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ABSTRACT

The diploma thesis „Water storage and flow processes in snow, firn and ice: A glacial-

hydrological investigation on the alpine glacier Goldbergkees in the Sonnblick Region (Hohe 

Tauern, Salzburg, Austria) “analyses various processes of water transport in glaciated 

system. It measures in particular cycles and processes of water transport in different glacier 

sub-systems in the ablation season of 2006 and are placed it into a temporal context. The 

glacier itself is seen as the element of retardation in run-off as storage of water. The 

spotlight is on measuring retention times and quantities as well as interacting compounds.

In a first step investigations on terrain characteristics and the selection of representative 

experimental positions were done. 

Possible test sites were identified by field inspections and careful (GIS).

The application of coloured dye on snow and firn uncovers near surface water transport 

processes. In the initial ablation season of 2006, infiltration processes and the progress of 

the melt front were investigated. Results showed a slow propagation of meltwater into the 

layered snow cover because of a preferentially slope-parallel movement. Water infiltrated 

faster through failures in the layered structure and vertical flow fingers in comparison to the 

surrounding areas. It resulted in a stepwise intrusion of meltwater. 

The main part of the study emphasized on fluorescent dye tracer measurements in order to 

gather information about retention times of water in the different parts of glacier drainage 

system. By applying fluorescent dyes and their detection on selected points of interest, flow 

times were measured. Dye measurements under snow on firn showed significantly reduced 

flow velocities in comparision to later en- and subglacial flow measurements. 

To measure the englacial flow of water, again fluorescent dyes were used. From measured 

data, flow rates under snow respectively on firn and ice, as well as flow velocities in the main 

englacial and subglacial channels were derived. Measured passage velocities were between 

75 and 133 m h-1 for englacial flow. It could be compared to results from melt/rainfall-

discharge analyses showing overal lag-times of 6-7 hours for July and 4 hours for 

September investigations. 

Meteorologic and hydrographical data from the Sonnblick Observatory resp. the nearby 

gauge station were used to support analyses and results.

The comparison of outputs from different methods provides new information regarding flow 

processes and hydrological storage characteristics of a glaciated alpine drainage area. 
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KURZFASSUNG

Die Diplomarbeit “Water Storage and Flow Processes in Snow, Firn and Ice;

A glacial hydrological Investigation on the Alpine Glacier Goldbergkees in the Sonnblick 

Region (Hohe Tauern, Salzburg, Austria)“ untersucht die unterschiedlichen Prozesse des 

Wassertransportes im Gletscher. Ziel ist es die Abläufe und Prozesse des 

Wassertransportes am Beispiel der Ablationsperiode 2006 in den unterschiedlichen 

Teilbereichen des Gletschers zeitlich zu messen. Dabei wird  der Gletscher als 

Einflussgröße der zeitlichen Abflussverzögerung sowie der temporären Speicherung von 

Wasser untersucht. Die Verweildauer, die Menge des Wassers und deren beeinflussende 

Faktoren stehen im Mittelpunkt des Interesses.  

In einem ersten Schritt wurden Untersuchungen zum Gelände, zur Wahl repräsentativer 

Teststandorte und zum idealen Untersuchungszeitraum durchgeführt. Mit Hilfe von

Geländebegehungen und detaillierter GIS - Analyse wurden mögliche Mess-Standorte 

ermittelt. 

Anhand von Markierungsstoffen wurden am Beginn der Schmelzperiode 2006 

oberflächennahe Wasserbewegungen im Schnee sichtbar gemacht und ausgewertet. Die 

Markierungen zeichneten Prozesse und Wege des Schmelzwassers beim Einndringen in 

den Schneekörper auf. Durch die schichtartige Struktur des Schneekörpers kann das 

Wasser nur sehr langsam in die Tiefe einsickern und bewegt sich vorzugsweise hangparalell 

den Schichten folgend. Lokal begrenzte Brüche dieser Schichten und vertikale Fließkanäle 

förderten jedoch ein schnelleres Eindringen als im übrigen Schneekörper. Die Folge dieser 

abwechselnd schichtparalellen und vertikalen Wasserbewegung ist ein treppenartiges 

Vordringen des Schmelzwassers. 

Der Fokus der Untersuchung lag allerdings auf der Messung von 

Fluoreszenztracerkonzentrationen, um Aufschluss über Verweilzeiten des Wassers in den 

verschiedenen Teilsystemen des Gletschers zu erlangen. Durch die Ausbringung von 

Fluoreszenztracern und deren Nachweis an ausgewählten Punkten konnten Fließzeiten 

bestimmt werden. Fließgeschwindigkeiten unter Schnee auf Firn waren erheblich geringer 

als in später bemessenen in- und subglazialen Kanälen. 

Die Fließgeschwindigkeiten betrugen ca. 75-133 m/h und konnten mit Charakteristika von 

Abflusskurven bei Regen- und Schmelzereignissen verglichen werden. Für letztere wurden 

Verzögerungsintervalle von 6-7 Stunden im Juli bzw. 4 Stunden im September gemessen; 

ein Indiz für die Abnahme der Speicherfähigkeit des glazialen Systems. 

Die Verknüpfung der Ergebnisse lieferte spezifische Aussagen über Fliessprozesse und 

hydrologische Speichereigenschaften eines alpinen vergletscherten Einzugsgebietes.  
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1 In t roduct ion  and  S t ruc ture

1.1 History of Glaciologic Investigations on the Goldbergkees

Since 1886 the Goldbergkees takes a centre stage in the investigation of glaciers in Austria. 

With the erection of the Meteorologic Observatory on the Hoher Sonnblick peak (3105m) the 

basis for detailed research and observation was established. The Observatory provided the 

possibility to collect meteorologic data in situ and monitor the results by permanent observer. 

Therefore we have access to long and continuous series of climate temperature 

measurements. Not till then scientific work was possible and gave birth to valuable 

meteorologic, climatologic, hydrologic and glaciologic investigations. 

In 1896, the geographer Albrecht Penck was the first to map the three main glaciers near the 

Observatory (Penck, 1897, as cited in Koboltschnig, 2006, p.7).

In 1909, a new method of mapping was applied to the glacier of Goldbergkees: the terrestrial 

photogrammetry, which mapped the glaciated site in a scale of 1:10,000 (Hübl, 1912, as 

cited in Böhm, 1986).

Until the late 1960 mostly investigations on radiation balance were made. In 1971/72 in the 

course of the hydrologic decade of the UNESCO Austria participated with a study on the 

thickness of the Austrian glaciers (including Goldbergkees, Würenkees, Kleinfleisskees). 

(Brückl & Bittmann, 1977, as cited in Koboltschnig, 2006, p. 8). 

Since 1983 the most important studies carried out in the Goldberggruppe are direct mass 

balance measurements. Starting with the Wurtenkees in 1983, followed by the 

Goldbergkees (1987) and the Kleinfleißkees (1999) continuous direct measurements of 

accumulation and ablation are carried out. The continuous measurements of glacier 

balances allow us to better understand climate-glacier relationship. 

One important component of the climatic and hydrologic measurement instrument network in 

the Goldberggruppe is the gauge station at the glacier tongue. In the first gauge station was 

installed at the outlet of the catchment area at the tongue of the Goldbergkees, followed by 

others at the Kleinfleißkees and the Wurtenkees. They provided exact information about the 

amount of discharged water emerging mostly of the glacierized areas above the gauge 

station. 

Moreover they provide proper calibration data for hydrologic modelling of the discharge at 

the Goldbergkees by Koboltschnig (2007) and the project “Snowtrans” (Transformation of 

observed and computed ice- and snowmelt data to ungauged basins). 

Due to the vicinity to the meteorologic Observatory at the Hoher Sonnblick, the 

measurements should be easily associated to the meteorologic conditions at the time of the 
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investigation. There are some other Austrian glaciers often being investigated. However a 

better meteorologic database is hardly found elsewhere. 

On the basis of this premise originated the following work. 
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1.2  Structure of the Thesis

Chapter “Review” is supposed to outline the actual state-of-the-art in glacial-hydrological 

studies treating as well the “Basics of Hydrology” and the “Basics of Glaciology”. The 

chapters emphasize the principles and basics relevant for this thesis study in order to not 

treat the complete glaciologial basics. This would go beyond the scope of this thesis. 

The chapter “Study region and Investigation Area” covers the geographical frame in which 

the field investigations and the thesis are situated. The results extracted from this paper 

must be regarded within this spatial frame. 

Chapter “Methodology” gives detailed information about the used methods for field 

investigation as well as pre- or postprocessing work. It discusses basic theories, formulae 

and principles of the applied methods. Why did I choose these methods? The chapter 

should design the consistent workflow for reaching the initially delineated aims. 

Personally collected and received data (other party) was covered in an own chapter “Data 

Base”.

For this thesis different data gained from tracer tests, photographic documentation, 

hydrometeorologic gauging stations and geographical data was used.

The chapter “Results and Discussion” is subdivided in the outputs from the different 

methodic approaches. The aim is to connect gained information, scientifical and personal 

knowledge to delineate the maximum of extractable information and to interpret it. Moreover, 

combining the various approaches should lead to additional information output. 

“Summary and Conclusion” unifies all main statements to a single overall chapter in which 

main results get connected. As long as a glacial drainage system is very complex this 

chapter tries to outline systematic and consequential outputs. 

“Perspectives” for further investigation, leakage of theories or methodology, constraints and 

autoreview or -criticism is done in the final chapter. 
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2 Review

The purpose of this chapter is to give a general overview of the actual scientifical state 

inside the frame of glaciological studies. What is the state-of-the-art in glacial –hydrological 

investigations?

Fundamental theories and knowledge of the principles of glacial hydrology are covered. 

Hydrological processes on glaciers are rather complex. Pre-treatment of the basics 

facilitates access to the theme in such a way to enable better understanding. 

2.1 Basics of Glaciology

“Glaciers may be defined as an accumulation of ice and snow that moves under its own 

weight in response to gravitational force” (as cited in Singh, 2001, p. 448).

The formation of glaciers at any location is related to the existence of wintery or summery 

solid precipitation, its accumulation and methamorphism to glacier ice. Glaciers can only 

exist if accumulation rates is greater than ablation. This means that the amount of fallen 

snow is relatively greater to the amount of water being lost due to melting and evaporation. It 

also means that at least on some parts of the area snow is surviving the annual cycle and 

then transformed into firn. 

It assumes that temperatures are relatively low and favour the occurrence of solid 

precipitation. Low temperatures are frequently in high latitudes eminently in the so called 

Polar Zone above the 60° mark. But they can generally exist in any latitude presumed that 

climatic conditions are adequate. In lower latitudes such conditions can be found at high 

altitudes. In fact the existence of glaciers is significantly related to the altitude depending on 

the latitude. Glaciers in higher latitudes show a lower limit of existence. Though there are still 

differences mostly depending on the dryness of the climate and the annual distribution of 

precipitation. Wet and cold climatic conditions in winter favour the existence of glaciers, 

whereas under dry climatic conditions glaciers can only be found at high altitudes. Globally, 

a rising of the so called snowline from the poles to the equator is observable. The snowline 

for e.g. on the poles is at the sea level, in the Alps it is between 2500-3000 m and in 

between 5000-6000m in tropical regions (Singh, 2001, p. 38).

Glacier ice is formed by methamorphism of snow and firn. The compression of snow 

originates from its own weight as well as from superimposed snow masses when covered by 

new snow. The metamorphism of snow to ice runs significantly faster in temperate climates. 

Warmer temperatures in the ablation period favour faster transformation processes. At the 

end of the process glacier ice reaches a density of typically 820-900 g/cm³.
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The precipitation is the intrinsic source of accumulation. But there are secondary wells for 

the accumulation. Avalanches can play an important role in the formation of glaciers. 

Moreover the wind drift of snow erodes snow on ridges and exposed areas and deposes it 

on areas of lower wind velocities. Those processes are not to be neglected. It is generally 

accepted that some glaciers are strongly dependent on these processes. 

The most of the glaciers in mountainous regions, about 50% are situated in the Himalayan 

region (Bahadur 1992, as cited in Singh, 2001). With exception of the Antarctica the greater 

number of glaciers is found on the northern hemisphere. 

Glaciers can vary greatly in size and area. There is no lower limit which defines the minimum 

size for a glacier classification, even if glaciers under 1 km² hardly attract attention. They 

vary in thickness to. Glaciers smaller than 1 km² often have only thicknesses of a few tens of 

meters, whereas huge valley glaciers and ice sheets can have thicknesses of more than 

100m and even more than 1000m. The Antarctic ice sheet has thicknesses of more than 

4000m (Singh, 1997).

2.1.1 Properties of Snow and Ice

2.1.1.1 Transformation of Snow to Ice

Solid precipitation in form of snow is the basic requirement for the formation of ice. Snow 

crystals are deposited on the ground. Independent of their varying forms they immediately 

get transformed. Due to free energy differences on the snow crystal forms, water molecules 

begin to move from the tips of the crystals to the gorges or mostly the center of the structure. 

The laws underlying this process are thermodynamical and consist in the fact that the free 

energy of molecules in a system (represented in this case by the single snow crystal) tends 

to a minimum. This process results in a general rounding of the crystal structure and a 

transformation towards more spherical forms of crystals. The snowflakes with high surface 

energy become rounded and are developed into rounded snow with lesser diameter and 

surface energy. The warmer the temperatures the faster this process is taking place

(Paterson, 1994, p.20). Temperatures near the freezing point favour the migration of 

molecules on the crystal surface, as well as to the air and back in form of refreezing. 

Therefore transformation is decelerated in Polar Regions. An important side-effect of this 

process is a decrease in air volume of the snowpack leading to an increase in density. 

Moreover the snowpack is affected by a compaction. In general we identify this change in 
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morphology as the snow metamorphism and more specifically as equitemperate or 

destructive metamorphism (Singh, 2001). Bigger grains grow in expense of the smaller.

Due to surface melting water is percolating into the snowpack. If the snowpack is 

equitemperate it will get to the water table. Introduction of water into the snowpack leads to 

abased capillary water pressure which accelerates the crystal decomposing process. Water 

content resulting in water regimes is subdivided as follows: the capillary regime (water 

content under 10% by weight), the pendicular regime (water content less than 14% by 

weight), and the funicular regime (water content over 14% by weight); (Fig. 1) 

Fig. 1: Capillary pressure in wet snow as a function of 

water pressure, hollow points snow with mean density of 

590 kg/m³, black filled points: snow with a density of 550 

kg/m³; (after Colbeck, 1973, as cited in Singh, 2001, 

p.211).

Especially in seasonal transition periods as spring and autumn subzero temperatures by 

night lead to refreezing in the snowpack or on the snow surface as well. The refreezing can 

entrap water and fill the pore spaces between the grains. The consequence is the creation of 

bonds in other words a melt together of the grains and a further increase in relative density. 
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Snow lasting over the summerly melt season exposed to the processes described above is 

generally identified as “firn”, even when there is no clear division from snow. The 

identification comes mostly of the relative densities as listed in Tab. 1.

Tab. 1: Typical densities of different natural phases of water in g/cm³

The distinction of firn and ice in contrast is relatively clear. It is distinguished by the fact that 

ice does practically not possess air passages. In the course of the transformation the air 

filled capillaries and pathways get sealed off. Though there can be still air because natural 

ice has a small amount of enclosed air bubbles. 

2.1.2 Spatial Properties of Glaciers

A glacier can be subdivided: Accumulation zone and ablation zone with the glacier tongue.

2.1.2.1 Accumulation Zone

The accumulation zone is in general the upper part of a glacier. Snow falling in winter does 

not melt completely in summer. In consequence total mass balance in this zone tends to be 

positive, which means accumulation exceeds ablation.

Accumulation of snow can be ascribed not only to solid precipitation but also to wind drift 

and to deposition due to avalanches. 

A cross section reveals a layered composition. On top lies the seasonal snow cover. During 

the ablation season this snow cover melts partly. Warmer summers result in greater melt 

_______________________________________________

New snow (shortly after deposition) 50-70

Damp new snow 100-200

Settled snow 200-300

Wind packed snow 350-400

Firn 400-830

Very wet snow and firn 700-800

Glacier Ice 830-917

_______________________________________________
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quantities. Underneath, there can be found a firn layer, composed by “old” snow from the 

preceding meteorologic years. The old snow layer is lying on previous firn layers or bare ice.

The accumulation zone is characterized also by the fact that there are typically no surface 

melt streams. Water coming from precipitation or melting is percolating into the snow- firn 

aquifer until it reaches the saturated snow layer. In most of the cases we can assume that 

there are three further subdivisions of the accumulation zone: a dry snow area, a percolation 

or transit area and a soaked (saturated) area. One could assign these areas horizontally or 

even vertically (Müller, 1962 as cited in Paterson, 1994, p. 10). 

The dry snow is the topmost part of the accumulation zone. For polar glaciers or glaciers 

starting above a potential melting line, melting is hardly observable. The mean temperature 

is under 0° Celsius. 

Moving further downward and reducing absolute height there is the percolation area of the 

accumulation zone. With rising increasing irradiance temperatures are raised. Higher energy 

inputs into the snowcover evoke melt and cause water to infiltrate into the snow body. The 

mean particle snow size is greater because of the processes described in chapter 2.1.1. Due 

to refreezing of the passing water it is typical to find ice lenses, ice layers and snow clusters. 

Even though the boundaries to the soaked – water saturated zones are not clear. The water 

table in the snowpack can fluctuate highly during the year or even the day. Better transport 

capacities in the late ablation season turn the drainage to be faster than normal. Moreover 

increased solar radiation or warmer temperatures cause higher melt rates which can exceed 

the transport capacities, causing the water-table to rise. 

The soaked zone is typically water saturated lies on bare ice, firn or super imposed. These 

soaked areas are increasing during the ablation season. The highest existing line is 

ascending with rising temperatures. The temperature inside the soaked zone is 0°C 

(Paterson, 1994, p.11)

The soaked zone is only water saturated if there are no easy drains into the ice body. 

Therefore we can assume that the soaked area is a discontinuous layer which fluctuates in 

time and thickness. 

The accumulation zone is bounded by the firn line where a glacier is quantitavely stable. In 

glaciology it is defined also as the equilibrium line. 

The firn line a glacier has a balanced mass budget with an equal accumulation and melt 

rate. The equilibrium line a reasonable indicator for the mass balance of a glacier. The 

equilibrium line tends to react sensitive to meteorologic or climatic changes. It tends to a 

stable position under stable climatic conditions. The firn line can be made out on the climax 

of the ablation season by the distinction of old snow and ice (Singh, 2001, p.455-484).
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2.1.2.2 Ablation Zone

The areas were ablation exceeds accumulation is called ablation zone. The zonal net mass 

budget is negative. Due to gravitational forces the ice body is constrained to move 

downward. This movement brings parts of the glacier into lower elevations where melt 

exceeds snowfall. 

The equilibrium line divides the accumulation zone from the ablation zone. Over a medium 

time scale the equilibrium line stays in the same absolute position even if the glacier is 

moving downward underneath.

2.1.2.3 Glacier Tongue 

For temperate glaciers, the glacier tongue lies totally inside the ablation zone. The glacier 

tongue is the maximum extend of a glacier and gets its name because of the typical tongue 

form. As a result of the viscosity ice is normally a cohesive mass, typically with rounded 

edges and a rounded end. In the majority of cases we can make up a glacier snout at the 

longitudinal edge of the glacier tongue. It represents the exit of water out of the englacial 

hydrologic system. The glacier snout reacts to mass balance changes. 

2.1.3 Glacier Movement

Mountain glaciers are “nourished” by accumulation of falling snow, wind drifted or avalanche 

deposited snow. The transformation of snow to ice replenishes the ice body of the glacier. 

Because of its own weight and the related effect of gravitational forces it drives the glacier 

body to move. Due to high stresses and the specific deformation properties of ice, 

describable as a visco-plastic body, the glacier is moving as a cohesive mass. To a certain 

threshold force ice can resist and behaves like a plastic manner. Time is playing an 

important role in deforming ice bodies. Ice crystals can rearrange in position following 

pressure forces (pressure deformation or sintering). If the acting shear stresses are not

exceeding a threshold value, ruptures are not occurring. The ice body gets deformed but 

behaves as a unique cohesive body. Only by exceeding the shear stresses i.e. by a faster 

flow over obstacles, or by flowing over bigger obstacles, ruptures are observable. It can be 

easily made out on glacial ice falls, where greater deformation forces in shorter time periods 

lead to a cracking and to the formation of crevasses.

Though, the acting forces and stresses in a glacial body are rather complex and are not 

completely understood by now.
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Basically there are two different areas in glacier flow: the accumulation area and the ablation 

area already treated of in chapter 2.1.2.1 and 2.1.2.2.

However, the glacier flow leaves the profile of a glacier remain relatively unaltered to the 

year before, despite the completely different mass budgets in the different zones. Because 

of gravitational forces acting on the enormous weight, the glacier is flowing from the 

accumulation to the ablation zone. Nevertheless the amount passing any cross-section of 

the glacier remains stable. The amount of ice flowing through the cross-section at the firn 

line must be the annual total amount of collected snow in the accumulation zone. The 

amount flowing through these cross sections is 0% of the annual budget at the longitudinal 

edge (glacier tongue, snout) and 100% on the firn line. Flow velocities would behave in the 

same manner if terrain properties were constant for the hole area. We could observe the 

greatest flow velocities at the equilibrium line (Singh, 2001, p.460).

Paterson (1994) reveals that velocities are increasing in fourth power with thickness and 

third power with slope angle. Paterson also calculated that deformation is running ten times 

faster at temperature around the freezing point than at -22°C (Paterson, 1994, p. 235).

2.1.4 Classification and Inventory

The sense in setting up a classification of worlds glaciers is to consolidate their similarities. It 

should get the understanding of the associated characteristics and processes easier. 

For this reason there are different distinguishing criteria.

