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ABSTRACT 
 

Reversible protein phosphorylation is one of the key mechanisms to regulate a wide range of 

biological processes including stress and developmental signal transduction (Shpak et al., 

2004; Shpak et al., 2005; Wang et al., 2007a). Protein phosphorylation via mitogen activated 

protein kinase (MAPK) cascades is a common module of signal transduction in eukaryotes, 

which in plants is characterized in respect to stress-sensing and development. Recent 

evidences link a MAPK signal transduction cascade with plant development where stress-

activated MAP kinases control cell patterning in plant epidermis (Bergmann et al., 2004; 

Wang et al., 2007b). Protein phosphatases of type 2C (PP2Cs) are known to regulate MAPK 

pathways (Meskiene et al., 1998; Meskiene et al., 2003; Schweighofer et al., 2007). 

Arabidopsis PP2Cs comprise the largest plant protein phosphatase family, however only few 

members are characterized in detail.  

This study addresses a novel stomata-specific Arabidopsis PP2C-type phosphatase STOPP, as 

a negative regulator of environmentally-responsive MAPKs. STOPP inactivates the MAPKs, 

which suppress stomata development. Thereby STOPP induces ectopic stomata formation in 

plant epidermis. Stomata are specialized cells controlling the carbon dioxide, oxygen and 

water vapor exchange with the environment, thus playing a crucial role in photosynthesis and 

global ecosystems (Hetherington and Woodward, 2003). The results of this research suggest 

that the STOPP/MAPK module regulates the development of epidermis by controlling cell 

cycle components. This study provides novel evidences of environmentally-responsive 

MAPK regulation by STOPP and suggests the link between STOPP/MAPK module and the 

cell cycle progression during the development of stomata.  
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ZUSAMMENFASSUNG 
 
Protein-Phosphorylierung ist ein Schlüsselmechanismus in der Regulation vieler biologischer 

Prozesse, sowohl in der Entwicklungssteuerung als auch bei der Stressantwort. Die 

Signalweiterleitung durch Kaskaden aus Mitogen-aktivierte Proteinkinasen (MAPK) ist in 

eukaryotischen Organismen weit verbreitet. Diese Module sind in Pflanzen besonders bei 

Stress-Signaltransduktion und bei der pflanzlichen Entwicklung aktiv. Jüngste 

Forschungsergebnisse verlinken die MAPK-Signaltransduktion mit der Musterbildung der 

Epidermis. Protein-Phosphatasen vom Typ 2C (PP2C), welche bereits als Regulatoren von 

MAPK bekannt sind, bilden in der Modellpflanze Arabidopsis die größte Familie unter den 

Phosphatasen. Bisher wurden jedoch nur wenige PP2C charakterisiert. 

Diese Studie beschreibt eine neue PP2C namens STOPP, welche spezifisch in 

Spaltöffnungszellen (Stomata) exprimiert wird und entwicklungsgesteuerte MAPK negativ 

reguliert. STOPP inaktiviert diese MAPK, blockiert die Zelldifferenzierung und induziert die 

Anhäufung von Stomata. Stomata kontrollieren den Austausch von Sauerstoff, Kohlendioxid 

und Wasserdampf mit der Atmosphäre und sind daher für das globale Ökosystem 

unerlässlich. Diese Studie belegt die Bedeutung des STOPP/MAPK Moduls in der Regulation 

der Epidermisentwicklung und –differenzierung. Die Ergebnisse lassen den Schluss zu, dass 

STOPP die MAPK während der Zelldifferenzierung kontrolliert und wahrscheinlich dadurch 

den Zellzyklus steuert. Diese Arbeit liefert einen äußerst wertvollen Beitrag zum Verständnis 

der Zellzyklusregulation und Zellentwicklung. 
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ABBREVIATIONS  
 
ABA abscisic acid 
ABI abscisic acid insensitive 
AP2C Arabidopsis protein phosphatase 2C 
ATP adenosine triphosphate 
bHLH basic helix-loop-helix 
BiFC bimolecular fluorescence complementation 
BSA bovine serum albumine 
CaMV cauliflower mosaic virus 
CDK cyclin dependent kinase 
CHX cycloheximide 
CTD C-terminal domain 
2,4-D 2,4-dichlorphenoxy acetic acid 
DEPC Diethyl Pyrocarbonate 
Dex.SO4 dextrane sulphate 
DMF dimethylformamide 
DMSO dimethylsulfoxide 
dpg days post germination 
DSP dual specificity protein tyrosine phosphatase 
DTT dithiotreitol 
EDTA ethylenediaminetetraacetic acid 
EGTA ethyleneglycol-bis(β -aminoethylether)-tetraacetic acid 
ER estradiol 
ET ethylene 
flg22 flagellin 22 amino acid peptide 
GA gibberellic acid 
GC guard cell 
GC-FID gas chromatography flame ionization detector 
GFP green fluorescent protein 
GMC guard mother cell 
gof gain-of-function 
GST glutathione S-transferase 
GUS ß-glucuronidase 
h hour 
HA hemagglutinin 
HAB1 homology to ABI1/ABI2 
His1 Histone 1 
IPTG isopropyl-β-D-thiogalactoside 
JA Jasmonic acid 
KAPP kinase associated protein phosphatase 
kb kilobasepair 
kDa kiloDalton 
KIM kinase interaction motif 
LB Luria Bertani media 
lof loss-of-function 
M meristemoid 
MAPK/MPK mitogen activated protein kinase 
MAPKK/MKK/MEK mitogen-activated protein kinase kinase 
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MAPKKK/MKKK/MEKK mitogen-activated protein kinase kinase kinase 
MBP myelin basic protein 
β-ME β-mercaptoethanol 
min. minute 
MKP MAP kinase phosphatase 
MMC meristemoid mother cell 
MP2C Medicago protein phosphatase 2C 
MS Murashige Skoog media 
Myc myelocytomatosis 
NC neighbor cell 
NLS nuclear localization signal 
NTD N-terminal domain 
OD optical density 
ONPG o-nitrophenyl-β-D-galactopyranoside 
PC pavement cell 
PCR polymerase chain reaction 
PEG  polyethylene glycol 
Pi inorganic phosphate 
PI propidium iodide 
PMSF phenylmethylsulfonylfluoride 
PP2A protein phosphatase type 2A 
PP2B protein phosphatase type 2B 
PP2C protein phosphatase type 2C 
PPM protein phosphatase metalo-dependent 
PPP phosphoprotein phosphatase 
ProD Protodermal cell 
RLK receptor like kinase 
RLP receptor like protein 
rpm rounds per minute 
RT PCR reverse transcription PCR 
S/Ser serine 
SA salycilic acid 
SAMK  stress-activated MAP kinase 
SC subsidiary cell 
SD synthetic dropout media 
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 
SIMK stress-induced MAP kinase 
SLGC stomata lineage ground cell 
SM satellite meristemoid 
ssDNA single stranded DNA 
STOPP stomata protein phosphatase 
TCA trichloroacetic acid 
Thr/T threonine 
Tyr/Y tyrosine 
wt wild type 
Y2H yeast two hybrid 
YFP yellow fluorescent protein 
YPD yeast extract/peptone/dextone 
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1. Introduction 
 

1.1. Stomata development: signals and regulation 
  

Plants exchange with the environment various substances, including nutrients, metabolites, 

gases and water. Plant epidermis is the boundary for the plant - environment interactions. 

Specialized epidermal cell structures, stomata, control CO2 uptake and thus are crucial for 

plant photosynthesis and maintenance of the whole ecosystem (Hetherington and Woodward, 

2003). Stomata consist of paired guard cells flanking a pore, which connects the intercellular 

airspace with the atmosphere (Essau, 1977; Nadeau and Sack, 2002). They control water loss, 

CO2 fixation, gas exchange, xylem embolism, cooling and nutrient transport from roots 

(Raven, 2002). The evolvement of stomata enabled plants to optimize carbon fixation and 

limit water loss (Raven, 2002), which has been essential for the success of terrestrial plants in 

adaptation to different environments (Croxdale, 2000; Hetherington and Woodward, 2003; 

Gray and Hetherington, 2004).  

Stomata development is entirely postembryonic and starts within a day after seed germination 

(Nadeau and Sack, 2002). In monocot plants and conifer needles stomata formation is pre-

patterned by initial organization of competent cells into longitudinal arrays (Croxdale, 2000). 

In Arabidopsis, stomata formation in hypocotyls and cotyledons is controlled by organ-

specific rules (Kono et al., 2007). For example the tmm mutant, that has impaired stomata 

development, produces stomatal clusters on leaves but lacks stomata in the hypocotyls, 

inflorescence stem and adaxial surface of sepals (Yang and Sack, 1995; Geisler et al., 1998). 

The plant hormone gibberrelic acid is essential for stomata development in hypocotyls but not 

in leaves (Saibo et al., 2003). Hypocotyl epidermis is patterned by the same mechanisms that 

control root epidermis development. In Arabidopsis hypocotyls stomata development is pre-

patterned to non-protruding cell files that overlie anticline cortex cell wall. In roots the same 

cell files, which are the precursors for stomata, form root hairs (Berger et al., 1998). Stomata 

patterning in hypocotyls is controlled by the same genes, which define root epidermis 

patterning: WEREWOLF (WER), TRANSPARENT TESTA GLABRA (TTG) and 

GLABRA2 (GL2) (Berger et al., 1998; Lee and Schiefelbein, 1999). The density of stomata 

increases towards the apical pole of hypocotyl suggesting the conflicting influences of root- 

and shoot-specific rules of epidermis patterning (Berger et al., 1998). 

Stomata formation in Arabidopsis leaves is not obviously pre-patterned, but some tendencies 

in stomata distribution have been observed. In leaves stomata tend to be excluded from 
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epidermis that lies over the midvein region and around the trichomes (Serna and Fenoll, 

2000b; Nadeau and Sack, 2002; Martin and Glover, 2007). Often stomatal density is higher 

on the abaxial leaf surface than on the adaxial leaf surface, which is more exposed to the 

heating and water loss (Martin and Glover, 2007). The intercellular airspace cavities below 

the stomata pore coincides with the junctions between mesophyll cells (Nadeau and Sack, 

2002; Bergmann, 2004). In one study the positioning of stomata was correlated with the 

junctions between mesophyll cells (Serna and Fenoll, 2000b).  However, this correlation is 

not obligatory as other studies found that stomata may be placed independently of mesophyll 

cell junctions (reviewed in (Nadeau and Sack, 2002; Bergmann, 2004).  

 

Stomata formation via oriented asymmetric and symmetric cell divisions 

 

All stomata are formed by oriented cell divisions (Larkin et al., 1997). The epidermis of 

newly germinated Arabidopsis seedling consists of uniform protodermal cells. Within 24 

hours some protodermal cells acquire the meristemoid mother cell (MMC) identity and 

commit to stomata developmental pathway (reviewed in (Nadeau and Sack, 2002; Nadeau 

and Sack, 2003; Bergmann, 2004; Bergmann and Sack, 2007; Nadeau, 2009).  

MMC

NC M

ProtoD

NC GMC

NC GC
GC

NC

NCSM

NCGMC

NCGC
GC

NC

NC M

NC NC
M

NC
GCGC

NC

GMC
NC

NC

NC
NC

GMC

NC1

NC2
NC3

PC

MGC

GC

GC
GC

 
Figure 1.1. The development of stomata in Arabidopsis leaf. Left: schematic representation of 
asymmetric and symmetric cell divisions during stomata development. Right: wild type epidermis of 
Arabidopsis cotyledon contains highly crenulated pavement cells and stomata lineage cells; the 
anisocytic stomata complex consisting of GMC surrounded by three neighbor cells (marked in NC1, 
NC2 and NC3, which corresponds to the subsequent division rounds). ProtoD - protodermal cell, MMC 
- meristemoid mother cell, M - meristemoid, GMC - guard mother cell, GC - guard cell, NC - neighbor 
cell, SM - satellite meristemoid, PC – pavement cell. 
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The MMC divides asymmetrically to produce a smaller cell meristemoid (M) and a neighbor 

cell (NC) of stomatal lineage (also termed stomatal lineage ground cell – SLGC or subsidiary 

cell - SC) (seed Fig. 1). Eventually, the meristemoid differentiates into a guard mother cell 

(GMC), which divides symmetrically to produce two guard cells (GCs) that form the stomatal 

pore. Thus, progression through three types of stomata precursor cells (MMC, M and GMC) 

occurs till the terminal differentiation of stomata (Zhao and Sack, 1999). 

Before the terminal differentiation, the meristemoid may divide asymmetrically two more 

times in an inward spiral, each time producing a meristemoid and a clonally related NC that 

belongs to the same stomata lineage (a monoclonal complex) (Zhao and Sack, 1999; Nadeau 

and Sack, 2002; Serna et al., 2002). Such stomatal complexes, containing the stomata 

surrounded by three NCs of unequal size, are termed anisocytic (Metcalfe and Chalk, 1950). 

About one third of meristemoids in a lineage do not divide or divide once and form polyclonal 

stomatal complexes with clonally unrelated NCs (Geisler et al., 2000; Nadeau and Sack, 

2002).  

NC (both of stomata and non-stomatal lineage) may differentiate into pavement cell (PC) or 

divide asymmetrically to produce a satellite meristemoid (SM) and larger NC (Zhao and Sack, 

1999). The decision either to divide or to differentiate depends on the age of NC in the 

stomata complex. In young stomata complexes all NCs have equal potential to divide, 

whereas in older complexes, usually only the smallest and youngest NC divides (Berger and 

Altmann, 2000; Geisler et al., 2003). NCs that differentiate into pavement cells undergo 

endoreduplication and do not divide any further (Melaragno et al., 1993; Geisler et al., 2000). 

The asymmetric cell division is the main mechanism to initiate and amplify stomata lineage. 

Stomata number is adjusted to the environmental conditions. The asymmetric division of NCs 

accounts for the development of 75% of stomata in leafs and cotyledons (Geisler et al., 2000). 

By contrast, in hypocotyls no satellite meristemoids are generated and the population of 

stomata lineage is amplified by the divisions of MMC precursors (Kono et al., 2007). 

Hypocotyl stomata typically arise after initial longitudinal and subsequent transverse divisions 

in non-protruding cell files (Berger et al., 1998).  

In any case stomata patterning obeys to the one-cell-spacing rule, which ensures that stomata 

are not formed in direct contact to each other. The one-cell-spacing rule of stomata is 

maintained by oriented asymmetric cell division (Geisler et al., 2000). The plane of 

asymmetric cell divisions is oriented so that the new meristemoid is placed away from the 

pre-existing stomata or precursor cell (Zhao and Sack, 1999; Geisler et al., 2000). If two 

meristemoids are formed in contact, one of them either divides away placing the NC in 
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between of them or is arrested and does not differentiate to GMC (reviewed in (Nadeau and 

Sack, 2002).  

Stomata initiation, entry and amplifying divisions, spacing and differentiation is tightly 

regulated. Generally, the gene regulators of stomata development may be considered as 

positive and negative. Positive gene regulators are the essential factors of stomata patterning, 

mainly represented by bHLH proteins (overviewed in § 1.1.3). The negative regulators of 

stomata patterning are components of intercellular signal generation, perception and 

transduction cascade(s) that coordinate spacing of stomata and restrict stomata development 

(overviewed in § 1.1.4). 

 

1.1.1. Signals in stomata development 

 

Cell-to-cell signals  

 

Intercellular signaling controls stomata patterning and distribution. Mature guard cells or their 

precursors, meristemoids or guard mother cells, can send positional signals to the neighbor 

cells and determine their fate (reviewed in (Nadeau and Sack, 2003; Bergmann, 2004; 

Nadeau, 2009). Positional negative signals inhibit the division of the neighbor cell adjacent to 

two or more stomata or control the orientation of the division to prevent stomata formation 

next to each other (Geisler et al., 2000).  

Recently, the small secreted peptide EPIDERMAL PATTERNING FACTOR1 (EPF1) was 

proposed as a positional signal in stomata development in Arabidopsis (Hara et al., 2007). 

Meristemoid and guard mother cell-expressed EPF1 may be a ligand for putative cell surface 

receptors in stomata neighbor cells to suppress stomata patterning. Consistently, the ectopic 

over-expression of EPF1 eliminates stomata or dramatically reduces their abundance (Hara et 

al., 2007). 

Signals derived from mesophyll cells in leaves are also important in determining the 

patterning of stomata (Serna and Fenoll, 2000a). Arabidopsis double mutants for the 

homeodomain transcription factors, such as protodermal factor2 (pdf2) and meristem layer 1 

(atml1), which have no epidermis, but develop occasional patches of clustered stomata on the 

bare mesophyll layer (Abe et al., 2003). This suggests that either the mesophyll promotes 

stomata formation or the epidermis provides negative signals of stomata development 

(Bergmann, 2004). On the other hand, in the dominant mutant Xcl1 (extra cell layers1) of 

maize, which contains extra epidermal cell layers, the stomata number is decreased (Kessler et 
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al., 2002). Thus, stomata formation may be promoted in the proximity to the mesophyll. At 

the same time, epidermal cells either block the positive signals from the mesophyll layer or 

send the repressive signals to control stomata development (Bergmann, 2004). 

 

Plant hormones 

 

Plant hormones gibberellins (GA) and ethylene (ET) promote stomata formation in 

hypocotyls, by promoting cell division in the epidermis (Saibo et al., 2003). GA is the key 

hormone, which positively regulates stomata formation, while ET and auxin have an additive 

effect to GA action (Saibo et al., 2003; Kono et al., 2007). In cotyledons, exogenous 

application of these hormones has no influence on stomata development (Saibo et al., 2003). 

However, ET induces the differentiation of stomata in Arabidopsis leaves (Serna and Fenoll, 

1996). 

Auxin increases the effect of GA probably indirectly by enhancing ethylene biosynthesis 

(Saibo et al., 2003). The ethylene biosynthesis is regulated by mitogen-activated protein 

kinases (MAPKs) (Liu and Zhang, 2004). The activation of the stress MAPKs SIPK and 

MPK6 from tobacco and Arabidopsis, induce ethylene biosynthesis. MPK6 phosphorylates 

the 1-aminocyclopropane-1-carboxylic acid synthases ACS2 and ACS6 leading to their 

stabilization, accumulation and subsequent ethylene production (Liu and Zhang, 2004; Joo et 

al., 2008). 

Other plant hormones, such as ABA or cytokinins can also positively regulate stomata density 

in various plant species (reviewed in (Martin and Glover, 2007; Casson and Gray, 2008). In 

hypocotyls plant hormones enhance stomata formation by promoting cell division in the non-

protruding cell files but none of them induces the ectopic stomata formation in protruding cell 

files (Saibo et al., 2003; Casson and Gray, 2008). 

Plant hormones and their precursors may act as long-distance mobile signals (Casson and 

Gray, 2008). Plant hormones may transduce the environmental signals, e.g. from older leaves 

to developing leaves, to regulate stomata initiation (Lake et al., 2001).  

 

Environmental signals 

 

The majority of environmental signals determine the overall stomata density (Sachs, 1991), 

which is calculated as stomata index (ratio of stomata to all epidermal cells). UV-B 

irradiation, CO2, shading and low water content decreases stomata index, whereas increased 
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light intensity increases stomata index (reviewed in (Hetherington and Woodward, 2003; 

Casson and Gray, 2008). High humidity induces stomata clustering (Serna and Fenoll, 1997). 

It is suggested that CO2 affects the pre-patterning of epidermal cells, whereas high humidity 

affects the patterning within the stomata lineage (Martin and Glover, 2007). CO2 and shading 

can generate long-distance signals from mature to young leaves in stomata development 

(Lake et al., 2001).  

Environmental signals are perceived at the epidermis. The cuticle, which covers and connects 

the epidermal cells, may be involved in the perception and transmission of signals that 

regulate stomatal density, distribution or function (Bird and Gray, 2003). Differences in the 

cuticle wax profile may alter the permeability of signaling compounds. It is also possible that 

products of wax biosynthesis themselves act as signaling compounds regulating epidermal 

cell fate (Casson and Gray, 2008). In general, a decrease in cuticle wax content increases 

stomata density (Gray et al., 2000). Mutations in Arabidopsis genes encoding for the long-

chain fatty acids-producing enzymes CER1 and CER6 reduce wax accumulation on leaves 

and lead to highly increased stomata indices and clustered stomata (Gray et al., 2000). HIGH 

CARBON DIOXIDE (HIC) shares high homology to 3-ketoacyl CoA synthetase, which is 

involved in the synthesis of long chain fatty acids of epicuticular waxes. HIC is expressed 

only in guard cells and regulates stomata density in response to elevated CO2. Arabidopsis hic 

mutant shows significantly increased stomata index in response to CO2, while the wild type 

plants have slightly decreased stomata index in these conditions (Gray et al., 2000). This 

suggests that elevated CO2-induced signaling in guard cells affects the differentiation of 

satellite meristemoids (Gray et al., 2000; Martin and Glover, 2007). The gain-of-function 

mutant of AP2/EREBP transcription factor SHINE, which activates wax biosynthesis, has 

reduced stomata index (Aharoni et al., 2004). sdd1 plants, which have five-fold reduced level 

of C16 exhibit 3 – 4 - fold higher stomatal densities at ambient CO2 demonstrating that 

unsaturated C16 fatty acids are important for stomata density (Fiehn et al., 2000). By contrast, 

mutants of WAX2, a gene required for the integrity of the internal cuticle layer have reduced 

stomata density (Chen et al., 2003).  

 

1.1.2. Cell cycle control of stomata development 

 

Cell growth and cell divisions are tightly coordinated with cell differentiation in the stomata 

development pathway. The cell identity in the epidermis is correlated with nuclear DNA 

content, as trichomes and pavement cells undergo rounds of endoreduplication, whereas guard 
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cells and their precursors remain diploid (Melaragno et al., 1993). The modification of 

endoreduplication level and cell division rate alter the cell size and number, however, 

multiple studies demonstrate that the ploidy level itself does not confer stomata development 

(De Veylder et al., 2001; Dewitte et al., 2003; Boudolf et al., 2004a; Kono et al., 2007). 

A reduced level of endoreduplication and cell division rate leads to increased cell size and 

decreased cell number (De Veylder et al., 2001). Increased endoreduplication levels result in 

more but smaller cells in the epidermis (Dewitte et al., 2003). In hypocotyls, the over-

expression of E2F-DPa or downregulation of RETINOBLASTOMA-RELATED (RBR) leads to 

a massive over-proliferation of small cells in the files that normally develop stomata, but the 

number of stomata is not affected (De Veylder et al., 2002; Desvoyes et al., 2006). Later in 

development, the cell-file restriction is lost and the E2Fa–DPa expression promotes divisions 

in all hypocotyl cell files (De Veylder et al., 2002). Therefore, Bergmann (2004) suggested 

that a pre-pattern in the cell files of hypocotyl influences cell ability to respond to mitogenic 

cues (Bergmann, 2004). Similarly, the modulation of endoreduplication levels with the cell 

cycle inhibitor KIP RELATED PROTEIN (KRP) or the cell cycle activator CYCD3;1 did not 

alter stomata index (De Veylder et al., 2001; Dewitte et al., 2003). 

In contrast, the the over-expression of Arabidopsis DNA replication licensing factors CDC6 

and CDT1 increases the density of stomata in Arabidopsis leaves (Castellano Mdel et al., 

2004).  

Several plant-specific cell cycle genes are involved in stomata development (as reviewed 

below). Although cell cycle genes and their functions are highly conserved among species, it 

is not surprising that some plant-specific cyclins and cyclin dependent kinases (CDKs) 

function in stomata development which is specific only for land plants. 

  

The role of CDKB1;1 in stomata development 

 

Boudolf (2004) suggested that Arabidopsis CDKB1;1 has an essential function in stomata 

development. The CDKB1;1 gene belongs to the unique B-type CDKs with the peak of 

activity at the G2/M boundary (Boudolf et al., 2004a). The transcription of CDKB1;1 is 

controlled by the E2F pathway and may be a part of cross talk mechanism between the G1/S 

and G2/M transition points (Boudolf et al., 2004b). CDKB1;1 is highly expressed in 

meristemoids, guard mother cells and guard cells of cotyledons (Boudolf et al., 2004a).  

Reduction of CDKB1;1 activity due to a dominant negative mutation (CDKB1;1.N161) 

results in decreased stomata index in transgenic plants and aberrant unpaired guard cells that 



 17

lack stomata pores. The reason of decreased stomatal index in CDKB1;1.N161 seedlings is 

the early inhibition of amplifying meristemoid divisions and satellite meristemoid formation 

(Boudolf et al., 2004a). The aberant GCs contain 4C nucleus whereas normal stomata contain 

a nucleus with 2C (Melaragno et al., 1993), indicating that aberrant GCs are blocked in the 

G2 phase (Boudolf et al., 2004b).  

However, the activity of CDKB1;1 is not required for stomata differentiation. In 

CDKB1;1.N161 seedlings divisions of stomatal precursors are inhibited but the cells still 

acquire stomata identity, indicating that stomata cell differentiation is uncoupled of cell 

division (Boudolf et al., 2004a).  

 

The role of CYCD4 in stomata development 

 

Other cell cycle regulators of Arabidopsis, such as cyclin D-type, CYCD4;1 and CYCD4;2, 

were proposed to control cell division in the stomatal lineage, specifically in the hypocotyls 

(Kono et al., 2007). The binding of specific cyclins to CDKs controls the CDK activity and 

substrate specificity (Morgan, 1997). An active cyclinD/CDK complex promotes cell cycle 

progression from G1 to S phase and thus promotes cell division. (de Jager et al., 2001). Both 

CYCD4;1 and CYCD4;2 form active kinase complexes with CDKA;1, which is the ortholog 

of yeast Cdc2/Cdc28p. Only CYCD4;1 can bind and activate a plant-specific CDKB2;1, 

which is expressed from the G2 to the M phase (Kono et al., 2003; Kono et al., 2006)., 

CYCD4;2 lacks exclusively the Rb binding motif (Kono et al., 2006), but is still functional as 

a cyclin. This suggests that CYCD4;2 may promote the divisions of stomata precursors in the 

hypocotyl independently of the Rb/E2F/DP pathway or CYCD4;2 may control specific 

transcription factors via CDK-independent mechanisms (Kono et al., 2007). 

