model, all states in the molecular model with

an occupation number equal or larger than the number of sites contribute to

the completely filled state, i.e., to P (N). The agreement is excellent as the

curves for the molecular and the dipole model lie practically on top of each

other. We observe that for small sizes the system shows two minima, one

for the empty and one for the filled state. Thus, the particle distribution

function is bimodal, i.e., has two peaks (see Sec. 3.3.3). With increasing

system size the minimum corresponding to the filled state deepens and the

minimum corresponding to the empty state vanishes.

By reweighting the particle distribution functions corresponding to the

transfer free energies shown in Fig. 3.1, we obtain the adsorption isotherms

and the relative particle number fluctuations as a function of the relative

fugacity (Figs. 3.2 and 3.3). The relative fugacity is the actual fugacity

divided by the fugacity of a system in contact with a heat and particle

reservoir at room temperature and atmospheric pressure. For low fugacities

the relative fugacity is equal to the relative humidity. For larger system

sizes the density shown in Fig. 3.2 present a steeper increase at the filling
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Figure 3.2: The particle density as a function of the relative fugacity. The

solid lines are results from molecular simulations and the dashed lines are

results for the dipole model.

transition, which moves to smaller fugacities.

The relative variance, i.e., the variance of the particle number divided by

the average particle number, is a measure for the fluctuations of the particle

number. For macroscopic volumes, the relative variance is related to the

isothermal compressibility κT via (〈n2〉 − 〈n〉2)/〈n〉 = ρkBTκT, where ρ is

the particle density, kB Boltzmann’s constant, T the temperature, and angle

brackets indicate the canonical ensemble average. The relative variance

(Fig. 3.3) has a maximum at the filling transition. The fluctuations become

larger with increasing system size. The properties of the filling transition

for increasing system size are discussed in detail in the Sec. 3.3.2.

A similar argument can be used to justify the entropic contribution of

defect molecules. The L-defect molecule, which donates two hydrogen bonds,

is constrained more strongly than the D-defect, which accepts two hydrogen

bonds. A chain with a single defect consists either of an L-defect and two

end molecules that accept a single hydrogen bond or a D-defect with end

molecules that donate a single hydrogen bond. Thus, the more strongly

constrained L-defects always exist with end molecules that move more freely,

with the opposite holding for D-defects. As an approximation we assume

that the different contributions to the phase space volume of defect molecules

and end molecules compensate each other. This argument can be easily

extended for chains with more than one defect. As a consequence, we only

have to account for the larger freedom of the chain ends and do not treat
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Figure 3.3: Particle number fluctuations as a function of the relative fu-

gacity for different system sizes. The solid lines are results from molecular

simulations and the dashed lines are results for the dipole model.

the defect molecules explicitly. It therefore suffices to add the entropic

contribution Sc for each chain in the system.

The excellent agreement of the dipole model and the molecular model

for different system sizes supports the validity of the entropic contribution.

It accounts for the different contributions to the phase space volume of

water molecules according to the number of their dangling OH bonds. In

an ordered chain all molecules donate a single hydrogen bond except one at

one end. In contrast to all other molecules of the chain which have a single

dangling OH bond, this molecule has two. Thus, it has more freedom to

move and a higher contribution to the entropy of the chain than the other

molecules. If we generate an L-defect, which donates two hydrogen bonds

without accepting any, both molecules at the chain ends have two dangling

OH, thus conserving the number of dangling OH bonds. The situation

for the D-defect is similar and thus the number of dangling OH bonds is

conserved for any number of L- and D-defects within the chain. Only if

a hydrogen bond is broken/formed, the number of dangling OH bonds is

increased/decreased by one.

Since the entropic contribution accounts for the difference in the phase

space contributions of a dangling OH bond and one that donates a hydrogen

bond, we can obtain an estimate for the entropic contribution from simple

geometric considerations. We assume that an OH bond of a water molecule

within a segment that donates a hydrogen bond is restricted to a spherical

cap with an opening angle α. For a hydrogen bond of a water molecule at
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α 10◦ 20◦ 30◦ 40◦

∆S/kB 4.88 3.50 2.70 2.15

Table 3.1: Estimates for the entropic contribution.

the chain end that accepts a single bond, this cap is about half a sphere. The

ratio of these areas gives us an estimate for the difference of the contributions

to the entropy of these two water molecules. The surface area of a spherical

cap with opening angle α of a sphere with radius r is given by A = 2πr2(1−
cos α). The difference in the entropies between a dangling OH bond and a

hydrogen bonded OH bond is given by

∆S

kB
= ln

(

4πr2

A

)

= ln

(

2

1 − cos α

)

. (3.1)

The entropic contribution is an energy in our effective Hamiltonian and is

related to the entropy difference by βSc = −∆S/kB. Table 3.1 shows results

for different opening angles α which are indeed of the order of the entropic

contribution, βSc = −3.96.

Dipole ordering and defect creation

To verify the accuracy of the dipole model with respect to the free energies of

dipole ordering and defect creation we performed Monte Carlo simulations

of a completely filled tube for both the molecular system and the dipole

model and calculated free energy profiles as a function of the reduced total

dipole moment per site, F (D/N). Here, D = M/µ, where M is the total

dipole moment. The results of these calculations are depicted in Fig. 3.4 for

system sizes of N = 10, 20, 40, and 100 molecules. For a better comparison

of the discrete dipole model with the continuous molecular system we coarse

grained the probability distribution function of the dipole model using a bin

size of 2µ. This particular value corresponds to the change in the magnitude

of the total dipole moment when a defect hops from one site to the next.

As is evident from the free energy profiles shown in Fig. 3.4, the agreement

between the TIP3P system and the dipole model curves is excellent, both

qualitatively and quantitatively. Essentially, the only difference noticeable

in the plots is that, as expected, the dipole model lacks the small scale fluc-

tuations of D about the two dipole ordered states observed in the continuous

molecular system.

The insets of Fig. 3.4 show the free energy βF = − ln P (|D| < D0)

configurations in which the magnitude |D| of the total dipole moment is less
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Figure 3.4: Free energy F (D/N) as a function of the dipole moment per site

for system sizes N = 10, 20, 40, 100 (from top to bottom) of the molecular

system (solid lines) and the dipole model (dotted lines). The insets show

the free energy βF = − lnP (|D| < D0) of configurations with a total dipole

moment magnitude |D| < D0.
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Figure 3.5: Free energy for creating a single defect at the center of a water

chain. Shown is the free energy difference between configurations with a

defect at the center and configurations without a defect (ordered states) as

a function of the inverse system size 1/N . The squares are results of Monte

Carlo simulations using the TIP3P atomistic water model and the circles

are results of Monte Carlo simulations of the dipole model. Lines are linear

fits to the two data sets. The dipole model and the molecular system are

in excellent agreement. For large system sizes, i.e., for 1/N → 0, the free

energy ∆F converges to the defect excitation energy βED = β2[ζ(2) − 1]

with exactly the slope expected from the theory (see Tab. 3.2).

than D0. Since the probability of finding the total dipole moment within

such an interval is an integral over the corresponding probability density

function, P (|D| < D0) =
∫ D0

−D0
P (D)dD, this comparison of free energies is

unaffected by discretization. Again, excellent agreement is observed.

For the conditions and the system sizes studied above, states with D ≈ 0

have exactly one defect at the center of the water chain. Thus, the free

energies as a function of the dipole moment as shown in Fig. 3.4 can be

used to estimate the excitation energy of a single defect, ED. To do so, we

calculate the free energy difference, ∆F , between all ordered configurations

(all “up” and all “down”) and all configurations with a single defect at the

center (L or D defect). In the continuous molecular system, a single defect

at the center of the chain corresponds to all configurations with |D| < 1,

and the ordered states to all configurations with |D| > N − 2. Accordingly,
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the free energy difference, ∆F is then given by

β∆F = − ln
P (|D| < 1)

P (|D| > N − 2)
. (3.2)

In the dipole model, this free energy difference is equivalent to the differ-

ence ∆E in the configurational energies of the perfectly ordered configura-

tions and the configurations with a defect at the center. (There are exactly

two energetically equal ordered states and two energetically equal states

with a defect at the center). It follows from the total energy expressed in

the charge picture that

∆E = 2

[

Φ (N) − Φ

(

N − 1

2

)

− Φ

(

N + 1

2

)]

+ ED , (3.3)

where the defect excitation energy is given by ED = 2[ζ(2)− 1] and ζ(m) is

Riemann’s zeta-function. In the above equation, the term Φ(N) originates

from the interaction of the two charges located at the endpoints of the water

chain. The terms Φ([N − 1]/2) and Φ([N + 1]/2) stem from the interaction

of the two defect charges with the charges at the end points. Since the

long-range interaction converges rapidly to the Coulomb interaction, i.e.,

Φ(x) = 1/(2x) −O(x−3), the energy difference can be approximated by

∆E ≈ − 3

N
+ ED . (3.4)

This is a linear function of the inverse system size, 1/N , with a slope of

k = −3. In the limit of infinite system size, i.e., for 1/N → 0, the energy

difference converges to the defect excitation energy ED.

The free energy differences obtained from these calculations are shown

in Fig. 3.5 as a function of 1/N for the molecular system and the dipole

model. Also shown are linear fits to the data. To improve the statistical

accuracy of the free energies for the molecular system, we used the property

that the free energy curves are flat for D ≈ 0 (see Fig. 3.4) and estimate

the probability P (|D| < 1) as P (|D| < 1) ≈ P (|D| < N/10)/(N/10). The

results for both models are in excellent agreement with each other, and also

analytical TIP3P dipole model

βk -31.27 -31.21 -31.96

βED 13.44 13.43 13.46

Table 3.2: Analytical results and estimates from linear fits as shown in

Fig. 3.5 for the slope k and the defect excitation energy ED.
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Figure 3.6: Filling/emptying transition. (a) Adsorption isotherms: particle

density ρ = 〈n〉/N , as a function of the relative fugacity, z/z0, for different

system sizes. The filling transition occurs at about eight percent of the

fugacity at ambient conditions. The adsorption isotherms become steeper

with increasing system size. At N = 104 the adsorption isotherms have

reached their large system limit. (b) Relative variance of the particle number

fluctuations, 〈(∆n)2〉/〈n〉 = (〈n2〉 − 〈n〉2)/〈n〉, as a function of the relative

fugacity, z/z0, for different system sizes.

with the analytical prediction as shown in Tab. 3.2. In this table, numerical

results for the slope and the defect excitation energy derived from a linear

fit for both models are compared to the analytical result.

3.3 Tube filling/emptying

3.3.1 Overview

To probe the emptying/filling transition, we have determined the adsorption

isotherms (i.e., the average particle density) as a function of the fugacity z

relative to the fugacity at ambient conditions, z0, for different system sizes

[see Fig. 3.6(a)]. The transition from an empty to a full tube occurs in a nar-

row fugacity range around z/z0 ≈ 0.084, corresponding to ∼8.4 % relative

humidity at ambient conditions. The adsorption isotherm becomes steeper

with increasing system size but remains continuous even in the thermody-

namic limit, as is required by the impossibility of a true first-order phase

transition.
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Figure 3.7: Water-chain fragmentation. (a) Fragment density, ρc = 〈nc〉/N ,

as a function of the relative fugacity, z/z0, for different system sizes. The

average number of fragments 〈nc〉 has a maximum at the filling transition.

(b) Hydrogen bonding defect density, ρd = 〈nd〉/N , as a function of the

relative fugacity, z/z0, for different system sizes.

Corresponding behavior is observed in the relative variance of the particle

number, n, as shown in Fig. 3.6(b). For macroscopic volumes, the relative

particle number fluctuations are related to the isothermal compressibility κT

via (〈n2〉 − 〈n〉2)/〈n〉 = ρkBTκT, where ρ is the particle density and angle

brackets indicate the ensemble average. The relative variance is peaked

at the filling transition. Even though the peak height initially grows with

increasing system size, it eventually converges to a finite value. We find that

both the adsorption isotherms and the relative variance are nearly converged

to their thermodynamic limits for a system size of 104 sites.

We conclude that at ambient temperature and relative humidity >10 %

long pores are almost completely filled.

Water-Chain Fragmentation

As the water fugacity (relative humidity) is reduced and the tube begins to

empty, an interesting coupling between hydrogen bonding defect formation

and chain fragmentation is revealed. Both aspects are of considerable rele-

vance in practical applications of 1D-confined water chains. In particular,

for water-mediated proton transfer, e.g., in nanotube-based fuel-cell mem-

branes, dipolar order and continuity of the water chains are both essential.
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The formation and dynamics of hydrogen bonding defects in 1D water is

a major factor for the break-up of long ordered chains into shorter segments.

With the energetic cost of forming a defect at the end of a chain being lower

than in the middle, defects facilitate chain fragmentation, and vice versa.

Indeed, Figs. 3.7(a) and 3.7(b) show that the fragment and hydrogen bond-

ing defect densities closely mirror each other when plotted as a function of

the water fugacity. Here, fragments are defined as separate chains of hydro-

gen bonded molecules, or single molecules. We find that both the fragment

density and the defect density are peaked at the filling transition. The peak

in the fragment density reflects the entropic gain through fragmentation for

low particle densities. For fugacities z below the filling transition, the av-

erage fragment number decays linearly towards zero. At low fugacity, the

system behaves ideally with a particle density ρ ≈ 2z exp(−βSc), where Sc

is the entropic contribution. The fragment number is then approximately

equal to the number of particles, explaining the observed linear decay for

small z. Moreover, with fragments too short to carry a defect, the average

defect density ρd in Fig. 3.7(b) decays faster than linear with decreasing

fugacity.

In essence, it is the entropic fragmentation that prevents a true phase

transition in the thermodynamic limit [24] and destroys the dipolar order at

the filling transition.

3.3.2 Drying/filling transition

The charge picture of the dipole lattice model gives direct physical insight

into the microscopic properties of water in nanopores. The Coulomb-like

interactions lead to an attraction between L- and D-defects and also to an

attraction between a chain end and the defect next to it. So, the Coulomb

interaction has clearly an important influence on these microscopic proper-

ties of water in nanopores. The question arises, what is the influence of the

Coulomb-like interactions on the overall phase behavior? Or, in other words,

which aspects of the system behavior are captured by the approximations

that neglect Coulomb-like interactions (NCA and SCA)?

To clarify the role of the Coulomb-like interactions, we compare results

derived in the SCA with results of the full Hamiltonian for the filling tran-

sition. We characterize the system by the particle density, ρ = 〈n〉/N ,

(Fig. 3.8), the particle fluctuations (relative variance, Fig. 3.9), the chain

density ρc = 〈nc〉/N , i.e., the number of chains per site, (Fig. 3.10), and the

defect density ρd = 〈nd〉/N , i.e., the number of defects per site (Fig. 3.11),

as a function of the relative fugacity. The results for system sizes N=102,
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Figure 3.8: Particle density of (a) the full Hamiltonian and (b) the SCA.

Circles denote SCA results for N = 1010. The orange line shows results of

the NCA for N = 100.