One criteria is the thermal characteristic of the ice. Polar glaciers for e.g. are so called “cold” 

glaciers. The temperature of the glacier ice in average is considerably lower than for 

temperate glaciers. In fact the word “temperate glacier” anticipates the temperature of the 

glacier ice around the melting point or slightly lower. Only the near surface ice layers can be 

very cold due to cold surface temperatures. But the thickness of these layers is very mean, 

because of the low temperature conductivity of ice. Especially at the glacier base, where 

geothermal heat is giving its energy to the ice, polar glaciers can be temperate in some 

zones as well.

The characteristic of temperate and polar glaciers vary significantly. The rheological 

properties of glacier ice change with different temperature. Higher temperature favour 

deformation rather than breaking of the ice body when moving.

The most apparent criteria is topography, which is related to the ground conditions but 

above all to different meteorologic and climatic conditions heading to different accumulation 

and ablation.
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Singh (2001) gives three different types of glaciers:

Ice Sheets, and ice shelves:

Ice sheets are continuous areas of great extent. Small ice sheets are 

classified as ice caps but do merely differ in the processes underlying its 

formation.

They form when precipitation, and so accumulation exceeds denotatively 

mass losses due to melting. Moreover terrain characteristics must not excess 

a certain steepness not to build a valley glacier. The form is circular or plane 

more than stretched. If they cover a whole continent as in the case of the 

Antarctica they can be described as Continental glaciers. The movement 

does not particularly show a certain direction, rather than propagation in all 

directions starting from the highest point or the point with the most mass 

accumulation. Examples for the existence of Ice Sheets and ice shelves are 

the Antarctica, Greenland, or Iceland. 

Valley glaciers:

Valley glaciers are the most common form of glaciers worldwide. This type of 

glacier is characterized by its longitudinal shape and its movement, often 

following the valley or even eroding them by themselves. The glacier can 

consist of accumulation zones, ablation zones, moraines (middle, side, end), 

tongue, crevasses zone and side glaciers. 

Typically they are the continental or alpine form of glaciers and are very 

common in the mountainous regions of the temperate northern hemisphere.

Piedmont glaciers: 

A piedmont glacier is a hybrid between an ice sheet and a valley glacier. 

Emerging from a steep mountainous area as a valley glacier it is spreading 

on a fore lying plane and forming an ice sheet. E.g. In the mountainous 

regions of the Antarctica they are a very common phenomena. 

Certainly there are some intermediate forms but not to be mentioned extensively in this 
work.

To have a better understanding and to get accurate information of the ice covered areas it 

is of great importance to observe extensively. It is important to document changes of 

glacierized regions. Especially changing climatic conditions have effects on the mass 

balance, on area, surging or retreating effects.



___________________________________________________________________________

23

There are mainly tree different methods to monitor glaciers.

• Ground survey:

The method consists of in situ observations on the basis of topographic maps and 

cartographic means. The method implies measurements and observations of height, 

distance and area, firn lines, ablation areas, tongue areas, channels systems on the ice 

surface. Moreover, also geomorphologic processes are mapped. In addition snow, firn and 

ice sampling are common observation methods. 

The precision though can vary depending on the data basis an on the observer itself. 

Furthermore the ground survey is rather time and workforce consuming.

• Aerial photography:

To improve precision and time in observation glaciers, aerial photography is carried out. 

The aerial photography does bring good results as long as done in the adequate moment. 

• Satellite observations:

For regions with bad accessibility the only way to observe glaciers is the satellite imaging. 

Modern satellites can get resolutions up to 10-20 centimeters and are of the same quality 

as aerial photography. Moreover they often can document glaciers with different equipment 

as for e.g. IR-imaging. Problems can occur because of high reflectance of snow or ice. 

All the gathered data is collected in an inventory which contains data on the location, 

elevation, area, width, thickness (if measured), withdrawal patterns, as well as other data.

2.1.5 Mass Balance Characteristics of Glaciers

Mass balance investigation on glaciers is an important issue monitoring the responses to 

trans-annual meteorologic or climatic variations. Mass balance is understood to be the 

difference between accumulation and ablation over a certain time period. In the Alps a 

glaciological or hydrological cycle starts with the beginning of accumulation in October and 

ends with the end of the ablation period in September. Consequently we refer to annual 

mass balance, net balance or annual budget. The mass balance only refers to mass 
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changes and does not mean advancing or retreating of glaciers. Net balance changes are 

expressed in water-equivalent of ice units.

A very simple formulae is the one given below, where bn is the total annual net balance, 

composed by the addition of bw, the wintery balance and bs the summery balance 

(negative). 

For further understanding the formulae needs to be fragmented to its processes contributing 

to the total net balance. The basic process contributing to the wintery budget is 

accumulation(c). It is composed of solid precipitation (Psolid), refreezing free water (Pstored), 

condensation, wind deposited snow and avalanches. 

Summery balance is a product of ablation combining snow and glacial melt, evaporation, 

wind erosion of snow, avalanches triggered on the glacier and ending outside the glaciated 

area as well as calving. 

Paterson (1969), gives a combined formulae for bn (net mass balance): 

,where cw is the accumulation in winter and cs the accumulation in summer. Whereas as is 

the summerly ablation. Thus bn is the sum of the integral between the minimum of glacial 

mass at the end of the ablation season (t1) and the maximum mass at the end of 

accumulation season (tm ) plus the integral of the maximum mass at tm and the minimal 

mass at the following year minima of glacial mass (t2).  
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Singh (2001) identifies in this formula the different factors influencing the net budget:

or

Mass balance variations are mainly related to temperature and precipitation. 

Notwithstanding, small scaled meteorologic variations and differences can play an 

important role. The characteristics and the shape of the accumulation or ablations zone, as 

also its orientation can amplify special influences on the glacier balance. 

Mass balance can be positive, negative or balanced. Small variations in mass balance can 

be within the normal range of glacier mass fluctuations, whereas long term trends suggest a 

climatic change or massive changes in budget affecting influences. 

A series of positive balance years leads to an increase in thickness in the accumulation 

zone. With a certain time lag the glacier is responding to an increased supply of mass with 

the increase in flow rates. The glacier is automatically compensating the changed condition. 

The time in which glacial flow is responding depends on several parameters: amount of 

solid precipitation, average temperature of the ice (i.e. polar glacier, temperate glacier), 

glacier size, steepness (flow angle) and glacier shape. Increase flow leads to an altered 

glacier shape and size. Growth of ablation zones leads to increased ablation and does in 

turn balance the increase in accumulation. 

A period of negative balance years results in a loss of ice, affecting both thickness and size. 

First of all thickness is decreasing because of a lack in solid precipitation. Flow rate is 

decreasing. Contemporaneously earlier snow-free areas on the glacier intensify ablation. 

According to these principles it is evident, that positive balances result in glacier advance 

and negative balance years result in glacier retreat. 

Budget quantities can be defined also for an area, which results in an average net balance 

expressed as a portion to the area of a glacier. For special purposes this can an interesting 

indicator allowing a comparison between glaciers of different size and location. 
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Thus

where Bn is the net mass balance for a year and A the area of the glacier.

There are to be mentioned mainly three different methods: glaciological, hydrological or 

geodetic. 

o Glaciological method: the method consists of snow sampling with pits and core 

drilling. The purpose is to define the water equivalent for the sampled snow through 

density determination. Even if it is a punctual sampling method it derives reliable 

data. Data can be easily enhanced by increasing the amount of sampling points. By 

inter- and extrapolating the derived water-equivalent it is possible to sum the total 

gained mass. 

Lost water-equivalent units are deduced of sampling stacks positioned in drilled hole 

in the ablation area. By surveying lost ice at the end of the ablation season water-

equivalents can be calculated. Important for reliable results is the allocation of 

sampling stacks over the area, as well as the use material composition of these 

(stacks should be made of low conduction ratio materials). Results normally are 

plotted as net balance maps typically showing net balance isolines of water-

equivalent units or meters of ice. 

o Hydrological method: This method computes a total net loss or gain of water over a 

defined period. The method takes into consideration precipitation, run-off and 

evaporation leading to the output of net water storage or loss. Simple models 

provide only a total amount of water not considering aerial distribution. Modern 

hydrological modelling though can provide both two-dimensional distribution over 

the glaciated area and evolution in regards of the annual cycle. Kasser (1959), 

Tangborn (1966), and Stenborg (1970) propose hydrological methods as an 

adequate procedure to calculate the budget of glaciers. Generally it is expressed as:
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or

An important factor for precision is reliable data for precipitation in the watershed and 

good computation of actual and potential evaporation for the only partly glaciated 

watershed. In fact, the ratio between ice and ice free underground for the basin 

should be high. Moreover wind drift can distort results significantly. 

o Geodetic (photogrammetry method): Extracting data of elevation changes out of 

accurate contour maps can be a reliable method for mass balance changes. Initially 

done with photographic means, nowadays satellite imagery, differential GPS or 

terrestrial geodesy provide even more accurate data. Though time expense can be 

relatively high comparing to lesser precise but faster hydrological methods. Imagery 

or photogrammetry survey has to be done at the end of the ablation season. The 

time of survey must be chosen carefully to avoid summing errors (summer balance, 

winter balance). The processes leading to the net budget are not quantified in this 

method. One can only generally quantify the amount of lost or gained ice mass over 

a year. Even if the method does not take into account the amount of gains or losses 

at a certain point we can assume that ice flow is balancing these local elevation 

changes (problematic only if flow velocities are changing abruptly).

Moreover depth measurements done with gravimetric methods, electrical resistivity method, 

seismic methods or radar applications can show long term changes in thickness of the ice 

masses and prevent data for budget measurements.
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2.2 Glacial Hydrology

Nowadays glacial hydrology is often discussed in the context of global climate change and 

its consequences for certain aspects of environment. This could be the water balance of 

glacierized watersheds, changing geomorphologic attributes of watersheds or even the 

consequences linked to a sheer disappearance of glaciers.

Although often investigated glacial hydrology is still one main research field of hydrology and 

leaks of consistent theories and formulae. The highly changing circumstances and situations 

during glacial hydrologic investigations complicate comparability of the extracted information. 

Moreover they can only display a short time window in glacial behavior. Processes can 

change fast in diurnal, annual and interannual cycles and even though probable, similar 

conditions must not recur again. Regarding these circumstances there is still a scientific 

need for further investigations, as done in this paper. Only by collecting more data from 

different places under different conditions will brighten missing puzzles.

With a variety of methods research tries to calculate important glacial hydrologic parameters 

like discharge, total ice -water volume, peak discharge, reaction time of the hydrologic 

system (e.g. Fountain and Tangborn, 1985; Hock, 1998). They can provide important 

information not only for scientific purpose but also for civilian matters. Water supply in many 

regions is often dependent on the capacity of glaciers to store water and to release it when 

precipitation is missing (Röthlisberger and Lang, 1987). In addition glaciers can represent 

also a threat on the basis of its tendency to cause sudden outbursts of meltwater stored in 

the intra-channel system or in moraine-dammed lakes. Moreover, the quantification of glacial 

discharge is important for management purposes in hydroelectric facilities. 

The changing climate represents a big challenge to deal with the rising problems of 

diminished total glacial volume and changed behavior of glaciers ( WGMS 1999 as cited in 

Schuler, 2002, p.2).

In the last decades mathematical modelling of glacial hydrology has become of rising 

importance. With changing climate conditions glacial hydrology will be affected as well. For 

this reason it is obvious that future dynamics of glaciers are linked to climate change. In 

order to deal with upcoming problems it is of great importance to develop calculable models. 

Whereas models for simulation of melt processes are quite accurate, water transfer models 

describing passage through the glacier ice deal with a black-box model. They base on linear 

reservoir models and that’s why they exclude the dynamic nature and complex constitution 

of glaciers (Baker, Escher-Vetter, Reinwarth, 1982; Jansson, Hock, Schneider, 2003; Mader 

and Kaser, 1994).
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The investigation on glacial hydrology is not on a death end. Many aspects are neither 

quantified nor understood. 

2.2.1  Basic Principles and Physics of Water Storage and Water Flow Processes

The watering through a glacierized system is a very complex interaction, induced by 

appropriate meteorological conditions and the physical components of the glacier itself. The 

three linked systems; snow, firn and ice are closely connected. 

Water is stored in different matters within a hydrological system. There is to be mentioned 

the snowpack, firn, pools on the ice surface of different size as also crevasses, so called 

englacial pockets, the conduit network and even the basal sediment layer or moraine. The 

characteristics of the different elements alter markedly which results in different pathways 

and storage capacities leading to unequal transit velocities. 

2.2.1.1 Storage and Movement in Snow and Firn

On and especially in snow, water percolates through the snowpack, due to gravitational 

forces. The contact between the loose or frozen snow grains causes friction to increase 

significantly. Therefore transitional dewatering is decelerated. 

The processes passing in firn are characterized very similar. Contact zones of old snow 

grains cause additional granular surface as well as increased surface tension, which causes 

slowed passing velocities. Whereas ice layers often found in seasonal snowpacks are of 

great importance in snow they can not be made out in old firn layers. The compaction over a 

certain time (firn is glaciological defined as snow with an age of > 1 year) breaks up the ice 

layers. Certainly there are areas within a firn layer to have fewer or greater densities, but 

there can not be found well defined ice lamellae. The water in the firn layer percolates 

through widened veins.

The characteristics of the grained firn layer are often compared with the hydrological 

properties of a sandy soil layer. The grainy structure favors a slow and continuous depletion 

of water out of the aquifer if water inflow is stopped immediately. The properties in snow and 

firn layers do change over the year. Similarly to the moulin-conduit system in glacier ice, the 

continuous percolation of water leads to widened water channels. Pathways of relatively 

greater diameter grow in favour of the smaller capillary due to pressure gradients. 

At the beginning of the melt season water pathways are hardly developed. Snow is covering 

the firn. Its water storage capacity is substantially higher than those of firn, due to lower 

average densities. Because of differentiated crystal structure and greater amounts of air 
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inclusions internal friction is much higher in snow than in firn. Therefore it can hold greater 

quantities of water and delivering it much slower than firn (Hooke, 2005, p.20). With the 

progression of the melt season; the snow structure gets mostly cracked. The meteorologic 

conditions force snow crystals to simplify in regard of their form. Following the laws of snow 

metamorphosis the crystals are rounded and increase their diameter. The driving process is 

the so called melt metamorphosis also known as firnification. It is induced by above zero air 

temperatures, free water in the snowpack and refreezing by night. (Gray and Male, 1981). In 

the beginning of the melt season the snowpack is approximating the characteristics of firn. 

Distinguishing snowpacks from firn is considerably difficult with the progression of the 

season. Nevertheless there is still a difference in density and air volume. The melt water 

front is progressing through the snow/firn layer at the inception of the melt season. 

Investigations of melt front progress proofed that the outflow from not equi-temperated and 

therefore still partly frozen snow/firn packs is very poor and does vary diurnally and 

interdiurnally  relative less than in the high melt season (Fountain and Walder, 1998).

2.2.1.2 Storage and Movement in Ice (Englacial Water Transport)

Once reached the ice layer it can immediately enter the englacial transport network as also 

flow on the bare ice surface till it reaches an entrance to the englacial drainage system. The 

“entrance” can be a crevasse, a moulin or smaller hole in the glacier ice. It is accepted that 

water entered in the glacier ice itself, flows through a series of linked conduits and 

passages, as well as linked cavity systems or permeable sediment layers (Röthlisberger and 

Lang, 1987; Fountain and Walder, 1998) once reached the bedrock.

Throughout the melt season flow pathways are subjected a progression of their transport 

capacities as well as their position. It must be a seasonal variable progression of their 

development because of varieties in seasonal meteorological conditions and transformations 

of the ice surface. Even though there is assumed to be preferential flow-paths developing on 

similar positions as the year before. This theory can be underlined by the fact of preferential 

absolute positions of longitudinal and transverse crevasses. 

The evolution of flow-paths is not completely investigated since there is no possibility to gain 

insight in the internal structure of the ice. Though there is the general consent investigated 

by closure rate and melt rate, that the pathway system must be an arboreal branching 

system (Röthlisberger 1972, Shreve 1972). It could be compared with the fluvial 

classification by Strahler. It is assumed that there must be downward increase of the 

englacial pathway average diameter and the capacity of water transport. The evolution of big 

englacial pathways is believed to proceed at the expense of smaller ones. Pore water and 

water channel pressure is the driving factor to enlarge the channel diameter. 
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The average dewatering velocities are considered to be significantly faster through the 

glacier conduit system than through the snow-firn layer. Notwithstanding, there is a huge 

range in transport velocities. (Collins, 1995) If we consider that the glacial conduit system is 

closed during the cold season due to freezing, it is obvious that such channels have to be 

widened in the beginning of the melt season to meet the transport capacity during the estival 

melt phase. 

The whole glacial hydrological system is sort of a reservoir. It contains liquid water, which is 

stored to a lesser or greater extent in the glacial subsystems. The snow and firn aquifer is 

considered as the slower run-off reservoir, whereas the movement through the moulin-

conduit system is remarkably faster. Isotopic and chemical meltwater investigations revealed 

a transit time of a few hours. Behrens, Bergmann, Moser, Rauert, Strickler, Ambach, Eisner, 

Pessel, (1971) describe the reservoirs with linear function properties (snow-firn aquifer), 

where dewatering is in- and decreasing almost linearly.

Over the ablation period the melt front is progressing towards the ice surface, where it gets 

locally collected and locally drained to the englacial conduit system. At the same time the

melting front as well as the ice surface (once reached) built the water table. These are 

locally saturated zones or layers, where pores and spaces are completely filled with water. 

Dependent on overlying layers and water quantities pore water pressure is higher than in 

unsaturated snow and firn layers. The increased pore pressure leads to the effects 

described above. 

With different approaches there has been tried to illuminate the complex englacial system. 

Big efforts were made to get behind the leaky system of the glacier body. Still it is not 

completely understood how and under which conditions and especially in which temporal 

context the cavity system is built. There is still a lack in understanding the close interaction 

between the actual processes.

The englacial system can build up very quickly depending on the various parameters. It is 

supposed that linked cavity systems of the anteriour years play an important role, as they 

can function as preferential paths for the present channels. But still old cavities and tunnels 

are not always “reused” in the following year. This is intensified by the fact that those 

conduits are closed and fully frozen in winter and early spring (Stenborg, 1965; Lang, 

Schädler, Davidson, 1977).

Other researchers do not divide this insight. Hooke (2005) insists that there are still open –

non water-filled channels in the glacier body, if a step slope angle forces water to pass too 

fast to freeze in the conduit. Pressure in such open air-filled channels must be atmospheric 

(Hooke, 2005).
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In any case the melted water from the snow cover in the beginning of the ablation season 

enters the englacial system causing the filling of the conduits. Due to the fact that not all of 

the conduits are opened and free to pass, water pressure in the conduits is significantly 

rising (Collins, 1979) In some cases it can be dammed up, which causes extreme pressures 

in the tunnel system. Glacier outbursts and sudden releases of the entrapped water can be 

the consequence (Hooke, 2005, p.244).

The so called efficiency of the tunnel system is lowest in the beginning of the ablation 

season (Elliston, 1973; Lang, 1973).

With the rising efficiency the drainage system is increasingly reacting faster to internal and 

external hydrological and meteorological influences. The reaction to those influences is 

greatest in the late ablation season, when storage capacity is lowest. The daily variation 

though appears to be more significant than the change over the whole melt season (Collins, 

1979).

According to data collected on South Cascade Glacier, Washington, USA water storage 

capacity maximum is reached when the melt front already propagated to the ice surface, but 

englacial conduits are still scarcely developed. Furthermore, it is suggested that at this time 

the conduits are still partly sealed off. Therefore outflow is impeded locally and leads to 

backwater effects (Stenborg, 1970).

During the ablation season channels and conduits are widened causing better dewatering. 

At the same time lower firn cover areas and greater bare ice areas result in smaller reservoir 

capacities finding its minimum in the late midsummer at the tail of the ablation season. 

Various investigations of glacier run-off on Gornergletscher, Switzerland, during the ablation 

seasons of 1970-1979 by Collins underline this alteration (Collins, 1979). Hydrograph 

recession analysis done after summery snowfall events resulting in negligible melt, do 

extract this information quite clearly. Moreover the method pointed out unambiguous the run-

off background signals, originating from ground basal flow.

2.2.1.3 Storage and Movement on the Glacier Basis (subglacial water transport)

This ground basal flow is present over the whole season, but varieties in basal discharge 

amounts depend on the size and amount of the overlying ice. Even when there is no melt 

measurable small amounts of water are depleted on the shear zone of ice and ground. It is 

believed to be produced by geothermal heat and thermal energy generated by the basal 

sliding or the pressure produced by the weight of the ice. Studies pointed out that basal 
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meltwater flow is not always entrapped in channels but flows in a thin layer of about 1 mm 

thickness (Weertmann, 1972, as cited in Singh, 2001).

This subglacial water film is retained as long as the pressure maintains on the pressure 

melting point (Weertmann, 1972, as cited in Singh, 2001). If the basal melt flow exceeds 

certain amounts and pressures rates it will cause turbulent heating leading to the 

development of channels (Hubbard and Nienow, 1997).

There are coexisting theories how the basal water channel system is developing and 

especially how it can by physically described (e.g. Shreve 1972; Hooke 1984).

It is probable though, that processes steering the properties of subglacial channels can be 

very different and even of small scale and of local importance. 

To Hubbard and Nienow (1997), there are to be listed “variations in meltwater flow, climatic 

and meteorologic conditions, overlying ice amount, surface slope, different sliding velocities, 

and substrate composition. Individual properties, especially regarding small glaciers are of 

great significance and can not be neglected. Furthermore there have to be considered 

special diurnal and annual differences of these interactions. One has to understand that

glacial hydrology is not a sequence of dissipated processes, but a highly interacting 

hydrological system.

It is the reason why studies on sub- and englacial hydrology are hardly comparable. 

Quantitative information and qualitative understanding must be carefully extracted. Moreover 

this fact explains the existence of various theories and diverging results. 