CYCD4;1 or CYCD4;2 loss-of-function genes significantly reduce cell division in the upper 

region of non-protruding cell files of the hypocotyls where stomata are produced exclusively 

under normal conditions (Berger et al., 1998). Consistently, the number of stomata in 

hypocotyls is significantly reduced in cycd4 mutants. Nevertheless, stomata differentiation 

was not affected either in single or in double CYCD4 mutants (Kono et al., 2007). 

Over-expression of CYCD4 considerably increases the number of nonprotruding cells of 

stomatal lineage in seedlings and of stomata in the upper hypocotyl region, but it only slightly 

enhances the cell division in the protruding cell files. CYCD4 functions most probably early 

in stomatal pathway promoting the division of MMC precursors and thus amplifying the 

MMC population (Kono et al., 2007).  
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Taken together, CYCD4 plays a specific role in promoting cell divisions of MMC precursors 

in the nonprotruding cell files in hypocotyls. However CYCD4 seems not to be involved in 

the asymmetric divisions of MMCs or in GC and stomatal differentiation (Kono et al., 2007). 

 

1.1.3. Transcription factors act as essential positive cell fate determinants of stomata 

development 

 

Five basic helix–loop–helix (bHLH) proteins SPEECHLESS (SPCH), MUTE, FAMA, 

SCREAM/ICE1 and its paralog SCREAM2 have been identified as essential positive stomatal 

development regulators that successive direct cell-fate decisions (Ohashi-Ito and Bergmann, 

2006; MacAlister et al., 2007; Pillitteri et al., 2007; Pillitteri and Torii, 2007; Kanaoka et al., 

2008).  

In addition, the MADS-box transcription factor AGAMOUS-like (AGL) 16 is a positive 

regulator of stomata development (Kutter et al., 2007). AGL16, which is regulated by 

microRNA-mediated decay, controls the formation of satellite meristemoids (Kutter et al., 

2007). 

 

SPCH, MUTE and FAMA direct cell fate decisions in stomata development 

 

SPCH, MUTE and FAMA are essential positive regulators during successive steps of stomata 

development. (Ohashi-Ito and Bergmann, 2006; MacAlister et al., 2007; Pillitteri et al., 2007; 

Pillitteri and Torii, 2007). 

SPCH is necessary and sufficient for the entry asymmetric divisions to establish the stomatal 

lineage (MacAlister et al., 2007; Pillitteri et al., 2007). SPCH may also promote the 

amplifying and spacing asymmetric divisions in stomata development (MacAlister et al., 

2007).  

MUTE is the key switch for meristemoid fate transition to GMCs (MacAlister et al., 2007; 

Pillitteri et al., 2007). The MUTE gene expression and protein localisation in meristemoids 

just before GMC differentiation suggests, that plants are able to track the rounds of 

asymmetric division and subsequently induce MUTE, which then terminates meristemoid 

stem-cell-like properties (Pillitteri et al., 2007). 

FAMA is a key switch between cell division and terminal differentiation of stomatal lineage 

to GCs. FAMA restricts proliferative divisions at the end of stomatal lineage and promotes 

the differentiation of GCs (Ohashi-Ito and Bergmann, 2006). FAMA might be able to limit 
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cell division by directly regulating cell cycle genes. In fama mutants GMC-like cell files 

express CDKB1;1, suggesting that FAMA may negatively regulate CDKB1;1 expression 

(Ohashi-Ito and Bergmann, 2006). Normally CDKB1;1 is expressed exclusively within the 

stomatal lineage and is downregulated when epidermal cells cease to divide (Boudolf, 2004). 

In addition, both the ectopic expression of FAMA and the expression of dominant negative 

form of CDKB1;1 cause similar unpaired GC over-production phenotypes (Boudolf et al., 

2004a; Ohashi-Ito and Bergmann, 2006).  

The spch, mute and fama mutants completely lack stomata. In addition no asymmetric entry 

division occurs in spch mutants and no stomata-lineage cells are produced in strong alleles 

(MacAlister et al., 2007; Pillitteri et al., 2007). In mute loss-of-function mutants the 

meristemoids undergo 3 – 6 rounds of excessive asymmetric divisions (normally in wild type 

plants meristemoids may divide 1-3 times asymmetrically) and finally are arrested as small 

triangular cells surrounded by excess of stomata lineage ground cells (Pillitteri et al., 2007). 

fama1-1 loss-of-function mutant makes files of undifferentiated GMC-like cells(Bergmann et 

al., 2004). This phenotype resembles the phenotype of flp-7 mutant of MYB transcription 

factor FLP (Lai et al., 2005). The phenotype of fama flp double mutant suggests that FAMA 

acts prior to FPL or that it is required for broader range of activities (Ohashi-Ito and 

Bergmann, 2006). 

The over-expression of SPCH, MUTE and FAMA leads to diverse stomata phenotypes. Over-

expression of SPCH induces ectopic divisions in apparently differentiated pavement cells but 

no extra stomata are produced (Pillitteri et al., 2007). However, the expression of SPCH from 

its native promoter results in additional asymmetric divisions and stomata clustering 

(MacAlister et al., 2007). Constitutive over-expression of MUTE leads to the conversion of all 

epidermal cell to stomata (MacAlister et al., 2007; Pillitteri et al., 2007). In case of a less 

severe phenotype, a subset of epidermal pavement cells may express characteristics of both 

pavement and guard cells, e.g. may adopt partial guard cell identity (containing chloroplasts, 

express the mature guard cell marker and produce a symmetric division plane with a “faux 

pore”) (MacAlister et al., 2007; Pillitteri et al., 2007). The over-expression of FAMA leads to 

the formation of unpaired GC clusters. These GCs make stomatal pores and express mature 

GC markers. Moreover, FAMA over-expression is able to transdifferentiate root epidermal 

cells and non-epidermal cells of mesophyll to GCs. Notably, the over-expression of FAMA 

can also force GMCs transition to GCs without undergoing normal symmetrical cell division 

(Ohashi-Ito and Bergmann, 2006).  
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The expression and protein activity of SPCH and FAMA transcription factors may be 

regulated by a MAPK pathway (Bergmann et al., 2004; Lampard et al., 2008). Modifications 

of the potential MAPK phosphorylation target domain (MPKTD) in SPCH modulate SPCH 

function in stomatal development by repressing or activating SPCH in a quantitative manner 

(Lampard et al., 2008). FAMA transcript is down-regulated in ∆N-YDA (MAPKKK) no-

stomata seedlings and up-regulated in yda seedlings that contain clustered stomata (Bergmann 

et al., 2004).  

 

SCREAM/ICE1 and SCREAM2 specify the actions of SPCH, MUTE and FAMA 

 

SCREAM/ICE1 (SCRM) and SCREAM2 (SCRM2) are two paralogous proteins, which 

specify the actions of SPCH, MUTE, and FAMA in succession from the initiation of stomatal 

lineage in protodermal layer to the differentiation of guard cells (Kanaoka et al., 2008). 

SCRM is also identified as the INDUCER OF CBF EXPRESSION1 (ICE1), an upstream key 

transcriptional activator of cold-induced transcriptome and freezing tolerance (Chinnusamy et 

al., 2003). 

 

SPCH

ICE1/SCRM2

MUTE

ICE1/SCRM2

FAMA

ICE1/SCRM2

MMC NC M NC GCGCNC GMC

 
Figure 1.2. bHLH transcription factors direct the successive cell-fate decisions during stomata 
development (schematic representation). SPCH directs the asymmetric division into stomatal cell 
lineage, whereas MUTE terminates asymmetrically dividing meristemoids and triggers transition from 
meristemoid to GMC (Pillitteri et al., 2007). FAMA terminates symmetric divisions and promotes guard 
cell differentiation (Ohashi-Ito and Bergmann, 2006). SCRM/ICE1 and SCRM2 heterodimerize with 
SPCH, MUTE and FAMA and govern the successive steps during stomata development. The action of 
functionally redundant SCRM and SCRM2 is probably gene dosage dependent (Kanaoka et al., 2008). 
MMC – meristemoid mother cell, NC – neighbour cell, M – meristemoid, GMC – guard mother cell, GC 
– guard cell. 
 

SCRM/ICE1 and SCRM2 are broadly expressed within the stomatal cell lineage and are able 

to heterodimerize. They guide the sequential actions of SPCH, MUTE, and FAMA, which are 

expressed transiently in specific precursor cells for successive initiation, proliferation, and 

terminal differentiation of stomatal cell lineages. The gradual loss of SCRM and SCRM2 

recapitulate the phenotypes of fama, mute, and spch (Kanaoka et al., 2008). 
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MYB transcription factors FPL (FOUR LIPS) and MYB88 are late-acting genes in stomata 

development 

 

FLP and its paralogous gene MYB88 encode two-repeat (R2R3) MYB proteins that are 

probable transcription activators and possess overlapping functions in stomata development 

(Lai et al., 2005). FLP is expressed in late-stage GMCs and in young, still differentiating 

GCs. The FPL protein accumulates just before the symmetric division (Lai et al., 2005). FLP 

controls the timely transition from symmetric cell division (GMC identity) to the terminal 

stomata differentiation (GC identity). flp-1 mutation results in paired stomata clusters, which 

arise after one or more parallel divisions of GMC daughter cells. FPL loss-of-function causes 

GMC daughter cells to retain GMC identity and delays their differentiation to GCs (Lai et al., 

2005). 

FLP/MYB88 may function to limit division directly by regulating cell cycle genes or 

indirectly by promoting a transition in cell fate. Normally, GCs are probably arrested in G1 or 

exit the cell cycle (G0) because they do not divide and they retain a 2C level of DNA 

(Melaragno et al., 1993). Therefore, FLP target(s) might be a cell cycle regulator(s) expressed 

just before the symmetric GMC division. This target could be. CDKB1;1 (Lai et al., 2005), 

which is expressed in GMCs/GCs, and is required for GMC mitosis (Boudolf et al., 2004a). 

 

1.1.4. Signal transduction components as negative regulators of stomata development 

 

Signal production, its perception by receptor-like proteins and receptor kinases, and signal 

transduction via a MAPK cascade inhibits the stomata development pathway (Yang and Sack, 

1995; Berger and Altmann, 2000; Bergmann et al., 2004; Shpak et al., 2005; Wang et al., 

2007b).  

All stomata development regulators are required for normal stomatal patterning, although 

genes earlier acting in the pathway, such as SDD1 (STOMATA DENSITY DISTRIBUTION), 

TMM (TOO MANY MOUTHS), ER (ERECTA) family and MAPKs are the key regulators of 

stomata spacing via asymmetric cell divisions. The late-acting FLP (FOUR LIPS)/ MYB88 

regulates spacing indirectly by restricting symmetric cell divisions at the end of the stomata 

cell lineage. Mutations in all these genes lead to increased stomata density and stomata 

clustering (Fig. 2)(Yang and Sack, 1995; Berger and Altmann, 2000; Bergmann et al., 2004; 

Lai et al., 2005; Shpak et al., 2005; Wang et al., 2007b). 
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SDD1 and TMM are components of cell-to-cell signaling in stomata development  

 

The SDD1 gene encodes an extra-cellular subtilisin-like serine protease, which might cleave a 

yet unidentified signaling molecule precursor to produce a mature signal (Berger and 

Altmann, 2000) which is received by the LRR receptor-like protein TMM (Von Groll et al., 

2002). SDD1, which is expressed in meristemoids and guard mother cells, might regulate the 

developmental fate of neighboring cells (Von Groll et al., 2002). TMM is localized to the cell 

membrane of stomata lineage ground cells and stomata precursors, the meristemoids. The 

similarity of TMM to CLAVATA2 receptor-like protein suggests that TMM dimerize with a 

receptor-like kinase (RLK), thereby transducing the signal leading to the restriction of 

stomata development (Larkin et al., 2003). 

ER-family proteins were suggested as candidates for TMM co-receptor RLKs (reviewed in 

(Nadeau, 2009). ER and ER-like proteins, ERL1 and ERL2, negatively regulate stomatal 

development (Shpak et al., 2005). ER, ERL1, and ERL2 together control the initial decision 

of protodermal cells to enter asymmetric division to generate stomatal complexes. ERL1 and 

ERL2 might promote asymmetric division of the meristemoid and delay meristemoid 

differentiation into guard mother cells. Thus, ERL1 and ERL2 maintain the activity of 

stomata stem cells (Shpak et al., 2005). 

However, the relationship between TMM and ER-family appears to be very complex. Shpak 

(2005) argues that TMM negatively regulates specific ER-family members by receptor 

dimerization with ER-family RLKs (most likely with ERL1). Alternatively, TMM may titrate 

the same ligands as does the ER family (Shpak et al., 2005). This complex interaction of 

TMM and ER-family genes suggests that their products are not just upstream or downstream 

of each other but work combinatorial to determine stomatal-lineage cell fate. 

 

A MAP kinase cascade negatively regulates stomata development 

 

YODA MAPKKK, MKK4 and MKK5, MPK3 and MPK6 constitute the signal transduction 

cascade that regulates stomata development (Bergmann et al., 2004; Wang et al., 2007b). 

YODA acts as a cell fate switch in stomatal development downstream of SDD1 and TMM or 

in an independent pathway. The loss-of-function yda mutations lead to stomata cell clusters. 

Constitutive activation of YDA results in complete lack of guard cells in homozygous ∆N-

YDA plants  It suggests that YODA activity must be down-regulated to allow epidermal cells 

to enter the stomata lineage (Bergmann et al., 2004).  
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Downstream of YODA, the signal is tranduced by the MKK4/5-MPK3/6 signaling module 

(Wang et al., 2007b). Single mpk3 and mpk6 loss-of-function mutants do not have obvious 

developmental phenotypes. Silencing of MPK3 by RNAi in mpk6 mutant and embryonically-

rescued mpk3 mpk6 loss-of-function mutants show dramatic stomata development and 

patterning defects. Similarly, silencing of MKK4 or MKK5 by RNAi displays weak stomatal 

patterning defects (frequently 2 - 3 clustered stomata), but simultaneous silencing of both 

MKK4 and MKK5 results in excessive stomata clustering. In some cases the entire epidermis 

of the cotyledons may consist of stomata. The seedlings with stomata defects do not survive 

beyond the cotyledon stage (Wang et al., 2007b). On the opposite, the activation of MKK4/5-

MPK3/6 results in epidermis composed solely of pavement cells (Wang et al., 2007b). 

Taken together, the main functions of MKK4/5-MPK3/6 in stomata development are to 

restrict asymmetric cell division frequency, to maintain the polarity of the asymmetric cell 

division of stomata lineage cells, to coordinate cell fate specification between daughter cells 

and to suppress stomata cell fate specification (Wang et al., 2007b). Moreover, the MAPKs 

may directly regulate positively acting transcription factors of stomata development. The 

stomata-initiating transcription factor SPCH contains a novel MAPK phosphorylation target 

domain (MPKTD), which modulates SPCH function in stomata development by repressing or 

activating SPCH in a quantitative manner (Lampard et al., 2008). 

The functions of the MAPK signaling cascade may be linked with cell cycle progression or 

stress-response pathways (Bergmann, 2004; Wang et al., 2007b). The MKK4/5-MPK3/6 

module is activated in both the stomata development and the stress signal transduction 

pathways. Therefore, this module may integrate environmental and stomata-developmental 

signals (Wang et al., 2007b). In addition, the mutations in yda and mpk3 mpk6 confer 

impaired development of extra-embryonic cells and plant fertility suggesting broader range of 

their actions in plant development (Bergmann et al., 2004; Lukowitz et al., 2004; Wang et al., 

2008). 

MKKK-YODA

Stomata 
development
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MPK3/6
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FLP/MYB88

 
Figure 1.3. Schematic representation of cell-to-cell signaling and signal transduction in 
stomata development. 
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1.2. Protein phosphatases 
 

Protein phosphatases are enzymes reversing the action of phosphorylation performed by 

protein kinases., Protein phosphatases are classified according to their specificity towards 

phosphorylated amino acid residues as Tyr phosphatases (PTP family) and Ser/Thr 

phosphatases (PPP, PPM and FCP families) (Barford et al., 1998,Cohen, 2003 #11). The 

catalytic domains are highly conserved within each protein phosphatase family and functional 

diversity is achieved through the variable N- or C-terminal extensions, regulatory domains 

and/or interacting subunits (Barford et al., 1998). 

PTP phosphatases perform dephosphorylation reaction via the transient intermediate 

cysteinyl-phosphate which is further hydrolysed using an activated water molecule (Barford 

et al., 1994; Barford et al., 1998). Tyr phosphatases can dephosphorylate either only tyrosine 

or additionally also Ser/Thr amino acid residues, therefore classified into Tyr-specific and 

dual specificity (DSP) phosphatases.  

Ser/Thr phosphatases are classified according to the structure of their catalytic domain (Table 

1) (Barford et al., 1998; Cohen, 2003) and these enzymes dephosphorylate substrates in a 

single reaction step using a metal-activated nucleophilic water molecule (Barford et al., 1998). 

Many of the protein Ser/Thr phosphatases (PP1, PP2A, PP3, PP4, PP6 subfamilies) are high 

molecular mass heteromers consisting of a catalytic subunit and one or more regulatory 

subunits (Cohen, 2003).Other Ser/Thr phosphatases contain N- or C-terminal non-catalytic 

extensions functioning in the recognition and binding of regulatory subunit(s) or substrates 

(reviewed in (Barford et al., 1998; Schweighofer and Meskiene, 2008a). Ser/Thr phosphatases 

require the metal ion for the catalysis (Fe3+ and Zn2+ for most of PPPs, Ca2+ for PP2B and 

Mn2+ or Mg2+ for PPM, (reviewed in (Barford et al., 1998; Cohen, 2003). 

Amoung the Ser/Thr phosphatases the PPM family phosphatases are acting as monomers 

(except mitochondrial pyruvate dehydrogenase which is a heterodimer consisting of catalytic 

subunit Pdpc and regulatory subunit). The PPM family contains PP2C and PP2C-like proteins 

(Das et al., 1996; Barford et al., 1998). PP2C type phosphatases are insensitive to okadaic 

acid (Barford et al., 1998), which specifically inhibits PP1 and PP2A (Lawson, 1993) and 

weakly inhibits PP2B. PP2C type phosphatases perform diverse functions, including 

regulation of cell cycle and MAP kinase pathways (see overviewed below). 
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Table 1.1. Nomenclature of eukaryotic protein phosphatases: structurally distinct gene families 
(according to (Barford et al., 1998; Cohen, 2003) 

 

Family Subfamily Type Catalytic 
domain 

Regulatory domains/ 
subunits * 

PPP1 PP1 Ppp1c  Various regulatory and 
targeting subunits 

PP2A Ppp2c A (65 kDa) and B subunit 
(>15) 

PP4   

PPP2/4/6 (PP2A) 

PP6   
PPP3 
(Calcineurin/ 
PP2B) 

PP2B Ppp3c  Calmodulin binding site 
and autoinhibitory 
sequence in C-terminal 
domain of A subunit; B 
subunit 

PP5 Ppp5c 3 x TPR domain in N-
terminus 

PPP 

PPP5/7 

PP7 Ppp7c/ EF/ 
calmodulin BM 

 

 PP2C PP2Cc  PPM 
 PDP Pdpc  
 TFIIF-

stimulated 
CTD 
phosphatase1 

  

 Small CTD 
phosphatases 

  

S
er

/T
hr

 p
ho

sp
ha

ta
se

s 

FCP 

    
PTP1B   
SH-PTP  SH2 domain 

Tyr-specific 

RPTP   

Ty
r 

an
d 

S
er

/T
hr

/T
yr

 
ph

os
ph

PTP 

DSP    
* beside the non-catalytic N-and C-termini of the catalytic domain, which are responsible for 
recognition and binding of regulatory subunit(s) 
 

1.2.1. Protein phosphatases type 2C  

 

PP2Cs are monomeric enzymes, depending on divalent metal ions (Mn2+ or Mg2+), and are 

insensitive to the inhibitor okadaic acid (Das et al., 1996; Barford et al., 1998). So far no 

specific inhibitors against PP2Cs have been identified. PP2Cs share no sequence similarity 

with other Ser/Thr phosphatases (PPP1, PP2A and PP2B subfamilies) but have similar protein 

3D structure and catalytic mechanisms. Two Mn2+ ions in the catalytic site facilitate a water 

molecule to act as nucleophile to initiate hydrolysis of the phosphomonoester bond (Das et al., 

1996). Aspartatic acid residues are crucial for binding a divalent metal ion in the catalytic 

center of the PP2C (Barford et al., 1998). PP2C type phosphatases consist of conserved 

catalytic domain and variable N-terminal and/or C-terminal domains. The non-catalytic 

domains may contain localization signals, interaction domains or docking sites and account 

for the versatility of PP2Cs (Cohen, 2003; Schweighofer et al., 2004). PP2C gene members 
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include 7 genes in yeast, 8 in worm, 10 in fly and 76 in Arabidopsis (Kerk et al., 2002; 

Schweighofer et al., 2004).  

Mammalian PP2Cs include 18 members that are implicated in stress signalling cascades, PI3 

kinase/Akt signalling, pre-mRNA splicing, protein ubiquitination and degradation, cell 

metabolism, cell death/survival signaling (Table 2, reviewed in (Lu and Wang, 2008). 

PP2Cα is the best studied member of PP2C family in mammals. The numerous substrates of 

PP2Cα include p38 MAPK, AMPk (AMP-activated protein kinase), PI3-K, Axin, Smad2 and 

Smad2, Cdk2, mGluR3 (metabotropic glutamate receptor type 3), 3-hydroxy-3-methylglutaryl 

coenzyme A reductase, MKK3b, MKK4 and MKK7 (reviewed in (Lu and Wang, 2008). 

PP2Cα and PP2Cβ dephosphorylate BAD and promote apoptosis and degeneration of neurons 

(Klumpp et al., 2002; Klumpp et al., 2004). 

Human PP2Cs are important regulators of PI3-K signaling: PP2Cα, PHLPP1 and 2 can 

specifically target components of PI3-K/Akt pathway and modulate cell growth, 

differentiation and survival. PP2Cα modulate lipid kinase activity of PI3-K by regulating the 

phosphorylation of the PI3-K-activating p85. PHLPP1 and PHLPP2 regulate the activity of 

Akt isoforms and PI3-K (reviewed in Lu and Wang, 2008). 

Human PP2C-like phosphatases POPX1 and POPX2 dephosphorylate PAK (the 

p21(Cdc42/Rac)-activated kinase) in vitro and blocks in vivo the phenotypic effects of 

constitutively active PAK (which promotes loss of stress fibers and eventual contraction of 

the cells (Zhao, 1998)). POPX can inhibit actin stress fiber brakedown and morphological 

changes driven by active Cdc42V12. POPX, PAK and PIX (PAK interacting guanidine 

excahnge factor) form a trimeric complex in vitro (Koh et al., 2002). 
 

Table 1.2. Functional diversity of mammalian PP2C isoforms (reviewed in (Lu and Wang, 2008) 
Signaling pathway/substrates* PP2C Process Cell 

compartment 
Ras/PI3-K/Akt 
 

PP2Cα, 
PHLPP1, 
PHLPP2 

Cell growth, 
differentiation, survival 

Cell membrane 

TAK1/ASK1/MKK/p38/JNK 
 

PP2Cα/β, 
PP2Cε, 
PP2Cδ/ILKAP 

Stress induced cell 
death/survival 

Cytoplasm 

ATM/ATR/Chk1&2/p53/p38 PP2Cε/ 
PP2Cδ 
(PPM1D/ 
Wip1) 

DNA damage, cell cycle Nucleus 

H2AX/H2B PP2Cγ DNA damage Nucleus 
PAK POPX1, 

POPX2 
Actin stress fiber 
brakedown 

 

ILK1/GSK3β/ß-catenin/Tcf/Lef PP2Cδ/ILKAP Cell survival/ 
proliferation 

 

*ASK1 - apoptosis signal-regulating kinase 1; TAK1 - transforming growth factor-β-activated kinase 1; 
PAK - the p21(Cdc42/Rac)-activated kinase; 
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1.2.2. PP2C–type MAPK phosphatases 

 

MAP kinases constitute signalling cascades consisting of MAP kinases and upstream 

activating MAPK kinase and MAPKK kinases (Seger and Krebs, 1995; Kovtun et al., 2000; 

Mizoguchi et al., 2000). MAPKs are activated by phosphorylation of Thr and Tyr amino acid 

residues in the T-loop and can be translocated upon activation into the nucleus (Su and Karin, 

1996; Ahlfors et al., 2004). Dephosphorylation of one or both residues is crucial for kinase 

activity control and can be performed by Ser/Thr phosphatases or PTPs.  

PP2Cs downregulating MAPK cascades in stress signaling were identified in budding yeast, 

plants and mammals (Shiozaki et al., 1994; Maeda et al., 1995; Hanada et al., 1998; Meskiene 

et al., 1998; Takekawa et al., 1998; Meskiene et al., 2003; Schweighofer et al., 2007). 

S.cerevisiae Ptc1p, Ptc2p and Ptc3p and their orthologues in S. pombe negatively regulate 

osmosensing MAPK cascades (Warmka et al., 2001; Young et al., 2002). S.pombe Ptc1 and 

Ptc3 dephosphorylate Thr in the activation loop of the stress-responsive Spc1 MAPK (a 

homolog of human p38). Ptc1 is induced by stress and its expression depends on Spc1 

activation (Gaits et al., 1997). Ptc3 is expressed constitutively; it also dephosphorylates Spc1 

and attenuates Spc1 activity. Ptc1 and Ptc3 act in Spc1 inactivation, when Pyp1 (the major 

Spc1-dephosphorylating PTP) is inhibited in heat-shocked cells (Nguyen and Shiozaki, 1999).  

