
 
 
 
 
 
 
 

 
 
 

DISSERTATION 
 
 
 
 

Titel der Dissertation 
 
 
 

ROLE OF MAP1B AND NO IN AXON GUIDANCE 

 

 
 
 
 
 

angestrebter akademischer Grad 
 

Doktorin der Naturwissenschaften (Dr. rer.nat.) 
 
 

 
 
 
 
 

Verfasserin:    Mag. Ewa Krupa 

Matrikel-Nummer:   0549595 

Dissertationsgebiet:   A 091 490, Molekulare Biologie 

Betreuer:    Univ.-Prof. Dr. Friedrich Propst 

 

 
 
 
Wien, August 2009 
   
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
For my husband and son 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

ACKNOWLEDGEMENTS 
 
This work was funded by the FWF, Wings of Life, the University of Vienna and the 

Medical University of Vienna. 

 

I especially thank Univ. Prof. Dr. Friedrich Propst for an opportunity to work in 

his group, his supervision, continuous support and insightful discussions during 

these four years.  

 

I would like to thank the members of my PhD committee Univ. Prof. Dipl. Ing. Dr. 

Johannes Nimpf and Univ. Prof. Dr. John Victor Small, for their helpful comments 

and suggestions. 

 

I am grateful to Dr. Fatiha Nothias, Michèle Ravaille-Veron and Mag. Ulla 

Milbretta for an opportunity to realize some of experiments in their laboratory and 

for their great help. 

 

A lot of thanks go to all present and former colleagues and friends from 

Department of Biochemistry and Cell Biology, especially to Ilse, Alžbeta, 

Waltraud, Luise, Rocio, Marianne, Karin, Nevena and Irmi (in order of 

appearance) for great working atmosphere and invaluable help in scientific and 

non-scientific fields. 

 

Many thanks go to all my friends for their support and friendship that I needed, 

especially Mag. Olga Kulak, Mag. Michał Podmagórski and Małgorzata Abdel-

Razek. 

 

Special thanks go to my parents Anna and Krzysztof, and my sister Elżbieta for 

encouraging and reminding me the gold rule “do not give up”. 

 

Finally, I would like to thank my husband Marcin and my son Marek, for their 

constant support, for their understanding, for giving the opportunity to realize 

dreams and mostly for their unconditional love during my good and bad times.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                           Table of contents 

 7

TABLE OF CONTENTS 
 
SUMMARY ................................................................................................................... 11 
 
ZUSAMMENFASSUNG.............................................................................................. 14 
 
INTRODUCTION ........................................................................................................ 17 
 

THE NERVOUS SYSTEM...................................................................................... 17 
The central nervous system..................................................................................... 18 
The peripheral nervous system ............................................................................... 19 

AXON GUIDANCE.................................................................................................. 19 
Netrins..................................................................................................................... 20 
Semaphorins............................................................................................................ 21 
Slits ......................................................................................................................... 22 
Ephrins .................................................................................................................... 23 
Ca2+ effectors in controlling and steering growth cone .......................................... 23 
Downstream effectors of Ca2+ signals .................................................................... 25 
Ca2+/calmodulin-dependent protein kinase II (CaMKII) ...................................... 25 
Calpains................................................................................................................. 27 

  Calcineurin............................................................................................................ 29 
  Protein kinase C .................................................................................................... 31 
Lysophosphatidic acid ............................................................................................ 32 

THE GROWTH CONE............................................................................................ 34 
THE CYTOSKELETON ......................................................................................... 36 
MYOSIN.................................................................................................................... 39 
RHO GTPASES ........................................................................................................ 41 
NO AS A SIGNALING MOLECULE .................................................................... 43 

Production of NO.................................................................................................... 44 
Mechanism of action............................................................................................... 46 
Binding to metal centres ....................................................................................... 46 
Protein S-nitrosylation .......................................................................................... 47 
Protein nitrotyrosination ....................................................................................... 49 

Physiological effects of NO.................................................................................... 49 
Vascular effects..................................................................................................... 49 
Immunological functions ...................................................................................... 50 
Pro- and anti-apoptotic effects of NO ................................................................... 50 
NO in the nervous system ..................................................................................... 51 

NO and neurodegenerative diseases ....................................................................... 53 
MICROTUBULE ASSOCIATED PROTEINS ..................................................... 55 

MAP1s .................................................................................................................... 56 
MAP1B ................................................................................................................... 57 
Phosphorylation of MAP1B.................................................................................. 58 
S-nitrosylation of MAP1B .................................................................................... 61 
Role of MAP1B .................................................................................................... 62 

 
PART I - PHYSIOLOGICAL RELEVANCE OF NO-INDUCED AXON 
RETRACTION ............................................................................................................. 66 
 
RESULTS ...................................................................................................................... 67 



                                                                                                           Table of contents 

 8 

Role of NO and MAP1B in axon retraction induced by LPA ...............................67 
LPA-induced axon retraction is MAP1B-dependent and involves ROCK and 
myosin .....................................................................................................................67 
LPA-induced axon retraction does not require nNOS activation............................74 

Role of NO and MAP1B in inhibition of neurite outgrowth induced by CSPG..76 
Lack of evidence for an involvement of NOS in CSPG-induced inhibition of axon 
growth......................................................................................................................76 
CSPG-induced inhibition of axon regrowth is not MAP1B-dependent..................79 

Role of NO and MAP1B in inhibition of neurite outgrowth induced by myelin.81 
Lack of evidence for an involvement of NOS in myelin-induced inhibition of 
axon growth ...........................................................................................................81 

 
DISCUSSION ................................................................................................................83 
 
PART II - MECHANISM OF NO-INDUCED AXON RETRACTION ..................90 
 
RESULTS.......................................................................................................................91 

Involvement of other calcium effectors in calcimycin-induced axon retraction .91 
CaMKII is not involved in calcimycin_induced axon retraction.............................92 
Calcineurin is not involved in calcimycin_induced axon retraction........................93 
PKC is not involved in calcimycin-induced axon retraction...................................95 
Calpain is not involved in calcimycin-induced axon retraction..............................96 

Involvement of acto-myosin contractility in axon retraction induced by 
calcimycin and NO ....................................................................................................97 

ROCK is necessary for calcimycin- and NO-induced axon retraction ...................98 
Myosin inhibition prevents axon retraction induced by NO.................................101 

Increased levels of cAMP partially attenuate axon retraction induced by 
calcimycin and SNAP..............................................................................................107 
NO-induced axon retraction does not involve microtubule depolymerization..110 
LPA-induced axon retraction does not involve microtubule depolymerization112 
Mechanism of taxol-induced axon retraction .......................................................114 

Taxol-induced axon retraction is acto-myosin independent .................................114 
Taxol-induced retraction does not involve NOS activation ..................................117 

SNAP and LPA induce increased microtubule binding by full length MAP1B 118 
Increased microtubule dynamic in MAP1B -/- DRG neurons ............................120 

 
DISCUSSION ..............................................................................................................138 
 
PART III - ROLE OF MAP1B AND CDK5 IN LAMININ SIGNALLING 
PATHWAY..................................................................................................................154 
 
RESULTS.....................................................................................................................155 

Laminin induces different morphology of wild-type and MAP1B-/- DRG 
neurons .....................................................................................................................155 
Axon retraction induced by roscovitine is MAP1B-dependent...........................157 
Axon retraction induced by roscovitine involves ROCK and myosin................161 
Axon retraction induced by roscovitine does not involve nNOS activation.......164 
Axon retraction induced by roscovitine involves GSK3β ....................................166 
Axon retraction induced by roscovitine does not involve depolymerization of 
microtubules ............................................................................................................167 



                                                                                                           Table of contents 

 9

Roscovitine and LPA induce retraction only in the presence of laminin .......... 168 
Roscovitine induces increased microtubule binding by full length MAP1B ..... 170 
Expression of cdk5 and p35 is not altered in MAP1B-/- mice ............................ 171 

 
DISCUSSION.............................................................................................................. 173 
 
MATERIALS AND METHODS ............................................................................... 182 
 

DNA METHODS .................................................................................................... 182 
DNA preparation, restriction digest and ligation.................................................. 182 
Agarose gel ........................................................................................................... 182 
Transformation of E. coli...................................................................................... 183 
Preparation of competent cells ............................................................................ 183 
Transormation of cells ........................................................................................ 183 

Cloning.................................................................................................................. 184 
PROTEIN METHODS........................................................................................... 185 

Preparation of cell extracts ................................................................................... 185 
Preparation of brain and DRG homogenates ........................................................ 186 
Deteremination of protein concentration (Bradford Method)............................... 186 
Immunoblot analysis............................................................................................. 186 

MAMMALIAN CELL CULTURE METHODS ................................................. 189 
Maintenance of the cell lines ................................................................................ 189 
Cultivation of dissociated adult DRG neurons ..................................................... 190 
Coating of coverslips for N2a cells and DRG neurons......................................... 191 
Transfection of mammalian cells using Fugene6 ................................................. 191 
Transfection of DRG neurons with Amaxa .......................................................... 192 
Treatment DRG neurons, N2a cells and Ptk2....................................................... 192 
Treatment of DRG neurons, N2a cells and transfected PtK2 cells with LPA .... 192 
Inhibition of cdk5 in DRG neurons, N2a cells and  transfected Ptk2 cells......... 193 
Inhibition of cdk5/GSK3β in DRG neurons ....................................................... 193 
Treatment of DRG neurons, N2a cells and transfected PtK2 cells  with LPA ... 193 
Inhibition of ROCK (Rho-associated kinase) and myosin in DRG neurons and 
N2a cells.............................................................................................................. 193 
Inhibition of CaMKII, calcineurin, calpain, PKC in DRG neurons.................... 194 
S-nitrosylation of MAP1B in DRG neurons and transfected PtK2 cells ............ 194 
Inhibition and activation of nNOS in DRG neurons........................................... 194 
Stabilization of microtubules with taxol in DRG neurons and N2a cells ........... 195 
Stimulation of cAMP in DRG neurons ............................................................... 195 
Treatment with DMSO –a solvent control .......................................................... 195 

MICROSCOPY STUDIES OF CELLS................................................................ 195 
Immunofluorescence microscopy of the cells ...................................................... 195 
Time-lapse video microscopy studies of DRG neurons ....................................... 196 

PREPARATION OF AGGRECAN-LAMININ SPOT GRADIENT 
COVERSLIPS......................................................................................................... 197 
PREPARATION OF MYELIN SPOTTED COVERSLIPS............................... 197 

Isolation of myelin from mouse brain................................................................... 197 
Preparation of coverslips ...................................................................................... 198 

ANTIBODIES ......................................................................................................... 198 
INHIBITIORS......................................................................................................... 200 

 



                                                                                                           Table of contents 

 10 

REFERENCES............................................................................................................201 
 
LIST OF FIGURES AND TABLES..........................................................................228 
 
CURRICULUM VITAE.............................................................................................231 

 

 



                                                                                                                        Summary 

 11

SUMMARY 

 
Microtubule associated protein 1B (MAP1B) is expressed at the highest level during 

early stages of embryogenesis and is downregulated after birth. It is synthesized as 

polyprotein that is cleaved into heavy chain (HC) and light chain (LC1). Due to 

microtubule and actin binding properties MAP1B is proposed to be a crosslinker 

between cytoskeletal components. MAP1B-/- mice are characterized by the lack of 

corpus callosum, a prominent axon tract connecting the two cerebral hemispheres, 

suggesting a role of MAP1B in axon guidance. In addition, in the peripheral nervous 

system reduced diameters of axons, decreased thickness of the myelin sheaths and 

reduction in conduction velocity were observed (Meixner et al., 2000).  

Nitric oxide (NO) is a messenger molecule, synthesized by nitric oxide synthases 

(NOSs), which plays a role as neurotransmitter and neuromodulator. At low 

concentrations NO contributes to physiological processes, whereas at high 

concentration NO was found to be toxic for cells of the nervous system. NO was found 

to play an important role in retinotectal pruning during development of chick visual 

system (Wu et al., 2004) and to induce axon retraction in cultured embryonic chicken 

DRG neurons (He et al., 2002). Axon retraction induced by NO was impaired in 

MAP1B-/- DRG neurons and was shown to involve S-nitrosylation of LC1 on cys2457 

as a critical step (Stroissnigg et al., 2007).  

In the first part of my thesis I examined the potential involvement of NO in two 

physiological axon retraction paradigms, repulsive axon guidance by lysophosphatidic 

acid (LPA) and myelin and Chondroitin Sulfate Proteoglycane (CSPG) inhibition of 

axon regeneration. I found that LPA-induced axon retraction does not require activation 

of nNOS, but it involves MAP1B, the Rho-associated kinase (ROCK) and myosin, 

consistent with previous studies. I also analyzed whether NO and MAP1B are 

implicated in inhibition of axon growth triggered by myelin and by CSPGs, but 

inhibition of nNOS and NOSs in general did not overcome inhibitory properties of 

neither CSPGs or myelin. Growth of both wild-type and MAP1B-/- DRG neurons was 

affected by myelin and CSPGs. 

In the second part of my thesis I investigated the mechanism underlying NO-induced 

axon retraction. To increase NO levels, neurons were treated with calcimycin, which 

enhances Ca2+ levels resulting in activation of nNOS. An increase of Ca2+ can activate 
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potentially also Ca2+ effectors other than nNOS. I found that CaMKII, calcineurin, 

calpain and protein kinase C (PKC) are not involved in calcimycin-induced axon 

retraction of DRG neurons, whereas I confirmed involvement of nNOS. Further, I 

showed that ROCK activity and myosin are essential for NO-induced axon retraction, 

since inhibition of either ROCK or myosin prevented both calcimycin- and NO donor-

induced retraction of neurites in mouse DRG neurons and in neuroblastoma N2a cells. 

In addition, in N2a cells monophosphorylation of the myosin regulatory light chain 

(MRLC) upon treatment with NO donor was enhanced, suggesting that NO can increase 

myosin activity. Stimulation of cAMP partially abolished NO-induced axon retraction. I 

also showed that NO-, calcimycin- and LPA-induced retractions of axons are not due to 

depolymerization of microtubules. I found that stabilization of microtubules by taxol 

leads to axon retraction with hallmarks similar to retraction observed upon treatment 

with an NO donor, calcimycin or LPA, but it does not involve acto-myosin contractility. 

Moreover, NO donor and LPA treatment increased binding of MAP1B with 

microtubules in non-neuronal PtK2 cells. Analysis of the dynamics of microtubule plus 

ends by in vivo labelling with GFP-tagged end-binding protein 1 (EB1-GFP), revealed 

that in MAP1B-/- DRG neurons the velocity, the distance, the time of EB1-GFP comet 

life and the number of comets per axon length and per growth cone area were enhanced 

when compared to wild-type DRG neurons. I propose that in wild-type DRG neurons 

MAP1B binds to microtubules stabilizing and protecting them from severing proteins. 

In MAP1B-/- neurons lack of MAP1B results in enhanced accessibility of microtubules 

for severing proteins that cut long microtubules into short dynamic ones, leading to 

excessive axon branching. Finally, treatment with LPA reduced the velocity, the time of 

EB1-GFP comet life and the number of comets per axon length in axons of wild-type 

DRG neurons. Taken together, these results I suggest that LPA and NO induce 

conformational changes in MAP1B increasing its microtubule binding activity. In the 

effect microtubules are overstabilized by MAP1B leading to axon retraction. 

In the third part of my thesis, I examined involvement of MAP1B in laminin/integrin 

signaling. I found that the different morphology of wild-type versus MAP1B-/- DRG 

neurons can be observed when neurons are cultured on laminin, but not on poly-L-

lysine only. Inhibition of cdk5 with roscovitine induced axon retraction in wild-type 

DRG neurons. In MAP1B-/- DRG neurons the response to roscovitine was altered. 

Retraction induced by inhibition of cdk5 involved ROCK and myosin, and was 

observed only when neurons were grown on laminin. Inhibition of GSK3β partially 
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prevented axon retraction induced by roscovitine, whereas inhibition of nNOS had no 

influence. In addition, roscovitine increased microtubule binding of MAP1B in PtK2 

cells, suggesting a similar mechanism as in case of LPA- and NO-induced axon 

retraction. Thus, laminin/integrin signalling seems to play role both in promotion of 

axon growth and axon retraction. 
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ZUSAMMENFASSUNG 
 
Mikrotubuli assoziiertes Protein 1B (MAP1B) ist während der Embryonalphase am 

stärksten exprimiert und wird nach der Geburt hinunterreguliert. Es wird als Polyprotein 

synthetisiert, welches anschließend in eine schwere Kette (HC) und eine leichte Kette 

(LC) gespalten wird. Aufgrund der Fähigkeit von MAP1B sowohl Aktin als auch 

Mikrotubuli zu binden, wird es als Quervernetzer der beiden Zytoskelettbestandteile 

angesehen. MAP1B-/- Mäusen fehlt das Corpus Callosum, ein ausgesprochen wichtiger 

Nerventrakt, der die zwei Gehirnhälften verbindet. Daher kommt die Vermutung, dass 

MAP1B essentiell für die korrekte Führung der Nerven während der Entwicklung ist. 

Außerdem kommt es in MAP1B-/- Mäusen zu einem verringerten Axondurchmesser, 

einer dünneren Myelinschicht und einer Reduktion der Nervenleitgeschwindigkeit 

(Meixner et al., 2000). 

Stickoxid (NO) ist ein Signalmolekül welches von Stickoxidsynthasen (NOS) 

synthetisiert wird. Es spielt eine Rolle als Neurotransmitter und Neuromodulator. In 

geringen Konzentrationen unterstützt NO physiologische Prozesse, doch sobald die 

Konzentration zu stark ansteigt, kann es toxisch auf Nervenzellen wirken. Es wurde 

herausgefunden, dass NO wichtig für die Entwicklung des visuellen Systems in 

Hühnern (Wu et al., 2004) ist und, dass es zu Retraktion von kultivierten embryonalen 

Hühner DRG Neuronen führt (He et al., 2002). NO-induzierte Axonretraktion findet in 

MAP1B-/- DRG Neuronen nicht statt da dafür die S-Nitrosylierung der leichten Kette 

von MAP1B am cys2457 nötig ist (Stroissnigg et al., 2007). 

Im ersten Teil meiner Dissertation untersuchte ich die mögliche Mitwirkung von NO in 

zwei physiologischen Axonretraktionsparadigmen: die repulsive Axonführung durch 

Lysophosphat-Säure (LPA) und die Inhibierung der Axonregeneration durch Myelin 

und Chondroitin Sulfat Proteoglykane (CSPG). Ich stellte fest, dass LPA-induzierte 

Axonretraktion nicht von nNOS abhängig ist, aber sehr wohl MAP1B, Rho-assoziierte 

Kinase (ROCK) und Myosin benötigt. Diese Ergebnisse stehen im Einklang mit 

vorherigen Studien. Ich analysierte auch ob NO und MAP1B an der Inhibierung des 

axonalen Wachstums durch Myelin und CSPGs beteiligt sind. Doch die Inhibierung von 

NO-Synthasen und nNOS im Speziellen konnte das Wachstum der Axone unter diesen 

Umständen nicht positiv beeinflussen. Das war sowohl in Wildtyp als auch in MAP1B-

/- DRG Neuronen der Fall. 
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Im zweiten Teil meiner Dissertation wollte ich Näheres über den grundlegenden 

Mechanismus herausfinden der hinter der NO-induzierten Axonretraktion steht. Um die 

NO-Konzentration in Neuronen zu erhöhen, verwendete ich Calcimycin welches die 

Kalziumkonzentration in der Zelle erhöht, was unter anderem zur Aktivierung von 

nNOS führt. Ich fand heraus, dass CaMKII, Calcineurin, Calpain und Protein Kinase C 

(PKC) nicht für Calcimycin-induzierte Axonretraktion benötigt werden, doch die 

Involvierung von nNOS konnte ich bestätigen. Weiters entdeckte ich, dass ROCK 

Aktivität und Myosin essentiell für die NO-induzierte Axonretraktion sind, da deren 

Inhibierung sowohl Calcimycin- als auch NO-Donor-induzierte Retraktion in DRG 

Neuronen und N2a Zellen verhindert. Außerdem wurde die Monophosphorylierung der 

regulierenden leichten Kette von Myosin (MRLC) durch den Einfluß von NO erhöht, 

was darauf hindeutet, dass NO die Aktivität von Myosin ankurbelt. Die Stimulierung 

von cAMP konnte teilweise die NO-induzierte Axonretraktion verhindern. Ich konnte 

zeigen, dass NO-, Calcimycin- und LPA-induzierte Axonretraktion nicht durch 

Mikrotubulidepolymerisation zustande kommt. Stabilisierung von Mikrotubuli durch 

Taxol führt zu Axonretraktion. Diese zeigt dieselben Kennzeichen wie sie auch bei 

einer Retraktion durch einen NO-Donor, Calcimycin oder LPA zu sehen sind. Was hier 

allerdings nicht involviert war, ist die Aktin-Myosin-Kontraktion. Die Bindung von 

MAP1B an Mikrotubuli wird durch die Behandlung mit einem NO-Donor oder LPA in 

nicht-neuronalen PtK2 Zellen verstärkt. Die Dynamik der Mikrotubuli-Plusenden wurde 

mit Hilfe einer in vivo Markierung mit GFP-markiertem end binding Protein (EB1-GFP) 

analysiert. In MAP1B-/- DRG Neuronen ist die Geschwindigkeit der Kometen höher, 

die Distanz welche sie zurücklegen größer, die Lebensdauer länger und deren Anzahl 

höher. Alle Parameter wurden in Bezug auf die Axonlänge und pro 

Wachstumskegelfläche gemessen. Daraus schliesse ich, dass in Wildtyp DRG Neuronen 

MAP1B stabilisierend und schützend auf die Mikrotubuli wirkt. In MAP1B-/- Neuronen 

haben Mikrotubuliteilende Proteine leichteren Zugang zu denselben und schneiden 

diese in kleine dynamischere Teile, was wiederum zu vermehrter Axonverzweigung 

führt. LPA-Behandlung verringerte die Geschwindigkeit der Kometen, deren 

Lebensdauer und deren Anzahl in Wildtyp DRG Neuronen. In Anbetracht all dieser 

Ergebnisse kann man zu dem Schluss kommen, dass LPA und NO die Konformation 

von MAP1B ändern und somit seine Mikrotubulibindungskapazität erhöhen. Dadurch 

werden Mikrotubuli zu stark stabilisiert und das führt zur Axonretraktion. 
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Im dritten Teil der Dissertation studierte ich die Rolle von MAP1B in Laminin/Integrin 

Signaltransduktionswegen. Ich beobachtete eine unterschiedliche Morphologie der 

DRG Neuronen wenn sie auf Laminin oder Poly-L-Lysin kultiviert wurden. Die 

Inhibierung der Cdk5 durch Roscovitin induzierte Axonretraktion in Wildtyp DRG 

Neuronen. MAP1B-/- Neuronen reagierten anders auf diese Behandlung. Retraktion 

durch Cdk5-Inhibierung benötigt ROCK und Myosin und konnte nur bei Neuronen 

gesehen werden, die auf Laminin gewachsen waren. Inhibierung von GSK3β konnte 

teilweise die Axonretraktion durch Roscovitin verhindern, doch nNOS-Inhibierung 

hatte keinen Einfluss darauf. Außerdem verstärkte Roscovitin die Bindung von MAP1B 

an Mikrotubuli in PtK2 Zellen was an die Eigenschaften von LPA- und NO-induzierter 

Axonretraktion erinnert. Somit scheint es als würden Laminin/Integrin 

Signaltransduktionswege sowohl beim Axonwachstum als auch bei der Axonretraktion 

eine Rolle spielen. 
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INTRODUCTION 

 

THE NERVOUS SYSTEM 

 

The function of nervous system is to perceive and respond to external stimuli and to 

conduct signals within the body. It consists of neurons, which convey impulses, and 

neuroglia, which take also part in transmitting of impulses, supply nutrients to the 

neurons and provide insulation for neuronal axons and dendrites. In addition, neuroglia 

partcipate in the repair of the nervous system after injury by destroying pathogens and 

removing dead neurons. Neurons usually have a cell body in which their nucleus is 

located, a number of short, branched dendrites and one long unbranched or branched 

axon. Signals from other neurons are received through the synapses, spread over the cell 

body and dendrites, and outgoing information is transmitted via the axon.  

There are three main classes of neurons: the motor neurons, the sensory neurons and the 

interneurons. The motor neurons, known also as efferent or effector neurons, convey 

signals from the central nervous system (CNS) to muscles and from the motor cortex 

within the CNS. The cell bodies of the motor neurons are localized in the CNS. They 

extend many dendrites and one axon, which form a neomuscular junction, known as a 

motor plate, at the target muscle. The sensory neurons, known also as afferent or 

receptor neurons, transduce signals from a variety of sensory receptors in the peripheral 

nervous system (PNS) to the CNS. They terminate at the root ganglia of the CNS and 

transmit information from the limbs, skin, sensory and internal organs, for example they 

convey a pain and heat. Interneurons carry signals between neurons within the CNS and 

the PNS. 

There are two types of neuroglia: microglia and macroglia. Microglia comprise of 

specialized macrophages capable of phagocytosis, which multiply when the nervous 

system is injured. Macroglia comprise of astrocytes, oligodendrocytes, ependymal cells 

and radial glia in case of the CNS, and of Schwann cells and satellite cells in case of the 

PNS. Astrocytes participate in anchoring neurons to their blood supply, removing 

excess ions and recycling neurotransmitters released during synaptic transmission. 

Oligodendrocytes form myelin sheat around axons of the CNS. In the PNS the same 

function is fulfilled by Schwann cells. 
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The central nervous system 

 

The CNS coordinates functions of all parts of the body. It consists of the brain, located 

in the cranial cavity, and the spinal cord, located in the spinal cavity. The brain is 

protected by the blood-brain barrier and by the skull. It receives information from spinal 

cord and its own nerves, like the optic nerves, and transforms them to a proper and 

coordinated motor output. The spinal cord consists of 31 pairs of nerves and is protected 

by the vertebrae. The motor nerves go into the ventral root, whereas the sensory nerves 

go into the dorsal root ganglion (DRG), and then into the spinal cord. The spinal cord 

conducts sensory information from the PNS to the brain and motor information from the 

brain to effectors, for example glands or muscles. The spinal cord also acts as a minor 

reflex centre.  

In contrast to the embryonic nervous system or the PNS, adult CNS fails to regenerate 

after injury. This is attributed to loss of ability to grow of mature neurons and inhibitory 

properties of the CNS myelin and proteoglycans produced within astroglial scar (Yiu 

and He, 2006). After injury the growth cones of lesioned axons adopt the shape of so 

called dystrophic endballs and their further growth is limited by myelin-associated 

inhibitors from oligodendrocytes and myelin debris (Yiu and He, 2006). The best 

known myelin-associated components are Nogo, myelin-associated glycoprotein 

(MAG), oligodendrocyte myelin glycoprotein (OMgp), the transmembrane semaphorin 

4D (Sema4D) and ephrin B3 (Yiu and He, 2006). A second source of inhibition is a 

glial scar, which is formed by microglia, astrocytes, oligodendrocyte precursors and 

meningeal cells (Yiu and He, 2006). On one hand, they isolate the lesion site and limit 

the inflammation area, and some astrocytes can even support axon growth (Yiu and He, 

2006). On the other hand, most of the astrocytes are highly reactive and release 

inhibitory molecules called chondroitin sulphate proteoglycans (CSPGs), which form a 

gradient with the highest concentration at the centre of lesion (Yiu and He, 2006). Both 

myelin and CSPG increase the intracellular Ca2+ level and activate a RhoA signal 

transduction pathway that induces rearrangement of the actin cytoskeleton (Yiu and He, 

2006). Diminution of these inhibitory influences could promote the regrowth of axons 

after CNS injury. 
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The peripheral nervous system 

 

The PNS consists of nerves located outside the CNS, which are not protected by bone or 

by the blood-brain barrier and connect the CNS to the organs and limbs. The cell bodies 

of the PNS neurons are organized in ganglia and their neurites extend both into the 

periphery and to the CNS. The PNS is divided into the somatic nervous system (SNS) 

and the autonomic nervous system (ANS). The SNS is involved in control of body 

movement and reception of signals from the surrounding environment. The ANS 

maintains homeostasis in the body, which is performed without conscious control, for 

example digestion. It consists of efferent and afferent nerves going to and from the 

CNS. The ANS can be further divided into the parasympathetic nervous system and the 

sympathetic nervous system. They usually function in opposition to each other. The 

sympathetic nervous system works in actions that require immediate reaction (for 

example “fight or flight”), while parasympathetic system functions in actions that do not 

need a fast response (relaxation).  

 

AXON GUIDANCE 

 
The formation of the correct neuronal connections during development of the nervous 

system depends on the ability of axons to locate and recognize their targets. Similarly, 

rebuilding of the correct network of neurons is important in the adult nervous system 

during regeneration after injury. Targets can be very far away from the cell body of a 

given neuron and neurites extending from the cell body have to be guided by signals 

from the environment. These signals are called guidance cues and give information 

where the axon should grow and when it should turn. The tip of the neurite, called the 

growth cone, is a specialized structure capable of proper reading and responding to 

guidance signals. Extracellular guidance cues can attract or repel the growth cone.  

Studies on the pattern of nerve process outgrowth and connectivity in the developing 

mammalian brain by spanish histologist Santiago Ramón y Cajal in 1890 were a 

breakthrough. He proposed that neurites, for example axons, are navigated to the target 

cells by diffusible molecules secreted by these cells (Ramón y Cajal, 1890). Direct 

evidence for the guidance theory was obtained later and by the early 1990s several 

conserved families of long-range and short-range axon guidance molecules were 
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discovered. Long range signals are diffusible molecules secreted by cells, while short 

range signals are non-diffusible, cell surface-bound or bound to the extracellular matrix 

(ECM) molecules. The best known and understood guidance cues are netrins, 

semaphorins, slits and ephrins.  