103, 104, and 105 sites are obtained by reweighting of biased sampling sim-

ulation data. Additionally, we show in Figs. 3.8 and 3.9 results for the SCA

for N = 1010 from Monte Carlo simulations at the corresponding fugacity

values using the effective Hamiltonian of Eq. (2.42).

The adsorption isotherms (i.e., the average particle density) in Fig. 3.8

and the relative fluctuations of the particle number in Fig. 3.9 show that

the results for the SCA are in excellent agreement with the results for the

full Hamiltonian for the system sizes studied here. We find that both the

adsorption isotherms and the relative variance are nearly converged to their

thermodynamic limits for a system size of 104 sites which is supported by

the results for the SCA for N = 1010.

The adsorption isotherms become steeper with increasing system size

but the slope remains finite even in the thermodynamic limit. The relative

variance is peaked at the filling transition as shown in Fig. 3.9. Even though

the peak height initially grows with increasing system size, it eventually

converges to a finite value. This is in agreement with the impossibility of a

true first-order phase transition in one dimension for 1/r3 interactions [24].

Figures 3.8 and 3.9 also show results for the NCA for a system size

N = 100. The adsorption isotherms are in good agreement, but the relative
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Figure 3.9: Relative variance of the particle number of (a) the full Hamilto-

nian and (b) the SCA. Circles denote SCA results for N = 1010. The orange

line shows results of the NCA for N = 100.

variance decays too slowly for fugacities below the filling transition compared

to the results of the full Hamiltonian. The SCA reproduces the results of

the full Hamiltonian well, as the system at low fugacities consists mainly of

chains of length one, which are correctly described in the SCA.

Since the adsorption isotherms for the NCA and the full Hamiltonian

are in good agreement we use this approximation to obtain an estimate for

the chemical potential µ1/2, where the system is half full. Assuming that

no defects exists, and that the number of particles is much larger than the

number of chains, we obtain a Hamiltonian that only depends on the particle

number,

H′ = nc − µn , (3.5)

where we treat the chemical potential like a magnetic field in the Ising model

and include it in the Hamiltonian. The n particles do not interact with each

other but couple to the field c − µ. The canonical partition function of this

ideal lattice gas in an external field is given by Z = (1 + e−β(c−µ))N . The

density is obtained by 〈n〉 = −1/Z[∂Z/∂(βµ)] which gives ρ = 〈n〉/N =

e−β(c−µ)/(1 + e−β(c−µ)). If we demand that the system is half full, i.e. , the

density is ρ = 1/2, then the energetic cost of inserting a particle into the
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Figure 3.10: Chain density of (a) the full Hamiltonian and (b) the SCA.

Circles denote SCA results for N = 1010. The density of non-interacting

particles is shown as straight line.

system is equaled by the chemical potential, µ = c, which leads to

µ1/2 = 1 + Ec − ζ(3) . (3.6)

The corresponding relative fugacity z1/2/z0 ≈ 0.0841 is in good agreement

with the simulation result z1/2/z0 ≈ 0.084, corresponding to 8.4% relative

humidity. This result can also be derived for a lattice gas with dipole-dipole

interactions and exploiting the isomorphism to the Ising model (see App. C).

Observables depending on the particle number are well reproduced in

the SCA. We obtain insight into the structure of the system by looking at

the chain and defect density as functions of the chemical potential. We find

that at the filling transition both the chain density in Fig. 3.10 and the

defect density in Fig. 3.11 are peaked. The peak in the chain density is also

reproduced by the SCA although the curves are below the results of the full

Hamiltonian. Thus, the peak in the fragment density reflects the entropic

gain through fragmentation for low particle densities.

Figures 3.10 and 3.11 also show that for the full Hamiltonian the defect

density roughly mirrors the fragment density. The reason is, that on the one

hand a chain with a defect can lower its free energy by splitting the chain into

two at the defect site. On the other hand, the generation of defects costs less
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Figure 3.11: Defect density of (a) the full Hamiltonian and (b) the SCA.

Circles denote SCA results for N = 1010. Note the different scalings of the

y-axes.

energy at the ends of water chains and the number of ends is proportional to

the number of fragments. The latter is a consequence of the Coulomb-like

attraction between the charge at the chain end and charges forming a defect

next to this end. Thus, the results of the SCA only show a small peak in

the defect density as the interaction of the two charges on the endpoints of

segments of length one is included. These data do not reproduce the results

of the full Hamiltonian at the filling transition quantitatively.

For fugacities z below the filling transition, the average fragment num-

ber decays approximately linearly with z towards zero. At low fugacity, the

system behaves ideally. The grand-canonical partition function of ideal par-

ticles is given by Z =
∑

n

(N
n

)

(2ze−βSc)n which, for small fugacities, leads

to a density ρ ≈ 2z exp(−βSc), where Sc is the entropic correction. The

fragment number is then approximately equal to the number of particles,

explaining the observed linear decay for small z. Moreover, with fragments

too short to carry a defect, the average defect number decays even faster.

The increasing fragmentation while approaching the filling transition

from high fugacities leads to a stronger decay of the orientational order. As

a measure for the order we use the average of the squared total dipole mo-
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Figure 3.12: The average value of the squared total dipole moment divided

by the system size squared as a function of the relative fugacity for different

system sizes for the full Hamiltonian (solid lines) and for the SCA (dashed

lines).

ment divided by the squared system size, 〈D2〉/N2 as shown in Fig. 3.12 for

different system sizes as a function of the relative fugacity. This order pa-

rameter is close to unity if the system is orientationally and translationally

ordered and approaches zero for increasing disorder. Although the adsorp-

tion isotherm is steepest for N = 105 (see Fig. 3.8, where for z/z0 = 0.1

the density is one for N & 104), the order parameter starts to decrease at

fugacities where the tube is still almost completely filled. This is a direct

consequence of the peak in the chain density and the larger gaps for this

system size which leads to a weaker coupling of the chains. Such weakly

correlated chains can easily reorient and decrease the total dipole moment.

This conclusion is supported by results for the SCA (also shown in

Fig. 3.12) which agree nicely with results for the full Hamiltonian for small

system sizes of N = 100 and N = 1000 where fragmentation plays a minor

role. For larger system sizes we observe that the square of the total dipole

moment is lower for the SCA then for the full Hamiltonian. This indicates,

that for the full Hamiltonian chains are coupled to their next neighbors via

Coulomb-like interaction. Since the SCA is lacking these interactions, chains

are uncorrelated, leading to a lower expectation value for the total dipole

moment squared.
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3.3.3 Bistability

It has already been observed for small systems at ambient conditions that

the particle number distribution function is bimodal [16, 28], showing one

peak for the empty and one for the full tube. In the following we investigate

how this bistable behavior changes with system size and chemical potential

and discuss the influence of the Coulomb-like interactions.

Similarly to Maibaum and Chandler in Ref. [28], we start the discussion

with the Hamiltonian of a one-dimensional lattice gas in an external field h,

H = −J
N−1
∑

i=1

sisi+1 − h
N
∑

i=1

si , (3.7)

where the occupation number of site i is given by si ∈ {0, 1} and the coupling

constant of occupied sites by J > 0. This Hamiltonian can be written as

H = −(J + h)n + Jnc , (3.8)

where n is the total occupation number and nc the number of domains (or

chains) of particles. The above Hamiltonian is of the form

H = Kn + Inc (3.9)

where K is the coupling constant and I the interface energy. The latter is

the energy needed to break a chain into two and form two new interfaces

between occupied and empty sites. In case of the NCA of the dipole model,

the coupling constant is given by K = βc− ln z and the interface energy by

I = βcc − ln 2.

The particle number distribution of an ideal lattice gas (i.e., I = 0) is

given by the binomial distribution and therefore shows only a single peak.

Only with a positive interface energy bistability of a partly or completely

filled system and the empty system is observed. Then, the particle number

distribution function is given by

P (n) ∝ e−βKn
∑

nc

Γ(n, nc)e
−βncI (3.10)

where Γ(n, nc) is the number of states depending on the particle number and

the number of chains, and a functional form that depends on the boundary

conditions.

For periodic boundary conditions the number of states is given by [54]

Γ(n, nc) =

(

n − 1

nc − 1

)(

N − n

nc

)

+

(

N − n − 1

nc − 1

)(

n

nc

)

. (3.11)
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Figure 3.13: Particle number distributions for different values of the interface

energy for a system with free boundary conditions of size N = 100 close to

the filling transition (K = 0). For an interface energy I & 6 we observe a

second peak for the empty system (n = 0).

For a constant number of chains, this function is unimodal and sym-

metric with respect to the location of its maximum at n = N/2. Thus the

particle number distribution function is unimodal if one excludes the empty

state. Free, rather than periodic, boundary conditions introduce a small

asymmetry in the number of states, i.e.

Γ(n, nc) =

(

n − 1

nc − 1

)(

N − n + 1

nc

)

, (3.12)

which is not sufficient to change this behavior.

For a positive interface energy, all non-empty states are energetically

penalized according to their number of chains compared to the ideal lattice

gas. Thus, the weight of the empty state in the partition function increases

relative to the non-empty states and a second peak for n = 0 appears (see

Fig. 3.13).

In contrast to this, water in nanopores shows a low density peak at

densities larger than zero. The reason is that the Coulomb-like interaction

of charges of opposite sign at the ends of short ordered chains lowers the

internal energy of such chains compared to the energy they would have with

nearest-neighbor interactions only. This is already the case for the SCA,

where chains of length one, i.e., single dipoles for defect free systems, are

treated separately.

In the following, we quantify this bistable behavior for the SCA as a

function of the system size and the fugacity. We calculated the particle
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Figure 3.14: Bistability map. Density plot of the bistability measure M of

Eq. (3.18), which is close to one for a bistable system, for all investigated

system sizes (top) and an enlarged view for large systems (bottom). The

black solid lines are lines of constant density ρ = 0.01, 0.5, and 0.99 from

left to right.
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number distribution function for system sizes up to N = 1000 for a certain

value of the fugacity z. The particle number distribution function for the

SCA is given by

P (n) ∝ znZ(1)
N (n) , (3.13)

with the canonical partition function Z(1)
N (n) given by Eq. (2.41). We gen-

erated particle number distribution functions for fugacities in the range

z/z0 ∈ [0, 1] by reweighting.

Bimodal particle number distribution functions show a low-density peak

that is given by the binomial distribution of non-interacting particles,

PL(n) =
1

(1 + z2e−βSc)N

(

N

n

)

(2ze−βSc)n . (3.14)

Thus, we identify the low-density peak as

HL(n) = PL(n)
P (0)

PL(0)
, (3.15)

where the factor P (0)/PL(0) guarantees that the distribution function P (n)

and the low-density peak HL(n) coincide for the empty tube, i.e., for n = 0.

The second peak is a high-density peak, defined by HH(n) = P (n)−HL(n).

Next, we define a measure M that quantifies the extent of bistability. It

should be large if the areas below the two peaks, given by NH =
∑

n HH(n)

and NL =
∑

n HL(n) = 1 − NH, are of comparable size. Thus, we form the

product of the two areas,

A = 4NHNL . (3.16)

The factor 4 ensures that A = 1 if the two peaks have equal weight. If one

peak dominates the particle number distribution function, then A ≈ 0.

If the two peaks were due to coexistence at a first order phase transition,

changing the fugacity would only change the relative weight of the two peaks.

Here, the location of the peaks changes with the fugacity. Thus, our measure

should also include the distance between the two peaks. The positions of the

peaks are given by the mean values of the low-density and the high-density

peak and their distance R can be written as

R =
1

N

∑

n

n

[

HH(n)

NH
− HL(n)

NL

]

. (3.17)

Thus, we define our measure for bistability M as the product of A and

the distance R,

M = RA = 4RNHNL . (3.18)
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Figure 3.15: Particle distribution functions for N = 500 and z/z0 = 0.085

for the full Hamiltonian and in the SCA. The dashed lines show fits of the low

density peaks with binomial distributions of non-interacting single dipoles.

The dashed-dotted line is a fit of a binomial distribution of non-interacting

chains (with charges at their ends) up to a length of ten particles. The inset

shows the distribution functions for the full range of the particle number.

Figure 3.14 shows a density plot of this measure as a function of the

inverse system size and the chemical potential. For small systems, the bi-

modal structure of the particle number distribution function can be seen for

ambient conditions corresponding to µ = µ0, as has also been observed in

computer simulations [16]. For larger system sizes, the range of the chemical

potential where bimodality is observed becomes narrower and the bimodality

itself weaker. For N ≫ 1000 bimodality vanishes completely. Also shown

are the lines where the system is empty (average density ρ = 0.01), full

(ρ = 0.99), and half filled (ρ = 0.5). For 1/N → 0 the density is determined

by the corresponding value of the chemical potential in the thermodynamic

limit. In this case, the lines of constant density intersect the µ-axis verti-

cally. For the largest system sizes investigated here (N = 1000), the densities

ρ = 0.01 and ρ = 0.5 and the corresponding chemical potentials are close

to their values in the thermodynamic limit. This is, however, not the case

for ρ = 0.99 (see Fig. 3.8) as the corresponding line of constant density does

not seem to intersect the µ-axis at a right angle on the scale of Fig. 3.14.

The maximum of the bistability measure is always to the left, i.e., at lower

chemical potential, of the line of half filling. The bistability map for NCA

(not shown) is nearly identical to the map for SCA.

The situation for the full Hamiltonian is slightly different from that in

the SCA as exemplified in Fig. 3.15. The low-density peak is not perfectly
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Figure 3.16: Order probability P0(N) obtained from canonical Monte Carlo

simulations (circles) of a single chain as a function of the number of sites,

N (lower x-axis). Also shown is the order probability calculated accord-

ing to Eq. (3.19) (solid line). The labels on the upper x-axis indicate the

corresponding tube length.

reproduced by a binomial distribution of non-interacting, single dipoles. In-

stead, we have to take into account the contributions of longer chains, that

do not interact with each other, but whose energy is lowered (compared to

the SCA) due to the effective charges at their ends. The peak is well repro-

duced if we include chains with lengths up to ten sites. Thus, the form of

the low density peak can be explained by the lower energies of chains in the

full Hamiltonian compared to the SCA.

3.4 The completely filled tube

3.4.1 Macroscopic dipolar order

In completely filled tubes at ambient conditions, narrow gaps one lattice

spacing wide occur, but do not influence the ordering behavior of the chain,

which is purely determined by the occurrence of orientational defects. Thus,

we performed canonical Monte Carlo simulations of a full tube at ambient

conditions for system sizes up to 107 water molecules, which become feasible

in the charge representation. As a measure of the dipolar ordering of the

system, we define the probability P0(N) that all water dipoles point in the

same direction, for a system with N lattice sites. As shown in Fig. 3.16, the

order probability decays only slowly with increasing system size and reaches
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Figure 3.17: Free energy, F (D/N), as a function of the total dipole mo-

ment, D, per site, N , of a fully water-filled tube at ambient conditions. (a)

Comparison of F (D/N) from atomistic Monte Carlo simulations (dashed

line) and the dipole lattice model (solid line) for N = 40 water molecules.