Mammalian PP2Cα and PP2Cβ dephosphorylate and suppress the stress-activated (such as 

anisomycin, UV, NaCl) and TNFα-activated p38/SAPK2A and JNK MAPK signalling 

(Hanada et al., 1998; Takekawa et al., 1998; Hanada et al., 2001). PP2Cα and PP2Cβ also 

inhibit both p38 and JNK pathways by dephosphorylation of upstream MAPK cascade 

components: MKK3b, MKK4, MKK6b and MKK7 (Takekawa et al., 1998; Fjeld and Denu, 

1999). As PP2Cα is evenly localised to the cell nucleus and cytoplasm, it was suggested that 

it maintains low MAPK activities in the absence of external stimuli (Takekawa et al., 2000). 

In response to IL-1 the functionally redundant PP2Cβ and PP2Cε dephosphorylate the 

MAPKKK TAK1 (transforming growth factor-β-activated kinase 1). TAK1 is essential for the 

activation of NF-κB, IKK and JNK pathways in response to pro-inflammatory cytokines and 

microbial pathogens during innate immune response mediated by several Toll-like receptors 

(TLRs). Thus, PP2Cß and PP2Cε downregulate the TAK1 signaling in innate immunity 

(reviewed in (Lu and Wang, 2008). 

In non-stress conditions PP2Cε negatively regulates the MAPKKK ASK1 (apoptosis signal-

regulating kinase 1), which is a component of the SAPK system. SAPKs play key roles in 

ROS-induced activation of both proliferation and apoptosis. ASK1 mediates ROS- and TNFα-
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induced apoptosis. PP2Cε inactivates ASK1 by suppressing H2O2-enhanced phosphorylation 

of ASK1 (reviewed in (Lu and Wang, 2008). 

In contrast to PP2Cε, PP2Cδ/ILKAP activates ASK1 by enhancing its T phosphorylation. 

Therefore, PP2Cδ/ILKAP might act as a positive regulator of TNFα-induced apoptosis 

(Trinkle-Mulcahy and Lamond, 2006).  

 

1.2.3. Function of PP2Cs in cell cycle progression 

 

Some of the PP2C-type MAPK phosphatases  are involved in the cell cycle control. Ptc2p and 

Ptc3p dephosphorylate CDC28, the major budding yeast cyclin-dependent protein kinase 

(CDK) at Thr 169 (Cheng et al., 1999). Activating phosphorylation of CDKs is necessary for 

kinase activity and cell cycle progression (Morgan, 1995). The Ptc2p and Ptc3p homologues 

PP2Cα and PP2Cβ(?) in Xenopus (Cohen, 2003) dephosphorylate Thr-161 residue of 

monomeric (but not the cyclin-bound) cyclin dependent kinase Cdc2 (De Smedt et al., 2002). 

Thr 161 phosphorylation is required for the activation of Cdc2 (De Smedt et al., 2002). 

Human PP2Cα and PP2Cβ2 also dephosphorylate monomeric human Cdk2/Cdk6 in vitro 

(Cheng et al., 2000). In HeLa cell extracts PP2C-like enzymes are the predominant 

phosphatases toward Cdk2, suggesting a evolutionarily conserved specificity of PP2Cs 

towards CDKs (Cheng et al., 2000). 

PP2Cδ/ILKAP inhibits integrin-linked kinase ILK1 and therefore suppresses GSK3β-

mediated integrin-ILK1 signaling (Leung-Hagesteijn et al., 2001), reviewed in (Trinkle-

Mulcahy and Lamond, 2006). ILK1 induces an inhibitory phosphorylation of GSK3β in 

epithelial cells (Tan and Kim, 1999). This action results in stabilization and nuclear 

translocation of β-catenin followed by subsequent activation of transcription factors Tcf/Lef 

supporting cell survival/proliferation (Novak et al., 1998; Dedhar et al., 1999; Novak and 

Dedhar, 1999). Failure to down-regulate ILK1-mediated signalling can lead to oncogenic 

transformation (Hannigan et al., 1996; Hannigan et al., 2005). Overexpression of 

PP2Cδ/ILKAP activity leads to the inhibition of cell cycle progression. On the contrary, 

PP2Cα stimulates β-catenin–Lef signalling and cell proliferation (Strovel et al., 2000).  

 

Wip1 – DNA damage checkpoint phosphatase 

 

PP2Cs have essential functions in the maintenance of genomic stability (Lu and Wang, 2008).  

PP2Cs in budding yeast have critical function in inactivating cell cycle arrest after DNA 
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damage. Mammalian PP2Cγ (along with PP2A) regulates the exchange of histones H2A and 

H2B. Histone H2AX is also phosphorylated in response to DNA damage and its 

dephosphorylation is essential for complete recovery from DNA damage (reviewed in (Lu and 

Wang, 2008).  

Mammalian PP2Cδ isoform (PPM1D/Wip1) is involved in multiple levels of DNA damage 

response. Wip1 specifically dephosphorylates essential components of DNA damage response 

signaling including ATM, the DNA repair enzyme uracil DNA glycosylase UNG2, the 

MAPK p38, the tumor suppressor p53 and the DNA damage-induced kinases Chk1 and Chk2 

(reviewed in (Lu and Wang, 2008).  

The early response to DNA damage leads to the activation of p38 and JNK MAPK cascades 

(Kyriakis and Avruch, 1996b, a) and stabilization of tumor suppressor p53 (Ko and Prives, 

1996). 

The ATM/ATR pathway stabilizes p53 by Ser15 phosphorylation (reviewed in (Meek, 1998a, 

b; Prives and Hall, 1999; Caspari, 2000). p38 MAPK activated by genotoxic stress 

phosphorylates Ser33 and Ser46 of p53 (Bulavin et al., 1999; Huang et al., 1999; Bulavin and 

Fornace, 2004), both residues are essential for p53 activation (Bulavin et al., 1999). Wip1 

gene expression induced by γ or UV radiation is p53-dependent (Fiscella et al., 1997). 

Moreover, this p53-dependent gene expression of Wip1 is E2F1-regulated (Hershko et al., 

2006). Wip1 dephosphorylates both Ser33 and Ser46 of p53 and selectively dephosphorylates 

p38 MAPK at the conserved Thr 180 residue in the nucleus (Fiscella et al., 1997; Takekawa et 

al., 2000). Therefore, Wip1 promotes degradation of p53 either by direct dephosphorylation 

or through the inactivation of p38 kinase. Wip1 mediates a negative feedback regulation of 

p38/p53 signaling during the recovery phase of the damaged cells and contributes to the 

suppression of UV-induced apoptosis (Bulavin et al., 1999; Takekawa et al., 2000). 

Wip1 attenuates DNA damage-induced base excision repair by dephosphorylation of uracil 

DNA glycosylase (UNG2). 

Wip1 is established as an oncogene and is amplified/overexpressed in many human tumors 

(Bulavin et al., 2002; Li et al., 2002; Hirasawa et al., 2003; Saito-Ohara et al., 2003; Bulavin 

et al., 2004). The inactivation or depletion of Wip1 in Ppm1d-null mouse embryo fibroblasts 

(MEFs) results in the activation of p38 MAPK and resistance to tumor transformation by 

modulating the Cdkn2a tumor-suppressor locus and by activation of the tumor-suppressor 

pathways (Bulavin and Fornace, 2004). 

Wip1 acts as a negative feedback regulator of E2F1-induced apoptosis (Hershko et al., 2006). 

E2F up-regulates the levels of the MAPKKK ASK1 (Muller et al., 2001; Stanelle et al., 2002) 
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which subsequently leads to the activation of p38. The transient fashion of p38 

phosphorylation/activation is tightly controlled by the following induction of Wip1 expression 

by E2F1 (Hershko et al., 2006). E2F1 also positively regulates other Wip1 substrates. E2F1 

induces stabilizing phosphorylations of p53 (Hershko et al., 2006) .22, 32, 40–43). E2F1 up-

regulates the expression of uracil DNA glycosylases (Hershko et al., 2006) and the damage-

induced kinase Chk1 (Hershko et al., 2006). Thus, Wip1 may be a part of a common negative 

feedback regulation of E2F–induced proteins (Hershko et al., 2006).  
 

cdc2G2 phase M phase
cdc25

p53

p21Cip1 GADD45

Wip1

p38 ATM/ATR

Chk1/2

ASK1

E2F1

Apoptosis

cyclin B
 

Figure 1.4. Schematic representation of WIP1 functions in cell cycle progression and 
apoptosis. 
 

1.2.4. Plant PP2Cs 

 

PP2Cs form the largest protein phosphatase family in plants. Database analysis reveals 76 

PP2C gene members (Kerk et al., 2002; Schweighofer et al., 2004). In the Arabidopsis 

genome, 112 phosphatase catalytic subunit sequences have been identified (Kerk, 2002). 

Arabidopsis genome predicts 150 phosphatase candidates, among them only one PTP and 18 

DSP1 (Kerk et al., 2002; Kerk, 2007). The multiplicity of PP2C enzymes in plants suggests a 

much broader functional diversity than in other eukaryotes (Schweighofer et al., 2004). 

According to amino acid sequence alignment PP2Cs are clustered into 10 groups (A-J). The 

majority of genes identified in Group A are associated with ABA signaling. Group B is 

characterized by homology to MP2C, an alfalfa PP2C that regulates MAPK signaling. Group 

C includes POL-type phosphatase involved in flower development. The kinase-associated 

protein phosphatase (KAPP) regulates receptor-like kinases (RLKs) (Schweighofer et al., 

2004). 



 31

ABA-induced PP2Cs 

 

Abscisic acid (ABA) promotes the acquisition of desiccation tolerance and seed dormancy, 

and it inhibits seed germination during late embryogenesis. ABA acts as a mediator of 

physiological responses to low-water situations. ABA-insensitive and ABA-deficient mutants 

are hypersensitive to drought and salinity (Leung and Giraudat, 1998). 

Arabidopsis PP2Cs (ABI1, ABI2, HAB1 and PP2CA) are negative regulators of the ABA 

signaling (Koornneef et al., 1984; Leung et al., 1997; Rodriguez et al., 1998; Gosti et al., 

1999; Merlot et al., 2001; Tahtiharju and Palva, 2001). 

ABI1 and ABI2 phosphatases have overlapping functions in controlling ABA signaling. 

Recessive loss-of-function mutants of ABI1, with phosphatase activity reduced 100-1000 

fold, are hypersensitive to ABA (Gosti et al., 1999; Robert et al., 2006; Saez et al., 2006; 

Yoshida et al., 2006; Nishimura et al., 2007). In contrast, dominant gain-of function mutations 

abi1-1 and abi2-1 reduce plant sensitivity to ABA in seed germination, seedling development, 

attenuation of seed dormancy and stomatal closure (Koornneef et al., 1984; Leung et al., 

1997). The mutations abi1 and abi2 are single amino acid changes ABI1G180D and 

ABI2G168D within the catalytic domain (Koornneef et al., 1984) that impairs Mg2+ binding 

and reduces protein phosphatase activity (Leube et al., 1998). The catalytically diminished 

abi1 and abi2 might block ABA responses via a dominant negative effect (Sheen, 1998; Yang 

et al., 2006) by trapping positive regulators of ABA signalling in a dead complex (Saez et al., 

2004). The constitutive overexpression of ABI1 inhibits ABA action in maize protoplasts 

(Sheen, 1998). ABA increases PP2C activity of ABI1 and ABI2 in plant extracts. These 

results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA 

signalling pathway (Gosti et al., 1999). ABI1 may be compartmentalized to the nucleus or 

associated with the plasma membrane (Himmelbach et al., 2002; Hoth et al., 2002; Zhang et 

al., 2004). Nuclear localization of abi1 is required for the insensitivity towards ABA 

responses (Moes et al., 2008). Non-functional mutated nuclear localization sequence (NLS) 

completely abolishes the negative regulation of ABA signalling by abi1 and ABI1 (Moes et 

al., 2008). The abi1 mutation ABI1G180D introduces a negative charge probably mimicing a 

phosphorylated ABI1. Therefore abi1 might escape a phosphorylation-dependent regulation 

of subcellular localisation (Moes et al., 2008). 

The ABI1 and ABI2 homologous gene HAB1 (previously described as AtP2C-HA) is a 

highly ABA-induced gene and a negative regulator of ABA signaling (Rodriguez et al., 

1998). atp2c-ha-1 mutation results in increased sensitivity to ABA in ABA-induced stomatal 
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closing (Rodriguez et al., 1998). HAB1 transcript was identified as preferentially expressed in 

guard cells by microarray screening for guard cell - specific genes (Leonhardt et al., 2004). 

The hab1-1 T-DNA insertion mutant shows ABA-hypersensitive inhibition of seed 

germination in the presence of exogenous ABA. Constitutive overexpression of HAB1 leads 

to the reduced ABA sensitivity both in seeds and vegetative tissues (Saez et al., 2004). 

Similar to ABI1, AtPP2CA blocks ABA signal transduction when transiently expressed in 

protoplasts (Sheen, 1998). AtPP2CA transcription is induced by cold, drought, salt and ABA 

(Tahtiharju and Palva, 2001). AtPP2CA regulates AKT2 and possibly enables the control of 

K+ transport and membrane polarization during stress situations and phloem transport (Cherel 

et al., 2002). 

 

RLK phosphatases 

 

The CLAVATA 1 (CLV1) receptor kinase in Arabidopsis regulates stem cell identity and 

differentiation through its repression of WUSCHEL (WUS) expression. The WUSCHEL 

(WUS) gene, which encodes a homeodomain protein, is a key regulator of stem cell identity. 

In the absence of WUS, stem cells are absent, and terminated shoots are formed. CLAVATA 

genes (CLV1, CLV2, and CLV3) promote the progression of meristem stem cells toward 

differentiation through the repression of WUS expression. Mutations at the POLTERGEIST 

(POL) gene were previously described as phenotypic suppressors of mutations within the 

CLV1 gene. POL functions in both the CLV1-WUS pathway (Yu et al., 2000) and a novel 

WUS-independent CLV1 pathway regulating stem cell identity. POL encodes a protein 

phosphatase 2C (PP2C) with a predicted nuclear localization sequence, indicating a role in 

signal transduction downstream of the CLV1 receptor (Yu et al., 2003).  

The PP2C KAPP contains a forkhead-associated domain (FHA) that acts to mediate binding 

to phosphorylated CLV1 (Li et al., 1999). KAPP is capable of dephosphorylating CLV1, and 

it is a negative regulator of CLV1 signaling at the plasma membrane. POL similarly contains 

a novel regulatory domain at the N terminus, as well as a C-terminal phosphatase domain. 

Thus, by analogy to KAPP, POL would bind a phosphorylated intermediate of CLV1 

signaling and inactivate the component by reversing phosphorylation (Stone et al., 1998; Yu 

et al., 2000). KAPP binds RLKs in a phosphorylation-dependent manner and does not bind 

kinase-inactive mutants of RLKs (Li et al., 1999). KAPP interacts with AtSERK1, a 

membrane-located leucine-rich-repeat RLK expressed transiently during embryogenesis. 

KAPP also interacts with RLK5 in Y2H and associates in vitro with multiple RLKs. KAPP 
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may also regulate other RLK pathways but there its detailed role has to be determined (Stone 

et al., 1994; Braun et al., 1997; Trotochaud et al., 1999; Torii, 2000). 

PLL1 functions in parallel with POL in regulation of meristem and organ development. PLL4 

and PLL5 regulate leaf development, while for PLL2 and PLL3 no roles have been identified 

(Song and Clark, 2005). 

 

Other PP2Cs 

 

PP2C DIG3 may be involved in nuclear import of the VirD2 protein and, consequently, the 

VirD2-transferred DNA complex. Agrobacterium tumefaciens transfers a single-stranded 

DNA molecule (the T-strand) into plant cells. This DNA is covalently linked to the VirD2 

protein. VirD2 contains NLS sequences that probably help directing the T-strand to the plant 

nucleus. Tomato DIG3 encodes an enzymatically active PP2C that interacts with the C-

terminal region of VirD2. Overexpression of DIG3 in protoplasts inhibited nuclear import of a 

β-glucuronidase-VirD2 fusion protein (Tao et al., 2004).  

A search in trapping lines for genes selectively expressed in guard cells identified amoung 

others a PP2C phosphatase (At1g03590). Statistical analyses of the chromosomal regions 

revealed an over-represented [A/T]AAAG motif, previously described as an essential cis-

active element for gene expression in stomata (Galbiati et al., 2008): 

 

PP2Cs as MAPK phosphatases 

 

PP2Cs often act in feedback regulatory loops of stress-induced pathways. Two stress induced 

PP2Cs were described as MAPK phosphatases: MP2C from Medicago sativa (Meskiene et 

al., 1998; Meskiene et al., 2003) and AP2C1 from Arabidopsis (Schweighofer et al., 2007). 

MP2C expression is induced after wounding and MP2C regulates MAPK pathway. MP2C is a 

MAPK phosphatase that directly inactivates the wound-activated MAPK SIMK through Thr 

dephosphorylation of the pTEpY motif, which is essential for MAPK activity, but not the 

wound-activated MAPK SAMK (Meskiene et al., 2003).  

A putative MAPK interaction motif (KIM) [(K/R)3–4X1–6(L/I)X(L/I)], similar to those found 

in MAPK kinases (MAPKKs), MAPK phosphatases (HOKiegerl et al., 2000; Ho et al., 2003), 

or transcription factors has been identified in several PP2Cs of the B-group phosphatases. In 

this group the KIM is localised to the N-terminal extension of the PP2C (Schweighofer et al., 

2004).  
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AP2C1 is the closest Arabidopsis homolog of MP2C. AP2C belongs to a six-member 

subfamily of Arabidopsis PP2Cs, four of which contain a KIM domain in their N terminus 

(Meskiene et al., 2003; Schweighofer et al., 2007). Recently AP2C1 was described as a 

negative regulator of stress-responsive MAPKs MPK4 and MPK6 (Schweighofer et al., 

2007). AP2C1 regulates MAPK signaling in defence responses to wounding and necrotrophic 

pathogens. Plant hormones jasmonic acid (JA) and ethylene (ET) are produced after 

wounding and are responsible for the induction of defence genes. Signaling by MPK4 is 

essential for the induction of a subset of ET-responsive genes and crucial for the antagonism 

between SA- and JA/Et-dependent responses (Brodersen et al., 2006). MPK6 phosphorylate 

and thereby stabilizes the rate-limiting enzymes in ET biosynthesis of ACC synthase family 

(Liu and Zhang, 2004). Thus MPK4/MPK6 positively regulate ET level or response. 

Jasmonic acid activates MKK3/MPK6 (but not MPK4) (Takahashi et al., 2007). ap2c1 mutant 

plants produce significantly higher amounts of jasmonate upon wounding and are more 

resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels 

produce less ethylene and are more sensitive to the necrotrophic pathogen Botrytis cinerea. 

Pathogen and wound-induced AP2C1 regulates stress hormone levels, MAPK activities and 

modulates pathogen response in in Arabidopsis (Schweighofer et al., 2007). 
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2. Materials and Methods 
 

2.1. Strains and plasmids  
 

2.1.1. Strains 

 

E.coli strains used:  

DH5α,  F– Φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+)  

  phoA supE44 λ– thi-1 gyrA96 relA1 

DB3.1  F– gyrA462 endA1 ∆(sr1-recA) mcrB mrr hsdS20(rB–, mB–) supE44 ara-14  

  galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ– leu mtl1 

BL21  F – ompT hsdSB (rB– mB–) gal dcm 

XL1-Blue endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[::Tn10 proAB+ lacIq  

  ∆(lacZ)M15] hsdR17(rK
- mK

+) 

 

Agrobacterium tumefaciens strain used:  

GV3101::pMP90 with pSOUP helperplasmid (Konsz and Schell, 1986) 

 

Saccaromyces cerevisiae strains used:  

L40  MATa his3∆200 trp1-901 leu2-3,112 ade2 lys2-801am URA3::(lexA)8-lacZ 

LYS2::(lexA)4-HIS3 (Vojtek et al., 1993; Hollenberg et al., 1995)  

pJ69-4A MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal180∆ LYS2::GAL1-

HIS3 GAL2-ADE2 met2::GAL7-lacZ (James et al., 1996) 

 

2.1.2. Plasmids  

 

2.1.2.1. Plasmids for yeast two hybrid (Y2H) assays  

 

The 3’-end of STOPP (At2g40180) cDNA was amplified by PCR from cDNA clone U20838 

(obtained from Arabidopsis Biological Resource Center; ABRC) with primers #237 

(CGCGTGTTGTGTAACCGCTTTGATATCGA) and #182 

(GCGGCCGCATGGAAGAAAGTTTTGTAGC). The 3’-end EcoRV/NotI fragment of 

STOPP cDNA and the 5’-end NcoI/EcoRV fragment without introns of STOPP genomic 

DNA (obtained from V.Kazanaviciute, unpublished) were cloned into pGAD425 vector 
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(Clontech; modified). Subsequently the full length STOPP cDNA was recloned into Y2H 

vectors pBTM117 (from (Vojtek et al., 1993); modified) and pBD-GAL4cam (Stratagene). 

MAP kinases in pGAD425 vector and MAPK kinases in pBTM117 vector (Teige et al., 2004) 

were used for direct Y2H assays with STOPP. 

The Arabidopsis cDNA library in pACT vector (consisting of a 1:1 mix of auxin induced and 

uninduced seedlings roots) for Y2H screening was provided by Dr. Bert van der Zaal, 

Institute of Molecular Plant Sciences, Leiden University, The Netherlands.  

 

2.1.2.2. Introduction of STOPP phosphatase mutation G163D 

 

The point mutation G163D within the catalytic part of STOPP was introduced by site-directed 

mutagenesis (using Site-Directed Mutagenesis kit from Stratagene) according to 

manufacturer’s recommendations. The PCR with gene specific primers #362 (5’-

GGTTACAAAAATGCTTTCTTTGACGTCTTTGATGGTCACGGCGG-3’) and #363 (5’-

GCCGTGACCATCAAAGACGTCAAAGAAAGCATTTTTGTAACCTC-3’) containing the 

mutation and an additional AatII restriction site was performed with Pfu Turbo polymerase 

from the template plasmids containing STOPP genomic or cDNA. The template DNA was 

digested by adding 1µL of DpnI restriction enzyme to the PCR reaction. The PCR product 

was transformed to XL1-Blue supercompetent E.coli cells and selected on appropriate 

antibiotics. Positive clones were checked by plasmid DNA restriction with AatII restriction 

enzyme which additionally cleaves in the site introduced by the mutation G163D. The correct 

STOPP genomic or cDNA fragment containing mutation G163D was cloned further to 

vectors for GST protein purification or for expression in plants.  

 

2.1.2.3. Plasmids for GST protein purification 

 

For protein GST purification the cDNA of STOPP G163D was cloned to pGEX-4T-1 vector 

(GE Healthcare). pGEX-4T-1-cSTOPPwt was obtained from C.Choopayak (unpublished). 

 

2.1.2.4. Plasmids for transient transformation of Arabidopsis suspension protoplasts 

 

For co-localisation of STOPP and MPK4 or MPK6 in Arabidopsis suspension protoplasts, 

pGreenII vectors (Hellens et al., 2000) containing double CaMV 35S promoter upstream of a) 

gSTOPPwt (obtained from V.Kazanaviciute, unpublished) tagged with sGFP(S65T) (Chiu et 
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al., 1996) and b) AtMPK4wt or AtMPK6wt (Teige et al., 2004) tagged with mRFP1 (Campbell 

et al., 2002) were used. 

For bimolecular fluorescence complementation (BiFC), gSTOPPwt (gDNA clone obtained 

from V.Kazanaviciute, unpublished) was recloned into pRT100 vector (Topfer et al., 1987) 

downstream of CaMV 35S promoter and fused N-terminally to YFPNTD (Walter et al., 2004). 

pRT100 vectors containing CaMV 35S promoter upstream of AtMPK1wt, AtMPK3wt, 

AtMPK4wt or AtMPK6wt (fused N-terminally to YFPCTD (Walter et al., 2004) were used for 

co-expression with YFPNTD-gSTOPPwt in protoplasts. Plasmids expressing only YFPCTD or 

YFPNTD from CaMV 35S promoter (SPYCE, SPYNE) were used as negative controls (Walter 

et al., 2004).  

For MAP kinase activity assays from protoplasts, pGreenII vectors (Hellens et al., 2000) 

containing double CaMV 35S promoter upstream of gSTOPPwt (V.Kazanaviciute, 

unpublished) and AtMPK3wt, AtMPK4wt or AtMPK6wt (Teige et al., 2004) were used for co-

expression in protoplasts. The phosphatase was tagged with sGFP(S65T) and MAP kinases 

were tagged with triple HA. HA-tagged ∆ANP1 (Asai et al., 2002) or AtMKK5wt and 

AtMKK2EE (Teige et al., 2004) tagged with 9-mer c-myc epitopes in pGreenII0029 or 

pRT100 respectively, were used for activation of downstream kinases MPK3, MPK4 and 

MPK6. 

 

Table 2.1. Plasmids used for transient expression in plant protoplasts 
Plasmid References 
pGreenII0029-2x35S-TL-gSTOPPwt-GFP 
pGreenII0229-2x35S-TL-AtMPK4wt-mRFP1 
pGreenII0229-2x35S-TL-AtMPK6wt-mRFP1 
pGreenII0229-2x35S-TL-AtMPK3wt-HA 
pGreenII0229-2x35S-TL-AtMPK4wt-HA 
pGreenII0229-2x35S-TL-AtMPK6wt-HA 
pGreenII0029-AtMKK5wt-Myc 
pJS-∆ANP1-HA 
pRT100-AtMKK2EE-Myc 
pRT100-35S-YFPNTD -gSTOPPwt 
pRT100-35S-YFPCTD -AtMPK1wt 
pRT100-35S-YFPCTD -AtMPK3wt 
pRT100-35S-YFPCTD -AtMPK4wt 
pRT100-35S-YFPCTD -AtMPK6wt 
pRT100-35S-YFPCTD 
pRT100-35S-YFPNTD 

Vectors: 
pGreenII0029 (Hellens et al., 2000) 
pGreenII0229 modified from (Hellens et 
al., 2000) 
pRT100 (Topfer et al., 1987) 
pJS (Asai et al., 2002) 
 
Genes: 
gSTOPPwt (V.Kazanaviciute, unpublished)  
AtMPK1wt, AtMPK3wt, AtMPK4wt, 
AtMPK6wt, AtMKK5wt and AtMKK2EE 
(M. Teige, MFPL Vienna) 
∆ANP1 (J.Sheen, Harvard Medical School) 
 
Epitope tags: 
triple HA, 9-mer c-myc and sGFP(S65T) 
(Chiu et al., 1996)  
mRFP1 (Campbell et al., 2002) 
YFPCTD and YFPNTD (Walter et al., 2004) 
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2.1.2.5. Plasmids for stable plant transformation 

 

For plants expressing mutant STOPP-G163D genomic and cDNA of STOPP-G163D were 

recloned to plant expression vector pGreenII0029 (Hellens et al., 2000) downstream of the 

single or double CaMV 35S promoter and tagged with sGFP(S65T) (Chiu et al., 1996). 