 

Netrins 

 

Netrins are secreted proteins guiding migration of neurons and growth cones during 

development. The best studied member of the family is netrin-1, which like most 

members of the group is a bifunctional molecule. For some neurons it is an attractive 

guidance cue that works through the DCC receptor and for others is a repulsive 

guidance cue that works through the Unc5 receptor (Keino-Masu et al., 1996; Baker et 

al., 2006; Round and Stein, 2007). Netrin-1 induced chemoattraction was shown to be 

important for formation of the corpus callosum, other commisures, corticospinal tract, 

the optic nerve and the internal capsule (Bradford et al., 2009). Both netrin-1 knockout 

mice and DCC knockout mice are characterized by the absence of the corpus callosum 

and the hippocampal commisure (Barallobre et al., 2005). Additionally netrin-1 was 

found to guide migrating pontine cells which express DCC receptors (Yee et al., 1999). 

Pontine cells form structures that connect the cerebrum with the cerebellum and in both, 

netrin-1 and DCC knockout mice, pontine cells are not guided to the midline and the 

pontine nuclei are missing (Bradford et al., 2009). Netrin-1 also guides interneuron 

precursors to the maturing olfactory bulb (Murase and Horwitz, 2002). On the other 

hand, it is a chemorepulsive cue in guiding cerebellar interneurons which migrate from 

the internal granule layer to the external germinal layer and afterwards take a position in 

the molecular layer (Guijarro et al., 2006). Unc5 receptors on the migrating neurons 

detect netrin-1 as a stop signal. Similarly, netrin-1 present at the optic disc prevents 

entering of oligodendrocytes to the retina (Barallobre et al., 2005).  

Netrin-1 can act at short-range within 10-20µm of its source or at long-range through a 

gradient established within the extracellular milieu (Bradford et al., 2009). Both short- 

and long-range chemoattraction are maintained through DDC receptors, whereas short-

range chemorepulsion requires Unc5 and long-range chemorepulsion involves both 

Unc5 and DCC receptors (Wen and Zheng, 2006). Interaction between netrin-1 and the 

DCC receptor induces homodimerization of the receptor (Round and Stein, 2007) which 
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leads to tyrosine phosphorylation of the kinases FAK, Src and Fyn. This step is believed 

to activate Rac1 and Cdc42 and in turn promotes extension of the lamellipodium and 

filopodium. In addition, netrin-1-dependent guidance is regulated by Ca2+ influx and 

Ca2+–dependent pathways (Bradford et al., 2009). Binding of netrin-1 to the DCC 

receptor leads to Ca2+ influx through voltage-gated Ca2+ channels and transient receptor 

potential (TRP) channels mediating attraction also by activation of Rac1 and Cdc42. 

Chemorepulsive guidance mediated by Unc5 results in low intracellular Ca2+ levels and 

RhoA-dependent growth cone collapse or repulsion (Wen and Zheng, 2006).  

 

Semaphorins 

 

Semaphorins are a family of cell-surface transmembrane and secreted glycoproteins that 

associate with the cell surface and influence axon guidance (Kolodkin et al., 1993; 

Lallier, 2004). There are eight subclasses of semaphorins: subclasses 1, 2 and 5 are 

expressed in invertebrate species and 3-7 were found in vertebrate species. They act as 

chemorepellents in axon guidance and are involved in axonal steering, axonal 

fasciculation, neuronal polarity, zonal segregation of axon populations and neuronal cell 

migration (Takegahara et al., 2005). Additionally, semaphorins were shown to play an 

important role in regulation of blood vessel pattering, leukocyte movements, 

organogenesis and angiogenesis (Kitsukawa et al., 1995; Behar, 1996; Sekido et al., 

1996; Taniguchi et al., 1997).  

Sema3A, known also as collapsin 1, repulses axons of sensory and sympathetic neurons 

(Luo et al., 1993; Chedotal et al., 1998; Steup et al., 1999). It is highly expressed in 

E11-E14 mouse embryos and its expression was shown to correlate with the growth of 

DRG axons toward their central and peripheral targets (Giger et al., 1996). Growth cone 

collapse of embryonic chicken DRGs induced by Sema3A involves protein kinase G 

(PKG) and ROCK kinase activity (Dontchev and Letourneau, 2002). Sema4D/CD100 is 

a transmembrane protein and its mRNA is expressed in human in the embryonic and 

adult brain, heart, spleen, kidney and lungs (Hall et al., 1996) and in mice throughout 

embryonic neuronal tissue with highest expression in DRG and cortical plate 

(Kumanogoh and Kikutani, 2004). Sema4D induces growth cone collapse in 

hippocampal neurons and retraction of neurites and cell rounding in PC12 cells, which 

can be blocked by inhibition of the ROCK kinase (Perrot et al., 2002). In addition 
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upregulation of Sema4D expression in oligodendrocytes was observed 8 days after 

spinal cord lesion (Moreau-Fauvarque et al., 2003). It was shown that CA1, CA2 and 

dentate gyrus axons are strongly repelled by both Sema3 and Sema4, whereas entorhinal 

axons are repelled only by Sema3A (Chedotal et al., 1998). Sema5B induces growth 

cone collapse in chicken DRGs via influx of Ca2+. First a low-amplitude Ca2+ influx is 

induced which leads to activation of calcineurin. This is followed by a high-amplitude 

Ca2+ influx that activates calpain. Sema5B also induces cleavage of calcineurin by 

calpain (To et al., 2007). 

Two families of receptors for semaphorins were identified – neuropilins (NP1 and NP2) 

and plexins (Takegahara et al., 2005). Neuropilins show high affinity for subclass 3, for 

example neuropilin 1 for Sema3A and neuropilin 2 for Sema3F (Chen et al., 1997; 

Kolodkin, 1997; Nakamura et al., 1998), while plexin-B1 is a receptor for Sema4D. In 

addition, two molecules unrelated to plexins and neuropilins, were found to interact 

with semaphorins – CD72 and Tim-2 (Kumanogoh et al., 2000; Kumanogoh et al., 

2002).  

 

Slits 

 

Slits are large secreted proteins acting via transmembrane receptors of the Roundabout 

(Robo) family (Dickson, 2002). In mammals, three homologs of Slits (Slit1, Slit2, Slit3) 

and four homologs of Robo receptors (robo1, robo2, robo3 and rig-1) were described 

(Kidd et al., 1998; Webber and Raz, 2006). Slits also bind to other factors involved in 

axon navigation such as netrin or laminin (Brose et al., 1999). The Slits are midline 

repellents conserved in vertebrates (Kidd et al., 1998; Brose et al., 1999), but also can 

stimulate axon branching and elongation, for example in DRG neurons (Wang et al., 

1999; Brose and Tessier-Lavigne, 2000). Repulsion is mediated often through growth 

cone collapse, for example in case of the spinal cord, retinal ganglion neurons, mitral 

cells of the olfactory bulb, cortical neurons projecting into the corpus callosum, 

thalamic axons projecting into the cortex, and neurons projecting from the dentate gyrus 

(Nguyen Ba-Charvet et al., 1999; de Castro, 2003). Double knockout mice for slit1 and 

slit2 show a second optic chiasm formed at a more anterior location with many axons 

projecting into the opposite optic field instead of crossing at the normal chiasm (Plump 
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et al., 2002). In humans who have a mutation of Robo3 the major sensory and motor 

projections do not cross between the brain and the spinal cord (Jen et al., 2004). 

 

Ephrins 

 

Ephrins are membrane-associated ligands binding to members of the Eph receptor 

family, which is the largest subfamily of receptor tyrosine kinases (TRK). There are two 

classes of ephrins and their receptors: ephrins of class A are anchored to the plasma 

membrane by a glycosylphosphatidylinositol (GPI) linkage and bind EphA receptors; 

and ephrins of class B which have a transmembrane domain and cytoplasmic tail 

lacking endogenous catalytic activity, and bind EphB receptors (Dickson, 2002; Egea 

and Klein, 2007; Klein, 2009). Ephrin-A and its EphA receptor work as repellent 

guidance cues in topographic mapping of retinal axons along the anterior-posterior axis 

(Wilkinson, 2001). The ephrin-A gradient establishes the topographic order of retinal 

axons (Dickson, 2002). In contrast, ephrin-B and EphB receptors mediate attractive 

signals in mapping along the dorsal-ventral retinal axis (Mann et al., 2002). Ephrin-B 

was shown to repel forebrain commissural axons from EphB-expressing cells and to 

attract them to EphA4-expressing cells (Henkemeyer et al., 1996; Kullander et al., 

2001). In EphB lacking mouse embryos, the contralateral inner ear efferent growth 

cones select inappropriate pathways at the midline (Cowan et al., 2000). 

The action of the Eph-ephrin system is limited to cell-to-cell communication and 

functional Eph-ephrin signalling requires higher-order receptor clusters than dimers 

(Egea and Klein, 2007). Ephrin binding to its receptor stimulates signalling cascades 

within the Eph-bearing cell, which is called the forward signalling, and within the 

ephrin-bearing cell, called the reverse signalling. Eph receptors recruit phosphotyrosine-

binding adaptor proteins to activate Rho GTPases and remodel the actin cytoskeleton 

(Song and Poo, 1999; Noren and Pasquale, 2004).  

 

Ca2+ effectors in controlling and steering growth cone 

 

Cytoplasmic Ca2+ is an important second messenger that was shown to participate in 

transducing many extracellular signals, which regulate and guide growth cones (Song 
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and Poo, 1999). The growth of neurites was shown to be regulated by the concentration 

of intracellular Ca2+ ([Ca2+]i) (Henley and Poo, 2004a). Normal growth cone motility 

depends on an optimal range of [Ca2+]i, which is approximately 100nM. When [Ca2+]i 

levels are above or below this optimal range neurites stop their extension. Thus, 

moderate increase in [Ca2+]i level can promote neurite extension, whereas high or low 

changes of [Ca2+]i level can inhibit growth cone motility (Connor, 1986; Silver et al., 

1989; Zheng, 2000). The resting level of [Ca2+]i is regulated by three mechanisms: a) 

Ca2+/ATPase-dependent uptake into internal stores, for example into mitochondria and 

the endoplasmic reticulum (ER); b) transfer of Ca2+ outside the cell by plasma 

membrane calcium ATPases (Garcia and Strehler, 1999) and c) the Na+/Ca2+ exchange 

(Zheng and Poo, 2007). Changes in [Ca2+]i are triggered by Ca2+ release from 

intracellular stores through ryanodine- and IP3-sensitive channels or from Ca2+-influx 

through plasma membrane Ca2+ channels, mainly through voltage-dependent Ca2+ 

channels (VDCCs) and ligand-gated ion channels (Zheng and Poo, 2007). There is 

considerable evidence showing the importance of Ca+2 channels in regulation of growth 

cone motility. For example, blocking plasma membrane Ca2+ channels can inhibit 

growth cone motility and neurite extension (Mattson and Kater, 1987) and abolish 

steering of the growth cone by netrin-1 (Hong et al., 2000). Blocking the function of IP3 

receptors in the endoplasmatic reticulum also inhibits neurite growth (Takei et al., 

1998). Additionally, intracellular proteins that bind Ca2+ can regulate Ca2+ changes by 

buffering, for example calretinin or parvalbumin. Other proteins, for example calpain or 

calmodulin, can directly regulate the activity of downstream effectors (Henley and Poo, 

2004a).  

Global increases in growth cone [Ca2+]i level can regulate axon growth, whereas local 

increases in [Ca2+]i can steer growth cones. For example, extracellular application of 

neurotransmitters, which strongly increases global level of [Ca2+]i  inhibits neurite 

growth (McCobb et al., 1988), while an extracellular gradient of glutamate (Zheng et 

al., 1996) or acetylcholine (Zheng et al., 1994) can induce an attractive turning response 

of the growth cone.  

Attractive and repulsive turning responses of the growth cone depend on local changes 

of Ca2+ levels (Song and Poo, 1999; Hong et al., 2000), but how different turning 

responses are generated by distinct Ca2+ signals is still unknown. It is assumed that 

different local Ca2+ signals depends on the baseline level of [Ca2+]i and activate distinct 

pathways to transduce attraction or repulsion signals. At the normal resting level of 
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[Ca2+]i (~130nM for cultured neurons) a small local increase in Ca2+ levels mediates 

repulsion, while a large local increase in Ca2+ levels mediates attraction. When the 

resting level of [Ca2+]i is below the optimal range (~60nM for cultured neurons) both 

small and large increases induce retractive responses of the growth cone (Wen et al., 

2004). The Ca2+-dependent response of the growth cone can be additionally modulated 

by the cAMP pathway. It was shown that elevation of cAMP can switch repulsion to 

attraction, and vice versa (Song and Poo, 1999; Wen et al., 2004), and that the 

cAMP/cGMP ratio could affect L-type Ca2+ channels to alter intracellular Ca2+ signals 

induced by netrin-1, placing cAMP/cGMP upstream of Ca2+ (Nishiyama et al., 2003). 

 

Downstream effectors of Ca2+ signals 

 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

 

CaMKII is highly expressed in the nervous system and comprises 1-2% of all proteins 

in the brain (Kolodziej et al., 2000; Griffith, 2004). There exist 28 isoforms which are 

derived from 4 genes (α, β, γ and δ) and each of these isozymes has a multiples splice 

variants. In the brain subunits α and β are predominantly expresse (Hudmon and 

Schulman, 2002a). Monomers of different isozymes are able to coassemble leading to a 

large number of possible holoenzyme compositions(Griffith, 2004).  

The most interesting subunit seems to be CaMKIIβ, since it is expressed early during 

development and regulates axon extension (Fink et al., 2003). It requires for activation a 

several fold lower concentration of Ca2+/calmodulin than CaMKIIα and transduces 

Ca2+signals of low amplitude (Zheng et al., 1994; Wen et al., 2004). CaMKIIα is 

expressed in mature neurons and regulates axonal branching induced by Ca2+ signals of 

high amplitude (Tang and Kalil, 2005).  

CaMKII is activated by Ca2+ entering through NMDA receptors, which in turn increases 

the number and conductivity of AMPA receptors within postsynaptic membranes 

(Derkach et al., 1999; Shi et al., 1999). CaMKII activity is regulated by Ca2+/calmodulin 

binding to each subunit and by autophosphorylation at its regulatory domain that can 

render each subunit partially autonomous from Ca2+/calmodulin binding (Meyer et al., 

1992; Hudmon and Schulman, 2002a, 2002b). It was also found that there are CaMKII 
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binding proteins that can maintain the active state of the kinase in the absence of 

Ca2+/calmodulin, and one binding partner was shown to inactivate the kinase by 

inducing inhibitory autophosphorylation (Griffith, 2004). In the rat CaMKIIα 

phosphorylation of theronine 286 (Thr 286) was shown to enable the kinase to remain 

active even after dissociation of its activator Ca2+/calmodulin (Fig. 1; Miller et al., 

1988). Once the enzyme is Ca2+-independent and Ca2+/calmodulin dissociates, 

additional autophosphorylation sites within the calmodulin-binding domain become 

accessible. When these sites are autophosphorylated, Ca2+/calmodulin can not bind 

again. CaMKII autophosphorylation reactions have been studied quite extensively and 

are critical for regulation of the kinase by both Ca2+/calmodulin and other protein 

regulators (Griffith, 2004). 

 
Fig. 1. The domain structure of CaMKII. The catalytic domain is autoinhibited by a 
pseudosubstrate autoregulatory domain. Binding of Ca2+/calmodulin activates CaMKII. The 
association domain is instrumental in formation of the multimeric holoenzyme, which composes 
of 12 subunits. Conserved sites of autophosphorylation in the autoregulatory region are 
indicated (adapted from Hudmon and Schulman, 2002b). 
 

There is much evidences indicating that increased CaMKII activity mediates long-term 

potentation (LTP), which underlies some forms of learning and memory (Malenka et al., 

1989; Malinow et al., 1989). It was shown that CaMKII activity is necessary for LTP. 

Increases in CaMKII activity can generate potentate transmission mimicking LTP and 

LTP can activate CaMKII. Defects in LTP often accompany disturbances in spatial 

learning, and animals that lack the CaMKIIα do not learn normally in such tasks (Silva 

et al., 1992). Stimuli which induces LTP increase autophosphorylation of Thr 286 

(Fukunaga et al., 1995) and mutation of Thr 286 blocks LTP in CA1 region of 

hippocampus and learning in the Morris water maze (Giese et al., 1998). 
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Calpains  

 

Calpains are Ca2+-sensitive cytoplasmic cysteine proteases which cleave many 

intracellular signalling and structural proteins, like kinases, actin (Potter et al., 1998), 

neurofilaments (Ishizaki et al., 1983), spectrin (Ishizaki et al., 1983; Johnson et al., 

1991) or microtubule-associated proteins, such as tau (Johnson et al., 1989), MAP1 

(Fischer et al., 1991), and MAP2 (Fischer et al., 1991; Johnson et al., 1991). The best 

characterized isoforms of calpain are µ-calpain (Capn1, calpain I) and m-calpain (Capn 

2, calpain II), which require micromolar or milimolar Ca2+ for activation, respectively 

(Li and Banik, 1995). Both forms are present in cells as inactive precursor isoforms, 

which are activated by calcium induced autoproteolytic cleavage of the N-terminal 

sequence. Calpains exist as heterodimers consisting of a common small regulatory 

subunit (Capn4; 30kDa) and large catalytic subunit (80kDa), which associate through an 

EF-hand motif (Perrin and Huttenlocher, 2002; Goll et al., 2003). Typical calpains, like 

µ-calpain and m-calpain, possess C-terminal Ca2+-binding domains, called domain IV 

which includes an EF-hand motif. Atypical calpains lack EF-hand motifs and contain 

additional domains. The large subunits of calpain I and calpain II contain 4 domains 

(Fig. 2). Domain I is a NH2-terminal region of a catalytic subunit, which interacts with 

domain VI of the regulatoryl subunit, and probably is important for stability. Domain II 

is responsible for catalytic activity of enzyme, containing all residues of the catalytic 

triad – cysteine 105 (Cys 105), histidine 262 (His 262) and asparagine 286 (Asn 286). 

Domain III binds Ca2+ and phospholipids and has a configuration similar to the C2 

domain of protein kinase C (PKC) or phospholipase C (PLC). The small subunit 

contains domain V, the N-terminal hydrophobic region rich in glycine, which probably 

work as a membrane anchor, and domain VI which binds to Ca2+ and to the large 

subunit (Fig. 2; Wu et al., 2007). 

m-calpain has at least four Ca2+-binding domains: the two EF-hands, the cysteine 

catalytic region and the acidic loop in domain III. In the absence of Ca2+ calpains are in 

an inactive state. Binding of Ca2+ leads to conformational changes and their activation 

(Reverter et al., 2001; Wu et al., 2007). At first when Ca2+ binds to the EF-hand regions 

and domain III, the N-terminal link between large and small domains is eliminated due 

to autocleavage of domain I (Reverter et al., 2001; Wu et al., 2007). This induces 

rearrangements within domain II and formation of an active site. Subsequently Ca2+ 

binds directly to Cys 105 in domain II and induces conformational changes positioning 
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the catalytic site for hydrolysis (Reverter et al., 2001). Calpains lacking EF-hand motifs 

are activated directly by binding of Ca2+ to domain II (Fig. 2). 

 

 
Fig. 2. Schematic of calpain structure. Calpain is a heterodimer consisting of a catalytic 
subunit and a regulatory subunit. The catalytic subunit consists of four domains (I-IV). Domain 
I (19 amino acids, white) interacts with domain VI of the regulatory subunit. Domain II 
(residues 20-355, green) is divided into 2 subdomains (IIa and IIb). It holds catalytic triad 
(Cys105, His262 and Asn286). Domain III (residues 356-531, white) binds Ca2+ and 
phospholipids, and has a configuration similar to the C2 domain of PKC. Domain IV (residues 
532-700, yellow) possesses 5 EF-hand domains and binds Ca2+. The regulatory subunit contains 
domain V (residues 1-100, white), a hydrophobic glycine rich region that can work as a 
membrane anchor, and domain VI (residues 102-268, yellow), which binds Ca2+ (adapted from 
Wu et al., 2007). 
 
Calpains catalyze the proteolysis of proteins involved in cell migration, cell 

differentiation, cell-cycle regulation, signal transduction, cytoskeleton remodelling, 

embryonic development, apoptosis and nerosis (Wu et al., 2007). To avoid uncontrolled 

cleavage of proteins, calpain activity is controlled by many mechanisms, for example by 

the specific inhibitor calpastatin, which binds reversibly to calpain in a Ca2+-dependent 

manner (Wu et al., 2007). The Ca2+ concentration necessary for calpstatin binding is 

lower than the concentration required for the half-maximal activity of calpains (Wu et 

al., 2007). Another mechanism controlling calpain activity is phosphorylation. Protein 

kinase A was shown to inhibit calpain activity by phosphorylation at Ser369 and Thr370 

(Shiraha et al., 2002).  

Overactivation of calpains, mainly by alterations in Ca2+ homeostasis, can lead to 

abnormal degradation of many proteins and subsequent cell death. This overactivation 

is linked to many diseases, for example cardiac and cerebral ischemia (Yamashima, 

2000), traumatic brain injury (Kampfl et al., 1997), muscular dystrophy or 

neurodegenerative diseases (Yoon et al., 2006). It is proposed that overactivation of 

calpain observed in Alzheimer’s disease (AD) can play a role in neurodegeneration and 
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cytoskeletal pathogenesis (Shimohama et al., 1991; Tsuji et al., 1998; Yoon et al., 

2006). In okaidic acid-induced neurodegeneration two major synapse constituents – 

spectrin and synapsin-1 were cleaved by calpain (Yoon et al., 2006). It was also shown 

that motuporamine C (motC) – an inhibitor of axon outgrowth – induces a strong 

increase in the level of intracellular Ca2+ in embryonic chicken DRG neurons, resulting 

in the activation of calpain (To et al., 2008). Calpain was shown to be necessary for 

growth cone collapse, but inhibition of calpain only partially attenuates growth cone 

collapse induced by motopuramine C (To et al., 2008). 

Calcineurin 

 

Calcineurin is a heterodimer that consists of a catalytic subunit, called calcineurin A, 

and a regulatory Ca2+-binding subunit, called calcineurin B (Klee et al., 1988; Wu et al., 

2007). In mammals there are three isoforms of calcineurin A – α, β and γ, known also as 

α1, α2 and α3, respectively, and two isoforms of calcineurin B – B1 and B2. This 

serine/threonine protein phosphatase is highly expressed in brain with the highest level 

in the hippocampus and caudate putamen (Klee et al., 1988; Steiner et al., 1992; 

Morioka et al., 1997). Calcineurin A was shown to be present in cell bodies, axons, 

dendrites, postsynaptic densities, and spines (Wu et al., 2007). Approximately 50% of 

the calcineurin molecules are associated with the plasma membrane and the other 50% 

are localized in the cytosol (Klee et al., 1988). Calcineurin A comprises of a 

phosphatase domain, a calcineurin B-binding region, a calmodulin-binding domain, and 

an autoinhibitory loop, while calcineurin B contains a myristoylated-binding domain, 

two Ca2+-binding regions that contain two Ca2+-binding EF-hand motifs each and a 

calcineurin A-binding domain(Wu et al., 2007).  

 
 

Fig. 3. Schematic of calcineurin structure. Calcineurin is a heterodimer that consists of two 
subunits – calcineurin A and calcineurins B. Calcineurin A (521 amino acids) is the catalytic 
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subunit and consists of the catalytic domain (residues 70-328, orange), the calcineurin B-
binding domain (residues 348-368, green), the calmodulin binding domain (residues 391-414, 
light yellow) and the autoinhibitory domain (residues 486-490, blue). Calcineurin B (170 amino 
acids) is the regulatory subunit and possesses two Ca2+-binding regions that contain two Ca2+-
binding EF-hand motifs each (black inverted triangles), and the calcineurin A-binding domain 
(not shown) (adapted from Wu et al., 2007).  
 

Calcineurin is activated upon binding of Ca2+ to calcineurin B and Ca2+-dependent 

binding of calmodulin to calcineurin A. This induces conformational changes and 

releases an autoinhibitory domain from the catalytic active site (Klee et al., 1988; 

Stemmer and Klee, 1991). It was shown in cultured embryonic Xenopus spinal neurons 

that at the normal resting level of [Ca2+]i small local Ca2+signals activate calcineurin and 

high local Ca2+ signals activate CaMKII, inducing repulsion and attraction, respectively, 

while at low resting levels of [Ca2+]i both small and high local Ca2+signals activate 

calcineurin (Wen et al., 2004). cAMP can switch repulsion mediated by calcineurin into 

attraction. CaMKII and calcineurin control netrin-1 guidance (Wen et al., 2004). 

Moreover, Sema5B-induced growth cone colapes in embryonic chicken DRG neurons 

involved low-amplitude increase in the Ca2+ level associated with calcineurin activation 

followed by high-amplitude increase in the Ca2+ level associated with activation of 

calpain (To et al., 2007). Additionally calcineurin can be activated irreversibly by 

proteases such as calpain, trypsin and chymotrypsin (Wang et al., 1989; Wu et al., 

2004). It was shown in vitro that proteases can cleave the C-terminal part of calcineurin 

A, which contains the calmodulin-binding domain and the autoinhibitory domain, while 

the N-terminal part, containing the phosphatase catalytic domain and the calcineurin B-

binding domain, is resistant to proteolysis (Hubbard and Klee, 1989). Proteolytic 

truncation converts calcineurin into an active state, which does not require Ca2+ and 

calmodulin for activity (Hubbard and Klee, 1989). In cultured neurons and in mouse 

hippocampus calcineurin A was shown to be a substrate of calpain (Wu et al., 2004). 

Calpain was also shown to cleave cain/cabin 1, which is an endogenous inhibitor of 

calcineurin. For example, in Jurkat cells this cleavage is necessary for calcineurin-

mediated cell death (Kim et al., 2002). 

As it was mentioned above calcineurin activity can be inhibited by its autoinhibitory 

domain, which interacts with the catalytic domain of the subunit A (Wu et al., 2007). It 

can be inhibited also by immunosuppressant cyclosporine A (CsA) and FK506, which 

prior to inhibition of calcineurin bind to their intracellular immunophilins: cyclophilin A 

and FKBP12, respectively (Liu, 1991; Wu et al., 2007). They can bind to the N-
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terminus of the calcineurin B binding helix, the calcineurin subunit B and the catalytic 

domain of calcineurin (Liu et al., 1991). In addition, calcineurin was shown to be 

inhibited by cain/cabin 1, calcipressin, calcineurin homology protein (CHP) and protein 

kinase A anchoring protein (AKAP79) (Coghlan et al., 1995; Kashishian et al., 1998; 

Lai et al., 1998; Lin et al., 1999; Kingsbury and Cunningham, 2000).  

Due to its impact on the phosphorylation state of proteins calcineurin participates in 

many cellular processes, for example, in neuronal and muscle development (Antoni et 

al., 1998; Schiaffino and Serrano, 2002) and Na+ /K+ ion transport in the nephron 

(Tumlin, 1997). Calcineurin was shown also to play a role in Ca2+-dependent disorders, 

such as in cardiac hypertrophy (Bueno et al., 2002) and AD, where increased calpain I-

mediated truncation and activation of calcineurin was observed to correlate with the 

number of neurofibrillary tangles (NFTs) (Liu et al., 2005). 

 

Protein kinase C  

 

PKCs constitute a family of serine/threonine kinases highly expressed in brain tissue 

and implicated in signal transduction during neurite growth in the CNS. These enzymes 

play a role in regulation of short-time events, like neurotransmitters release, mid-term 

events, like receptor regulation, and long-term events, like synaptic remodelling 

(Battaini and Pascale, 2005). In mammals at least 12 isoforms of PKC were 

characterized and each isoform can play an unique role due to specific activation-

dependent subcellular localization and substrate phosphorylation (Dempsey et al., 

2000). The C-terminal catalytic domain is conserved among the different isoforms, 

while the N-terminal regulatory domain, which is responsible for binding to activators, 

shows diversity. Interaction of the pseudosubstrate sequence localized in the regulatory 

sequence with the substrate binding site in the catalytic domain inhibits the enzyme 

(Parekh et al., 2000). Binding of Ca2+, diacylglycerol (DAG), phosphatidylserine 

(PtdSer) or other lipids to the regulatory sequence leads to activation of PKC, which is 

associated with the translocation of the catalytically inactive enzyme from one 

compartment to another, where specific activators are available (Battaini and Pascale, 

2005). Depending on sensitivity to calcium and diacylglycerol PKCs are divided into 

three groups: the conventional calcium-dependent PKCs, calcium-independent PKCs, 

and atypical isozymes (Newton, 2003). The calcium-dependent PKCs (cPKCs): α, βI, 
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βII and γ require the membrane lipid PtDSer, free calcium, and DAG for the activation. 

The calcium independent PKCs (nPKCs): δ, ε, η, and θ are activated by DAG and 

atypical PKCs (aPKCs) ζ and λ/ι are Ca2+- and DAG-independent (Newton, 2003; 

Battaini and Pascale, 2005). 

PKC function and subcellular localization are regulated by downstream and upstream 

events. Downstream events are maintained by interaction between enzyme and its 

activator, while upstream events are maintained by phosphorylation at the catalytic 

region of the newly synthesized PKCs (Newton, 2003). The nascent kinase is first 

phosphorylated by phosphoinositide-dependent kinase-1 (PDK-1) which allows for the 

further autophosphorylation of two other residues at the catalytic domain. This leads to 

maturation of PKCs which adopt an inactive form able to interact with activators 

(Parekh et al., 2000; Battaini and Pascale, 2005).  