(b) F (D/N) from the dipole lattice model for different system sizes. The

curves are shifted so that the free energy vanishes for the ordered states

(D/N = ±1). For N . 105 the free energy barrier between the ordered

states is flat, whereas for larger system sizes the curves exhibit a minimum

for vanishing total dipole moment.

a 50%-ordered state at a macroscopic tube length of ∼0.1 mm.

This macroscopic ordering can be explained with a simplified model of

uncorrelated defects. Let p = exp(−βED)/[1+exp(−βED)] be the probabil-

ity of an isolated defect within a long water chain, with ED the free energy
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of creating the defect, and β−1 = kBT , where kB is Boltzmann’s constant

and T is the absolute temperature. The probability P0(N) of finding no

defect in a fully occupied system of N sites can then be approximated as

P0(N) ≈ (1 − p)N = (1 + e−βED)−N . (3.19)

With the dipole model parameterized for water in (6,6) carbon nanotubes,we

find that ED ≈ 13.4 kBT . As shown in Fig. 3.16, the order probability

resulting from Eq. (3.19) agrees very well with the results of the canonical

Monte Carlo simulations up to tube lengths of 1 mm.

The transition from dipole-ordered to disordered systems at tube lengths

of > 0.1 mm is reflected in the free energy (or potential of mean force),

F (D/N), as a function of the dipole moment per site, D/N . Figure 3.17(a)

shows that the dipole lattice model accurately reproduces the free energy

profiles obtained from atomistic simulations, and thus the energetics of

dipole defect formation. Free energies obtained for the dipole model for large

system sizes are depicted in Fig. 3.17(b). For N < 106 water molecules, the

system is either in an “up” or “down” state, with sharp minima at the two

fully ordered states (D/N = ±1). For intermediate total dipole moments

the free energy profile is flat since different values of the total dipole moment

correspond to different positions of a single defect moving along the chain

at no free energetic cost. With increasing system size, the ordered states

become less stable since defect numbers increase. Eventually, for large sys-

tems, the dipole moment distributions become essentially Gaussian centered

at zero, with additional local maxima at D/N = ±1 corresponding to resid-

ual ordered states. The width of the Gaussian distributions (for the dipole

moment per site) decreases with increasing system size.

In summary, we find that at ambient conditions single-file water chains

remain ordered up to macroscopic lengths of almost millimeter size.

Remarks on the molecular reference system

We note that TIP3P water offers only an approximate representation of wa-

ter in nanotubes. The dipole moment entering the dipolar model appears

thus somewhat uncertain. However, earlier studies of water inside (6,6)-type

carbon nanotubes, in which both water and the nanotubes were treated using

quantum-mechanical density functional theory, produced a dipole moment

even higher than that of the classical TIP3P water model [15]. An expla-

nation for such highly polarized water is the strongly collective character of

the hydrogen bond interactions in dipole-oriented water chains. Similarly,

in small water clusters dipole moments of ∼2.7 Debye have been found [55],
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exceeding the 2.35 Debye of TIP3P water. For a larger dipole moment the

macroscopic ordering found in our simulations would be even more pro-

nounced.

A second concern is that the interactions of water with the nanotube are

somewhat uncertain, and small changes in those interactions can have large

effects on the equilibrium between filled and empty states [16]. Thermody-

namically, such changes are essentially equivalent to changes in the fugacity

(or vapor pressure) of the water bath and would only shift the filling curves

of Figs. 3.6 and 3.7 on the fugacity axis. The ordering properties of the

completely filled tube would not be affected by this changed fugacity.

3.4.2 Uncorrelated defects and defect pairs

The agreement of the results for the order probability for the full Hamilto-

nian and for uncorrelated defects in Fig. 3.16 is good, but the order prob-

ability is overestimated by the analytical result. As we shall see in the

following, this difference is due to the formation of defect pairs which con-

sist of an L-defect and a D-defect separated by a single molecule. We first

discuss a system of uncorrelated defects before taking into account uncor-

related defect pairs. We find that for large system sizes the approximation

of uncorrelated defects and defect pairs quantitatively reproduces the order

probability, the average defect number, and the free energy as a function of

the total dipole moment.

Uncorrelated defects

We assume that all Coulomb-like interactions are neglected and choose the

ordered states with all molecules pointing either “up” or “down” the tube

axis as reference point for the total energy. As a consequence, the total

energy of the system is given by the defect excitation energy times the

number of defects, ndED. The number of possible states as a function of

the system size and the number of defects, ΓN (nd), is determined by the

number of possibilities to insert nd defects into the chain of length N , which

is given by a binomial coefficient, for each of the two possible orientations

of the chain. Thus, we obtain

ΓN (nd) = 2

(

N − nd − 1

nd

)

. (3.20)
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In this approximation, the partition function of a single chain can be written

as

Z(β,N) =

nmax
d
∑

nd=0

ΓN (nd)e
−βEDnd , (3.21)

where nmax
d is the maximum number of defects given by

nmax
d (N) =

{

N
2 − 1 for N even
N−1

2 for N odd
. (3.22)

The Coulomb-like interactions between defects and chain ends can be

neglected if the distances between defects (and ends) are large for most

configurations in the canonical ensemble, i.e., if the defect number is small

compared to the number of sites. For such systems, we can approximate

N − nd − 1 by N in the factorial of Eq. (3.20) which leads to the following

expression for the canonical partition function of a one-dimensional gas of

uncorrelated, single defects,

Zs(β,N) = 2

nmax
d
∑

nd=0

(

N

nd

)

e−βEDnd . (3.23)

For a large defect excitation energy, this expression can be approximated by

Zs(β,N) ≈ 2(1 + e−βED)N . (3.24)

We can easily derive an approximation for the average defect number 〈nd〉
from Eq. (3.23),

〈nd〉 = − 1

Zs(β,N)

∂Zs(β,N)

∂(βED)
= N

e−βED

1 + e−βED

. (3.25)

The order probability P0(N), i.e., the probability that the system is free

of defects, is simply given by the number of ordered states divided by the

partition function,

P0(N) =
2

Zs(β,N)
= (1 + e−βED)−N , (3.26)

in agreement with Eq. (3.19).

In Fig. 3.18, we compare this approximation with simulation results for

the full Hamiltonian and for the NCA. In the latter, all Coulomb-like in-

teractions are neglected but the configurational constraints dictated by the

model are satisfied. We find excellent agreement between the NCA and the

analytical result for uncorrelated defects, where configurational constraints

are ignored. Both approximations overestimate the order probability com-

pared to the full Hamiltonian. This difference is due to the occurrence of

defect pairs, as we shall see in the following.
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Figure 3.18: The order probability as a function of the total system size.

Results for uncorrelated defects (dotted line) agree well with simulation

results of the NCA (crosses). Simulation results for the full Hamiltonian

(circles) are reproduced by the approximation of uncorrelated defects and

defect pairs (solid line).

Uncorrelated defect pairs

A defect pair is formed by an L- and a D-defect separated by a single

molecule. In contrast to single defects, which are formed at chain ends

and which are mobile, defect pairs are formed anywhere within ordered seg-

ments and are immobile. The reason for the latter is that a defect pair is

an energetically unstable configuration and a hop of this pair, which would

require the concerted motion of the two defects, is improbable. The gener-

ation of a defect pair within an ordered segment with orientation s changes

the total dipole moment by −4sµ independent of its position within the seg-

ment. Since in the charge picture the L- and and the D-defect are formed

by charges of the same magnitude but opposite sign, a defect pair is charge

neutral and forms an effective dipole. As a consequence, the interactions of

a defect pair with other effective charges decay fast with the distance, as we

shall see next.

The interaction energy of a defect pair with the next defect in the chain

can be written as

φ(x) = φLD(x − 1) − φLD(x + 1) (3.27)

where x is the distance between the defect and the center molecules of the

defect pair and φLD(x) is the interaction energy of an L- and a D-defect
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Figure 3.19: Double logarithmic plot of the negative interaction energy of

a defect pair and a single defect as a function of the distance. The ex-

act expression [Eq. (3.29), red], the approximation of Coulomb interactions

between the constituting charges [Eq. (3.30), green], and the dipole-charge

interaction [Eq. (3.33), blue] agree well with each other for distances larger

than ∼ 5 lattice spacings.

separated by a distance x,

φLD(x) = −[Φ(x − 1) + Φ(x + 1) + 2Φ(x)] , (3.28)

where Φ(x) is the Coulomb-like interaction energy given by Eq. (2.10). Thus,

we obtain

φ(x) = [Φ(x + 2) − Φ(x − 2)] + 2[Φ(x + 1) − Φ(x − 1)] , (3.29)

which can approximated as

φ(x) ≈ 1

2

[

1

x − 2
− 1

x + 2

]

+

[

1

x − 1
− 1

x + 1

]

, (3.30)

using Φ(x) ≈ 1/(2x). From the series expansion of the terms in brackets,

[

1

x − k
− 1

x + k

]

=
2k

x2 − k2
= (3.31)

= −2k

x2
− 2k3

x4
− 2k5

x6
−O

(

1

x8

)

, (3.32)

we estimate the defect-defect pair interaction potential as

φ(x) ≈ − 4

x2
. (3.33)
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With the unit of energy given by ǫ = 2µ2/(4πε0a
3), this potential describes

the interaction of a dipole of magnitude 4µ, representing the defect pair,

and a charge of magnitude 2µ/a, representing the single defect.

In Fig. 3.19 we compare the different expressions for the defect pair inter-

action energy with each other. For distances larger than approximately five

lattice spacings, the various expression for the defect-defect pair interaction

agree well with each other.

With the interaction energies of defects decaying rapidly with distance,

the excitation energy of a defect pair far from other effective charges is given

by the sum of twice the defect excitation energy ED and the interaction

energy of the two defects, Ip = Φ(1) + 2Φ(2) + Φ(3), as

Ep = 2ED + Ip , (3.34)

where Φ(x) is the Coulomb-like interaction. Due to the large interaction

energy of the two defects forming the defect pair, the defect pair excitation

energy is only about 15% larger than the excitation energy of a single defect.

For a water-filled carbon nanotube at ambient conditions (see Sec. 3.2), the

defect pair excitation energy is βEp ≈ 15.55, compared to βED ≈ 13.44 for

the excitation energy of a single defect.

Due to the high excitation energies the defect pair density will be low,

but cannot be neglected with respect to the density of single defects. For

large system sizes, we can safely assume that defect pairs are uncorrelated

and independent of single defects.

Thus, in the approximation of uncorrelated defects and defect pairs, the

partition function of a competely filled tube factorizes, i.e.,

Z(β,N) = Zs(β,N)Zp(β,N) =

= 2
[

(1 + e−βED)(1 + e−βEp)
]N

. (3.35)

Here, Zs(β,N) is the partition function of a system of uncorrelated defects

given by Eq. (3.24) and the partition function of a system of uncorrelated

defect pairs, Zp(β,N), is given by

Zp(β,N) =

nmax
p
∑

np=0

(

N

np

)

e−βEpnp ≈ (1 + e−βEp)N , (3.36)

where nmax
p is the maximum number of defect pairs. The order probability

becomes

P0(N) ≈ 2

Z(β,N)
=
[

(1 + e−βED)(1 + e−βEp)
]−N

, (3.37)
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Figure 3.20: The average defect number as a function of the number of sites.

Simulation results are depicted as circles and connected by dotted lines as

guide to the eye. The approximation of uncorrelated defects is shown as solid

red line, and the approximation also including uncorrelated defect pairs as

solid black line.

which now is in excellent agreement with simulation results for the full

Hamiltonian, as shown in Fig. 3.18. The average defect number is given

by

〈nd〉 =
1

Z(β,N)

[

∂Z(β,N)

∂(βED)
+ 2

∂Z(β,N)

∂(βEp)

]

, (3.38)

and we obtain

〈nd〉/N =
e−βED

1 + e−βED

+ 2
e−βEp

1 + e−βEp
. (3.39)

In Fig. 3.20 we compare this analytical expression for the average defect

number with simulation results for the full Hamiltonian. For small system

sizes the Coulomb-like interaction of the defects with chain ends cannot be

neglected. This leads to a higher defect density compared to a system of

uncorrelated defects. For longer tubes the results of the full Hamiltonian

agree well with the approximation of uncorrelated defects and defect pairs,

but the average defect number is underestimated by a system of uncorrelated

defects only.

In summary, for long tubes the order probability and the average defect

number are quantitatively reproduced by a system consisting of uncorrelated

defects and uncorrelated defect pairs. As we shall see in the following, for

uncorrelated, single defects we can establish a relation to the Ising model

with free boundary conditions, which allows us to derive an analytical ex-

pression for the free energy as a function of the total dipole moment.
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3.4.3 Total dipole moment

We derive an analytical expression for the partition function for fixed value

of the total dipole moment, and thus the dipole moment distribution and

free energy, of a system of uncorrelated defects. To this end, we count the

number of states as a function of the total dipole moment and the number

of defects.

Partition function for fixed total dipole moment

We treat ordered and disordered states separately and write the partition

function for fixed value of the total dipole moment as

ZN(D) =

{

1 for |D| = N

ZN (D) else.
(3.40)

For the derivation of ZN (D) we only consider disordered chains with

at least one single defect, where positively and negatively oriented segments

alternate. Numbering the chains from left to right, from 1 to nd+1, segments

with odd and even index are oriented in the opposite direction. For an

odd number of defects the number of segments with odd indices, given by

no = (nd + 1)/2, is equal to the number of segments with even indices,

ne = no. For an even defect number, the number of segments with odd

indices, given by no = (nd + 1)/2 , is larger by one than the number of

segments with even indices, i.e., ne = no − 1.

The total lengths of the odd indexed segments, lo, and the length of the

even indexed segments, le, are not independent and their sum is given by

le + lo = N − nd . (3.41)

The orientations of all segments are determined by the orientation of the

first segment, s. As a consequence, the total dipole moment can be written

as

sD = lo − le = 2lo − N + nd (3.42)

and depends on s, lo, and nd. The above equations reflect the symmetry

expressed by

lo(D,nd, s = ±1) = le(D,nd, s = ∓1) , (3.43)

which states that a specific value of the total dipole moment can be realized

by nd defects and either a positive orientation, s = +1, and lo = l+ and

le = l− , where

l± =
N − nd ± D

2
, (3.44)
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or by a negative orientation, s = −1, and exchanged total lengths, i.e.,

lo = l− and le = l+.

Next, we count the number of states, Γ(D,nd), as a function of the total

dipole moment D and the defect number nd. For a given orientation s, the

number of states is given by the number of possibilities to split a segment

of length lo in no parts, times the number of possibilities to split a segment

of length le in ne parts (see also App. A). Since a dipole moment D can be

realized by s = ±1 we obtain

Γ(D,nd) =
∑

s=−1,1

(

lo − 1

no − 1

)(

le − 1

ne − 1

)

, (3.45)

where lo, le, no, and ne depend on s, D, and nd. The canonical partition

function of disordered states can be written as

ZN (D) =

nmax
d
∑

nd=1

Γ(D,nd)e−βEDnd , (3.46)

with the maximum number of defects nmax
d given by Eq. (3.22).