For STOPP promoter activity studies, STOPPpro:GFP (obtained from A.Schweighofer; 

unpublished) was recloned to pGreenII0029 (Hellens et al., 2000) vector. 

For estradiol-inducible STOPP expression in plants genomic DNA of STOPP (obtained from 

V.Kazanaviciute, unpublished) was recloned to pER8 vector (Zuo et al., 2000) and tagged 

with YFP. pER8-gSTOPP-Myc was obtained from C.Choopayak (MFPL, Vienna). 

pGreenII0029-STOPPpro-gSTOPPwt-GFP and plasmids for phosphatase domain swapping 

pGreenII0029-35S-TL-AP2C1NTDI-STOPPCTD-GFP and pGreenII0029-35S-TL-STOPPNTDI-

AP2C1CTD-GFP and were obtained from V.Kazanaviciute (unpublished; MFPL). 

 

Table 2.2. Plasmids used for stable plant transformation 
Plasmid References 
pGreenII0029-35S-TL-gSTOPP G163D-GFP 
pGreenII0029-35S-TL-cSTOPP G163D-GFP 
pGreenII0029-2x35S-TL-gSTOPP G163D-GFP 
pGreenII0029-STOPPpro-GFP 
pGreenII0029-STOPPpro-gSTOPPwt-GFP 
pGreenII0029-35S-TL-AP2C1NTDI-STOPPCTD-GFP 
pGreenII0029-35S-TL-STOPPNTDI-AP2C1CTD-GFP 
pER8-gSTOPPwt-Myc 
pER8-gSTOPPwt-YFP 

Vectors: 
pGreenII0029 (Hellens et al., 2000) 
pER8 (Zuo et al., 2000) 
 
Genes: 
STOPPpro, gSTOPPwt, AP2C1NTDI, 
AP2C1CTD, STOPPCTD, STOPPNTDI, 
(V.Kazanaviciute, MFPL)  
 
Epitope tags: 
9-mer c-myc and sGFP(S65T) (Chiu 
et al., 1996), YFP 
 

 
 

2.2. GST protein purification and phosphatase activity assay 
 

2.2.1. GST protein purification 

 

E.coli strain BL21 containing GST expression vector pGEX-4T-1 (GE Healthcare) with 

cSTOPPwt or cSTOPP G163D was cultivated in 10 mL of LBAmp at 37°C overnight. The 

overnight culture was diluted in 100 mL of LBAmp to OD600 0.1 and cultivated to OD600 0.8. 

300 µL of the suspension was aliquoted as a negative control before the induction with 
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isopropyl-β-D-thiogalactopyranoside (IPTG). The expression of GST-fused STOPP proteins 

was induced by cultivating cells with 0.1 – 1 mM of IPTG for 2h at 28°C. 300µL of the 

suspension was aliquoted as a control after the induction with IPTG. The GST fused STOPP 

proteins were purified as follows: the suspension was placed on ice for 2 - 3 min. and 

centrifuged at 4000 rpm for 10 min. at 4°C. The pellet was resuspended in 20 mL of lysis 

buffer (50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 150 mM NaCl, 1% NP-40, protease inhibitor 

cocktail (Roche)) and sonicated (Bandelin HD 200 Sonoplus) twice for 10 sec. on ice. After 

the centrifugation at 14000 rpm for 10 min. at 4°C the supernatant was mixed with 150 – 200 

µL of GSH-sepharose 4B (GE Healthcare) and rolled for 30 min. at 4°C. The sepharose was 

washed three times with lysis buffer containing protease inhibitors and the GST-fused STOPP 

was eluted five times with 100 µL each of elution buffer (50 mM Tris-HCl pH 8.0, 10 mM 

MgCl2, 10 mM reduced GSH). The protein amounts in eluted fractions were checked on poly 

acrylamid (PAA) gel stained with Coomassie Blue (12.5% v/v glacial acetic acid, 50% v/v 

methanol, 0.25% w/v Coomassie Briliant Blue R-250). 

 

2.2.2. Phosphatase activity assay on γ32P-casein in vitro  

 

The phosphatase activity was assayed in vitro on γ32P-labelled casein. The casein was labelled 

as follows: 1 mg of casein (partially dephosphorylated casein lysate, Sigma) was 

phosphorylated by 50 U of bovine heart protein kinase A catalytic subunit (Sigma) with 100 

µCi of γ32P-ATP (Amersham Biosciences) in 100 µL of kinase A buffer (0.05 M Tris pH 7.0, 

5 mM MgCl2) for 30 min at 30°C. γ32P-casein was precipitated with 0.5 mL of 20% w/v 

trichloroacetic acid (TCA) in 20 mM NaH2PO4 for 20 min. on ice and centrifuged at 13000 

rpm for 10 min. at room temperature (RT). The γ32P-casein pellet was washed with 0.7 mL of 

20% w/v TCA in 20 mM NaH2PO4 and centrifuged at 13000 rpm for 1 min. at RT. The 

radioactivity of the supernatant was measured in the scintillation counter (Tri-carb 16000, 

Packard). The washing was repeated till the radioactivity of the supernatant was less than 200 

cpm (counts per minute). The pellet was resuspended in 300µL of 0.2 M Tris pH 8.0 and 

stored at -20°C in aliquots. The radioactivity of 5 µl of γ32P-casein had to be more than 200 

000 cpm for good dephosphorylation assay.  

For the phosphatase activity assay 0.5 - 1 µg of GST-purified phosphatase was incubated with 

5 µL of γ32P-casein in 50 µL of phosphatase buffer (50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 

0.1 mM EGTA, 10 mM dithiotreitol) containing 100 nM okadaic acid (from Prorocentrum 

concavum, Sigma) for 1h at 30°C. The reaction was stopped by adding 750 µL NoritA 
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solution (0.9 M HCl, 90 mM Na-pyrophosphate, 2 mM NaH2PO4, 4% w/v Norit A) for 10 

min. γ32P-casein was adsorbed to activated carbon and pelleted by centrifugation at 13000 

rpm for 5 min. The released γ32P was measured in 650 µL of supernatant by scintillation 

counter. 

For phosphatase activity assay in crude protein extracts from plants see § 2.5.7. 

 

2.3. Yeast Two Hybrid (Y2H) assay 
 

2.3.1. One-step yeast transformation for direct Y2H assay 

 

The yeast strain was refreshed on YPD (2% w/v Difco peptone, 1% w/v yeast extract, 0.008% 

adenine hemisulfate, 2% v/v glucose) or SD (0.67% w/v yeast nitrogen base, 2% v/v glucose, 

1x nutrient Dropout solution without appropriate nutrients) 2% w/v agar plates. The 

concentrations of nutrients in 100x Dropout solution were: 1 mg/mL adenine hemisulfate 

(Ade), 2 mg/mL L-Arginine, 1 mg/mL L-Histidine, 6 mg/mL L-Isoleucine, 6 mg/mL L-

Leucine (L), 4 mg/mL L-Lysine, 1 mg/mL L-Methionine, 6 mg/mL L-Phenylalanine, 5g 

mg/mL L-Threonine, 4g L-Tryptophan (W), 5 mg/mL L-Tyrosine, 4 mg/mL uracil. 

Approximately 25 µL of yeast cells were transformed with 2 µL of plasmid DNA (~ 0.5 – 1 

µg) in 150 µL of transformation mixture (39% v/v PEG4000, 0.2 M lithium acetate, 0.1 M 

dithiotreitol and 0.357 mg/mL ssDNA) and vortexed well. Reaction was incubated at 42°C for 

30 min. Subsequently cells were washed with 1 mL of SD media without glucose and amino 

acids, centrifuged for 2 min. at 3000 rpm, resuspended in 50 µL of SD media without glucose 

and amino acids and plated on SD agar plates with 2% v/v glucose without appropriate 

nutrients. Colonies appeared on the plates after 2-3- days at 28°C. 

 

2.3.2. Y2H cDNA library screening  

 

Yeast strain pJ69-4A (James et al., 1996) was used for cDNA library screening. The 

Arabidopsis cDNA library in pACT vector (consisting of a 1:1 mix of auxin induced and 

uninduced seedlings roots) for Y2H screening was provided by Dr. Bert van der Zaal, 

Institute of Molecular Plant Sciences, Leiden University, The Netherlands. The large-scale 

yeast transformation protocol was adapted from (Minet et al., 1992) 
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2.3.2.1. Large-scale yeast transformation 

 

The pJ69-4A yeast were transformed with pBDcam vector containing STOPP cDNA as 

described in § 2.3.1. Transformants were selected on SD-W (with 2% v/v glucose) agar 

plates, inoculated 10 mL of SD-W (with 2% v/v glucose) (OD600 ≥ 0.1) and cultivated at 30°C 

overnight. The yeast overnight cell culture was diluted to OD600 0.5 (~ 5 x 106 cells/mL) in 80 

mL of SD-W (with 2% v/v glucose) and cultivated till OD600 2.0 (~ 2 x 107 cells/mL) at 30°C 

with 200 rpm agitation. Cells were harvested by centrifugation at 3000 rpm for 5 - 10 min. 

The pellet was resuspended in 10 mL of SD without glucose and dropout nutrients containing 

70 mM lithium acetate and incubated at 30°C for 10 min. The cells were aliquoted in 1 mL 

aliquots and centrifuged at 3000 rpm for 5 min. One aliquot was used for one transformation 

with 1 µg of library cDNA (diluted to 0.1µg/µL). The yeast cell pellet was resuspended by 

vortexing in 360 µL of transformation mixture (33.33% v/v PEG4000, 0.1 M lithium acetate, 

0.278 mg/mL ssDNA, 1 µg library cDNA). The cells were incubated at 30°C for 30 min., 

heat-shocked at 42°C for 30 min. and washed by resuspending in 1 mL of SD without glucose 

and dropout nutrients. An aliquot of 100 µL was taken from 1 mL of one sample, centrifuged 

at 3000 rpm for 3 min., resuspended in 50 µL of SD without glucose and dropout nutrients 

and plated on SD-L-W (with 2% v/v glucose) agar plate to check the efficiency. The rest of 

the samples were centrifuged at 3000 rpm for 3 min. and plated on SD-L-W-Ade (with 2% 

v/v glucose) agar large plates (one transformation per plate). All handling of yeast was done 

with wide open tips. Yeast colonies appeared after 2 – 3 days on SD-L-W (with 2% v/v 

glucose) plates and after 3 - 4 days on SD-L-W-Ade (with 2% v/v glucose) plates at 28°C. 

The large-scale yeast transformation was repeated until the total number of transformants on 

control (SD-L-W) plates was > 106 to cover the entire cDNA library. 

 

2.3.2.2. Analysis of positive yeast colonies 

 

ADE2 positive yeast colonies from SD-L-W-Ade agar plates (identified in § 2.3.2.3.) were 

picked and analysed as follows: 1) re-tested for expression of ADE2 reporter gene on SD-L-

W-Ade (with 2% v/v glucose) agar plates, 2) tested for expression of HIS3 reporter gene on 

SD-L-W-H (with 2% v/v glucose) agar plates, 3) propagated for the analysis of reporter ß-

galactosidase activity by liquid assay (see § 2.3.4.) on SD–L-W (with 2% v/v glucose) agar 

plates, 4) propagated for plasmid rescue from yeast (see § 2.3.2.2.) on SD–L-W (with 2% v/v 

glucose) agar plates. Rescued cDNA plasmids were selected and amplified in E.coli. The 
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cDNA library plasmids were transformed by one-step yeast transformation (see § 2.3.1.) to 

pJ69-4A strain containing pBDcam-cSTOPP or pBDcam (empty vector) or L40 strain 

containing pBTM117-cSTOPP or pBTM117 (empty vector) for ß-galactosidase liquid assay 

(see § 2.3.4.). 

 

2.3.2.3. Plasmid rescue from yeast 

 

The yeast was cultivated in 2 mL of SD (with 2% v/v glucose, without appropriate nutrients) 

at 28°C overnight. The culture was centrifuged at 6000 rpm for 3 min. and resuspended in 100 

µL STET solution (8% w/v saccharose, 50 mM Tris pH 8.0, 50 mM EDTA, 5% v/v Triton X-

100). ~ 200 µL of glassbeads (425 – 600 nm) were added to the suspension and vortexed for 5 

min. Another 100 µL of STET solution were added to the mixture and shortly vortexed. The 

mixture was incubated at 95°C for 3 min., shortly cooled on ice and centrifuged at 13000 rpm 

for 10 min. at 4°C. 100 µL of supernatant was mixed with 50 µL of 7.5 M ammonium acetate, 

incubated for 1h at -20°C and centrifuged at 13000 rpm for 10 min at 4°C. 100 µL of 

supernatant was mixed with 200 µL of 96% ethanol. The plasmid DNA was pelleted by 

centrifugation at 15000 rpm for 15 min at 4°C. The pellet was washed with 70% ethanol, air-

dried and resuspended in 20 µL of sterile water.  

 

2.3.2.4. Identification of putative interacting proteins 

 

The cDNA plasmids were rescued from the positive yeast clones (see § 2.3.3.) and 

transformed into E.coli DH5α strain. The E.coli containing cDNA library plasmids (in pACT 

vector) were selected on LBAmp plates (counterselection for pDBcam-cSTOPP plasmid). 

cDNA library plasmids (in pACT vector) were amplified and analysed by restriction with 

BglII restriction enzyme flanking the cDNA insert in pACT. Unique cDNA clones were sent 

for sequencing (VBC Biotech) and the sequences were blasted against public Arabidopsis 

sequence database (blastn suite, http://www.ncbi.nlm.nih.gov/). Encoding genes were 

identified for partial or full length cDNA clones.  

 

2.3.4. Y2H ß-galactosidase liquid assay 

 

The yeast containing AD (activation domain) and BD (binding domain) plasmids were grown 

on SD-L-W agar media. The yeast were scraped from the plate and resuspended in 1 mL of 



 43

liquid SD-L-W media without appropriate amino acids. The suspension was diluted in 3 mL 

of liquid SD-L-W to OD600 0.3 in three replicates per sample. After reaching OD600 1.3 – 1.5 

yeast cells were centrifuged at 13000 rpm for 2 min. at RT. The pellet was resuspended in 200 

µL of lysis buffer (25 mM Tris-HCl pH 7.5, 20m M NaCl, 8 mM MgCl2, 5 mM dithiotreitol, 

0.1% NP-40) and frozen in liquid nitrogen. Total protein extracts were prepared as follows: 

the samples were thawed on ice. ~300 µL of glass beads (425 – 600 nm) were added per 

sample and cells were vortexed 20 min. at 4°C. The samples were centrifuged at 13000 rpm 

for 10 min. at 4°C. The protein concentration in the supernatant was measured by Bradford 

assay (see § 2.5.3.).  

The ß-galactosidase reaction was set on ice in triplicates: 50 µL of total protein extract was 

added to the 650 µL of Z-buffer (0.06 M Na2HPO4
.2H2O, 0.04 M NaH2PO4, 0.01 M KCl, 

0,001 M MgSO4
.7H2O, pH 7.0) containing 0.5% v/v ß-mercaptoethanol and afterwards mixed 

with 150 µL o-Nitrophenyl β-D-galactopyranoside (ONPG) (diluted to 4 mg/mL in Z-buffer). 

The reaction was incubated at 37°C till the solution developed yellow colour. The reaction 

was stopped by adding 400 µL of 1M Na2CO3. The OD of the solution was measured at 420 

nm wavelength. The units of the ß-galactosidase activity were calculated according to 

formula: Units=A420x25x1000/(45xTxC) where A420 is absorbance at 420 nm, T is the reaction 

time in minutes, C is the protein concentration in mg/mL. 

 

2.4. Plant material, genetic crosses, transformation and growth conditions 
 

2.4.1. Plant material 

 

Arabidopsis thaliana Col-0 wild type plants were used for transformation.  
 

Table 2.3. Produced transgenic plant lines 
Construct Selection 
pGreenII0029-35S-TL-gSTOPP-G163D-GFP KanR 
pGreenII0029-35S-TL-cSTOPP-G163D-GFP KanR 
pGreenII0029-2x35S-TL-gSTOPP-G163D-GFP KanR 
pGreenII0029-35S-TL-AP2C1-NTDI-STOPP-CTD-GFP KanR 
pGreenII0029-35S-TL-STOPP-NTDI-AP2C1-CTD-GFP KanR 
pGreenII0029- STOPPpro-GFP KanR 
pER8-gSTOPP-Myc HygR 
pER8-gSTOPP-YFP KanR 
pGreenII-STOPPpro-gSTOPPwt-GFP KanR 
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Wild type Col-0 ecotype plants were used as a control in all experiments. 

T-DNA insertion line for stopp (At2g40180) SALK_109986 was obtained from SALK 

collection (http://signal.salk.edu/). 

Transgenic T2 plant lines expressing pGreenII0029-2x35S-TL-gSTOPPwt-GFP, 

pGreenII0029-2x35S-TL-gSTOPPwt-HA, pGreenII0029-2x35S-TL-gSTOPPwt-MYC and 

pGreenII0029-AtSTOPPpro-GUSint were obtained from V.Kazanaviciute (MFPL). 

 

Table 2.4. Plant marker lines used for genetic crossing with STOPP gof lines 
plant marker line Reference 
E1728 (GFP) S.Poethig lab, 

http://enhancertraps.bio.upenn.edu/ 
MUTEpro:GUS (Pillitteri et al., 2007) 
FAMApro:GFP (Ohashi-Ito and Bergmann, 2006) 
FAMApro:GUS (Ohashi-Ito and Bergmann, 2006) 
DR5pro:GUS J. Friml, VIB Ghent 
DR5revpro:GFP C.Luschnig, BOKU Vienna 
PIN1pro:PIN1-GFP C.Luschnig, BOKU Vienna 
PIN2pro:PIN2-GFP C.Luschnig, BOKU Vienna 
PIN4pro:PIN4-GFP C.Luschnig, BOKU Vienna 
PIN7pro:PIN7-GFP C.Luschnig, BOKU Vienna 

 

2.4.2. Genetic crossing of Arabidopsis 

 

For genetic crossings of Arabidopsis transgenic lines to plant marker lines, the latter were 

used as mother plants and pollinated with pollen of STOPP gain-off-function plants.  

~1.5 month old plants on soil sprouting 2 - 3 shoots were used for the crossing. Only young 

and not yet opened flowers of the mother plant were selected for the crossing and the rest of 

the flowers were removed with forceps. The sepals, petals and anthers were removed from the 

selected flower of mother plant. Fully opened flowers of STOPP gain-off-function plants 

were used to pollinate the stigma of the acceptor plant flower. 

(DR5 lines were used as mother/acceptor plants for pollination with 35Spro:gSTOPP-GFP 

#2.2.7.5 or 35Spro:gSTOPP-HA  #2.2.1 pollen). DR5pro:GUS and DR5pro:GUS 

35Spro:gSTOPP-GFP T2 seedlings were analysed at 3 dpg age by GUS staining.  
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2.4.3. Transformation of Arabidopsis by Agrobacterium by floral dip methode 

 

Transformation of Arabidopsis by floral dip method was done according to (Clough and Bent, 

1998). Agrobacterium tumefaciens strain GV3101-pMP90 was transformed with plasmids by 

electroporation as follows: competent Agrobacterium cells were thawed on ice and mixed 

with ~ 1 µg of plasmid DNA with a wide tip. The cells were transferred to pre-chilled 

electroporation cuvettes and electroporated at 2.5 kV, 400 Ω, for 1 pulse ~ 9 msec. 

Afterwards the cells were recovered by adding 1 mL of ice-cold LB media and shaking for 2 - 

4 h at 28°C. The transformed Agrobacteria were plated on LB agar plates with appropriate 

antibiotics (including 50 mg/L rifampicin, 50 mg/L gentamycin and 2 mg/L tetracycline that 

are used to select the strain and helper plasmids). The positive clones were checked by PCR 

from colony with gene specific primers.  

For plant transformation the Agrobacterium cell suspension containing the plasmid was 

grown in 50 mL of LB media with appropriate antibiotics at 28°C for 1-2 days. The 

suspension was diluted in 300 mL of LB with appropriate antibiotics to OD600 0.3 and grown 

till OD600 0.8. The cells were collected by centrifugation at 3500 rpm for 10 min. at room 

temperature and resuspended first in small volume of 5% w/v sucrose and finally in 300 mL 

of 5% w/v sucrose and 0,05% v/v Silvet L-177 (Vac-in-Stuff, Lehle Seeds). Wild type Col-0 

plants were transformed with Agrobacteria by dipping flowers into the suspension for 15 sec. 

Plants were covered with plastic bags for 2 days. The bags were opened after 1 day after the 

transformation. The transformation was repeated again after one week. 

 

2.4.4. Seed surface sterilisation  

 

Seeds were sterilised before seeding with sodium hypochlorite (NaOCl) or Bayrochlor 

(Bayrochlormini, Bayrol France S.A). For sterilisation with NaOCl, seeds were resuspended 

in ~ 0.1 mL of water, mixed with 0.5 mL of 7.5% NaOCl, incubated for 5 min. and washed 

three times with 1 mL of sterile water. For sterilisation with Bayrochlor, seeds were mixed 

with 1% w/v Bayrochlor in 96% ethanol for 20 min., washed three times with 96% ethanol 

and air-dried for 3 - 4 h in laminar flow. 
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2.4.5. Arabidopsis germination, growth media and growth conditions 

 

For the selection of transgenic Arabidopsis plants the seedlings were germinated on ½ MS 

(Duchefa), 1% sucrose and 0.7% plant agar (Duchefa) plates (pH5.7) with appropriate 

antibiotics or herbicides if not stated otherwise. For GUS staining and subsequent 

fluorescence microscopy seeds were germinated on ½ MS, 1% sucrose and 0.5% phytagel 

(Sigma) vertical plates. For ethylene measurement by gas chromatography seeds were 

germinated on ½ MS, 1% sucrose and 0.7% plant agar in glass vials. For various treatments 

such as treatment with proteasome inhibitors, induction with estradiol, hormone and stress 

treatment before mRNA extraction from seedlings or GUS staining, seeds were germinated in 

liquid ½ MS in multiwell dishes and compounds were added to the liquid media. 

Before germination, seeds were stratified for 2 days at 4°C. Seedlings were germinated at 16h 

light photoperiod at 22°C. Plants were grown in soil at 16h or 8h light photoperiod at 22°C. 

 

2.4.6. Selection of transgenic Arabidopsis plants 

 

For the selection of transgenic Arabidopsis plants on plates following concentrations of 

antibiotics and herbicides were used: 50 mg/L kanamycin, 75 mg/L gentamicin, 20 mg/L 

hygromycin B (from Streptomyces hygroscopicus, Sigma), 7 mg/L Basta (glufosinate-

ammonium, Pestanal, Fluka/Riedel-de Haen). For the selection with gentamicin and 

hygromycin B seedlings were germinated for the first 5 days in darkness. 

For the selection of transgenic Arabidopsis plants on soil with Basta the seeds were 

germinated in soil for 7 days and sprayed four times every second day with Basta solution 

containing 40 mg/L Basta (ammonium glufosinate, Aventis) and 0,025% v/v Silvet L-177 

(Vac-in-Stuff, Lehle Seeds). 

 

2.4.7. Treatment with proteasome inhibitors 

 

Seedlings were grown in multiwell dishes in liquid ½ MS. MG132 (Calbiochem) was added 

to the final concentration of 50 µM and MG115 was added to the final concentration of 100 

µM. Solvent dimethyl sulfoxide (DMSO) was added as a control. Seedlings were incubated 

with inhibitors for 1h to overnight. 
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2.4.8. Induction of STOPP expression in estradiol-inducible STOPP lines 

 

To induce STOPP over-expression in estradiol (ER)-inducible STOPP lines seedlings were 

germinated in multiwell dishes in ½ MS with 50 µM ER (Sigma) or the solvent dimethyl 

sulfoxide (DMSO) as negative control. Media was changed every day. 

For ethylene measurement by GC-FID, seeds were germinated in vials on ½ MS agar (with 

1% sucrose, pH5.7) and were sprayed daily with ½ MS containing 50 µM ER for 4 days and 

100 µM ER for next 2 days starting from the first day after germination. In parallel another set 

of vials with seedlings was sprayed with ½ MS containing equal amount of solvent DMSO. 

After 6 days of treatment with ER, ~ 90% of pER8-gSTOPP-Myc seedlings obtained stomata-

clustering phenotype.  

 

2.4.9. Cultivation of Arabidopsis cell suspension and protoplast preparation 

 

The wild type Arabidopsis cell suspension was cultivated in Arabidopsis suspension media 

(MS with B5 vitamins (Duchefa), 3% sucrose, 1 mg/mL 2.4-D). 