PKC activation can be regulated by protein-lipid interaction or protein-protein 

interaction. In the first case activation of PLC induces the hydrolysis of 

phosphatydidylinositol-4,5-biphosphate (PIP2) generating inositol-1,4,5-triphosphate 

(IP3) and DAG. IP3 releases Ca2+ from internal stores. Protein-protein interaction also 

plays an important role in activation of PKCs by changing their localization (Parekh et 

al., 2000; Newton, 2003). Scaffolding/adaptor proteins RACKs (receptors for activated 

C kinases) bind with isozyme selectivity to PKCs when they are activated, increase 

substrate phosphorylation and direct them close to the specific substrates (Mochly-

Rosen, 1995). Localization of inactive PKCs can be influenced by other scaffolding 

proteins RICKs (receptors for inactive C kinases) (Mochly-Rosen and Gordon, 1998). 

The role of PKCs in the brain is still largely unknown, but there are some hints from 

experiments using knockout mice and specific inhibitors. In PKCγ-/- mice spatial 

memory and LTP are impaired, and neuroprotection by estrogens after ischemia is 

reduced (Abeliovich et al., 1993; Hayashi et al., 2005). In PKCα-/- mice long-term 

synaptic depression is not inducible in the cerebellum (Leitges et al., 2004). 

 

Lysophosphatidic acid 

 

Lysophosphatidic acid (LPA) is a component of cell membranes and also is a bioactive, 

cellular signalling molecule. It has varied effects on different processes, for example, it 

can influence stimulation of cell proliferation, inhibition of cell survival, increase of 
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intracellular Ca2+ level, focal adhesion and actin stress fiber formation, and activation of 

many signalling pathways (Fukushima et al., 2002a; Fukushima et al., 2002b). LPA 

mediates signals by binding to seven-transmembrane domain receptors of the 

endothelial differentiating gene (EDG) family, which associate with heterotrimeric G-

coupled proteins (Sayas et al., 2002b). LPA was shown to signal through three different 

EDG receptors – EDG-2 (LPA1), EDG-4 (LPA2) and EDG-7 (LPA) (Contos et al., 

2000). The mechanism of signal transduction by these receptors is still unclear. Until 

now it was shown that binding of LPA to EDG-2 and EGD-4 leads to activation of Gi, 

Gαq and Gα12/13, while coupling with EDG-7 activates Gi and Gαq (Ishii et al., 2000). 

Interaction of EDG receptors with Gi promotes inhibition of adenylate cyclase and 

activation of the Ras-MAPK pathway; binding to Gαq activates PLC and increases the 

intracellular Ca2+ level, while coupling with Gα12/13 induces activation of RhoA and 

reorganization of the actin cytoskeleton (Moolenaar et al., 1997).  

The first indication that LPA plays a role as a signalling molecule in the nervous system 

came from studies done on neuronal cell lines. LPA was shown to induce neurite 

retraction and cell rounding by alteration of the actin cytoskeleton in neuroblastoma 

N1E-115, SH-SY5Y, and N2a cells (Jalink et al., 1993; Sayas et al., 2002b), and in 

neuroglioma NG-108 and PC12 cells (Tigyi and Miledi, 1992; Sayas et al., 2002b). In 

cultured primary neurons LPA has been shown to induce growth cone collapse by 

influencing the neuronal cytoskeleton (Saito, 1997; Fukushima et al., 2002a; Sayas et 

al., 2002a). Growth cone collapse and neurite retraction induced by LPA involve Rho 

and Rho-kinase (ROCK) activation and reorganization of the actomyosin cytoskeleton. 

Either inhibition of RhoA with C3 transferase or inhibition of ROCK with Y27632 

prevents LPA-induced retraction (Jalink et al., 1994; Hirose et al., 1998). Inhibitors of 

the myosin light chain kinase (MLCK) or cytochalasin D, an agent that blocks actin 

polymerization, can also abolish axon retraction induced by LPA (Jalink et al., 1993). 

Additionally, LPA influences dynamics and organization of microtubules. It decreases 

the level of detyrosinated-tubulin and increases the level of tyrosinated-tubulin in 

neuroblastoma SH-SY5Y cells, suggesting that lysophospatidic acid signalling 

destabilizes microtubules (Sayas et al., 2002b). Contrary to this expectation it was 

shown that in 3T3 fibroblasts LPA stabilizes microtubules (Cook et al., 1998).  

In addition, it was found by Sayas et al. that LPA induces hyperphosphorylation of tau 

and MAP1B with maximum levels at 1h (Sayas et al., 2002b). These authors could also 

show that GSK3β is involved in tau phosphorylation. Its activity increased after addition 
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of LPA and inhibition of this kinase with lithium chloride (LiCl) prevented LPA-

induced phosphorylation of tau and partially blocked neurite retraction in cerebellar 

neurons and neuroblastoma SH-SY5Y (Sayas et al., 2002b). 

 

THE GROWTH CONE  

 

The growth cone is a specialized, motile structure at the tip of growing axons, which 

guides them to their targets during development or regeneration. It reads extracellular 

signals using several surface receptors and processes them, eventually resulting in the 

rearrangement of the cytoskeleton and elongation, retraction or turning of neurites 

(Henley et al., 2004b). Growth cones navigate axon by protrusion or retraction of 

lamellipodia or filopodia. Lamellipodia are flattened veil-like extensions at the 

periphery of the growth cone, in which actin filaments form meshwork, which are 

implicated in neurite extension and cellular movement by membrane extension (Fig. 4; 

Matthews, 2001; Dent and Gertler, 2003). Filopodia are narrow cylindrical extensions 

containing bundles of actin filaments, which are able to extend tens of microns from the 

periphery of the growth cone and play a sensory role in growth cone steering (Kozma et 

al., 1997; Dent and Gertler, 2003; Gallo, 2006). Phase contrast studies showed that there 

is correlation between the rate of advance and the shape of the growth cone (Argiro et 

al., 1984). Also quantitative analysis of filopodia from DRG neurons showed that there 

is a direct link between filopodial movement and growth cone advance (Bray and 

Chapman, 1985).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The morphology of the growth cone. A differential intereference contrast (DIC) image 
of Xenopus growth cone. In general growth cones contain a peripheral (P) domain, consisting of 
filopodia and lamellipodia, and the central (C) (Zheng and Poo, 2007). 
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In general growth cones contain a peripheral (P) domain, mostly encompassing 

filopodia and lamellipodia, the central (C) domain composed of thicker regions rich in 

organelles and vesicles, and a transitional (T) domain localized between the P domain 

and C domain (Fig. 4; Dent and Gertler, 2003). 

 

 
 

Fig. 5. Stages of axon growth. Elongation of axons consists of three stages termed protrusion, 
engorgement, and consolidation (Goldberg and Burmeister, 1986). Protrusion occurs when 
filopodia and lamellipodia extend rapidly through the polymerization of actin filaments. 
Engorgement occurs when microtubules enter protrusions importing membranous vesicles and 
organelles. During consolidation the proximal part of the growth cone adopts a cylindrical shape 
due to depolymerization of F-actin in the neck of the growth cone leading to addition of a new 
segment of the axon (Dent and Gertler, 2003). 
  
The growth cone exhibits retrograde flow of material from the peripheral to the central 

region and into the axon shaft itself, and undergoes a repetitive sequence of 

morphological changes during elongation of the axon, which consists of three stages: 
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protrusion, engorgement, and consolidation (Goldberg and Burmeister, 1986). 

Protrusion occurs when filopodia and lamellipodia extend through the polymerization of 

actin filaments. During engorgement microtubules, enter the protrusions bringing with 

them vesicles and organelles (mitochondria, endoplasmic reticulum (ER)) (Dent and 

Gertler, 2003). The last stage is consolidation, which occurs when the proximal part of 

the growth cone adopts a cylindrical shape due to depolymerization of F-actin in the 

neck of the growth cone leading to addition of a new segment of the axon (Fig. 5; Dent 

and Gertler 2003). 

 

THE CYTOSKELETON 

 

The cytoskeleton is a system of filaments that establishes the proper shape of cells and 

provides mechanical lability, but also allows cells to move in response to signals from 

the surrounding environment (Alberts et al., 2008). Reorganization of the cytoskeleton 

is necessary for elongation, retraction or turning of neurites. There are three main types 

of filaments – microtubules, actin filaments and intermediate filaments, which have 

different mechanical properties, dynamics and biological roles (Alberts et al., 2008). 

Differences in properties appear as a result of differences in the structure of the filament 

subunits and the manner of their self-assembly. All cytoskeletal filaments are constantly 

remodelled in living cells by the assembly and disassembly of their subunits. Actin 

filaments and microtubules add and lose subunits only at their ends and one of the ends, 

called the plus-end, always grows faster than the other (Li and Gundersen, 2008).  

Intermediate filaments (IFs) are rope-like fibers made of intermediate filament proteins, 

with a diameter of 10nm (Alberts et al., 2008). There are five types of subunits found in 

neuronal IFs - light molecular weight NF (NF-L; 68kDa), medium molecular weight NF 

(NF-M; 150kDa), high molecular weight NF (NF-H; 200kDa), α-internexin (66kDa), 

and peripherin (57kDa) (Julien and Mushynski, 1998). IFs form twisted rope-like 

filaments that help neurons to extend long axons. In difference to microtubules and 

microfilaments they are nonpolar and are not involved in the generation of cell polarity 

(Goldman et al., 2008). NFs are made by heteropolymerization of NF-L, NF-M or NF-H 

(Lee et al., 1993). Peripherin can self-assemble into homopolymers (Ho et al., 1995) or 

interact with one of the three neurofilament subunits (Parysek et al., 1991). NFs are 

expressed in differentiated neurons with large diameter axons, while α-internexin 
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expression is restricted to neurons with smaller axons (Pachter and Liem, 1985; Fliegner 

et al., 1994), for example, cerebellar granule cells. Peripherin is found predominantly in 

the PNS; in CNS neurons with projections to the periphery, and in interneurons in the 

cortex and hippocampus (Brody et al., 1989; Escurat et al., 1990).  

Microtubules are long, straight and hollow tubes with an outer diameter of 25nm, 

composed of tubulin heterodimers assembled from one α-tubulin and one β-tubulin 

subunit (Luduena, 1998; Alberts et al., 2008; Li and Gundersen, 2008). They are 

polarized structures with plus and minus ends. In neuronal axons microtubules are very 

long and oriented with their plus end away from the cell body, whereas in dendrites they 

are shorter and their polarity is mixed, some have their plus end pointing away from the 

cell body while others have their plus ends toward the cell body (Alberts et al., 2008). 

However, in the distal segments of dendrites, microtubules were found to be oriented 

with their plus end away from the cell body, like in axons (Baas et al., 1988). 

Functions of microtubules are modified by their posttranslational modification, such as 

acetylation, phosphorylation or tyrosination/detyrosination (Luduena, 1998). The 

central region of the growth cone is rich in stable acetylated and detyrosinated 

microtubules, whereas in the peripheral region dynamic tyrosinated microtubules are 

mostly found (Fig. 6). These unstable and dynamic microtubules grow along filopodial 

actin filaments (Tanaka and Sabry, 1995; lSchaefer et al., 2002). A critical event in 

growth cone turning may be the stabilization of microtubules in a specific filopodium.  

Actin filaments, also called microfilaments and F-actin, are two-stranded helical 

polymers, with diameters of 5-9nm, formed by globular actin monomers (G-actin) 

(Alberts et al., 2008). They are organised into linear bundles, two-dimensional 

networks, or three-dimensional gels. Actin filaments are distributed throughout the cell, 

but their highest concentration is found in the cell cortex, under the plasma membrane. 

They provide mechanical support for cell shape and surface projections, like 

lamellipodia and filopodia, which are used by cells in locomotion (Alberts et al., 2008). 

Neurons contain almost equal amounts of nonmuscle isotypes of α-actin, β-actin and γ-

actin (Choo and Bray, 1978). The highest content of F-actin is in the P and T regions of 

the growth cone with lower and varying levels of the F-actin in the C region (Fig. 6). 

Actin polymerization at the so called ”barbed edge”, the plus end, is thought to drive 

protrusion of lamellipodia and filopodia (Tilney et al., 1981). After polymerization F-

actin interacts with a motor protein, myosin, and is retrogradely transported into the 

growth cone centre where it depolymerises (Lin et al., 1996). In the growth cone F-actin 
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is dynamic and undergoes turnover (Okabe and Hirokawa, 1990). The balance between 

the polymerization of actin at the leading edge and retrograde transport of entire 

filaments determines, for example, whether a filopodium extends or retracts (Dickson, 

2002). 

 

 
Fig. 6. The cytoskeleton of the growth cone. Representative micrograph of a rapidly extending 
growth cone of a hippocampal neuron. F-actin (stained with phalloidin, red) is concentrated in 
the P and T regions of the growth cone. Tyrosinated MTs (tyr-MTs, green) extend from the C 
region into the actin-rich region. Acetylated MTs (ace-MTs, blue) are restricted to the C region 
and the axonal shaft, and do not colocalize with F-actin (Dent and Gertler, 2003). 
 
Interaction between microfilaments and microtubules underlies many processes like 

migration or division of cells, neurite elongation, retraction or response to guidance 

cues. Reaction to guidance cues requires rearrangement of microtubules and 

microfilaments and a crosstalk between them. It was observed that in response to a 

repulsive guidance signal actin bundles are locally lost in the growth cone region next to 

the source of the signal. Subsequently, in the same region dynamic microtubules are 

also lost, resulting in the growth cone turning away from the signal. Elongation of axons 

and dendrites requires active transport of cytoskeletal components, microtubule-actin 

interactions, and the generation of contractile forces by growth cone to induce tension, 

which is based on actomyosin contractility (Lamoureux et al., 1997). In addition, 

myosin-based contractility is essential for axon retraction induced by many guidance 

cues. Myosin activity is in part regulated by the GTPase RhoA and its downstream 

effector ROCK (Kozma et al., 1997; Katoh et al., 1998; Wahl et al., 2000). 
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MYOSIN 

 

Myosins are motor proteins that move along F-actin (Ramamurthy et al., 2004). They 

are usually composed of a head, tail, and neck domain. The head domain, universal for 

all myosins, binds to actin filaments and uses ATP hydrolysis to generate force and 

move along filaments towards the plus end (an exception is myosin VI which moves 

towards the minus end) (Tan et al., 1992). The neck domain is a linker and lever for 

transferring force generated by motor protein. The tail domain has specific properties 

for each type of myosin, for example it can mediate interaction with cargo molecules 

and other myosin subunits (Ramamurthy et al., 2004).  

There are two classes of myosins. Members from the myosin I class consist of a single 

heavy chain with a molecular weight between 110 and 190 kDa, and at least one light 

chain with a molecular weight ranging from 14 to 27 kDa (Tan et al., 1992). The 

function of myosin I is unknown, but it is suggested to play a role in vesicle transport. 

Myosin II isoforms are expressed in almost all eukaryotic cell types. Specific isoforms 

of muscle myosin are expressed in muscle, while nonmuscle myosin isoforms are 

expressed in many cell types. Myosin IIB represents approximately 70% of entire 

myosin II expressed in the CNS. All myosins II are hexameric molecules consisting of 

up to two heavy chains with a molecular weight around 200 kDa and one or two sets of 

light chain with molecular weight between 16 and 20 kDa (Tan et al., 1992) bound to 

the neck domain of the heavy chain. The N-terminal motor domain of the heavy chain, 

containing the actin and nucleotide binding sites, is responsible for ATPase activity 

(Tan et al., 1992). One of the light chains regulates the activity of the head domain and 

is called the regulatory light chain or phosphorylatable light chain (MRLC), due to the 

fact that activity of myosin is regulated by phosphorylation of the light chain (Tan et al., 

1992). The second light chain is called an essential light chain and is not 

phosphorylated. It was shown that the head domain is not sufficient for a proper 

function of myosin II, despite the fact that it contains all elements necessary for force 

generation (De Lozanne and Spudich, 1987; Wessels et al., 1988). Throughout the 

entire tail domain there are many repeated motifs which are essential for formation of 

an α-helical coiled-coil structure. The smallest repeating motif consists of seven amino 

acids with small hydrophobic amino acids located in the first and fourth position (Tan et 

al., 1992). Repeating patterns of four seven-residue motifs form positive and negative 



                                                                                                                     Introduction 

 40 

charges on the surface of the coiled-coil which interact with a charged region of other 

myosin hexamers to form filaments.  

As mentioned above, phosphorylation of the MRLC increases ATPase activity of 

myosin II (Tan et al., 1992). It was found that the light chain can be phosphorylated by 

MLCKs, Ca2+-activated phospholipid-dependent protein kinase (Endo et al., 1982), 

PKC and in vitro by some other kinases, such as CaMKII, the cell cycle-dependent 

protein kinase pp34cdc2 and the reticulocyte protease-activated protein kinase I (Tan, 

1992). Two sites in MRLC were found to be phosphorylated by MLCK in vitro – serine 

19 (Ser 19) (Pearson et al., 1984) and threonine 18 (Thr18) (Ikebe et al., 1986). 

Phosphorylations at Ser 19 and Thr 18 occurs with ratio 1000:1 (Ikebe et al., 1986). 

Phosphorylation of the MRLC induces changes in myosin conformation. The 

unphosphorylated molecule favours the folded state called 10S, which releases products 

of ATP hydrolysis at a very slow rate, binds to actin weaker in comparison to the 

extended form 6S, and under physiological conditions is unable to form filaments. 

Phosphorylation at Ser 19 is sufficient to induce conformational changes into the 6S 

form and additional phosphorylation at Thr 18 further stabilizes this form (Tan et al., 

1992).  

Phosphorylation of myosin by PKC occurs on three major sites - at threonine 9 (Thr 9), 

serine 1 (Ser 1) and serine 2 (Ser 2). PKC phosphorylation seems to have no effect on 

ATPase activity if the MRLC has not previously been phosphorylated by MLCK and it 

has different effects in different systems (Tan et al., 1992). On one hand it was shown 

that in smooth muscle PKC phosphorylation can decrease affinity for actin (Ikebe et al., 

1986), but on the other hand it was shown for unique embryonic smooth muscle myosin 

isoforms that it can increase the actin-activated ATPase (de Lanerolle and Nishikawa, 

1988). Phosphorylation by PKC does not induce conformational changes of myosin – it 

remains predominantly in the 10S form, and it can inhibit phosphorylation by MLCK, 

and vice versa (Tan, 1992; Tan et al., 1992).  

Phosphorylation of the MRLC by CaMKII and protease-activated protein kinase I 

appears at Ser 19 and is not observed after phosphorylation by MLCK. It seems to be 

important during a phase following the intracellular Ca+2 increase and enhances actin-

activated ATPase activity. Phosphorylation by pp34cdc2 appears at Ser 1 and Ser 2, but 

the effects have not been determined. Dephosphorylation of the MRLC is carried out by 

protein phosphatase type 1M (PP1M) (Tan et al., 1992).  
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In most nonmuscle cells and in muscle as well the heavy chain of myosin can also be 

phosphorylated. The phosphorylation sites are located within the tail domain and 

usually in close proximity to the carboxyl terminus (Tan et al., 1992). Phosphorylation 

by Myosin Heavy Chain Kinases (MHCKs) was shown to decrease or inhibit the actin-

activated ATPase activity (Collins and Korn, 1980; Cote et al., 1981). The heavy chain 

can be phosphorylated also by PKC, casein kinase II (CK II) and CaMK. The 

mechanism by which phosphorylation of the heavy chain regulates activity of myosin is 

unknown.  

As it was mentioned above axon retraction is mediated by myosin II which interacts 

with F-actin to generate contractile forces. It was shown that myosin II activity is 

required for axon retraction induced by semaphorin 3A and that myosin II acts 

downstream of RhoA-ROCK (Gallo, 2006).  

 

RHO GTPASES 

 

Rho family GTPases cycle between an inactive GDP-bound state and an active GTP-

bound state (Luo, 2000). They are turned on by guanine nucleotide exchange factors 

(GEFs), which exchange GDP to GTP (Fig. 7). Most GEFs contain a Dbl-homology 

(DH) domain by which they bind and stabilize Rho GTPases in a nucleotide-free state 

(Moon and Zheng, 2003). GTPases are switched off by Rho GTPase activating proteins 

(GAPs), which stimulate hydrolysis of GTP to GDP (Fig. 7). Additionally, Rho 

GTPases are controlled by GDP dissociation inhibitors (GDIs), which bind inactive 

GDP-bound proteins and stabilize Rho GTPases in an inactive state (DerMardirossian 

and Bokoch, 2005). 

The members of the Rho family GTPases are Rho (Ras homologous), Rac (Ras-related 

C3 botulinum toxin substrate) and Cdc42 (cell division cycle 42) subfamilies. There are 

three isoforms of Rho: RhoA, RhoB and RhoC. In neurons RhoA is expressed at higher 

level than the other isoforms (Lehmann et al., 1999). Rho GTPases were shown to 

regulate cytoskeleton function. For example, Rho is involved in the formation of actin 

fibers (Hall, 1994), Rac participates in the regulation of lamellipodia and membrane 

ruffling (Ridley et al., 1992) and Cdc42 ioregulates the formation of filopodia (Tapon 

and Hall, 1997). The three GTPases can regulate each other’s activity. For example, in 

Swiss 3T3 cells the effects of over-active Rho, Rac and Cdc42 mutants on the actin 
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cytoskeleton suggest that Cdc42 activates Rac, which in turn activates Rho (Nobes and 

Hall, 1995). On the other hand there are many studies showing that Rho and Rac can 

inhibit each other, what results in their opposing effects on cell migration and growth 

cone extension (Xu et al., 2003; Seasholtz et al., 2004).  

     
Fig. 7. Schematic of Rho GTPase activation. In response to upstream signals Rho GTPases 
(Rho) are activated by guanine nucleotide exchange factors (GEFs) that exchange GDP to GTP. 
Rho GTPase activating proteins (GAPs) inactivate RhoGTPases by stimulating the hydrolysis of 
GTP to GDP by Rho. Active Rho GTPases stimulate their downstream effectors, such as 
ROCK, resulting in rearrangement of actin cytoskeleton (Luo, 2000). 
 
Rho GTPases play an important role in many neuronal processes, for example in the 

generation of neurons by regulating cytokinesis (Lee et al., 2000), in neuronal migration 

(Zipkin et al., 1997), in establishing neuronal polarity (Bradke and Dotti, 1999), and in 

synapse development (Weston et al., 2000). Studies in vivo and in many neuronal-like 

cell lines and primary neurons show that axon extension is regulated positively by Rac 

and Cdc42 (Jalink et al., 1994; Luo et al., 1994; Kozma et al., 1997; Lamoureux et al., 

1997; Kalman et al., 1999; Luo, 2000) and negatively by Rho (Jin and Strittmatter, 

1997; Kozma et al., 1997; Kalman et al., 1999). Axonal initiation and elongation in 

Drosophila melanogaster embryonic sensory neurons is affected by expression of 

constitutively active or dominant negative Rac and Cdc42 (Luo et al., 1994). Rho 

activation leads to growth cone collapse and inhibition of neurite extension in many cell 
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lines and primary neurons, which can be prevented by inactivation of Rho with C3 

transferase from Clostridium botulinum (Jalink et al., 1994; Jin and Strittmatter, 1997; 

Kozma et al., 1997; Lehmann et al., 1999). It specifically ADP-ribosylates Rho at 

asparagine 41 (Asn 41) and inactivates the G-protein (Ren et al., 1999). For example, 

C3 transferase can promote DRG neurons outgrowth on myelin, MAG and Nogo-66 

substrates (Fournier et al., 2003) and attenuates LPA-induced neurite retraction (Jalink 

et al., 1994). Up- and downregulation of the Rho/ROCK pathway in cultured cerebellar 

granule neurons affects axon numbers and growth cone sizes – a dominant active form 

of RhoA reduces numbers of neurites and expression of C3 in these cells increases the 

number of neurites (Bito et al., 2000). 

Rho subfamily members are activated by chemorepulsive molecules and transduce 

signals to actin filaments through many downstream effector proteins which bind the 

active form of Rho GTPases (Jin and Strittmatter, 1997). Among these proteins are 

protein kinase N (PKN), phosphatidylinositol 4-phosphate 5-kinase (Ren et al., 1999), 

the Rho-associated kinase p160ROCK (ROCK I) and the ROCK-related kinase (ROCK 

II). Activated ROCK I or ROCK II can directly phosphorylate the MRLC or indirectly 

increase the MRLC phosphorylation by inactivation of the regulatory myosin light chain 

phosphatase (MLCP) (Amano et al., 1996; Redowicz, 1999). ROCK I and ROCK II 

activity can be inhibited by the pyridine derivative Y27632 (Uehata et al., 1997). ROCK 

inhibition by Y27632 promotes DRG neurons outgrowth on myelin, MAG and Nogo-66 

substrates (Fournier et al., 2003) and initiates formation of axons, promotes axonal 

maturation during the very early stages of axonogenesis and enhance axon elongation in 

mouse cerebellar granule cells (Bito et al., 2000). Ephrin A5 induced growth cone 

collapse in retinal ganglion cells could be reduced by treatment wit Y27632 (Wahl et 

al., 2000).  

 

NO AS A SIGNALING MOLECULE 

 

Nitric oxide (NO) is a short lived free radical molecule that can be detected in all 

tissues. It functions as a vasorelaxant, as a neurotransmitter and as an effector in the 

immunoresponse. NO is also an important modulator of synaptic plasticity during brain 

development, sensory and visual processing, and memory formation. In addition, it can 

also regulate gene expression, protein functions and the response of cells to redox 
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perturbations due to the ability to modify free radicals like the superoxide anion, key 

redox regulators such as glutathione, and macromolecules like proteins (Martinez-Ruiz 

and Lamas, 2004). On the other hand NO plays a role in many pathological events, like 

neurodegenerative diseases, ischemia, and epilepsy, and is responsible for 

neuroinflammatory cell damage and exicitotoxic cell death (Zhang and Snyder, 1995). 

NO was described for the first time as a neuronal messenger molecule in 1988 by 

Garthwaite and colleagues. They observed that cerebellar granule neurons upon 

exposure to glutamate agonists release an endothelium-derived relaxing factor-like 

substance (Garthwaite et al., 1988). 

NO is an atypical messenger molecule. It is synthesized only when required instead of 

being stored in synaptic vesicles and released by exocytosis. It also does not bind to any 

membrane-associated receptor proteins, but can diffuse from one cell to another and 

interact directly with targets (Schuman and Madison, 1994; Bicker, 2005). The activity 

of NO is terminated by reaction with a substrate and not by enzymatic degradation or 

reuptake mechanisms.  

 

Production of NO 

 

NO is produced mainly by a family of enzymes called nitric oxide synthases (NOS) that 

convert L-arginine and oxygen into NO and L-citrulline. Three members of the NOS 

family exist - neuronal NOS (nNOS, NOS I), endothelial NOS (eNOS, NOS III) and 

inducible NOS (iNOS, NOS II). All isozymes share 50-60% sequence homology (Guix 

et al., 2005). nNOS and eNOS are constitutively expressed and are Ca2+/calmodulin-

dependent enzymes that produce small amounts of NO that acts for a few minutes, 

while iNOS is Ca2+ -independent and produces high amounts of NO acts for hours or 

even days (Iadecola et al., 1997; Ebadi and Sharma, 2003). 

eNOS is expressed preferentially in endothelial cells, but also in other cell types such as 

neurons, iNOS in glial and immune cells such as macrophages (Guix et al., 2005), while 

nNOS is found predominantly in developing (Bredt and Snyder, 1994) and mature 

neurons (Cork et al., 1998). There are four major isoforms of nNOS: cytoplasmic 

nNOSγ and nNOSβ, and isoforms anchored to subcellular structures via the PDZ 

domain, nNOSα and nNOSµ (Fig. 8; Guix et al., 2005; Alderton et al., 2001). 
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Fig. 8. Splice variants of nNOS. Four different protein products of detected human nNOS 
splice variants are predicted. The schematic representation shows nNOSα, described as full 
length nNOS (residues 1-1433); two cytoplasmic variants: nNOSβ (residues 236-1433) and 
nNOSγ (residues 336-1433), which lack the PDZ domain; and nNOSμ that has an additional 34 
amino acids between the CaM and FAD/FMN binding sites. The PDZ domain mediates 
associatation of nNOS with membrane (adapted from Alderton et al., 2001). 
 

All the NOSs have two domains that work independently. The COOH-terminal domain 

has a reductase activity and consists of sites binding Ca2+/calmodulin, flavine adenine 

dinucleotide (FAD), flavine adenine mononucleotide (FMN) and reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) (Fig. 9). The NH2-terminal domain shows 

oxygenase activity and contains binding sites for tetrahydrobiopterin (BH4), heme and 

L-arginine (Fig. 9; Stuehr, 1999). Heme and BH4 are necessary for the conversion of L-

arginine to NO and citrulline (Mayer et al., 1991). Coupling of Ca2+/calmodulin to NOS 

activates the enzyme enabling electron influx into the active centre of NOS (Abu-Soud 

and Stuehr, 1993). Calmodulin promotes interaction between the oxygenase and 

reductase domains and is necessary for the electron flow from NADPH to the flavins 

and from flavins onto heme (Abu-Soud and Stuehr, 1993; Irikura et al., 1995).  

 
 
Fig. 9. Schematic structure of NOS. nNOS is a dimeric enzyme comprised of two identical 
monomers that are bridged by a zinc tetrathiolate (Zn-S4) cluster. NOS consists of two domains: 



                                                                                                                     Introduction 

 46 

a reductase domain and an oxygenase domain, which work independently. Electrons (e−) are 
derived from NADPH to the reductase domain and carried via FAD and FMN to heme (Fe), 
located at the oxygenase domain. Interactions of electrons with heme and BH4 catalyse the 
reaction of oxygen with L-arginine, generating citrulline and NO (under some conditions NO- 
can be produced instead of NO). Ca2+/CaM is necessary for the electron flow from NADPH to 
the flavins and from flavins onto heme (adapted from Alderton et al.,  2001). 
 