Relation to the one-dimensional Ising model

For large system sizes we assume that the defect number is much smaller

than the number of sites and that defects are uncorrelated. In a first step,

we ignore configurational constraints dictated by the dipole lattice model

and that domain walls are formed by defect molecules located on lattice

sites. This approximation allows us to establish a relation to the one-

dimensional Ising model where domain walls are located between lattice

sites. In Ref. [54], the partition function as a function of the magnetization

was derived for the 1D Ising model using various boundary conditions. As

our model of uncorrelated defects corresponds to an 1D Ising model with

free boundary conditions, we can follow their calculations to a large extent

to obtain the free energy as a function of the total dipole moment1.

For uncorrelated defects, Eqs. (3.41), (3.42), and (3.44) become le + lo =

N , sD = lo − le = 2lo − N , and l± = (N ± D)/2 and we obtain for the

number of states

Γ(D,nd) =
∑

s=−1,1

(

lo
no − 1

)(

N − lo
ne − 1

)

= (3.47)

=

(

l+
no − 1

)(

N − l+
ne − 1

)

+

(

N − l+
no − 1

)(

l+
ne − 1

)

.

1We performed the following derivation ourselves before we found out that it was

already done in Ref. [54]. Always keep in mind that “two month in the laboratory can

spare you a few hours in the library”.
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In the following we treat the case of an odd number of defects, i.e., no = ne,

for which the number of states is given by

Γo(D,no) = 2

(

l+
no − 1

)(

N − l+
no − 1

)

, (3.48)

and the case of an even number of defects, i.e., no = ne−1, with the number

of states given by

Γe(D,no) =

(

l+
no − 1

)(

N − l+
no − 2

)

+

+

(

N − l+
no − 1

)(

l+
no − 2

)

(3.49)

separately. The partition function for an odd number of defects is given by

Zo(D) =

nmax
o
∑

no=1

Γo(D,no)b
2no−1 , (3.50)

and for an even number of defects by

Ze(D) =

nmax
o
∑

no=2

Γe(D,no)b
2no−2 , (3.51)

where b is the Boltzmann factor, b = e−βED . Next, we use Stirling’s ap-

proximation for the binomial coefficients, i.e.,
(M

m

)

≈ Mm/m!, which leads

to the following expression for the partition functions for an odd number of

defects

Zo(D) = 2b

nmax
o
∑

no=1

[

l+(N − l+)b2
]no−1

(no − 1)!(no − 1)!
, (3.52)

and for an even number of defects

Ze(D) = Nb2

nmax
o
∑

no=2

[

l+(N − l+)b2
]no−2

(no − 2)!(no − 2)!

1

no − 1
. (3.53)

We can simplify the above expressions using modified Bessel functions of

the first kind, I0(x) and I1(x) [48]. For Zo(D) we use

I0(2
√

x) =
∞
∑

n=0

xn

n!n!
(3.54)

and obtain

Zo(D) = 2bI0(2b
√

l+[N − l+]) , (3.55)
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and for Ze(D) we apply

I1(2
√

x)√
x

=
∞
∑

n=0

xn

n!n!

1

n + 1
(3.56)

and obtain

Ze(D) = Nb2 I1(2b
√

l+[N − l+])

b
√

l+(N − l+)
. (3.57)

The argument of the Bessel functions in the partition functions above can

be written as

l+(N − l+) =
N2 − D2

4
, (3.58)

which leads to

Zo(D) = 2bI0(b
√

N2 − D2) (3.59)

and

Ze(D) = 2bN
I1(b

√
N2 − D2)√

N2 − D2
. (3.60)

Discretization of the total dipole moment

Up to now, we have assumed that domain walls are located between mo-

lecules as in the Ising model, where the partition function is given by the

sum ZN (D) = Zo(D) + Ze(D). In contrast, in a chain of water molecules

domain walls are formed by defect molecules. As a consequence, the sets of

values of the total dipole moment that can be realized by a chain with an

odd or even number of defects are disjoint. The total dipole moment of a

chain with an odd number of defects can take values of the set

So = {−(N − 3),−(N − 5), . . . N − 5,N − 3} , (3.61)

and with an even number of defects of the set

Se = {−(N − 4),−(N − 6), . . . N − 6,N − 4} . (3.62)

Thus, we have do differentiate between an odd and an even number of de-

fects, i.e.,

ZN (D) =

{

Zo(D) for D ∈ So

Ze(D) for D ∈ Se
. (3.63)

Under the assumption of a large system size, which is a precondition for

this derivation, we can avoid this case differentiation by approximating the

partition function as

ZN (D) =
1

2
[Zo(D) + Ze(D)] , (3.64)
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which leads to

ZN (D) = bI0(by) + Nb
I1(by)

y
, (3.65)

with y =
√

N2 − D2. This approximation can be understood as a coarse

graining of the partition function given by Eq. (3.63), where we assign neigh-

boring values of the total dipole moment the average of the corresponding

values of the partion function.

The partition function for fixed value of D, Eq. (3.40), is then given by

ZN(D) =

{

1 for |D| = N

bI0(by) + Nb I1(by)
y else,

(3.66)

and we obtain for the total dipole moment distribution

PN (D) =
1

ZN
ZN (D) , (3.67)

where

ZN = 2 +

N−3
∑

D=−N+3

ZN (D) . (3.68)

Consequently, the free energy as a function of the total dipole moment is

given by

βF (D) = − lnZN (D) . (3.69)

Note, for sufficiently large system sizes the sum in Eq. (3.68) can be approx-

imated by integrals.

Uncorrelated defects and defect pairs

In Fig. 3.21 we compare the free energy as a function of the total dipole

moment obtained from simulations using the full Hamiltonian and from the

analytical expression for uncorrelated defects, Eq. (3.69). Although the form

of the free energy for disordered states is captured by the approximation of

uncorrelated, single defects, it is shifted to higher free energies compared to

the ordered states. The reason is that uncorrelated defect pairs lead to a

larger statistical weight of the disordered states in the partition function,

i.e.,

ZN(D) =

{

1 for |D| = N

b
[

I0(by) + N I1(by)
y

]

(1 + e−βEp)N else.
(3.70)

Here, we used that the change in the total dipole moment due to the genera-

tion or recombination of defect pairs is small, compared to the change caused
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Figure 3.21: The free energy as a function of the total dipole moment per

site. The curves are shifted so that the free energy of the ordered states

vanishes. Dashed lines are simulation results for the full Hamiltonian. For

negative values of the total dipole moment we plot the free energy for uncor-

related defects, which have a higher free energy at vanishing dipole moment

than the results for the full Hamiltonian. For positive values of the total

dipole moment we show results including uncorrelated defect pairs which

agree well with the results for the full Hamiltonian. Note that for long tube

lengths, defect pairs lead to a lower free energy of nearly ordered states with

D/N ≈ ±1 compared to the completely ordered states.

by the diffusion of single defects, and can be neglected. The degeneracy of

the disordered states due to defect pairs results in a shift,

βFp = − ln Zp = −N ln(1 + e−βEp) , (3.71)

of the free energy given by Eq. (3.69). Taking this shift into account we

obtain excellent agreement, as shown in Fig. 3.21.

We also observe that this shift is small for predominately ordered systems

with . 105 molecules (for example, for a larger system size N = 106 the shift

is only βFp ≈ 0.18). Thus, the shift in the free energy can be neglected for

these system sizes. For larger system sizes the shift increases the statistical

weight of the disordered states. Since the statistical weight of the ordered

states is already negligible for a system of uncorrelated defects only, this

shift does not effect the thermodynamic behavior. As a consequence, the

degeneracy of the disordered states with respect to the ordered states can

be neglected if one is interested in averages over the probability distribution
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function of the total dipole moment, like the average total dipole moment

or its average fluctuations.

Thermodynamic limit

Finally, we have a look at the behavior of the partition function ZN (D) when

approaching the thermodynamic limit. The partition function for disordered

states as a function of the dipole moment per site d = D/N is given by

ZN (d) = b

[

I0(bN
√

1 − d2) +
I1(Nb

√
1 − d2)

√

1 − d2)

]

. (3.72)

For y = Nb
√

1 − d2 ≫ 1 the Bessel functions can be approximated by

Iα(y) ≈ ey/
√

2πy and we can write the partition function as

Z̃N (y) ≈ b√
2πy

ey

[

1 +
Nb

y

]

. (3.73)

For d2 ≪ 1, corresponding to y/(Nb) ≈ 1, this expression becomes

Z̃N (y) ≈ 2b√
2πNb

ey . (3.74)

Using the first two terms of the Taylor series of y, y ≈ Nb(1 − d2/2), the

partition function of a disordered system with −N < D < N given by

Eq. (3.65) can be approximated by

Z̃N (D) ≈ 2bebN

√
2πNb

e−
D2b
2N . (3.75)

Thus, in the thermodynamic limit the distribution function of the total

dipole moment for −N < D < N becomes Gaussian with variance σ2 =

N/b = N exp(βED).

3.4.4 Corresponding states

So far, we have seen that for long tubes in contact with a water bath at

ambient conditions the dipole lattice model can be approximated by a system

of uncorrelated defects. For the latter we find that the thermodynamic

properties only depend on the product of the system size and the Boltzmann

factor, Nb, where b = e−βED . Thus, systems for which Nb has the same

value show the same thermodynamic behavior, as explained in the following.

The partition function of a system of completely uncorrelated defects is

given by

Zs(β,N) = 2
∑N

n=0

(

N
n

)

e−βEDn . (3.76)
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Using Stirling’s formula and that the defect excitation energy is large, i.e.,

e−βED ≪ 1, we can write the partition function as

Zs(β,N) ≈ 2

∞
∑

n=0

e(−βED+lnN)n

n!
= 2

∞
∑

n=0

(Nb)n

n!
. (3.77)

Similarly, the mean defect number is given by

〈nd〉 = N
e−βED

1 + e−βED

≈ e(−βED+lnN) = Nb , (3.78)

and the order probability, i.e., the probability that all dipoles point in the

same direction, by

P0(N) = (1 + e−βED)−N ≈ 1 − e(−βED+ln N) = 1 − Nb . (3.79)

Thus, from the point of view of thermodynamics, a system of size N at

an inverse temperature β can be viewed as a coarse grained description of a

larger system with size N ′ and an inverse temperature β′ if Nb = N ′b′, i.e.,

if the relation
N

N ′
= e(β−β′)ED (3.80)

is fulfilled. This equation can be used to test the assumption of uncorre-

lated defects, which we will be especially useful for the investigation of the

dielectric response of nanopore water in the next chapter.
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Chapter 4

Dielectric response of

nanopore water

4.1 Introduction

In the previous chapter we have seen that a carbon nanotube in thermody-

namic equilibrium with a heat and water reservoir at atmospheric pressure

and room temperature is completely filled with a chain of single-file hydro-

gen bonded molecules [16,26]. For small tube lengths . 0.1mm, the chain is

orientationally ordered with all water molecules pointing in the same direc-

tion. Flips of the whole chain occur via the migration of a single, possibly

protonated defect, a process which is fast compared to the persistence time

of a completely ordered state. For large system sizes & 0.1mm the chain of

water molecules is orientationally disordered and consists of ordered domains

connected by defect molecules acting as domain walls.

Here, we suggest how these order properties, which to date lack experi-

mental verification, can be probed by dielectric spectroscopy. To this end,

we investigate the linear response of nanopore water to a time-dependent

homogeneous electric field in direction of the tube axis. As we shall see, the

length and time scales involved are large but can be handled in simulations

using the one-dimensional dipole lattice model that reproduces the free en-

ergetics of single-file water quantitatively [23, 26, 27]. Moreover, the model

provides the theoretical framework to determine the fundamental properties

of nanopore water, in particular the excitation energy and diffusion constant

of defects, from dielectric spectroscopy experiments.

63
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4.2 Static electric field

The transition from a predominately ordered system to a disordered system

with increasing tube length is reflected in the free energy as a function of the

total dipole moment (see Fig. 3.17). For short tubes, the free energy curves

show two minima corresponding to the ordered states, effectively forming

a two-state system. For long tubes, the free energy curve exhibits a single

quadratic minimum for vanishing dipole moment with residual minima for

the ordered states. For intermediate system sizes we observe a crossover

behavior with two deep minima for the ordered states, and one shallow

minimum for vanishing dipole moment. At all systems sizes the free energy

is symmetric and thus the total dipole moment vanishes on average.

A homogeneous electric field, E, in direction of the tube axis couples to

the total dipole moment M of the water chain and leads to an electrostatic

interaction energy −ME. In the following, we additionally use the reduced

total dipole moment D = M/µ and the reduced electric field Ef = Eµ/ǫ for

convenience.

Since the electric field couples to the total dipole moment, the distribu-

tion function, P (D,Ef), of the total dipole moment, D, at field Ef can be

obtained from the distribution function at vanishing field P (D) as

P (D,Ef) =
P (D)eβDEf

∑

{D} P (D)eβDEf
. (4.1)

With βF (D,Ef) = − ln P (D,Ef), the free energy is given by

F (D,Ef) = F (D) − DEf , (4.2)

where βF (D) = − ln P (D) is the free energy for vanishing external field.

Thus, the effect of an external homogeneous electric field in direction of the

tube axis is to tilt the free energy curves as a function of the total dipole

moment by −DEf .

We calculate P (D) from Monte Carlo simulations (see Fig. 3.17) and

from the analytical expression given by Eq. (3.66) and investigate first the

alignment of the water molecules with the electric field, before we turn to

the influence of the electric field on the total dipole moment of the chain.

4.2.1 Alignment probability

For water molecules within the chain, it is energetically favorable to align

their dipole moments with the external field in direction of the tube axis.

The probability that all water molecules are aligned with the external field
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Figure 4.1: The alignment probability for different electric fields as a func-

tion of the system size. Lines are analytical results for uncorrelated defects

(dotted lines) and for uncorrelated defects and defect pairs (solid lines). The

crosses are numerical results for the NCA and circles are simulation results

for the full Hamiltonian.

is given by P (N,Ef) for a positive field and by P (−N,Ef) for a negative

field.

Figure 4.1 shows the alignment probability as a function of the system

size for different strengths of the external electric field. Results for the

full Hamiltonian agree well with numerical results for uncorrelated defects

and defect pairs. For decreasing electric field, the alignment probability

approaches half the order probability, Eq. (3.37), which corresponds to the

alignment probability with an infinitely small electric field. The alignment

probability increases with the strength of the external field which is coupled

to the total dipole moment. Since the dipole moment of the ordered states

increases with the chain length, the alignment probability also increases

with the system size. This growth is opposed by the increase of the entropic

contributions of disordered states with the chain length, which leads again

to a decrease of the alignment probability for long tubes.

The simulation results of the NCA and analytical results for uncorrelated

defects also shown in Fig. 4.1 agree well with each other, but overestimate

the alignment probability as defect pairs are neglected. We have seen in

Sec. 3.4.2 that, from a thermodynamical point of view, defect pairs essen-

tially lead to a degeneracy of the disordered states. Since for long tubes

the change in the total dipole moment caused by defect pairs is negligible,
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Figure 4.2: The average value (bottom) and the variance (top) of the total

dipole moment per site as a function of the external electric field for different
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the alignment probability where defect pairs are neglected better reflects the

macroscopic state of the system concerning the total dipole moment.