Nevertheless the basal flow induced by basal sliding or geothermal heat is only a 

background signal of lesser significance. Its variations and amounts are lesser than the 

superimposed depletion caused by daily melting. In order to get the melted water amount, 

background flow can be subtracted without great difficulties. The background flow is best 

visible in the early ablation season or in autumn, when melting is neglectable (best in 

wintertime, but most of the gauge stations for glacial run-off are not working). 

Therefore the discharge at the glacier snout has different origins: (i) run-off due to rainfall, (ii) 

run-off due to melting of the wintry deposited snow cover, (iii) melting of the firn stratum 

underneath the snow layer or above the glacier ice and (iiii) melting of the glacier ice on the 

surface and on the contact zone to the ground. 
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2.2.2 Time Scale of Storage Processes

Glaciers can have storage properties retarding the run-off (in comparison with bare ground). 

Research on this natural reservoir and is of great importance as it impacts as well human 

settlements and civil use of the natural environment (e.g. hydroelectric power production).

Storage in and on a glacier basically occurs within two different phases: liquid (water) and 

solid (ice, snow). Therefore any glacier represents a storage body for water if melted. This 

storage capability is differing regarding the different time-scales. There can be observed a 

huge variability of time in the potential retention of water, in regard to the different glacial 

zones. It rages from short-term water storage of only minutes up to long-term storage of 

hundreds or  even thousands of years (Fig. 2) (Jansson et al., 2003, p.116-117).

Fig. 2: Schematic figure representing timescales of water storage on glaciers (after Jansson et 
al., 2003)

2.2.2.1 Long-term Water Storage

Generally long-term water storage in glaciers is accomplished by the single ice body. The 

highest proportion of total water stored in glaciers lies in the ice volume itself. Only 

comparatively small amounts of snow and firn make out the total volume of a glacier. 

Nevertheless their importance for the watershed hydrology is not to be neglected since most 

of the ice body is not actively interacting during ablation seasons. 
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Glacier ice contains enormous amounts of frozen water. Worldwide 60% of the freshwater 

resources are stored in the world’s glaciers (Hooke, 2005, p.3). Anyhow most of these 

freshwater resources lie in the world biggest ice sheets, the Antarctica and Greenland.

For temperate glaciers applies that despite their often comparable small aerial cover in a 

basin, they have a great influence in catchment hydrology.

Run-off variability is lowest at glacial cover percentages around 40%. An increase as well as 

a decrease in glacier cover leads to a higher variability in run-off (Fountain and Walder, 

1998; Röthlisberger and Lang, 1987). 

Run-off from not glacierized catchments is normally generated by precipitation and only 

partly by melting of snow. In completely glacierized areas the run-off is induced mostly by 

glacial melt. That means that glacierized catchments are dominated by energy induced run-

off processes (Chen and Ohmura, 1990; Lang, 1987).

Long-term glacial storage is basically affected by the dominating climatic conditions. 

Glaciers grow only in an adequate climatic environment. Climatic variability is therefore the 

dominating factor for growing or shrinking of the total glacier mass. It is generally accepted 

that the velocity in which climatic shifts occur tends to be slower than the processes 

responsible for intermediate- and short-term storage (Braun, Weber,Schulz, 2000).
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Fig. 3: (Schematic figure) Effect of negative mass balance (I) 

on glacier run-off (II) and total glacier volume (III).  Run-off is 

responding with lag time to negative glacier budget and 

decreasing when total glacier volume is shrinking (virtually 

tot. glacier area) (after Jansson et al. 2003, p. 119)

2.2.2.2 Intermediate-term Water Storage

Intermediate-term storage of water refers mostly to water reacting in a time frame of about a 

day to a year. Huge amounts of water get released in summery melting. For temperate 

alpine glaciers this will happen mostly from June to October (Escher-Vetter and Reinwarth, 

1994; cited in Jansson et al., 2003; p.123). 

The intermediate-term storage of a glacier is the most complex in regard to the other time 

scales.  Storage at this time scale occurs mostly because of the capability of firn to fill up the 

pore spaces with melt water and the retarded release of it, as well as the melt of snow as a 

proper storage of water itself (Schneider, 2000).

The wintery accumulated snow cover contains great amounts of frozen water. With rising 

temperatures and increasing solar radiation, melt processes are accelerated. Melt water 

percolates through the snow-firn body. Usually velocities of percolation are within a range of 
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0.1 to 0.3 m/h (Schneider, 2000). The percolating water can not easily be transmitted to the 

glacial drainage system. The ice is almost impermeable. Therefore access to the englacial 

drainage system is only possible at very local holes, entrances and crevasses. If the 

amounts melt water input exceed the drainage capacities it will lead to backwater effects and 

therefore to a storage of water in the different glacier aquifers. With the progression of the 

melt season discharge conditions are becoming more effective resulting in reduced storage 

(Jansson et al., 2003, p. 122). Retended melt water at the beginning of the ablation season 

can be released later on in summer.

Even if often observed, wintery storage of liquid water is hardly investigated, because of the 

impeded field conditions.

Summery rainstorm events let run-off respond quickly. With the intermission of rainfall, run-

off is decreasing in a certain rate, depending on the storage characteristics of the glacier and 

especially on the period of occurrence in the annual cycle. Calculation for Storglaciären and 

South Cascade glacier showed normal pre-storm flow rates were achieved not till 1-2 weeks 

after the event (Östling and Hooke 1986, cited in Schneider 2003, p.121). Behrens et al. 

(1982) indicates a timeframe of about several days to weeks for the Vernagtferner.  Due to 

capillary forces pores in the firn can release the water only slowly and retard the run-off. 

Depending on the channel development in the firn this process can be significantly vary. 

On the contrary bare ice is directing water relatively fast to the outlet. The measured time 

window between melt and run-off is about only a few hours (Nienow, Sharp, Willis, 1996).

Moreover till sediment layers at the glacier bed can store water as well. They can attribute to 

the wintery run-off and decelerate the reaction of run-off to melt- or stormwater input. It is 

believed that the measurable up-lift of the glacier at the beginning melt season is linked to 

the annual intermediate-term water storage and the till layer. Water pressure in and under 

the glacier is rising. As a consequence the glacier swells and its surface is lifted measurably 

(Iken et al., 1983; cited in Jansson et al., 2003, p. 121).

2.2.2.3 Short-term Water Storage

Short-term water storage considers diurnal variations of run-off. Storage processes on a 

short-term timescale have been investigated in several studies (e.g. Collins, 1979; Hock et 

al., 1999; Schneider, 2000 and others).

Those variations can have different origin, but are basically caused by the diurnal 

temperature and radiation cycle. Melt is reacting immediately to rising temperatures and 

radiation. Nevertheless the characteristics of the reservoirs influence the velocity of 
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discharge reaction (Oerter, Baker, Moser, Reinwarth, 1982). E.g. Hock and Nötzli (1997)

identified three different reservoir types for aerial melt and discharge modelling at 

Storglaciären. Hydraulic conductivity values (k-value) were assigned to the different 

reservoirs. The highest values where assigned to the firn reservoir and the lowest to the ice 

reservoir. The snow reservoir has its greatest impact on the discharge at the beginning of 

the melt season.  Therefore progression of the melt season spotlights the different 

reservoirs. The retention of water through reservoirs must be allocated time-dependent. In 

other words the amplitude of short-term run-off is highly dependent on the annual period, 

literally on the dominant reservoir at this time of the year. The up-wandering snowline points 

out the switch to another reservoir (Collins, 1998).  The transition of the snowline is also 

accompanied by the transformation of the subglacial and englacial drainage system 

(Seanberg, Hooke, Wiberg, 1998) and the intersection of a distributed run-off regime to a 

channelized run-off regime (Nienow, Sharp, Willis, 1998). The accumulation to ablation area 

ratio articulates this transition in one term. 

Additionally to the discharge caused by infiltrating melt water run-off can be simply provoked 

by liquid precipitation. It is generally accepted that melt processes in snow or firn are 

accelerated by the sensible heat in rain and the formation of preferential flow tracks.

This means that the measured total run-off can exceed the total fallen precipitation in a 

rainstorm event (Singh et al. 1997).
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3 Study Region  and  Inves t iga t ion  Area

3.1 Hohe Tauern and the Goldberggruppe

Fig. 4: Topographic overview Austria; Overview of Sonnblick Group with Großglockner, scale 

1:500.000; Austrian Map online ÖK500, access April 2008
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Fig. 5: Hoher Sonnblick with Goldbergkees and Kleinfleißkees; scale 1:50.000, (Austrian map 

online, access: April 2008)

The Investigation area is situated in the Austrian Eastern Alps in the so called Hohe Tauern. 

The Hohe Tauern is part of the main ridge of the Alps, built by the highest elevations. The 

Hohe Tauern ridge is more than 140 km long and runs in West-East direction. At the same 

time it is the centre of the Eastern Alps. The Goldberggruppe is a subdivision of the Hohe 

Tauern and lies in the eastern part of the Hohe Tauern.

The Hohe Tauern is a climatologically important mountain ridge in the Eastern Alps. They 

represent a climate divide. The Hohe Tauern are characterized by a number of 101 small 

and middle glaciers with a total area of about 90 km². The glacier border line lies between 

2700 and 2900 meters. (Groß, 1987). The size though is shrinking fast since the last glacier 

advance in 1850 and accelerated even more in the last decades.

The Hohe Tauern counts a great number peaks with elevations over 3000 meters. The 

highest peak of the Hohe Tauern and at the same time of Austria is the Großglockner with 

an altitude of 3798 meters. The Hohe Tauern lie in the three Austrian regions Salzburg, 

Kärnten and Tirol. A smaller part is bordering on the Italian frontier. 
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Most of the area is accounted as national park with a total area of 1836 km². The nature 

protection area is subdivided in a core zone and in buffer zone (peripheral zone). 

Geologically, the Hohe Tauern are composed of morphic bedrock and shist. Geologists term 

the special formation as the “Tauern Fenster”. The characteristics of the rocks built special 

geomorphologic forms and delineate the distinctiveness of this alpine region.

Economically, the region is mostly dependent on tourism and on local low rank economics. 

Important though is the power industry which runs some important storage power stations. 

The reservoirs are veritably linked to the summery incidence of glacial meltwater. 

Therefore it is also a crucial area regarding meteorologic conditions and precipitation.

The Goldbergruppe is a subdivision of the Hohe Tauern and lies in the two regions Salzburg 

and Kärnten. The highest elevation is the Hocharn (3.254 m). Another famous peak is the 

Hoher Sonnblick with 3106m of altitude. The Goldberggruppe is located in the Eastern part 

of the Hohe Tauern, only about 20 Kilometers from the Großglockner (3798 m).

The onomastic of the mountains comes from the mineral richness of the region. It was a 

known mining region for gold. Nowadays mining has been dismissed. Only some mining 

relicts like drifts and old barracks can be found. 

The Goldbergruppe houses some small sized glaciers like the Hocharnkees, Krummlkees, 

the Wurtenkees, the Kleinfleißkees, the Wurtenkees, the Schlapperebenkees and the 

Goldbergkees. 
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3.2 The Goldbergkees

The Goldbergkees has a total area of about 1,42 km² (measured in 2003). It is part of the 

Sonnblickgroup in the Hohe Tauern. When compared with other glaciers it is only of small 

size. Its influence concerning hydrology or landscape is therefore only of local interest. 

Though, it is one of the best investigated glacierized areas in the Alps. It can be attributed to 

the special position of the glacier itself. It lies on the northern border of the main ridge of the 

Alps. The meteorologic circumstances are varying strongly and depend on the current 

weather conditions. The nearness to a continuously operated meteorologic observation 

station (since 1886) at the Hoher Sonnblick (3105 m) provides reliable data as groundwork 

for any further investigation. Moreover the size of the glacier makes it sensible to any 

climatic shifts and makes apparent changes e.g. in mass balance, size, length, thickness or 

geomorphologic and hydrological processes linked to the glacier ice. 

For this reason studies on the Goldbergkees can easily be adapted to similar glacierized 

zones in the world but especially to the east alpine glaciers. 

Fig. 6: Goldbergkees Slope angle (in degree) and position of the hydro-meteorologic stations 

in the area. Glacier extension digitized after aerial image 2003



___________________________________________________________________________

43

3.2.1 Glacier

The glacier has a total area of about 1,42 km². It can be subdivided in „Oberster Boden“, 

„Oberer Boden", and „Zunge“ (tongue). The „Oberste Boden“ is the highest part, situated 

directly underneath the Hoher Sonnblick peak. It has an area of about 0,39 km² and is 

separated through a ripe rock face of the “Obere Boden”. The “Obere Boden” is the main 

part of the glacier. Together with the tongue it has an area of aproximately 1,01 km² (tongue 

has approximately ¼ of the area).

3.2.2 Climate

The climate on the Goldbergkees can be classified as a high mountain climate. 

One of the main climate components is temperature. For the climatic period of 1961 to 1990, 

typical characteristics of the seasonal cycle is a minimum in temperature in February and a 

maximum in late July and beginning of August (Auer, Böhm, Leymüller, Schöner, 2002).

Radiation is highest in the ablation season in summer. Radiation follows the annual radiation 

cycle. Nevertheless there can be made out great differences from year to year. Solar 

radiation is dependent on the sky cover. In years with increased cloudiness radiation is 

reduced significantly. 

Depending on the temperature precipitation is falling in solid or liquid form. Precipitation in 

winter is accounted for snowfall whereas rain is dominating in summer. Notwithstanding 

depending on actual temperatures and altitude also snow is a common phenomenon in the 

melt season. Over 80% of the annual precipitation quantities are falling as snow. The 

summerly period accounts for the greatest precipitation amount of over 1300 mm (1961-

1990), whereas mean wintery deposition is around 800-900 mm. The deposition rates are 

strongly dependent on local criterias as exposure and orientation (Luv or Lee slopes), (Auer, 

Böhm, Leymüller, Schöner, 2002). Summerly snowfall influences greatly the melt and 

hydrological processes on the glacier surface. In transitional periods as spring and autumn, 

rain instead of snowfall and rain can alter, depending on the temperature. Rainfall on snow 

causes accelerated metamorphosis processes and changed hydrologic conditions. Snow 

can soak the rain and therefore refreeze in the snow layers. Wintery snow heights are 

depending on the elevation, even if the elevation increasing factor considering precipitation 

is lower than suspected. 

Snow heights reach their maximum in late spring or at the beginning ablation season, much 

later than in lower situated areas. The peak in snow height is temporally delayed. Snow 

heights are varying enormously. Wind drift before and after deposition, as well as 
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avalanches are redistributing snow and depositing it on preferential areas. They can vary 

from about 1 Meter to 7 Meters and more for the same year. In water equivalents snow 

height vary from under 1000 mm for wind exposed areas to about 2700 mm for wind 

exposed zones. ( Hynek, 2000; Mott, 2006).

Usually melt is not taking place before May. Increased run-off from melt is initiated when the 

snowpack is isothermal. To simplify comparability, the ablation season for the Goldbergkees

begins with May and ends with September.

Wind its transport capability for snow is an important factor in winter. On the Goldbergkees

the most frequent wind direction is South-West. A second frequency maximum is North-

West. Depending on the weather situations wind directions are highly rotative. Because of its 

orography, slight shifts in general wind directions can cause huge changes in wind fields 

over the glacier. The maximums for wind speed can be accounted for January. Generally the 

winter season shows higher wind speeds in average and for wind squalls. (Mott, 2006)

The total ice volume of the Goldbergkees is more than 48 million m³. Nevertheless it 

decreased since the last glacial high stand in 1870 for more than ¾ (Fig. 7).

Fig. 7: Volume, thickness and length of the Goldbergkees for the selected 

years from 1850-2003 in absolute values (Böhm et al., 2007)

A crucial aspect of glacial retreat is the fact that length variations do not react with the same 

magnitude as volume variations. When volume is affected by snowfall or melt, length 
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changes are responding slower or with a retarding factor. Melting affects more thickness and 

therefore volume changes as for example length changes. This may be arise from the 

special shape of this glacier, but could in most cases be adopted for other similar sized 

alpine glaciers as well (Fig. 8).

Fig. 8: Volume, thickness in relation to value in the year 1871 in % (Böhm et 

al., 2007)
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4 Methodology

4.1 Tracer Studies

Tracer hydrology is a well-established method in glacial hydrology, but originated from 

karst hydrology. Since the late 19th century salt and dye tracer investigations are known 

methods for investigating glacial drainage systems. Normal salt or natural or chemical 

dyes are injected to measure flow velocities as well as amounts of discharge. In some 

cases it can provide also conclusions of geological, meteorological, biological or 

chemical character. Therefore it has been often used and provided important information 

on glacial hydrology. 

The injection site is situated upstream and represents normally a fastly draining moulin 

or crevasse or simply a supraglacial melt channel or gully. The detection site is normally 

situated on the glacier mouth or further downstream. 

Initially salt injections were made but reached their limits relatively soon as it came to 

longer flow distances or greater water quantities. The detection limit of salt in water is 

only in the mg/l range. It turned out that other substances had much lower detection 

limits. Nowadays Fluorescein and Rhodamine are the most commonly used chemical 

fluorescent tracers in glacial hydrology. Their detection limit lies around 0.0006 ppb (part 

per billion). It can simply be detected by manual sampling or by an in-situ fluorometer 

optionally with a (automated) data logger. Ideally, the results should point out rather 

clear tracer breakthrough curves. (Fountain, 1993; Sharp et al., 1993).

4.1.1 Tracer Measurement and Recovery

For a precise investigation on the characteristics of a glacial hydrologic system tracer 

recovery plays an important role. By knowing the amount of injected dye tracer and the 

total run-off on the glacier mouth we can calculated the quantitative percentage of dye 

bypassed the fluorometer. This can be a meaningful approach for investigating storage 

characteristics. A loss of dye tracer points to storage processes inside the drainage 

system. Nevertheless the breakthrough curve can flat out so much that a distinction from 

the background signal is no longer possible. Water and in this case dye tracer is hardly 

stored permanently. Often the measurement period is too short to get the whole amount 

of initially injected dye tracer. Roughly speaking the greater the injected dye amount the 

better the percentage of recovery (in case the measurement period is sufficient and 

maximum detection limits are not overstepped). 
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High percentage recovery rates indicate a fast and well developed drainage system in 

which storage is only of short term. According to various studies; efficient or well 

developed drainage systems show transit velocities of more than 0.2 m/s (Moser and 

Ambach, 1977; Lang et al., 1979; Burkimsher, 1983 in Hubbard et al. 1997; p. 942).

Low percentages of dye recovery points to an arborescent, “delicate” and/or hardly 

developed drainage system. The storage can be intermediate (hours) or long term 

(days, months) (Behrens et al., 1971; p.98).

Tracer recovery is also influenced by the chemical and physical composition the melt 

water. Suspended sediments generally occur in subglacial channels can absorb dyes 

significantly. In consequence tracer recovery is affected. It depends highly on the dye. 

Some tracers are easily influenced by adsorbation processes whereas others remain 

relatively stable. 

A second parameter diminishing tracer recovery is turbidity. Turbidity induced by 

suspended sediments and organic matter dislocates the fluorescent wavelength peak. 

Especially flushed-in organic matter does have similar wavelengths as certain tracers. 

Investigations employing Eosin and Fluorescein for example are highly interfered by 

soluted organic matter. The percentage of tracer recovery is therefore often reduced 

significantly. If turbidity is high enough and tracer concentrations relatively low, results 

can be difficult to interpret. 

Normal turbidity rates though can be easily substracted from the tracer breakthrough 

curve easily. Some fluorometers can recalculate the effective tracer concentration in 

situ. (Smart and Laidlaw, 1977).

A third parameter influencing tracer recovery is radiation. Whereas some tracers are 

relatively insensitive to solar radiation others react quickly to daylight exposure. The 

choice for the appropriate tracer in field studies is affected considering the physical and 

chemical decomposition due to radiation affect. If solar radiation amounts are known 

exactly it is possible to recalculate the concentration. By having decomposition matrices 

composed of incoming radiation quantities and time of exposure it is possible to sum up 

to the percentage of tracer recovery possibly measured without exposure to daylight. 

For the prementioned problems hydrological interpretation through tracer recovery rates 

is rather complex and can lead to a serious of false conclusions. Therefore it is of utmost 

importance to select the involved tracers carefully and avoid any further sources of 

errors in the field. The arising problems should be concerned already in the run-up to the 

field investigation (Nienow, 1993).



___________________________________________________________________________

48

4.1.2 Dye Tracers

4.1.2.1 Coloured Dyes

Non-fluorescent coloured dyes are widespread in hydrological as well as soil studies. 

They work on other principles than fluorescent dyes. The detection is rather qualitative 

than quantitative. They work rather on visibility than on measureability. Moreover they 

are easily adsorbed by chemical processes in the aquifer. Nevertheless they can 

provide important initial information about water movement in and on glaciers. In field or 

laboratory they can be measured with a simple spectrometer. The spectrometer 

measures the extinction of light for determined wavelengths. Similar to the fluorometer 

for fluorometric dyes, concentrations can be obtained by knowing the extinction curve of 

the dye and the actual extinction in the measured solution. The detection limit though is 

high, compared to their fluorescent relatives. Disadvantages are therefore greater 

injection quantities or shorter measurement distances. 

In this field study Potassium permanganate (KMnO4) was used to determine dispersion 

of water in snow and the propagation of the melting front in early summer glacial 

snowpacks. 

Potassium permanganate is often used in soil sciences for pigmenting soil profiles. 

Potassium permanganate is an anorgnic salt of pink colour. It is water-soluble (64.0 g/l 

at 20°C). It is better visible on snow than other coloured tracers. Bluish, greenish and 

yellowish colours are not easily detectable in water. 

4.1.2.2 Fluorescent Dyes

Fluorescent dyes are of common use in hydrology. In the past they have been used for 

various investigations in the field of glacial hydrology, but mostly for time discharge 

relationship measurements in sub- and englacial drainage systems. 