Protoplasts were isolated from Arabidopsis suspension culture cells as follows: 4 - 5 days old 

cells were collected by centrifugation at 1500 rpm for 5 min. The cells were resuspended in 

25 mL of B5 – 0.34 M media (3.164 g/L Gamborg B5 media including vitamins (Duchefa), 

30.5 g/L D-glucose, 30.5 g/L D-mannitol, 1 mg/L 2.4-D, pH 5.5). The cell walls were 

digested by adding 25 mL of enzyme solution (1% cellulose, 0.2% macerozyme (both from 

Serva) in B5 – 0.34 M media) and gently shaking for ~ 1 - 2 hours in large Petri plates. The 

cells were collected by centrifugation at 1000 rpm for 5 min. and resuspended in 10 mL of B5 

- 0.28 M S (3.164 g/L Gamborg B5 media incl. vitamins, 96 g/L sucrose, pH 5.5). The 

floating protoplasts were collected after centrifugation at 800 rpm for 7 min. and transferred 

to 13 mL tube with a wide open Pasteur pipette. Protoplasts were diluted in B5 - 0.28 M S to 

4 - 6 x 106 cells/mL. All the centrifugation steps were done without brake in a swing-out 

centrifuge. 

 

2.4.10. Transformation of Arabidopsis cell suspension culture protoplasts 

 

50 to 70 µL of protoplast suspension was added to 7 – 15 µg of DNA (maximal amount is 

15µg, maximal volume is 15 µL per transformation). The protoplasts were mixed with 150 µL 

of PEG solution (300 g/L PEG 6000, 82 g/L D-mannitol, 23.5 g/L Ca(NO3)2, pH 9.0) and 
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incubated for 10 min. The protoplasts were washed with 1 mL of 0.275 M Ca(NO3)2 and 

collected by centrifugation at 800 rpm (~150 g)for 7 min. without brake in a swing-out 

centrifuge. The protoplasts were resuspended in 0.25 mL of B5-0.34 M media and incubated 

at least for 8h in the dark. All the steps were carried out at room temperature. 

 

2.5. Protein extraction from plant cells, protein detection and activity 

assays 
 

2.5.1. Protein extraction from Arabidopsis plants 

 

Proteins were extracted from Arabidopsis seedlings or leaves in Lacus buffer (25 mM Tris-

HCl pH 7.8, 75 mM NaCl, 15 mM EGTA, 15m M MgCl2, 1 mM dithiotreitol (DTT), 0.1% 

v/v Tween 20, 0.5 mM phenylmethanesulfonyl fluoride (PMSF), 5µg/mL leupeptin, 5µg/mL 

aprotinin, 15 mM 4 - nitrophenylphosphate – bis [Tris(hydroxymethyl) - aminomethan] salt, 1 

mM NaF, 0.5 mM Na3VO4, 15 mM β-glycerophosphate). For phosphotase activity 

measurements proteins were extracted from seedlings in Lacus buffer containing 500 nM 

Okadaic Acid.  

The seedlings were ground in liquid nitrogen with mortar and pestle or with a plastic grinder 

in the test tubes. The material was not allowed to thaw until Lacus buffer was added. For 

protein extraction with a homogenizer (Precellys 24, Peqlab) the seedlings were homogenized 

in Lacus buffer at 5000 rpm twice for 10 sec.  

The leaves were ground in test tubes with a glass grinder and sand (Sigma) in Lacus buffer for 

15 sec. In all cases the extracts were centrifuged at 18 000 rpm for 30 min. at 4°C. The protein 

concentration was measured by Bradford assay (see § 2.5.3.) and diluted to 0.5 – 2 µg/µL. For 

Western blot the SDS loading buffer (final concentration to 50 mM Tris pH 6.8, 100 mM 

DTT, 2% w/v SDS, 10% glycerol, 0.25% w/v bromophenol blue) was added to the samples. 

The samples were heated at 95°C for 5 min. before loading on the PAA gel. 

 

2.5.2. Protein extraction from protoplasts 
 

Protoplasts were centrifuged in table centrifuge at top speed for 15 sec, resuspended in 40 µL 

of Lacus buffer (see § 2.5.1.) and immediately frozen in liquid nitrogen. The samples were 

allowed to start thawing on ice and immediately vortexed for 15 sec. The extracts were 

centrifuged at 18000 rpm for 20 min. at 4°C. The total protein concentration was measured by 
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Bradford assay (see § 2.5.3.) and the concentrations were adjusted if needed. For Western blot 

SDS loading buffer was added to the samples (see § 2.5.1.). The samples were heated at 95°C 

for 5 min. before loading on the PAA gel. 
 

2.5.3. Bradford assay 
 

To measure protein concentration, 200 µL of dye reagent concentrate (Bio-Rad) was added to 

3 µL of protein extract and 800 µL of H2O. The solution was vortexed well and after 5 min. 

the absorbance at 595 nm was measured by spectrophotometer. The protein concentration 

(µg/µL) was calculated according to the albumin protein calibration curve. 
 

2.5.4. Western blot 
 

The protein samples were run in SDS running buffer (0.025 M Tris base, 0.192 M glycine, 

0.1% w/v SDS) on 10% or 12.5% SDS-PAA gel at 20 mA. The PVDF (Millipore) membrane 

was equilibrated for 2 min. in methanol and 15 min. in transfer buffer (TB; 50 mM Tris base, 

50 mM boric acid) before use. The proteins were transferred onto the PVDF membrane at 4°C 

at 75 V for 3h or at 15 V overnight. The membrane was stained with Ponceau S solution 

(0.1% Poneau S, 5% glacial acetic acid), washed in water and blocked with 5% w/v milk 

(dried non-fat milk powder) in TBS-T (10 mM Tris pH 8.0, 150 mM NaCl, 0.05% Tween 20) 

for 2 h at room temperature with agitation. The membrane was incubated with primary 

antibody in 5% w/v milk in TBS-T for 1h at room temperature or overnight at 4°C with 

agitation.  
 

Table 2.5. Used antibodies and sera for detection by Western blotting 
Primary antibody Produced in Working dilution 
Anti-HA (Covance) mouse, monoclonal 1:5000 
Anti-GFP (Roche) mouse, monoclonal 1:5000 
Anti-Myc (Santa Cruz) rabbit, polyclonal 1:5000 
Anti-Phospho-p44/42 (Cell Signaling) mouse, monoclonal 1:2000 
Anti-MPK3 (serum; H.Hirt MFPL) rabbit, polyclonal 1:2500 
Anti-MPK4 (L.Bögre, RHUL) rabbit, polyclonal 1:20000 
Anti-MPK6 (serum; H.Hirt MFPL) rabbit, polyclonal 1:5000 
Anti-STOPP (A.Gust, Uni Tübingen) rabbit, polyclonal 1:5000 
Anti-CDKB1;1 (L.Bögre, RHUL) rabbit, polyclonal 1:1000 
Anti-PSTAIRE (L.Bögre, RHUL) rabbit, polyclonal 1:4000 
Anti-E2Fc (L.Bögre, RHUL) chicken, polyclonal 1:4000 
Anti-α-Tubulin (Sigma) mouse, monoclonal 1:5000 
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The membrane was washed 4 times for 15 min. each with 5% w/v milk in TBS-T and 

incubated with secondary alkaline phosphatase (AP) - conjugated antibody usually of 1:5000 

dilution in 1% w/v milk in TBS-T for 1 h at room temperature with agitation.  

The membrane was washed 8 times 15 min. each with TBS-T and incubated in alkaline 

phosphatase buffer (100 mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2) for 10 min. The 

alkaline phosphatase reaction was developed by incubating the membrane protein-side-down 

into CDP-StarTM detection reagent (Amersham Biosciences) for 2 min. The membrane was 

wrapped into plastic sheets and exposed to Amersham HyperfilmTM ECL film. 

The Western blots with RBR, DPA, DPB, E2FB, E2FC, CDKB1;1 and  PSTAIRE antibodies 

were done in collaboration with Dr.Z.Magyar (Royal Holloway University London, RHUL). 

The PVDF membranes with proteins were transferred to the RHUL where Western blot with 

specific antibodies was performed by Dr.Z.Magyar. These antibodies were provided by 

Prof.L.Bögre lab (Royal Holloway University London).  

 

2.5.5. Dephosphorylation of crude protein extracts with λ protein phosphatase 

 

The plant protein extracts were prepared in Lacus buffer without protein phosphatase 

inhibitors. 10-20 µg of crude protein extracts were incubated with 0.25µL (100 U) λ protein 

phosphatase (Sigma) in 50 µL of 1x λ protein phosphatase buffer (Sigma) with or without 2 

mM MnCl2. For control, protein extracts were incubated without λ protein phosphatase and 

MnCl2 and with phosphatase inhibitors (20 mM EDTA, 13 mM EGTA, 40 mM ß-glycerol 

phosphate, 0.5 mM Na2VO3, 1 mM NaVO4, 5 nM okadaic acid, 50 mM NaF). Another set of 

samples was incubated at 65oC for 10 min. before λ protein phosphatase treatment to 

inactivate endogenous phosphatases. The dephosphorylation reactions with λ protein 

phosphatase were incubated at 30°C for 30 min. and terminated by adding SDS-loading buffer 

(see § 2.5.1.). Samples were heated at 95°C for 5 min. before loading on SDS-PAA gel for 

Western blot. 

 

2.5.6. MAP kinase activity assay on myelin basic protein (MBP) 

 

For the immunoprecipitation of MAP kinases 35 - 100 µg of total protein extract was added to 

20 µL of diluted (50%) protein A sepharose (Amersham Biosciences) with 2 µL of MAPK 

antibody (serum) or with 0.02 µL of purified MAPK antibody. For immunoprecipitation of 
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HA-tagged MAPKs from Arabidopsis protoplasts 2 µL of anti-HA serum (12CA5) was used 

per sample. 

The protein extracts with sepharose and antibodies were rolled overnight at 4°C and washed 3 

times with 1 mL of SucI buffer (50 mM TrisCl pH 7.4, 250 mM NaCl, 5 mM EGTA, 5 mM 

EDTA, 0.1% v/v Tween 20, 5 mM NaF, 0.1% v/v NP-40, 0.5 mM PMSF) and 1 time with 1 

mL of kinase buffer (20 mM Hepes pH 7.5, 15 mM MgCl2, 5 mM EGTA, 1 mM DTT). All 

centrifugation steps were done at 1000 rpm for 1 min. in swing-out centrifuge at 4°C. 

Residual liquid was removed from the sepharose by sucking off with a syringe. The sepharose 

was immediately mixed with 15 µL of kinase buffer containing 1 µg/µL MBP, 5 µCi/µL γ³²P-

ATP, 0.1 mM ATP and 1 mM DTT. The reaction was incubated at room temperature for 30 

minutes, terminated by adding SDS loading buffer (see § 2.5.1.), heated at 95°C for 3 

minutes, centrifuged shortly (~ 10 sec) and 7 µL of supernatant per lane (~ 5 µg of MBP) 

were loaded on 15% SDS-PAA gels. The small gel was run at 15 mA until the runnig out of 

bromphenol blue dye. The gel was stained with Coomassie Blue (§ 2.2.1) for 10 min., 

destained with destainer solution (12.5% v/v glacial acetic acid, 10% v/v methanol) for 2 h 

changing the destainer every 15 min. The gel was dried on Whatman 3MM paper in a vacuum 

gel-dryer at 80°C for 1 h and exposed to Kodak Biomax MR film. 

 

2.5.7. CDK activity assay on histone 1 (HisI) 

 

For immunoprecipitation of CDKs 50µg of total protein extract was incubated with 20 µL of 

diluted (25%) p13Suc1 agarose conjugate (L.Bögre RHUL or Upstate Biotechnology, USA). 

The beads were rolled for 1 h at 4°C and washed 3 times with 1 mL of SucI buffer (50 mM 

TrisCl pH 7.4, 250 mM NaCl, 5 mM EGTA, 5 mM EDTA, 0.1% v/v Tween 20, 5 mM NaF, 

0.1% v/v NP-40, 0.5 mM PMSF) and 1 time with 0.5 mL of kinase buffer (50 mM Tris pH 

7.4, 15 mM MgCl2, 5 mM EGTA, 1 mM DTT). All the centrifugation steps were done at 

1000 rpm for 1 min. in swing-out centrifuge at 4°C. The residual liquid was removed from the 

beads by sucking off with a syringe. The beads were immediately mixed with 20 µL of kinase 

reaction containing 1 µg/µL histone 1 (Sigma), 1 µCi/µl γ³²P-ATP, 10 µM ATP in kinase 

buffer. The reaction was incubated 30 min. at room temperature. The reaction was terminated 

by adding SDS loading buffer (see § 2.5.1.), heated at 95°C for 3 minutes, centrifuged shortly 

(~ 10 sec) and 15 µl of sample (~ 10 µg of histone) were loaded per lane on a 12.5% SDS-

PAA gel. The minigel was run at 15 mA until the bromphenol blue run out. The gel was 

stained with Coomassie Blue (§ 2.2.1) for 10 min., destained with destainer solution (§ 2.5.6) 
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for 2 h changing the destainer every 15 min. The gel was dried on Whatman 3MM paper in a 

vacuum gel-dryer at 80°C for 1h and exposed to Kodak Biomax MR film. 

 

2.5.8. Phosphatase activity assay on γ32P-casein in vitro in crude protein extracts  

 

For phosphatase activity assay in crude protein extracts from plants, total protein extracts 

were prepared in Lacus buffer (see § 2.5.1.) containing 500 nM okadaic acid (from 

Prorocentrum concavum, Sigma) as inhibitor of PP2A, PP1 (Bialojan and Takai, 1988; 

Holmes et al., 1990; Holmes, 1991) PP4, PP5 and possibly PP6 in 0.1 -50 nM range) and to 

less extent PP2B, PP7 type phosphatases (1 - 4 µM range) (reviewed in (Swingle et al., 2007). 

0.5 mM sodium orthovanadate (Na3VO4) was used to inhibit protein tyrosine phosphatases, 

and 15 mM EGTA was used as a Ca2+ chelator and inhibitor of PP2B. For casein labelling 

with γ32P-ATP see § 2.2.2. 

5 µg of crude protein extract were taken for dephosphorylation of 1-5 µL of γ32P-casein in 50 

µL of phosphatase buffer (50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 1 mM DTT) containing 

100 nM okadaic acid for 30 min. at 28°C. The reaction was stopped by adding 750 µL NoritA 

solution (0.9 M HCl, 90 mM Na-pyrophosphate, 2 mM NaH2PO4, 4% v/v Norit A) for 10 

min. γ32P-casein adsorbed to activated carbon was pelleted by centrifugation at 13000 rpm for 

5 min. The released γ32P was measured in 650 µL of supernatant by scintillation counter (Tri-

carb 16000, Packard) in counts per minute (cpm). 

 

2.6. Nucleic acid extraction from plant cells, PCR and hybridization 

 

2.6.1. Genomic DNA extraction from plants for genotyping by PCR 

 

For plant genotyping by PCR, genomic DNA was extracted from young plant leaves by 

grinding with a plastic grinder in test tube in 400 µL of extraction buffer (200 mM Tris-HCl 

pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% w/v SDS) for 15 sec. The extract was 

centrifuged at 13000 rpm for 5 min. and the gDNA was precipitated by adding 300 µL of 

supernatant to 300 µL of isopropanol. The gDNA was pelleted by centrifugation at 13000 rpm 

for 5 min. and dissolved in 100 µL of sterile water or TE (10 mM Tris-HCl pH 8.0, 1 mM 

EDTA pH 8.0). All the steps were carried out at room temperature. 1 – 2.5 µL of gDNA were 

used per one PCR reaction in 25 µL volume. 
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Table 2.6. Primers used to genotype stopp SALK_109986 plants  
ID Sequence (5’ to 3’) 
#237 (forward 1) CGCGTGTTGTGTAACCGCTTTGATATCGA  
#281 (forward 2) AGCGGCCGCACCATGGGAAGACGCGGACCAAT 
#365 (reverse 1) TTGGATTCTCTACGCCTACGCAGT 
#483 (reverse 2) AGCTCTCACTTCCGATCATAATCCTT 
LbaI (http://signal.salk.edu/) TGGTTCACGTAGTGGGCCATCG 

 

2.6.2. RNA extraction from seedlings with Trizol 

 

All solutions were prepared in DEPC treated water. ~ 20 - 30 mg of seedlings were ground 

with plastic grinder in eppendorf tube in liquid nitrogen, mixed with 0.5 ml of Trizol (38% 

phenol in saturated buffer, 0.8 M guanidine thiocyanate, 0.4 M ammonium thyocyanate, 0.1 

M sodium acetate pH5.0, 0.5% v/v glycerol, or purchased from Invitrogen), incubated at 60°C 

for 5 min. and centrifuged at 13000 rpm for 10 min at 4°C. 100 µL of chloroform was added 

to 500 µL of the supernatant, vortexed for 15 sec, incubated for 3 min. at room temperature 

and centrifuged at 13000 rpm for 15 min. at 4°C. The RNA was precipitated by adding 50% 

v/v of isopropanol and 50% v/v of 0.8 M sodium citrate/1.2 M NaCl to the aqueous phase of 

the supernatant. The solution was mixed and incubated for 10 min at room temperature. The 

RNA was pelleted by centrifugation at 13000 rpm for 10 min at 4°C. The pellet was washed 

with 500 µl of -20°C 75% v/v ethanol and respinning at 13000 rpm for 5 min. at 4°C. The 

RNA was air-dried for 3 min. at room temperature and dissolved in 40 µL of DEPC-water at 

60°C for 10 min. 1 – 2 µg of RNA were used for RT-PCR.  

 

2.6.3. RT-PCR and standard PCR 

 

The RNA and oligo-T primers were denatured at 65°C for 10 min. prior the reaction. RT-PCR 

was performed with 50 U of reverse transcriptase (RT) (Roche) in 20 µL of volume 

containing 1x buffer for RT (Roche), 2.5% v/v RNasin, 10 mM DTT, 0.25 mM dNTPs, 30 

µM oligoT and 1-2 µg RNA for 90 min. at 42°C. 1 µL of cDNA was used for standard PCR 

with STOPP gene specific primers: 
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Table 2.7. Gene-specific primers used for RT-PCR 
STOPP Sequence (5’ to 3’) 
#237 (forward1) CGCGTGTTGTGTAACCGCTTTGATATCGA 
#365 (reverse 1) TTGGATTCTCTACGCCTACGCAGT 
#483 (reverse 2) AGCTCTCACTTCCGATCATAATCCTT 
GFP Sequence (5’ to 3’) 
#286 GCGGCCGCATGGTGAGCAAGGGCGAGGA 
#287 TCTAGATTTACTTGTACAGCTCGTCCATGCCGAGAGT 
ACT3 Sequence (5’ to 3’) 
#260 (forward1) ATGGTTAAGGCTGGTTTTGC 
#361 (reverse 1) AGCACAATACCGGTAGTACG 

 

The standard PCR was performed with Taq polymerase (Fermentas) in 25 µL of reaction 

mixture containing 1x Taq polymerase buffer (Fermentas), 0.24 µM of each primer, 0.2 mM 

dNTPs, 0.1 – 10 ng of template DNA. 

 

2.6.4. Southern blot 

 

The probe DNA was prepared using Gene Images random prime labelling module 

(Amersham Biosciences) according to manufacture’s regulations. For the hybridization with 

gDNA from SALK T-DNA insertion lines the probe was prepared by isolation of the 740 bp 

AspI/ EcoRI fragment from pBI101 vector which corresponds to the T-DNA left border 

sequence of pROK2 plasmid used to create SALK T-DNA insertion collection 

(http://signal.salk.edu). ~ 50 ng of template DNA was used for labelling with Gene Images 

random prime labelling module to prepare 50 µL probe. Prior to use the labelled probe was 

denatured as follows: 10 µL was mixed with 10 µL of sterile water, heated for 5 min. at 

100°C and chilled on ice for 5 min. 

Genomic DNA for Southern blot was isolated from young plant leaves by DNeasy Plant Kit 

(Qiagen) according manufacture’s regulations. At least 1 µg of eluted gDNA was restricted 

with 25 - 40 U of appropriate enzyme overnight. The gDNA was precipitated with 2.5 

volumes of ice cold 100% ethanol and 1/10 volume of 5.3 M sodium acetate. The gDNA was 

dissolved in 10 µL of TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0) and run on 0.8 - 1% 

agarose gel in TBE (0.09 M Tris base, 0.09 M boric acid, 2 mM EDTA pH 8.0) buffer at 5 

V/cm2. The image of the DNA with a reference ruler was taken prior to the other steps. 

Subsequently the DNA was de-purinated by incubating the gel in 0.24 N HCl for 10 min., 

washed for 1 min. in sterile water, denatured three times for 10 min. each in denaturation 
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solution (1.5 M NaCl, 0.5 M NaOH), washed for 1 min. in sterile water, neutralized 2 times 

15 min. in neutralization solution (1.5 M NaCl, 1 M Tris-base, 0.001 M EDTA, pH 7.4) and 

washed with sterile water. 

The gDNA was blotted to a nitrocellulose membrane (HybondTM -N, Amersham Biosciences) 

overnight in 10x SSC (1.5 M NaCl, 0.15M sodium citrate, pH 7.0), wrapped in plastic foil and 

cross-linked with UV for 2 min. The membrane was further incubated in 10 mL of 

prehybridization solution (5x SSC, 0.1% SDS, 5% w/v dextrane sulphate, 0.5 mL Liquid 

blocking agent (Amersham Biosciences)) rolling for 2 h at 62°C. The denatured probe was 

added to the prehybridization solution. The DNA was hybridized at 63°C rolling overnight . 

The membrane was washed with 2 - 5 mL/cm2 of pre-warmed 1st washing solution (1x SSC, 

0.1% SDS) and 2nd washing solution (0.5x SSC, 0.1% SDS) each for 15 min. rolling at 60°C.  

The membrane was blocked for 1 h with 0.7-  1.0 mL/cm2 of a 1:10 dilution of liquid blocking 

agent in diluent buffer (0.1 M Tris-HCl, 0.3 M NaCl, pH 9.5) with gentle agitation and rinsed 

in diluent buffer for 1 min. The membrane was incubated with 0.3 mL/cm2 of 1:5000 diluted 

antifluorescein-AP conjugated antibody in 0.5 % (w/v) BSA in diluent buffer for 1 h with 

gentle agitation, washed 3 times for 10 min. each with 0.3% v/v Tween-20 in diluent buffer 

and rinsed in diluent buffer for 1 min. The alkaline phosphatase reaction was developed by 

incubating the membrane DNA-side-down into 30 - 40 µL/cm2 of detection reagent solution 

CDP-StarTM detection reagent (Amersham Biosciences) for 2 min. The membrane was 

wrapped into plastic sheets and exposed to Kodak Biomax MR film. 

 

2.7. Histo- and immunostaining of plant material and microscopy 

 

2.7.1. Histochemical GUS staining 

 

Histochemical GUS staining of Arabidopsis was performed with modifications from original 

protocol (Malamy and Benfey, 1997). Arabidopsis seedlings or tissues were stained with GUS 

staining solution containing 100 mM Tris pH 7.5, 0.05 mM NaCl, 20% v/v methanol, 1 mM 

K4[Fe(CN)6]·3H2O, 1 mM K3[Fe(CN)6], 5 mg/mL 5-bromo-4-chloro-3-indoxyl-ß-d-

glucoronic acid (X-GlcA) cyclohexylammonium salt (Duchefa) at 37°C for 1-3 days. Staining 

by this method increases specificity of the signal.  

To increase the signal, seedlings were permeabilized in 90% acetone (-20°C) on ice for 2 

min., washed 3 times with ice-cold 0.1 M sodium phosphate buffer pH 7.0 and stained with 
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GUS staining solution (0.1 M NaPO4 pH 7.0, 0.5 mM K4[Fe(CN)6]·3H2O, 0.5 mM 

K3[Fe(CN)6], 1 mg/mL X-GlcA, 0.3% v/v Tween 20) at 37°C.  

For the GUS staining of Arabidopsis embryos the whole ovules were stained and then opened 

by slightly squashing them using a coverslip. Arabidopsis leaves and flowers were stained by 

vacuum infiltration of GUS staining solution for 10 min. 

After the staining, chlorophyll from seedlings and tissues was extracted with a series of 

ethanol washings (30% - 70%). 

 

2.7.2. Propidium iodide staining of plant cell walls 

 

Seedlings were immersed in fresh 10 µg/mL propidium iodide (PI) solution for 10 min., 

destained with water and observed under confocal laser scanning microscopy (CLSM). 

 

2.7.3. Whole-mount immunolocalisation in roots of Arabidopsis  

 

The modified protocol for whole-mount immunolocalisation in roots was used (C. Luschnig, 

BOKU Vienna). The seedlings were fixed in 4% w/v paraformaldehyde in MTSB buffer (50 

mM PIPES, 5 mM EGTA, 5 mM MgSO4, pH 7.0) in multiwell cell culture dish for 1 hour - 

overnight. Seedlings were washed 5 times 10 min. in MTSB buffer with 0.1% v/v Triton X-

100 and 5 times 10 min. with sterile water. Seedlings were treated with 2% w/v driselase 

(from Basidiomycetes ssp., Fluka) in MTSB buffer for 30 min., and then washed 5 times 10 

min. in MTSB buffer with 0.1% v/v Triton X-100. Seedlings were permeabilised in 10 % w/v 

DMSO, 3 % v/v NP-40 for 1 hour and washed 5 times 10 min in MTSB buffer with 0.1% v/v 

Triton X-100. The seedlings were blocked in 2% w/v BSA in MTSB buffer for 1 hour at 30ºC 

and incubated with the 1:500 diluted primary anti-HA antibody (Covance) in 3% w/v BSA in 

MTSB buffer overnight at 30ºC. Seedlings were washed subsequently 4 times 5 min. and 4 

times 10 min. in MTSB buffer with 0.1 % v/v Triton X-100 and incubated for 3 h at 30ºC 

with the secondary FITC conjugated antibody (Sigma) diluted to 1:40 in 3% w/v BSA in 

MTSB buffer. The seedlings were washed 5 times 10 min. in MTSB buffer with 0.1 % v/v 

Triton X-100 and 5 times 10 min. in sterile water, mounted onto slides in 77% glycerol in 

phosphate buffer (150 mM NaCl, 10 mM KH2PO4, 10 mM Na2HPO4 x 2H2O) and examined 

under CLSM. 
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2.7.4. Bright field / fluorescence microscopy 

 

The development of epidermis and the histochemical GUS stainings of transgenic and/or wild 

type Arabidopsis plants were examined by Zeiss Axioplan microscope or Leica 

stereomicroscope. Images were taken with SPOT camera and processed with SPOT or 

MetaView software. 