NO production is regulated mainly by phosphorylation of NOS. Phosphorylation of 

nNOS by CaMK, cAMP-dependent protein kinase (PKA), cGMP-dependent protein 

kinase (PKG) and PKC decreases its catalytic activity (Nakane et al., 1991; Dawson and 

Dawson, 1996; Komeima et al., 2000), while dephosphorylation by calcineurin 

increases its activity. Contrary, it was also shown that phosphorylation of nNOS by 

PKC increased its activity (Nakane et al., 1991) and by PKA had no influence on its 

activity (Brune and Lapetina, 1991). 

In addition NO can be also produced by the reduction of nitrites in acids, by the 

xanthine oxidase pathway or by the reaction of H2O2 with L-arginine in a non-

enzymatic way (Maiese and Boccone, 1995; Nagase et al., 1997). 

 

Mechanism of action 

 

Binding to metal centres  

 

NO can directly interact with the metal ion within heme groups of proteins. The main 

cellular target for NO is the soluble guanylate cyclase (sGC) (Ignarro, 1991). NO reacts 

with Fe2+ located in the centre of the heme group of sGC, resulting in pulling Fe2+ out of 

the plane of the porphyrin ring and a conformational change that increases conversion 

of guanosine-5’-triphosphate (GTP) to cyclic guanosine-3’,5’-monophosphate (cGMP) 

(Guix et al., 2005). cGMP is a second messenger that activates protein kinases, for 

example PKGI, which controls [Ca2+]i levels, and PKGII regulating the flux of anions, 

such as chloride (French et al., 1995; Lau et al., 2003). cGMP-dependent 

phosphorylation stimulates release of neurotransmitters by inducing phosphorylation of 

synaptic vesicle proteins. cGMP also modulates functions of some phosphdiesterases of 

cyclic nucleotides (PDE), for example, it induces inhibition of PDEIII resulting in 

increase of intracellular cAMP levels and activation of cAMP-dependent pathways 

(Ono and Trautwein, 1991).  
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NO binds to heme at the copper-heme centre of the reduced form of cytochrome c 

oxidase as a competitive inhibitor of oxygen. But when the enzyme is oxidized, NO can 

interact with copper instead of heme, generating nitrate with the bound oxygen, leading 

to enzyme inactivation (Yoshikawa, 2000; Cooper, 2002). Other examples are the 

interactions of NO with the heme groups of cytochrome P450 and haemoglobin 

(Martinez-Ruiz and Lamas, 2004). The interaction of NO with the heme group of 

cyclooxygenase (COX) is proposed to be mechanism leading to its activation and 

increased production of prostaglandin (Salvemini et al., 1993).  

 

Protein S-nitrosylation 

 

S-nitrosylation is a covalent posttranslational modification of proteins. As other 

modifications it is evoked by a stimulus, precisely targeted, spatio-temporally restricted 

(accurately regulated in time and space) and is involved in the cell’s flexibility in 

response to changes in an extracellular environment (Hess et al., 2005; Hao et al., 

2006). In contrast to other posttranslational modifications such as acetylation or 

phosphorylation, S-nitrosylation is a non-enzymatical reaction. It can be achieved by 

NO, by nitrosating species like N2O3, or by transferring a nitrosyl group from metal-NO 

complexes or from already existing nitrosothiols. The latter is called transnitrosylation 

(Paige et al., 2008). An example of transnitrosylation is the transfer of the NO moiety 

from S-nitroso-glutathione (GSNO) to thiol group of a cysteine residue in a protein 

(Hess et al., 2005). A number of enzymes were found to promote S-nitrosylation. For 

example, Cu, Zn superoxide dismutase (SOD) promotes S-nitrosylation of haemoglobin 

(Hess et al., 2005). The molecular mechanism of S-nitrosylation is poorly understood. It 

occurs at free thiol groups of cysteine of target proteins. In a sequence motif favourable 

for S-nitrosylation the cystein residue can be flanked by aspartic acid (Asp), glutamic 

acid (Glu), and basis arginine (Arg), histidine (His), and lysine (Lys). Deprotonation of 

the thiol is suppressed and enhanced by neighbouring acidic and basic groups, 

respectively (Hess et al., 2005). On the other hand, also cysteins located in hydrophobic 

environments can be S-nitrosylated. The extend of S-nitrosylation is determined by the 

concentrations of the nitrosylating agent and the target, which depends on production of 

NO by NOSs, subcellular localization of NOSs and their targets, and stability of the 

bond (Martinez-Ruiz and Lamas, 2004). It should be noted that the NOSs can produce 
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other reactive nitrogen species (RNS) that can work as nitrosylating agents. Some of the 

proteins to be S-nitrosylated are physically associated with eNOS and nNOS, indicating 

that subcellular compartmentalization can play an important role for modification. An 

example is the colocalization of nNOS and the NMDA receptor (NMDAR). nNOS 

binds through its PDZ domain to the postsynaptic scaffolding protein PSD93/95 which 

also binds to the NMDAR and thus brings it to close proximity of nNOS. S-

nitrosylation is also determined by the stability of the S-nitrosothiol. In general, the 

modification is very labile and can be reversed without need for an enzyme, especially 

in the highly reducing cytosolic environment (Martinez-Ruiz and Lamas, 2004). 

Moreover, the addition and removal of the NO group can influenced by conformational 

changes of the protein.  

Recently it was shown that S-nitrosothiols differ in their stability (Paige et al., 2008). 

Most of the nitrosothiols are labile when exposed to physiological concentrations of 

glutathione (GSH). Their generation is increased when the cellular level of NO is 

enhanced, suggesting that their role in signalling is only temporary and associated 

directly with the time of NO production. The stable nitrosothiols appear to result from 

conformational changes induced by S-nitrosylation that reduce their accessibility to the 

reducing cytosolic environment (Paige et al., 2008). For example, S-nitrosylation of 

cysteine β93 in haemoglobin induces a conformational change so that the nitrosothiol is 

hidden in a hydrophobic pocket making it inaccessible for the environment. This 

conformational change can be reversed by deoxygenation (Singel and Stamler, 2005). 

S-nitrosylation was shown to modulate activity of many ion channels, enzymes, growth 

factors, G-proteins and transcription factors (Stamler et al., 1997a; Stamler et al., 

1997b). S-nitrosylation of the NMDARs (Lipton, 1999), protein tyrosine phosphatase 

(PTPase), capases, dimethylarginine dimethylaminohydrolases (DDAHs) and JNKs 

results in downregulation of their activity. Matrix metalloproteinase 9 (MMP-9) was 

shown to be directly activated by S-nitrosylation (Gu et al., 2002). Also the type 1 

ryanodine receptor/ Ca2+ ionophore of skeletal muscle (RyR1) and cyclic-nucleotide-

gated Ca2+ permeable channels (CNGs) are activated by S-nitrosylation. In addition, S-

nitrosylation of haemoglobin influences blood flow (Stamler et al., 1997a) and platelet 

aggregation (Pawloski et al., 1998).  
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Protein nitrotyrosination 

 

Nitrotyrosination is a posttranslational modification of proteins that works by addition 

of a nitro (-NO2) group to one carbon atom of the aromatic ring of tyrosine. By 

preventing phosphorylation of proteins or inducing conformational changes nitration 

results in loss of their function. For example, loss of function was observed in case of 

nitration of  actin (Aslan et al., 2003) and mitochondrial superoxide dismutase 

(MnSOD) (Ischiropoulos et al., 1992). In case of  cytochrome c (Cassina et al., 2000), 

PKC (Hink et al., 2003) or JNKs (Go et al., 1999) nitration results in activation of these 

proteins.  

 

Physiological effects of NO 

 

NO can play both protective and toxic role, what depends mainly on its intracellular 

concentration, the NOS isoform generating NO, the availability of the substrate, type of 

cell and the extra- and intracellular milieu in which NO is produced. Since the level of 

NO can not be regulated by its storage, production of NO by NOS seems to be the main 

step regulating NO level. At the low concentration NO plays a physiological role in 

modulation of the vascular tone, during immunoresponse and inflammation, and in 

neurotransmission. 

Vascular effects 

 

NO was shown to stimulate vessel relaxation and it affects mainly the vascular smooth 

muscle cells (VSMCs) inducing hyperpolarization of the membrane by direct activation 

Ca2+-dependent K+-channels or by triggering the synthesis of cGMP and PKG-

dependent opening or closing of ion channels, such as Ca2+-dependent K+-channels 

(Guix et al., 2005). Contraction of VSMCs is induced by phosphorylation of MLC by 

Ca2+/calmodulin-dependent MLCK and can be reverted by the MLCP. ROCK can 

phosphorylate and inhibit the latter, favouring contraction. NO activates cGMP-

dependent protein kinase cGKIα that inhibits ROCK, thus, resulting in reversion of 

contraction. In addition, contraction of VSMCs can be triggered by PLCβ, which 

activates PKC and mobilizes intracellular Ca2+ (Guix et al., 2005). Increased Ca2+ levels 
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activate the MLCK, inducing contraction (Guix et al., 2005). NO activates cGMP-

dependent kinases that inhibit PLCβ2 and PLCβ3 (Xia et al., 2001) and thus also leads 

to relaxation of VSMCs.  

 

Immunological functions 

 

Upon immunological or inflammatory stimulation iNOS produces large amounts of NO 

that can react with reactive oxygen species (ROS), resulting in the formation ONOO-, 

which is an anti-tumor and anti-microbial agent (Xie and Nathan, 1994). On the other 

hand, high levels of NO can be toxic, inactivating enzymes of the respiratory chain and 

inducing apoptosis (Guix et al., 2005). Additionally, NO is also known as a regulator of 

leukocyte adhesion in blood vessels (Kubes et al., 1991). 

Pro- and anti-apoptotic effects of NO 

 

NO was shown to be both anti- and pro-apoptotic, depending on its concentration, flux, 

co-existence of other noxious agents and cell type (Guix et al., 2005). The action of NO 

is mostly determined by the redox state of the cells. It seems that NO produced by 

NOSs in the cell plays role as anti-apoptotic molecule, while NO delivered by chemical 

donors is associated with apoptosis. The anti-apoptotic role of NO is mainly associated 

with S-nitrosylation of caspases 1, 3 and 9 resulting in their inhibition (Kim et al., 1997; 

Mannick et al., 1999; Thippeswamy et al., 2001). In addition, NO inhibits the 

mitochondrial permeability transition pore (MPTP) and cytochrome c release, and 

induces the expression of cytoprotective genes, such as HSP70 (Hao et al., 1999; 

Brookes et al., 2000). On the other hand, NO was shown to be a pro-apoptotic molecule 

as it binds to cytochrome c oxidase and induces O2˙¯ formation in mitochondria, 

resulting in mitochondrial swelling, transient permeability, cytochrome c and calcium 

release, damages of the mitochondrial complexes I, II, IV and V, aconitase, creatine 

kinase, the mitochondrial membrane, mitochondrial DNA and mitochondrial SOD 

(Brown, 1999). Moreover, NO-induced apoptosis is also concomitant with an increase 

in the ratio of Bax/Bcl-xL, which results in release of cytochrome c and activation of 

caspases (Kolb, 2000). 
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NO in the nervous system 

 

NO is a well-known neurotransmitter and neuromodulator in both the CNS and the 

PNS, where it works through cGMP activation (Trabace and Kendrick, 2000; Guix et 

al., 2005). In the CNS it plays a role in pain perception (Yamamoto et al., 1993), control 

of sleep (Monti and Jantos, 2004), thermoregulation, appetite, neural development 

(Cheng et al., 2003) and synaptic plasticity (Dinerman et al., 1994). 

Activation of the brain’s NMDARs results in NO synthesis (Garthwaite et al., 1988). 

Under physiological conditions NMDARs control several processes in neuronal 

development, synaptic plasticity and memory, but excessive activation leads to neuronal 

cell death. This indicates that proper regulation of NMDAR activity is crucial for 

neuronal survival. As it was mentioned before the NMDAR is anchored to the plasma 

membrane and nNOS is brought to close proximity of NMDAR through the interaction 

with the scaffolding protein PSD93/95. It was observed that in many regions of the 

brain, such as hippocampus, striatum and hypothalamus NMDAR increases influx of 

Ca2+ which activates nNOS (Guix et al., 2005). Activated nNOS produces NO which 

oxidizes the free sulfhydryl groups on the NMDA channel complex to form S-

nitrosothiols resulting in inhibition of NMDAR (Lei et al., 1992a). This suggests that 

NO works as a negative feedback modulator which reduces NMDA activity (Lipton, 

1999) and consequently attenuates NMDA-mediated neurotoxicity (Meffert et al., 

1994). In contrast, NO was shown to play a role in glutamate- and NMDA-induced 

death of cultured cortical neurons, while inhibition of NO production prevents the 

NMDA-mediated cell killing (Dawson et al., 1991). These contradictory results can be 

due to a two-phase action of nNOS upon activation by NMDAR. As I mentioned, 

increased levels of Ca2+ induced by NDMAR activate nNOS, which produces NO. High 

levels of NO can mediate toxicity of NMDAR, for example by S-nitrosylation or 

nitration of glutamine synthase, which has a role in ammonia detoxification in brain. 

Inhibition of nNOS during this initial phase of its activation can prevent neurotoxicity. 

During the subsequent phase NMDAR is S-nitrosylated by NO, which prevents the 

accumulation of toxic levels of Ca2+ through unrestrained NMDAR activity. Inhibition 

of nNOS at this step could prevent protective effects of NO. Consistent with this model, 

simultaneous treatment of cortical neurons with NMDA and nNOS inhibitors resulted in 

inhibition of NMDA toxicity (Dawson et al., 1991) and the activity of NMDAR was 

found to be decreased upon S-nitrosylation (Lipton, 1999). 
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As I mentioned, the main target of NO is sGC. Once nNOS is activated, for example by 

NMDAR-mediated Ca2+ influx, it produces high levels of NO, which reacts with the 

metal centre of sGC, leading to its activation and increased conversion of GTP to 

cGMP. cGMP as a second messenger activates many protein kinases, for example PKG. 

Activated PKG can phosphorylate nNOS, resulting in inhibition of nNOS activity. 

Inhibition of nNOS activity by PKG represents a negative feedback regulation of nNOS.  

In addition, it was found that CaMKII can be S-nitrosylated at Cys6, resulting in its 

inactivation, what can contribute to NO-induced neurotoxicity in the brain (Song, 

2008). Paradoxically, it was observed that CaMKII can phosphorylate nNOS at Ser847, 

resulting in decrease of nNOS activity, possibly by blocking the binding of 

Ca2+/calmodulin (Nakane et al., 1991; Komeima et al., 2000; Rameau et al., 2004). 

In vivo and in vitro studies show that NO enhances glutamate release (Prast et al., 

1998), which is suggested to be an important mechanism in memory formation. LTP has 

been proposed as the main mechanism underlying memory and learning, which occurs 

when  excitatory synapses are stimulated by the depolarization of postsynaptic neurons 

accompanied by release of neurotransmitter from presynaptic cells (Guix et al., 2005). 

This mechanism requires sending of a signal from the postsynaptic cell to the 

presynaptic neuron. NO is proposed to be this retrograde messenger, which activates 

release of glutamate through a cGMP-dependent pathway (Fig. 10; Nowicky and 

Bindman, 1993). When the level of NO is low, glutamate release is decreasing although 

the cGMP level is elevated, but NO-induced increase of cGMP level reverses the 

inhibitory effect on glutamate release. The critical seems to be not the level of NO and 

cGMP, but rather increase in cGMP levels stimulated by increase in cGMP levels (Guix 

et al., 2005). Application of NOS inhibitors to the postsynaptic neurons prevents LTP, 

what can be reversed by L-arginine addition (Kitto et al., 1992; Zorumski and Izumi, 

1993). Another support for a role of NO in LTP is the finding that LTP is also blocked 

by hemoglobin which intercepts NO in the synaptic cleft as it passes from the 

postsynaptic to the presynaptic cell (Dawson and Dawson, 1996). nNOS knockout mice 

and eNOS knockout mice showed only slightly reduced LTP, while double knockout 

mice for nNOS and eNOS (nNOS-/- and eNOS-/- mice) showed a strong decrease in 

LTP indicating that nNOS and eNOS can compensate loss for each other in the 

postsynaptic synthesis of NO (Son et al., 1996).  
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Fig. 10. NO plays a role as a transcellular secondary messenger in LTP. NMDAR-mediated 
Ca2+ influx activates NOS, which converts arginine to NO and citrulline. NO diffuses through 
the cell membranes from the postsynaptic neuron to the presynaptic neuron, where it activates 
release of glutamate through a cGMP-dependent pathway (Huang, 1999). 
 
Nitric oxide was also shown to directly or indirectly regulate the release of 

neurotransmitters. For example, effect of NO on GABA and serotonin (5-HT) 

production is biphasic depending on its concentration. The basal level of NO decreases 

GABA and serotonin (5-HT) release, while high concentrations of NO increase their 

release (Kaehler et al., 1999). NO and NMDA receptors stimulate production of 

noradrenalin (NE). Treatment with NO donors increases release of NE in the 

hippocampus both in vivo and in vitro and NOS inhibitors decrease NE release 

(Feldman and Weidenfeld, 2004). On the other hand, NO and ONOO- deactivate NE by 

direct reaction with it (Kolo et al., 2004).  

 

NO and neurodegenerative diseases 

 

nNOS activation following continuous stimulation of excitatory amino acid receptors 

that mediate glutamate toxicity or iNOS activation by cytokines or endotoxin can lead 
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to production of high amounts of NO, which were found to be toxic for cells of the 

nervous system (Guix et al., 2005). All neurodegenerative processes like Huntington’s 

disease (HD), Alzheimer’s disease, Parkinson’s disease (PD), amyotrophic lateral 

sclerosis (ALS), multiple sclerosis (MS), and ischemia involve oxidative stress, 

suggesting involvement of NO.  

AD is associated with accumulation of the neurotoxic β-amyloid peptide (Aβ) that 

induces formation of neuritic plaques and intracellular neurofibrillary tangles caused by 

hyperphosphorylation of tau (Selkoe, 2001). Aβ triggers formation of ROS which can 

react with NO to form ONOO-, resulting in nitrotyrosination of proteins (Miranda et al., 

2000; Tran et al., 2003). The hippocampus cerebral cortex of AD patients shows higher 

tyrosine nitration levels in comparison to those from healthy people (Hensley et al., 

1998). In the brains from patients with the AD NOS positive neurons are interspersed in 

the tissue and can NO diffuse to NOS negative neurons (Hyman et al., 1992). An 

increased expression of NOS was found in neurons with neurofibrillary tangles in the 

entorhinal cortex and hippocampus of AD patients (Thorns et al., 1998). In addition, in 

brains of patients with AD nNOS-positive astroscytes were also found in proximity of 

amyloid plaques - in the subiculum and the CA1 region of the hippocampus, and in the 

areas were lost of neurons was observed – in the II layer of the entorhinal cortex and in 

the CA4 region of the hippocampus (Thorns et al., 1998; Guix et al., 2005). 

The high levels of NO after ischemia and stroke are mainly due to iNOS activation 

which increases from 12h to 7 days after injury (Iadecola et al., 1995). Additionally, 

increased levels of intracellular Ca2+-induced by ischemia activate eNOS and nNOS in 

the feedback mechanism aimed at improving blood supply (Eliasson et al., 1999; Guix 

et al., 2005). Both iNOS knockout mice (Iadecola et al., 1997) and nNOS knockout 

mice (Eliasson et al., 1999) show a reduction in neuronal death after cerebral ischemia, 

while eNOS knockouts show an increase in neuronal death after stroke (Huang, 1999). 

In patients with MS an elevated expression of iNOS in macrophages, astrocytes and 

peripheral mononuclear cells was found at sites of inflammation (Guix et al., 2005). 

When inflammation was reduced, iNOS expression decreases in demyelinated plaques 

in MS patients (Liu et al., 2001; Guix et al., 2005). In the cerebrospinal fluid (CSF), 

urine, and serum from patients with MS increased levels of NO metabolites - nitrite and 

nitrate were found (Giovannoni et al., 1997; Yamashita et al., 1997; Giovannoni et al., 

1999). 
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MICROTUBULE ASSOCIATED PROTEINS 

 

Microtubule associated proteins (MAPs) are a family of heterogeneous proteins 

regulating microtubule assembly and crosstalk between cytoskeletal filaments (Vecino 

and Avila, 2001). According to molecular weight MAPs have been classified into three 

classes. The low molecular mass (LMM) MAPs are kinesin-type proteins, dynamin, 

MAP2c and tau. MAP1S and MAP4 make up intermediate molecular mass (IMM) 

MAPs. MAP1A, MAP1B, MAP2 and cytoplasmic dynein belong to the high molecular 

mass (HMM) MAPs. Taking into account structural and functional aspects, MAPs are 

classified as fibrous (MAP1, MAP2, MAP4, tau), molecular motors (dynein, kinesin, 

dynamin) and assembly regulating proteins (STOPs and chartins). The fibrous MAPs 

are believed to regulate cellular differentiation and the shape and the size of the cell. 

Some of the fibrous MAPs, for example MAP1B and MAP2, regulate the activity of 

motor proteins responsible for intracellular transport (Jimenez-Mateos et al., 2005; 

Jimenez-Mateos et al., 2006). 

One of the best known MAPs is tau. It is found predominantly in axons as a soluble 

phosphorylated protein. It promotes polymerization of microtubules and stabilizes them, 

an activity that is probably regulated by phosphorylation at sites located within its 

microtubule-binding domain (Hanger et al., 2009). Both phosphorylation and splicing of 

tau are developmentally regulated. The highest phosphorylation is observed at 

embryonic and early developmental stages, suggesting involvement of tau in 

embryogenesis and early development (Hanger et al., 2009).  

MAP2 is expressed mainly in dendrites and plays an important role in dendritic 

differentiation (Farah and Leclerc, 2008). Suppression of MAP2 in cultured primary 

neurons inhibits the differentiation of neurites into dendrites and overexpression of 

MAP2 in non-neuronal cells induces formation of processes similar to dendrites (Edson 

et al., 1993; LeClerc et al., 1993; Belanger et al., 2002). MAP2-dependent dendritic 

differentiation seems to involve stabilization of microtubules. Interaction between 

MAP2 and microtubules is supposed to play an important role in defining dendritic 

identity via binding membranous organelles and signalling molecules to microtubules 

(Farah and Leclerc, 2008). MAP2 knockout mice show a reduction of dendritic length 

in hippocampal neurons (Harada et al., 2002). 
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MAP1s 

 

MAP1 proteins are a family of thermolabile MAPs that stabilize microtubules. There 

are three members of the group: MAP1A, MAP1B and MAP1S. MAP1A is found 

mainly in adult axons, where it is localized in dendrites, whereas MAP1B is highly 

expressed during development predominantly in axons (Bloom et al., 1984; Halpain and 

Dehmelt, 2006). The expression of MAP1S increases during the postnatal period, but in 

contrast to MAP1A its level is already high after birth (Orban-Nemeth et al., 2005). The 

highest levels of MAP1S are found in brain and testis (Orban-Nemeth et al., 2005). All 

three MAP1s are synthesized as the polyprotein precursors that are cleaved into a heavy 

chain (HC) and a light chain (LC1 for MAP1B, LC2 for MAP1A and LCS for MAP1S) 

(Fig. 11; Tögel et al., 1999). 

 

 
Fig. 11. Schematic representation of the MAP1 family. All MAP1 proteins are synthesized as 
polyprotein precursors which are posttranslationally cleaved into heavy and light chains 
(cleavage site indicated by black arrow). MAP1B, MAP1A and MAP1S share three homology 
domains (MH1, MH2, MH3, indicated by green boxes). MAP1A, MAP1B and MAP1S contain 
microtubule binding domains on the HCs, and microtubule and actin binding domains on the 
LCs. The actin binding domain is located in MH3 (green box). The Drosophila homologue 
Futsch shares only two homlogy domains (MH1 and MH3) with the mammalian members of 
the MAP1 family. 
 

MAP1B, MAP1A and MAP1S show three regions of high homology, which are called 

MAP1 homology domains: MH1, MH2 and MH3. The MH1 domain is located at the 

NH2 terminus of the heavy chain with approximately 500 amino acids in size. The MH2 
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domain is located at the COOH terminus of the heavy chain with 133 amino acids in 

size and MH3 is located at the COOH terminus of the light chain with approximately 

125 amino acids in size (Fig. 11; Langkopf et al., 1992). In addition to microtubule-

binding activity (Schoenfeld, 1994; Orban-Nemeth et al., 2005), all three MAP1s can 

bind also to microfilaments (Pedrotti et al., 1994; Pedrotti et al., 1996a; Pedrotti and 

Islam, 1996b; Tögel et al., 1998; Noiges et al., 2002; Orban-Nemeth et al., 2005).  

 

MAP1B 

 

As mentioned above MAP1B is one of the earliest MAPs expressed in the nervous 

system, with the highest level during embryonic development. It is downregulated 

during early postnatal development (Soares et al., 1998; Gordon-Weeks and Fischer, 

2000; Meixner et al., 2000). The regions of the nervous system that show neuronal 

plasticity and regenerative properties, for example the olfactory bulb and epithelium, the 

hippocampus, and the retinal photoreceptors, maintain high levels of MAP1B also in the 

adult (Gordon-Weeks and Fischer, 2000).  

The mature MAP1B complex consists of the heavy chain (300kDa) and one or more 

light chains, the LC1 (32kDa),  LC2 (30kDa), and/or LC3 (18kDa) that is the product of 

separate gene (Langkopf et al., 1992; Gordon-Weeks and Fischer, 2000; Meixner et al., 

2000; Orban-Nemeth et al., 2005; Halpain and Dehmelt, 2006). The interaction between 

the heavy and light chains is mediated by the MH1 in the heavy chain and the MH3 

domains in the LC1 and LC2 (Tögel et al., 1998). LC1 and LC2 can interact with both 

MAP1B and MAP1A HCs (Schoenfeld et al., 1989; Noiges et al., 2002). There are two 

microtubule binding domains, one is a 120kDa fragment located within N-terminus of 

heavy chain and the second is located at the N-terminus of LC1 (Fig. 12; Zauner et al., 

1992; Tögel et al., 1998). The microtubule-stabilizing activity of full length MAP1B is 

weaker than that of MAP2. It was found that the heavy chain of MAP1B can suppress 

the binding of the light chain to microtubules. When the LC1 is overexpressed in Ptk2 

cells, which express low levels of endogenous MAP1B, it binds to microtubules 

inducing the formation of wavy microtubule bundles (Tögel et al., 1998). Co-expression 

of the heavy chain inhibits this effect. The C-terminal domain of light chain contains the 

heavy chain binding site, the microfilament binding site and the light chain 
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polymerization site (Tögel et al., 1998; Noiges et al., 2002; Halpain and Dehmelt, 

2006).  

 

 
Fig. 12. Schematic representation of MAP1B. MAP1B, similar to other MAP1s, is 
synthesized as polyprotein precursor, which is cleaved into a heavy and a light chain at the 
indicated cleavage site. The microtubule binding domains on both light and heavy chains (MT, 
green), three MAP1 homology domains (MH1, MH2, MH3) and the twelve 15mer repeats 
(orange) are indicated (Zauner et al., 1992; Tögel et al., 1998). LC1 bundles and stabilzes 
microtubules, while HC might have a regulatory function. The interaction between the heavy 
and light chains is mediated by the NH2 terminus of the heavy chain and the COOH terminus of 
the LC1. In addtition, on the COOH-terminus of LC1 an actin binding domain and a 
dimerization domain are located, as indicated. The degree of conserved amino acid sequence 
between human, rat and mouse MAP1B are presented by black and grey boxes. The highest 
degree of conservation is indicated by black boxes (adapted from Trančíková, PhD thesis, 
2007).  
 

The MAP1B precursor is encoded by one gene consisting of seven exons, which can be 

transcribed in several alternative ways – the regular transcript type 1 containing all 

seven axons (≥90% of transcripts), and the type 2 transcript encoding an NH2-terminally 

truncated precursor and containing noncoding exons upstream of exon 3 (≤10% of 

transcripts) (Kutschera et al., 1998; Meixner et al., 2000). 

 

Phosphorylation of MAP1B 

 

Phosphorylation of MAPs can modulate their function, since it can affect their binding 

to microtubules. Several studies demonstrated that MAP1B phosphorylation increases 

its association with microtubules in vivo and in vitro (Pedrotti et al., 1996a) and 

correlates with axonogenesis and neurite outgrowth (Fischer and Romano-Clarke, 1990; 

Gordon-Weeks et al., 1993; Vecino and Avila, 2001).  

Analysis of the primary sequence of MAP1B reveals multiple potential sites for 

phosphorylation. Indeed, more than 33 phosphorylation sites have been identified 

(Collins et al., 2005), but only for a few the consequences of phosphorylation for 
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MAP1B function are known (Gordon-Weeks et al., 1995; Goold et al., 1999). 