The most commonly employed dye tracers are 

1. Fluorescein

2. Sulfo-Rhodamine (G,B,WT)

3. Eosin

4. Phyranine

5. Lissamine

6. Tinopal
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Fig. 9: Extinction and fluorescence wavelength of various fluorescent dye tracers; 

Source: Wernli, 2003

Fluorescent tracers are classified in the group: Artificial Dyes. That means they are not 

of natural origin. Nevertheless they are organic compounds. Stimulated by light they 

emit visible light with a certain wavelength which can be recorded by an automated field-

fluorometer or analysed in the laboratory. The light wavelength after stimulation is 

approximately 300-650 nm.

Not all of the fluorescent dyes are adaptable for glacial hydrological studies. A 

predominant number is only poorly water soluble. As a consequence its application must 

be carefully elaborated. Dyes with good characteristics for hydrological purposes are 

oftenly applicated. The advantage of fluorescent tracers compared with coloured dyes, 

are their low detection minimas. For field studies weight and transport are important, 

especially for glacier investigations. Low detection limits need minor amounts of injected 

tracer. Their affortableness is of benefit as well. Furthermore they are toxicologically 

harmless. Nevertheless they show enormous differences in their optical, chemical and 

physical characteristics.
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Fig. 10: Logaritmic Decomposition of fluorescent dyes exposed to radiation (a), and half life 

period in comparison with half-period value of Fluorescein (b); Source: Wernli, 2003

Fluorescent dyes emit radiation if stimulated, but lose their emission capability rather 

quickly. If exposed to sunlight they are decomposed and concentrations seem to be 

lower when reaching the detection fluorometer. The decomposed molecules are no 

longer capable of emitting light. The decomposition of a certain amount of fluorescent 

dye equals strongly the half value periods of radioactive substances. A fast decline at 

the beginning is followed by a logarithmic decline of the fluorometric potential. 

Fluorescent dyes can be adsorbed by soluted sediments as well as by organic matter. 

The adsorbtivity of dyes and the influence of organic matter to the light emission record 

are widely scattered. Furthermore fluorometric emission is depending on the 

temperature and on the acidity (pH-value).
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4.2 Field Study and Tracer Experiment Sequence

The following chapter emphasize on the steps undertaken to achieve the desired aims.

Fig. 11: Study sequence, time efforts for the field study on Goldbergkees; 

Source: own illustration 

4.2.1 Pilot survey for experimental setup

Due to previous universitary excursions and field trainings of glacial mass balance 

measurements it was possible to get to know the area previous to the field investigation. 

In 2005 and 2006 I traveled with the Department of Meteorology as well as the 

Department of Geography and Regional Research (University of Vienna) to Hoher 
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Sonnblick Group. The idea for the current field study evolved in the lacking information 

about flow processes on the Goldbergkees. 

In order to draft a fundamental frame of reasonable experiments a first aerial sighting 

was crucial. With which methods is it possible to gather information of flow and storage 

processes? Which information could be derived out of aerial monitoring? 

Sampling sites where preselected on the basis of photographic documentation as well 

as observation of preferential supraglacial meltstreams, moulins and crevasses. Further 

information was extracted through cartographic means (Geo-information, maps, aerial 

images). The result was a table and a map (sketch) with collected potential sample sites 

for different investigation steps. The outcome of this is a flow chart for further field 

experiments (Fig. 11). 

4.2.2 Snowpack investigations with the coloured dye Potassium Permanganate

4.2.2.1 Aerial dispersion of coloured dye on the snow surface 

The seasonal snow cover is partly transformed to glacier ice in the annual cycle. Most of 

the snowmass on temperate alpine glaciers with almost no tongue movement, melts in 

the summerly ablation period. The target of sampling the snow cover is to trace the 

movement of water in snow. At the beginning of the melt season the snowpack is still 

partly frozen. Snow profiles determine exact texture, temperature and thicknesses of 

various snow layers. Potassium Permanganate as a coloured dye was used to colour 

the meltwater. On the one hand Potassium Permanganate is injected in different depths 

of the snow cover, ideally on the surface, in the top layer of the snowpack, over and 

under ice layers as well as on the firn or ice surface. The measurement was taking place 

from the 12th to the 14th of June. 

The first steps were to choose the right sampling sites according to criterias like 

inclination, undisturbed snow layers, representability of snow layer composition 

(avoiding sites with wind drift, crevasses, shading). 

On the chosen experiment sites were done snow profiles to record the snow layer 

composition as well as the current temperature and humidity distribution. In this case 

two profiles for three experiment sites were digged (two sample sites were of similar 

characteristics and minor distance, so could be described by only one profile). 
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Potassium Permanganate was disolved in water and dispersed with a handspray on a 

quadratic area of about 1 sqm. Due to the magenta colour of soluted potassium 

permanganate, the albedo would have been reduced significantly. Therefore the 

sprayed area was covered cautiously by a 5 cm layer of snow. 

Fig. 12: Potassium Permanganate application on snow for permeability 

test; Source: own picture

It is important to not exagerate the spread water amount in order to not accelerate the 

infiltration into the snow body due to additional water. The process was repeated on two 

different sites in the morning hours (at 9 a.m.) (For detailed positions go to Fig. 8). After 

17 hours a longitudinal cut was digged to document the propagation of the meltwater. 

Documentation was done by measuring distances and depths and recorded manually as 

well as photographically. After 37 hours from the dispersion moment a second 

longitudinal cut was digged to document further propagation. The longitudinal sections 

were build following the natural inclination of the terrain, beginning in the left upper angle 

of the coloured square, then after 20 h on the opposite angle of the square. For this 

reason two profiles were extracted out of one sample site. 

4.2.2.2 Punctual Injection of Dye into the Snowpack

In a second experiment snow was punctured with small amounts of Potassium 

Permanganate, injected directly in certain depths into the snowpack. For a clear record 
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after the excavation it was important to inject the Potassium Permanganate solution 

exactly in the right depth, without contaminating other snow layers.

Fig. 13: Schematic view of dye injection into different snow depths with 

injection pipe. Source: own illustration

For this reason the Department of Materials of the University for Soil Sciences (BOKU) 

and Dr. Gernot Koboltschnig of the Institute of Water Management, Hydrology and 

Hydraulic Engineering help me design a special injection device. It had to be long 

enough to reach deep into the snowpack, stable enough to penetrate the hard layers 

and should hold a certain amount of fluid. Moreover the fluid outlet when released had to 

be exact. 

Therefore an avalanche sonde of 4m length was adapted to serve as gigantic syringe or 

pipette. The syringe could hold up to 30 ml (with subunits of 5 ml) of fluid and could be 

adapted to any length if necessary. 

With the aid of this injection pipe 30 ml of a saturated Potassium Permanganate solution 

(equal to 1.95 g dried matter) was injected side by side into the snowpack. After 24 

hours the profile was excavated to document the development. 

Meteorologic conditions as well as the physical characteristics of the snow layers with 

the observed flow and percolation paths of meltwater have been related. 



___________________________________________________________________________

55

4.2.3 Measurement of Water Movement on Firn

When snow melts on the surface mostly due to solar radiation and sensible heat fluxes 

water is mediated through the snow body to the subjacent firn. Glaciologically, firn is 

defined as snow endured a total ablation period (Fountain and Walder, 1998; p.324). firn 

is denser than snow because of decomposition of the hexagonal structure of the snow 

grains, refreezing and compaction. It can not mediate meltwater easily through its body. 

Therefore water flows primarily on top of the firn layer.

Fig. 14: Schematic figure; experimental configuration for dye tracer 

measurements on firn. Source: own illustration

For a coarse quantification of the flow velocities of water on firn, fluorescent dye tracer 

test were done. Injection of Sulfo-Rhodamine G as well as Naphtionate by an injection 

pipe and the following detection through the field-fluorometer generated a rough 

estimation of transit times (Fig. 14). The concept for the experiment is mostly adopted 

from Campbell, 2006, p. 969-985. The experiments were carried out from the 12th-14th of 

June. 

The measurement could only be carried out where crevasses or moulins do not disturb 

the continuous water flow. In order to detect any tracer the fluorometer had to be 

installed in the direct slope line of the injection site. Nevertheless detection could be 

difficult if the supra-firn meltwater flow is channelized. If the flow paths do not match with 
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the detection site no results could be obtained. Higher discharge causes more 

canalizing. Tracer recovery is rather random. Therefore firn water measurements were 

done only in the upper part of the glacier, were discharge amount are assumed to be 

lesser. There is no possibility to measure how much tracer is passing without being 

detected. Therefore only time-path measurements were carried out.

Due to high radiation input and short distances, Fluorescein is not suitable. Fluorescein 

is decomposed by light rather fast. Sulphorhodamin G and Naphtionate are of lesser 

light sensibility. The short measurement distances favored the latter substances.

Previously to the experiment the slope angle was calculated by a perpendicular and a 

measuring staff. Then the slope line was estimated for installing the fluorometer. In a 

first step a rectangular hole was digged onto the firn. Into the upper firn layer was 

hacked a gully of approximately 1 m. The gully’s purpose was to collect the relatively 

small amount of water flowing in the basal saturated snow layer. The field fluorometer 

can only work if enough water is conducted through the optical cell. Intruded air leads to 

a measurement blackout. In addition, drainage was estimated by filling beakers and 

measuring the elapsed time. 

The pre-soluted dye tracers were sucked up by the injection pipe and injected directly 

onto the firn with distances of 8, 15 and 25 m to the detection device. The presumption 

was that water flowing on the firn layer must be significantly faster than meltwater 

percolation through the snow layers. 

Problems emerged because of deviances in slope line, especially with greater 

distances. Interesting site effects could be observed by measuring turbidity changes due 

to tracer injection and precipitation. 

4.2.4 Supra-,  en- and subglacial Tracer Tests

In order to measure travel times of water through the glacial body fluorescent dye 

measurements were done. The semi quantitative method of fluorescent dye tracing can 

specify time path relationships, as well as discharge measurements through tracer 

dilution. 

The following experiments were carried out in two main measurement campaigns. The 

first was hold in the middle of the ablation season 2006, from the 26th – 29th of July, the 

second one at the very end of the ablation season, from the 3rd – 5th of October. 

For en- and subglacial pathways investigation Fluorescein and Naphtionate was used. 
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Fluorescein was used for longer distances as the substance has a low detection limit 

and is lesser disturbed by turbidity than other dye tracers. The initially used substance 

SulphoRhodamine G is not appropriate in subglacial channels. Water in subglacial 

channels transports sediments from glacial abrasion. The turbidity background signal on 

the outlet of the glacier can be very high (over 100 NTUs-Nephelometric Units). 

Fig. 15: a) Fluorescein release into glacier moulin at ‘Oberer Boden’ ; b) Dye 

tracer release into basal snow layer at experimental site ‘Lieslstang’; 

injection pipe in the foreground, Source: own picture

A preinspection of the area disqualified not adequate injection points. Either they were 

not connected to the englacial system and not representative or simply difficult to reach 

or too dangerous. 

Fluorescein and Naptionate was prepacked in the laboratory in portions of 20 and 50 g 

for better transportation since I was carrying out the experiment alone. The amounts 

were then dissolved in meltwater at the injection site in a measurement beaker. The 

dissolution had to be done cautiously not to contaminate the area before the proper 

injection. 

The dye tracers were injected (with different distances to the detection device) into

a) moulins

b) crevasses

c) the subglacial stream or brook

The Goldbergkees has a rather complex drainage system. It is not always clear which 

part of the glacier contributes to a distinguished discharge. Moreover, the subglacial 
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river quits the subglacial system before falling over a cascade of about 200 m and then 

to disappear under the glacier tongue. There is a smaller discharge system under the 

southerly glacier part, mostly including the glacier fall and the tongue. Though, it was 

hardly possible to carry out dye tracer experiments in this area, because of the huge 

crevasses area and the lacking of suitable injection points.

The fluorometer was installed on the outlet of the upper part of the glacier (Oberer 

Boden) and on the outlet at the glacier tongue, depending on the injection site (compare 

Fig. 18).

Fig. 16: Schematic figure, longitudinal cut of the investigation area with injection points and 

detection sites. Source: Own illustration

Detection intervals were set at 10 seconds. Registration simultaneously caught the 

Fluorescein- and the Naphtionate- signal. At the same time turbidity and temperature 

was measured. 

The read-out of the data from the detection device occurred daily, immediately after the 

experiment end and not after the complete measurement campaign. The advantage is a 

immediate control of the measured data and the possible adjustment for further 

experiments. 

Problems emerged for the unknown factor of dilution of dyes and flow path distance. 

Furthermore turbidity superimposed the dye tracer signal. In the lower signal strength of

the measured dye, turbidity can cause exceeded noise which makes a calculation of the 

actual tracer concentration difficult
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4.3 Adaption of different Dye Tracer for Field Studies on the Goldbergkees

In this field study have been employed three different types of fluorescent dyes. They 

have been chosen for special characteristics and were not randomized. The essential 

criterias were: 

- Possible application for the snow body or for the water transport in ice

- Possible application in supra-, en- or subglacial channels

- Tracers must have different wavelength peaks for simultaneous 

measurements. Separation of tracer breakthrough curves can be done 

automatically by software 

- Degree of light sensitivity in terms of decomposition

- Degree of acid sensitivity 

- Low adsorbtivity regarding soluted sediments in melt water

- Price and availability 

- Environmental and substantial harmlessness

The preliminary consideration of chemical and physical characteristics of various tracers 

ended up on three adequate fluorescent dyes: 

a.) Fluorescein  b.) Sulfo-Rhodamine G c.) Naphtionate

a) Fluorescein (Sodium-Fluorescein), (3-3-Hydroxy-6-oxo-9-(2´-carboxylphenyl)-

xanthene): The most common used fluorescent dye in tracer hydrology. 

Vantages are its low detection limit (in clear waters under 0,0001 ppb) and its 

poor adsorbtivity. Fluorescein is light sensitive and does get decomposed rather 

fast. Wernli, 2003; gives application times for field studies in sunlight not over ½ 

hour. In this study, travel times were over half an hour, however it was used to 

investigate in en-and subglacial channels not being exposed to radiation. On 

supraglacial channels measurements with Fluorescein are hardly possible. 

Decomposition of light sensitive dyes is even stronger on glaciers as on not 

glaciated areas. The increased radiation has to be traced back on the normally 

high absolute elevation for temperate glaciers as well as the albedo and 

backscattering characteristics of bright surfaces. Fluorescein reacts sensitive to 

pH-value shifts. The fluorescence is best between pH-8 and higher. With pH-

values around 6.5 the fluorescence of Fluorescein is diminished by 50%. The 

acidity is reversible but accelerates adsorption under pH-values of 5.5. This 

causes irreversible adsorption of cations by negative charged sediment 

compounds. (Wernli, 2003)
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b) For this field study Rhodamines were used even if their application is problematic 

and infrequent. Rhodamine is easily adsorbed by organic matter and sediments 

but hardly decomposed by solar radiation. Its insensitivity to sunlight opens new 

capabilities. For e.g. water running in supraglacial meltstreams is relatively clear 

(not during rainfall). Though other tracers would not be adequate for an 

application in direct daylight. For this reason Sulfo-Rhodamine G was used for 

experiments on the glacier surface and in the snow body. Sulfo-Rhodamine G is 

decomposed 50 times slower than Fluorescein and therefore applicable in 

sunlight. Moreover it is easily distinguishable from other dyes through the 

different spectrometric extinction/emission peaks. Notwithstanding its analysis 

can only be done half-quantitative because of the poor adsorbtivity 

characteristics. 

c) Thirdly Naphtionate was used for similar purposes as Rhodamine. Naphtionate 

(Naphthioneacid Sodiumsalt, 1-Naphthylamine-4-sulhoracid Na-salt) is a 

common dye tracer in hydrology but shows some negative characteristics. 

Naphtionate emits in the blue band. Depending on the clearness of water it 

simulates a distracting background-signal often difficult to interpret. This 

characteristic leads to higher detection limits. The detection limit of naphtionate 

is about 0.2 ppb. This means for the same emission rate we need at least 200 

times more. Moreover its extinction/emission rate is generally only 18% of 

Fluorescein and leads to further problem in terms of suspended sediments 

resulting in higher turbidity. The detection can be interfere by a serious of 

parameters. Naphtionate is used thus only for short distances when turbidity is 

relatively low. Wernli, 2003; suggests distances of about 200-300 m.
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4.4 Hydrological Tracer Test with the Flow-through Field Fluorometer   
GGNU- FL

Hydrometric water samplers are common as a portable or permanent measurement 

equipment. Nevertheless they show some disadvantages. The Geomagnetism Group of 

the University of Neuchatel (GGUN) developed a new down borehole fluorometer for 

field purposes. The flow-through fluorometer can measure dye concentrations 

immediately without the need to collect the samples mechanically and reanalyze them in 

the laboratory. Latter causes often contamination of the sample (Schnegg and Kennedy, 

1998; p. 48).

The fluorometer possesses an optical cell with three superbright LED’s. The light wells 

have a wavelength of 370, 470, 525 nm. This allows the device to clearly distinguish 

three different types of dye at the same time without disturbing the measurement among 

each other. The visible band spectrum is therefore fully covered. Moreover it is possible 

to measure turbidity at the same sampling interval. Turbidity is measured in 

nephelometric units (NTU) in a range of 0.02 to 400. The sampling intervals are of 6, 10, 

30 seconds and 1,2,4,5,10,15 minutes depending on the number of simultaneously 

measured dyes (Schnegg and Kennedy, 1998; p. 48).
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Fig. 17: Flow-through field fluorometer GGNU-Fl and detection sonde. Source: own 

picture

The GGNU-FL fluorometer is electrically operated by simple low voltage lithium batteries 

operating 2-4 weeks. The fluorometer collects data and saves it directly to a memory 

card (Flash Card). For this reason the fluorometer can work automatically for days even 

weeks without surveillance. It can be analysed also immediately in field with a 

workstation laptop to visualize the results. Moreover it is light-weighted (only 17.5 kg 

with two batteries) and inexpensive. For glacier studies this may play an important role 

when it comes to transport and user friendliness. The appending software for application 

control is simple to use as also reliable. Nevertheless the fluorometer can be driven also 

manually without the need of a laptop. The control panels on the main control device 

operate the most important issues itself. The software is in this regard only for 

calibration, visualization and fine tuning as well as for automated recalculation of the 

tracer quantities. 

The borehole sonde is a metallic cubical cylinder of approx. 5.5 centimeters of diameter. 

Therein is located the optical cell. The sonde is connected to the main device with an 
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optional 10 meter cable. It allows the insertion in boreholes in the glacier ice. The 

advantages of a cable connected sensor are obvious. It was possible to insert the sonde 

into crevasses or badly accessible sites. 

Some problems can be caused due to water bubbles in the sonde. Especially in 

turbulent waters, bubbles can invade the sonde and interfere the measurement process. 

To avoid the entry of bubbles I provided the sonde water entry with a funnel and filter. 

The filter has been tested previously to guarantee operation in field afterwards.

Fig. 18: Glacier area and field experiment positions. The supposed drainage pathways shown 

as dashed line are visually deduced from GIS analyses of glacier thickness measurements 

with GPR (Ground Penetrating Radar) and digital elevation models after Binder, Brückl, Roch, 

Behm, Schöner, 2009 in press. (For further details go to chapter 6.1) Glacier extension 

digitized after aerial image 2003.
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5 Data  Base

5.1 Primary Data

5.1.1 Photographic Documentation

Local conditions and circumstances where documented photographically in the run-up of the 

field experiments. The purpose was to select the right experimental sites as well as to collect 

basic information about flow processes. This step was important regarding the feasibility of 

the future field experiments. 

In all further experiments (snow, firn pathways and glacier channels experiments) pictures 

where taken to register the intermediate steps of any experiment. 

5.1.2  Coloured Dye Application and Injection on snow / firn

The extracted data of the coloured dye experiments was rather qualitative than numeric or 

quantitative. On the basis of observation and time to path relationships, precious information 

could be extracted. The collected data of this experimental step is to be regarded rather 

supportively. It can explain obscurities of results in later experiments. 

5.1.3 Fluorometric Data

With the assistance of the down borehole field-fluorometer GGNU quantitative data about 

fluorometric dye tracer concentrations could be collected.  The fluorometer could measure in 

pre-selected intervals of 6, 10, 30…seconds. 

Dye concentration is measured in Micro-Sievert (mS) and calculated subsequently by the 

included software the measured concentration, typically in parts per billion (ppb). If 

calibrated properly, calculated concentrations (ppb) are precise. 

Simultaneously turbidity, indicated in nephelometric units (NTU); and temperature indicated 

in degree Celsius is measured. 
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The exact time and the date (resolution in seconds) are collected synchronically. The data is 

stored on a simple flash disc of 15 mb volume, accessible easily over a flash card reader. 

The data must be postprocessed with the included software to get the adequate 

concentrations. Nonetheless the original preprocessed file is accessible as a common .txt 

file. 

Due to relative short experimental times resulting in smaller data quantities it was convenient 

to adjust to the highest time resolution (6 seconds-intervals for a single tracer breakthrough 

and 10 seconds- intervals for 2 or 3 tracers). 

Tab. 2: Data structure of fluorometric dye test measurement with the GGUN-FL-Fluorometer        

GGUN-FL Concentration Turbidity Temperature

Time microS/cm NTU T°C    
06/07/27-14:46:31 0.01 110.58 0.97
06/07/27-14:46:37 1.03 109.89 0.97
06/07/27-14:46:43 3.67 105.56 0.97
06/07/27-14:46:49 4.37 100.76 0.97
06/07/27-14:46:55 4.26 109.27 0.97
06/07/27-14:47:01 3.71 96.18 0.98
06/07/27-14:47:07 0.01 97.17 0.98
06/07/27-14:47:13 0.01 110.74 0.98
06/07/27-14:47:19 0.01 104.55 0.98
… … … …
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5.2 Secondary Data of hydro- meteorologic Monitoring

Fig. 19: Goldbergkees with relevant meteorologic and hydrographic stations. 

Glacier extension digitized after aerial image 2003

5.2.1 Precipitation and Temperature Measurement

Precipitation and temperature data are provided mainly by the near Hoher Sonnblick

meteorologic Observatory. The permanently operated meteorologic station provides 

excellent meteorologic data. 