4.2.2 Static dielectric susceptibility

We obtain P (D) from Monte Carlo simulations and from the analytical

expression given by Eq. (3.66). Using Eq. (4.1), we determine the average

value,

〈D〉 =
∑

{D}

DP (D,Ef) , (4.3)
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Figure 4.3: The average value (bottom) and the variance (top) of the total

dipole moment per site as a function of the voltage applied to tubes of differ-

ent lengths. The analytical results are denoted by solid lines and simulation

results by circles.

and the variance,

〈D2〉 − 〈D〉2 =
∑

{D}

D2P (D,Ef) − 〈D〉2 , (4.4)

of the total dipole moment as a function of the external electric field.

In Fig. 4.2 we show results for fields ranging from E = 1V/m to E =

105V/m. The interaction energy of a dipole µ with a field E = 1V/m is

∼ 4 × 10−9 kJ/mol and thus about ten orders of magnitude smaller than

ǫ ≈ 25.8 kJ/mol, the energy scale for the dipole-dipole interaction. Also,

these fields are small compared to the ones used in molecular simulations of
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short tubes in Ref. [52], where the properties of the water molecules within

a chain remained unchanged by the fields used here. Thus, we are confident

that for these electric field strengths our model is a good description of

molecular water.

We observe that the longer the tube, the smaller the electric field required

to align nearly all molecules in the field direction and maximize the total

dipole moment, as expected from the alignment probability in Fig. 4.1. The

variance starts to decrease from its value for vanishing external field when an

average dipole moment of about 20% of the maximum dipole moment, Nµ,

is reached. We find that the average dipole moment per site as a function

of the system size has converged to its form in the thermodynamic limit for

N ≈ 107. For all tube lengths investigated here the simulation results for

the full Hamiltonian are in excellent agreement with analytical results for

uncorrelated defects.

Figure 4.3 shows the same data as in Fig. 4.2 as a function of the voltage

U = EL, where L is the tube length, applied at the tube ends. We find that

the curves for the average dipole moment per site lie on top of each other

for predominately ordered systems with . 105 molecules. As a consequence,

the static susceptibility χ is a linear function of the tube length for these

system sizes, as we shall see in the next section.

Linear Response

The static dielectric susceptibility, χ, describes the response of the polariza-

tion, 〈M〉/V , of the tube to the electric field, E. It is defined as

χ =
1

ε0V

d〈M〉
dE

, (4.5)

where V denotes the volume of the sample.

In the linear response regime, the static dielectric susceptibility can be

determined from the equilibrium fluctuations of the total dipole moment for

vanishing electric field via the fluctuation-dissipation theorem [56],

χ =
β

ε0V
(〈M2〉 − 〈M〉2) , (4.6)

where angular brackets indicate the ensemble average. For vanishing average

dipole moment, 〈M〉 = 0, this equation becomes

χ =
β〈M2〉
ε0V

, (4.7)

where 〈M2〉 is the average value of the squared total dipole moment.
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Figure 4.4: The static dielectric susceptibility, χ(N), of a water-filled tube

with a diameter of 1 nm as a function of the system size for temperatures

T0 (squares) and 1.3T0 (circles). Estimates from Monte Carlo simulations

are shown in green and rescaled data are shown in orange. Also shown

are approximations for the dielectric susceptibility of a system of uncorre-

lated defects (dashed lines), the linear approximations for small system sizes

(black, solid lines) and the values in the thermodynamic limit (blue, solid

lines) for both temperatures.

In Fig. 4.4 we show results of Monte Carlo simulations using the full

Hamiltonian, Eq. (2.28), for the static dielectric susceptibility χ for room

temperature, T0 = 298K, and 1.3T0. Note that 1.3T0 does not necessarily

correspond to the same temperature for molecular water as our effective

Hamiltonian implicitly depends on the temperature. We find for both tem-

peratures that the static dielectric susceptibility increases linearly with the

system size for short tubes, before it converges to its value in the thermo-

dynamic limit.

The volume V in Eq. (4.7) can be written as V = Nv, where v is the

volume per molecule. Here, we choose v = r2πa for a tube with radius

r = 0.5 nm. This choice leads to the giant value of χlong ≈ 4 × 106 for

the dielectric susceptibility in the thermodynamic limit. For membranes

of carbon nanotubes with an experimentally feasible tube density of 2.5 ×
1011 cm−2 [22] the dielectric susceptibility is lowered by a factor ≈ 1/500.

This value is still ∼ 100 times larger than the dielectric susceptibility of bulk

water (χ ≈ 80) although the water density is more than 3000 times smaller

than in the bulk. Note that here we have assumed that interactions between
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tubes can be neglected.

In the following we derive expressions for the dielectric susceptibility of

a single chain in the limits of short and long tubes. In the two-state regime

χ increases linearly with the chain length. From the fluctuation-dissipation

theorem, Eq. (4.7), for a two-state system, where 〈M2〉 = N2µ2, we obtain

for the dielectric susceptibility

χshort(N) =
βµ2

ε0v
N , (4.8)

which agrees excellently with simulation results shown in Fig. 4.4 for small

tube lengths. This two-state behavior in the presence of an external electric

field is confirmed by molecular dynamics simulations [52]. In this work, the

authors apply a field of up to ∼ 109 V/m to a chain of five water molecules.

They compare simulation results of the average value and the variance of

the total dipole moment to predictions of a two-state system and find them

in excellent agreement. Only for field strengths larger than ∼ 2 × 108 V/m

small polarization effects of the water molecules within the chain, compared

to the average value of the dipole moment µ at vanishing external field, are

observed.

For increasing tube length, chains become disordered. Due to the high

defect excitation energy, the defect density is low and thus the average dis-

tance between defects is large. For typical configurations, the Coulomb-like

interactions are weak and can be neglected. Then, a defect corresponds to a

domain wall in the 1D Ising model with a coupling constant of half the defect

excitation energy, J = ED/2. From the analytical solution of the 1D Ising

model with periodic boundary conditions we obtain 〈M2〉/N = eβED [57]. In

the thermodynamic limit, where boundary conditions are of no importance,

the dielectric susceptibility becomes

χlong =
βµ2

vε0
eβED . (4.9)

At room temperature, this value is reached for N ≈ 107 molecules (see

Fig. 4.4).

This excellent agreement raises the question, if the Ising model allows

estimates for the static dielectric susceptibility of shorter chains. Thus, we

determine χ(N) as a function of the tube length from the distribution func-

tion of the magnetization for the Ising model with free boundary conditions

(see Sec. 3.4.3). The partition function for fixed value of the total dipole

moment D = M/µ is then given by

ZN (D) =

{

1 for |D| = N

b
[

I0(by) + NI1(by)y−1
]

else,
(4.10)
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with y =
√

N2 − D2, b = e−βED , and where I0(x) and I1(x) are modified

Bessel functions of the first kind [48]. With the average value of the squared

dipole moment given by

〈M2〉 =
µ2

∑

{D} ZN (D)

∑

{D}

D2ZN (D) , (4.11)

we calculate the dielectric susceptibility using Eq. (4.7) numerically and find

excellent agreement with simulation results for both temperatures and all

system sizes investigated here (Fig. 4.4), indicating that defects are indeed

uncorrelated to a large extent.

Corresponding States

For uncorrelated defects, we also find a relation between the static dielectric

susceptibilities of corresponding states (see Sec. 3.4.4). In the limit of large

system sizes, the partition function for states with at least a single domain

wall (defect) for fixed total dipole moment, is given by Eq. (3.75) as

Z̃N (D) ≈ 2bebN

√
2πNb

e−
D2b
2N . (4.12)

We calculate the average of the reduced total dipole moment squared as

〈D2〉 =
1

Z̃N

(

2N2 +

N+3
∑

−N+3

D2Z̃N (D)

)

, (4.13)

with the partitition function

Z̃N = 2 +

N+3
∑

D=−N+3

Z̃N (D) (4.14)

as normalization constant. For large system sizes, we approximate the sums

by integrals,

〈D2〉 =
1

Z̃N

(

2N2 +

∫ N+3

−N+3
dDD2Z̃N (D)

)

, (4.15)

with

Z̃N = 2 +

∫ N+3

−N+3
dDZ̃N (D) . (4.16)

Integrating Eqs. (4.15) and (4.16) we obtain

〈D2〉 =
N

b
G(bN) , (4.17)
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where

G(y) =
y − ey/2

√

2y
π + eyerf

(√

y
2

)

eyerf
(√

y
2

)

+ 1
. (4.18)

Here, y = bN = exp[−βED + ln(N)] and erf(x) denotes the error func-

tion [48]. Thus, we obtain the following approximation for the dielectric

susceptibility,

χ(β,N) =
βµ2

ε0V

N

b
G(bN) . (4.19)

This expression captures the static dielectric susceptibility qualitatively,

with the correct limits for short and long tubes. For small values of y,

G(y) ≈ y, and we find in agreement with Eq. (4.8),

χshort(N) =
βN2µ2

ε0V
. (4.20)

For large values of y the function G(y) converges to G(y) ≈ 1 and the

dielectric susceptibility in the thermodynamic limit is given by

χlong =
βNµ2

V ε0
eβED , (4.21)

as expected from Eq. (4.9).

The argument of the function G(bN) in Eq. (4.19) has the same value for

corresponding states, where Nb = N ′b′. Since the volume is proportional to

the tube length (for a single tube as well as for a membrane), i.e., V = vN

and V ′ = vN ′, we obtain a relation between the dielectric susceptibilities of

corresponding systems,

χ(β,N)

χ(β′,N ′)
=

β

β′
e(β−β′)ED . (4.22)

We use this relation to obtain estimates for the static dielectric susceptibility

at T0 from simulations at 1.3T0, and the other way round, and find good

agreement (see Fig. 4.4), further confirming the assumption of uncorrelated

defects.

The limiting cases given by Eqs. (4.8) and (4.9) allow us to determine

the average dipole moment of a water molecule along the tube axis, µ, and

the defect excitation energy, ED, from the linear increase of the dielectric

susceptibility at small system sizes and its value in the thermodynamic limit,

provided we know N = L/a, where L is the length of the chain.

In summary, we have clarified the dielectric response of a hydrogen

bonded chain of water molecules to a static, homogeneous electric field in
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direction of the tube axis. Next, we investigate the dielectric response of the

system to a time-dependent electric field which provides additional insight

into the kinetic and dielectric properties of nanopore water.

4.3 Time-dependent electric fields

In general, the linear response of a system to a periodically varying electric

field is described by
〈M〉(ω)

V
= ε0χ(ω)E(ω) (4.23)

where ω is the frequency of the applied complex electric field, E(ω) = Eeıωt,

and χ(ω) is the frequency dependent complex dielectric susceptibility. The

latter is related to the complex dielectric constant via

ε(ω) = 1 + χ(ω) = ε′(ω) − ıε′′(ω) , (4.24)

where ε′(ω) denotes the real part and ε′′(ω) the imaginary part.

The dielectric susceptibility can be determined from the time derivative

of the time autocorrelation function of the total dipole moment by Fourier

transformation [56],

χ(ω) =
β

V ε0

∫ ∞

0
e−ıωt〈Ṁ(0)M(t)〉dt =

= − β

V ε0

∫ ∞

0
e−ıωt d

dt
〈M(0)M(t)〉dt . (4.25)

Thus, to determine the frequency-dependent dielectric constant of single-

file water we have to know the kinetics of the total dipole moment, which

is determined by the diffusive migration of orientational defects as we will

discuss in the following.

4.3.1 Kinetic dipole lattice model

Molecular dynamics simulations show that the kinetics of defect generation,

recombination, and migration involve the cleavage and formation of hydro-

gen bonds and the rotation of molecules. When a defect hops from one

molecule to the next, the hydrogen bond between these two molecules is

broken, the molecules rotate, and a new bond is formed [Fig. 4.5(a) and

(b)]. Similarly, single defects are formed at the end of the chain, when the

hydrogen bond between the end molecule and the next molecule is broken,

the molecules rotate and form new bonds [Fig. 4.5(c)]. A defect is anni-

hilated if it hops from the molecule next to the end molecule towards the
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Figure 4.5: Mechanisms determining the kinetics of water chains. Water

molecules are symbolized by black, right angles and hydrogen bonds are

depicted as red, dotted lines. Rotations of molecules that break (form) a

hydrogen bond are indicated with red (blue) arrows at the corresponding OH

bonds. (a) Hop of a D-defect to the right and (b) to the left. (c) Generation

and (d) annihilation of a D-defect at the chain end. (e) Generation of a

defect pair and (f) recombination of defects.

end [Fig. 4.5(d)]. Within an ordered domain, defect pairs can be formed

[Fig. 4.5(e)]. In this process, both hydrogen bonds of a single molecule are

broken and the molecule itself and its two neighbors rotate and form new

bonds. The molecules on the left and on the right of the center molecule

form the two defects. A defect pair recombines, if one of these defects hops

to the other one [Fig. 4.5(f)].

Since the kinetics of the reorientation of water molecules is determined

by the diffusion of defects [23], we can use the dipole lattice model and

implement the kinetics of water in nanopores as a Markov process [56]. We

use discrete time, where one time unit, ∆t, corresponds to the average time

a single defect in an infinitely long chain needs to hop to a next neighbor

site.

We only have to specify the transition rates for the displacement of

a defect and the generation of defect pairs. All other events, i.e., defect

recombination and annihilation at a chain end, can be viewed as a direct



CHAPTER 4. DIELECTRIC RESPONSE OF NANOPORE WATER 75

consequence of defect diffusion: If the hop of a defect to an adjacent site

brings it next to another defect, then these defects recombine. If a defect

hops to the molecule at the chain end, then it is annihilated. The transition

rates obey detailed balance to guarantee that the equilibrium distribution

of states is conserved by the dynamics.

4.3.2 Kinetic simulation

In a straightforward implementation of the kinetic dipole lattice model, we

proceed in the following steps. First, we randomly choose a site and perform

a trial move. Which trial move is carried out depends on the position and

orientation of the chosen molecule. Then, we accept or reject the trial move

according to an acceptance criterion. We repeat this procedure N times

before advancing the time by ∆t.

The trial moves take into account the configurational constraints dictated

by the model and we accept or reject them using either the Metropolis [58]

or the Glauber [59] acceptance criterion, both obeying detailed balance.

One of the trial moves is the displacement of a defect, which can lead to

the annihilation of the defect at a chain end or to the recombination with

another defect. If a molecule at a chain end is chosen, we try to generate a

single defect at the molecule next to it. For a molecule within an ordered

domain, we try the generation of a defect pair.

In Metropolis dynamics, the acceptance probability is given by

pa
M = min

{

1, e−β∆E
}

, (4.26)

where ∆E is the energy difference between the new and the old state. For

the diffusion of a defect on a flat energy landscape, where ∆E = 0, the

probability to stay at its position is p = 0, the probability to move to the

left is p = 1/2 and to the right is p = 1/2.