Nevertheless, some features of MAP1B phosphorylation have been elucitated using 

monoclonal antibodies specific for certain, as yet unidentified phosphoepitops. There 

are at least two modes of MAP1B phosphorylation: mode I sites, that are generated by 

proline directed serine/theronine kinases (PDPKs) and result in a decreased migration of 

MAP1B in SDS-PAGE, and mode II sites, that are generated by CKII and do not 

change the electrophoretic behaviour of the protein (Ulloa et al., 1993a; Ulloa et al., 

1993b). There is evidence that MAP1B is phosphorylated at mode I sites by cycline 

dependent kinase 5 (cdk5α) (Pigino et al., 1997), glycogen synthase kinase 3β (GSK3β) 

(Lucas et al., 1998), MAP1B kinase (M1BK) (Hoshi et al., 1990) and c-Jun N-terminal 

kinase (JNK) in vivo (Kawauchi et al., 2003). In vitro experiments show that MAP1B 

can be dephosphorylated by protein phosphatase 2B (PP2B) and protein phosphatase 2A 

(PP2A) (Ulloa et al., 1993c; Ulloa et al., 1994a; Gong et al., 2000). Mode II 

phosphorylated sites were shown to be dephosphorylated in vitro by protein 

phosphatase I (PP1) (Ulloa et al., 1993c). Mode I phosphorylated isoforms are 

expressed only during development and are distributed in a gradient along in growing or 

regenerating axons with the highest concentration at the growth cone (Black et al., 

1994; Boyne et al., 1995; Gordon-Weeks and Fischer, 2000). Mode II phosphorylated 

isoforms are also found in adulthood and similar to unphosphorylated MAP1B are 

distributed uniformly in the cell body, axons, and dendrites (Gordon-Weeks et al., 1993; 

Ulloa et al., 1994a; Tonge et al., 1996; Ramon-Cueto and Avila, 1997; Ma et al., 1999; 

Ramon-Cueto and Avila, 1999; Gordon-Weeks and Fischer, 2000; Ma et al., 2000).  

Generally, in the CNS the expression level of total MAP1B significantly decreases after 

maturation of the nervous system, but phosphorylated MAP1B (MAP1B-P) remained at 

high levels in regenerating neurons and brain areas with high morphological and 

synaptic plasticity (Nothias et al., 1996; Ramon-Cueto and Avila, 1997). In primary 

hippocampal and sympathetic neurons and in neuronal cell lines (PC12, SY5Y) total 

MAP1B and MAP1B-P are abundant in actively growing axons with the highest 

expression at the growth cone (Aletta et al., 1988; Diaz-Nido et al., 1988; Ulloa et al., 

1993b; Black et al., 1994; Ulloa et al., 1994a; Boyne et al., 1995; Gordon-Weeks and 

Fischer, 2000; Haque et al., 2004). In the PNS, unphosphorylated and phosphorylated 

MAP1B remain at high levels in adulthood. Expression of MAP1B-P was observed in 

ganglion cell somata and growing axons within fish optic nerve and in regenerating 

axons after optic nerve crush, suggesting that MAP1B-P plays a role not only during 
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development, but also in regeneration (Vecino and Avila, 2001). It was also shown that 

sciatic nerve transsection was rapidly followed by increased expression of MAP1B-P in 

lamina II of the corresponding segment of the spinal cord, indicating plasticity of 

myelinated fibers (Soares et al., 2002). Undifferentiated PC12 cells expressed 

predominately unphosphorylated isoforms of MAP1B, which are present mostly in the 

cytoplasm, while during neuritogenesis the expression of MAP1B-P and its binding to 

microtubules increase (Aletta et al., 1988; Diaz-Nido et al., 1988). Downregulation of 

CKII by antisense oligonucleotides prevented neurite extension and decreases 

association of MAP1B with microtubules, suggesting that mode II phosphorylation may 

play a role in microtubule stabilization by MAP1B and in axon extension (Ulloa et al., 

1993b). On the other hand, it was shown in vitro that dephosphorylation at PDPK 

within MAP1B increased its binding to microtubules, suggesting that phosphorylation 

of MAP1B by the PDPKs can decreased its affinity for microtubules (Pedrotti et al., 

1996a; Pedrotti and Islam, 1996b). Additionally, hyperphosphorylation of MAP1B 

induced by inhibition of protein phosphatase 2A (PP2A) and protein phosphatase 2B 

reduced its binding to microtubules in rat brain slices (Gong et al., 2000). All these 

contradictory results can be due to several potential phosphorylation site of MAP1B (33 

sites (Collins et al., 2005)) and use of monoclonal antibodies specific for certain, but so 

far unidentified phosphoepitops, since general antibodies for mode I or mode II 

phosphorylated MAP1B do not exist. It is most likely that consequences of 

phosphorylation at different sites were analyzed, but results were generalized for modes.  

Inhibition of GSK3β by WNT7a or lithium chloride induced axonal spreading and 

increased growth cone area of cerebellar neurons, associated with the loss of unstable 

microtubules and MAP1B-P (Lucas et al., 1998; Goold et al., 1999). High levels of 

MAP1B-P were associated with the loss of detyrosinated microtubules in COS cells 

transfected with both MAP1B and GSK3β, suggesting that MAP1B phosphorylated by 

GSK3β regulates microtubule dynamic instability in extending axons (Goold et al., 

1999). Transfection with MAP1B prevents nocodazole mediated microtubule 

depolymerization, but this protection was reduced by MAP1B phosphorylation. Binding 

of MAP1B to tyrosinated microtubules could inhibit tubulin detyrosination and 

generation of stable microtubules from unstable ones. It is possible that in the growing 

axons MAP1B-P maintains the unstable state of microtubules (Goold et al., 1999). 

Inhibition of GSK3β in DRGs increased the level of stable microtubules in growth 

cones (Goold et al., 1999). In PC12 cells NGF induced expression of a new isoform of 
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GSK3β and GSK3β phosphorylation of MAP1B which is associated with neurite 

formation and extension. Neurite extension is sensitive to inhibition of GSK3β and this 

correlates with a decrease of MAP1B phosphorylation (Goold and Gordon-Weeks, 

2001).  

Another kinase implicated in MAP1B phosphorylation is cdk5α. Antisense 

oligonucleotides for cdk5α or p35 in cultured cerebellar macroneurons decreased the 

level of mode I phosphorylated MAP1B and its binding to microtubules (Pigino et al., 

1997; Paglini et al., 1998). On the other hand, it was shown that inhibition of cdk5α by 

roscovitine did not suppress mode I phosphorylation of MAP1B in culture of mouse 

embryonic cortical neurons, while a JNK inhibitor – SP600125 did (Kawauchi et al., 

2005). 

In addition, phosphorylation of MAP1B was shown to influence also its binding to 

microfilaments. In vitro experiments showed that dephosphorylation of the PDPK sites 

by alkaline phosphatase increased its binding to F-actin (Pedrotti and Islam, 1996b). 

Several extracellular factors are known to induce phosphorylation of MAP1B. For 

example, reelin (Gonzalez-Billault et al., 2005), laminin (DiTella et al., 1996), netrin-1 

(Del Rio et al., 2004) and LPA can induce MAP1B phosphorylation through the 

activation of cdk5 and GSK3β in the Rho-dependent and the Rho-independent ways.  

 

S-nitrosylation of MAP1B 

 

Recently it was shown that LC1 can be S-nitrosylated in mouse brain and N2a cells 

(Stroissnigg et al., 2007). By creating specific mutants it was shown that cys2457 at the 

COOH terminus of LC1 is S-nitrosylated. This cystein is conserved among all three 

MAP1 LCs and is located at the very COOH terminus end of the LCs. However, the 

sequence flanking this cystein do not correspond to a consensus sequence, which has 

been postulated to be important for S-nitrosylation (Stroissnigg et al., 2007).  

The specificity of S-nitrosylation requires close proximity of nNOS and its target 

proteins. Using yeast 2-hybrid β-galactosidase assays it was shown that the COOH-

terminal domain of the LC1 interacted with the NH2-terminal fragment of nNOS via the 

PDZ domain of nNOS (Stroissnigg et al., 2007). Co-immunoprecipitation studies using 

brain lysates showed that approximately 30% of LC1 co–precipitated with nNOS 

(Stroissnigg et al., 2007). Additionally, colocalization of LC1 and nNOSα was observed 
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in PtK2 cells co-transfected with constructs encoding LC1 and full length nNOSα. Both 

proteins were associated with microtubules. Interaction sites other than the PDZ domain 

might be present in nNOS, since in co-transfection experiments with LC1 and full 

length nNOS-β, which lacks the PDZ domain, colocalization of LC1 and nNOS-β was 

also observed. In the absence of LC1 both nNOSα and nNOSβ were found in the 

cytoplasm (Trančíková, 2007). 

Full length MAP1B overexpressed in PtK2 cells is found predominantly in cytoplasm, 

but when cells were additionally treated with SNAP, a nitrosylating agent, its 

microtubule binding increased (Stroissnigg et al., 2007). Interaction between LC1 and 

HC1 was not affected by S-nitrosylation of LC1. A similar increase in microtubule 

binding was observed with LC1 after treatment with SNAP, but not when cys2457 was 

mutated to serine (Stroissnigg et al., 2007). Theses results excluded the possibility that 

the increase of MAP1B binding to microtubules is due to nitrosylation of tubulin. 

Moreover, in N2a neuroblastoma cells activation of nNOS by the calcium ionophore 

calcimycin (A23187) resulted in an increase of NO levels and retraction of neurites. 

This correlated with enhanced S-nitrosylation of LC1. In comparison untreated N2a 

cells differentiated well and showed low levels of S-nitrosylated LC1in the presence of 

a basal level of NO (Stroissnigg et al., 2007). 

Likewise, studies in adut mouse DRG neurons brought strong evidences that NO-

induced axon retraction is MAP1B-dependent. DRG neurons are primary sensory 

neurons that convey sensory information, for example about pain and temperature, to 

the CNS. They are pseudo-unipolar neurons having one axon with two branches and 

each of them works as a single axon. In addition, they express high levels of MAP1B 

and display a high level of plasticity and a strong regenerative response upon nerve 

injury (Newton, 2003; Bouquet et al., 2004). Activation of nNOS by calcimycin or 

treatment with SNAP lead to axon retraction and growth cone collapse in wild-type 

DRG neurons. In MAP1B -/- neurons axon retraction was much reduced indicating an 

important role of MAP1B in NO-induced axon retraction (Stroissnigg et al., 2007). 

 

Role of MAP1B 

 

The developmental regulation of MAP1B and its high expression in growing and 

regenerating neurons indicate its importance for neurogenesis and neurite outgrowth. 
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Both expression of MAP1B and its phosphorylation increase during neurite outgrowth 

in vitro, for example during differentiation of human neuroblastoma SY5Y cells (Haque 

et al., 2004). Neurite extension induced by nerve growth factor (NGF) in PC12 cells is 

also associated with an increase in MAP1B levels (Aletta et al., 1988). Depletion of 

MAP1B with antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth in 

PC12 cells and cerebellar macroneurons (Brugg et al., 1993; DiTella et al., 1996; 

Pedrotti et al., 1996a). In primary cultures of sympathetic and hippocampal neurons 

total and phosphorylated isoforms of MAP1B are localized mainly in growing axons 

and their level decreases after a few days in culture, suggesting that MAP1B plays a 

role during initiation and elongation of neurites (Boyne et al., 1995). Neurites of DRG 

explants from MAP1B-/- mice showed a twofold higher terminal and collateral 

branching and the turning response of their growth cones is impaired in comparison to 

neurites from wild-type DRG explants, suggesting a role for MAP1B in the growth cone 

guidnace and collateral branching (Bouquet et al., 2004). Cultured CNS and PNS 

neurons from a MAP1B hypomorphus mutant mouse line generate shorter axons than 

those from wild-type mice, and also axonogenesis seems to be inhibited (Gonzalez-

Billault et al., 2005). In large DRG neurons that give rise to myelinated fibers, high 

MAP1B-mRNA levels are observed indicating a potential role of MAP1B in plasticity 

of myelinated fibers. In addition MAP1B expression increases before maturation of 

oligodendrocytes suggesting a role in formation of myelin-forming processes 

(Vouyiouklis and Brophy, 1993).  

Many observations indicate that phosphorylated MAP1B plays a role during neuronal 

regeneration. MAP1B is expressed during regeneration of mouse retinal explants (Bates 

et al., 1993) and mode I phosphorylated MAP1B levels increase during regeneration of 

cat trochlear motoneurons (Book et al., 1996) and retinal ganglion cells (Vecino and 

Avila, 2001). After sciatic nerve lesion within several days total and mode I 

phosphorylated MAP1B isoforms are present in growth cones of regenerating axons 

(Fawcett et al., 1994; Bush et al., 1996; Ramon-Cueto and Avila, 1999). A high level of 

mode II phosphorylated MAP1B is found in the somata of DRG neurons, in the somata 

and dendrites of spinal motor neurons, and in Schwann cells and oligodendroglia 

associated with the regenerating axons (Ramon-Cueto and Avila, 1999). It was shown 

that sciatic nerve transsections induce increased MAP1B expression in lamina II of the 

spinal cord with highest levels between 8 and 15 days after the injury, both in mice and 

rats (Soares et al., 2002). Moreover after sciatic nerve transsection relatively high levels 
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of MAP1B and its mRNA are observed in DRGs (Ma et al., 2000). There is no increase 

in the level of MAP1B-P, suggesting a difference between regeneration and neuronal 

development, where MAP1B-P is expressed at high levels. After spinal cord injury 

MAP1B-P is expressed in the grey matter in both dorsal and ventral horns and around 

the central canal. In white matter, high levels of MAP1B are found on terminal 

enlargements in the proximity of the injury and in pre-apoptotic somata of neurons 

axotomized by the lesion (Soares et al., 2007). These results suggest a role of MAP1B 

in axon extension and retraction, but also in neuronal degeneration.  

Four MAP1B mutant alleles were generated in mice. In the mice generated by Edelman 

at al. the MAP1B coding region was interrupted by insertion of STOP codon at codon 

571. Mice homozygous for this allele die in utero before day 10 of gestation and 

heterozygotes show neurological disorders, such as ataxia (Edelmann et al., 1996). This 

can be due to expression of the N-terminal fragment of the MAP1B heavy chain (the 

first 571 amino acids) with potential dominant-negative activity (Tögel et al., 1998; 

Meixner et al., 2000). In contrast, in MAP1B knockout obtained by Takei at al., 

homozygotes survive and show only a delay in development of the nervous system 

(Takei et al., 1997). In these mice an NH2-terminally truncated MAP1B protein is 

synthesized, which probably is sufficient to fulfil many functions of MAP1B (Kutschera 

et al., 1998; Meixner et al., 2000). The third MAP1B knockout mice were generated by 

insertion of a gene-trapping vector between exons 2 and 3 of the MAP1B gene resulting 

in premature termination of MAP1B translation. Homozygotes die shortly after birth 

and show serious neuronal abnormalities in all laminated structures, for example in the 

hippocampus, the cerebral cortex and the cerebellum (Gonzalez-Billault et al., 2005). 

All these knockout mice are not full knockouts, in that they express truncated isoforms 

of MAP1B or trace amounts of the full-length protein (Edelmann et al., 1996; Takei et 

al., 1997; Kutschera et al., 1998; Gonzalez-Billault et al., 2005). The homozygotes of 

the fourth knockout do not express MAP1B and show many neural defects, for example 

absence of the corpus callosum and formation misguided cortical axon bundles, and a 

reduction in the number of large myelinated axons and decreased nerve conduction 

velocity in the adult sciatic nerve (Meixner et al., 2000).  

Over the past years evidence has been accumulating that MAP1B, in addition to its role 

in neuronal development and regeneration, can play a role in pathological processes. It 

was found that in patients with Alzheimer disease MAP1B is hyperphosphorylated and 

colocalizes with neurofibrillary tangles (Ulloa et al., 1994b). The light chain of MAP1B 
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interacts with gigaxonin – a protein responsible for giant axonal neuropathy (GAN). 

Two different mutations found in GAN patients led to loss of interaction between 

MAP1B and gigaxonin and an increased level of MAP1B of MAP1B as a consequence 

(Ding et al., 2002). MAP1B is also implicated in fragile X syndrome by its Drosophila 

homologue Futsch. Fragile X syndrome is characterized by the absence of the fragile X 

mental-retardation protein (FMRP), which was found to be an mRNA-binding protein 

playing an important role in the regulation of dendritic mRNA localization and/or 

synaptic protein synthesis (Antar et al., 2005). It was observed that FMRP granules 

colocalize with ribosomes, ribosomal RNA and MAP1B mRNA in dendrites and spines 

of cultured hippocampal neurons (Antar et al., 2005). It is possible that the absence of 

FMRP results in impairment of MAP1B mRNA translation, leading to alteration in local 

regulation of dynamics of cytoskeletal components that are involved in development 

and morphology of synapses. MAP1B is also linked to spinocerebellar ataxia type 1 

(SCA1), which is caused by toxicity of ataxin1. It is postulated that the leucine-rich 

acidic nuclear protein (LANP) binds to ataxin1 and mediates toxicity. In 

undifferentiated N2a cells LANP is predominantly a nuclear protein, during 

neuritogenesis LANP Tran locates from the nucleus to the cytoplasm, where it interacts 

with LC1, and modulates the effects of MAP1B on neurite extension (Opal et al., 2003). 

Binding of mutant ataxin-1 to LANP in the nucleus, can reduce the microtubule-

stabilizing interactions of LANP and MAP1B, resulting in alteration of cytoskeletal 

arrangements or abnormalities in subcellular trafficking (Opal et al., 2003). 
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RESULTS 

 

Role of NO and MAP1B in axon retraction induced by LPA 

 

LPA-induced axon retraction is MAP1B-dependent and involves ROCK and 

myosin 

 

It was shown recently in our lab that treatment of adult DRG neurons from wild-type 

mice with 10µM calcium ionophore calcimycin (A23187) for 15min induces axon 

retraction. Calcimycin increases calcium influx and thus activates Ca2+–dependent 

nNOS, resulting in growth cone collapse and retraction of neurites with reconfiguration 

of the microtubules into sinusoidal bundles, retraction bulb and trailing remnant 

(retracted phenotype; Fig. 13) in 43% of the cells. 17% of cells displayed a collapsed 

morphology characterized by bead-like swellings of the axon with depletion of 

microtubules (collapsed phenotype; Fig. 13) and about 40% of the neurons remained 

unchanged in comparison to untreated cells (unchanged phenotype; Fig. 13; Stroissnigg 

et al., 2007). In case of MAP1B-/- DRG neurons the same number of cells with 

collapsed pheonotype was observed (15%), indicating that MAP1B has no influence on 

this effect. In contrast, only 27% of the MAP1B-/- neurons retracted in response to 

calcimycin treatment, whereas 60% of the cells remained unchanged. These results 

suggest involvement of MAP1B in axon retraction induced by NO (Stroissnigg et al., 

2007). In addition, treatment of cultured wild-type DRG neurons with the NO donor 

SNAP also induces axon retraction characterized by reconfiguration of the microtubules 

into sinusoidal bundles (Stroissnigg et al., 2007). Approximately 45% of cells displayed 

a retracted phenotype compared to 8% when cells were left untreated. Response of 

MAP1B-/- DRG neurons to SNAP treatment was impaired (only 13% of neurons 

retracted compared to 6% in case of untreated neurons). These results indicate that 

MAP1B is necessary for NO-induced axon retraction and growth cone collapse 

(Stroissnigg et al., 2007). 

Axons retracting in response to calcimycin or SNAP treatment show similar hallmarks 

to axons retracting in response to physiological cues, for example LPA. Thus it is 
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interesting if nNOS, NO, and nitrosylation of MAP1B are involved in axon guidance by 

physiological guidance cues. 

 
 
Fig. 13. Response of wild-type neurons to activation of nNOS by calcimycin. Adult wild-
type DRG neurons were grown on coverslips coated with poly-L-lysine and laminin, treated 
with 10μM calcimycin for 15min, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. Microtubule configuration in response to calcimycin was classified as 
unchanged (compared to untreated cells), or retracted (sinusoidal microtubules (interrupted 
arrow), retraction bulb (filled arrows), trailing remnant (open arrow)) or collapsed (bead-like 
swelling of the axon - interrupted microtubule staining). 
 
LPA is a well-known physiological guidance cue that induces axon retraction involving 

activation of the Rho and myosin pathway (Jalink et al., 1994). To determine the role of 

MAP1B and NO in retraction induced by LPA, wild-type and MAP1B-/- DRG neurons 

were grown on poly-L-lysine and laminin coated coverslips, treated with 10µM LPA for 

30min or left untreated, fixed and stained for tubulin and MAP1B HC as a control. I 

observed that 47% of wild-type DRG neurons showed retracted phenotype when treated 

with LPA, while the response of MAP1B-/- DRG neurons was impaired and only 8% of 

cells showed retraction hallmarks (Fig. 14). Additionally, I also compared the behaviour 

of wild type and MAP1B-/- DRG neurons upon LPA treatment using time-lapse 

microscopy. Cells were cultured for 20-24h and then were monitored for 20min before 

addition of LPA (Fig. 15). Without any stimulation, axons from both types of neurons 

elongated at the same rate. Addition of 10µM LPA (time point 0’ on graphs) induced 

growth cone collapse within 5-10min followed by retraction with formation of 

sinusoidal bends, reminiscent of the sinusoidal microtubules bundles revealed by 

immunofluorescences After addition of LPA to MAP1B-/- DRG neurons, I did not even 

observe growth cone collapse and neurites continued elongation at the same rate as 

before treatment (Fig. 15). 

     

unchanged retracted collapsed 
20µm 10µm 10µm 
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Fig. 14. LPA-induced axon retraction is impaired in MAP1B-/- DRG neurons. DRG 
neurons from wild-type (a) and MAP1B-/- (b) mice were grown on coverslips coated with poly-
L-lysine and laminin, were left untreated or were treated with 10μM LPA for 30min, as 
indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy.For 
quantitative analysis, approximately 100 cells in each of 3 independent experiments were 
assessed for microtubule configuration. Error bars represent standard deviations. Asterisks 
indicate that the values for cells treated with LPA were significantly different from 
corresponding values of untreated neurons (**, p<0.001). 
 
It was shown that inhibition of ROCK with the pyridine derivative Y27632, which 

inhibits ROCK by competing with ATP for the ATP-binding site on the catalytic 

domain, prevented axon retraction induced by LPA in B103 rat neuroblastoma cells 

(Ishizaki et al., 2000). I could reproduce these results. Treatment of wild-type DRG 

neurons with 10µM Y27632 for 1h prior to treatment with LPA abolished axon 

retraction (13% of neurons retracted in comparison to 45% when cells were treated with 

LPA only; Fig. 16). 
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Fig. 15. Response of wild-type and MAP1B-/- neurons to LPA treatment. Adult wild-type 
(WT) and MAP1B-/- (KO) DRG neurons were grown on coverslips coated with poly-L-lysine 
and laminin for 20-24h. Images were recorded for 20min, then 10µM LPA was added and 
recording was continued for 30min with 1min intervals between images. Application of LPA 
induced growth cone collapse (blue arrows) and axon retraction with sinusoidal bundles (black 
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arrow) in wild-type neurons. Axons of MAP1B-/- neurons did not retract and continued growth 
(protrusion of filopodia by axons is indicated by red arrows). 
 

 

 
Fig. 16. Inhibition of ROCK prevents LPA-induced axon retraction. DRG neurons from 
wild-type (b) and MAP1B-/- (c) mice were grown on coverslips coated with poly-L-lysine and 
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laminin, were left untreated, or were treated with 10µM Y27632 for 1h, with 10μM LPA for 
30min, or with 10µM Y27632 for 1h followed by 10μM LPA for 30min, as indicated, fixed 
with 4% PFA, stained for tubulin and analyzed by confocal microscopy. (a), representative 
micrographs of wild-type and MAP1B -/- DRG neurons stained for tubulin and MAP1B HC. (b, 
c), for quantitative analysis, approximately 100 cells in each of 3 independent experiments were 
assessed for microtubule configuration. Inhibition of ROCK by Y27632 prevented axon 
retraction induced by LPA. Error bars represent standard deviations. Asterisks indicate that the 
values for cells treated with LPA were significantly different from corresponding values of 
untreated neurons and the values for cells treated with Y27632 followed by LPA were 
significantly different from corresponding values of neurons treated with LPA only (**, 
p<0.001). 
 

To further determine the role of acto-myosin contractility in LPA-induced axon 

retraction I inhibited myosin with blebbistatin. Binding of blebbistatin to myosin results 

in stabilization of the metastable state of myosin and inhibition of its transition to the 

force-producing state, thus inhibiting myosin activity (Allingham et al., 2005). Wild-

type DRG neurons were cultured as described and 10µM blebbistatin was applied for 

15min prior treatment with LPA (Fig. 17). Only 13% of neurons showed retraction 

hallmarks in response to LPA when myosin was inhibited (compared to 33% in case of 

cells treated with LPA only; Fig. 17).  

 
Fig. 17. Inhibition of myosin prevents axon retraction induced by LPA in wild-type DRG 
neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 100µM blebbistatin for 15min, with 
10μM LPA for 30min, or with 100µM blebbistatin for 15min followed by 10μM LPA for 
30min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. For quantitative analysis, approximately 100 cells in each of 3 independent 
experiments were assessed for microtubule configuration, which was classified as unchanged, 
retracted or collapsed. Inhibition of myosin by blebbistatin prevented axon retraction induced by 
LPA. Error bars represent standard deviations. Asterisks indicate that the values for cells treated 
with LPA were significantly different from corresponding values of untreated neurons and the 
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values for cells treated with blebbistatin followed by LPA were significantly different from 
corresponding values of neurons treated with LPA only (*, p<0.05, and *, p<0.01). 
 
LPA was also shown to induce retraction of neurites in N2a neuroblastoma cells. These 

cells express MAP1B and can be induced to differentiate in culture by cultivation on 

laminin, by removal of serum, or by stimulating the cAMP pathway. To determine if 

LPA-induced retraction of neurites in N2a cells also involves the Rho/ROCK pathway, 

cells were grown on poly-L-lysine and laminin pre-coated glass coverslips for 20-24h, 

treated with 10µM LPA for 30min, with 10µM Y27632 for 1h before application of 

10µM LPA for 30min, with 10µM Y27632 for 1h or left untreated. Cells with neurites 

exceeding one cell diameter in length were classified as unchanged and cells with 

neurites shorter than one cell diameter in length or without neurites were classified as 

retracted.  

 

 
 

 
Fig. 18. Inhibition of ROCK abolishes neurite retraction of N2a neuroblastoma cells 
induced by LPA. N2a neuroblastoma cells grown on coverslips coated with poly-L-lysine and 
laminin, were left untreated or were treated with 10µM Y27632 for 1h, 10μM LPA for 30min, 
or with 10µM Y27632 for 1h followed by 10μM LPA for 30min, as indicated, fixed, and stained 
for tubulin. The upper panel shows representative micrographs of unchanged and retracted N2a 
cells after treatment. The morphology of cells was quantified by counting cells with neurites 
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exceeding one cell diameter in length. Inhibition of myosin abolished LPA-induced neurite 
retraction. For quantitative analysis, 200 cells in each of 4 independent experiments were 
scored. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with LPA were significantly different from corresponding values of  untreated cells and 
the values for cells treated with Y27632 followed by LPA were significantly different from 
corresponding values of neurons treated with LPA only (**, p<0.001). 
 

Analogous to studies in DRG neurons I examined involvement of myosin in LPA-

induced retraction of neurites in N2a neuroblastoma cells. N2a cells were grown as 

described on poly-L-lysine and laminin to induce differentiation, treated with 100µM 

blebbistatin for 15min following treatment with 10µM LPA for 30min. Inhibition of 

myosin impaired LPA-induced neurite retraction in N2a cells and only 24% of cells 

showed retraction compared to 62% when cells where treated with LPA only (Fig. 19). 

 

 
Fig. 19. Inhibition of myosin abolishes LPA-induced neurite retraction of N2a 
neuroblastoma cells. N2a neuroblastoma cells were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated or were treated with 100µM blebbistatin for 15min, 
10μM LPA for 30min, or with 100µM blebbistatin for 15min followed by 10μM LPA for 
30min, as indicated, fixed, and stained for tubulin. The morphology of cells was quantified by 
counting cells with neurites exceeding one cell diameter in length. Inhibition of myosin 
abolished LPA-induced neurite retraction. Inhibition of myosin partially abolished LPA-induced 
neurite retraction. For quantitative analysis, 200 cells in each of 6 independent experiments 
were scored. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with LPA were significantly different from corresponding values of  untreated cells and 
the values for cells treated with blebbistatin followed by LPA were significantly different from 
corresponding values of neurons treated with LPA only (**, p<0.005). 
 

LPA-induced axon retraction does not require nNOS activation 

 

As LPA-induced axon retraction shows the same hallmarks as calcimycin- and SNAP-

induced retraction and is also MAP1B-dependent, it was interesting to examine if NO 

0

20

40

60

80

100

untreated blebbistatin LPA LPA + blebbistatin

%
 o

f c
el

ls

UNCHANGED RETRACTED

**

**
** 

** 



                                                                                                              Part I – Results  

 75

and nNOS are involved in LPA-induced retraction. To determine if LPA induces nNOS 

activation, wild-type DRG neurons were pre-treated with 300µM NPA for 1h. NPA is a 

specific nNOS inhibitor. Cells were then treated with 10µM LPA for 30min. Inhibition 

of nNOS did not abolish retraction induced by LPA and approximately 39,9% of cells 

showed retraction hallmarks compared to 46% in case of untreated cells (Fig. 20). 

 
Fig. 20. Inhibition of nNOS does not prevent axon retraction induced by LPA in wild-type  
DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-
L-lysine and laminin, were left untreated, or were treated with 300µM NPA for 1h, with 10μM 
LPA for 30min, or with 300µM NPA for 1h followed by 10μM LPA for 30min, fixed with 4% 
PFA, stained for tubulin and analyzed by confocal microscopy. For quantitative analysis, 
approximately 100 cells in each of 3 independent experiments were assessed for microtubule 
configuration, which was classified as unchanged, or retracted or collapsed. Inhibition of nNOS 
by NPA did not prevent axon retraction induced by LPA. Error bars represent standard 
deviations. Asterisks indicate that the values for cells treated with NPA followed by LPA and 
for values from cell treated with LPA only were significantly different from corresponding 
values of untreated neurons (*, p<0.001). 
 