There has been installed a hydrologic gauging station 250 m downstream of the glacier 

snout collecting precipitation and temperature data. Furthermore there is a totalisator 

collecting monthly precipitation data at 2580 m and within a distance of only 400m to the 

middle part of the glacier. The totalisator provides only monthly data but can be used to 

control the measured precipitation from daily or hourly registering stations. All hydro-

meteorologic stations are shown in Fig. 19.
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Tab. 3: Data structure extract of precipitation measurement for the Sonnblick Observatory 

data logger

Day Month Year Hour Preciptation in mm/h

... ... ... ... ...
8 8 2006 2 0
8 8 2006 3 0
8 8 2006 4 4,2
8 8 2006 5 9,79
8 8 2006 6 6,04
8 8 2006 7 0,74
8 8 2006 8 0,73
8 8 2006 9 1,54
8 8 2006 10 0,71
8 8 2006 11 0
8 8 2006 12 0

... ... ... ... ...

5.2.2 Radiation and Sun Duration Measurement

At the Observatory as well as at the hydrologic gauge station radiation is measured hourly. 

For this purpose (global) radiation is used. There can be significant differences between the 

Hoher Sonnblick and the ‘Oberer Boden’ or glacier tongue. The main areas of the glacier are 

affected by shadowing by the surrounding mountains whereas sun duration totals are 

greater at the Observatory because it is freestanding. 
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Fig. 20: Temperature sonde installed on the Observatory Hoher 

Sonnblick (3106m); Source: own picture

Radiation is measured in W/sqm. Radiation has the largest influence on the run-off process 

on glaciers. Temperature influences melt lesser than radiation. Radiation is linked to the sun 

duration, but can be still at a low level even if there is no sunshine registered. The clouds let 

still pass part of the radiation. 

Therefore melt is significantly high on sunny and clear days, even if temperatures are on the 

lower part of the scale. The fact is though, that temperature reacts with a temporal retard to 

the radiation changes. 

Moreover, the glacier microclimate plays an important role. Temperatures above the ice 

resp. in the first 20-30 centimetres are significantly lower in comparison with higher air layers 

or air above solid ground. There can be melt processes on the glacier ice, even if the 

temperature detection device is still registering temperatures under the melting point. 
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Tab. 4: Data structure extract of radiation measurement for the Sonnblick Observatory 

data logger

5.2.3 Snow Height

On the upper part of the glacier a supersonic-snow-height sampler is installed. Latter 

measures the daily snow height, but misses in liquid precipitation. The sampler registers 

only the actual snow height without embracing the fallen snow itself. It must be computed by 

the subtraction of the measured precipitation on the Observatory. The snow sampler though 

is of great importance as it provides information about settlement processes of snow in 

winter and degradation of snow in spring and early summer. 

The Central Institute of Meteorology and Geodynamics (Zamg) measures snow heights in 

continuous intervals for mass balance modelling. In addition snow profiles were made to 

calculate the snow -water value (density resp. amount of water per volume unit). 

5.2.4  Water Gauge for Discharge Measurement at the Glacier Snout

Since 2005 a gauging station has been installed by the University of Natural Resources and 

Applied Life Sciences by Dr. Gernot Koboltschnig. The water gauge measures discharge 

near the outlet of the glacier through a pressure sonde installed at the outflow of a small lake 

at end of the glacier. The upswelling of the discharge amounts react in a rise of the water 

table and a gain in water pressure. The water gauge is operated throughout the whole 

ablation season, but can not collect data when snowfall and freezing in early autumn is 

beginning. Not until the beginning of summer the water gauge is set into operation. 

Day Month Year Hour Irradiance in W/m²

... ... ... ... ...
1 7 2005 7 0
1 7 2005 8 0
1 7 2005 9 14
1 7 2005 10 97
1 7 2005 11 175
1 7 2005 12 194
1 7 2005 13 231
1 7 2005 14 217
1 7 2005 15 203
1 7 2005 16 125
1 7 2005 17 14
1 7 2005 18 0
1 7 2005 19 0

... ... ... ... ...
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Therefore a small, albeit important part of the drainage at the beginning melt season is not 

registered. The gauge station provides accurate data on a 10 minute scale and includes the 

whole glacier and two small side drainage areas. 

Fig. 21: Example: Discharge in cubic meters at the water gauge (near glacier snout) for the 

ablation season 2006

5.3 Secondary Data of Mass Balance Modelling and Snow height 
Measurements

Mass balance modelling data for comparison with annual meltwater amounts is provided of 

the Central Institute of Meteorology and Geodynamics (Zamg). By using the installed 

ablation stakes, snow depth measurements and from geographical interpolation over the 

glacierized area, annual melt amounts (snow –water equivalents) are calculated 

(Koboltschnig, 2007). It is possible to draw conclusions from the annual water balance to the 

annual mass balance of glaciers (see subchapter 2.1.5).

Nevertheless it is of lesser importance for the analysis of the consecutive results. 

5.4 Secondary Data of Remote Sensing and GIS

Data from remote sensing was used for Gis applications and general geographical 

purposes. For geographical purposes in GIS a precise and high resoluted Digital 

Elevation Model (DEM) is needed. It is the basis for further calculations. For the 

positions of experimental sites as well as positions of various data samplers in the 

region maps or better orthophotos are needed. 
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5.4.1 Orthophotos

In 1998 and in 2003 aerial surveys were carried out over the Hohe Tauern region, collecting 

data about the glacierized areas. The orthophotos are available in a resolution of 0.5 meters 

(over ground). The outline of the glacier shape though was generated from the aerial image 

of 2003 and therefore includes part of the great length losses of that exceptional year. For 

drawings and maps though the older version of 1998 was taken since the actual version was 

taken after snowfall. However both images deliver useful geographical information about 

actual size, the outline of the glacier body, eventually also indices for mass reduction, the 

position of crevasses, snow and firn distribution and discharge pathways (Koboltschnig, 

2007; pp. 50-51). 

5.4.2 DEM and Computed Data

The “Digital Elevation Model”- DEM, is available in a resolution of 10 meters. It covers 

the whole Goldberggroup. The DEM has been generated out of stereoscopic images. 
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6 Resul ts  and  D iscuss ion

6.1 Observed and Computed Drainage 

Discharge on the Goldbergkees is generally highly fractured. Not only is it split into different 

basins, but basin 2 must be subdivided into two topographically differing subareas as well. 

Between Oberster Boden and Oberer Boden glacier movement generates the glacial 

deepening by abrasion leading to steep rockwalls. We can expect glacier ice to be thinnest 

were it flows fastest. Ablation over the last decades led to a break-off from the upper part. 

The uppermost part then does not move fast enough to close the emerging gap. Discharge 

from the upper part (Oberster Boden) is highly segmented. It is not possible to detect a 

unique flow path. There are at least 4 different discharge pathways observable. None of 

these is flowing visible on the surface, but are covered by avalanche or wind deposited 

snow. Even if topographical characteristics point to a main drainage in these rinulets it is not 

possible to estimate flowing water amounts. Moreover there are other observable discharge 

pathways on the lowest not glacierized part of the Oberster Boden. A vast number of small 

channels is flowing in rock cracks and directly on the abraded rocks. 

Fig. 22 shows observed channels on the Goldbergkees. The channelling system is highly 

fragmented were they are observable and superficial. On Oberer Boden supraglacial 

channels are observable. They mostly follow topographic characteristics. We can expect 

though englacial and especially subglacial channels to follow the topographic characteristics 

of the bedrock once they reached the glacier bottom. Therefore observable and supposed 

flow channels differ highly. Even if we do not know the exact positions of en- and subglacial 

flow channels we can deduce some suppositions. Binder et al., 2009 carried out 

measurements with ground penetrating radar (GPR) to register ice thicknesses. Fig. 22

shows ice thicknesses for the Goldbergkees. By subtraction of ice thicknesses from the 

digital elevation model, an approximation of the bedrock topography is possible. It allows us 

to roughly estimate positions of subglacial flow paths. This approximation is not verifiable but 

can help understand en- and subglacial tracer experiment results.
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Fig. 22: Goldbergkees; Observed and supposed drainage channels after ice thickness 

overlay; experimental sites and ice thickness. Ice thickness after Binder et al. 2009 in press.

We can expect the englacial conduits to reach sooner or later the bedrock. But not all of the 

englacial passages will reach the bedrock. They can continue horizontally and never touch 

ground. Sediment analysis could substantiate these suppositions but were not done in the 

course of this investigation. According to the ice thickness measurements there is a bowl 

like form of the topography in the deepest recesses. Water could be collected subglacial

leading to englacial or subglacial lakes or water holes. There is no evidence for a subglacial 

lake but the poor tracer recoveries for Fluorescein measurements in this area point to such 

an existence. The results for the late Ablation test campaign could be better explained with 

the existence of water fills but may have other reasons as well. 

Moreover the spatial resolution of the ice thickness data is too low to calculate exact 

topographical models without the ice cover. 
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Fig. 23: Computed topographic model of the Goldbergkees without ice overlay 

(DHM – ICE THICKNESS= BEDROCK): Profile 1 cuts the glacierized area beginning 

at the Observatory over the Oberer Boden, following the glacier fall to the 

tongue; Profile 2 cuts the glacierized area following assumed flow paths for an 

injection into the glacier moulin ending with the bottom of the glacier fall. The 

Profile graphs at the bottom are computed by subtracting ice thickness data 

from the original DHM (real topography). Ice thickness data is derived from Binder 

et al., 2006 
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Due to the fact that subglacial channels follow bedrock topography if they reach it flow 

length deviances in relation to shortest distance flow are obvious. Measured ice thickness 

and the deduced flow paths for subglacial channels underline the division of the glacierized 

drainage basin. 

It was possible to observe different discharge quantities, but we do not know amounts and 

especially velocities of water flowing in the main discharge channels. It was not possible to 

locate an appropriate test site for englacial drainage in this area. An estimation of meltwater 

flow paths was not possible. Moreover discharge amounts for accessible channels were too 

small for a continuous field fluorometer test. Even if tests should have been possible it would 

have required a high amount of samples to investigate local flow conditions.
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6.2 Snowpack Investigations with the Coloured Dye Potassium 
Permanganate

6.2.1 Aerial Dispersion of Coloured Dye on Snow

Precisely at the beginning of the ablation season, coloured dye was dispersed on the 

snowpack to investigate percolation effects of water in the semi-frozen snow overlay. The 

visual analysis is not really precise in a mathematical quantitative context but redraws the 

pathways, water follows percolating through an inhomogeneous snow overlay.

6.2.1.1 Experimental Site 1 (Ultrasonic Snow Depth Sampler)

The first experiment was carried out on the 12th of June at 19:00 spraying 100 ml (6,5g 

dried matter) of a saturated Potassium Permanganate solution on an area of one sqm at the 

experimental site near the ultrasonic-snow depth sampler (Fig. 18). 

The excavation done after approx. 17 h following the slope on the western side of the 

marked area resulted in a total length of 4,5 m till Potassium Permanganate tracks were not 

identifiable any more. 

After another 20 hours on 14th of June at 8:00 a.m. the left, eastern side of the profile was 

digged out to measure further developments. The potassium permanganate plume 

advanced another 1.5 m until it could not be detected visually any more. 

In both profiles horizontal displacement of the dye was greater than the vertical percolation. 

Nevertheless in some parts of the profile vertical displacement was clearly observable. 

Fig. 24: Cross section on experimental site 1 (Ultrasonic Snow-depth sampler); first excavation 

after 17 hours; dispersion area (first section on the right side). Concentration decline is 

visualized by more yellowish colours. Graphics angle reflects natural inclination. Source: own 

picture, reworked. 
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The second excavation on experimental site 1 showed similar development. The dye plume 

proceeded for another 1.5 m further. There were no local vertical intrusions observable 

although digged only one meter westward. This is an indication for the spatially limited 

development of vertical flow channels. Generally the profile was much clearer and more 

uniform than the first. Nevertheless there are similarities. The diffusion plume flows mostly in 

the same depth. Moreover there is a similar drop-step approximately at 2 m for the first 

profile and 1,5 m for the second cross section. After approx. 6 m the dye plume was no 

longer visually detectable. 

The progression resulted in 0,21 m h-1 for the first excavation and only 0,08 m h-1 for the 

second excavation if we assume that it progressed similarly in this part of the dye plume. It 

may be due to the fact that meltwater produced in the first section of the profile did not reach 

farther but may be also due to exceeded dilution (to small dye amounts). Nevertheless dye 

dispersion for experimental site 1 showed the relatively slow movement of water in pre-

summer snow due to the high containment abilities of scarcely decomposed snow. 

Fig. 25: Cross section on experimental site 1(Ultrasonic Snow-depth sampler); second 

excavation after 37 hours (17 + 20 h). Source: own, picture, reworked.

For both profiles similar densities in the different snow layers were measured. Moreover ice 

lamellae and high density layers could be located in the same depth. 

According to Fig. 26  there was a short melt period from the 26th to the 28th May. It could 

have caused an infiltration of meltwater into the first 10-30 centimeters. Especially in this 

depth higher density layers were recorded, due to later refreezing of infiltrated water. We 

can assume that the meltwater front could not intrude further into the snow layer. Particularly 

on the meltwater front snow is usually saturated. The colder layers lead to freezing by 

contact and seal the interspaces between the grains. Not until further heat transfer through 
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intruding meltwater can displace this pond layer deeper into the snow. An anew drop of the 

temperatures stops the process and builds the mentioned higher density layers in the snow. 

Fig. 26: Temperature record 2006 on Hoher Sonnblick (Observatory) at 3105m for a) the 

period of the 25th -30th May, the first short melt period in 2006, b) dye dispersion experiment 

period and c) the definite initiation of the ablation period.
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6.2.1.2 Experimental Site 2 (Lieslstang)

At experimental site 2 namely Lieslstang, same quantities of dye tracer were dispersed on 

an equal area with similar inclination. 

The dispersion took place on the 13th of June, one day after the initiation of the melt period. 

After 17 hours a cross section was created according to the criterias mentioned in chapter 

4.2.2. A detection of the dye plume was possible for approx. 12 m, resp. 11 m of surface 

parallel flow path (complete profile- dispersion area). On different snow depths parallel flow 

was detected. Fig. 27, shows a cross section of the dye plume.

As in experimental site 1, there is a “stair” like intrusion into the snow body even if most of 

the dye flows on some denser snow layers. 

It has to be noted that meltwater flowing horizontally on a broad front, intrudes vertically only 

in spatial restricted zones or channels. Therefore we can expect not to have recorded all 

vertical intrusions. 

Although the cross section at experimental site 2 shows similarities in propagation depth of 

the dye plume there is a difference in the observed dispersion velocity. Whereas 

experimental site 1 displayed a movement of the plume by 3,5 m in the first 17 hours, 

experimental site 2 recorded a horizontal dispersion of at least 11 m. This is a rate of 0,65 

mh-1. Even the vertical intrusion was stronger in cross section 2. 

Fig. 27: Cross section on experimental site 2 (Lieslstang); excavation 17 hours after dispersion. 

Source: own picture, reworked. 

Initially the dispersed dye follows the natural inclination and flows parallel to the surface on 

ice layers or at least denser snow layers. The denser snow layers are easily distinguishable 
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by hardness tests and differ in colour. As long as the ice lamellae are connected water will 

flow relatively fast on the top of these hardly permeably layers. 

Sudden breaks in the ice lamellae cause a vertical intrusion of meltwater. Depending on the 

crack in the ice layer still most of the water flows parallel to the surface. The break of the ice 

layers causes though a vertical displacement. After intruding deeper into the snow body 

water is forced to flow on a different structural level (see Fig. 27). In most of the cases it 

reaches another ice lamellae or denser part were the same processes recur. In other words 

water will channel through the snowpack reaching at last the locally permeable firn or ice 

layer. 

The experiments cover only a special time frame namely the incipient ablation period. For 

the sampled snow layers, melt did not occur in this hydrological year before, if we let 

unconsidered a short melt period at the end of May (Fig. 26, a)). The snow layers did still 

mirror the wintery deposition. As shown in Tab. 5, temperatures were decreasing slowly by 

depth but varied only by 0,3 °C over the first two meters. The mentioned ice lamellae, even 

in deeper layers can be assigned to refrozen superficial meltwater induced by radiation melt. 

Nonetheless small amounts of meltwater can not reach the firn or ice layer as long as there 

are snow layers with temperatures under the freezing point. By intruding deeper into the 

snow it will refreeze on ‘cold’ snow grains. Not until the whole snowpack is equitemperate 

meltwater is mediated to the faster drainage systems. But even if water has reached the 

glacial system there can be found still insular parts in the snowpack with sub-freezing 

temperatures. 

Tab. 5: Temperature sounding in the snow profile at experimental site 1

Snow Depth Temperature (deg. °C)

0 -5 -0,1  _________|
5- 10 -0,2  ________|
10- 20 -0,2  ________|
20- 30 -0,2  ________|
30- 40 -0,2  ________|
40- 50 -0,2  ________|
50- 60 -0,2  ________|
60- 70 -0,2  ________|
70- 75 -0,2  ________|
75- 80 -0,3  _______|
80- 85 -0,3  _______|
85- 90 -0,4  ______|
90- 95 -0,4  ______|
95- 100 -0,4  ______|
100-200 -0,4  ______|
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In cross section 2 at Lieslstang dye dispersion was faster and could intrude deeper into the 

snowpack. Temperatures overstepped the freezing point the 12th of June. Small melt 

amounts intruded the first centimeters of snow. In fact at the time of dispersion on 

experimental site 1 only the first centimeters were watery. The deeper and colder layers 

though avoided a further intrusion. Campbell, 2006 speaks about ‘textural horizons or layers 

of similar structure. Moreover we can expect water not to move until a certain limit of 

adhesion between the snow grains and the meltwater is under-run. Initially the meltwater in 

the snow can move only slowly but will accelerate as long as meltwater input does not 

deline. At cross section 2 meltwater movement was significantly faster according to this 

process. It could also infiltrate deeper into the snowpack shallow ice lamellae were breached 

by energy input through meltwater.

The vertical intrusion though is spatially limited. It depends on the maturity of the snow as 

well as local snow properties. 

This process though is modified as the ice lamellae get decomposed. The growth of 

preferential flow paths or “flow fingers” in amount and diameter accelerates the mediating 

process as well as greater grain diameters. The decomposing metamorphosis of snow 

grains and the growth of greater one’s at the expense of the smaller is highly accelerated by 

approximation to the melting point. Smaller snow grains retain water more effective than 

greater. With the progression of the ablation period grain structures get coarser. Horizontal 

movement of water in the snowpack decreases with the decomposition of the snow. At the 

end of the ablation period horizontal displacement of water plays an underpart in the 

mediation processes (Fig. 28). 

Fig. 28: Schematic figure, a) meltwater movement at the incipient melt season as observed in 

the field campaign from the 12th to the 14th of June, b) meltwater reaches firn or ice table 

(observed at lower elevations same time period), c) meltwater mediation in high ablation 

season (observed high ablation period field campaign). Source: own illustration
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Assuming that snow is mediating water better in the high ablation season it is obvious that 

temporary retaining rates of meltwater are higher in the incipient ablation period. The 

present snow cover will deliver water slowly to the faster drainage systems. 

In other words the drainage system in the snow cover of a glacier is getting more effective 

and accelerates. The sponge-like effect of a pre-summer snowpack is almost completely lost 

at the end the ablation season. 

6.2.2 Direct Injection of Coloured Dye into Snowpack

To measure and delineate dye movement in the snowpack potassium permanganate 

amounts of 1,9 g diluted in water (saturated potassium permanganate solution) were 

injected through an injection pipe into the snow body. 

According to previous investigations to snow depth and structure the injection was released 

in special zones of interest (over and under ice layers and in deeper areas). The deeper 

areas were still below the freezing point. 

The injection was carry out the 12th of June, 20 m above the experimental site 1. At intervals 

of 50 centimeters 5 dye injections were carried out (Fig. 13).

The excavation on 14th June returned no dye tracer tracks. Although observable in the 

aerial dispersion experiments it was not possible to register any dye tracer in the excavated 

cross section. 

A first supposition came to inadequate tracer amounts. To verify the assumption the 

experiment was repeated the next day but with thrice the tracer amount (approx. 5 g in 100 

ml). 

The excavation after 9 hours (exactly half the time of the previous experiment) returned only 

a very week tracer plume. Even if the solution was injected in a “sub-freezing point” (almost 

no free water) surround tracks were hardly visible. 

Further observation showed that the injection process created a remaining shaft functioning 

like a local drainage. It channeled snow surface meltwater deeper into the snow and resulted 

in local above average drain. The melt waters of surrounding areas were channelized into 

the shafts. The cold temperatures in the deeper layers caused a sealing of the tubes walls. 

Therefore water was directed directly into the previous injection zone elutriating in short time 

the injected dye. 

For this reason the experiment could not be implicated in this study. 
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6.3 Fluorometric Dye Experiments on Firn under Snow

6.3.1 Injection of Fluorometric Dyes on the Firn Surface

The following experiments were carried out on experimental site Lieslstang. The following 

reasons were relevant for choosing the test site: 

o Intact snow cover

o No disturbance by crevasses

o Undisturbed surface (smooth firn surface)

o Easy delineation of slope line

o No excessive snow depth which complicates the injection and the installation of the 

fluorometer data logger

o Closeness to the meteorologic Observatory

The experimental site is only situated a few hundred meters away from the meteorologic 

Observatory providing excellent data for the sampled period. The slope has an inclination 

angle of 17-18 ° which is valid for most of the upper part of the glacier. The experiments 

could only be carried out on relatively short distances as exact flow directions of water under 

snow were not known and risk of missing the right sampling point was high. The purpose 

was to detect water flowing on the almost impermeable firn table. Even if small amounts of 

water can percolate through the firn body (especially in late ablation season as channels 

gets widened) most of the snow-induced meltwater flows laminar or channeled on the firn 

body resp. in the lowest snow layer. There is very little known about velocities with which 

water is moving under snow. 