In Glauber dynamics, the acceptance probability is given by

pa
G =

1

1 + eβ∆E
. (4.27)

For the diffusion on a flat energy landscape the probability to accept a move

to the left, p = 1/4, is equal to the probability to move to the right. Thus

we have a probability p = 1/2 to stay at the original position.

The connection of simulation time to real time is established via the

diffusion law in one dimension,

〈x(t)2〉 = 2Dt , (4.28)
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where x(t) is the displacement, t the time, and D the diffusion constant.

Thus, we obtain for the hopping time, ∆t, of a defect to an adjacent site,

∆t = a2/(2D). At room temperature, L-defects with a diffusion constant

of DL ≈ 0.03 nm2/ps are slower than D-defects with a diffusion constant

of DD ≈ 0.05 nm2/ps [23]. For the moment, we use the average diffusion

constant D given by

D =
DL + DD

2
(4.29)

for both kinds of defects obtaining D = 0.04 nm2/ps. As we shall see, under

the assumption of uncorrelated defects and equal excitation energies for L-

and D-defects, the time dependence of the total dipole moment is the same

if one uses either the average diffusion constant, D, for both kinds of defects,

or DL and DD for each kind of defects.

Demanding that the diffusion of a defect on a flat landscape occurs at

the same speed as in molecular simulations, one sweep corresponds to a

time ∆tM = ∆t ≈ 0.88 ps and ∆tG = ∆t/2 ≈ 0.44 ps using Metropolis

and Glauber dynamics, respectively. Since Metropolis dynamics is twice as

fast as Glauber dynamics, ∆tM = 2∆tG, we use it for our simulations which

agree well with predictions for Glauber dynamics, indicating that our results

are not sensitive to the details of the dynamics.

Event-driven kinetic simulation

In large systems with a low density of defects the most frequently attempted

move is the generation of a defect pair, which, however, has a very small

acceptance probability. Thus, we spend a large amount of computing time

selecting and rejecting the generation of defect pairs.

The situation is improved by introducing a cutoff in the effective charge

interaction for the generation of defect pairs. For all other moves, we calcu-

late the interaction energy using the full Hamiltonian without a cutoff. By

doing so, we take advantage of the charge neutrality of defect pairs as L-

and D-defect consist of charges of the same magnitude but opposite sign,

forming an effective dipole parallel to the tube axis. The dipole moment

of the defect pair determines the interaction energy for large distances (see

Sec. 3.4.2).

Based on these results, we choose for the defect pair generation move a

cutoff distance of 20 lattice spacings for the interaction of defect pairs with

all other effective charges in the chain. Thus, the generation of a defect pair

far from all other charges, i.e., outside the cutoff region of all other defects

and chain end points, happens with a known rate.
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To determine this rate we define two regions. Region A consists of all

NA sites within the cutoff distance of all defects. Region B is given by

all other NB = N − NA sites. The only trial move applicable in region

B is the generation of a defect pair and since each site is further away

from all other defects than the cutoff distance, the acceptance probability

pa
B is known independently from the actual configuration. For Metropolis

dynamics the acceptance probability is given by pa
B = exp(−βEp) and for

Glauber dynamics by pa
B = 1/[1 + exp(βEp)] with the defect pair excitation

energy, Ep, given by Eq. (3.34).

An event in region A occurs if a site in this region is chosen, i.e., a move

is attempted. Thus, the probability of an event in region A, pA, is given by

the generation probability of a trial move in region A as

pA = pg
A =

NA

N
. (4.30)

For an event in region B, a site in this region has to be chosen and the

resulting move, i.e., defect pair generation, has to be successful. This is in

contrast to an event in region A, where a trial move only has to be attempted.

The probability of an event in B is given by the product of the generation

probability pg
B = NB/N and the acceptance probability pa

B, i.e.,

pB = pg
Bpa

B. (4.31)

The probability that one of these events happens is given by the sum of the

probabilities of an event in region A and in region B,

pe = pA + pB . (4.32)

The waiting time between any of these two events, i.e., the number of

time steps we have to uniformly choose a site until either a defect pair in

region B is generated or a trial move in region A is selected, is given by the

geometric distribution,

p(t) = pe(1 − pe)
t−1 , (4.33)

where t is the discrete time. The geometric distribution is the probability

distribution of the number of trials, which have a random outcome that is

considered to be either a success or a failure, needed to get one success.

Consequently, we bridge the waiting time by drawing a time t from the

geometric distribution and advancing the actual time by this time increment

t. Then, we choose if we either perform an event in A or in B according to

the probabilities

p′A =
pA

pe
(4.34)
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and

p′B =
pB

pe
= 1 − pA . (4.35)

We then draw a site within the corresponding region from a uniform distri-

bution and perform a trial move. If this move is accepted, which is always

the case for region B, then we update the sizes of regions A and B.

This algorithm allows us to do kinetic simulations for macroscopic system

sizes, spanning huge time scales from picoseconds to milliseconds.

4.3.3 Debye behavior

We perform extensive kinetic simulations and determine the time autocorre-

lation function of the total dipole moment at a temperature 1.3T0 ≈ 384K,

as shown in Fig. 4.6. We find that for times t ≫ ∆t the autocorrelation

functions decay exponentially for all system sizes, ranging from the two-

state regime to completely disordered states. Only for very short tubes and

short times comparable to the hopping time, deviations of the exponential

behavior were observed due to fast fluctuations of the total dipole moment

between the values of the ordered states and states with a single defect close

to the chain end. Apart from that, the autocorrelation functions are of the

form

〈M(0)M(t)〉 = 〈M2〉e−t/τ (4.36)

and only depend on the average of the squared total dipole moment, 〈M2〉,
and the relaxation time τ .

At a temperature of 1.3T0, we observe similar order behavior as for

room temperature, as illustrated by the order probability of a completely

filled tube for both temperatures in Fig. 4.7. The simulation results agree

well with predictions for uncorrelated defects. Also shown is the rescaling

of the data for 1.3T0 to room temperature using Eq. (3.80), which agrees

well with the data obtained at this temperature. For small tube lengths, we

find predominately ordered systems for both temperatures. At the higher

temperature, the order probability is always smaller than one, even for the

shortest tubes, indicating deviations from true two-state behavior.

We have chosen do to simulations and determine the time autocorrela-

tion function of the total dipole moment at 1.3 times room temperature,

because at room temperature the time scales for long tubes are too large to

obtain good statistics for even a few multiples of the relaxation time within

a reasonable amount of computing time.

Let us illustrate the computational requirements with the longest tube

considered at 1.3T0, which consists of N = 3×105 molecules, as an example.
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Figure 4.6: Simulation results for the time-dependent autocorrelation func-

tion of the total dipole moment for T = 1.3T0 (symbols) and fitted curves

(lines) as a function of the time divided by the corresponding size-dependent

relaxation time, τ(N), for different system sizes. In the logarithmic plot at

the bottom these correlation functions appear as linear functions with a

slope of minus unity.

The relaxation time of the autocorrelation function is τ ≈ 0.4ms which cor-

responds to ∼ 4.5× 108 MC-sweeps (∼ 1014 MC-steps) in a straightforward

implementation of the kinetic model. In the event-driven kinetic simulation

of this system, the number of MC-steps is reduced by ∼ 104 steps, leading to

∼ 1010 MC-steps for a simulation with a length corresponding to just once

the relaxation time. This example emphasizes the necessity of simplified

models, efficient algorithms, and high performance computing facilities for

the investigation of long tubes.

The exponential decay in the limits of short and long tubes has differ-

ent reasons which is supported by analytical results. For short tubes, we
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Figure 4.7: The order probability as a function of the system size at T0

(squares) and at 1.3T0 (circles). Estimates from Monte Carlo simulations

are shown in green and rescaled data are shown in orange. The solid lines

are predictions for uncorrelated defects. Dotted lines are used as guide to

the eye.

observe two-state behavior with flips between the two ordered states of all

dipoles aligned either “up” or “down” the tube axis. These flips are fast

compared to the persistence times of the ordered states. Thus, the kinetics

of short tubes is captured by a stochastic process of a two-state system with

symmetric transition rates between the two states. In App. D we show how

the exponential form of the time autocorrelation function of the total dipole

moment can be derived for such a two-state system.

For long tubes we assume that defects are uncorrelated. In this limit

our system can be related to the kinetic Ising model [59]. Identifying the

magnetization with the total dipole moment we also find an exponentially

decaying autocorrelation function in the thermodynamic limit (for details

see App. E). Although the change in the total dipole moment is essentially

caused by the diffusive motion of uncorrelated defects, defect generation and

recombination are crucial for the observed time dependence of the autocor-

relation function. The reason is that defect generation and recombination

open reaction channels to regions of the phase space that would not be

accessible otherwise.
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Frequency-dependent dielectric constant

Dielectric relaxation characterized by exponential correlation functions of

the form

〈M(0)M(t)〉 = 〈M2〉e−t/τ (4.37)

is called Debye behavior [56]. In this case, one obtains from Eq. (4.25) for

the real part of the dielectric susceptibility

ε′(ω) − 1 = χ
1

(1 + ω2τ2)
, (4.38)

and for the imaginary part,

ε′′(ω) = χ
ωτ

(1 + ω2τ2)
. (4.39)

Thus, the dielectric constant is completely determined by the static suscep-

tibility χ and the relaxation time τ . The static susceptibility depends on

〈M2〉 and can be determined from Monte Carlo simulations (see Sec. 4.2.2).

Estimates of both quantities can be obtained via exponential fits to the

kinetic simulation data, as shown in Fig. 4.6.

4.3.4 Relaxation time

Figure 4.8 shows results for the relaxation time for T = T0 and T = 1.3T0

as obtained from fits to autocorrelation functions. At room temperature, we

obtain an estimate of the relaxation time for N = 106 molecules from a fit to

the autocorrelation function for a time shorter than the relaxation time and

we could not obtain an estimate of τ for a completely disordered system of

size N = 107 within a reasonable amount of computing time. Thus, strictly

speaking, we have not confirmed Debye behavior for these systems in our

simulations. Nevertheless, we can relate the results for T = 1.3T0, where we

have observed Debye behavior for all tube lengths, ranging from predomi-

nately ordered to completely disordered chains, to room temperature. To

this end, we use the knowledge of corresponding states derived in Sec. 3.4.4

and show that the observed Debye behavior at 1.3T0 is characteristic for

room temperature.

For corresponding systems of uncorrelated, diffusing defects obeying

Eq. (3.80), we can also establish a relation between the dynamics (and thus

the relaxation times) of these systems at different temperatures. Having two

such corresponding systems and assuming that the smaller one is a coarse

grained description of the other we can rescale time using the diffusion law,



82 CHAPTER 4. DIELECTRIC RESPONSE OF NANOPORE WATER

i.e.,

t = t′
(

N

N ′

)2

. (4.40)

Figure 4.8 shows rescaled results for the relaxation times at 1.3T0 and room

temperature using Eq. (4.40) for the time and Eq. (3.80) for the system size.

The excellent agreement for long tubes, where Coulomb-like interaction can

be neglected, strengthens the assumption of uncorrelated defects for both

temperatures. Consequently, the Debye behavior observed at 1.3 T0 (see

Fig. 4.6) is a strong evidence for Debye behavior at room temperature for

tube lengths, where our simulation results lack significance.

As in the case of the static dielectric susceptibility, the relaxation time in-

creases linearly for small, but not too small system sizes, before it converges

to the thermodynamic limit. For both limits we find simple expressions for

the relaxation time as discussed in the following.

Short tubes

Short chains show two-state behavior as the free energy curves have two deep

minima for the ordered states separated by a nearly flat free energy barrier.

The autocorrelation function of a two-state system decays exponentially and

the relaxation time is given by

τ =
τMFP

2
, (4.41)

where the mean first passage time, τMFP, is the average time it takes the

two-state system to change from one state to the other (see App. D).

The orientation of the chain of water molecules is flipped by the diffusive

migration of a single defect, which is either an L-defect or a D-defect. The

free energy as a function of the total dipole moment acts as a potential of

mean force on the defect, which performs uncorrelated hops to the left or

right. In this non-linear one-step hopping process (NOSHP) [60] each value

of the total dipole moment corresponds to a defect at a particular site n

with free energy Fn. For hops of the defect, and hence for the total dipole

moment, we define transition rates between adjacent sites. The forward

transition rate, gn, for a hop from site n to site n + 1 and the backward

transition rate, rn, for a hop from site n to site n − 1 are determined by

imposing detailed balance,

gn

rn+1
= e−β∆Fn . (4.42)

with ∆Fn = Fn+1 − Fn. This condition guarantees that the equilibrium

distribution of states is conserved by the process. For Metropolis dynamics,
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Figure 4.8: The relaxation time τ as a function of the number of molecules N

(bottom axis) and the tube length (top axis) at room temperature (top) and

at 1.3 times the room temperature (bottom). Estimates obtained directly

from simulations are shown in green, rescaled data are shown in orange.

Results from the numerical calculation of the relaxation time (NOSHP) for

the two-state regime are shown as dashed lines, and for the approximation

of a rectangular free energy barrier as red lines. The linear approximation

for small sizes is shown as black solid line and the thermodynamic limit as

blue line. The relaxation time is shown in units of Monte Carlo sweeps in a

straightforward implementation of the kinetic model (left axis) and in units

of milliseconds (right axis).

we obtain for the transition rates

gn =
1

2∆t
min

{

1, e−β∆Fn

}

, (4.43)

rn+1 =
1

2∆t
min

{

1, eβ∆Fn

}

, (4.44)
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and for Glauber dynamics,

gn =
1

∆t

1

1 + eβ∆Fn
, (4.45)

rn+1 =
1

∆t

1

1 + e−β∆Fn
. (4.46)

To calculate the mean first passage time between the two ordered states,

we consider an ensemble of independent random walkers. A walker corre-

sponds to a defect and its position determines the total dipole moment of

the chain. The mean first passage time is given by the average time a walker

needs to reach site R starting from site m < R. If a random walker reaches

site R, then it is annihilated, which corresponds to an absorbing boundary

placed at R. We impose that all walkers starting at m will reach site R

eventually by putting a reflecting boundary at L ≤ m. In this case, we can

write the mean first passage time as [60]

τR,m =

R−1
∑

ν=m

ν
∑

µ=L

rνrν−1 . . . rµ+1

gνgν−1 . . . gµ+1gµ
=

=

R−1
∑

ν=m

ν
∑

µ=L

eβ(Fν−Fµ)

gν
, (4.47)

where we have used the detailed balance condition, Eq. (4.42), to obtain the

last line. The relaxation time is then given as half the mean first passage

time from one ordered state to the other (R = N , L = m = 1),

τshort =
1

2

N−1
∑

ν=1

ν
∑

µ=1

eβ(Fν−Fµ)

gν
. (4.48)

The free energy Fn experienced by a moving defect is given by the Hamil-

tonian in the charge picture, Eq. (2.28). We choose the ordered states as

reference point for the total energy, βF1 = βFN = 0, and obtain

βFn = β∆E(n) − ln 2 (4.49)

for 1 < n < N , where ln 2 accounts for the two reaction channels - one for a

chain flip via the diffusion of an L-defect and one for the D-defect. ∆E(n) is

given by the defect excitation energy plus the interaction energy of a single

defect with the chain ends as

∆E(n) = ǫ [2Φ (N) − Φ (n) − Φ (n − 1)

−Φ (N − n) − Φ (N − n + 1)] + ED. (4.50)
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Simulation results for small system sizes agree well with results obtained

by solving Eq. (4.48) for Metropolis dynamics numerically, as shown in

Fig. 4.8. Results for Glauber dynamics are not shown since they agree well

with results for Metropolis dynamics on the scale of this figure. With the

free energy given by Eq. (4.49), the relaxation time, Eq. (4.48), explicitly

depends on the energy constant ǫ which can be used to determine the dipole

moment µ from fits of these expressions to experimental results. Moreover,

such a fit would confirm the Coulomb-like interactions of the defect with the

chain ends.