Similarly, in N2a cells pre-treatment with NPA did not abolished retraction of neurites 

in response to LPA. Approximately 93% of cells retracted in case of cells treated with 

NPA followed by LPA or in case of cells treated with LPA only. Due to the fact that 

NPA inhibits specifically nNOS, we can not exclude involvement of other NOS in 

LPA-induced neurites retraction. Thus, I repeated this experiment with the broad range 

NOS inhibitor L-NAME. As in case of NPA pretreatment, L-NAME did not prevent 

retraction if neurites (about 98% of cells retracted compared to 93% when cells were 

treated with LPA only; Fig. 21). 
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Fig. 21. Inhibition of NOSs does not abolish LPA-induced neurite retraction of N2a 
neuroblastoma cells. N2a neuroblastoma cells were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated or were treated with 300µM NPA for 1h, with 300µM L-
NAME for 1h, with 10μM LPA for 30min, with 300µM NPA for 1h followed by 10μM LPA for 
30min, or with 300µM L-NAME for 1h followed by 10μM LPA for 30min, as indicated, fixed, 
and stained for tubulin. The morphology of cells was quantified by counting cells with neurites 
exceeding one cell diameter in length. Inhibition of myosin abolished LPA-induced neurite 
retraction. Inhibition of nNOS as well all NOSs did not partially abolish LPA-induced neurite 
retraction. For quantitative analysis, 200 cells in each of 4 independent experiments were 
scored. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with LPA only, with NPA followed by LPA, or with L-NAME followed by LPA were 
significantly different from corresponding values of  untreated cells (**, p<0.001). 
 

In summary, LPA-induced neurite retraction seems to be MAP1B-dependent, since 

MAP1B-/- DRG neurons failed to response to LPA, but does not involve nNOS 

activation. NPA and L-NAME had no influence on amount of retracted neurites. As 

shown before in other system, in adult DRG neurons and in N2a neuroblastoma cells 

LPA-induced neurite retraction involves ROCK and myosin.  

 

Role of NO and MAP1B in inhibition of neurite outgrowth induced by 

CSPG 

 

Lack of evidence for an involvement of NOS in CSPG-induced inhibition of 

axon growth 

 

Adult CNS neurons fail to regenerate after injury, mainly due to decreased ability to 

grow, because of inhibitory and repulsive components of the surrounding environment. 
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In the region of the glial scar formed after lesion, several growth inhibitory molecules, 

such as myelin-associated components or CSPGs, are released. 

CSPGs, produced after injury by astrocytes, are organized in a gradient pattern with the 

highest concentrations in the centre of the lesion. They inhibit neurite growth in vivo 

(Davies et al., 1999) and in vitro (Zhou et al., 2006). It was shown that delivery of 

chondroitinase ABC (ChABC), which degradates CSPGs, to the lesioned dorsal 

columns of adult rats promoted regeneration (Bradbury et al., 2002; Barritt et al., 2006).  

The signalling pathways activated by CSPG are unknown. It was observed, that 

inhibition of RhoA with C3-transferase or ROCK with Y27632 promotes axon growth 

on CSPG (Dergham et al., 2002; Borisoff et al., 2003). Interestingly CSPGs elevate 

calcium levels in the growth cone and this could trigger activation of nNOS. Thus, I 

decided to investigate a role of nNOS and NO in CSPG-induced inhibition of axon 

growth.  

I used an in vitro model that imitates the glial scar observed in vivo after spinal cord 

injury (Tom et al., 2004). In this system, aggrecan (a major component of CSPG) and 

laminin formed a gradient pattern similar to this observed at the lesion site and axons 

from adult DRG neurons which reached an area of aggrecan formed bulbous growth 

cones similar to dystrophic growth cones observed in vivo (Tom et al., 2004). According 

to this protocol coverslips were coated with 10µg/ml poly-L-lysine, and then were 

spotted with 2µl of a solution of aggrecan (0.7mg/ml), which is a main component of 

CSPG, and laminin (5µg/ml). After the spots dried coverslips were covered with 

laminin (10µg/ml). The CSPG concentration was highest in the rim and lowest in the 

centre of the spot, whereas the laminin concentration was greatest in the centre of the 

spot and lowest at the periphery. This can be visualized by staining (Fig. 22). Axons 

from DRG neurons growing on laminin in the surrounding area were not able to enter 

into the spot and axons from neurons growing within the centre of the spot did not grow 

out of the spot. In both cases, axons usually grow along the rim, or sometimes stop 

growth at the rim forming dystrophic endings.  

To determine if CSPG-induced inhibition of axon growth involves nNOS or NOS 

generally, 300µM NPA or 300µM L-NAME, respectively, were added 6h or 12h after 

plating of the neurons. No changes in axon behaviour were observed and neurons could 

not cross the rim of aggrecan, similar as under control conditions in the absence of NOS 

inhibitor (Fig. 22). Surprisingly, application of Y27632 or blebbistatin also did not 

overcome inhibitory properties of aggrecan and neurites could not enter into the spot 
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and could not grow out of the spot (Fig. 22). This is contrary to previous results 

showing that inhibition of Rho or ROCK abolished CSPG-induced inhibition of axon 

regrowth. 

 
Fig. 22. Inhibition of ROCK, myosin and NOS does not overcome inhibition of axon 
outgrowth induced by aggrecan in wild-type DRG neurons. Glass coverslips were coated 
with poly-L-lysine and were spotted with 2µl of a solution of aggrecan (0.7mg/ml) and laminin 
(5µg/ml). After the spots were allowed to air dry, the coverslips were covered with laminin 
(10µg/ml). DRG neurons from wild-type mice were grown for 6h or 12h, and subsequently 
were treated for 12-18h with 10µM Y27632, with 100μM blebbistatin, with 300µM NPA, or 
with 300μM L-NAME, or were left untreated, as indicated, fixed with 4% PFA. Samples were 
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stained for tubulin (red), laminin (green) and aggrecan (anti-CSPG, blue) neurites were not able 
to cross the rims of aggrecan (* asterisks), even if ROCK or myosin were inhibited. 

CSPG-induced inhibition of axon regrowth is not MAP1B-dependent 

 

In order to examine a potential role of MAP1B in aggrecan-induced inhibition of neurite 

growth, MAP1B-/- DRG neurons were grown on coverslips prepared as described 

above.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23. Inhibition of ROCK, myosin and NOS does not overcome inhibition of axon 
outgrowth induced by aggrecan in MAP1B-/- DRG neurons. Glass coverslips were coated 
with poly-L-lysine and were spotted with 2µl of a solution of aggrecan (0.7mg/ml) and laminin 
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(5µg/ml). After the spots were allowed to air dry, the coverslips were covered with laminin 
(10µg/ml). DRG neurons from wild-type mice were grown for 6h or 12h, and subsequently 
were treated for 12-18h with 10µM Y27632, with 100μM blebbistatin, with 300µM NPA, or 
with 300μM L-NAME, or were left untreated, as indicated, fixed with 4% PFA. Samples were 
stained for tubulin (red), laminin (green) and aggrecan (anti-CSPG, blue). Neurites were not 
able to cross the rims of aggrecan (* asterisks), even if ROCK or myosin were inhibited. 
 
Similar to wild-type neurons, axons of MAP1B-/- DRG neurons could not cross an 

aggrecan barrier in either direction. Bath application of NPA, L-NAME, Y27632 or 

blebbistatin also did not abolish inhibitory properties of aggrecan, suggesting that 

MAP1B does not play a role in mediation of CSPG-signalling and in both wild-type and 

MAP1B-/- DRG neurons aggrecan signalling involves by the same mechanism (Fig. 

23). 

Laminin is an attractive and permissive substrate and it is possible that neurons growing 

on such a favourable substrate will not attempt to cross aggrecan rims. Thus, I tried 

another type of coating. Coverslips were plated with less favourable poly-L-lysine and 

2µl spots of a mixture of aggrecan (0.7mg/ml) and laminin (5µg/ml) were applied, left 

to dry prior to plating of DRG neurons. I thought that neurons growing on a less 

permissive substrate would be attracted by laminin and would grow through the rim of 

aggrecan. However, even under these conditions axons from both wild-type and 

MAP1B-/- DRG neurons did not enter aggrecan spots. Inhibition of ROCK (Fig. 24) 

and blebbistatin (not shown) did not enable them to enter the aggrecan area either and 

NPA and L-NAME also had no influence on axon behaviour (not shown). 

 

 
Fig. 24. Aggrecan inhibits growth of axons. Glass coverslips were coated with poly-L-lysine 
and were spotted with 2µl of aggrecan (0.7mg/ml). Spots were allowed to air dry and wild-type 
DRG neurons were plated and grown for 6h or 12h, treated with 10µM Y27632 or left 
untreated, and fixed with 4% PFA. Samples were stained for tubulin (green), and aggrecan 
(anti-CSPG, red). Micrographs show merge of stainings for tubulin and CSPG. Neurites were 
not able to cross the rims of aggrecan (* asterisks).  
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Role of NO and MAP1B in inhibition of neurite outgrowth induced by 

myelin 

 

CNS myelin is the main source of neurite growth inhibitory factors, such as Nogo and 

myelin-associated glycoprotein (MAG), after injury. Axons outgrowth in a variety of 

neurons was inhibited when they were grown on CNS myelin proteins (Schwab and 

Caroni, 1988) and inhibitory properties of myelin were abolished by anti-myelin 

antibodies (Schnell and Schwab, 1990). Similar to CSPG, the mechanism by which 

myelin molecules inhibit axon growth is not well understood. There are several lines of 

evidence suggesting that myelin inhibition is mediated by the Rho/ROCK pathway. For 

example, activation of RhoA was observed after treatment of cerebellar granule neurons 

with the Nogo peptide or when these neurons were grown on myelin components. RhoA 

was also shown to be activated after spinal cord injury (Niederost et al., 2002; Dubreuil 

et al., 2003; Madura et al., 2004). Moreover, inhibition of RhoA with C3-transferase or 

with RhoA antagonists, or inhibition of ROCK with Y27632 promotes axon growth on 

myelin and promotes regeneration after spinal cord injury (Lehmann et al., 1999; 

Dergham et al., 2002; Niederost et al., 2002; Dubreuil et al., 2003; Fournier et al., 

2003). Interestingly, myelin similar to CSPG, also induces local elevations of Ca2+ in 

the growth cone (Wong et al., 2002). Thus, I decided to study potential involvement of 

nNOS in myelin-induced inhibition of axon growth. 

 

Lack of evidence for an involvement of NOS in myelin-induced inhibition of axon 

growth  

 

To determine the potential role of MAP1B and NO in myelin-induced inhibition of axon 

growth wild-type and MAP1B-/- DRG neurons were grown on coverslips coated with 

poly-L-lysine, on which 2µl drops of myelin isolated from mouse brain were dried. 

Axons from both types of neurons could not enter the myelin areas, even when they 

were treated with blebbistatin (Fig. 25), with Y27632, or with NPA (not shown). 

Instead, when they reached the myelin border most of them extended along side of it, 

only when cells were treated with Y27632 some of the axons could enter myelin area, 

but it was seldom (Fig. 25).  
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Fig. 25. Myelin inhibits growth of axons. Glass coverslips were coated with poly-L-lysine and 
were spotted with 2µl of CNS myelin. After the spots were allowed to air dry wild-type DRG 
neurons were plated, grown for 6h or 12h, treated for 12-18h with 100µM blebbistatin, or were 
left untreated, and fixed with 4% PFA. Samples were stained for tubulin. Neurites were not able 
to cross into the areas coated with myelin (* asterisks). 
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DISCUSSION 

 

NO was shown to induce axon retraction in chicken and mouse DRG neurons (He, 

2002; Stroissnigg et al., 2007). The levels of intracellular NO were increased by 

application of the calcium ionophore calcimycin, or the NO donors NOC7 and SNAP. 

Calcimycin increases Ca2+ levels leading to activation of nNOS and enhanced 

production of NO. As I mentioned, Ca2+ plays an important role in regulation of neurite 

growth and axonal guidance. Many guidance cues, such as netrin-1, MAG, and NGF 

increase Ca2+ levels, resulting in attraction, repulsion or collapse of the growth cone. 

Different guidance cues induce various changes in Ca2+ levels. For example, netrin-1 

stimulates a middle-amplitude increase in Ca2+ levels, whereas MAG stimulates a low-

amplitude increase in Ca2+ levels. Thus, it was interesting to investigate if nNOS, NO, 

and nitrosylation of MAP1B are involved in axon guidance by physiological guidance 

cues.            

LPA is a well-known physiological guidance cue that is suggested to play a role during 

migration of neurons and neurite formation. It is present in adult brain and can be 

produced by postmitotic neurons, such as mouse embryonic cortical neurons (Das and 

Hajra, 1989; Sugiura et al., 1999; Fukushima et al., 2000). The LPA receptor 1 (LPA1) 

is expressed at a high level in the ventricular zone of the cerebral cortex, suggesting that 

LPA might be involved in cortical development (Fukushima et al., 2000; Fukushima et 

al., 2002b). In many neuronal cell lines (NIE-115, NG108-15, SH-SY5Y, PC12 cells) 

and cultured primary neurons (cortical neurons, dorsal root ganglia neurons, cerebellar 

granule neurons) LPA induces growth cone collapse and axon retraction, involving 

activation of the Rho/ROCK pathway and acto-myosin contractility (Jalink et al., 1993; 

Jalink et al., 1994; Saito, 1997; Sayas et al., 1999; Fukushima et al., 2000; Sayas et al., 

2002a; Fukushima and Morita, 2006; Bouquet et al., 2007). LPA-induced neurite 

retraction is reversible and after a distinct time length (depending on the cell type) 

neurites usually regrow, suggesting that LPA-induced retraction is transient and may 

regulate the time of neurite outgrowth during development (Fukushima et al., 2002a; 

Bouquet et al., 2004; Fukushima, 2004). It was shown in PC12 cells that depending on 

the presence of extracellular Ca2+ levels LPA induced release of Ca2+ from internal 

stores (Tigyi et al., 1996a). Ca2+ influx through the membrane seemed to play an 



                                                                                                              Part I – Discussion  

 84 

important role in neurite retraction induced by LPA, since LPA did not induce retraction 

of neurites when cells were cultured in Ca2+ free medium or when Ca2+ influx was 

blocked by divalent cations (Saito, 1997). Likewise, it was found that LPA increased 

intracellular Ca2+ levels also in rat adult DRG neurons (Elmes et al., 2004). Moreover, 

LPA enhanced NMDA-evoked currents in rat hippocampal neurons (Lu et al., 1999). 

Thus, by modulating of NMDA currents LPA can activate nNOS resulting in an 

increased production of NO. In addition,  LPA-induced apoptosis of NGF-differentiated 

PC12 cells involved NO, as it was shown that NOS inhibitors (L-NAME and 7-NI) 

protected cells against apoptosis stimulated by LPA (Steiner et al., 1992; Holtsberg et 

al., 1998). We were interested in LPA-induced retraction of neurites rather than in 

apoptosis of neurons, but the observed stimulation of NO production during LPA-

induced apoptosis raised the possibility that during LPA-induced axon retraction NO 

production  might be stimulated as well. This and the observation that morphology of 

neurons retracting in response to LPA is similar to that induced by calcimycin and 

SNAP, was the reason to examine potential involvement of NO in axon retraction 

induced by LPA.  

As a first step I treated wild-type and MAP1B-/- DRG neurons with LPA and analyzed 

response by immunofluorescence microscopy. I found that in MAP1B-/- DRG neurons 

reaction to LPA was impaired. About 47% of wild-type DRG neurons retracted in 

response to LPA, whereas in MAP1B-/- DRG neurons only 8% showed retraction 

morphology. Time-lapse microscopy confirmed these results, since wild-type DRG 

neurons retracted within 5-10min after application of LPA, but MAP1B-/- DRG 

neurons continued elongation at the same rate as before treatment. These observations 

are consistent with previous experiments showing that LPA-induced retraction is 

MAP1B-dependent . I also  reproduced studies showing that LPA involves the 

Rho/ROCK pathway and acto-myosin contractility (Jalink et al., 1994; Fukushima and 

Morita, 2006; Bouquet et al., 2007). Treatment of wild-type DRG neurons with 

Y27632, a ROCK inhibitor, and with blebbistatin, a myosin inhibitor, prior to 

application of LPA, abolished almost completely axon retraction. In addition, I 

performed analogous experiments in N2a neuroblastoma cells, which express high 

levels of MAP1B. Approximately 90% of cells retracted in response to LPA, which was 

prevented by inhibition of ROCK or myosin. 
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To analyze potential involvement of NO in axon retraction induced by LPA I inhibited 

nNOS. nNOS is the major isoform of NOSs in the nervous system and its inhibition was 

shown to prevent calcimycin-induced axon retraction in mouse adult DRG neurons 

(Stroissnigg et al., 2007). Treatment of adult wild-type DRG neurons with NPA, which 

is the nNOS specific inhibitor, prior to application of LPA did not abolish axon 

retraction. In addition, both NPA and L-NAME (a broad range NOS inhibitor), did not 

prevent LPA-induced neurite retraction in N2a cells. Thus, I can conclude that LPA-

induced neurite retraction does not involve activation of NOSs.  but I can not exclude 

involvement of NO, since. Although I did not measure its level prior and after 

application of LPA, it seems that LPA does not induce prosuction of NO since there are 

almost no other sources of NO other than synthesis by NOSs.  

I found it interesting that LPA-induced axon retraction was impaired in MAP1B-/- DRG 

neurons.  In the second part of my thesis I tried to clarify how MAP1B mediates LPA-

induced axon retraction, but I would like to point out already here that LPA was found 

to increase activity of GSK3β, which is known to phosphorylate MAP1B. Increased 

activity of GSK3β was accompanied by enhanced phosphorylation of tau and MAP1B 

(Sayas et al., 2002b). Thus, GSK3β might be involved in LPA-induced, MAP1B 

dependent axon retraction.  

After injury neurons from the CNS fail to regenerate and their growth cones often 

become swollen and adapt irregular shapes, forming so called dystrophic endballs, 

which are similar to the collapsed growth cones observed during retraction of cultured 

neurons (Yiu and He, 2006). The regrowth of injured axons is limited by several 

inhibitory and repulsive guidance cues, such as myelin-associated inhibitors, which are 

produced by oligodendrocytes and myelin debris from the surrounding milieu (Yiu and 

He, 2006). In addition, reactive astrocytes and many inflammatory cells form a glial 

scar at the lesion site, which is an additional barrier for regeneration. After injury these 

reactive astrocytes produce large amounts of CSPGs, which are organized in a gradient 

pattern. The highest concentration of CSPGs is in the centre of the lesion and the lowest 

concentration is at the most distal region from the centre of lesion, called penumbra 

(Yiu and He, 2006). In addition to inhibitory molecules also growth-promoting 

molecules, such as laminin, are released after injury, but as growth cones reach the area 

with high concentrations of CSPGs they can not extend further and form dystrophic 

enballs although permissive molecules are deposited as well (Yiu and He, 2006). The 

main components of CSPGs are aggrecan, brevican, versican, neurocan, phosphacan 
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and NG2. They consist of a protein core and long  sulphated glycosaminoglycan (GAG) 

chains, which are responsible for the inhibitory properties of CSPGs (Yiu and He, 

2006). It was shown that CSPGs upregulated levels of intracellular Ca2+ in the growth 

cones from chick DRG neurons and the CSPGs-induced Ca2+ elevation was abolished 

by general Ca2+ channel blockers. Neurons still omitted the CSPG area, suggesting that 

avoidance of CSPGs by DRG neurons may not depend on increased levels of 

Ca2+.(Snow et al., 1994). Nevertheless, it was interesting to examine if enhanced Ca2+ 

levels might stimulate nNOS and cause growth cone collapse and axon retraction 

through increased production of NO. To examine the potential role of nNOS and 

MAP1B in CSPGs-induced inhibition of axon growth. I used an in vitro model that 

imitates the glial scar observed in vivo after spinal cord injury (Tom et al., 2004). In this 

system, aggrecan (a major component of CSPG) and laminin formed a gradient pattern 

similar to this observed at the lesion site and axons from adult DRG neurons which 

reached an area of aggrecan formed bulbous growth cones similar to dystrophic growth 

cones observed in vivo (Tom et al., 2004). According to this protocol coverslips were 

coated with poly-L-lysine, and then were spotted with mixture of aggrecan and laminin. 

After the spots dried coverslips were covered with laminin. The highest concentration of 

aggrecan was found in the rim and the lowest in the centre of the spot, whereas the 

laminin concentration was highest in the centre of the spot and lowest at the rim. Axons 

from adult wild-type DRG neurons growing on laminin in the surrounding area did not 

enter into the CSPG spot and axons from neurons growing within the centre of the spot 

were not able to grow out of the spot. In both cases, axons usually grow along the rim, 

or sometimes stop the growth at the rim forming dystrophic endings, similar to 

collapsed growth cones that I observed after treatment of DRG neurons with LPA, 

calcimycin or SNAP. To determine if CSPGs involve nNOS or NOS generally, neurons 

were treated with NPA or L-NAME, respectively, 6h or 12h after plating. However, I 

did not observe any changes in axon behaviour. To my surprise, inhibition of ROCK 

with Y27632 or myosin with blebbistatin also did not overcome inhibitory properties of 

aggrecan and neurites were not able to cross the rim of aggrecan. This is contrary to 

previous results showing that inhibition of Rho or ROCK abolished CSPG-induced 

inhibition of axon growth (Borisoff et al., 2003; Monnier et al., 2003). Inhibition of 

ROCK with Y27632 was shown to promote axon outgrowth of chick embryonic DRG 

explants that were grown on aggrecan (Borisoff et al., 2003). CSPGs were found to 

reduce the number of axons per explant and the mean axon length in chick embryonic 
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retinal explants grown on mixture of laminin and CSPGs, which was prevented by 

inhibition of Rho with C3 transferase and ROCK with Y27632 (Monnier et al., 2003). 

Likewise, inhibition of Rho and ROCK stimulated growth of rat postnatal cerebellar 

granule neurons (Sivasankaran et al., 2004) and rat embryonic cortical neurons on 

CSPG (Dergham et al., 2002). The different outcome in my studies could be due to a 

different type of culture, different species as source of neurons, and the different 

developmental stage. For example, Borisoff and colleagues used chick embryonic DRG 

explants, Monnier and colleagues used chick embryonic retinal explants, whereas I used 

dissociated mouse adult DRG neurons. Moreover, it is important to mention that chick 

embryonic DRG explants used in the studies of Borisoff and colleagues were cultured in 

the presence of NGF, BDNF or NT3, while I cultured mouse adult DRG neurons in 

absence of any growth factor. This can influence the results. I could not grow neurons in 

presence of NGF since it was shown that NGF inhibits expression of nNOS in adult 

DRG neurons (Thippeswamy et al., 2005). In addition, Zhou and colleagues observed 

that inhibition of ROCK with Y27632 was not sufficient to rescue axon growth of naive 

adult mouse DRG neurons, which were grown in the presence of CSPGs (Zhou et al., 

2006). Likewise, when neurons stimulated by a pre-conditioning lesion (PCL) were 

grown on coverslips coated with laminin and aggrecan inhibition of ROCK did not 

overcome inhibitory properties of aggrecan. Thus, it seems that although CSPGs work 

through the Rho/ROCK pathway, its inhibition is not enough to overcome inhibiting 

properties of CSPGs in some types of neurons. In addition, I can not exclude 

involvement of the Rho pathway in CSPG-induced inhibition of axon growth, since I 

only inhibited ROCK, which is a main, but not the only downstream effector of Rho. 

For example, Rho can activate PKN, citron, citron kinase, mDia1, mDia2, Rhophilin 

and Rhotekin. Several of theses effectors may also inhibit neurite growth and additional 

experiment will be needed to clarify the issue. I also decided to examine if MAP1B is 

involved in aggrecan-induced inhibition of neurite growth. MAP1B-/- DRG neurons 

were grown on coverslips prepared as described above. Similar to wild-type neurons, 

axons of MAP1B-/- DRG neurons were not able to cross an aggrecan barrier in either 

direction. Bath application of NPA, L-NAME, Y27632 or blebbistatin also did not 

overcome inhibitory properties of aggrecan, suggesting that CSPG-signalling is not 

dependent on MAP1B. 

Laminin is a strongly permissive substrate. Thus, neurons growing on such an attractive 

substrate potentially might not attempt to cross aggrecan rims. Therefore, I decided to 
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coat coverslips only with poly-L-lysine, which is much less permissive than laminin. 

Then I spotted on them a mixture of laminin and aggrecan, without additional coating 

with laminin. I expected that axons would grow through aggrecan rim, since they grew 

on less permissive substrate and would be attracted by laminin. Nevertheless, even 

under these conditions neurons were not able to cross the aggrecan rim and inhibition of 

ROCK or myosin did not overcome inhibition by aggrecan. Likewise, after inhibition of 

nNOS and NOSs in general neurons could not enter the aggrecan rim.  

As I mentioned, the regrowth of injured axons is limited also by myelin-associated 

inhibitors, such as Nogo, MAG, Omgp, Sema4D and ephrinB3. It was shown that MAG 

increased the level of intracellular Ca2+ in Xenopus neurons and rat postnatal cerebellar 

neurons (Wong et al., 2002; Hasegawa et al., 2004; Henley et al., 2004b) and MAG-

dependent repulsion of axonal growth cones requires Ca2+ signalling (Song et al., 1998; 

Henley et al., 2004b). Likewise, the neurite growth inhibitor NI-35, which is a myelin-

associated protein, induced growth cones collapse of rat DRG neurons and chick retinal 

ganglion cells involving an increase in levels of Ca2+ (Bandtlow et al., 1993; Löschinger 

et al., 1997). Inhibition of Ca2+ release from internal stores by dantrolene or depletion of 

caffeine-sensitive intracellular calcium stores abolished growth cone collapse induced 

by NI-35 (Bandtlow et al., 1993). Thus, I decided to examine if enhanced levels of Ca2+ 

induced by myelin can trigger activation of nNOS and production of NO. Coverslips 

were coated with poly-L-lysine and spots of myelin were dried on them. Both, wild-type 

and MAP1B-/- DRG neurons were not able to enter the myelin area and as they reached 

the myelin border they continued growth along side of it. Inhibition of ROCK, myosin 

as well nNOS did not overcome inhibitory properties of myelin. Only in rare cases 

axons entered the myelin area after inhibition of ROCK. These are somewhat results 

contradictory to ones already published. For example, Rho inhibition with C3 

transferase and ROCK inhibition with Y27632 promoted outgrowth of chick embryonic 

DRG neurons, rat embryonic cortical neurons and rat postnatal cerebellar granule 

neurons on myelin, MAG, Nogo-66 or the N-terminal part of Nogo-A (NiG) substrate 

(Dergham et al., 2002; Niederost et al., 2002; Borisoff et al., 2003; Fournier et al., 2003; 

Sivasankaran et al., 2004). In addition, after spinal cord injury enhanced activation of 

Rho was observed and treatment of injured spinal cord from adult mice with C3 or 

Y27632 promotes long distance regeneration (Madura et al., 2004). As for my results 

with CSPGs, the discrepancy between my results and the published results of others 
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could be due to different species, different stages of development and different types of 

neurons used in these studies.  

Although, it seems that nNOS activation is not involved in retraction induced by LPA 

and inhibition of axon growth triggered by myelin and CSPGs, there are several hints 

that it can be involved in retraction induced by other guidance cues, such as netrin-1 or 

semaphorins. It was shown that Ca2+ mediates netrin-1-induced turning of growth cones 

of Xenopus neurons (Hong et al., 2000). The turning response was dependent on Ca2+ 

influx through plasma membrane Ca2+ channels and Ca2+ release from internal stores 

(Hong et al., 2000). Likewise, Sema5b was shown to induce growth cone collapse by 

stimulating Ca2+ influx  in chick DRG neurons, thus potentially it can involve nNOS 

activation (To et al., 2007). It will be interesting to examine if increased levels of Ca2+ 

induced by these guidance cues, followed by repulsion or collapse of the growth cone or 

by retraction of neurites, involves activation of nNOS, increased production of NO and 

S-nitrosylation. 

It was found that inhibition of NOSs with L-NAME in transected peripheral nerves in 

the mouse is associated with enhanced regeneration of myelinated fibers (Zochodne et 

al., 1997). Moreover, it was shown in rats that the spinal nerve lesion induced 

upregulation of nNOS in the spinal cord (Gordh et al., 1998). Intraperitoneally 

application of L-NAME to rats for 6 weeks before operation significantly reduced NOS 

upregulation and the structural changes in the spinal cord were less prominent (Gordh et 

al., 1998). Other examples for a role of nNOS and NO can be found during 

development of the mammalian nervous system. NO was shown to be involved in 

pruning of retinotectal synapses during development of the chick visual system. During 

development the transient retinotectal connections are refined in order to form a proper 

pattern and inhibition of NO synthesis decreased the loss of connections (Wu et al., 

1994). It seems that NO is produced by tectal cells, since they express NOS, and 

diffuses to retinal cells, playing a role as a messenger between these two types of cells 

(Wu et al., 1994). Likewise, NO is also involved in the pattering of retinogeniculate 

connections in ferrets (Cramer et al., 1996). All these results indicate a potential role of 

NOS in physiological and pathophysiological processes. However, many questions 

concerning the mechanism of NO signalling – for example through the cGMP pathway 

or through S-nitrosylation of proteins – remain open.  
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RESULTS 

 

Involvement of other calcium effectors in calcimycin-induced axon 

retraction 

 

Calcimycin-induced axon retraction was shown to be dependent on the activation of 

nNOS. Furthmore, it involves S-nitrosylation of MAP1B as a critical step (Stroissnigg 

et al., 2007). However, we still do not known much about the exact mechanism leading 

to retraction. It should be taken into consideration that calcimycin-increased Ca2+ level 

can lead to activation of many signalling pathways. To confirm that axon retraction 

induced by calcimycin involves activation of nNOS, wild-type DRG neurons were 

treated with 300µM NPA for 1h and then with 10µM calcimycin for 15min. As has 

been shown before (Stroissnigg et al., 2007) nNOS inhibition reduced the number of 

retracted cells (about 5% of wild-type DRG neurons showed retraction compared to 

31% when neurons were treated with calcimycin only). About 11% of wild-type DRG 

neurons displayed collapsed morphology when treated both with NPA and calcimycin 

in comparison to 6% of neurons after treatment with calcimycin only (Fig. 26). 