The dominant processes for water movement under snow at this time of the ablation season 

are shown in Fig. 28, c).

Surely the results can only give information about a very special period of the melt season 

and are strongly related to local geographic conditions and snow structure. Nevertheless it 

was possible to estimate characteristics and velocities of water movement under snow. 

From firn excavations we know that water flowing on the firn surface is moving both laminar 

(plane) and channeled. De facto water is moving through the basal snow layer since the firn 

table behaves as a impermeable water table. The lowermost snow layer is characterized by 

a coarse porous snow structure. Dewatered, it shows a permeable structure with a tubelike 

small sized channel system. Samples revealed lesser adsorbtivity than snow from overlying 

layers. We can assume that the regular though stronger or weaker passage of water 

decomposes the snow structure. 
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The aquiferous layer on the firn body was easily distinguishable by the fact that there is 

almost no air included which is distinguishable in colour intensity. Whereas normal snow 

layers are bluish-white, aquiferous snow layers are of intense blue/gray colour. All cavities 

are air filled.

The amount of water flowing through this conductive layer is highly variable. It depends on 

the period of time in the annual cycle, daytime, melt intensity, involved melt area and 

whether water flows channelized or plan. 

Estimations with a graduated beaker at 12:30 a.m. on 26th July taken in 10 second intervals 

collected over a section of 1 m width resulted in water amounts of approx. 0,052 l s-1 (+/- 180 

l h-1). The outflow in the excavated ditch was not perfectly uniform but showed an increase in 

the left third of the 1 m section. 

6.3.1.1 Fluorescent Dye Tracer Tests on Day 1 (26th of July)

The dye tracer experiments were carried out the 26th and the 27th July. As the melt season 

started 42-43 days before around the 12th June, with a short temperature drop from the 30th

June to the 2nd July, the snowpack was equitemperate for the whole depth. 

In the experimental phase night temperatures were around 5,5 to 5 °C and around 10 °C 

during the day. Weather conditions were sunny with only partly clouded skies. Global 

radiation exceeded 800 W m-2 . For snow and glacial melt, radiation is the dominant. It 

contributes highly to snow melt. Temperatures play only a subordinate role. However rain on 

snow is of importance in the heat transfer from the surface into deeper snow layers. It can 

mediate energy faster and effectively into the snowpack whereas temperature increases 

influences only slowly deeper snow layers due to its low heat conductivity. In total high melt 

rates were observed in the experimental phase. In the evening of the 26th of July a 

thunderstorm caused a temperature reduction and heavy rainfall (Fig. 29)
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Fig. 29: Temperature and radiation on the Observatory for selected 

experimental period; temperature drop on 28th caused by heavy rainfall 

event.

A first dye injection was carried out the 26th of July at the experimental site Lieslstang at 

approx. 3020 m elevation. 1 g of Sufphorhodamine diluted in 30 ml of water was loaded into 

the injection pipe and released 3 m under the snow surface resp. directly into the aquiferous 

layer. The installed fluorometer at 8 m of distance recorded simultaneaously dye tracer 

concentrations in 6 seconds intervals. The resulting dye breakthrough curve is shown in 

Fig. 30. It shows a steep rising limb and a pointed crest, followed by a rapidly falling 

recession (receding limb) with a slowly receding tail. Tracer dispersion is low as the distance 

to the injection point is only 8 m. 

Results showed a first detection after 2 min 40 sec after the injection and a peak 

concentration at 5 min 10 sec. The signal is very clear and reflects maximum and mean flow 

velocities of water under snow. The calculated dominant effective flow velocity in this 

experiment is 0.0258 m s-1, but mean flow velocities must be slightly lower. According to 

tracer hydraulics it is the point when 50 % of the tracer passed the data logger. After 5 min 

30 seconds 50% of the tracer passed the data logger. Therefore the mean flow velocity or 

modal velocity was calculated 0,0242 m s-1 or more than 87,27 m h-1 (Fig. 30).
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Fig. 30: Sulforhodamine concentration; injection on firn table the 26th July 

(experimental site Lieslstang); data logger distance from injection point: 8 

m 

Further dye tracer injections with Naphtionate on the 26th of July show similar results. Travel 

distance was 20 m. The breakthrough curve resulted clear but was slightly obscured by a 

background signal since naphtionate as well as Sulphorhodamine react sensible to turbidity 

changes. Turbidity rates for water flowing under snow are relatively low as long as snow 

reacts like a filter to turbidity-varying intrusions from the surface. But there is an empirical 

threshold value linked to the amount of infiltration meltwater. Higher melt rates can flush out 

solid matters from the surface and from inside the snowpack. To avoid an exceeding noise 

of the dye signal greater dye tracer amounts would be needed.

Fig. 31 shows a first dye detection around 6 – 6.5 min and a crest with a maximum dye 

concentration at around 8 min 30 sec. The recession is rapid but can not be analysed and 

compared with the previous experiment. The increasing background noise influences the 

dye signal. Although we can assume that 99 % of the tracer passed after approximately 20 

minutes concentration values increased steadily for another 20 minutes, but with a 10-15% 

fluctuation of the mean value. Turbidity increased steadily in this phase. It may be related to 

high melt rates or a retarding passage of meltwater produced in the previous hours. 

The calculated mean flow velocity over 20 m is 0.037037 m s-1 resp. 133.3 m h-1 and 

therefore significantly faster than in the previous experiment. 

Melt is highest around 13:00 and 13:30 p.m. The retarding effect of the snowpack in 

mediating water to the firn table is not exactly known in this case but previous studies 
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yielded values from 0,17 -0.5 m h-1  for similar conditions (Campbell, 2006). If we sum it up 

to local snowdepths of approx. 3 m we get a retardation of at least 6 h. Nevertheless we can 

expect the values to be higher as structures in the snowpack were almost completely 

uniform. Snow structure decomposition has advanced to a grade were only coarse grains 

exist. 

There is a jump in velocity from the percolation through ripe snow and the movement in the 

lowermost saturated snow layer. Due to higher pressures in the basal layer water is forced 

to flow faster. In theory there must be acceleration in the transit velocity when meltwater 

amounts increase. Simultaneously the vertical dimension of the saturated layer at the firn 

table increases. This will also get to higher flow velocities in the lower part of the snow 

covered glacierized area. The actual difference in flow velocity can only be estimated for this 

study. 

Synchronically sulphorhodamine was injected into the basal snow layer (Fig. 32). To test 

needed tracer amounts, only a quantity of 0.1 g was injected. The registered concentration 

resulted not utilizable due to the influence of turbidity. Nonetheless there is a short amplitude 

possibly reflecting the breakthrough. This conclusion is supported by the equal incidence of 

elevated concentrations as in the previously described naphtionate test (see Fig. 31). For 

clear sulphorhodamine concentrations higher dye quantities have to be employed. 

Fig. 31: Naphtionate conc.; tracer release under snow on firn/ice the 26th July 

(experimental site Lieslstang); data logger distance from injection point: 20 m 
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Fig. 32: Sulphorhodamine conc. for same experimental setting as Fig. 31

with very low dye amounts (0,1 g); background noise overlaps 

breakthrough signal 

To collect data in greater time frames turbidity was measured over night. At 19:00 p.m. a 

thunderstorm brought heavy rainfall (see Fig 33). Precipitation samplers measured an hourly 

deposition of 14.49 mm from 19:00-20:00 p.m., followed by 2,158 and 0,219 mm in the next 

hours. 

Turbidity raised simultaneously to an average value of 3.19 NTU and fell slightly to 2.63 

NTU. From 22:00 p.m. to 1 a.m. it steeply increased to reach a sell at approx. 52.2 NTU. In 

the following 3 hours it fell back at 33.5 NTU then to rise again to a second crest at 5 a.m. in 

the morning. The slight increase in NTU with a peak at 20:00 p.m. can be assigned to the 

direct in-wash of particles and organic matter into the ditch excavated to collect water 

flowing on the firn table. The following and strong increase of the turbidity signal though can 

be assigned to the breakthrough of the rainwater. It infiltrated the snowpack and percolated 

through the snow layers then to flow downward on the firn table. Peak turbidity was reached 

at 1:00 a.m. in the night approximately 6 hours later than the deposition on snow. The 

second crest can not be explained properly, but could be caused by a second not registered 

local rain shower or from a flow path ramification. 

The water movement through the overlying snowpack results in a retardation of 6-8 h, 

corresponding to approximately 0.4 – 0.5 m h-1. It perfectly corresponds to values given by 

Campbell, 2006. Nevertheless the results explain only local conditions and can not be 
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assigned to lower elevations with lesser snow cover. Moreover infiltration into snow at lower 

elevation can be faster as revealed in 6.3.1.1. 

Fig. 33: Registered precipitation and measured turbidity at experimental 

site Lieslstang for vespertine rainfall event the 26th of July.

6.3.1.2 Fluorescent Dye Experiments on Day 2 (27th of July)

At 9:30 a.m. 1 g of naphtionate was released onto the firn table (Fig. 34). Records show first 

dye contact after 3 min 10 sec and a concentration peak after 5 min 50 sec. After 6 min 10 

sec half the tracer amount has passed. Mean flow velocity is 0.0216 m s-1 or 77.8 m h-1. The 

velocity is therefore significantly slower as resulted for same distances the day before. This 

could be because of lower flow rates in the morning affecting the flow velocity. 

At 10:05 another tracer test was carried out. 1 g suphorhodamine was injected. Similar results 

emerged. First tracer contact was registered 3 min 30 sec after injection. Median 

breakthrough value was reached after 60 min 20 sec. Mean flow velocity was calculated 

0.021 m s-1 or 75.6 m h-1.

In Fig. 35 the relation between turbidity and sulphorhodamine concentration is shown. 

Extremely high dye concentration affects turbidity and vice versa. This relation shows also 

the problematic application of sulphorhodamines in open sub- or preglacial channels. 

Sulphorhodamine can not be detected if turbidity exceeds certain values depending on the 

actual concentration. 
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Fig. 34: Naphtionate conc.; tracer release under snow on firn/ice the 27th 

July (experimental site Lieslstang); data logger distance from injection 

point: 8 m

Fig. 35: Sulphorhodamine conc.; tracer release under snow on firn/ice the 

27th July (experimental site Lieslstang); data logger distance from 

injection point: 8 m

A last firn tracer test was done at 10:40 the 27th of July, injecting 5 g of Naphtionate into the 

basal snow layer (see Fig. 36). First detection of naphtionate was registered after approx. 10 
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min. The rising limb of the breakthrough curve is not as steep as in the experiments before. 

It is an indication of the increased distance (20 m) or a higher dispersion. The crest is 

reached after 17 min. Mean flow velocity is calculated as 0.0196 m s-1 resp. 70.58 m h-1. It is 

significantly slower than measured velocities for the 26th of July (133.3 m h-1). Results from 

earlier experiments this day showed similar values. 

Fig. 36: : Naphtionate conc.; tracer release under snow on firn/ice the 

27th July (experimental site Lieslstang); data logger distance from 

injection point: 20 m

All velocity measurements on experimental site Lieslstang show a wide range. Lowest 

measured flow velocities move around 70 m h-1 whereas fastest are around 130 m h-1 (see 

Tab. 2). There is a percentual increase in flow velocity of nearly 90% of the minimum value 

(see Fig. 37). We can expect not to have measured the real daily minimas or maximas. 

Therefore flow velocities can be slower or even faster. Conditions on the firn for this 

experiment were rather casual. Flow on firn could be more laminar or even more channeled. 

A laminar flow would decrease flow velocities whereas a channeled flow would increase flow 

velocities since the flow system is more effective in channels. Moreover it can be expected 

an increase in flow velocity from the top of the glacierized Oberster Boden to the bottom. It 

will not increase steadily but will reach an approximation value. Storage capacities for snow 

will decrease at the beginning of the ablation season faster than at the end but will reach a 

minimum at the end of summer. Retention is lowest when drainage through snow and 

movement of water on firn is fastest. 



___________________________________________________________________________

92

Nevertheless storage capacities (retention) of meltwater are better than in englacial or 

subglacial conduits. Although not exactly dimensionable for the whole area it was still 

possible to demonstrate the sponge like effect of snow cover by the past experiments. 

Tab. 6: Mean flow velocities measured in field experiments the 26th and 

27th of July. Travel distances varied between 8 and 20 meters. 

Fig. 37: Measured flow velocity of water under snow in m h-1 for the 

experimental period

Day 25th July 27th July

Time 13:36 15:40 9:30 10:05 10:40

87.27 m/h

~130 m/h

77.8 m/h

75.6 m/h

70.58 m/h
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6.4 Glacial Drainage System Investigation with Fluorometric Dyes

The fluorometric dye tests were done in two different measurement campaigns. It was aimed 

to identify different flow processes in englacial and subglacial passages during the ablation 

season. Measurement campaign 1 took place from the 27-28th of July whereas 

measurement campaign 2 was done from the 3rd to the 4th of October. The first injection 

sequences should point out travel times and flow path information in the high ablation 

season. The second test row was done at the very end of the melt season. Luckily 

measurement campaign 2 took place when temperatures fell suddenly under the freezing 

point. The temperature drop did not invert since the next spring. Therefore it was possible to 

observe run-off conditions suddenly influenced by a sudden stop of any melt. The 

temperature drop allowed a recession analysis of the receding discharge. 

Previous field tests investigated water movement through snowpacks and through the basal 

saturated snow layer. Once meltwater reached the firn table it continues to flow downward or 

enters the englacial and subglacial drainage system. Meltwater can intrude the firn passages 

and slowly percolate through the semipermeable firn layers for then to reach the fast 

drainage system of englacial and subglacial channels. Notwithstanding meltwater can also 

be transported to the inner of the ice body relatively fast. The fragmentation of the entrance 

system to the englacial drainage strongly depends on local geographic conditions. It can be 

coarse were entrances are hardly observable (concave areas) or fine were entrances are 

often and usual (convex areas on the glacier). This appearance of crevasses and glacial 

moulins is strongly linked to local geographic conditions.

For some areas though measurement is hardly possible due to bad accessibility, no 

superficial meltstreams in snow or firn cover. In this field study it was difficult to sample in 

the nearby of the glacier fall as long as crevasses are often covered by snow and represent 

high risk. Moreover it was not possible to identify clearly the appearance of meltwater in this 

area. 

The glaciated drainage area is subdivided into three basins. Basin 1 (here) is dewatering the 

eastern part of the glacier involving the glacier fall and part of the glacier tongue. The other 

basin (here: basin 2 includes the uppermost part of the glacier (Oberster Boden, Lieslstang) 

and the plane area “Oberer Boden” representing most of the ice masses.

Most of the following measurements show only results for basin 2 (Oberer Boden). 

Nevertheless it was possible to estimate ranges of flow velocities.
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6.4.1 Fluorometric Dye Tests

6.4.1.1 Results from Measurement Campaign 1 (Midsummer)

From the 26th to the 27th of July fluorometric dye tests were done to investigate water 

movement through the glacier body independent whether it flows englacially in channels or 

subglacial on the bedrock. 

Fluormetric dye tests in these surroundings faced some difficulties regarding the needed 

tracer amounts as well as the injection points. In the prefield it has to be adverted that not all 

of the experiments did produce usable results. Lacking information about flow rates in glacial 

conduits resulted in too small tracer amounts for detection. Moreover generally elevated 

turbidity levels caused a lift of the detection limit. It was not clearly identifiable the factor with 

which turbidity influences dye detection. 

Results from dye tracer experiments investigating the englacial and subglacial water 

movement on Oberster Boden were not representative and were not implied in this analysis. 

Fig. 38: Dye concentration in 1 minute means for fluorescein injection at 

‘Oberer Boden’ the 27th of July at 13:48. Tracer amount: 100g

The 27th of July a fluorescein injection test has been carried out on the Oberer Boden. 100 g 

of presoluted Fluorescein were dispersed directly into a supraglacial meltstream. After 30 m, 

the meltstream ended into a moulin. The moulin though could not discharge the complete 

water amounts which caused backwater effects at the entrance. The entrance to the 
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englacial conduit system was at the edge of the ice body and entered laterally. It can be 

assumed that the meltstream reached bedrock as ice thicknesses were only thin in this area. 

Tracer dispersion in the meltstream was fast. The dye cloud moved rapidly and compact. 

There was no splash water since water erosion generated definite deep supraglacial 

channels. Approximately 3 minutes after the injection the tracer cloud disappeared under or 

in the ice body. 

The detection device was installed in the prefield within a distance of 450 m at the outlet of 

the Oberer Boden drainage area (water fall). 

The fluorometer registered turbidity (NTU) and dye tracer concentrations (ppb) in 10 

seconds intervals. Fig. 38 shows registered turbidity and dye tracer concentrations in 1 

minute means. Turbidity rates were weaving around 100 NTU, with a significant jump up to 

approx. 110 NTU’s after 30 minutes from the injection. The signal is unsteady and on a high 

level for the whole test period.

Fluorescein concentrations are unsteady as well and oscillate around 20 ppb. A rise of the 

mean dye concentrations is identifiable over the first 45 minutes. The unsteady signal makes 

it difficult to clearly identify increases or decreases. Nevertheless there is a first particular 

increase identifiable after 30 minutes, followed by a drop of the concentration signal after 40 

minutes. The concentration drops to a minimum after 64 minutes for then to rise immediately 

to a maximum value after 69 minutes. The concentration maximum is 22.3 ppb. After 74 

minutes concentrations have fallen back to a minimum. The following 45 minutes do not 

show particularities but weave again around 20 ppb. 
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Fig. 39: Registered precipitation at the Observatory (Hoher Sonnblick) and 

measured turbidity for the experimental period of the 27th of July. Turbidity was 

registered for about 156 minutes.

The first slow increase in the concentration signal can be ascribed to the increase of turbidity 

over the experimental period. Fig. 39 shows measured hourly precipitation from the 

meteorologic Observatory at the Hohe Sonnlick peak and registered turbidity at the upper 

outlet (water fall). The Observatory registered slight rainfall from 8:00 a.m. until 2:00 p.m. 

with the highest deposition from 12:00 a.m. to 1:00 p.m. Rainfall stopped in the following 

hour and started again at 3:00 p.m. in the afternoon. Measured turbidity show an oscillating 

but steady increase until 14:20 followed by a sudden jump. The steady increase may be 

caused by the passage of rainwater washing in small particles from the snow and ice 

surface. Slight rainfalls on the partly snow and firn covered glacier surface are slowly 

delivered to the drainage system. The velocity with which drainage responds to liquid 

deposition is therefore linked to the ability of snow or ice to store water. (see chapter 6.5.1). 

This capability is highly depended on snow, firn and ice characteristics as well as local 

topographical characteristics. Moreover it depends on the time in the annual cycle. 

The turbidity increase is therefore related to the passage of rainwater deposited from 8:00 

a.m. until meridiem. The sudden jump though must be related to the stronger rainfall events 

from 12:00 – 14:00. It is not exactly known if precipitation was deposited as a steady rainfall 

or a heavy short rainfall event, but personal observations point to an intensification of the 

rainfall over the area, around 1:00 p.m., exactly in the preparation period of the experiment. 

Antemeridian rainfalls where steady (drizzle). 
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The sudden jump in turbidity can be related to this heavier rainfall. If the rise of turbidity 

similar to a dye tracer breakthrough is considered, we can propose a cautious estimation of 

the upper drainage area response to moderate rainfalls. In this case travel times from the 

Oberer Boden area to the data logger are approximately 90-100 minutes. This is perfectly 

consistent to the previously measured travel times through the englacial channels after 

entering the moulins. Moreover particles passing in the first breakthrough at 14:20 were not 

those washed in from the uppermost glacierized area under the Hoher Sonnblick peak. Both, 

results from the day before (see 6.3.1.1) and later analysis will show, travel times for the 

farthest distant areas are significantly longer. Especially if we considered the reduced travel 

times in higher elevated areas due to snow cover. 

After the sudden jump turbidity does not return to previous levels but slowly decreases which 

points to a slow effluence of the stored water. 

The first hump in dye tracer concentration after 30 minutes reflects presumably the increase 

in turbidity and the signal override. 

The steep increase of the dye concentration signal after 65 minutes from the injection 

though can be directly related to a tracer breakthrough. There is no further jump in possibly 

signal interfering turbidity observable. The breakthrough signal does not allow a delineation 

of proper breakthrough curve characteristics. Maximum dye tracer concentration was 

reached after 69 minutes. 

The linear distance from the injection point to the fluorometer is 450 meters. However we 

must expect travel distances to be way longer since we can not even guess actual positions 

of en- and subglacial channels. Moreover a calculated linear travel velocity of about 0.1086 

m s-1 resp. 391 m h-1 is unexpected slow. This underlines the results and estimation done in 

6.1 (see also Fig. 22)

6.4.1.2 Results from Measurement Campaign 2 (Late summer)

A) Oberer Boden (3rd-4th of October)

Measurement campaign 2 took place in the late ablation season from the 3rd to the 4th of 

October. Not only was it carried out to detect possible changes in the drainage behavior, but 

also to eliminate failures and defects in the previous midsummer campaign. 
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The test rows should ideally reflect dye tracer movement, flow velocities and storage in the 

middle and lower part of the glacierized drainage area. The drainage was sampled in three 

different steps covering the

a) middle part (moulin) to waterfall, resp. the movement of water under the main 

glacierized area the Oberer Boden

b) lower part from the glacier fall at the southeastern part to the glacier snout

c) lowest not glacierized area from the glacier snout to the fluorometer detection 

position (to register flow velocities when water has left the glacial system

No experiments were undertaken in the 

a) uppermost area under the Hoher Sonnblick peak according to reasons described in 

chapter 4.2.4 and 6.1. 

b) upper region of the glacier fall due to crevasses and lack of injection points and water 

entrances

c) water fall to glacier snout 

Even if, not all main channels of the drainage area were sampled, it is yet possible to 

delineate simple characteristics and the storage and retention capabilities of the drainage 

system at the Goldbergkees. 