CLSM (confocal laser scanning microscopy) was used to examine protein immunolocalisation 

in roots of Arabidopsis seedlings. The GFP fluorescence was exited with argon/krypton laser 

(Leica TCS) at 488 nm line and emission was detected at 500 – 530 nm. The propidium 

iodide staining was detected at 600 – 650 nm. The images were obtained using Leica 

software. 

 

2.7.5. Scanning electron microscopy 

 

Seedlings were fixed in 2.5% v/v glutaraldehyde (pH 7.1) at RT overnight rolling and 

dehydrated through acetone series of 30%, 50%, 70%, 80%, 90% and twice with 100% each 

30 min. at room temperature. Samples were immediately put for critical point drying for 1 h, 

mounted on stubs and coated with gold. Samples were examined by scanning electron 

microscope (EMBO workshop on Electron Microscopy and Stereology in Cell Biology, 2005, 

Ceske Budejovice). 

 

2.8. Ethylene measurement 
 

The seeds of wild type Col-0, stopp SALK_109986 and pGreenII-2x35S-TL-gSTOPPwt-HA, 

pGreenII-2x35S-TL-gSTOPPwt-MYC plant lines were surface-sterilized with Bayrochlor and 

100 seeds per glas vial (45° angle) were seeded. Seedlings were germinated in 4 replicates on 

½ MS media (with 1% sugar, 0.7% agar, pH 5.7) at 16 h light photoperiod, at 22°C up to 5-6 

days after germination (dag). Vials were closed with air-tight caps 1 day before the 

measurement. Ethylene was measured by gas chromatography (Hewlett Packard 5890 

SeriesII) with Al2O3 column (Agilent Technologies) by DI M. Schwanninger (BOKU, 

Vienna). The accumulated ethylene was calculated in pL (or fL) per mg of plant fresh weight. 
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3. Results 
 

3.1. Analysis of STOPP gene expression 
 

To investigate the expression pattern of STOPP gene, STOPP promoter and transcript levels 

were analyzed in silico and in planta. To see where STOPP gene is expressed, transgenic 

STOPPpro:GUSint (V.Kazanaviciute, unpublished) and STOPPpro:GFP plant lines were 

produced and analyzed by histochemical GUS staining or detection of GFP fluorescence. 
 

3.1.1. Bioinformatic analysis suggests that STOPP is developmentally and stress-

regulated  
 

The expression of STOPP gene was studied in silico using the reference expression database 

and meta-analysis system Genevestigator V3 (https://www.genevestigator.com/gv/index.jsp) 

(Zimmermann et al., 2004). Changes in STOPP expression (transcript) were analyzed during 

various Arabidopsis developmental stages, in different tissues and after treatment with a range 

of chemical and biogenic substances. The anatomy and development meta-profiles of STOPP 

expression were created using the data from all (4075) ATH1 22K microarrays. The meta-

profiling of STOPP expression in response to external stimuli was created using annotation 

tool. 

STOPP transcript was the most abundant in specific cell types and generative organs, such as 

pollen, stamen, flowers, embryo micropylar endosperm and suspensor cell, and lateral root 

cap (Figure 3.1). During plant development, the STOPP transcript was more abundant at 

juvenile development stages, such as seedling, young rosette and young flower, rather than in 

mature plant organs (Figure 3.2). 

The meta-profiling of STOPP expression in response to external stimuli revealed that only 

few substances or stress conditions could significantly alter the level of STOPP mRNA 

transcription or accumulation. STOPP transcript was up regulated by pathogen elicitors, 

including syringolin, chitin, elf18 and elf26 (18 and 26 amino acid peptides of elongation 

factor TU), flg22, NPP1, HrpZ (hairpin Z) and by P.syringae infestation (Figure 3.3). The 

protein synthesis inhibitor cycloheximide led to high accumulation of the STOPP transcript 

suggesting that STOPP may be regulated post-transcriptionally. Interestingly, closely related 

to STOPP, Arabidopsis AP2C1 is wound-induced (Schweighofer et al., 2007). By contrast, 

STOPP transcript was not up regulated by wounding (Genevestigator V3) (Figure 3.3).  
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mean value  
Figure 3.1. The anatomy meta-profile of STOPP expression in organs, tissues and cell types 
(Genevestigator V3). Left: heatmap of mean signal values (blue-white color coding). Right: scatterplot 
of mean values across the anatomy categories. Standard errors are indicated by bars. The number of 
arrays is shown on the very right. Array type: ATH1 22K. 
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Figure 3.2. The development meta-profile of STOPP expression (Genevestigator V3). STOPP 
expression fluctuates during plant development. Standard errors are indicated by bars. The number of 
arrays is indicated for each developmental stage. Array type: ATH1 22K. 
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Figure 3.3. The meta-profile of STOPP expression in response to external stimuli 
(Genevestigator V3). STOPP is up regulated by pathogen-related stress. The red – green color 
coding in heatmap represents log2 signal ratio of treatment versus control values.  
 

Taken together, the bioinformatics analysis suggests that STOPP expression is regulated 

during development and by stress application. This regulation is cell-type-specific and 

induced by pathogen-related stress. 

The regulatory sequences of STOPP promoter region were searched using the Gene 

Regulatory Information Server (AGRIS) Arabidopsis thaliana cis-regulatory database 

(AtcisDB) (http://arabidopsis.med.ohio-state.edu/) (Davuluri et al., 2003; Palaniswamy et al., 

2006). Such cis-regulatory binding sites were found in STOPP promoter as W- and G-boxes 

GATA and Ibox promoter motifs. RAV1-A, CCA1, MYB1 and MYB4 binding site motifs 

indicate that STOPP may be induced in response to pathogen stress or regulated by light and 

circadian rhythm. 

 

3.1.2. The expression of STOPP during development and by stress treatment in planta 

 

Developmental and tissue-specific expression of STOPP gene in vivo was studied by 

analyzing the STOPP promoter activity in plants harbouring the STOPPpro:GUS or 

STOPPpro:GFP transcriptional fusions. The activity of STOPP promoter was detected in a 
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range of cells and tissues by histochemical GUS staining. The activity of the STOPP promoter 

was detected earliest in the globular embryo and was restricted to the suspensor cell during 

heart and torpedo stages of embryo development (Figure 3.4). The promoter activity was also 

detected in the micopylar endosperm (data not shown). STOPP expression in 2 to 8 dpg (days 

post germination) seedlings was localized to the transition zone between division and cell 

elongation zones in the root epidermis and in stomata on hypocotyls, cotyledons and 

emerging true leaves. However, in later development stages the promoter activity decreased 

and in the adult plant was restricted to stomata on pedicel, sepals, stigma, anthers and mature 

pollen. Very weak activity of STOPP promoter was detected in stomata of rosette leaves (only 

after 72 h of GUS staining).  

 

se
ed

lin
gs

Days after germination
1d 2d 3d 4d 5d 6d   

section

embryo
gl                  ht

to                 em

su

su

pl
an

ts

pollenstomata

rosette leaf                 pedicel                flower     sepal                   stigma                   anther abscission
zone

 
Figure 3.4. The activity of STOPP promoter in STOPPpro:GUS plants. Histochemical staining of 
embryo (upper panel, left): globule (gl), heart (ht), torpedo (to) and mature embryo (em) stages. 
STOPP is expressed in globular embryo and in suspensor cell (su) during heart and torpedo stages. 
STOPP is expressed in root epidermis (starting from the second days after germination) and stomata 
during seedling development (upper panel, right). STOPP expression is localized specifically to 
stomata in adult plants (lower panel): very week STOPP promoter activity in stomata on leaves and 
stronger promoter activity in stomata on pedicel, sepals, stigma and anthers. STOPP is highly 
expressed in mature pollen and abscission zone of silique stem. 
 

In agreement with the promoter - GUS activity, the GFP fluorescence in STOPPpro:GFP line 

(#1) was detected in stomata (Supplemental figure 1). Interestingly, higher STOPPpro:GFP 

activity was observed in young recently divided stomata than in mature stomata. 

A variety of external stimuli (heavy metals, high salt, hormones, pathogen elicitors, cold and 

wounding) were applied to STOPPpro:GUS seedlings and adult plants (summarized in Table 

3.1) but all these treatments failed to induce detectable activity of the promoter (here only 
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wounding is shown, Figure 3.5 B). The stress application had little effect on GUS activity in 

stomata and had no or repressing effect on GUS expression in roots. In general, no treatment 

obviously induced/enhanced STOPPpro:GUS activity.  

 
Table 3.1. The activity of STOPPpro:GUS after various stress application in seedlings 

Treatment Concentration STOPPpro:GUS activity* 
CuCl2 1 mM  

10 mM 
NC 
NC 

NaCl 150 mM 
250 mM 

NC 
SU in stomata 

ABA 100 µM NC 
NAA 5 µM 

50 µM 
NC 
NC 

ACC 100 µM SU in stomata 
MeJA 100 µM NC 
SA 100 µM SU in stomata, SD in roots 
Xylanase 20 mM 

100 mM 
SU in stomata 
SU in stomata 

flg22 10 µM 
100 µM 

SU in stomata 
SU in stomata 

cold - NC 
wounding - NC 

* compared visually in treated and untreated STOPPpro:GUS seedlings; NC – not changed, SU – 
slightly up regulated, SD – slightly down regulated. 
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Figure 3.5. Up regulation of STOPP expression by stress application.  STOPP transcript levels 
after the treatment with 50 µM CHX, 100 nM flg22, 100 mM NaCl or 2,4-D in seedlings by semi-
quanititative RT-PCR (A). The expression of STOPP is not induced by wounding in STOPPpro:GUS 
plants (B). Rosette leaf was wounded (cutting) and stained by GUS. 
 

The STOPP transcript levels in response to biotic and abiotic stress treatment were analyzed 

by semi-quantitative RT-PCR. In agreement with bioinformatic data the STOPP expression 

was significantly induced by cycloheximide, however, no detectable induction with 100 nM 

flg22 was observed after 30 min. of treatment (Figure 3.5 A). 
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3.2 Analysis of STOPP gain-of-function and loss-of-function lines 
 

3.2.1. STOPP gain-of-function lines develop stomata clusters in epidermis 

 

Gain-of-function (gof) STOPP lines over-expressing epitope tagged STOPP gDNA were 

analysed morphologically and by Western blotting. In T3 generation dwarfish seedlings of 

35Spro:gSTOPP-HA (line #2 from 2 independent lines), 35Spro:gSTOPP-Myc (1 independent 

line) and 35Spro:gSTOPP-GFP (lines #2, #3 and #5 from 5 independent lines) were observed 

(Figure 3.6 A). The STOPP gof 5 dpg seedlings developed ~ 60% shorter roots in comparison 

to the wild type seedlings when grown on vertical plates (Table 3.2 and Figure 3.6 B). The 

epidermal cells in basal zone of hypocotyls were ~ 66% shorter in STOPP gof than in wild 

type seedlings (Table 3.2 and Figure 3.6 C and D). The hypocotyl elongation in dark grown 

STOPP gof seedlings was ~ 23% reduced as compared to the wild type but the apical hook 

formation was not affected (Table 3.2 and Figure 3.6 E). 

 

Table 3.2. Root and hypocotyl lenght of STOPP gof 5 dpg seedlings 
Lenght wt STOPP gof P value (ttest) 
Root length (cm) 1.15 ± 0.18 0.46 ± 0.12 < 0.0001 
Hypocotyl epidermal cells (µm) 131.63 ± 22.7 58.0 ± 14.76 < 0.0001 
Hypocotyl elongation in dark (cm) 1.23 ± 0.24 0.95 ± 0.14 < 0.005 

 

Seedlings with dwarf phenotype were also vitreous on the agar plates and hardly survived in 

soil. By contrast, almost all seedlings could survive on ½ MS plates supplemented with 1% 

sucrose for 1 month and longer. The strength of the phenotype varied among the survivors on 

the soil in the same line. In addition, the strength of the phenotype was decreasing in 

35Spro:gSTOPP-HA ≥ 35Spro:gSTOPP-Myc > 35Spro:gSTOPP-GFP respectively. Most of the 

survived adult plants had a dwarf phenotype (Figure 3.6 F) and formed stunned flowers and 

stunned siliques (Figure 3.6 G and H). However, all the STOPP gof plants that had produced 

flowers were fertile. The fertility of pollen was normal as pollen germination was not 

affected. The observation of epidermis of these seedlings and plants revealed the appearance 

of stomata clusters or even the complete conversion of epidermal cells on the cotyledons to 

stomata (Figure 3.7). Stomata clusters of various sizes were observed also in the epidermis of 

hypocotyls, on some rosette leaves or cauline leaves, in sepals, anthers, pistils (Figure 3.7 and 

3.8 A) and siliques (here is not shown). 
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Figure 3.6. STOPP gof plants show dwarf phenotype. 5 dpg wild type (wt) and STOPP gof 
seedlings on vertical plates (A). STOPP gof seedlings have ~ 60% shorter roots, ~ 66% shorter 
epidermal cells of basal hypocotyl and ~23% shorter hypocotyls of dark-grown seedlings than wild 
type (B, D and E respectively). The epidermal cells of basal hypocotyl in wt and STOPP gof 
seedlings (C). The junctions between epidermal cells are marked in arrows. Red – propidium iodide 
staining. 1-month-old wt and STOPP gof plants in the soil (F). Flowers and siliques of wt and STOPP 
gof plants (G and H respectively). Wild type is on the left and STOPP gof is on the right in all figures. 
All bars 50 µm. 
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Figure 3.7. Stomata clusters on various organs of 35Spro:gSTOPP-GFP plants. STOPP gof 
results in the development of stomata clusters in the epidermis of cotyledons, rosette leaves, sepals, 
anthers and pistils. All bars 50 µm. 
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The stomata development was analysed in hypocotyls of 35Spro:gSTOPP-GFP seedlings for 5 

consecutive days. The ectopic stomata developed from neighbor cells, which did not exhibit 

typical precursor cell morphology (Figure 3.8 A, 2 – 5 dpg). Stomata clusters were formed 

both in protruding and non-protruding cell files of hypocotyls (Figure 3.8 A, 12 dpg). The 

intensive cell divisions were observed in epidermal cells of STOPP gof seedlings (Figure 3.8 

B). Finally, almost cells differentiated into guard cells (GCs). 
 

A

B 2 dpg                                                       3 dpg                                                              4 dpg              

2 dpg                               3 dpg                       4 dpg                                 5 dpg           12 dpg

 
Figure 3.8. Stomata cluster formation in STOPP gof lines. The time-scale observation of multiple 
stomata formation in the hypocotyl of 35Spro:gSTOPP-GFP seedlings (A). Almost all epidermal cells 
finally differentiate into guard cells. The intensive cell divisions in epidermal cells on the cotyledons of 
35Spro:gSTOPP-HA #2.2.1.4 seedlings (B). All bars 20 µm. 
 

*

*
*

* *

*

*

 
Figure 3.9. Aberrant stomata in cotyledons of 35Spro:gSTOPP-GFP gof 7 dpg seedlings. 
Aberrant stomata are indicated by asterisks; dividing GC-like cells are indicated by arrows. Green - 
GFP fluorescence, red – propidium iodide staining. All bars 50 µm. 
 

In epidermis of older than 7 dpg STOPP gof seedlings, aberrant stomata were observed. These 

stomata were formed of two GC-like cells of unequal size. Such GC-like cells acquired 

typical guard cell characteristics but were larger than normal stomata. The aberrant stomata 
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contained stomata pores, which were formed often by only one guard cell in the pair (usually 

by the larger one). Some of the aberrant GC-like cells contained several nuclei (up to three) 

and could initiate asymmetric divisions (Figure 3.9). 

According to the phenotype of the STOPP gof lines, the gene was named STOPP (Stomata 

Protein Phoshatase 2C). 
 

3.2.2. Induction of stomata clustering by conditional STOPP expression  
 

To verify if stomata phenotype is caused by STOPP over-expression, estradiol (ER) inducible 

Myc or YFP tagged STOPP expressing lines were produced. The seedlings were germinated 

in liquid ½ MS in multiwell dishes for 3 days in the presence of 50 µM ER or equal amount 

of solvent DMSO as a control. The seedlings were phenotypically analysed by microscopy 

and the transgene phosphatase protein levels were assayed by Western blot (Figure 3.10 A 

and C). ER-treated XVE-gSTOPP-Myc and XVE-gSTOPP-YFP seedlings developed stomata 

clusters in the epidermis of cotyledons (Figure 3.10 B and D) and hypocotyls (not shown). 

This clustering of stomata was induced in 11 out of 12 independently transformed lines.  
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Figure 3.10. Induction of stomata cluster formation in ER-inducible STOPP gof lines. STOPP-
Myc (A) and STOPP-YFP (C) protein accumulates after treatment of 3 dpg old seedlings with 50 M 
estradiol. α-tubulin (α-TUB) was used as a control for protein amounts. The accumulation of STOPP 
protein leads to stomata cluster formation (B and D). Solvent DMSO was used as a control. Green – 
YFP fluorescence. All bars 50 µm. 
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The line which failed to develop stomata clusters (XVE-gSTOPP-YFP #9) also did not express 

STOPP-YFP protein (proven by Western blot) (Figure 3.10 C). This result provides additional 

evidence that over-production of STOPP protein leads to formation of multiple stomata. 

 

3.2.3.  The STOPP protein may be post-transcriptionally regulated by the proteasome  

 

To investigate if the STOPP gof phenotype correlates with protein expression, STOPP protein 

levels were analyzed by Western blot with antibodies against HA or GFP tags. 

For Western blot analysis wild type and the 35Spro:gSTOPP-GFP line #2.2.7 was germinated 

on agar plates for 19 consecutive days. STOPP-GFP protein was detected by Western blot 

from 0 till 11 days after germination but from 5 till 11 dpg the protein level decreased. After 

11 dpg the fusion protein could not be detected (Fig. 3.11 A). The STOPP-GFP protein was 

further not detected in the leaves of adult STOPP gof plants by Western blot or by GFP 

fluorescence although the mRNA of endogenous STOPP and STOPP-GFP was detected by 

RT-PCR (Figure 3.11 B). This suggested the regulation of the STOPP protein stability. The 

STOPP protein stability was analyzed in 35Spro:gSTOPP-HA #2.2.1 seedlings. STOPP gof 

seedlings were germinated in liquid ½ MS media, treated with ubiquitin 20S and 26S 

proteasome pathway inhibitors (MG132 for 1 h or 12 h; MG115 for 1 h; lactacystin for 1 h 

and epoxomicin for 1 h) and analysed by Western blot. As a result only the reversible 

proteasome inhibitors MG132 and MG115 were able to slightly stabilize STOPP-HA protein 

(Fig. 3.11 C) whereas the more specific acting lactacystin and epoxomicin had no effect on 

protein stability. 
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Figure 3.11. The regulation of STOPP protein levels. The timescale detection of STOPP protein 
levels in 35Spro:gSTOPP-GFP seedlings (A). The STOPP transcript is present in stems, leaves and 
flowers of 1.5 month-old wild type and 35Spro:gSTOPP-GFP lines (B). The RT-PCR was performed 
with primers specific for STOPP or GFP. ACT3 was used as a control. Treatment with proteasome 
inhibitors of 5 dpg 35Spro:gSTOPP-HA seedlings (C). 
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3.2.4. STOPP protein is localized to the cell nucleus 

 

STOPP protein localisation was analysed by transient protein expression in Arabidopsis 

suspension protoplasts and in seedlings constitutively over-expressing GFP-tagged STOPP. 

STOPP-GFP was localized to cell nuclei of protoplasts transformed with 35Spro:gSTOPP-

GFP expression vector (Figure 3.12 A) and in 35Spro:gSTOPP-GFP seedlings (Figure 3.12 

C). These results were confirmed by whole-mount immuno-localisation in 35Spro:gSTOPP-

HA seedlings using HA antibody in roots and cotyledons of 3 dpg seedlings (Figure 3.12 B 

and D respectively) indicating that GFP tag does not interfere with subcellular STOPP protein 

localisation. 

These results also correspond to the previous observation of STOPP-YFP protein in ER-

inducible XVE-gSTOPP-YFP lines. 

 
 A                                     B

C

D

 
Figure 3.12. Subcellular STOPP localization. STOPP-GFP is localised to the cell nuclei in 
protoplasts (A) and seedlings (B to D): stomata in the cotyledon of 3 dpg seedling expressing 
35Spro:gSTOPP-GFP (C) and  whole-mount immunolocalisation in root (B) and cotyledon (D) of 3 dpg 
seedlings expressing 35Spro:gSTOPP-HA with anti-HA antibody. Green – GFP fluorescence, red – 
propidium iodide staining. All bars 50 µm. 
 

3.2.5. The N-terminal domain of STOPP is responsible for the nuclear localization and 

stomata clustering in STOPP gof lines 

 

STOPP protein exhibits nuclear localization whereas another closely related phosphatase of 

the PP2C cluster B, AP2C1 (Schweighofer et al., 2004; Schweighofer et al., 2007), is targeted 

to plastids (V. Kazanaviciute unpublished). Both phosphatases share high sequence homology 

(especially in C-terminal catalytic domain) and substrate specificity for MAP kinases. 

Therefore domain-swapping of N- and C-terminal domains (NTD and CTD) between these 
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phosphatases was performed and fusion protein constructs were created (V.Kazanaviciute, 

unpublished) (Figure 3.13 A). Transgenic seedlings over-expressing (from 35S promoter) the 

domain-swapping proteins AP2C1NTD-STOPPCTD or STOPPNTD-AP2C1CTD tagged with GFP 

were produced and analysed by fluorescence microscopy in seedlings. As represented in 

Figure 3.13 B, STOPPNTD-AP2C1CTD chimeric protein was located in the nucleus whereas 

AP2C1NTD-STOPPCTD was located in plastids. Moreover, 35Spro:STOPPNTD-AP2C1CTD over-

expressing seedlings developed stomata clusters in epidermis of hypocotyls, cotyledons and 

emerging true leaves. These results demonstrate that the NTD of STOPP determines protein 

localisation to the nucleus and this is sufficient for the chimeric protein to exert its function in 

epidermal cell conversion to stomata. The over-expression of 35Spro:AP2C1wt-GFP 

(Schweighofer et al., 2007) or 35Spro:AP2C1NTD-STOPPCTD does not lead to obvious 

developmental defects suggesting that CTD is interchangeable between closely-related 

PP2Cs. 

STOPPNTD AP2C1CTD AP2C1NTD STOPPCTD

A

B
cotyledon                                           cotyledon

leaf                                                      leaf

STOPPNTD STOPPCTD

AP2C1NTD AP2C1CTD

 

 
Figure 3.13. NTD of STOPP is responsible for the nuclear protein localisation and for stomata 
clustering. Schematic representation of domain swapping between cluster B phosphatases STOPP 
and AP2C1 (A). Native STOPP protein is located to the nucleus and AP2C1 is targeted to the plastids 
as demonstrated in Arabidopsis protoplasts. After NTD/CTD domain swapping, STOPPNTD-AP2C1CTD 
(line #1.5.) chimeric protein is located in the nucleus whereas AP2C1NTD-STOPPCTD (line #1.8.) is 
located in the plastids (as shown in epidermis of cotyledons and leaves) in transgenic 7 dpg seedlings 
(B). Green – GFP fluorescence, red – propidium iodide staining. All bars 50µm. 
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In addition the domain swapping with distant PP2C from cluster A, HAB1 does not lead to 

stomata clustering although the protein is also localized to the cell nucleus (Supplemental 

figure 2). 

 

3.2.6. Expression of stomata development markers in STOPP gof plants 

 

To identify downstream targets of STOPP, the stomata patway genes were analyzed in 

STOPP gof seedlings. Essential positive regulators of stomata development, the transcription 

factors FAMA and MUTE, were chosen as marker genes. The plant lines expressing FAMA 

and MUTE transcriptional fusions with GUS or GFP (for references see § 2.4.1.) were used as 

mother (acceptor) plants for genetic crosses with STOPP gof plants. FAMApro:GFP and 

MUTEpro:GUS were crossed with 35Spro:gSTOPP-HA (line #2.2.1) whereas FAMApro:GUS 

and was crossed with 35Spro:gSTOPP-GFP (line #2.2.7.5). T1 or T2 generation seedlings of 

crosses were analysed by GUS staining or GFP fluorescense.  
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Figure 3.14. The expression of stomata development markers in STOPP gof genetic 
background. The guard cells of STOPP gof lines express stomata pathway markers: mature guard 
cell marker E1728, guard mother cell (GMC) and guard cell marker FAMA and meristemoid and GMC-
specific MUTE. Promoter activities of FAMApro:GFP and MUTEpro:GUS show enhanced expression of 
these genes in 5 dpg STOPP gof seedlings. Green – GFP fluorescence. All bars 50 µM. 
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The promoter activities of transcription factors FAMA and MUTE (Ohashi-Ito and 

Bergmann, 2006; Pillitteri et al., 2007) were analysed in wild type and STOPP gof genetic 

background (Figure 3.14). GUS staining revealed enhanced promoter activity of the 

corresponding genes in STOPP gof lines. FAMA-GFP transcription factor is a guard cell 

marker (Ohashi-Ito and Bergmann, 2006). In contrast to wild type FAMA-GFP was as well 

expressed in stomata neighbour cells in 35S:STOPP-HA background as shown in Figure 3.14 

(close-up). Similar results were obtained with FAMApro:GUS in 35Spro:gSTOPP-GFP by GUS 

staining (not shown). 