Since the free energy barrier between ordered states is flat for sufficiently

long tubes, we can approximate the free energy landscape as a rectangular

barrier. The height of the barrier is given by the defect excitation energy

plus the Coulomb interaction of a defect located in the middle of the chain,

βFN/2, which becomes

βFN/2 ≈ β

(

ED − 3ǫ

N

)

− ln 2 . (4.51)

This expression is accurate for N & 10. In this case of a rectangular barrier,

Eq. (4.48) can be simplified by counting the different terms that occur in

the double sum. We obtain

τM
MFP

∆tM
= (N − 1)

(

2eβFN/2 + N − 2
)

(4.52)

for Metropolis dynamics and

τG
MFP

2∆tG
= (N − 2)

(

2eβFN/2 + e−βFN/2 + N − 2
)

+ 2 (4.53)

for Glauber dynamics. As long as the system size N is smaller than eβFN/2,

but large enough so that the Coulomb-like interactions do not influence the

barrier height, the relaxation time depends linearly on the tube length. The

quadratic term in N in Eqs. (4.52) and (4.53) dominates for tube lengths

where our assumption of a single defect no longer holds. Both, Metropolis

and Glauber dynamics lead to the same results for the relaxation time for

small systems, i.e.,

τshort(N) ≈ 1

2
eβ(ED−3ǫ/N)N∆t , (4.54)

which reproduces simulation results for small chain lengths qualitatively

(see Fig. 4.8). For increasing chain length the Coulomb attraction decreases
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and can be neglected for sizes N & 1000 at room temperature. Then, the

relaxation time becomes

τshort(N) ≈ 1

2
eβEDN∆t (4.55)

and increases linearly for tube lengths 1000 . N . 105.

The basis for the above relaxation time calculations is that the system

shows two-state behavior, which allows us to relate the mean first passage

time to the relaxation time, and that the dynamics of the total dipole mo-

ment are determined by the diffusion of a single defect. Both conditions are

violated for chains longer than ∼ 105 molecules, where the system becomes

increasingly disordered.

Long Tubes

For completely disordered systems we derive an analytical result under the

assumption of uncorrelated defects. Glauber showed in Ref. [59] that for the

kinetic Ising model with periodic boundary conditions, the time autocorre-

lation function of the total magnetization decays exponentially. Again, we

establish the connection to real time with the diffusion law resulting in a

spin flipping rate of 1/(2∆t). For large excitation energies, we obtain from

Glauber’s expression for the relaxation time

τlong ≈ e2βED∆t . (4.56)

We find good agreement with simulation results using Metropolis dynamics

for T = 1.3T0, as shown in Fig. 4.8, indicating that these results do not

depend on the details of the chosen dynamics. For room temperature we

could not obtain an estimate for τlong from simulations within a reasonable

amount of computation time. Equating Eqs. (4.55) and (4.56) we obtain

N = exp(βED) for the crossover length, at which the system changes from

a predominately ordered to a predominately disordered state.

In summary, the simulation results depicted in Fig. 4.8 for small system

sizes agree well with the numerical results obtained for the NOSHP. For

large chain lengths, the relaxation time converges to its value in the ther-

modynamic limit given by Eq. (4.56). Equations (4.54) and (4.56) might be

used to determine the effective diffusion constant and the defect excitation

energy experimentally from the dielectric response of a system to a period-

ically varying electric field. By combining Eqs. (4.54) and (4.56), one can

use the size dependence of the relaxation time in the linear and constant

regime to determine the defect energy

ED = kBT ln
(τlong

2s

)

, (4.57)
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where s is the slope of the relaxation time as a function of N in the linear

regime. The diffusion constant of the defects is then given by

D =
a2τlong

8s2
. (4.58)

Defect diffusion constants and excitation energies

Up to now, we have used the average diffusion constant and a single excita-

tion energy for both kinds of defects. Under the assumption of uncorrelated

defects, the time dependence of the total dipole moment of such a system

cannot be distinguished from that of a system with different diffusion con-

stants for L- and D-defects.

Let us assume an L-defect and a D-defect moving independently of each

other. The total dipole moment at time t is determined by the distance,

∆xLD(t), between these two defects. The average value of the squared dis-

tance can be written as

〈∆x2
LD(t)〉 = 〈[xL(t) − xD(t)]2〉 = 〈x2

L(t) − 2xL(t)xD(t) + x2
D(t)〉 , (4.59)

where xL(t) and xD(t) are the positions of the two defects. Using the diffu-

sion law in one dimension, Eq. (4.28), this expression becomes

〈∆x2
LD(t)〉 = 〈x2

L(t)〉 + 〈x2
D(t)〉 = 2(DL + DD)t , (4.60)

under the assumption of uncorrelated defects for which 〈xL(t)xD(t)〉 van-

ishes. Thus, the distance between the two defects obeys a diffusion law with

a diffusion constant given by the sum of the diffusion constants of L- and

D-defects. We expect that the total dipole moment shows the same time

dependence if one uses either DL and DD or the average constant for both

kinds of defects.

If the excitation energies of L- and D-defect, EL and ED, are different,

then the defect excitation energy in the expressions for the static suscep-

tibility [Eq. (4.9)] and the relaxation time [Eq. (4.56)] in the limit of long

tubes is replaced by the average excitation energy, (ED +EL)/2, as we shall

see in the following.

In the static case, this follows directly from the partition function for

nd uncorrelated defects with different excitation energies. Since L- and D-

defects alternate within a chain we have the same number of L- and D-defects

if the total defect number is even. If it is odd, then these numbers differ

by ±1 which can be neglected for large nd. Consequently, we assume that

half of the nd defects are L-defects and the other half are D-defects, which

determines the total energy. The number of possibilities to place nd defects
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on the sites of a one-dimensional lattice is given by a binomial coefficient.

Thus, the partition function is given by

Z =

nmax
d
∑

nd=1

(

N

nd

)

e−β
nd
2

(EL+ED) , (4.61)

which depends on the sum of the defect excitation energies only.

Regarding the influence of different excitation energies on the relaxation

time in the thermodynamic limit, we recognize that the term exp(2βED)

in Eq. (4.56) corresponds to the square of the average domain length. The

latter is the average distance between neighboring defects, which is given

by the inverse of the defect density, N/〈nd〉 ≈ exp(βED). The origin of the

square can be understood if one considers a chain of finite length with a single

non-interacting defect. Simulation studies of such simple systems show that

the relaxation time of the autocorrelation function of the defect position,

which determines the autocorrelation function of the total dipole moment, is

proportional to the tube length squared. Consequently, disordered systems

of uncorrelated defects might be viewed as a composition of chains of length

exp(βED), each of which carries a single non-interacting defect. Since the

average defect density, and thus the average domain length, depends on the

sum of the excitation energies, we can replace the defect excitation energy

in Eq. (4.56) by the average value, ED = (ED + EL)/2.

Only in the two-state regime we have to treat the reaction channels for

an L-defect and a D-defect separately and Eq. (4.55) becomes

τshort(N) = N

(

e−βEL

∆tL
+

e−βED

∆tD

)−1

, (4.62)

where ∆tL and ∆tD are the different hopping times of L- and D-defects.

Still, the relaxation time increases linearly with N , but the slope is not

determined by the average defect excitation energy and average diffusion

constant. Since these quantities can be determined via Eqs. (4.8), (4.56),

and (4.9), deviations of the relaxation time in the two-state regime from

Eq. (4.55) could provide evidence for different defect excitation energies,

possibly due to boundary effects. In molecular simulations of non-polar

nanotubes, D-defects were energetically favorable which is consistant with

the preferred orientation of water molecules entering the tube from the water

bath [61]. A different behavior is observed in polar pores. The curvature

of nanotubes is expected to induce a static dipole moment which causes

an electric field at the tube ends, pointing towards the tube center [62].

Molecular simulations show that in such a tube an L-defect is preferred over

a D-defect [37,63].
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4.4 Conclusion

In summary, the fluctuations of the total dipole moment are determined by

the diffusion of highly uncorrelated defects. Hence, our results are neither

affected by the details of defect generation and recombination nor by the

details of the chosen diffusive dynamics. The latter is a consequence of our

choice of the unit of time, which guarantees that the speed of diffusion of a

defect in an infinitely long chain, i.e., an uncorrelated defect, is reproduced

by our kinetic model.

A chain of hydrogen bonded water molecules inside a molecularly narrow

pore shows Debye relaxation behavior. Performing dielectric spectroscopy,

the frequency dependent dielectric constant can be measured. By fitting the

Debye form to these results, the static susceptibility χ and the relaxation

time τ can be determined. We found simple expressions for these quantities

so that predictions about tube filling and macroscopic order can be tested

and the defining properties (defect excitation energy, diffusion constant,

dipole moment µ) can be measured. The static dielectric susceptibility and

the relaxation time show a strong dependence on the tube length, which

might be used for capacitors in sensor applications and other nanofluidic

devices [64,65].
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Chapter 5

Outlook

In this work, we have developed a one-dimensional dipole lattice model for

water in narrow nanopores and have investigated the properties of water in

non-polar and pristine carbon nanotubes. We found that tubes with a sub-

nanometer diameter, in contact with a water bath at room temperature and

atmospheric pressure, are completely filled with a nearly contiguous chain

of molecules, which remains predominately ordered up to a chain length of

0.1 mm.

We are currently investigating the consequences of our findings for mem-

branes of parallel nanochannels (see Figure 5.1), which are considered to be

promising building blocks of fuel cells [23, 66]. The interaction of ordered

chains in different channels is determined by an effective Coulomb interac-

tion of charges at the chain ends, which converges to a dipole-dipole interac-

tion for large distances. Consequently, ordered chains of water molecules are

anti-ferroelectrically coupled. Perfect anti-ferroelectric alignment, however,

might be frustrated by the lattice geometry.

Although we have only considered non-polar and pristine pores in this

work, the dipole lattice model is not restricted to such pores. The effects

of tube polarizability and of defects in the tube wall can be included in our

dipole lattice model provided that these effects are weak and do not destroy

the structural properties of hydrogen bonded chains considered here.

A polarizable pore is expected to reduce the dipole moment of the water

molecules in its interior [67], for which we can account by adjusting the

model parameters.

Charged defects in the pore wall that interact electrostatically with the

chain of water molecules might trap hydrogen bonding defects, similar to

what is observed in aquaporin water channels [7, 68]. This effect, which

might be used for the design of novel proton storage devices, is captured by
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Figure 5.1: Snapshot of a molecular dynamics simulation of a membrane of

carbon nanotubes immersed in water. One of the tubes is sliced open along

the tube axis to show the hydrogen bonded chain of water molecules on the

inside [32].

the dipole lattice model, as the dipoles simply couple to the electric field

caused by the defect in the wall.

Another interesting possibility is to implement the kinetics of water

transport in our model. This extension could facilitate the study of the

filling and emptying kinetics of pores [47, 69], from nanoscopic to macro-

scopic lengths.

In conclusion, we are optimistic that the dipole lattice model will prove

to be a reliable and versatile tool for future investigations and applications

of the remarkable properties of water in nanopores.



Appendix A

Number of states

For the NCA and the SCA we can count the number of states as a function of

the independent variables of the respective Hamiltonians. Here, we show the

derivation for the SCA, where the number of states depends on the particle

number n, chain number nc, defect number nd, and number nI of single

dipoles corresponding to segments of length one. For the simpler NCA, the

derivation of the number of states is similar.

To model the free boundary conditions we add empty sections of length

one to each end of our fully occupied system consisting of N sites. Thus,

the fully occupied system is given by an empty section of length one, an

occupied section of length N , and again an empty section of length one.

These end sections are useful for the formulation of trial moves and for the

derivation of the number of states, as we will see in the following.

To calculate the number of states, we first take a section of length n −
nd−nI and split it into ns−nI parts, each of which is at least of length two,

i.e., lmin = 2. To split a section of M sites into m parts we have to choose

m− 1 of the M − 1 points between sites where the section can be split. The

number of possibilities to do so is given by the binomial coefficient
(M−1

m−1

)

.

If we demand that each new section consists of at least lmin sites then the

number of points where we can split the section into parts is reduced by

(lmin − 1)m. Thus, the number of possibilities, γ, of splitting a section with

M sites in m sub-sections, where each section has a length l ≥ lmin is given

by

γ =

(

M − (lmin − 1)m − 1

m − 1

)

. (A.1)

Inserting M = n−nd−nI, m = ns−nI, and lmin = 2 in the above expression

we obtain the first binomial coefficient of Eq. (2.32).

Next we count in how many ways we can combine the ns − nI segments
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with lengths larger than one and the nI segments of length one to a particular

sequence of these ns segments. We do so by choosing positions for the nI

identical, single dipoles out of ns possible positions, which gives the second

binomial coefficient of Eq. (2.32). Then, we put the remaining ns − nI

segments of lengths larger than one on the remaining positions without

changing their order, which is uniquely determined.

Grouping these segments to chains corresponds to splitting this sequence

of ns segments into nc parts, each consisting of at least one segment. This

gives the third binomial coefficient of Eq. (2.32). Each of these nc chains

has two possible orientations which gives the factor 2nc .

Finally, N − n + 2 empty sites have to be partitioned in nc + 1 sections

that are at least of length one, i.e., lmin = 1 in Eq. (A.1), which gives the last

binomial coefficient of Eq. (2.32). By alternating empty sections and chains,

a particular configuration is obtained, which is again uniquely determined.

To do Monte Carlo simulation of the SCA effective Hamiltonian given

by Eq. (2.42), we need not only the degeneracy, but we also have to know

the limits of the volume spanned by the variables {n, nd, nc, nI}, i.e., their

minimum and maximum values. The minimum particle number is nmin = 0

and the maximum particle number is nmax(N) = N . The minimum number

of defects is nmin
d = 0 and the maximum number is given by nd = 0 for n < 3

and otherwise

nmax
d (n) =

{

n
2 − 1 for n even
n−1

2 for n odd
. (A.2)

The minimum number of chains is

nmin
c (n) =

{

0 for n = 0

1 for n > 0
(A.3)

and the maximum number is nmax
c (N, 0, nd) = 0 for the empty system and

otherwise

nmax
c (N,n, nd) = min {N − n + 1, n − 2nd} . (A.4)

The minimum number of chains of length one is given by

nmin
I (n, nd, nc) =

{

0 for n − nd ≥ 2ns

2ns − n + nd for n − nd < 2ns
. (A.5)

The maximum number of chains of length one is given by

nmax
I (n, nd, nc) =

{

ns for n − nd = ns

ns − 1 for ns < n
. (A.6)
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Monte Carlo simulation

B.1 Non-local trial moves

In the following we present the trial moves for the Monte Carlo simulation

of the dipole lattice model.