Weather conditions on the test day 1 (3rd of October) were influenced by an approaching 

cold snap, squally winds of high velocities and drizzle. Although weather data from the 

Observatory did not show any precipitation before 11:00 a.m. light rainfall was registered at 

the gauge station supported by personal observations. 
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Fig. 40: Fluorescein concentration and turbidity registered in dye tracer 

experiment the 3rd of October. Injection point: moulin. Linear distance to 

fluorometer: 720 m. Injection time 12:50 a.m.  

Fig. 40 shows fluorescein concentrations for dye tracer experiments carried out the 3rd of 

October middays. The concentration rose steadily following steady, but slow turbidity 

increases. After 80 minutes concentration values mounted to reach a peak (2.5 ppb) after 83 

minutes from injection. After 85 minutes, concentration dropped back to normal trends. After 

another 15 minutes, fluorescein concentrations rose to a second hump lasting for another 5-

10 minutes. 

The registered fluorescein concentration lies on the lowest spectrum of detection range. 

Small dye amounts can be problematic if turbidity is high. Nevertheless both fluorescein 

risings can be assigned to the passage of dye tracer. 

First dye breakthrough succeeded clearer as the following. According to this measurement 

the subglacial system at this time of the year must have been arborescent with a faster or 

slower flow resp. a shorter or longer flow path. The data does not reflect information about 

the position or complexity of these branchings or englacial systems. 

Linear distance from the injection point to the data logger was 720 m. As pointed out in the 

previous chapter and in the midsummer campaign, flow paths can be considerably longer. If 

we consider normal flow rates in mountain torrents actual measured flow velocities seem to 

be relatively slow. For the distance of 720 m a total velocity of 0.145 m s-1 resp. 522 m h-1
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was calculated. It is though faster than summery measurements (0.1086 m s-1 for the 

summery tracer investigation) which could be an indication of an increase in effectiveness of 

the drainage system, but can not easily be compared because of different water amounts in 

the channels and differing sections. 

A second Naphtionate dye tracer test should have lightened flow velocities in the same 

section but did not succeed (see Fig. 41)

Fig. 41: Unsteady naphtionate concentration registered the 3rd of October. 

Injection point: moulin 1.  No analysis possible

Synchronously with the first dye tracer test on the 3rd of October at the Oberer Boden, the 

fluorometer registered turbidity continuously until the next morning at 9:00 a.m. (Fig. 42). 

Run-off has an hourly data resolution whereas turbidity has a 10 seconds time resolution. 

Although the different time resolutions of the parameters it is possible to compare heights 

and lows in order to measure elapsed times water takes to flow from the water fall to the 

gauging station at the outlet. The read-out of the data showed similar rises and declines for 

the sampled period. As pointed out in chapter 4.3, rain on the ice surface or snow influences 

turbidity. 

In this case precipitation was widespread over the whole glacier. Evidently rain washed in 

particles influencing the transparency of water. Peaks in turbidity are not easily assigned to 

discharge peaks. Nevertheless a last peak in turbidity at 3:00 a.m. can evidently be related 

to a final short rise in run-off at 4:00 a.m. before a continuous drop is identifiable. Moreover 

there is a saddle in discharge observable ending at 0:00 a.m. which is apparent in the 

turbidity measurement at the same time. Water takes not more than an hour to flow from the 
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upper outlet of the Oberer Boden to the gauge station. The gauging station lies 

approximately 250 meters from the glacier snout directly on a small lake of minor depth. We 

can expect travel times to be significantly lower regarding the fact that water levels in lakes 

react with a specific retard to increased water input. Moreover we can expect water flowing 

fast over the cascade. It then disappears under the ice body of the glacier tongue to reach 

the glacier snout united with subglacial streams from the glacier fall area.

Fig. 42: a) Discharge at glacier snout from th 3rd 11:00 a.m. to 4th of October 9:00 a.m.  and 

b) turbidity for the same time frame at water fall

B) Glacier Fall (4th of October)

In the night from the 3rd to the 4th of October, temperatures fell under the freezing point and 

precipitation fell solid as snow. Fresh snow amounts at 9:00 a.m. on the 4th were between 10 

and 20 cm at approx. 2700 m depending on wind drift. Snow fall began approximately 

around 2-3:00 in the morning as temperatures have fallen under the freezing point .The sky 

was completely covered over the whole day. 

Near the glacier fall at 2530 m a small branch of the subglacial torrent quits the ice body to 

flow approximately 40 m on bare rock and enters again the subglacial drainage system. At 

this point 50g of naphtionate and 10 g of fluorescein were released into the channel. First 

injection took place at 12:00 a.m., the second at 12:50 a.m. The injection point was 

problematic, as the torrent was turbulent, risk of splash water dispersing dye on the 

surrounding rocks, was great. Dispersion though should have been very fast. 

The fluorometer was preinstalled at a distance of 70 m from the glacier snout. 
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The analysis of the breakthrough curves show an unsteady, but not rising signal for the 

naphtionate concentration in the first 21 minutes after the injection (Fig. 43). A sudden and 

steep increase of the concentration signal is followed by a slower decrease of the signal 

forming a typical tracer breakthrough curve even if superimposed by a signal noise. The tail 

is therefore not easily distinguishable. The average mean velocity for the linear distance of 

460 m to the data logger is 0.31 m s-1 resp. 1116 m h-1.

Fig. 43: Naphtionate concentration in ppb, registered at in dye test the the 4th

of October. Injection point: glacier fall. Injection time: 12:00. Dye tracer 

amount: 50 g. Linear distance to fluorometer: 460 m. 

The analyses of the second tracer test for the same injection point (Fig. 44) resulted in 

similar results as for Fig. 43. Peak concentration was reached after 24 minutes from the 

injection. 

The tracer breakthrough is very clear but does not have a visible tail. It may be due to 

calibration or data logger postprocessing that low concentrations are not noticeable any 

more. Notwithstanding there are 3 smaller amplitudes after 29, 61 and 63 minutes. Turbidity 

did not show any variation. It could be interpreted again as an arborescent subglacial 

drainage system. 

The calculated linear flow velocity for this dye test is 0.33 m s-1 resp. 1188 m h-1.
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Fig. 44: Fluorescein concentration in ppb, registered in dye test the 4th of 

October. Injection point: glacier fall. Injection time: 12:50. Injection amount: 10 

g. Linear distance to fluorometer: 460 m. 

Even if the drainage system is arborescent in the tongue area higher velocities in this part 

are yet an indication of a general faster run-off. En- and subglacial channels have 

presumably been broadened by high discharge rates. In other words subglacial drainage 

has become efficient in the behind ablation season. Admittedly vertical heights from injection 

point to data logger are bigger than on Oberer Boden, which means inclination is higher. 

C) Glacier Snout (4th of October)

Due to the fact that the outlet at the glacier snout was arborescent as well, data loggers had 

to be installed at 70 m from the snout where branches have unified again. The last dye 

tracer test has been carried out to get a fast approximation of the travel time of water 

between glacier snout and the fluorometer. In this case a flow velocity of 0.35 m s-1 resp. 

1260 m h-1 was measured. 
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Fig. 45: Naphtionate concentration in ppb for dye tracer test at glacier snout 

to measure travel times from glacier snout to fluorometer position.
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6.5 Results from Precipitation /Melt / Discharge Analysis

6.5.1 Results from Precipitation / Discharge Analysis

Dye tracer tests for investigating storage capabilities as well as transit times of water in a 

glacierized surrounding can be very useful. Nevertheless they face a series of difficulties 

mentioned in previous chapters. Especially for complex drainage areas tracer 

measurements are time consuming and elaborate. Due to their subdivisions and local 

varying characteristics the whole system has to be investigated which results in a high effort.

The excellent data base for the investigation area, allows though further investigation by 

analyzing the interrelation of meteorologic conditions with discharge data. 

Melt and rainfall causes variances in the discharge amounts. High amplitudes in discharge 

and exceptional meteorological events can be connected. 

Therefore discharge analysis of summery rainfall events where done to gather further 

information about retardation effects and storage effects of glaciers. 

In a first step, all days on which precipitation was registered, were separated from dry days. 

The rainfall events were classified after their intensity and a possible connection to an 

abnormal discharge hydrograph. Only on few days a clear response of the hydrograph was 

observable. Especially very unproductive rainfalls are hardly separable from normal 

discharge hydrographs or show no clear breakthrough curve and are simply superimposed 

on the normal hydrograph. 

Moreover precipitation data from the Hoher Sonnblick Observatory showed smaller and 

slower impact in discharge and is difficult to separate from precipitation at the tongue. 

Though we can assume that widespread precipitation is registered on both precipitation 

measurements stations, whereas local precipitation or thunderstorms are registered either 

on the Observatory or at the tongue. Precipitation at the Observatory can be very local and 

therefore embrace only the peak area and therefore the uppermost glacierized area. 

Rainfalls registered at the tongue are more widespread and embrace oftenly the Oberer 

Boden without being registered at the Observatory. In fact correlation matrices in Tab. 7, 

reflect almost no interrelation between the deposition at the glacier tongue and the highest 

areas. 

In a coarser comparison of rainfall on rainy days there are though similarities. Rainfall, if 

registered for both locations can be displaced in time and amount. Meteorologic conditions 

in high mountain areas are very inhomogeneous. Especially precipitation can be locally 
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limited and often depend on special topographic characteristics. Hence results in among 

calculated correlations. 

Tab. 7: Correlation between Precipitation at the Observatory (PRECIP_OB) 

and discharge gauge (PRECI_TO) computed with SPSS 11.5  showing no 

similarities in time and precipitation quantities.

6.5.1.1 Rainfall on Lower Glacier Area

Summery rainfall in mountainous areas can be widespread, normally with lesser intensities 

caused by rain fronts or local with higher intensities, caused by convective thunderstorms. 

Highest intensities in rainfall were registered mostly at the end of July and in August. 

However rainfall events in August did not show clear amplitudes in the discharge hydrograph 

and could not be used in this analysis. Moreover the gauge station had 2 blackouts affecting 

exactly 2 main rainfall events. Therefore only few adequate hydrographs remained to be 

integrated into this comparison. 

Exemplary two resp. three main events are described here. Both events happened at the 

end of July at the 26th, 28th and 29th (Fig. 46). The 26th of July has been used as a field 

investigation day of this study to draw movement of water on the firn table. The figure shows 

discharge amplitudes and registered precipitation at the gauging station. It illustrates on first 

sight the impact of heavy rainfall on the run-off. Whereas the 25th of July shows a normal 

hydrograph with a saddle and a receding limp, 26th mirrors sudden amplitude in discharge. 

Hydrographs from 29th and 30th of July show similar reactions. 

PRECI_OB PRECI_TO
PRECI_OB Pearson 

Correlation
1 .097(**)

Sig. (2-tailed) . .000
N 2771 2771

PRECI_TO Pearson 
Correlation

.097(**) 1

Sig. (2-tailed) .000 .
N

2771
2771

**  Correlation is significant at the 0.01 level (2-tailed).
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Fig. 46: Rainfall on lower glacierized area resp. Oberer Boden and glacier 

tongue.  Discharge hydrograph variance for “rainy” and “dry” days.  

Amplitudes are directly related to precipitation.

Fig. 47 reflects discharge, global radiation (irradiance) and precipitation measurements on 

the 26th of July. Noticeable are the dry and sunny conditions during daytime with high 

radiation. Conditions evoked high melt rates and a typical delayed increase in discharge at 

the gauge station. In the early evening weather conditions changed rapidly as a 

thunderstorm with high rain intensities passed the glacier area. These facts can be 

underlined by personal observations. From 19:00 p.m. to 20:00 p.m. 14.6 mm of water has 

been registered at the glacier tongue whereas the thunderstorm only grazed the uppermost 

areas. Most of the precipitation must have fallen on the wider area of Oberer Boden and at 

the glacier tongue. The discharge hydrograph reacted intensively to the rainfall showing a 

superimposed peak on the normal melt induced hydrograph. The peak discharge is 75 % 

higher than the maximum melt related discharge of this day and occurs only 1 hour after the 

deposition. 

The steep increase in run-off is followed by a short peak and a fast fall. The breakthrough 

curve tail assigned to rainfall is not noticeable because it is superimposed the normal 

receding limp of the hydrograph. It could be separated mathematically but is rather 

complicated because of the inhomogeneousity of daily glacier hydrographs. 
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The deposited water amounts near the discharge gauge contribute immediately to an 

increase in discharge. Though, the highest discharge amount is registered after a lag-time of 

1 hour which represents the mean travel time of water from the Oberer Boden to the snout. 

Certainly flow velocities are changing with the run-off amount. Nevertheless it can give 

important evidence for the short term water storage of the bare-ice areas at the Oberer 

Boden and the tongue. The reaction of run-off to precipitation is highly depending on storage 

characteristics of snow, firn and ice. Roughly it is though to say, that snow will show better 

storage capabilities than bare ice (firn, glacier ice). In other words discharge from lower 

areas on the glacier will happen effectively and fast because of the mostly missing snow 

overlay. Storage of water in the ablation zone be it meltwater or rainwater, is of short term 

and could be compared with bare rock once channels are wide enough to swallow 

transported water amounts. 

Fig. 47: Rainfall event on the 26th of July registered at gauge station. Irradiance 

and discharge for the given timeframe
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Fig. 48: Rainfall event on the 28th and 29th of July registered at gauge station. 

Irradiance and discharge for given time frame

The rainfall event on the 28th of July shows similar characteristics (Fig. 48). The melt 

related normal discharge hydrograph is superimposed by a followed summery thunderstorm. 

In this case though precipitation amounts were greater and rainfall was lasting longer. 

Nevertheless travel times were similar. Both daytime rainfalls at 15:00 p.m. and vespertine 

rainfalls at 18:00 p.m. and 20:00 can be related to an increase at the gauge station approx. 

1 hour later.

6.5.1.2 Rainfall on Upper Glacier Area

Discharge hydrograph is reacting differently to precipitation in the upper glacierized area. 

Not only is it characterized by higher distances to the gauging station but does hold different 

physical characteristics than lower parts of the glacier as well. Roughly we can say that 

characteristics change under and above the equilibrium line.  The accumulation zone of a 

glacier is characterized by greater snow amounts over the total annual cycle but also can it 

endure the ablation period or at least last longer. This is why storage properties of the upper 

glacierized zones are more effective. 

Though, it is difficult to separate rainfall events which occurred only on the uppermost areas.

The rainfall event shown in Fig. 49 is a perfect example of a local rainfall on the uppermost 

glacierized area resp. the so called Oberster Boden or Lieslstang. The discharge hydrograph 

shows an increase of run-off during the night and reaches a peak at 8:00 a.m. in the 
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morning. Afterwards run-off is decreasing by approx. 10% of the maximum value over the 

next 4 hours. At 13:00 p.m. run-off is surging again to reach a peak at 16:00 a.m. in the 

afternoon. It reduces in the following hours by half the maximum value. 

Precipitation was scarcely registered at the glacier tongue but showed high values at the 

Observatory pointing to a local precipitation event near the Hoher Sonnblick peak. Nocturnal 

rainfalls remained under 0.5 mm h-1. At 9:00 in the morning a heavy rainfall was registered 

depositing nearly 18 mm in one hour. After 4 hours first light indices are found that rain 

waters reached the gauge station. 7 hours after the rainfall discharge reached a peak and 

dropped relatively fast after that. The hydrograph clearly shows the passage of the rainwater 

at the gauging station. Nor was it radiation related meltwater (covered sky, rainy conditions) 

or precipitation on the lower glacier area. First contact with rain waters from the upper part 

can be detected after 4 hours, whereas the peak discharge is reached after 6-7 hours. It 

perfectly fits to the fact that longer flow distances stretch the base of the superimposed 

breakthrough curve. Rainfall near the gauge would cause a compact base.

At the receding limb of the discharge hydrograph at 0:00 on the 19th of August there is a 

further sign of a rainwater breakthrough. Although there was no proper increase recorded 

there is still a temporary slowing of the normal decrease in discharge amount observable. 

This hump can be assigned to a weak rainfall event occurring 8-12 hours before.  Lag time 

between precipitation and run-off is therefore significantly longer than in the previous 

analysis. It is an argument for a slower reaction of discharge hydrograph for weak rainfall 

events. The reasoned deduction is that heavy rainfall can fill storage compounds in snow, 

firn and ice faster than weak rainfall. If the short term storage capabilities are overstepped 

the drainage system must conduct the water to drainage system. Moreover it will produce 

higher pressures and increase flow velocities in granular veins, supra -, en- and subglacial 

channels. Minor water input into the glacial drainage system through light rainfall fills the 

storage bodies rather slowly. Latter will conduct the rainwater slowly to the effective 

drainage system. 

A quantification of the discharge retardation for variable intense rainfall is not possible due to 

small data quantities and the persistently changing drainage characteristics during the 

ablation season. The example though shows evidence for a decrease in lag time for heavy 

rainfall. 
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Fig. 49: Rainfall event on the 18th of August registered at the Hoher Sonnblick

Observatory and discharge at glacier tongue. 

6.5.2 Results from Dry Melt Day Analysis

6.5.2.1 Interaction between Irradiance, Temperature and Melt

The dominating meteorologic factor causing snow or glacial melt is radiation. Temperature 

plays only a subordinate role. The cold surface generates a relatively stable atmospheric 

layer with almost no turbulences. Therefore heat fluxes induced by turbulences play only a 

minor role even if it is highly dependent on meteorologic conditions (Lang et al., 1977). Solid 

and organic matter pollutes the glacier surface and leads to a decrease of albedo. The 

darker particles on the surface favour a spatially limited warming. Energy transfer to the ice 

surface causes melt. The higher the albedo the smaller is the influence of irradiance 

regarding melt. Melt on fresh fallen “clean” snow is evoked stronger by temperature than by 

radiation. 

Radiation is the meteorologic forcing for temperature to increase. Especially on dry melt 

days with high radiation, temperature increase is directly linked to incoming global radiation. 

Temperature is therefore causing melt predominantly as a consequence of radiation. 

As shown in Fig. 50, temperature is reacting with retardation to irradiance variations. The 

temperature increase in the early morning hours is fast and chronologically highly linked to 

the increase of irradiance. Small deviations can be evoked by air mass movements in the 
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early morning hours. Irradiance reaches a saddle around midday. The temperature reaction 

to the increase of irradiance in the forenoon is not completely explicable by incoming global 

radiation. Highest mean temperatures were reached at 15:00 to 16:00 in the afternoon. 

Temperature reacts therefore with approximately 3 hours of retardation. The decrease of 

temperature in the late afternoon and evening is though similar to the recession of global 

radiation until sundown. 

Fig. 50: Total mean hourly Irradiance and temperature at Observatory for dry 

melt days in the ablation season 2006

As a consequence to the relation of global radiation and temperature, run-off must be 

correlating with measured temperatures at the meteorologic stations. In fact correlation 

matrices show a relatively strong connection to the measured discharge even if runoff 

values are affected by scattering. Though, highest run-off values are related to rainfall 

events (Fig. 51). Moreover the chronologically retarded discharge leads to not very clear 

correlations. 
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Fig. 51: Correlation between run-off and temperature at the Observatory

(Hoher Sonnblick) and the gauge station (glacier tongue)

The lag time between melt and run-off (considering temperature as the driving meteorologic 

forcing for once), is lesser than for irradiance and run-off. Moreover irradiance is dropping to 

zero by night causing melt to stop at the glacier surface. Discharge does not drop to zero 

because of the retarded run-off and slowly emptying storage bodies. Correlation is therefore 

hardly visible as long as retardation of runoff can cause a peak discharge at 20:00 p.m., at a 

time were almost no melt is registered any more.
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Fig. 52: Correlation between run-off at glacier tongue and irradiance at the 

Observatory in W / m².

6.5.2.2 Discharge analysis for dry melt days

Discharge analyses for the ablation season provide additional information regarding the lag 

time between melt and run-off as well as water storage abilities in general. Without the 

application of dye tracers it is possible to delineate discharge and retardation trends in the 

ablation season of 2006. The information output from discharge analyses, provide additional 

information backing dye tracer experiment results. 

For an evaluable analyze though, days on which rainfall occurred had to be separated from 

so-called “dry melt days”. Rainfall can occur at any time of the day and therefore distort melt 

related hydrograph characteristics. Dry melt days are characterized by no registered wet 

deposition and high melt rates, related to high incoming global radiation. 

For the investigated period only few proper “melt days” were found (n= 30). 9, 14, 7 days in 

July, September and October were identified as proper dry melt days (Fig. 53). Meteorologic 

conditions in August were changing and wet, so that no dry melt days could be identified. 

A first graphical analyze displaying irradiance and discharge shows a retardation of 

discharge on all days. Both irradiance and discharge show different general levels for 

selected periods in the ablation season. Irradiance is slowly decreasing over the ablation 
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season as the irradiation angle is decreasing and days are getting shorter. Consequently 

mean daily discharge should decrease with decreasing melt rates. 

Such a trend could be observed for the complete ablation period but was not provable for 

the selected dry melt days. On the contrary, a series of sequent dry melt days resulted in an 

increase of mean discharge amounts even if irradiance is decreasing from day to day (Fig. 

54 and Fig. 55).

Estimated discharge levels for dry melt days in July oscillated approx. around 1 m³ s-1 and 

reached a maximum the 14th of July. Discharge levels in September were around 0.8 in the 

first half and 0.7 m³ s-1 in the second half. 

At the beginning of October a cold snap with snowfall caused an irruption in melt. In this 

case temperatures under the freezing point were mostly responsible for low melt rates. 

Decreased radiation and shorter sunshine duration favored low discharge rates as well. The 

discharge rates did not rebound any more for the ending ablation season. Discharge rates 

were only around 0.1 m³ s-1 for dry melt days in October (Fig. 53, d)).
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Fig. 53: Irradiance and discharge for selected dry melt days in the 
ablation period 2006. August not present since no dry melt days were 
registered. 
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Although irradiance is continuously decreasing over the ablation period which should result 

in a decrease of discharge rates, the opposite was observed for the period from the 21st to 

the 25th of September. Conditions in the prefield were rather cold with unproductive rainfalls. 