 

3.2.7. Identification and analysis of stopp T-DNA insertion lines 

 

stopp T-DNA insertion lines SALK_139825 and SALK_009986 were obtained from SALK 

collection (http://signal.salk.edu) and analysed by PCR with gene specific and T-DNA 

primers. The T-DNA was detected in the promoter region 105 bp upstream of start codon in 

line SALK_139825 (V. Kazanaviciute, unpublished). However the STOPP transcript was still 

detected by RT-PCR in two homozygous lines indicating that the T-DNA insertion did not 

lead to the disruption of gene product. Therefore the SALK_139825 was not used in further 

analysis. From SALK_009986 two lines homozygous for T-DNA insertion (#2.1 and #3.2) 

were selected (for primers see §3.2.1). The T-DNA insertion was detected within the second 

exon (Figure 3.15 A). Southern blot analysis identified single T-DNA insertions in both lines 

of SALK_009986 (Figure 3.15 B).  

RT-PCR from these lines was performed with STOPP specific primers (237 and 365, see 

§2.6.3) flanking the first and the second introns. For RT-PCR wild type, stopp T-DNA 

insertion lines #2.1 and #3.2 were germinated in liquid ½ MS and treated with 100 nM flg22 

or 50 µM cycloheximide. The RT-PCR product of ~ 400 bp corresponding to mRNA of 

STOPP was detected in wild type seedlings but not in SALK_009986 knock out lines (Figure 

3.15 C), ACT3 (actin) was used as a control. As a result SALK_009986 lines #2.1 and #3.2 

were identified as phosphatase knock-out lines (stopp) lines and used for further analysis.  

The analysis of epidermis using stopp #2.1 and #3.2 lines revealed that the absence of STOPP 

did not affect the development of stomata (epidermis of stopp cotyledon is shown in Fig. 3.15 

D). Additionally no obvious developmental defects were observed in stopp seedlings and 

adult plants. 

 



 72

λE/H        2.1    3.2     wt    λE/H        2.1   3.2    wt 

wt               stopp 2.1           stopp 3.2
- flg22 CHX      - flg22  CHX     - flg22 CHX

STOPP

ACT3

RNA

gSTOPP

700 bp

stopp #2.1

A

B D

C

Figure 3.15. Identification of stopp T-DNA insertion line SALK_009986. Schematic representation 
of T-DNA insertion site in the 2nd exon of STOPP, at 1159bp from ATG (A). 2 independent 
homozygous for T-DNA insertion lines: #2.1 and #3.2 were isolated and tested by Southern (B) and 
RT-PCR (C). For Southern blotting gDNA was cut with EcoRI and hybridized with T-DNA specific 
fragment. Expected band size is 709 bp if the insertion is single. For RT-PCR seedlings were treated 
with 100 nM flg22 and 50 mM CHX. ACT3 was used as a control. The development of epidermis is not 
affected in stopp knock out lines as represented in 7 dpg stopp #2.1 seedling (D). All bars 50 µm. 
 

 

3.2.8. Stomata clustering phenotype induced by STOPP gof depends on STOPP 

phosphatase activity 

 

To test if STOPP phosphatase activity is necessary to induce stomata clustering in plants, the 

phosphatase mutant with reduced phosphatase activity was created. The G163D mutation in 

the catalytic domain of STOPP was introduced according to analogous mutations in other 

PP2C phosphatases, ABI1-G180D and AP2C1-G178D (Bertauche et al., 1996; Schweighofer 

et al., 2007) (Figure 3.14 A). To test if this mutation abolishes enzymatic STOPP activity, 

recombinant GST-STOPP wild type (wt) and the phosphatase mutant (STOPP-G163D) 

proteins were produced. The phosphatase activity of recombinant STOPP proteins was 

assayed in vitro by dephosphorylation of γ32P-labelled casein in the presence of 100 nM 

Okadaic Acid. 

As a result GST-STOPP-G163D had 6-fold reduced phosphatase activity compared to GST-

STOPPwt (Figure 3.14 B). Subsequently eight independent transgenic lines over-expressing 

35Spro:gSTOPP-G163D-GFP were produced. The presence of STOPP-G163D-GFP protein in 
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seedlings was detected by GFP fluorescence. No stomata clusters or other developmental 

defects were observed in the epidermis of these seedlings as shown in Figure 3.14 D. 

To assay whether the over-expression of wild type STOPP phosphatase results in higher 

overall PP2C activity in planta, the total PP2C activity was tested in crude protein extracts. 5 

µg of crude protein extract from wild type, stopp knock-out (line #2.1) and 35Spro:gSTOPP-

HA (line #2.1.6) 7 dpg seedlings was used to dephosphorylate γ32P-casein in the presence of 

500 nM okadaic acid. The measurement of released γ32Pi was done in 9 replicates. The total 

PP2C activity in 35S:STOPP-HA seedlings was ~15% higher than in wild type (t-test p = 

0,006). However in the stopp knock-out line the total PP2C activity was only ~ 4% lower than 

in wild type and this difference was not statistically significant (t-test p> 0,05). 
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Figure 3.16. The phosphatase activity is essential for PP2C-induced stomata cluster formation. 
The structure of GST-STOPP and schematic representation of phosphatase mutation site (A). Both 
STOPP versions were tagged with GST for expression in E.coli. Phosphatase activities of recombinant 
proteins were tested in vitro by dephosphorylation of γ32P-casein in the presence of 100 nM Okadaic 
Acid (B). 35Spro:gSTOPP-G163D-GFP plants have normal epidermis as represented in 7 dpg seedling 
of line #5 (C). Green - GFP fluorescence, red – propidium iodide staining. All bars 50 µM. Total PP2C 
activity in crude protein extracts from wild type (wt), stopp knock out (line #2.1) and STOPP gof (line 
#2.1.6) 7 dpg seedlings (D). 5 µg of crude protein extract were used to dephosphorylate γ32P-casein in 
the presence of 500 nM okadaic acid.  
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3.3. Identification of STOPP-interacting proteins and substrates 
 

3.3.1. MPK4 and MPK6 were identified as STOPP interacting proteins using the yeast 

two hybrid system 

 

To identify molecular targets of STOPP a yeast two hybrid (Y2H) interaction screen was 

performed using yeast strain pJ694A transformed with BD-STOPP and an Arabidopsis cDNA 

library prepared from 1:1 of auxin induced and uninduced roots (provided by Dr. Bert van der 

Zaal, Institute of Molecular Plant Sciences, Leiden University, The Netherlands). 2.3 million 

clones were screened and 18 positive clones were obtained after selection. The plasmid DNA 

of these clones was analysed by restriction digest where 18 clones fell into 5 restriction 

pattern groups. The corresponding cDNAs from these 5 clones were sequenced and the 

encoding genes identified (Table 3) by BLAST search at NCBI (blastn; 

http://www.ncbi.nlm.nih.gov/). 

 

Table 3.3. STOPP-interacting proteins identified in Y2H screening  
Locus ID Description Clones 
At4g01370 AtMPK4 1 
At2g43790 AtMPK6 3 
At3g61790 SINAT3, seven in absentia (SINA) family protein  1 
At1g32070 GCN5 related N-acetyltransferase (GNAT) family 

protein / nuclear shuttle intreacting protein (NSI) 
4 

At1g19130 Conservative unknown protein, contains DUF985 
domain that belongs to the Cupin superfamily 

4 

 

The interactions with BD-STOPP were confirmed by Y2H ß-galactosidase liquid assays and 

auxotrophic complementation using cDNA rescued from yeast clones (Fig. 14A and 14B).  

Among other genes the MAP kinases MPK4 and MPK6 were identified as STOPP interacting 

partners. To verify the specificity of MAPK interaction direct Y2H interaction assays between 

STOPP and 18 MAPKs was performed using L40 yeast strain as a host. The ß-galactosidase 

liquid (Fig. 14C) and auxotrophic complementation assays confirmed that STOPP interacts 

specifically with MPK4 and MPK6 suggesting the biological significance of these 

interactions in plants. 
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Figure 3.17. STOPP-interacting proteins in Y2H. STOPP-interacting proteins, including MPK4 and 
MPK4, were identified in cDNA library screening with BD-STOPP (A). The interactions were confirmed 
by direct Y2H assays: liquid β-galactosidase assay (A) and auxotrophic complementation on SD-Ade 
media with BD-STOPP (+) or with DB-empty vector (-) as a control (B). Yeast strain PJ69A was used 
as a host. Direct Y2H interaction assay (liquid β-galactosidase assay) between STOPP and 18 
MAPKs shows the specificity of STOPP and MPK4 or MPK6 interactions (C). L40 yeast strain was 
used as a host. 
 

 

3.3.2. STOPP co-localises with and inactivates MPK4, MPK6 and MPK3 in 

Arabidopsis protoplasts 

  

To assay whether STOPP is capable to associate with MAP kinases in plant cells, protein co-

localisation was studied. STOPP protein associations/interactions with MAP kinases in plant 

cells were visualised by the bimolecular fluorescence complementation (BiFC) method (Hu et 

al., 2002). To test whether STOPP also inactivates these MAP kinases in Arabidopsis 

protoplasts, MAPK activities were assayed as described (Meskiene et al., 2003). 

For phosphatase and MAP kinase co-localisation studies, protoplasts were isolated from 

Arabidopsis cell suspension culture (Schweighofer et al., 2009) and transformed with 

constructs containing GFP-tagged STOPP and RFP-tagged AtMPK4 or AtMPK6 genes driven 

by enhanced CaMV 35S promoter. The fluorescence was monitored using filtersets for GFP 

and RFP where STOPP was co-localising with MPK4 and MPK6 in the nucleus (Figure 3.18).  
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The BiFC approach was additionally used to test whether and where these proteins associate 

in plant cells. Protoplasts from Arabidopsis suspension culture were co-transformed with 

35Spro:YFPNTD-STOPP and 35Spro:YFPCTD-MPKs. Following MPKs were tested for 

association with STOPP in BiFC assays: MPK1, MPK3, MPK4 and MPK6 (Table 3.4). 

35Spro:YFPNTD (SPYNE) and 35Spro:YFPCTD (SPYCE) constructs (Walter et al., 2004) were 

used as negative controls. As a result MPK3, MPK4 and MPK6 but not MPK1 were able to 

reconstitute YFP protein fluorescence with STOPP (Fig. 14B). 

 

Table 3.4. Plasmid combinations used for BiFC assays 
Split-YFPNTD Split-YFPCTD Complemented 

YFP 
fluorescence* 

pRT100-35S-YFPNTD pRT100-35S-YFPCTD nf 
pRT100-35S-YFPNTD -gSTOPPwt pRT100-35S-YFPCTD nf 
pRT100-35S-YFPNTD pRT100-35S-YFPCTD -AtMPK1wt nf 
pRT100-35S-YFPNTD -gSTOPPwt pRT100-35S-YFPCTD -AtMPK1wt nf 
pRT100-35S-YFPNTD pRT100-35S-YFPCTD -AtMPK3wt nf 
pRT100-35S-YFPNTD -gSTOPPwt pRT100-35S-YFPCTD -AtMPK3wt YF 
pRT100-35S-YFPNTD pRT100-35S-YFPCTD -AtMPK4wt nf 
pRT100-35S-YFPNTD -gSTOPPwt pRT100-35S-YFPCTD -AtMPK4wt YF 
pRT100-35S-YFPNTD pRT100-35S-YFPCTD -AtMPK6wt nf 
pRT100-35S-YFPNTD -gSTOPPwt pRT100-35S-YFPCTD -AtMPK6wt YF 
* nf – no fluorescence, YF –YFP fluorescence 
 

A BSTOPP-GFP       MPK4-RFP         merge
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MPK1                 MPK3                MPK4                MPK6

 
Figure 3.18. STOPP co-localization and BiFC with MAP kinases in Arabidopsis protoplasts.  
STOPP-GFP co-localises with MPK4-RFP and MPK6-RFP (A). Green – GFP fluorescence, red – RFP 
fluorescence. BiFC assay of YFPNTD-STOPP with YFPCTD-MPKs (1, 3, 4 and 6) (B). Green – YFP 
fluorescence. 
 

The failure of YFPCTD-MPK1 and YFPCTD-STOPP to reconstitute YFP confirms the 

specificity of STOPP - MAPK interactions. The reconstituted YFP fluorescence was mainly 
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detected in nuclei. However, low intensity YFP fluorescence was also detected in the 

cytoplasm, indicating that STOPP - MAPK complexes can occur also in the cytoplasm.  

These results show that STOPP and the MAP kinases 3, 4 and 6 are co-localised to the 

nucleus. It suggests that the interaction occur in the same compartments also in planta. 

MAP kinase activity assays were performed to test if these MAPKs are in vivo substrates of 

STOPP. Protoplasts from suspension culture cells were co-transformed with expression 

vectors containing HA-tagged MAPKs (MPK3, MPK4 or MPK6) and an upstream activating 

MAPK(K) kinase. Here the MAPKK MKK2-EE (Teige et al., 2004), MKK5wt (L.Bögre, 

RHUL) or the MAPKKK ∆ANP1 (Asai et al., 2002) were used (Table 5). 

 

Table 3.5. Combinations of STOPP and MAPK expression vectors for MAPK activity 
assays 
STOPP MAPK Upstream MAPKK(K) 

pGreenII0229-2x35S-TL-
AtMPK3wt-HA 
pGreenII0229-2x35S-TL-
AtMPK4wt-HA 

pGreenII0029-2x35S-TL-
gSTOPPwt-Myc  

pGreenII0229-2x35S-TL-
AtMPK6wt-HA 

pJS-∆ANP1-HA  

pGreenII0229-2x35S-TL-
AtMPK3wt-HA 

pGreenII0029-AtMKK5wt-
Myc 

pGreenII0229-2x35S-TL-
AtMPK4wt-HA 

pRT100-AtMKK2EE-Myc 

pGreenII0029-2x35S-TL-
gSTOPPwt-GFP 

pGreenII0229-2x35S-TL-
AtMPK6wt-HA 

pGreenII0029-AtMKK5wt-
Myc 

0.1 – 1 µg of each plasmid* 5 µg of each plasmid*  5 µg of each plasmid* 
* per one transformation 
 

To test if the inactivation of MAPKs depends on STOPP protein levels, increasing amounts of 

35Spro:gSTOPP-Myc expression vector plasmid DNA were co-transformed into the 

protoplasts. The HA-tagged kinases were immunoprecipitated with anti-HA antibody 

(12CA5) or MAPK specific antibodies (anti-MPK3, anti-MPK4 and anti MPK6). MAPK 

activities were assayed using myelin basic protein (MBP) as substrate. As shown in Figure 14 

C, STOPP could inactivate all tested MAP kinases (MPK3, MPK4 and MPK6). Even the 

lowest level of STOPP protein (corresponding to 0.01 µg of plasmid DNA) reduced the 

MAPKs activity to ~ 50% while co-transformation with the highest amount (1 µg of plasmid 

DNA) decreased MAPK activity to the initial background level. Similar results of MAPK 

inactivation by STOPP were obtained independently of the upstream activator(s) or antibodies 

used for immunoprecipitation (not shown). These kinase activity assays confirmed that 



 78

STOPP inactivates MPK3, MPK4 and MPK6 in plant cells and that the MAPK activity is 

reverse-proportional to the abundance level of STOPP protein. 
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Figure 3.19. STOPP inactivates AtMPK3, AtMPK4 and AtMPK6 in Arabidopsis protoplasts. 
Protoplasts were co-transformed with HA-tagged AtMAPK3, AtMAPK4 and AtMAPK6 and 0, 0,01 
0.05, 0.1, 0.5 and 1 µg of 35Spro:gAP2C3-MYC expression vectors. ∆ANP was used as upstream 
activating MAPKK kinase. The kinase activities were determined by in vitro kinase assay after 8 h of 
co-expression. Relative kinase activity (%) was quantified by ImageQuant. 
 

 

3.3.3. MAP kinase activities are affected in STOPP-modified lines 

 

MAP kinase activities were assayed in wild type, stopp knock out and STOPP gof seedlings 

(35Spro:gSTOPP-HA and 35Spro:gSTOPP-GFP lines). These lines were grown on vertical ½ 

MS agar plates and transferred to liquid ½ MS media. Seedlings were incubated in liquid ½ 

MS for 4 hours to achieve basal activity levels of MAP kinases and treated with 100 nM flg22 

for 10 min. Seedlings were collected and immediately frozen in liquid nitrogen. Crude protein 

extracts were prepared for MAPK activity assay and Western blot analysis was performed 

with anti-phospho-p44/42 MAPK antibodies. For kinase activity assay MAPKs were 

immunoprecipitated from crude protein extracts with antibodies specific for MPK3, MPK4 

and MPK6. Kinase activities were assayed on MBP as described (Meskiene et al., 2003).  

Basal activity levels of MPK3, MPK4 and MPK6 before treatment (0 min.) were similar in all 

plant lines (Fig. 16). After the treatment with flg22 the MAP kinase activities increased in 

wild type and stopp lines but were suppressed in 35Spro:gSTOPP-HA and 35Spro:gSTOPP-

GFP lines.  

Western blotting with antibodies specific for dual-phosphorylated MAPK (recognizing 

phosphorylated Thr-Tyr residues within the MAPK activation loop) was performed to study 
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phosphorylation status of MAPKs in wild type, stopp and STOPP gof seedlings. This assay 

enables detection of phosphorylated active MAPK forms in flg22 treated and untreated 

seedlings. In untreated seedlings no dual-phosphorylated MAPKs were detected (0 min.) 

(Fig.16). However 10 min. after flg22 treatment dual-phosphorylated forms of MAPKs were 

detected in wild type and stopp lines but only very slight dual-phosphorylation of MAPKs 

appeared in STOPP overexpression lines. The STOPP protein was detected with anti-HA or 

anti-GFP antibodies. Significantly lower MAPK phosphorylation levels correlated well with 

lower kinase activities in STOPP overexpression lines. Altogether these results suggest that 

STOPP regulates the activities of specific MAP kinases by dephosphorylation. 
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Figure 3.20. Inactivation of MAP kinases in STOPP gof seedlings. Seedlings were treated with 
100 nM flg22 for 10 min. Cotyledons and hypocotyls were separated from roots and collected for 
kinase assay and Western blot. For kinase assay MAPKs were immuno-precipitated with antibodies 
specific for MPK3, MPK4 or MPK6. Kinase activity was assayed on MBP. Kinase activities were lower 
in STOPP over-expressing seedlings than in wild type and stopp knock out lines after 10 minutes 
activation with flg22. Relative kinase activity (%) was quantified by ImageQuant. Western blot was 
performed with antibodies specific for p44/42 phosphorylated MAPK.  
 

 

3.4. Pathways affected by STOPP  
 

3.4.1. Alterations of cell cycle markers in STOPP gof lines 

 

The overexpression of STOPP causes a dramatic change in epidermal cell development, 

leading to the proliferation of small stomata lineage cells that all eventually differentiate into 
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stomata. The cyclin dependent kinase (CDK) – retinoblastoma protein (RB) - transcription 

factors E2F/DP pathway (CDK/RBR/E2F) is central in the switch between cell proliferation 

and differentiation (Dimova and Dyson, 2005; Wildwater et al., 2005; Maughan et al., 2006). 

Therefore cell cycle markers of Arabidopsis CDK/RBR/E2F pathway were studied in plants 

with modified stomata phenotype. 

Cyclin-dependent kinases regulate cell cycle progression in all eukaryotes (reviewed in (Inze 

and De Veylder, 2006). Moreover, it is known that the plant specific B-type CDK 1;1 is 

essential for stomata development in Arabidopsis (Boudolf et al., 2004a). Therefore the CDK 

activities and protein levels of Arabidopsis CDKs were assayed in wild type, stopp and 

STOPP gof (35Spro:gSTOPP -HA and 35Spro:gSTOPP-GFP) 5 and 7 dpg seedlings. p13Suc1 

recombinant protein conjugated sepharose was used to immunoprecipitate Arabidopsis CDKs 

from crude protein extracts prepared from whole seedlings or cotyledons. It has been shown 

that the Arabidopsis CDKS CDKA1, CDKB1;1 CDKB1;2 and CDKB2;1 were interacting 

with the Suc1 homologue CKS1At in Arabidopsis (De Veylder et al., 1997; Boudolf et al., 

2001) exhibiting their potential as p13Suc1-binding CDKs. The activity of p13Suc1-bound CDK 

was assayed on Histone 1 as a substrate (Magyar et al., 1997). Significantly higher CDK 

activities of p13Suc1-bound CDKs were detected in STOPP over-expressing seedlings 

comparing with wild type plants. This difference was especially pronounced in cotyledons of 

5 dpg seedlings (Figure 3.21 A). 

To assay whether STOPP over-expression affects cell cycle protein levels, Western blot was 

performed with specific antibodies against Arabidopsis cyclin dependent kinases CDKA;1 

and CDKB1;1, Adenovirus E2 promoter binding transcription factors E2FB and E2FC, E2F-

dimerization partners DPA and DPB, and RETINOBLASTOMA RELATED protein (RBR). 

Crude protein extracts prepared from 5 and 7 dpg whole seedlings or cotyledons were used 

for immunodetection. As a result, significant changes in CDKB1;1 and E2FC protein levels 

were observed (Figure 3.21A). In Western blot with anti-CDKB1;1 antibodies two bands in 

36 - 37 kDa range corresponding to CDKB1;1 were detected in seedlings. The higher 

molecular weight form (~37 kDa) of CDKB1;1 was predominantly present in wild type and 

stopp lines whereas the lower molecular weight form (~36 kDa) was much more abundant in 

STOPP gof seedlings. Altered electrophoretic mobility of CDKB1;1 in both STOPP gof lines 

suggested that CDKB1;1 may be posttranslationally modified in a  STOPP-dependent 

manner. To verify whether the higher CDKB1;1 electrophoretic form is caused by 

phosphorylation, crude protein extracts from seedlings were treated with λ protein 

phosphatase. However no change in CDKB1;1 electrophoretic mobility was detected 30 min. 
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of treatment with λ protein phosphatase (not shown). In contrast to CDKB1;1, the protein 

levels of CDKA did not obviously differ between the plant lines. 

 

0

20

40

60

80

100

STOPP-Myc   wt
- +ER  +ER

E2FC
STOPP-Myc

A

B

p13suc1 CDK activity

His1

CDKB1;1 protein

antiPSTAIRE

Ponceau S

5 dpg                                     7 dpg

35
S pro

:STOPP-G
FP

35
S pro

:STOPP-G
FP

35
S pro

:STOPP-H
A

35
S pro

:STOPP-H
A

wt wt

c     w     c     w     c     w      c      w     c     w     c w

R
el

at
iv

e 
ac

tiv
ity

, %

 
Figure 3.21. Analysis of cell cycle markers in STOPP-modified lines. Total p13Suc1-precipitated 
CDK activity was assayed in STOPP gof 5 dpg and 7 dpg seedlings grown on vertical plates (A). 
Protein extracts were prepared from 5 and 7 days old whole seedlings (w) or cotyledons (c). Total 
CDKs were precipitated with p13Suc1 sepharose. Kinase activity was assayed on histone 1 substrate. 
Relative kinase activity (%) was quantified by ImageJ. Western blotting was performed with CDKB1;1 
and PSTAIRE antibodies. E2FC protein levels were detected by specific antibody in ER-inducible 
STOPP-Myc line before and after STOPP induction with ER (B). DMSO was used as a control. 
 

The E2F/DP transcription factors regulate cell cycle progression and DNA replication. E2FA 

and E2FB act as transcriptional activators of E2F-regulated genes (Kosugi and Ohashi, 2002; 

Mariconti et al., 2002) promoting G1/S and S phases, while the structurally similar E2FC 

functions as a transcriptional repressor (de Jager et al., 2001). Probably E2FC/DPB 

suppresses cell division by suppressing G1/S transition and promoting endocycling G2/S in 

differentiating cells (del Pozo et al., 2006). Therefore, protein levels of transcription factors 

E2FB, E2FC, E2F-dimerization partners DPA, DPB and E2F suppressor RBR1 were 

analyzed. 

As a result, the protein level of E2FC transcriptional repressor was dramatically reduced in 

STOPP gof lines (Supplemental figure 3). Remarkably, the protein levels of the E2FC 

dimerization partner DPB, the transcriptional activators E2FB, DPA and the E2F suppressor 

RBR1 were not affected in STOPP gof lines (Supplemental figure 3). A similar result was 
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achieved in estradiol (ER)-inducible XVE-STOPP-Myc 5 dpg seedlings, where E2FC protein 

level was significantly decreased after STOPP protein accumulation (Figure 3.21 B). 

However, E2FC protein abundance was not affected in stopp knock out seedlings 

(Supplemental data).  

 

3.4.2. Ethylene and auxin levels are increased in STOPP gof lines  

 

Stomata development may be modulated by ethylene and auxin, as these important hormones 

play essential roles in plant growth and development. Ethylene promotes stomata formation in 

Arabidopsis hypocotyls (Saibo et al., 2003) and leafs (Serna and Fenoll, 1996). Auxin alone 

has no effect on stomata density in hypocotyls but enhances the gibberellin-induced stomata 

development (Saibo et al., 2003). Therefore ethylene and auxin levels were assayed in STOPP 

gof seedlings.  

Ethylene level was measured in wild type, stopp #2.1, 35Spro:gSTOPP-HA #2.1. and estradiol 

(ER)-inducible gSTOPP-Myc (line #8) by gas chromatography. The measured ethylene levels 

in 35Spro:gSTOPP-HA seedlings were ~ 3-fold higher compared with wild type (ttest p < 0,05) 

and stopp lines (Figure 3.22) suggesting that STOPP over-expression leads to increase of 

developmental/non-stress ethylene. A similar tendency was observed in XVE-gSTOPP-Myc 

seedlings where the ethylene level was ~ 70% higher in ER-treated seedlings, but the 

difference was not statistically significant (Supplemental figure 4). 
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Figure 3.22. Ethylene production in STOPP-modified seedlings. Wild type, stopp and STOPP 
over-expressing lines were grown in vials in 16h light photoperiod for 7 days. Ethylene was measured 
after vials were closed for 20h.  
 