Inhibition of nNOS by NPA (NPA treatment only) did not lead to significant changes in 

organization of microtubules compared to untreated neurons. These results confirm that 

calcimycin-induced activation of nNOS can trigger axon retraction. 

 
Fig. 26. Calcimycin-induced axon retraction requires the activity of nNOS. Adult wild-type 
DRG neurons were grown on coverslips coated with poly-L-lysine and laminin, were left 
untreated, or were treated with 300µM NPA for 1h, with 10μM calcimycin for 15min, or with 
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300µM NPA for 1h followed by 10μM calcimycin for 15min, as indicated, fixed with 4% PFA, 
stained for tubulin and analyzed by confocal microscopy. For quantitative analysis, 
approximately 100 cells in each of 2 independent experiments were assessed for microtubule 
configuration, which was classified as unchanged, retracted (retraction bulb, trailing remnant, 
sinusoidal bundles) or collapsed. Calcimycin induced axon retraction and axon collapse. 
Inhibition of nNOS by NPA decreased the number of cells displaying retraction hallmarks, but 
it did not influence the number of cells showing axon collapse. Error bars represent standard 
deviations. Asterisks indicate that the values for cells treated with NPA followed by calcimycin 
were significantly different from corresponding values of cells treated with calcimycin only and 
the values from cells treated with calcimycin only were significantly different from 
corresponding values of  untreated neurons (*, p<0.05). 
 

It was shown in various cell types that an increase in the intracellular Ca2+ leads to 

activation of calmodulin, which in turn activates various calmodulin-dependent 

enzymes and signalling pathways. Thus, I examined the potential role of signal 

transduction pathways other than nNOS in calcimycin induced axon retraction. There 

are several Ca2+-dependent effectors and I decided to study CaMKII, calcineurin, PKC, 

and calpain. To determine the role of these effectors wild-type DRG neurons were 

plated on poly-L-lysine and laminin coated glass coverslips, grown for 24h in the 

absence of NGF, treated with specific inhibitor followed by treatment with 10µM 

calcimycin for 15min, fixed and stained for tubulin and MAP1B HC as a control. 

 

CaMKII is not involved in calcimycin_induced axon retraction 

 

As I mentioned before, it was shown in cultured embryonic Xenopus spinal neurons that 

at the normal resting level of [Ca2+]i small local Ca2+signals activated calcineurin and 

high local Ca2+ signals activated CaMKII, inducing repulsion and attraction, 

respectively, while at low resting levels of [Ca2+]i both small and high local Ca2+signals 

activated calcineurin (Wen et al., 2004). Although, we induce global rather than local 

increase in Ca2+ levels, it can also lead to activation of CaMKII. To determine the role 

of CaMKII in calcimycin-induced retraction I decided to inhibit CaMKII with 

autocamtide-2-relate inhibitory peptide (AIP), which is a highly specific, and potent 

inhibitor of CaMKII. 

AIP at 1µM completely inhibits CaMKII, but does not affect PKC, PKA, CaMKIV and 

other kinases. In my experiments I used N-terminal myristoylated AIP (myrAIP), which 

is a cell permeable form of AIP. Wild-type DRG neurons were treated with 10µM 

myrAIP for 30min followed by treatment with 10µM calcimycin for 15min, fixed and 
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stained for tubulin. About 39% of neurons treated with myrAIP and calcimycin showed 

retraction hallmarks compared to 44% when neurons were treated with calcimycin only 

(Fig. 27). This difference as well as other slight differences resulting from the two 

different treatments was not statistically significant, suggesting that CaMKII is not 

involved in axon retraction induced by calcimycin (Fig. 27). Inhibition of CaMKII by 

myrAIP (treatment with myrAIP only) did not induce any significant changes in the 

phenotype of neurons when compared to neurons that were untreated.   

 
Fig. 27. Inhibition of CaMKII does not prevent axon retraction induced by calcimycin in 
wild-type DRG neurons. DRG neurons from wild-type mice were grown coverslips coated 
with poly-L-lysine and laminin, were left untreated, or were treated with 10µM myrAIP for 
30min, with 10μM calcimycin for 15min, or with 10µM myrAIP for 30min followed by 10μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 2 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, retracted or collapsed. Calcimycin induced axon retraction and axon collapse. 
Inhibition of CaMKII by myrAIP did not influence the number of cells showing either retraction 
hallmarks or axon collapse. Error bars represent standard deviations. Asterisks indicate that the 
values for cells treated with myrAIP followed by calcimycin and from the values of cells treated 
with calcimycin only were significantly different from corresponding values of  untreated 
neurons (*, p<0.05, and **, p<0.01). 
 

Calcineurin is not involved in calcimycin_induced axon retraction 

 

It is known that low-amplitude calcium signals activate calcineurin (Wen et al., 2004) 

and it was shown that inhibition of calcineurin increased neurite outgrowth in Xenopus 

spinal neurons (Lautermilch and Spitzer, 2000). It was also observed that Sema5B 
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induced Ca2+ influx via Co2+-sensitive Ca2+ channels, leading to a two-step increase in 

Ca2+ level and growth cone collapse in chicken embryonic DRG neurons. A low-

amplitude rise of Ca2+ level induced activation of calcineurin followed by high 

amplitude rise of Ca2+ level and activation of calpain (To et al., 2007). Inhibition of 

calcineurin partially attenuated growth cone collapse induced by Sema5b (To et al., 

2007). In addition, calcineurin was shown to dephosphorylate tau and other MAPs and 

thus its activation by increased Ca2+ levels could possibly have an influence on MAP1B, 

which has been shown to be involved in axon retraction. 

To examine the potential role of calcineurin in axon retraction in our system I used 

cyclosporine A (CSA), an immunosuppressant that forms a complex with cyclophilin 

inhibiting the phosphatase activity of calcineurin. Pretreatment of wild-type DRG 

neurons with 5µM CSA for 20min did not abolish retraction of neurons (37% in 

comparison to 38% in case of calcimycin treatment only; Fig. 28). This demonstrates 

that calcineurin is not involved in axon retraction induced by calcimycin. Additionally, 

inhibition of calcineurin by CSA (treatment with CSA only) did not lead to any 

significant changes in axonal microtubule organization when compared to untreated 

neurons. 

 

 
Fig. 28. Inhibition of calcineurin does not prevent axon retraction induced by calcimycin 
in wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips 
coated with poly-L-lysine and laminin, were left untreated, or were treated with 5µM CSA for 
20min, with 10μM calcimycin for 15min, or with 5µM CSA for 20min followed by 10μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 4 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, retracted or collapsed. Calcimycin induced axon retraction and axon collapse. 
Inhibition of calcineurin by CSA did not influence the number of cells showing either retraction 
hallmarks or axon collapse. Error bars represent standard deviations. Asterisks indicate that the 
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values for cells treated with CSA followed by calcimycin and values for cells treated with 
calcimycin only were significantly different from corresponding values of untreated neurons (*, 
p<0.05, **, p<0.005, and ***, p<0.001). 

PKC is not involved in calcimycin-induced axon retraction 

 

To investigate involvement of PKC in axon retraction induced by calcimycin, prior to 

application of calcimycin wild-type neurons were pretreated for 1.5h with 50µM 

GÖ6976, which is a specific inhibitor of PKC α and β1 isozymes. Inhibition of PKC did 

not change the amount of cells displaying retraction hallmarks (28% in comparison to 

32% when cells were treated with calcimycin only; Fig. 29). The level of cells showing 

collapsed phenotype was reduced to 6% compared to 18% in case of neurons treated 

with calcimycin only, what is associated with increase number of unchanged neurons 

(66% compare to 50% when cells were treated with calcimycin only; Fig. 29). 

However, neither of these differences were not statistically significant. Inhibition of 

PKC by GÖ6976 (treatment with GÖ6976 only) did not induce any significant changes 

in neurons in comparison to untreated neurons. 
 

 
Fig. 29. Inhibition of PKC does not prevent axon retraction induced by calcimycin in wild-
type DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated with 
poly-L-lysine and laminin, were left untreated, or were treated with 50µM GÖ6976P for 1.5h, 
with 10μM calcimycin for 15min, or with 50µM GÖ6976 for 1.5h followed by 10μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 4 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, or retracted or collapsed. Calcimycin induced axon retraction and axon collapse. 
Inhibition of calcineurin by GÖ6976 did not influence the number of cells showing retraction 
hallmarks, but reduced the number of collapsed neurons. Error bars represent standard 
deviations. Asterisks indicate that the values for cells treated with GÖ6976 followed by 
calcimycin and the values for cells treated with calcimycin only were significantly different 
from corresponding values of untreated neurons (*, p<0.05, **, p<0.01, and ***, p<0.001). 
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Calpain is not involved in calcimycin-induced axon retraction 

 

There is much evidence that increased Ca2+ levels can activate calpain resulting in axon 

retraction, growth cone collapse or neuronal cell death. As mentioned above, Sema5B 

induced growth cone collapse involved elevation of Ca2+ levels and activation of 

calcineurin and calpain (To et al., 2007). It was also shown that exposure of cultured 

hippocampal neurons to glutamate, which induced an increase in Ca2+ levels, led to 

activation of calpain above basal levels (Hajieva et al., 2009). Depolarization, which 

induced neurite retraction, also led to elevation of Ca2+ and activation of calpain, and 

inhibition of calpain abolished retraction induced by depolarization in adult rat spiral 

ganglion neurites (SGNs) (Roehm et al., 2008). Calpain is also involved in growth cone 

collapse followed a high-amplitude increase in Ca2+ levels stimulated by motuporamine 

C in chicken embryonic DRG neurons (To et al., 2008).  

 

 
Fig. 30. Inhibition of calpain does not prevent axon retraction induced by calcimycin in 
wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated 
with poly-L-lysine and laminin, were left untreated, or were treated with 200µM ALLN for 1h, 
with 10μM calcimycin  for 15min, or with 200µM ALLN for 1h followed by 10μM calcimycin 
for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. For quantitative analysis, approximately 100 cells in each of 4 independent 
experiments were assessed for microtubule configuration, which was classified as unchanged, or 
retracted or collapsed. Calcimycin induced axon retraction and axon collapse. Error bars 
represent standard deviations. Asterisks indicate that the values for cells treated with ALLN 
followed by calcimycin and the values for cells treated with calcimycin only were significantly 
different from corresponding values of neurons untreated (*, p<0.01, and **, p<0.005). 
 
To study involvement of calpain in axon retraction induced by calcimycin I used 

ALLN, which is a cell permeable, peptide aldehyde inhibitor of calpain and other 
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neutral cysteine proteases. Pretreatment of wild-type DRG neurons with 200µM ALLN 

for 1h slightly reduced the number of neurons displaying retraction in response to 

calcimycin treatment (26% compared to 37% in case of calcimycin treatment only; Fig. 

30). This reduction is associated with small increase in number of collapsed neurons 

(25% compared to 11% when cells were treated with calcimycin treatment only). These 

differences are not significant and it seems that calpain is not involved in axon 

retraction induced by calcimycin. Inhibition of calpain by ALLN (treatment with ALLN 

only) did not lead to significant changes in axonal microtubule organization when 

compared to untreated neurons (Fig. 30). 

 

Involvement of acto-myosin contractility in axon retraction induced by 

calcimycin and NO 

 

According to a recent model, axon extension and retraction depend on the balance 

between two opposing forces (Baas and Ahmad, 2001). The extension force is based on 

microtubules with distally oriented plus ends, and dynein, a minus end-directed motor 

protein. The retraction force is based on F-actin and myosin. As mentioned above, NO-

induced axon retraction in DRG neurons shows the typical retraction hallmarks: 

sinusoidal microtubule bundles along the axonal shaft, a retraction bulb, and a trailing 

remnant (Hess et al., 1993; Ernst et al., 2000; He et al., 2002). A similar morphology 

showed neurons retracting in response to the inhibition of cytoplasmic dynein (Baas and 

Ahmad, 2001) or activation of the RhoA GTPase (Billuart et al., 2001; Zhang et al., 

2003; Bouquet et al., 2007). It was shown in our lab that the COOH terminus of LC1 

interacts with its NH2 terminus, which contains the microtubule binding domain 

(Stroissnigg et al., 2007). This interaction between COOH- and NH2-terminal domains 

of LC1 results in a conformation characterized by a reduced microtubule binding 

activity. It was proposed that activation of nNOS increases NO levels and leads to S-

nitrosylation of cys2457 within LC1, leading to a conformational change with a higher 

microtubule binding activity (Stroissnigg et al., 2007). Interaction between MAP1B and 

microtubules might inhibit dynein, resulting in reduction of the extension force and 

axon retraction (Fig. 31; Stroissnigg et al., 2007). It seems that in MAP1B-/- neurons 

nNOS activation and high levels of NO do not inhibit dynein action and thus do not 

induce axon retraction. Our hypothesis that MAP1B inhibits dynein comes from studies 
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showing that MAP1B affects dynein function, particularly its interaction with LIS1 

(lissencephaly-related protein 1) and can block dynein-dependent retrograde transport 

(Jimenez-Mateos et al., 2005; Jimenez-Mateos et al., 2006; Trančíková, 2007). In 

addition, the microtubule binding sites in dynein and in MAP1B share sequence 

homology (Koonce and Tikhonenko, 2000). On the other hand, several physiological 

guidance cues were shown to induce axon retraction and growth cone collapse through 

actin rearrangement regulated by activation of RhoA and myosin II (Hirose et al., 1998; 

van Leeuwen et al., 1999; Billuart et al., 2001; Zhang et al., 2003). Thus, I decided to 

investigate the potential role the acto-myosin forces in NO-induced axon retraction.  

 

 
 
Fig. 31. A model for MAP1B mediated effects of nNOS activation. Axon extension or 
retraction depends on the balance between two opposing forces. The extension force is based on 
microtubules (blue) with their plus ends oriented distally, and dynein, a minus end-directed 
motor (direction showed by black arrows in the light blue domains). The retraction force is 
based on F-actin and myosin (red). The microtubule binding domain (MT) of heavy chain (HC) 
and light chain (LC1) of MAP1B are indicated by dark green boxes. It was shown that the 
COOH terminus of LC1 interacts with its NH2 terminus, which contains the microtubule 
binding domain (Stroissnigg et al., 2007). This interaction between COOH- and NH2-terminal 
domains of LC1 results in a conformation characterized by a reduced microtubule binding 
activity (Stroissnigg 2007). It was proposed that activation of nNOS increases NO levels and 
leads to S-nitrosylation of cys2457 within LC1 (symbolised by C-NO), leading to a 
conformational change with a higher microtubule binding activity (Stroissnigg et al., 2007). 
Interaction between MAP1B and microtubules might inhibit dynein, resulting in reduction of 
the extension force and axon retraction. (adapted from Stroissnigg et al., 2007).  
 

ROCK is necessary for calcimycin- and NO-induced axon retraction  

 

To examine involvement of acto-myosin in axon retraction induced by NO I planned to 

inhibit the Rho pathway and look if it would influence NO-induced axon retraction. It 

was shown that RhoA transduces signals via binding to its downstream partners, such as 
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ROCK I and ROCK II. Thus, I decided to inhibit ROCK with Y27632, which I used in 

experiments with LPA. Y27632 has a specifity 100-fold higher for ROCK than for 

PKA, PKC or MLCK and 20-fold higher than for two other RhoA downstream effectors 

– protein kinase N and citron kinase. 

Again wild-type DRG neurons were plated on poly-L-lysine and laminin coated 

coverslips, grown for 24h in the absence of NGF, pretreated with 10µM Y27632 for 1h 

and treated with 10µM calcimycin for 15min or were left untreated, fixed and stained 

for tubulin and MAP1B HC as a control. Pretreatment of neurons with Y27632 

prevented axon retraction and collapse induced by calcimycin (7% and 6%, 

respectively, in comparison to 30% and 19% when cells were treated with calcimycin 

only, respectively). In addition, inhibition of ROCK by Y27632 did not lead to 

significant changes in axonal microtubule organization compared to untreated neurons 

(Fig. 32). 

 
Fig. 32. Inhibition of ROCK prevents axon retraction induced by calcimycin in wild-type 
DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-
L-lysine and laminin, were left untreated, or were treated with 10µM Y27632 for 1h, with 
10μM calcimycin for 15min, or with 10µM Y27632 for 1h followed by 10μM calcimycin for 
15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. For quantitative analysis, approximately 100 cells in each of 4 independent 
experiments were assessed for microtubule configuration, which was classified as unchanged, or 
retracted or collapsed. Calcimycin induced axon retraction and axon collapse. Inhibition of 
ROCK by Y27632 prevented axon retraction induced by calcimycin. Error bars represent 
standard deviations. Asterisks indicate that the values for cells treated with calcimycin were 
significantly different from corresponding values of untreated neurons and the values for cells 
treated with Y27632 followed by calcimycin were significantly different from corresponding 
values of neurons treated with calcimycin only (*, p<0.05, **, p<0.005, and ***, p<0.001). 
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I also examined the involvement of ROCK in axon retraction induced by the 

nitrosylating agent SNAP. Wild-type neurons were cultured as described before and left 

untreated, or treated with 100μM SNAP for 1h, 10µM Y27632 for 1h, or treated with 

10µM Y27632 for 1h followed by treatment with 100μM SNAP for 1h. Inhibition of 

ROCK with Y27632 abolished retraction induced by SNAP in wild-type DRG neurons 

(5% neurons showing retraction hallmarks in comparison to 49% in case of cells treated 

with SNAP only; Fig. 33).  

 
Fig. 33. Inhibition of ROCK prevents axon retraction induced by SNAP in wild-type DRG 
neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 10µM Y27632 for 1h, with 100μM 
SNAP for 1h, or with 10µM Y27632 for 1h followed by 100μM SNAP for 1h, as indicated, 
fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For quantitative 
analysis, approximately 100 cells in each of 3 independent experiments were assessed for 
microtubule configuration, which was classified as unchanged, or retracted or collapsed. SNAP 
induced axon retraction. Inhibition of ROCK by Y27632 prevented axon retraction induced by 
SNAP. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with SNAP were significantly different from corresponding values of untreated neurons 
and values for cells treated with Y27632 and SNAP were significantly different from 
corresponding values of neurons treated with SNAP only (**, p<0.001). 
 
It was shown in our lab that treatment of N2a neuroblastoma cells with 100µM SNAP 

for 1h increased nitrosylation of MAP1B LC1 (1.7-fold above the level observed in 

untreated cells) and inhibited differentiation of N2a cells over-expressing LC1 

(Stroissnigg et al., 2007). To investigate involvement of ROCK in SNAP-induced 

neurite in N2a neuroblastoma cells, cells were grown on poly-L-lysine and laminin pre-

coated glass coverslips, pretreated with 10µM Y27632 for 1h and then treated with 

100µM SNAP for 1h. Inhibition of ROCK reduced neurite retraction induced by SNAP 

(14% of cells lacking neurites in comparison to 79% when cells were treated with 

SNAP only). Y27632 also slightly reduced the level of cells lacking neurites when  
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compared to untreated cells (4% and 16% of cells, respectively), but this differences 

was not statistically significant (Fig. 34). 

 
 

 
Fig. 34.  Inhibition of ROCK abolishes neurite retraction of N2a neuroblastoma cells 
induced by SNAP. N2a neuroblastoma cells were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 100μM SNAP for 1h, with 10µM 
Y27632 for 1h, or with 10µM Y27632 for 1h followed by treatment with 100μM SNAP for 1h, 
as indicated, fixed, and stained for tubulin. The morphology of cells was quantified by counting 
cells with neurites exceeding one cell diameter in length. SNAP induced neurite retractionFor 
quantitative analysis, 200 cells in each of 2 independent experiments were scored. Error bars 
represent standard deviations. Inhibition of ROCK reduced the level of neurite retraction 
induced by SNAP. Asterisks indicate that the values for cells treated with SNAP were 
significantly different from corresponding values of untreated and the values from cells treated 
with Y27632 followed by SNAP were significantly different from corresponding values of cells 
treated with SNAP only (*, p<0.05). 
 

Myosin inhibition prevents axon retraction induced by NO 

 

For further analysis of involvement of acto-myosin contractility in axon retraction 

induced by NO, I tested the effect of myosin inhibition by blebbistatin. Pretreatment of 

wild-type DRG neurons with 100µM blebbistatin for 15min reduced the level of 

neurons retracting in response to calcimycin (5% compared to 29% in case of cells 

treated with calcimycin only). The amount of cells showing hallmarks of collapse was 

not affected by addition of blebbistatin prior to calcimycin (Fig. 35). 
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Fig. 35. Inhibition of myosin prevents axon retraction induced by calcimycin in wild-type 
DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-
L-lysine and laminin, were left untreated, or were treated with 100µM blebbistatin for 15min, 
with 10μM calcimycin for 15min, or with 100µM blebbistatin for 15min followed by 10μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 2 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, or retracted or collapsed. Calcimycin induced axon retraction and axon collapse. 
Inhibition of myosin by blebbistatin prevented axon retraction induced by calcimycin. Error 
bars represent standard deviations. Asterisks indicate that the values for cells treated with 
blebbistatin followed by calcimycin were significantly different from corresponding values of 
neurons treated with calcimycin only and the values for cells treated with calcimycin only were 
significantly different from corresponding values of untreated neurons (*, p<0.05, and **, 
p<0.01). 
 
Additional evidence supporting the role of myosin in axon retraction induced by 

calcimycin was obtained in experiments done in N2a neuroblastoma cells. These cells 

express a high level of nNOS in addition to MAP1B (Stroissnigg et al., 2007). 

Activation of nNOS by calcimycin significantly increased the number of cells lacking 

neurites (Stroissnigg et al., 2007) and resulted in an approximately 2-fold increase in S-

nitrosylated LC1 compared to the level from untreated cells (Stroissnigg et al., 2007). 

Inhibition of nNOS in these cells by NPA resulted in a 2-fold reduction of the level of 

S-nitrosylated LC1, as compared to untreated cells (Stroissnigg et al., 2007). To 

investigate the potential role of myosin in calcimycin-induced neurite retraction in N2a 

cells I cultured them as described before and treated with 100µM blebbistatin for 15min 

prior to treatment with 10µM calcimycin for 1h, fixed and stained for tubulin. Inhibition 

of blebbistatin reduced the level of cells lacking neurites to 22% from 50% when cells 

were treated with calcimycin only (Fig. 36). 
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Fig. 36. Inhibition of myosin abolishes neurite retraction of N2a neuroblastoma cells 
induced by calcimycin. N2a neuroblastoma cells were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 10μM calcimycin for 1h, with 
10µM blebbistatin for 1h, or with 10µM blebbistatin for 1h followed by treatment with 10μM 
calcimycin for 1h, as indicated, fixed with 4% PFA, and stained for tubulin. The morphology of 
cells was quantified by counting cells with neurites exceeding one cell diameter in length. 
Inhibition of myosin partially abolished calcimycin-induced neurite retraction. For quantitative 
analysis, 200 cells in each of 5 independent experiments were scored. Error bars represent 
standard deviations. Asterisks indicate that the values for cells treated with calcimycin were 
significantly different from corresponding values of untreated cells and values for cells treated 
with blebbistatin followed by calcimycin were significantly different from corresponding values 
of neurons treated with calcimycin only (**, p<0.001). 
 
Subsequently, involvement of myosin in axon retraction induced by SNAP was 

analyzed. In wild-type DRG neurons, inhibition of myosin by addition of 100µM 

blebbistatin for 15min prior to treatment with 100µM SNAP abolished axon retraction 

almost completely (6% in comparison to 30% when cells were treated with SNAP only; 

Fig. 37). 
 

 
Fig. 37. Inhibition of myosin prevents axon retraction induced by SNAP in wild-type DRG 
neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 100µM blebbistatin for 15min, with 
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100μM SNAP for 1h, or with 100µM blebbistatin for 15min followed by 100μM SNAP for 1h, 
as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For 
quantitative analysis, approximately 100 cells in each of 3 independent experiments were 
assessed for microtubule configuration, which was classified as unchanged, or retracted or 
collapsed. SNAP-induced axon retraction and inhibition of myosin by blebbistatin prevented 
axon retraction induced by SNAP. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with SNAP were significantly different from corresponding 
values of untreated neurons and the values for cells treated with blebbistatin followed SNAP 
were significantly different from corresponding values of neurons treated with SNAP only (*, 
p<0.05, **, p<0.005, and **, p<0.001). 
 
Finally, involvement of myosin in SNAP-stimulated neurite retraction of N2a 

neuroblastoma cells was determined. The number of cells with neurites exceeding one 

cell diameter in length was increased when blebbistatin was added before SNAP 

treatment (86% of cells with neurites in contrast to 21% when treated with SNAP only; 

Fig. 38). 

 

 
Fig. 38. Inhibition of myosin abolished neurite retraction of N2a neuroblastoma cells 
induced by SNAP. N2a neuroblastoma were cells grown on coverslips coated with poly-L-
lysine and laminin, were left untreated, or were treated with 100µM blebbistatin for 15min, 
100μM SNAP for 1h, or with 100µM blebbistatin for 15min followed by 100μM SNAP for 1h, 
as indicated, fixed with 4% PFA, and stained for tubulin. The morphology of cells was 
quantified by counting cells with neurites exceeding one cell diameter in length. Inhibition of 
myosin partially abolished calcimycin-induced neurite retraction. For quantitative analysis, 200 
cells in each of 2 independent experiments were scored. Error bars represent standard 
deviations. Asterisks indicate that the values for cells treated with SNAP were significantly 
different from corresponding values of untreated cells and the values for cells treated with 
blebbistatin and SNAP were significantly different from corresponding values of neurons 
treated with SNAP only (*, p<0.05 and **, p<0.005). 
 

These results demonstrated that ROCK and myosin are necessary for axon retraction 

induced by NO, but did not clarify if acto-myosin forces are enhanced in response to 

NO. It is known that myosin II activity is stimulated by phosphorylation of MRLC at 

Ser19 and Thr18 (Somlyo and Somlyo, 2003). Monophosphorylation of MRLC at Ser19 
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(phospho-MRLC) increases its ATPase activity and the stability of myosin II filaments. 

Phosphorylation both at Ser19 and Thr18 (di-phospho-MRLC) further increases the 

activity of myosin II and stabilizes its filaments. It was shown that LPA-enhanced 

intracellular tension involves the Rho/ROCK pathway and the diphosphorylation of 

MRLC (Mizutani et al., 2006). Thus, I decided to study levels of monophosphorylation 

and diphosphorylation of MRLC in response to SNAP and LPA treatment in N2a 

neuroblastoma cells.  
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Fig. 39. NO- and LPA-induced axon retraction involves activation of myosin. N2a cells 
were grown on 6cm plates, and either were left untreated, or treated with 10μM LPA, with 
100μM SNAP, or with 10μM Y27632, as indicated. Cell lysates were fractioned by SDS-PAGE 
and analyzed by immunoblotting using anti-Ser19/Thr18 (di-phospho-MRLC) and anti-Ser19 
(phospho-MRLC) antibodies. Bands were quantified using the Quanti Scan 3 software. For 
quantitative analysis, blots from 2 or 3 independent experiments were scored. In each treatment 
the values show levels of phosphorylation at Ser 19/Thr18 (a) or at Ser19 (b) normalized to 
actin (a) or tubulin b) which were used as a loading control. Error bars represent standard 
deviations. Asterisks indicate that the level of phospho-myosin LC2 from lysates of cells treated 
with roscovitine was significantly different from corresponding value of untreated cells (*, 
p<0.05). 
 
I observed increased levels of both mono- (Ser19) and diphosphorylation (Ser19/Thr18) 

of MRLC after treatment with LPA or SNAP. Enhanced diphosphorylation of MRLC 

was observed after application of LPA for 20min (236% of values from untreated cells) 

and 100µM SNAP for 30min (550% of values from untreated cells), but differences 

were not statistically significant. The highest levels of monophosphorylation of MRLC 

were found after treatment of N2a cells with 10µM LPA for 10min and for 30min 

(149% and 238% of values from untreated cells, respectively), and after treatment with 

100µM SNAP for 30min and for 1h (259% and 153% of values from untreated cells, 

respectively), but only in case of treatment with 100µM SNAP for 1h increase was 

statistically significant. Treatment with Y27632 which inhibits ROCK and potentially 

phosphorylation of MRLC, as a downstream effector of Rho/ROCK pathway, did not 

reduce level of monophosphorylation of MRLC (119% of values from untreated cells) 

(Fig. 39). 
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Increased levels of cAMP partially attenuate axon retraction induced 

by calcimycin and SNAP 

 

Several experiments in vivo and in vitro showed that cAMP and cGMP regulate growth 

cone navigation and axonal outgrowth. For example, the ratio of cAMP/cGMP 

determines the response of neurons to netrin-1. A high ratio of cAMP/cGMP stimulated 

increase in the level of intracellular Ca2+ and induced an attractive response of the 

growth cone to netrin-1, whereas a low ratio reduced the level of intracellular Ca2+ and 

lead to a repulsive response of the growth cone to netrin-1 (Nishiyama et al., 2003). 