Discharge oscillated around 0.5 m³ s-1 at the basins outlet. Nevertheless a steady increase 

in run-off is registered. The situation can be explained by the storage capacities of a glacier. 

Even if the discharge system is rather effective at the end of the ablation season it still holds 

back water and conducts it slowly to the run-off. According to snow and ice behavior at low 

water pressures in the snow, firn and ice body, the retardation is higher for lesser free water 

quantities. Pores, rinulets and channels can hold water longer if the discharge system is not 

saturated. In this case drainage systems are expected not to be saturated. The slow outflow 

representing the breakthrough hydrographs tail, underlies the increasing discharge of the 

following day. The signal of the following day is therefore superimposed to the base flow and 

the decreasing run-off produced the previous day. If outflow is stretched and near the base 

flow-level it produces a trend like increase in mean discharge if the following days are 

affected by similar meteorologic conditions. Fig. 64 shows a steady increase in mean daily 

discharge amounts. 

This development though was not observable for dry melt days in July with similar 

meteorologic conditions. The steady increase in melt related discharge though, will slow 

down and stop as certain discharge levels are reached. According to the discharge data of 

2006 and the special characteristics of the drainage system for the examined period, this 

discharge level must be reached somewhere around 0.8 and 1.1 m³ s-1 as long as no 

increase was observed in the “dry melt day”- phase of July (Fig. 62, a)). 
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Fig. 54: Irradiance and discharge for selected days in September 2006. The 

black lines re-presents the linear trend function for mean discharge in the 

selected period and the linear trend function for irradiance

The steady decrease in total incoming radiation over the summery ablation season is 

displayed in Fig. 55. For this visualization only dry melt days were implicated. August is not 

present which explains also the sudden drop at n=8 (x-axis). Irradiance in July is registered 

already between 4:00-5:00 a.m. and lasted until 19:00-20:00 p.m. showing a typical bell 

form. Sun duration in September and October was 2-4 hours resp. 4 hours. On clear days in 

July with almost no cloud cover an energy input of 900 W m-2 are attained. 
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Fig. 55: Irradiance for selected dry melt days in the ablation season 2006 

showing July at the back, September in the middle and October at the front. 

August is not embraced in this figure as it was no complete dry day 

registered. (July N= 9, September N=14, October N=7) 

The retardation of discharge is caused by two main factors:

1. flow path resp. distance from melt location to water gauge

2. effectiveness of the drainage system resp. the storage capacities of the snow, 

firn, ice bodies

Most of the retardation effect of run-off in the basin is caused simply by the distance, water 

has to travel until it reaches the outlet at the glacier snout. The distance varies between only 

a few hundred meters to more than 5 kilometers for the uppermost snow or ice covered 

areas. Moreover we can assume higher melt on areas with a favorable inclination. 

Shadowing effects will avoid melt in the earliest morning hours and reduce it in the late 

afternoon hours, even if registered sun duration is longer for the peak area. We can assume 

that waters, registered in the peak discharge period, to arise mainly from the Oberer Boden, 

and higher areas. According to results from dye tracer experiments, melt water produced at 

midday at the tongue will have shorter travel times to the gauge. The hydrographs tail 
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though, is assumed to arise from the steadily diminishing outflow of all snow and ice bodies 

of the glacierized area, if radiation induced melt has stopped.

The effectiveness of the drainage systems on glaciers is changing and reaches a maximum 

at the end of the ablation season. Veins, rinulets and channels in snow, firn and ice grow in 

diameter because of pore pressure variations and melt on the contact surface of meltwater 

flows and ice. Transport capacities are rising with increasing cross- sectional areas. 

Moreover backwater effects are less likely if transport capacities are increased so that 

storage is diminished. 

Backwater effects in the drainage of the Goldbergkees are of lesser importance for the dry 

melt phases in July, August and September than they are in the initial ablation season. The 

scarcely developed drainage system at the beginning of the melt period is mostly a relict of 

the previous year. Whereas we can expect small channels to be sealed by freezing in the 

wintery period, channels with large diameters endure the accumulation period and are 

reactivated as soon as melt begins anew.  

Nevertheless we do not know much about wintery channel characteristics and can only 

estimate possible characteristics. Furthermore, it was not possible to investigate drainage 

behavior in the beginning melt phase as discharge gauge was online only from the 

beginning of July. Storage capacities in June should be of great interest as long as we can 

suspect the drainage system to react differently to increased run-off than in the high ablation 

season. 
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Mean hourly irradiance and discharge for dry melt days

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23daytime

W
/m

²

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7

0.8
0.9
1

m
³/s

Irradiance

Discharge

Ir
ra

di
an

ce
W

/m
²

D
ischarge

m
³/sec

Fig. 56: Mean hourly radiation and discharge amounts for the complete 

ablation season 2006 for dry melt days.

Retardation analysis embracing all dry melt days in the ablation season, show the peak 

energy input at 12:00 to 13:00 and a peak discharge at 16:00 – 17:00 p.m. This results in a 

mean discharge delay of approximately 4-5 hours (Fig. 56). According to dye tracer 

experiment results (chapter 6.4), travel times from the main areas on Oberer Boden and 

Lieslstang are significantly shorter in englacial channels. Due to this reason, approx. half of 

the run-off delay must be assigned to a slow movement of water through the snow and firn 

and over the glacier surface itself. Mainly structural characteristics of the glacier surface 

(snow cover, firn, ice surface) lead to lower flow velocities than in en- and subglacial 

conduits. In contrast to a laminar percolation and movement on the surface, the channelized 

flow with higher water amounts in conduits favors higher flow velocities. Compared to 

channeled flow paths, the structural roughness of the glacier surface reduces flow velocities. 

The collection of meltwater on a glacier can be compared to an arborescent hydrologic 

system. Following the orographic flow direction branches are getting wider, transporting 

more meltwater with an increased velocity due to reduced roughness. 

Tab. 8: Computed correlation between Irradiance and 3 -7 hours displaced Run-off for dry 

melt days show highest values between 4-5 hours after melt. 

7 hours 6 hours 5 hours 4 hours 3 hours Run-off
Run-off Pearson 

Correlation
.453(**) .506(**) .530(**) .518(**) .470(**) 1

Sig. (2-tailed) .000 .000 .000 .000 .000 .
N 696 696 696 696 696 696

**  Correlation is significant at the 0.01 level (2-tailed).
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The mean retardation effect over the whole ablation period of about 4-5 hours is only an 

indication of run-off delays, but does not mirror the transformation of the drainage system 

over the ablation period. In order to show an evidence of increasing effectiveness regarding 

the drainage system, monthly dry melt days were separated to calculate hourly-monthly 

delays. Fig. 57 renders hourly mean discharge hydrographs for July, September and 

October. It demonstrates the decrease in run-off delay. Whereas July shows a retardation of 

approx. 6 hours in peak discharge, September retardation is only about 4 hours. Values 

from October hydrographs are difficultly interpretable, since no clear peak discharge is 

observable. The hydrographs base though is similar to September observations. 

The graphic produces crucial conclusions on the transformation of the discharge system in 

the ablation season 2006. Run-off in the late ablation season is significantly faster than in 

the first half. Unfortunately June hydrographs can not be evaluated because of missing data. 

Fig. 57: Mean hourly discharge for dry melt days in a) July, b) September 

and c) October. Y-axis is showing mean discharge in m³/ s, X-axis hour -8 (for 

real hour value add 8). 
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The beginning ablation season must therefore be dominated by a slower flow in hardly 

developed glacial drainage channels. Storage capabilities are higher and are mostly 

relatable to the physical characteristics of the snow and firn cover. 

The loss of snow in the second third of the ablation season leads to a decrease in storage 

capacities and to a faster transfer to the en- and subglacial system. The deglaciated areas 

are building arborescent and effective surface drainage channels. Moreover, sealed and 

lesser developed firn and glacial conduits are opened and expanded. 

In a third phase the snow cover is completely lost except for accumulation areas. Firn and 

bare ice can only detain small amounts of water. The entrances to the englacial system 

grew in size and number over the ablation period. 

Changes in the behavior of run-off delay happen mostly rather permanent as a slow process 

over the melt season, than fitfully as a sudden change. 



___________________________________________________________________________

124

7 Summary and  Conc lus ion

The drainage system of the Goldbergkees is highly complex. The primary processes during 

melt or rainfall induced run-off are not easily outlined by simple field observations. Further 

investigations by dye tracer sampling and discharge hydrograph analysis were believed to 

support initially established assumptions. 

Nevertheless the conclusions to withdraw from analysis of observed and computed drainage 

were important for further investigations in this study. The field observations in the run-up

and during the whole experimental process could partly record the development of 

superficial drainage channels. 

Generally, the drainage basin is highly fragmented and subdivided into two main drainage 

areas, dividing the glaciated area of Goldbergkees. This fact complicated investigations 

considerable. Neither allows it the uniform handling of discharge data from rainfall or melt, 

nor is it possible to evaluate tracer experiments for the whole area. Moreover, a further 

subdivision caused by a deglaciated part between Oberster Boden and Oberer Boden, 

complicated analysis as well. 

The ice-free part showing a steep rock face is characterised by an huge number of small 

sized discharge pathways dewatering the uppermost part of the glacier. The drainage in this 

part of the glacier is hardly channeled. The recording of these small sized channels show the 

fragmentation of run-off from Oberster Boden. Run-off from the main glacierized area Oberer 

Boden is mostly en,- respectively subglacial. Even if melt and rainwater is collected 

superficially in gullies it suddenly can disappear and enter the ice body. The area of Oberer 

Boden is characterized by two glacier moulins and a crevasse area on the southern edge 

near the glacier fall. Both glacier moulins, collecting waters on the plane area of Oberer 

Boden and crevasses on the steeper areas with higher ice flow velocity rates, represent the 

main entrances to the en- and subglacial drainage system. Observations in high ablation 

season showed widespread superficial movement of water on the Oberer Boden but not on 

the Oberster Boden. This observation must be linked to the surface structure of the glacier, 

showing blank ice on the lower and firn or snow on the upper glacier areas. Run-off in the 

tongue area is mostly subglacial. The two main run-off branches from the main basins 

reunion in the very last part, directly under the glacier tongue for then to abandon the glacier 

drainage system at the glacier snout. 

En- and subglacial channels are not derivable from simple observations. Not only do we not 

know the exact positions, or the arrival of englacial channels at the bottom, but glacier 
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surface does not explain completely bedrock topography. Therefore, ice thickness 

measurements with GPR (Ground Penetrating Radar), done by Binder et al., 2006 were 

embraced in a semi-quantitative computation of hypothetical ice free terrain Fig. 22, chapter 

6.1) By knowing the bedrock topography subglacial channels, as well as actual glacial 

outlets can be approximated. The travel time measurements in later experiments are easier 

explained by better approximation of the subglacial channel positions. 

Fig. 58: Schematic view of the Goldbergkees showing a collection of gathered 

experimental and analytical results. Source: own illustration

Snowpack investigations with coloured dyes should illuminate processes of meltwater 

intrusion and water movement in the snow cover. In the beginning ablation season, 

Potassium Permanganate was sprayed on the still partly frozen snow pack. A series of 

profiles registered horizontal and vertical movement of water in snow. Melt and elevated 

temperatures induced snowmelt at the snow surface. Results showed that most of the water 

flows in a partly frozen snowpacks happens horizontally or parallel to the ground. The 
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velocity with which water is mediated to the snow cover base depends on the point in the 

ablation period.

The beginning melt phase is characterized by frozen or at least partly frozen snow with 

denser snow layers. Those ‘textural horizons’ (Campbell et al., 2006), slow the vertical 

intrusion of meltwater expect for fractures. The further propagation of the melting front 

decomposes the layered texture of the snow. Whereas meltwater initially moves rather 

horizontally, it then percolates “stair- like” and finally vertically through the snow cover. (Fig. 

28) The initially only locally restricted percolation of water into the snow is then observable 

over the whole plane. The decomposing metamorphosis of snow crystals is accompanied by 

the progression of the ablation season and results in an increase of percolation velocities. 

For profiles at Oberster Boden horizontal flow rates between 0.08 m h-1 and 0.21 m h-1

(chapter 6.2.1.1) or 0.65 m h-1 (chapter 6.2.1.2) were measured. 

Direct injections of coloured dye to draw water movement in deeper snow layers did not 

succeed as injection produced a remaining shaft functioning as an entrance for meltwater. 

The additional high water input rinses the injected dye (chapter 6.2.2). 

In summary, water movement in snow is considerably slower than over firn or through the 

ice body showing good retention and storage characteristics. Nevertheless, the slow 

drainage through snow is accelerated during the ablation season. The increase of snow run-

off velocities over the ablation season has not been quantified in this study. 

Water movement through snow is of greater importance in the first third of the ablation 

season. The focus is relocated toward firn and glacial melt in the high ablation season. 

Therefore, fluorometric dye experiments investigating water movement on firn under snow 

and through the glacier body itself were undertaken. 

Excavations of firn under snow showed the movement of water in the lowermost snow layers 

on firn. As long as no direct ruptures or crevasses are present, firn is hardly permeable. 

Meltwater produced at the snow surface flows plane or channeled at the top of it. 

Nevertheless it is not comparable with an open flow since the lowermost saturated snow 

layer builds an aquiferous stratum. 

The injection of dye into this aquiferous layer and its detection registered ranges of 

meltwater movement velocities. 

The measured velocities were between 75.58 and 133.3 m h-1 (0.0208 – 0.0369 m s-1). 

Observations and comparison with other investigations showed highest flow velocities 

coinciding with higher flow rates (compare Nienow, Sharp, Willis, 1996).

Flow velocities through the overlying snow could be deduced exemplarily by a single 

rainstorm event. The in-wash of particles from the snow surface could be registered as an 
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elevated turbidity signal. A lag time of about 6 hours was calculated for a total depth of 3 m 

of snow for this time of the year. The results correspond to values of about 0.4-0.5 m h-1

given by Campbell et al., 2006 for similar experiments. This leads to the conclusion that 

water is moving faster at a factor 10² - 2*10² once it reached the firn table. 

The main focus of this work though lies on the investigation of en- and subglacial channels 

(chap. 6.4). With the help of different fluorometric dyes, water movement is traced by 

injecting dyes into glacial moulins and into subglacial torrents. Two measurement campaigns 

in the high ablation season and at the very end of it, revealed aspects of water flow in en-

and subglacial channels. 

The englacial system was accessible by moulins and crevasses. Latter showed no 

superficial flow and were not adequate for a dye tracer input. On Oberer Boden mainly two 

moulins were observable. The amounts of flowing water as also courses of subglacial 

channels could only roughly be estimated. In fact, this caused problems in choosing the 

adequate tracer amounts. No indication of probable dilution of injected dyes could be done 

in the prefield. Moreover, elevated turbidity caused detection limits to rise and to influence 

dye tracer signals. 

Travel times from the glacier moulin (see Fig. 58, moulin num. 2) to the detection device 

were around 70 minutes in high ablation season, corresponding to a mean flow velocity of 

0.1086 m s-1. Results for late ablation season measurements in field campaign 2 showed 

similar velocities. For a distance of 720 m from the moulin to the fluorometer a lag-time of 84 

and 105 minutes was registered, corresponding to 0.1445 to 0.1122 m s-1. Nienow et al. 

(1996) recorded velocities in the upper drainage system for Haut Glacier d’Arolla around 

0.15 m s-1. Moreover we can assume a subglacial branching of the channels as two different 

breakthrough curves were recorded for a single injection. Dye measurements in the tongue 

area showed faster flow velocities (0.3194 m s-1). By turbidity measurements during rainfall, 

flow time between the uppermost areas and waterfall could be estimated, resulting in 90-150 

minutes of lag-time. The mean flow velocities for the performed tracer tests are calculated 

according to shortest distances. We can expect though, actual en- and subglacial flow paths 

to be significantly longer. Exact positions of englacial and subglacial channels can only be 

estimated but could be approximated by ice thickness calculations (chap. 6.1). 

On the basis of selected rainfall events in the summery ablation season, retardation effects 

were analysed. The selection was done for days without radiation melt, supported by data 

from precipitation stations and personal observations. Only few events could be clearly 

located and were strong enough to be traceable clearly at the discharge gauge. 

Nevertheless some events could be located with high probability to lower or upper parts of 
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the Goldbergkees.  The hourly precipitation data resolution did only allow an analyze on an 

hourly base. 

Lag-times for Oberer Boden and Tongue were between 1-2 hours, depending on the roughly 

estimated deposition location. 

Rainfall events on Oberster Boden could be registered 6-7 hours after deposition at the 

discharge gauge. 

The results from rain analyses should be classed with retardation times from melt analyses.

General system retardation was calculated by analyzing lag-times from dry melt days. The 

reaction of the discharge hydrograph mirrors the overall reaction to melt. Highest melt is 

assigned to highest discharge volumes. August retardation could not be determined since no 

complete dry day or proper melt phase was recorded. Moreover, melt and discharge 

volumes in October were too low for a proper evaluation. 

Retardation in July was 6-7 hours whereas September lag-time dropped to 4 hours. Results 

represent an evidence for the transformation of glacial drainage systems during summer. 

Decreasing lag-times could not only be assigned to an ablation and the loss of snow but also 

to an increase in effectiveness of the drainage system. Short-term drainage of free melt or 

rainwater is reduced by the reduction of snow volumes. Entrances and moulins, as well as 

en- and subglacial passages are widened.  

To sum up, gathered results about water storage and flow conditions on Goldbergkees are 

of good consistency. 

Coloured dye tracing in snow at the beginning of the ablation period showed slow movement 

of water through partly frozen layers, the propagation of the melting front and the 

development of the in-snow percolation and drainage of meltwater through flow-fingers and 

between pores. Results reflected good temporal storage capabilities of barely structural 

decomposed snow.

Dye tracer experiments under snow in the high ablation season showed an increase of the 

percolation velocities through the snowpack, but show still the highest retardation in 

comparison with other glacial parts. The flow in the basal saturated snow layer is 

significantly faster and dependent on flow volumes. The collected meltwater from snow is 

transported to the entrances of the en- and subglacial drainage system.

Fluorometric dye tracer tests of en- and subglacial drainage reflected mean flow velocities of 

0.1086 to 0.1445 m s-1 for Oberer Boden and 0.3194 m s-1 for discharge under the tongue. 

Moreover, indications of subglacial branching were found. 
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Discharge retardation analysis from rainfall events and dry melt days point to an increase of 

discharge velocities over the ablation period. In other words retardation characteristics shift 

to shorter term storage with the progression of the summer. The results from en- and 

subglacial drainage in special parts of the glacier fit into the general retardation values.

The results reflecting outputs of different investigation methods account for a general 

overview of the situation rather than a specific dimensioning of storage capabilities and flow 

behavior.
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8 Perspect ives

Results from the current study provided useful information about water storage and flow 

processes on the Goldbergkees glacier.  Dye tracer tests investigating water movement on 

firn and in en- and subglacial conduits are of great value. 

The general and “broad” approach including various investigation methods for a delineation 

of the complete ablation season ended in interesting results. Notwithstanding scientific 

approach, means and methods, own failures must be criticized in this context. 

First of all, the approach resulted in great expenditure regarding the relation between effort 

and effective output. Different methods include great quantities of background theory, all to 

be reviewed in the run-up of the field experiments. Moreover, a complete investigation of 

different parts of the glacier drainage system was not always targeting. The particularities of 

the Goldbergkees basin impede a uniform handling of the basin. 

Due to high risks, the glacier drainage system could not be sampled for some parts. The 

subdivision into two different basins and the break of ice cover between Oberster Boden and 

Oberer Boden complicated the field investigation as well. These subdivisions created 

unexpected problems and should be considered more carefully in following studies. 

The application of colored and fluorometric dyes in glacial hydrology was appropriate. Thus, 

there are some problems to be considered: 

o Application of sufficient dye tracer amounts

o Turbidity can influence the dye measurement significantly. Due to solved sediments 

and in-washes from the glacier surface, dye signals can be highly interfered. 

o Dye tracing is only a punctual measurement regarding location and time. 

The fact, that dye tracer experiments, if not done as a continuous injection, can be very 

problematic in a continuously changing environment. Hydrologic conditions vary with 

position, daytime, the annual cycle and meteorologic forces. Only by collecting continuous 

data over the complete ablation season at varying daytimes, a representative data base 

would have been established sampling over the complete ablation season. The expenditure 

in effort and means would have been too high. 

The momentary record by dye tracing was therefore connected and completed by discharge 

analyses. But the representativeness of results was narrowed by the fact that outputs could 

not be easily compared. The changing drainage system expresses huge variations in run-off 

behavior. 

Problems regarding the discharge analysis were caused by the high variability of rainfall. 

Controversial registration was made in some cases. Notwithstanding, the investigation area 
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is one of the meteorologically best monitored high mountainous regions. This is why I would 

recommend any further investigations and studies of any hydrometeorologic or climatic 

background. 

The good quality of hydro-meteorologic monitoring data for Goldbergkees region makes 

forget some problems related to accessibility and glacier shape characteristics.

I would not entirely recommend the selected methods for further investigations. Surely 

fluorometric dye tracing is an extensively approved mean in glacial hydrology. There is 

nothing against further dye tracer investigations, as long as expenditures in time and means 

are respected. The alteration of the drainage system over the summer forces a continuous 

sampling. 

In fact, with greater time expenditure and greater financial and work-related means, it would 

be possible to measure storage quantities and time more meaningfully. A better preparation 

in the run-up would diminish mistakes in during measurement and applied dye tracer 

amounts.

Moreover, data output could be more precise if measurement would emphasize on selected 

aspects of storage capacities, weather that might be snow, firn, or ice. Surely, the 

components are linked and can not easily be observed without knowledge of active 

processes in one of the others components. Thus, a complete acquisition embracing snow, 

firn and ice is very difficult for the complexity of the drainage and storage system. 

Finally, it is to say that despite all obstacles, further investigations in storage and drainage 

characteristics of glaciers could be of great value.
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