To monitor auxin abundance, plants expressing DR5pro:GUS or DR5revpro:GFP reporter 

constructs harbouring the artificial auxin-responsive promoter were used. Both lines were 

crossed with 35Spro:gSTOPP-HA #2.2.1 or 35Spro:gSTOPP-GFP 2.2.7.5 lines. 
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DR5revpro:GFP activity was significantly higher in STOPP over-expressing seedlings than in 

wild type (Figure 3.23 A) suggesting that these plants contain higher auxin levels. 

DR5revpro:GFP was up regulated STOPP gof specifically in  stomata of cotyledons and 

hypocotyls. DR5pro:GUS activity was higher in root of STOPP seedlings (Figure 3.23 B, 12h 

staining). In contrast to wild type plants, the DR5pro:GUS  activity in root was of dispersed 

pattern (Figure 3.23 B, 2 h staining). 

The dispersed pattern of GUS staining in DR5pro:GUS 35Spro:gSTOPP-GFP roots suggested 

that the auxin transport may be affected in STOPP gof plants. Therefore 35Spro:gSTOPP-HA 

line was crossed with plant marker lines for protein localization of auxin transport proteins 

(PIN1, PIN2, PIN4 and PIN7) (Blilou et al., 2005); provided by C.Luschnig, BOKU. 

Although the localisation of PIN proteins was not affected in the roots of T1 heterozygous 

seedlings, the PIN1-GFP protein abundance was increased in stele cells of 35Spro:gSTOPP-

HA seedlings (Supplemental figure 5). 
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Figure 3.23. The detection of DR5 reporter gene in wild type and STOPP gof lines to monitoring 
of auxin levels. 35Spro:gSTOPP-GFP DR5pro:GUS 3dpg seedlings after 2 h and 12 h of GUS staining 
(A).  Reporter GFP fluorescence of DR5revpro:GFP in wild type and in 35Spro:gSTOPP-HA 3 dpg 
seedlings. 
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4. Discussion 
 

4.1. STOPP function in epidermis development 
 

STOPP over-expression in Arabidopsis plants leads to stomata clusters. STOPP over-

expression induces formation of stomata clusters on cotyledons, hypocotyls, leafs and flower 

organs. In cotyledons and hypocotyls all epidermal cells can be converted into stomata. This 

phenotype is observed both in constitutive and inducible STOPP over-expression lines. The 

range of phenotype intensity suggests that there might be a threshold level for STOPP to 

trigger stomata development. Significantly, the STOPP gof plant phenotype coincides with 

the STOPP expression pattern in stomata, strongly suggesting the function of STOPP in 

stomata development. 

 
4.1.1. STOPP-triggered stomata phenotype coincides with STOPP gene expression  

 

STOPP is expressed in cells associated with asymmetric division 

 

Asymmetric cell division generates cells of different developmental potentials (Jan and Jan, 

1998). The asymmetric cell division is involved in plant developmental processes, such as 

division of zygote, pollen or stomata formation (reviewed in (Heidstra, 2007). The high 

STOPP expression in embryo suspensor, pollen or stomata suggests the role of STOPP in 

plant development associated with asymmetric cell division. In addition, STOPP expression 

correlates with the bioinformatics data on STOPP transcript abundance. 

However, STOPP over-expression does not lead to the patterning defects in pollen and 

embryo suspensor cell. Therefore, STOPP gain-of-function phenotype and correlated gene 

expression suggest that STOPP functions primarily in stomata patterning and epidermis 

development.  

 

Transient STOPP expression in development 

 

The transient expression of STOPP during developmental stages suggests its time-limited 

function in developing tissues. The detection of strong STOPP expression in stomata of 2 - 6 

dpg seedlings and developing leaves but very weak expression in stomata of adult leaves 

supports the developmental regulation of STOPP expression.  
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In adult tissues STOPP might be regulated posttranscriptionally because STOPP transcript is 

present but the protein is not detected after 11 dpg in STOPP gof plants. The stabilization of 

STOPP protein to some extent by proteasome inhibitors indicates that it might be targeted to 

proteasome degradation pathway. In addition, the E3 ubiquitin-protein ligase SINAT3, which 

has been identified as STOPP-interacting protein, may be a good candidate for STOPP 

targeting for ubiquitination. 

 
4.1.2. The phosphatase activity and nuclear localization of STOPP is essential for 

stomata phenotype 

 

STOPP is a nuclear-localised PP2C with phosphatase activity 

 

STOPP is an active phosphatase according to in vitro assays with recombinant proteins or 

protein extracts from STOPP over-expressing seedlings. The phosphatase activity of STOPP 

is required for stomata cluster phenotype caused by STOPP gof as the over-expression of the 

STOPP-G163D mutant with abolished phosphatase activity does not induce stomata clusters. 

Therefore, only the active phosphatase is able to interfere with the stomata developmental 

pathway leading to stomata cluster phenotype. 

It was suggested that N-terminal domain of PP2Cs contains sequences responsible for 

regulation and specificity of PP2C phosphatases (Schweighofer et al., 2004). STOPP is a 

nuclear protein and its nuclear localisation is essential for STOPP stomata cluster phenotype. 

Domain swapping experiment with the closely related plastid-targeted PP2C AP2C1 

(Schweighofer et al., 2007) suggested that the nuclear localisation of STOPP is determined by 

the N-terminal domain (NTD) (V. Kazanaviciute, unpublished). The over-expression of 

nucleus-localised STOPPNTD-AP2C1CTD-GFP but not plastid targeted AP2C1NTD-STOPPCTD-

GFP induces stomata clustering phenotype. It suggests that STOPP N-terminal domain is 

required for nuclear localisation and induction of stomata clusters whereas C-terminal domain 

can be interchangeable between closely related MKPs. In addition, N-terminal domain of 

STOPP is necessary but not sufficient for stomata cluster phenotype as N-terminal domain 

swapping with distant HAB1 PP2C does not lead to stomata clustering.  
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The absence of stomata-related phenotype in stopp lines suggests functional redundancy 

between protein phosphatase members 

 

STOPP knock out lines (stopp) homozygous for T-DNA insertion show no obvious 

developmental phenotype, suggesting a functional redundancy with other PP2Cs. There are 

three closely-related to STOPP Arabidopsis PP2Cs from the cluster B and nine PP2Cs from 

other clusters harbouring the KIM domain, providing the possibility that these PP2Cs might 

complement stopp loss-of-function (Schweighofer et al., 2004). Moreover, some of the 

MAPK-interacting dual specificity phosphatases (Ulm et al., 2001; Ulm et al., 2002; Lee and 

Ellis, 2007; Lee et al., 2008) may compete with STOPP functions in signal transduction 

pathways.  

 

4.2. STOPP regulates MAPK cascade involved in stomata development  
 

4.2.1. STOPP is a MAP kinase phosphatase that inactivates MPK3, MPK4 and MPK6 

 

STOPP associates specifically with the MAP kinases MPK4 and MPK6 in yeast two hybrid 

assays. STOPP interaction with MAPKs in vivo localizes to the nucleus as shown by BiFC 

and co-localisation studies. It is known that MPK3 and MPK6 are translocated to the nucleus 

upon activation (Ahlfors et al., 2004). Although interaction STOPP with MPK3 was not 

detected in yeast, the phosphatase might form a complex with this kinase in plant cells via a 

scaffold protein or other regulatory proteins.  

STOPP negatively regulates MAPK activity in planta as demonstrated by kinase assays. 

STOPP inactivates MPK3, MPK4 and MPK6 in plants as the phosphorylation status of 

MAPK correlates with the suppression of MPK3, 4 and 6 activities in STOPP gof seedlings. 

It is unlikely but cannot be excluded that STOPP targets upstream MAPK(K) kinases. 

However, STOPP did not interact with any of the ten Arabidopsis MAPKKs in yeast. 

Analogy with other PP2Cs that inactivate similar or homologous MAPKs suggests that 

STOPP acts exclusively on the MAPK level comparable with previously described MP2C and 

AP2C1 (Meskiene et al., 2003; Schweighofer et al., 2007). Similarly, in other systems such as 

yeast, the PP2C Ptc1 inactivates the HOG1 MAPK pathway by dephosphorylating Hog1 but 

has little effect on the MAPKK Pbs2 (Warmka et al., 2001). The mammalian PP2C Wip1 

inhibits the stress-activated p38 MAPK but displays little activity toward MAPKKs 

(Takekawa et al., 2000). STOPP structure (the KIM domain) and sequence homology with 
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MAPK-interacting plant PP2Cs (Meskiene et al., 2003; Schweighofer et al., 2007) 

additionally supports STOPP function as MAPK-phosphatase. 

 

4.2.2. STOPP gof plants and yda/mpk mutants have similar phenotypes  

 

STOPP gof induces stomata clusters in epidermis by promoting 1) massive ectopic 

asymmetric divisions in neighbouring cells (NCs) and subsidiary cells (SCs), 2) 

uncoordinated orientation of asymmetric division which results in incorrect spacing of smaller 

cells (meristemoids - Ms), 3) guard cell (GC) differentiation, as all epidermal cells including 

smaller cells (“Ms”), larger cells (“SCs”) and undifferentiated cells of nonstomatal lineage 

(“NCs”), can acquire GC fate, 4) production of aberrant stomata in older than 7 dpg seedlings 

(as depicted in Fig. 1), 5) upregulation of stomata positive regulator genes such as FAMA and 

MUTE.  

NC

Larger cell                          „GC“ „GC“

Smaller cell                                     „GC“ „GC“
Meristemoid

Ist Asymmetric Ist Asymmetric            GC differentiation 2nd asymmetric
division division „Faux pore“ formation    division

 
Figure 4.1. Schematic representation of aberrant stomata formation and “GC” asymmetric 
division. STOPP promotes GC differentiation even without GMC (guard mother cell) to GC transition. 
Occasionally aberrant stomata are formed of two cells of unequal size, which probably arise after 
asymmetric division of NC/SC. Such aberrant GCs form stomatal pores (often “faux pore” is formed 
only by the larger GC in the pair) and acquire typical GC characteristics. Aberrant GCs may divide 
asymmetrically as they retain both epidermal cell and GC identity, but unlike FLP or FAMA mutants, 
do not produce cell files.  
 

The similarity between STOPP gof and yda/mpk mutant phenotypes suggests that STOPP acts 

in the same pathway as YDA-MAPKK4/5-MAPK3/6 module (Bergmann et al., 2004; Wang 

et al., 2007b). This kinase cascade restricts stomata development by maintaining cell polarity 

during asymmetric divisions. It restricts asymmetric divisions of meristemoids, GMC to GC 

transition and GC differentiation and controls probably the expression and activity of positive 

stomata gene regulators, such as FAMA and SPCH (Bergmann et al., 2004; Wang et al., 

2007b; Lampard et al., 2008). It is suggested, that MAPK cascade transduces signal 

downstream of TMM/ER-family receptors and is constitutively active in the cells that are not 

appropriate to develop into stomata (Yang and Sack, 1995; Von Groll et al., 2002; Bergmann 

et al., 2004; Shpak et al., 2005; Wang et al., 2007b). This work suggests that STOPP 

“switches off” the MAPK cascade by negatively regulating MPK3 and MPK6 and thereby 

releases the suppression of development into stomata.  
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The YDA-MAPKK4/5-MAPK3/6 cascade is also involved in other developmental processes, 

such as embryo, ovule and anther development (Lukowitz et al., 2004; Wang et al., 2007b; 

Hord, 2008; Wang et al., 2008). yda mutation and mpk3 mpk6 loss-of-function affect embryo 

development and plant fertility. Differently to yda/mpk, the phenotype caused by STOPP gof 

was not as stable and broad in plant development, being observed primarily in stomata 

patterning. This is underlined by the condition-dependent ability of STOPP gof plants to 

overcome the growth defect and occasionally even produce normal leaves and flowers, while 

mpk3 mpk6 mutants are embryo lethal (Wang et al., 2007b).  

The YDA-MKK4/5-MPK3/6 module was suggested to function downstream of TMM/ER-

family receptor-like receptors, which perceive extracellular signal in stomata lineage 

neighbour cells and stomata precursor cells (Von Groll et al., 2002; Bergmann et al., 2004; 

Shpak et al., 2005; Wang et al., 2007b). However, this model may not fully explain the wild 

type state as the MAPKKK YODA is highest expressed in guard cells and much weaker in 

stomata precursor cells (Bergmann et al., 2004). Unfortunately, no data is available on 

MPK3/6 expression pattern to correlate it with YODA and STOPP expressions. On the other 

hand the presumed upstream receptor of the pathway, TMM is expressed in meristemoids and 

stomata lineage ground cells, the suggested co-receptor kinase ER is expressed in protodermal 

cells early in development, and ERL1 and ERL2 are expressed in stomata precursor cells but 

not in GCs (Von Groll et al., 2002; Shpak et al., 2005). Bergmann (2004) suggested that YDA 

could act also in a TMM-independent pathway in the same uncommitted cells (Bergmann et 

al., 2004). Therefore YODA function in GCs is not fully understood.  

There are several possible explanations about the difference between expression and action 

sites of STOPP and YDA proteins: 

First, the coinciding STOPP and YODA expression in GCs suggests that in wild type plants 

STOPP/YDA module may act independently of TMM/ER as none of the known receptors is 

expressed in GCs. It would suggest that STOPP functions as a negative regulator of MAPK 

cascade in the last step of stomata terminal differentiation (during the GMC to GC transition 

and terminal GC differentiation). This regulation is similar with FAMA, which is possibly 

controlled by YODA pathway. At the same time, the YDA/MAPK cascade may function also 

in other stomata lineage cells and act both in TMM/ER-dependent (SLGCs, stomata 

precursors) and –independent (GCs) pathways (Bergmann et al., 2004). 

Second, STOPP may act in TMM/ER-family dependent pathway in SLGCs and stomata 

precursors even though STOPP expression was detected in GCs and not in other epidermal 

cells. It is not excluded that the GUS detection sensitivity is not sufficient to detect very low 
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expression levels. It is known that very low protein levels of the phosphatase are enough to 

completely inactivate MAPKs (Meskiene et al., 2003) and there are indications that STOPP is 

required only in the very narrow time-gap of cell development. STOPP-GFP fusion protein 

expressed from its own promoter is not detectable by GFP fluorescence or Western blot. In 

addition, the endogenous STOPP protein cannot be detected by STOPP-specific antibodies in 

wild type seedlings. 

And third, STOPP may also have functions in stomata development that are associated with 

other proteins such as cell cycle regulators in guard cells.  

 

4.2.3. How does STOPP over-expression affect stomata development? 

 

One possible explanation is that miss-expression of STOPP in epidermal cells other than GCs, 

counteracts the YDA/MAPK cascade in these cells thereby causing their conversion into 

stomata in STOPP gof plants (Fig.2). Altenatively, the over-expression of STOPP in these 

cells may cause a dominant negative (DN) effect, which depends on the catalytically active 

STOPP as over-expression of the phosphatase inactive form results in normal epidermis 

development. Normal development of epidermis in stopp mutant suggests either protein 

redundancy (among PP2Cs or with other phosphatases) or supports the hypothesis of the DN 

effect. Ectopic STOPP expression from GC specific promoters would be an option to explore 

the role of STOPP in these cells.  

MKKK-YODA

ERs

MKK4/5

MPK3/6 STOPP

TMM 

EPF1
SDD1

SC SM+SC 
MMC M Mn+nSC
M GMC
GMC GC
symmetric GC division

+SCRM1/2
SPCH
MUTE
FAMA
FLP/AtMYB88

 
Figure 4.2. The model of STOPP action in stomata developmental pathway. STOPP switches-off 
the negative signal, which restricts stomata development. Thereby STOPP promotes stomata fate 
(green arrows). The components of signal generation, reception and transduction pathway are 
depicted in red; the protein kinases are depicted as empty circles; the transcription factors are 
depicted in green. SC – subsidiary cell, SM – satellite meristemoid, MMC – meristemoid mother cell, M 
– meristemoid, n – the order of meristemoid and subsidiary cell in stomata complex, GMC – guard 
mother cell, GC – guard cell.  
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4.3. Possible functions of STOPP in stress response  

 
STOPP may be involved in PAMP-triggered innate immunity responses as the STOPP 

transcript level is upregulated by treatment with the pathogen elicitor peptide flg22. STOPP is 

characterized as pathogen-associated molecular pattern (PAMP)-induced, Flagellin-Rapidly-

Elicited (FLARE) and described as putative ortholog of the tobacco Avr9/Cf-9 rapidly elicited 

(ACRE) gene (Navarro et al., 2004; Gust et al., 2007). However, no up regulation of STOPP 

transcript was detected by semi-quantitative RT-PCR suggesting that more sensitive method 

is required (e.g. the real-time PCR). RT-PCR with gene specific primers demonstrated the 

significant upregulation by cycloheximide (CHX), which is supported by in silico analysis of 

public available expression data (Zimmermann et al., 2004). Remarkably, even ~ 80% of 

flg22-induced genes are upregulated in Arabidopsis seedlings treated with cycloheximide 

suggesting that many FLARE genes are negatively regulated by rapidly turned-over repressor 

proteins (Navarro et al., 2004). CHX inhibits protein translation, thereby may affect the levels 

of many proteins, including ones involved in transcriptional regulation, transcript degradation, 

translational and posttranslational regulation. It is unlikely that STOPP expression is itself 

regulated by hormones as promoter-reporter studies did not detect STOPP induction after 

different hormone treatments. 

 

STOPP may act as a converging point between developmental and stress response 

 

As STOPP can be upregulated by pathogens or their elicitors, it may negatively regulate 

stress-activated MAPK cascades, which respond to pathogen attack in guard cells or regulate 

transpiration (reviewed in Schulze-Lefert, 2006 #3711}. Beside MPK3 and MPK6, STOPP 

also inactivates MPK4 that is required to repress systemic acquired response (SAR) for 

jasmonic acid–responsive gene expression. However, MPK4 was not shown to be involved in 

stomata development although it is expressed in stomata (Petersen et al., 2000; Galbiati et al., 

2008). All STOPP-downregulated MAPKs are active in stress signal transductions (Asai et 

al., 2002; Wang et al., 2007a; Schweighofer and Meskiene, 2008b) and it is not excluded that 

STOPP may regulate MPK3, MPK4, MPK6 or other MPKs in response to pathogen stress. 

STOPP may regulate MAPK cascade in both the development and stress response, and might 

act as a converging point between developmental and response to environmental signals 

programmes.  
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4.4. The effect of STOPP gof on cell cycle regulators and plant hormones 
 

STOPP over-expression leads to increased cell division rate 
 

Stomata development requires both the development “competence” factors and the activity of 

cell cycle regulators (Bergmann, 2004; Boudolf et al., 2004a). Stomata develop through a 

series of coordinated cell divisions, involving the cell cycle genes and regulators. However, 

just the over-expression of cell cycle regulators is not sufficient to trigger cell differentiation 

to stomata pathway (De Veylder et al., 2001; Dewitte et al., 2003; Boudolf et al., 2004a). By 

contrast, stomata development factors may directly or indirectly control the cell cycle genes 

(Ohashi-Ito and Bergmann, 2006; Wang et al., 2007b). 

STOPP over-expression leads to increased cell division ratio, as massive divisions and 

aberrant stomata that are also capable of initiating division, are observed in the epidermis of 

STOPP gof seedlings. 

Ectopic cell divisions in STOPP gof may be induced by significantly increased p13Suc1- CDK 

activity, increased levels of CDKB1;1 (the anticipated active form of the kinase) and 

decreased level of the E2FC transcriptional repressor in plant tissues. Possibly, the increase in 

total p13Suc1-precipitated CDK activity is mainly associated with stomata-specific activity of 

CDKB1;1, which is required to amplify asymmetric divisions of meristemoids and satellite 

meristemoid production (Boudolf et al., 2004a). CDKB1;1 promotes G2 to M transition and 

(Boudolf et al., 2004a) and in contrast to other CDKs, is transcriptionally regulated by E2F 

transcription factors (Boudolf et al., 2004b).  

At the same time, the levels of A-type CDKs (detected with anti-PSTAIRE antibodies) did 

not differ in STOPP gof and wild type lines, suggesting that STOPP may regulate the 

CDKB1;1 but not the CDKA;1. However, it is unlikely that STOPP regulates CDKB1;1 

directly by dephosphorylation as the difference between protein electrophoretic mobility of 

CDKB1;1 from STOPP gof and from the wild type tissues is not caused by phosphorylation. 

The treatment with λ phosphatase did not change the mobility of CDKB1;1 nor in wild type 

neither in STOPP gof lines. Here detailed analysis of CDKB1;1 protein bands by proteomic 

tools is required to identify the corresponding protein modifications.  

STOPP over-expression may lead to increase in cell proliferation by downregulation of E2FC, 

a transcriptional repressor of E2F-regulated genes. Under normal conditions these genes 

promote the G1 to S transition (del Pozo et al., 2002). Consistently, the expression of CDC6, 

the DNA replication licensing factor, that is known to be negatively regulated by E2FC (del 

Pozo et al., 2002; Castellano Mdel et al., 2004), is slightly upregulated in STOPP gof lines. 
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E2FC, phosphorylated by CDK, is degraded by the ubiquitin-SCFAtSKP2 pathway in response 

to light (del Pozo et al., 2002; del Pozo et al., 2006). SKP2A, the component of E2FC-

degrading SCF complex, is itself degraded through the ubiquitin/26S proteasome pathway in 

auxin-dependent manner (Jurado et al., 2008). Thus it is suggesting that STOPP over-

expression negatively regulates E2Fc protein stability by enhancing light-triggered E2FC 

degradation or auxin-dependent stabilization of SKP2A. 

The balance between cell division and endoreduplication may be shifted in STOPP gof lines. 

Increased CDKB1;1 activity and the lack of E2FC protein may lead to the suppressed 

endoreduplication in STOPP gof lines. It is known that CDKB1;1 activity is required to 

inhibit the endoreduplication and E2FC promote endoreduplication (del Pozo et al., 2002; 

Boudolf et al., 2004b). Thus, STOPP may directly or indirectly regulate the cell cycle genes, 

protein levels and activities during stomata development.  
 

STOPP over-expression leads to increased ethylene and auxin levels 
 

STOPP over-expression leads to significantly increased ethylene and auxin levels in 

seedlings. The short root phenotype of STOPP gof seedlings may be conferred by increased 

auxin and ethylene levels. It is suggested that ethylene inhibits root cell elongation by 

stimulating auxin biosynthesis and basipetal auxin transport towards root elongation zone 

(Ruzicka et al., 2007; Swarup et al., 2007). Therefore, auxin levels in STOPP gof roots may 

be elevated either due to local auxin biosynthesis or due to PIN1-dependent transport from 

shoots, where auxin levels are elevated as shown by the high activity of DR5 promoter in 

stomata. 

As ethylene and partially auxin promote stomata development in Arabidopsis hypocotyls and 

leaves (Serna and Fenoll, 1996; Saibo et al., 2003) the increase in their levels may enhance 

stomata differentiation in STOPP gof lines. It is possible, that ethylene promotes stomata 

formation by regulating cell division and cell fate in epidermis (Serna and Fenoll, 1996; 

Kazama et al., 2004). However, it can not be excluded that higher ethylene level in STOPP 

gof line may merely reflect the stress conditions of severely dwarfed seedlings. The 

complexity of ethylene production and response in STOPP gof lines is suggested by the 

observation that hypocotyl elongation is suppressed in STOPP gof lines although ethylene 

usually promotes hypocotyl elongation (Smalle et al., 1997). In addition, the activity of 

MPK6, which is known to promote ethylene production (Liu and Zhang, 2004), is decreased 

STOPP gof lines. More detailed genetic and biochemical approaches are needed to investigate 

the role of these hormones in STOPP-modified plants. 
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Conclusions and perspectives 

 
Conclusions 

 

The conclusions of this work are following: 

1. STOPP is a MAP kinase phosphatase  

2. STOPP is developmentally-regulated PP2C-type phosphatase 

3. STOPP inactivates MAPK cascade controlling stomata development 

4. STOPP gain-of-function triggers stomata clustering  

5. STOPP phosphatase activity and nuclear localization are essential for stomata 

phenotype 

6. STOPP gain-of-function affects cell cycle regulators and plant hormone levels 

 
Perspectives 

 

This work suggested that STOPP may regulate cell cycle proteins and hormone production. 

More detailed analysis of these processes is further required. Identified STOPP-interacting 

proteins may be good candidates to study plant development regulation via proteasome 

degradation as well as STOPP function to pathogen response. As mentioned above, STOPP 

may have redundant functions with other MAPK Phosphatases (MKPs). Therefore genetical 

crosses with some candidate genes were performed and will be analized in continuation of 

this study. 
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STOPPpro:GFP

 
 
 
 
Supplemental figure 1. STOPP expression in stomata. The STOPP promoter activity in stomata of 
emerging true leaf of STOPPpro:GFP seedlings (line #1). Bar 50 µm. 
 
 
 
 
 
 

35Spro:STOPPNTD-HAB1CTD

 
 
 
Supplemental figure 2. The localization of STOPPNTD-HABCTD-GFP chimera protein. The 
STOPPNTD-HABCTD-GFP is localized to the cell nucleus in 35Spro:STOPPNTD-HABCTD-GFP 
over-expressing seedlings (line #2). Bar 50 µm. 
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Supplemental figure 3. Cell cycle protein levels in STOPP-modified seedlings. The proteins were 
immunodetected with specific antibodies in 5 dpg and 7 dpg seedlings. c – cotyledons, w – whole 
seedling. 
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Supplemental figure 4. Ethylene production in estradiol (ER)-inducible STOPP-Myc line. The 
XVE-STOPP-Myc (line #8) seedlings were grown in vials in 16h light photoperiod for 7 days. Ethylene 
was measured after vials were closed for 20h. For ER induction seedlings were sprayed once per day 
with 50 µM ER for 4 days and then with 100 µM ER for 2 next days. ~90% of seedlings developed 
stomata cluster phenotype. DMSO was used as a solvent control. 
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Supplemental figure 5. PIN localisation in the root of STOPP gof seedlings. Crosses with STOPP 
gof line were analyzed in T1 (heterozygous) generation in seedlings with stomata cluster phenotype. 
All bars 50 µM. 
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