In the Metropolis algorithm [51], the transition probability from an old

state o to a new state n is given by the product of the generation probability

of a move, Pgen(o → n) and the acceptance probability, Pacc(o → n). Impos-

ing detailed balance, the Metropolis acceptance probability in the canonical

ensemble is given by

Pacc(o → n) = min

{

1,
Pgen(n → o)e−βE(n)

Pgen(o → n)e−βE(o)

}

(B.1)

and correspondingly for Pacc(n → o). In simulations of the grand-canonical

ensemble, the energies contain additional terms −n ln z where n is the fluc-

tuating particle number. Usually the generation probabilities of the forward

and the backward move are chosen to be equal and they cancel each other

in the above equation.

In our simulation, a configuration is given in the segment picture, i.e.,

by the lengths of all sections and their orientations. This is a simple way to

include the configurational constraints mentioned above but has the disad-

vantage that for some trial moves the generation probability for the forward

and the backward move is asymmetric. These asymmetric generation prob-

abilities have to be explicitly included in Eq. (B.1). This is the case for

defect generation and recombination, chain splitting and joining, and the

insertion and removal of a single dipole, as is explained below.

For simplicity, in the remaining part of this section we use the word

“choose” when we mean “choose with equal probability”, i.e., when we draw
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some quantity from a uniform distribution.

For the displacement of a defect we choose a chain c ∈ {1, . . . , nc} that

consists of m segments from which we choose segment i ∈ {1, . . . ,m − 1}.
We change the length of segment i by d∆l and the length of segment i + 1

by −d∆l where we have chosen a length ∆l ∈ {1,∆max} and a direction

d = ±1. The generation probability is given by

P dis
gen =

1

2nc(m − 1)∆max
. (B.2)

For the generation of a defect we choose a chain c ∈ {1, . . . , nc} that

consists of m segments from which we choose segment i ∈ {1, . . . ,m}. If the

length of this segment, l, is long enough to carry a defect, i.e., l ≥ 3, then

we choose a length l′ ∈ {1, . . . , l−2} and a direction d = ±1. The segment i

is split into two segments of length l1 = l′ and l2 = l− l′−1 and all segments

of chain c, on the side given by d are reoriented. The generation probability

is given by

P gen
gen =

1

2ncm(l − 2)
. (B.3)

This move increases the number of defects nd by one.

For defect recombination we choose a chain c ∈ {1, . . . , nc} that consists

of m segments from which we choose segment i ∈ {1, . . . ,m − 1}. Addi-

tionally we choose a direction d = ±1 and join segments i and i + 1 to a

new segment with length l = li + li+1 + 1. All segments on the side d are

reoriented. The generation probability is given by

P rec
gen =

1

2nc(m − 1)
. (B.4)

This moves decreases the number of defects nd by one.

For the displacement of a fragment we choose a chain c ∈ {1, . . . , nc},
a direction d = ±1, and a displacement ∆l ∈ {1, . . . ,∆max}. The empty

section on the side d of the fragment is lengthened by ∆l and the empty

section on the opposite side is shortened by ∆l. The generation probability

is given by

P fra
gen =

1

2nc∆max
. (B.5)

The generation probability for the reorientation of a chain, i.e., the re-

orientation of all segments of chain c ∈ {1, . . . , nc}, is given by

P reo
gen =

1

nc
. (B.6)

The exchange move shortens a segment i ∈ {1, . . . ,m1} of fragment c1

consisting of m1 segments, and lengthens a segment j ∈ {1, . . . ,m2} of c2
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consisting of m2 segments a length ∆l ∈ {1,∆max}, therefore conserving the

number of occupied sites. The generation probability is given by

P exc
gen =

1

n2
cm1m2

. (B.7)

To split a chain in two chains we choose a chain c ∈ {1, . . . , nc} and a

segment i ∈ {1, . . . ,m} of length l. Next we have to choose where in the

segment i a bond is broken by choosing a length l′ ∈ {1, l − 1}. One of the

new fragments is displaced in direction d = ±1 by a length ∆l ∈ {1,∆max}.
The generation probability is given by

P spl
gen =

1

2ncm(l − 1)∆max
. (B.8)

This move increases the number of chains by one and the number of segments

by one.

The inverse move is the joining of two chains to a single chain. We

choose a chain c ∈ {1, . . . , nc − 1}. If the last ordered segment of chain c

and the first ordered segment of chain c + 1 have the same direction and if

they are not further apart than ∆max (i.e., the length of the empty section

between them is l ≤ ∆max) then we try to join them. We choose a direction

d = ±1 that decides if the left chain is moved towards the right or the right

chain towards the left. We get for the generation probability

P joi
gen =

1

2(nc − 1)
. (B.9)

This move decreases the number of chains by one and the number of ordered

segments by one.

Next we present moves that change the occupation number. The trans-

fer move adds or removes dipoles at the end of chains. First we choose a

chain c ∈ {1, . . . , nc}, at which end particles are transferred (d1 = ±1), and

then how many particles (∆l ∈ {1,∆max}) are either added or removed by

lengthening or shortening of the chosen end segment (d2 = ±1). Length-

ening of the end segment is only possible if the empty section next to it is

longer than the number of added particles. This also guarantees that the

number of chains is not changed. This gives a generation probability of

P tra
gen =

1

4nc∆max
. (B.10)

The above move is only applicable if there already are occupied sites.

Therefore, we also insert single dipoles in empty sections. To do so we

choose an empty section i ∈ {1, . . . , nc + 1} and a site by choosing a length
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l′ ∈ {1, l − 2} for the empty section on the left of the inserted dipole, which

we assign an orientation d = ±1. This results in a generation probability

P ins
gen =

1

2(nc + 1)(l − 2)
. (B.11)

This move increases the occupation number, the number of chains, and the

number of ordered segments by one.

The inverse move removes a single dipole by choosing a chain with index

c ∈ {1, . . . , nc} and checking if it is of length one. If so, we remove the

single dipole by eliminating this chain consisting of segment j and the empty

section to its right with index j + 1. We assign the empty section to its left

the new length l′j−1 = lj−1 + lj+1 + 1. The generation probability is

P rem
gen =

1

nc
. (B.12)

This move decreases the occupation number, the number of chains, and the

number of ordered segments by one.

B.2 Biased sampling

The particle number distribution function P (n, z′) at the fugacity z′ is ob-

tained from the particle number distribution function Pw(n), that stems

from a biased sampling simulation at the fugacity z, by unfolding of the

weight function w(n) and reweighting to the new fugacity z′,

P (n, z′) =
1

N(z′)
Pw(n)z−w(n)

(

z′

z

)n

, (B.13)

with the normalization constant N(z′) given by

N(z′) =
N
∑

n=0

Pw(n)z−w(n)

(

z′

z

)n

. (B.14)

If we want to calculate the average value of the observable O (which can

be any element of the sampled list or a function of these elements) from

a biased simulation, we need the joint distribution function of the order

parameter and the observable in the biased ensemble is given by

Pw(n,O) =
1

M

∑

i

δ(n(i) − n)δ(O(i) −O) (B.15)
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for a discrete observable O, where M is the number of samples and δ(x)

is Dirac’s delta function. We obtain the average of the observable O at a

fugacity z′ by evaluating

〈O〉 =
1

N(z′)

∑

n

∑

O

Pw(n,O)Oz−w(n)

(

z′

z

)n

. (B.16)

Instead of calculating the two-dimensional histogram and performing the

above average, we calculate the following average of the observable O for

each value of the order parameter in the biased ensemble, i.e.,

〈O〉w(n) =
∑

O

Pw(n,O)O =
1

M

∑

i

δ(n(i) − n)O(i) . (B.17)

We then do the unfolding of the weight function and the reweighting

to the new fugacity z′ in a single step and obtain for the average of the

observable O as a function of the order parameter

〈O〉(n) =
1

N(z′)
〈O〉w(n)z−w(n)

(

z′

z

)n

. (B.18)

The average value of the observable O at the new fugacity z′ is then obtained

as 〈O〉 =
∑

n〈O〉(n).
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Appendix C

Lattice gas

We determine the chemical potential, µ1/2, where the system is half filled

by exploiting the isomorphism between the Ising model with dipole-dipole

interactions in an external field in the canonical ensemble and a lattice gas

in the grand canonical ensemble. This allows us to determine µ1/2 from

symmetry considerations. The Hamiltonian of the lattice gas is given by

H =
1

2

∑

i,j

ninjJ(|j − i|) , (C.1)

where ni = 0, 1 is the occupation number of site i and the interaction po-

tential is given by

J(|j − i|) =











0 for i = j

Ec for |j − i| = 1

−|j − i|−3 else .

(C.2)

The grand canonical partition function of this lattice gas is given by

Ξ =
∑

nk=0,1

exp



−β





1

2

∑

i,j

ninjJ(|j − i|) − µ
∑

i

ni







 . (C.3)

This partition function is isomorphic to the canonical partition function of

the Ising model with dipole-dipole interactions

Q =
∑

sn=−1,1

exp



−β





1

2

∑

i,j

sisjJ̃(|j − i|) − h
∑

i

si







 . (C.4)

as we shall see next.

We establish the isomorphism between the grand canonical partition

function of the lattice gas and the canonical partition function of the Ising
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model by relating spins si to the occupation numbers ni via si = 2ni − 1.

Then, the interaction energy J̃(|j − i|) is given by

J̃(|j − i|) =
J(|j − i|)

4
. (C.5)

It follows that the chemical potential µ and the external field h are related

via

µ = 4J̃ + 2h , (C.6)

where we introduce J̃ =
∑∞

k=1 J̃(k).

The magnetization of the Ising model as a function of the external field h

is point symmetric about the origin. As consequence, for vanishing external

field (h = 0) the average magnetization vanishes. This state of the Ising

model corresponds to a half filled state of the lattice gas which allows us

to calculate µ1/2. From Eq. (C.6) we obtain µ1/2 = 4J̃ =
∑∞

k=1 J(k) =

Ec −
∑∞

k=2 k−3 for vanishing external field, which can be written as

µ1/2 = Ec + 1 − ζ(3) , (C.7)

using ζ(3) =
∑∞

k=1 k−3, in agreement with Eq. (3.6).



Appendix D

Two-state system

For small system sizes, the total dipole moment of a chain of water molecules

exhibits two-state behavior, which we discuss in the following. Let us assume

that we have a system with two states A and B. The transition rates from

state A to B, kA→B, and from state B to A, kB→A, are equal, i.e., kA→B =

kB→A = k. The master equation is then given by

ṗA(t) = k[pB(t) − pA(t)] , (D.1)

ṗB(t) = k[pA(t) − pB(t)] , (D.2)

where pi(t) is the probability that the system is in state i at time t. These

two equations are redundant as the equation pA(t)+pB(t) = 1 is fulfilled for

all times t. Solving a single differential equation for ∆p(t) = pB(t) − pA(t),

−d∆p(t)

dt
= 2k∆p(t) , (D.3)

we obtain

∆p(t) = p0e
−2kt , (D.4)

where p0 ≡ ∆p(0) is the initial condition. Thus, the time-dependent proba-

bilities become

pA(t, p0) =
1

2
[1 − ∆p(t)] , (D.5)

pB(t, p0) =
1

2
[1 + ∆p(t)] , (D.6)

which are symmetric with respect to the initial condition,

pA(t, p0) = pB(t,−p0) . (D.7)

Let us assume that state A and B correspond to the two ordered states

with dipole moments MA and MB. To calculate the time autocorrelation
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function of the dipole moment we take the average over initial conditions. In

equilibrium the system is in state A (p0 = −1) with a probability p̃A = 1/2

and in state B (p0 = 1) with p̃B = 1/2. The autocorrelation function is

given by

〈M(0)M(t)〉 = p̃AMA [pA(t,−1)MA + pB(t,−1)MB] +

+p̃BMB [pA(t, 1)MA + pB(t, 1)MB] (D.8)

and using Eqs. (D.5) and (D.6) we obtain

〈M(0)M(t)〉 = MAMB
1

2

[

1 − e−2kt
]

+

+
1

2

(

M2
A + M2

B

) 1

2

[

1 + e−2kt
]

. (D.9)

For MA = −Nµ and MB = Nµ, this autocorrelation function becomes

〈M(0)M(t)〉 = N2µ2e−
t
τ , (D.10)

where the relaxation time is given by τ = 1/(2k). The inverse transition

rate, 1/k, corresponds to the average time needed to change from one state

to the other and is called the mean first passage time, τMFP = 1/k.



Appendix E

Kinetic Ising model

If we assume that defects are uncorrelated and neglect that domain walls

are formed by defect molecules and not located between next neighbor sites,

then our model corresponds to the one-dimensional Ising model with free

boundary conditions.

Glauber used periodic boundary conditions for the kinetic Ising model,

and we can draw conclusions from his results for our model in the thermo-

dynamic limit, where boundary conditions do not play a role [59]. A domain

wall in the kinetic Ising model corresponds to defect in the water chain, i.e.,

2J = ED, where J is the coupling constant. The rate of a spin flip is given

by

pG =
α

1 + eβ∆E
, (E.1)

where ∆E is the energy difference between the new and the old state and

α = 1/∆tG is the flipping rate of a free spin.

Starting from the master equations, Glauber has derived an expression

for the time-dependent spin correlation function, which determines the time

autocorrelation function of the magnetization. Replacing the magnetization

by the total dipole moment, this autocorrelation function for the kinetic

Ising model is given by

〈M(0)M(t)〉 = 〈M2〉e−|t|/τ , (E.2)

where M(t) is the total dipole moment depending on time t and angular

brackets indicate canonical time averages. Glauber’s expression for the av-

erage value of the squared total dipole moment is given by

〈M2〉 = µ2N
1 + η

1 − η
(E.3)

and for the inverse relaxation time by

τ−1 = α(1 − γ), (E.4)
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where γ = tanh(2J/kBT ) and η = tanh(J/kBT ). These expressions, valid

for periodic boundary conditions at all system sizes, can be applied for

our system with free boundary conditions in the thermodynamic limit. We

identify the energetic cost of a domain wall in the Ising model, 2J , with that

in the dipole lattice model, ED, leading to J = ED/2. Using

tanh(x) =
ex − e−x

ex + e−x
, (E.5)

and in the following

1 − tanh(x) =
2

1 + e2x
, (E.6)

the inverse relaxation time given by Eq. (E.4) becomes

τ−1 =
2

∆tG[1 + e2βED ]
. (E.7)

For large defect excitation energies, the relaxation time can be approximated

by

τ ≈ ∆tG
2

e2βED . (E.8)

In summary, we expect an exponentially decaying autocorrelation func-

tion of the total dipole moment of a hydrogen bonded chain of water mole-

cules in the thermodynamic limit, where defects are uncorrelated to a large

extent.
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