Moreover, it was shown in cultured embryonic Xenopus spinal neurons that at the 

normal resting level of [Ca2+]i small local Ca2+signals activated calcineurin and induced 

repulsive responses of the growth cone, which could be switched by cAMP elevation to 

attractive responses (Wen et al., 2004).  

To examine if stimulation of cAMP can influence axon retraction induced by NO, prior 

to treatment with calcimycin and SNAP wild-type DRG neurons were treated with 

dibutryl-cAMP or forskolin, which stimulates production of cAMP.  

 
Fig. 40. Addition of cAMP partially abolishes retraction of axons induced by calcimycin in 
wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated 
with poly-L-lysine and laminin, were left untreated, or were treated with 1µM dibutryl-cAMP 
for 1h, with 1μM calcimycin for 15min, or with 1µM dibutryl-cAMP for 1h followed by 1μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 2 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, retracted, or collapsed. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with calcimycin or with dibutryl-cAMP were significantly 
different from corresponding values of untreated cells and the values for cells treated with 
dibutryl-cAMP followed by calcimycin were significantly different from corresponding values 
of cells treated with calcimycin only (*, p<0.05, and **, p<0.01). 
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Fig. 41. Addition of forskolin partially abolishes retraction of axons induced by calcimycin 
in wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips 
coated with poly-L-lysine and laminin, were left untreated, or were treated with 20µM forskolin 
for 3h, with 1μM calcimycin for 15min, or with 20µM forskolin for 3h followed by 1μM 
calcimycin for 15min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 2 
independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, retracted or collapsed. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with calcimycin were significantly different from corresponding 
values of  untreated cells and the values for cells treated with forskolin followed by calcimycin 
were significantly different from corresponding values of neurons treated with calcimycin only 
(*, p<0.05, and **p<0.005). 
 
Addition of 1µM dibutryl-cAMP prior treatment with calcimycin reduced the values of 

neurons showing retraction hallmarks to 26% in comparison to 42% when cells were 

treated with calcimycin only (Fig. 40). Application of dibutryl-cAMP did not prevent 

axon collapse when compare to calcimycin treatment only (Fig. 40). Pretreatment of 

neurons with 20µM forskolin for 3h also partially abolished axon retraction induced by 

calcimycin (24% in comparison to 42% when cells were treated with calcimycin only) 

and did not influence axon collapse; Fig. 41). 

Similarly, wild-type DRG neurons were treated with 1µM dibutryl-cAMP for 1h prior 

to application of SNAP, which partially reduced the number of neurons showing 

retraction hallmarks induced by SNAP (17% compared to 38% in case of treatment with 

SNAP only; Fig. 42). Finally, 20µM forskolin reduced by a factor of 2 the number of 

neurons showing retraction hallmarks in wild-type DRG neurons when compared to 

cells treated with SNAP only (Fig. 43). Forskolin on its own also slightly reduced the 

number of cells displaying axon retraction in comparison to untreated cells. 
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Fig. 42. Addition of cAMP partially abolishes retraction of axons induced by SNAP in 
wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated 
with poly-L-lysine and laminin, were left untreated, or were treated with 1µM dibutryl-cAMP 
for 1h, with 100μM SNAP for 1h, or with 1µM dibutryl-cAMP for 1h followed by 100μM 
SNAP for 1h, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. For quantitative analysis, approximately 100 cells in each of 4 independent 
experiments were assessed for microtubule configuration, which was classified as unchanged, 
retracted or collapsed. Error bars represent standard deviations. Asterisks indicate that the 
values for cells treated with SNAP were significantly different from corresponding values of 
untreated neurons and the values for cells treated with dibutryl-cAMP followed by SNAP were 
significantly different from corresponding values of neurons treated with SNAP only (*, p<0.05, 
and **, p<0.005). 
 

 
Fig. 43. Addition of forskolin partially abolishes retraction of axons induced by SNAP in 
wild-type DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated 
with poly-L-lysine and laminin, were left untreated, or were treated with 20µM forskolin for 3h, 
with 100μM SNAP for 1h, or with 20µM forskolin for 3h followed by 100μM SNAP for 1h, as 
indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For 
quantitative analysis, approximately 100 cells in each of 2 independent experiments were 
assessed for microtubule configuration, which was classified as unchanged, retracted or 
collapsed. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with SNAP were significantly different from corresponding values of untreated neurons 
(*, p<0.05). 
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NO-induced axon retraction does not involve microtubule 

depolymerization 

 

It seems that upon SNAP, calcimycin or LPA treatment microtubules retreat backwards 

to accommodate the shortening of the axon and thus adapt a coiled and bundled 

configuration, but it can not be excluded that they depolymerise during this 

reconfiguration. Thus, to examine if depolymerization takes plays during NO-induced 

axon retraction, wild-type and MAP1B-/- DRG neurons were grown on poly-L-lysine 

and laminin coated coverslips. After 24h, 3nM or 100nM (not shown) taxol which 

stabilizes microtubules against disassembly was applied to neurons for 30min prior 

SNAP treatment, then cells were fixed and stained for tubulin. Pretreatment of neurons 

with taxol did not abolishe retraction induced by SNAP and axons retracted even more 

dramatically than axons from cells treated with SNAP only (64% of wild-type DRG 

neurons retracted in comparison to 37% in case of treatment with SNAP only; Fig. 44). 

It seems that even such a low concentrations of taxol alters morphology of axons, which 

retract showing all typical hallmarks as retraction bulb, sinusoidal bundles of 

microtubules and trailing remnant (approximately 68% of wild-type DRG neurons 

treated with 3nM retracted; Fig. 44). Interestingly MAP1B-/- DRG neurons also 

displayed axon retraction in response to taxol, 74% and 80% of cells retracted when 

treated with taxol only or with SNAP and taxol, respectively (in comparison about 12% 

of cells treated with SNAP only showed retraction morphology; Fig. 45). 

 
Fig. 44. Treatment with taxol does not abolish SNAP-induced neurite retraction in wild-
type neurons and induces axon retraction on its own. DRG neurons from wild-type mice 
were grown on coverslips coated with poly-L-lysine and laminin, were left untreated, or were 
treated with 3nM taxol for 30min, with 100μM SNAP for 1h, or with 3nM taxol for 30min 
followed by 100μM SNAP for 1h, as indicated, fixed with 4% PFA, stained for tubulin and 
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analyzed by confocal microscopy. For quantitative analysis, approximately 100 cells in each of 
3 independent experiments were assessed for microtubule configuration, which was classified as 
unchanged, retracted or collapsed. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with SNAP, with taxol or with taxol followed by SNAP 
treatment were significantly different from corresponding values of untreated neurons (*, 
p<0.01, and **, p<0.001). 

 
Fig. 45. Taxol induces axon retraction also in MAP1B-/- DRG neurons. DRG neurons from 
MAP1B-/- mice were grown on coverslips coated with poly-L-lysine and laminin, were left 
untreated, or were treated with 3nM taxol for 30min, with 100μM SNAP for 1h, or with 3nM 
taxol for 30min followed by 100μM SNAP for 1h, as indicated, fixed with 4% PFA, stained for 
tubulin and analyzed by confocal microscopy. For quantitative analysis, close to 100 cells in 
each of 3 independent experiments were assessed for microtubule configuration, which was 
classified as unchanged, retracted or collapsed. Error bars represent standard deviations. 
Asterisks indicate that the values for cells treated with SNAP or with taxol followed by SNAP 
were significantly different from corresponding values of untreated neurons (*, p<0.005, and 
**, p<0.001). 
 
I also examined the influence of microtubule stabilization on calcimycin-induced 

retraction of neurites in N2a cells. Cells were grown on poly-L-lysine and laminin 

coated coverslips as described before and then treated with 3nM taxol for 30min, with 

10µM calcimycin for 1h, or with 3nM taxol and followed by 10µM calcimycin for 1h, 

or were left untreated, then fixed and stained for tubulin. As in DRG neurons taxol did 

not prevent retraction of neurites and combination of calcimycin and taxol increased 

number of cells lacking long neurites (81% of cells lacking neurites when compared to 

43% when treated with calcimycin only). About 52% of N2a cells treated with taxol 

lacked neurites or had neurites shorter than one cell diameter in length when compared 

to 27% when cells were left untreated (Fig. 46). 

 
 
 
 
 
 
 

0

20

40

60

80

100

untreated taxol SNAP SNAP + taxol

%
 o

f c
el

ls

UNCHANGED RETRACTED COLLAPSED

*

*

*

** 



                                                                                                            Part II – Results  

 112 

 
 

 
 
Fig. 46. Treatment with taxol does not abolish calcimycin-induced neurite retraction in 
N2a cells. N2a neuroblastoma cells grown on coverslips coated with poly-L-lysine and laminin, 
subsequently cells were left untreated or were treated with 3nM taxol for 30min, with 10μM 
calcimycin for 15min, or with 3nM taxol for 30min followed by 10μM calcimycin for 15min, as 
indicated, fixed with 4% PFA, and stained for tubulin. The morphology of cells was quantified 
by counting cells with neurites exceeding one cell diameter in length. Inhibition of myosin 
partially abolished calcimycin induced neurite retraction. For quantitative analysis, 200 cells in 
each of 4 independent experiments were scored. Error bars represent standard deviations. 
Asterisks indicate that the values for cells treated with calcimycin or with taxol followed by 
calcimycin treatment  were significantly different from corresponding values of  untreated cells 
(*, p<0.05, and **, p<0.001). 
 
 

LPA-induced axon retraction does not involve microtubule 

depolymerization 

 

Axons retracting in response to LPA treatment show a similar phenotype to axons 

retracting in response to calcimycin or SNAP. Moreover, retraction in response to all 

three cues is MAP1B-dependent and involves ROCK and myosin. Thus, it was 

interesting to investigate if LPA-induced retraction, like SNAP-induced retraction, does 

not involve depolymerization of microtubules. 
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Fig. 47. Treatment with taxol does not prevent LPA-induced neurite retraction of wild-
type neurons. DRG neurons from wild-type (a) and MAP1B-/- (b) mice were grown on 
coverslips coated with poly-L-lysine and laminin, were left untreated, or were treated with 3nM 
taxol for 30min, with 10μM LPA for 30min, or with 3nM taxol for 30min followed by 10μM 
LPA for 30min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. (a, b), for quantitative analysis, approximately 100 cells in each of 3 (a) or 4 (b) 
independent experiments were assessed for microtubule configuration which was classified as 
unchanged, retracted or collapsed. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with LPA, with taxol or with taxol followed by LPA were 
significantly different from corresponding values of untreated neurons (*, p<0.05, **, p<0.005, 
and ***, p<0.001). 
 

Similarly to previous experiments, both wild-type and MAP1B-/- DRG neurons were 

treated with 3nM taxol for 30min prior to treatment with 10µM LPA for 30min. As 

expected, stabilization of microtubules by taxol did not prevent retraction induced by 

LPA (63% of wild-type DRG neurons showed retraction hallmarks when compared to 
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28% when cells were treated with LPA only). About 60% of cells from MAP1B-/- DRG 

neurons displayed retraction hallmarks when treated with taxol and LPA, in contrast to 

6% when treated with LPA only (Fig. 47). 

Likewise, I examined if LPA-induced inhibition of neurites retraction in N2a 

neuroblastoma cells involves depolymerization of microtubules. Cells were grown as 

described before, treated with 3nM taxol for 30min prior to application of 10µM LPA 

for 30min, fixed and stained. Taxol did not prevent retraction induced by LPA in N2a 

cells, 90% of cells were lacking neurites when compared to 62% when cells were 

treated with LPA only (Fig. 48). 

 
Fig. 48. Treatment with taxol does not abolish LPA-induced neurite retraction in N2a 
cells. N2a neuroblastoma cells were grown on coverslips coated with poly-L-lysine and lamini, 
were left untreated or were treated with 3nM taxol for 30min, with 10μM LPA for 30min, or 
with 3nM taxol for 30min followed by 10μM LPA for 30min, as indicated, fixed with 4%, and 
stained for tubulin. The morphology of cells was quantified by counting cells with neurites 
exceeding one cell diameter in length. For quantitative analysis, 200 cells from each of 4 
independent experiments were scored. Error bars represent standard deviations. Asterisks 
indicate that the values for cells treated with LPA, with taxol, or with taxol followed by LPA 
were significantly different from corresponding values of untreated cells (*, p<0.05, **, p<0.01, 
and **, p<0.001). 

Mechanism of taxol-induced axon retraction 

 

Taxol-induced axon retraction is acto-myosin independent 

 
As retraction induced by taxol shows all hallmarks characteristic for axons retracting in 

response to SNAP, calcimycin or LPA, it was interesting to investigate if it too is 

ROCK- and myosin-dependent. 

To determine involvement of acto-myosin contractility in taxol-induced retraction, both 

wild-type and MAP1B-/- DRG neurons were cultured as described before, treated with 
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Y27632 or blebbistatin prior to application of taxol, fixed, stained and analysed by 

microscopy.  

 

WT KO10µma WT KO10µma

 

 

 
Fig. 49. Inhibition of ROCK does not prevent taxol-induced neurite retraction in wild-type 
and MAP1B-/- DRG neurons. DRG neurons from wild-type and MAP1B-/- mice were grown 
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on coverslips coated with poly-L-lysine and laminin, were left untreated, or were treated with 
3nM taxol for 30min, with 10μM Y27632 for 1h, or with 10μM Y27632 for 1h followed by 
3nM taxol for 30min, fixed with 4% PFA, as indicated, stained for tubulin and analyzed by 
confocal microscopy. (a), representative micrographs of axon retraction (sinusoidal 
microtubules (interrupted arrow), retraction bulb (filled arrows), trailing remnant (open arrow) 
of wild-type (WT) and MAP1B-/- (KO) DRG neurons in response to taxol. (b, c), for 
quantitative analysis, approximately 100 cells in each of 3 (b) or 2 (c) independent experiments 
were assessed for microtubule configuration which was classified as unchanged, retracted or 
collapsed. Error bars represent standard deviations. In case of WT DRG neurons treated with 
Y27632 followed by taxol standard deviations are high since only two independent experiments 
were done, which brought two significantly different results. Asterisks indicate that the values 
for cells treated with taxol or with Y27632 followed by taxol were significantly different from 
corresponding values of untreated neurons (*, p<0.01, and **, p<0.005). 
 

  

 
Fig. 50. Inhibition of myosin does not prevent taxol-induced neurite retraction in wild-type 
and MAP1B-/- DRG neurons. DRG neurons from wild-type (a) and MAP1B-/- (b) mice were 
grown on coverslips coated with poly-L-lysine and laminin, were left untreated, or were treated 
with 3nM taxol for 30min, with 100μM blebbistatin for 15min, or with 100μM blebbistatin for 
15min followed by 3nM taxol for 30min, as indicated, fixed with 4% PFA, stained for tubulin 
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and analyzed by confocal microscopy. (a, b), for quantitative analysis, approximately 100 cells 
in each of 2 independent experiments were assessed for microtubule configuration, which was 
classified as unchanged, retracted or collapsed. Error bars represent standard deviations. 
Asterisks indicate that the values for cells treated with taxol, or with blebbistatin, or with 
blebbistatin followed by taxol were significantly different from corresponding values of 
untreated neurons (*, p<0.05,**, p<0.01, and **, p<0.005). 
 

Inhibition of neither ROCK nor myosin did prevent retraction induced by taxol 

regardless of the presence of MAP1B (Fig. 49). When wild-type DRG neurons were 

treated with Y27632 prior to taxol application, 37% of cells showed retracted 

morphology in comparison to 46% when cells were treated with taxol only. This 

difference was statistically not significant and standard deviations were high, what is 

due to the two significantly different results obtained from only two independent 

experiments. Thus, additional experiments should be done to get a reliable results. 

Approximately 40% neurons retracted in response to taxol even if myosin was inhibited 

(41% of retracted cells in case of taxol only; Fig. 50). 

About 46% and 35% of MAP1B-/- neurons displayed retraction morphology when 

treated with Y27632 and blebbistatin prior taxol treatment, respectively, compared to 

31% when cells were treated with taxol only (Fig. 49, Fig. 50).     

Taxol-induced retraction does not involve NOS activation 

 

I also examined the potential involvement of NOSs in retraction induced by taxol. Wild-

type DRG neurons were grown as described before, 300µM L-NAME was applied for 

1h prior to treatment with 3nM taxol for 30min. Inhibition of NOSs with L-NAME 

reduced slightly the number of cells showing retraction hallmarks – about 68% of cells 

retracted when compared to 82% when cells were treated with taxol only, but this 

difference was not statistically significant (Fig. 51). Thus, it seems NOSs are not 

involved in axon retraction induced by taxol. 
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Fig. 51. Inhibition of NOS did not prevent taxol-induced neurite retraction in wild-type 
DRG neurons. DRG neurons from wild-type mice were grown on coverslips coated with poly-
L-lysine and laminin, were left untreated, or were treated with 3nM taxol for 30min, 300μM L-
NAME for 1h, or with 300μM L-NAME for 1h followed by 3nM taxol for 30min, as indicated, 
fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For quantitative 
analysis, approximately 100 cells in each of 2 independent experiments were assessed for 
microtubule configuration which was classified as unchanged, retracted or collapsed. Error bars 
represent standard deviations. Asterisks indicate that the values for cells treated with taxol or 
with L-NAME followed by taxol were significantly different from corresponding values of 
untreated neurons (*, p<0.05, and **, p<0.01). 
 

SNAP and LPA induce increased microtubule binding by full length 

MAP1B 

 

We hypothesized that SNAP and LPA induce increased binding of MAP1B to 

microtubules, for example by S-nitrosylation of MAP1B by NO, resulting in enhanced 

microtubule stabilization and axon retraction. To examine the effect of SNAP and LPA 

on MAP1B microtubule binding ability I expressed myc-tagged full length MAP1B in 

PtK2 cells and determined its intracellular localization. As it was shown previously 

these cells express very low levels of endogenous MAP1B (Tögel et al., 1998) and the 

studies with ectopically expressed full length MAP1B should not be influenced by 

endogenous MAP1B (Tögel et al., 1998). 

0

20

40

60

80

100

untreated taxol L-NAME taxol + L-NAME

%
 o

f c
el

ls
UNCHANGED RETRACTED COLLAPSED

* 

** 

*

*



                                                                                                            Part II – Results  

 119

 

   

   
Fig. 52. Increased microtubule binding of MAP1B induced by treatment with SNAP or 
LPA. PtK2 cells were transiently transfected with constructs encoding myc-tagged FL MAP1B. 
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Before fixation, cells were left untreated or were treated with 100μM SNAP for 4h or with 
100μM LPA for 2h, as indicated. Cells were scored for localization of the ectopically expressed 
protein in the cytoplasm, or on microtubules by double immunofluorescence microscopy using 
anti-tubulin antibodies and anti-myc (detection of MAP1B) antibodies. (a), representative 
micrographs of MAP1B localized in the cytoplasm (cytoplasmic) and associated with 
microtubules (on microtubules - white arrows). (b, c), for quantification, 200 cells in each of 3 
independent transfections were assessed for microtubule binding of MAP1B. Error bars 
represent standard deviations. Asterisks indicate that the values for cells treated with SNAP or 
with LPA were significantly different from corresponding values of untreated neurons (*, 
p<0.05). 
 
In most untreated cells MAP1B was found to be localized in the cytoplasm and only in 

6% cells MAP1B was found to be bound to microtubules. In cells treated with the NO 

donor SNAP association of LC1 with microtubules increased (19% of SNAP treated 

cells showed MAP1B on microtubules), but no microtubule bundling was observed. 

LPA treatment also induced increase in microtubules binding of MAP1B (15% treated 

with LPA compared to 5% when cells were untreated; Fig. 52). These results support 

our theory that NO induced S-nitrosylation of MAP1B and LPA-treatment lead to 

increased microtubule interaction of full length MAP1B. 

 

Increased microtubule dynamic in MAP1B -/- DRG neurons 

 

For further determination if retraction of DRG neurons upon SNAP or LPA treatment 

involved stabilization of microtubules by MAP1B I decided to study the dynamic 

behaviour of the microtubule plus end-binding proteins, also called plus end-tracking 

proteins or +TIPs, in living cells. +TIPs bind to growing ends of microtubules. Since the 

growth rates of microtubules measured with +TIPs fused to green fluorescent protein 

(GFP) or with fluorescently labelled tubulin injected into the cells are similar, the GFP 

labelled +TIPs are a convenient tool to study microtubule dynamics (Stepanova et al., 

2003).  

For live imaging of microtubule growth dynamics I transfected adult wild-type and 

MAP1B-/- DRG neurons with constructs encoding end-binding protein 1 fused with 

GFP (EB1-GFP). After 48h, time-lapse microscopy was performed. Movements of 

EB1-GFP were monitored for 1min with 2s intervals (Fig. 53). EB1-GFP was found to 

bind to microtubule tips in all neuronal compartments (growth cones, axons), indicating 

that new microtubules are generated in all compartments. Most EB1-GFPs spots were 

moving in comet-like dashes in the same direction, from cell body to the cell periphery 
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(anterogradely). I observed only few dashes moving in opposite direction (retrogradely), 

and most of them were found within growth cone. In some cases EB1-GFP comets were 

pausing and/or oscillating, mainly in the growth cones. To determine dynamics of 

microtubule growth, four parameters were measured – the velocity, the distance, the life 

of EB1-GFP comets, and the stop frequency.  
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Fig. 53. EB1-GFP in wild-type and MAP1B-/- DRG neurons. DRG neurons from wild-type 
and MAP1B-/- mice were transfected with a construct encoding EB1-GFP, grown on coverslips 
coated with poly-L-lysine and laminin for 48h. Then microtubule dynamics were monitored 
with an inverted microscope equipped with fluorescence optics. Pictures were taken for 1min 
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every 2s. (a, b), representative stacks from videos (red arrows indicate EB1 comets). (c, d), 
higher magnification of area indicated by white boxes in pictures a, b. High expression of EB1-
GFP in the neurons caused high fluorescence background. In the time-lapse movies comets 
were identified much easier than on the individual frames that are shown. 
 
EB1-GFP dashes were moving faster in axons and growth cones of MAP1B-/- neurons 

than in wild-type neurons. The mean velocity of the dashes in axons of MAP1B-/- 

neurons was 0.067µm/sec, whereas in the wild-type neurons it was 0.052µm/sec. 

Similarly, in growth cones of MAP1B-/- DRG neurons the mean velocity of EB1-GFP 

comets was higher in comparison to comets from growth cones of wild-type DRG 

neurons (0.052µm/sec and 0.041µm/sec, respectively). In both cases differences in the 

velocity was statistically significant. Interestingly, the velocity of EB1-GFP dashes was 

significantly lower in growth cones than in axons of wild-type, as well as MAP1B-/- 

DRG neurons (Fig. 54).  

The higher speed of comets in axons of MAP1B-/- neurons corresponded to a longer 

mean distance that the comets travelled. The mean lengths for the MAP1B-/- and wild-

type dashes were 1.27µm and 0.97µm, respectively (the difference was statistically 

significant). In growth cones, EB1-GFP comets also showed the tendency to travel for 

longer distance in MAP1B-/- DRG neurons (1µm compared to 0.84 µm in growth cone 

of wild-type DRG neurons), but this difference was not significant (Fig. 55). Similarly 

to the mean velocity, the mean value of distance of EB1-GFP dashes was lower in the 

growth cones than in axons, in both wild-type and MAP1B-/- DRG neurons. 

The time of comet life was longer in case of EB1-GFP comets moving in axons of 

MAP1B -/- DRG neurons (32.43sec compared to 28.83sec in wild-type DRG neurons). 

The difference was only 3.6sec, but it was statistically significant. Within the growth 

cones there was no significant difference between the time of comet life in wild-type 

and MAP1B-/- DRG neurons (30.27sec and 26.72 sec, respectively; Fig. 56).  

I also measured how often EB1-GFP comets paused during polymerization of 

microtubules in respect to presence or absence of MAP1B. No difference in the stop 

frequency of comets between wild-type and MAP1B-/- DRG neurons was observed. In 

axons, the stop frequency was 0.092stops/sec in case of wild-type DRG neurons and 

0.1stops/sec in case of MAPB-/- DRG neurons, whereas in growth cones it was 

0.083stops/sec and 0.087stops/sec, respectively (Fig. 57). These results show that in the 

absence of MAP1B EB1-GFP comets move faster, for longer distances and their life 

time is longer, which according to literature indicates higher microtubule dynamics. The 
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differences are more robust in case of EB1-GFP dashes moving within axons than with 

those moving within growth cones. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 54. Increased velocity of EB1-GFP comets in MAP1B-/- DRG neurons. DRG neurons 
from wild-type and MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Pictures were 
taken for 1min every 2s. The velocity of EB1-GFP dashes within growth cones and axons was 
calculated with MetaMorph software. Observed comets for quantification, in axons, 120 (wild-
type) and 338 (MAP1B-/-); in growth cones, 22 (wild-type) and 50 (MAP1B-/-) from 6 
independent experiments. Error bars represent standard deviations. Asterisks indicate that the 
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values for MAP1B-/- cells were significantly different from corresponding values of wild-type 
neurons (**, p<0.001). 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 55. Increased distance of EB1-GFP comets in MAP1B-/- DRG neurons. DRG neurons 
from wild-type and MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Pictures were 
taken for 1min every 2s. The distance of EB1-GFP dashes within growth cones and axons was 
calculated with MetaMorph software. Observed comets for quantification, in axons, 120 (wild-
type) and 338 (MAP1B-/-); in growth cones, 22 (wild-type) and 50 (MAP1B-/-) from 6 
independent experiments. Error bars represent standard deviations. Asterisks indicate that the 
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values for MAP1B-/- cells were significantly different from corresponding values of wild-type 
neurons (*, p<0.005, and **, p<0.001). 
 
 

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 56. Increased time of EB1-GFP comet life in MAP1B-/- DRG neurons. DRG neurons 
from wild-type and MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Pictures were 
taken for 1min every 2s. The time of EB1-GFP dashes life within growth cones and axons was 
calculated with MetaMorph software. Observed comets for quantification, in axons, 120 (wild-
type) and 338 (MAP1B-/-); in growth cones, 22 (wild-type) and 50 (MAP1B-/-) from 6 
independent experiments. Error bars represent standard deviations. Asterisks indicate that the 
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values for MAP1B-/- cells were significantly different from corresponding values of wild-type 
neurons (*, p<0.05, and **, p<0.01). 
 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 57. The stop frequency is not altered in MAP1B-/- DRG neurons. DRG neurons from 
wild-type and MAP1B-/- mice were transfected with a construct encoding EB1-GFP, grown on 
coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics were 
monitored with an inverted microscope equipped with fluorescence optics. Pictures were taken 
for 1min every 2s. The stop frequency of EB1-GFP dashes within growth cones and axons was 
calculated with MetaMorph software. Observed comets for quantification, in axons, 120 (wild-
type) and 338 (MAP1B-/-); in growth cones, 22 (wild-type) and 50 (MAP1B-/-) from 6 
independent experiments. Error bars represent standard deviations. 
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One could expect that if MAP1B indeed stabilizes microtubules and decreases their 

dynamic, there should be an increase in the number of EB1-GFP dashes in MAP1B-/- 

neurons, since EB1-GFP binds to growing ends of microtubules and in MAP1B-/- 

neurons, according to our model, the number of dynamic growing microtubules should 

be higher. Thus, I analyzed the number of EB1-GFP comets per axon length and per 

growth cone area in both wild-type and MAP1B-/- DRG neurons transfected with 

construct encoding EB1-GFP. Indeed I found more dashes both in axons and growth 

cones of MAP1B-/- DRG neurons. In the axons of MAP1B-/- DRG neurons there were 

0.204comets/µm, whereas in case of axons from wild-type DRG neurons there were 

0.12comets/µm. In growth cones of MAP1B-/- DRG neurons there were 

0.117comets/µm2 compared to 0.025comets/µm2 in growth cones of wild-type DRG 

neurons. In both cases differences were statistically significant (Fig. 58).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 58. Increased number of EB1-GFP comets in axons and growth cones of MAP1B -/- 
DRG neurons. DRG neurons from wild-type and MAP1B-/- mice were transfected with a 
construct encoding EB1-GFP, grown on coverslips coated with poly-L-lysine and laminin for 
48h, and microtubule dynamics were monitored with an inverted microscope equipped with 
fluorescence optics. Pictures were taken for 1min every 2s. The number of EB1-GFP comets  
per axon length (number of comets/µm) and the number of EB1-GFP comets per growth cone 
area (number of comets/µm2) were calculated with MetaMorph and ImageJ softwares. Observed 
comets for quantification, in axons, 192 (wild-type) and 248 (MAP1B-/-); in growth cones, 18 
(wild-type) and 44 (MAP1B-/-) from 6 independent experiments were analysed. Error bars 
represent standard deviations. Asterisks indicate that the values for MAP1B-/- cells were 
significantly different from corresponding values of wild-type neurons (**, p<0.001). 
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To analyze if LPA has an influence on dynamic of microtubules I transfected adult 

wild-type and MAP1B-/- DRG neurons with constructs encoding EB1-GFP. After 48h, 

time-lapse microscopy was performed. Movements of EB1-GFP were monitored for 

1min with 2s intervals. Then cells were treated with 10µM LPA and recording was 

continued for 30-50min. To determine dynamics of microtubule growth, again four 

parameters were measured – the velocity, the distance, the life of EB1-GFP comets and 

the stop frequency. 

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 59. LPA increases the velocity of  EB1-GFP comets in growth cones of wild-type DRG 
neurons. DRG neurons from wild-type mice were transfected with a construct encoding EB1-
GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
were treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The velocity of EB1-GFP dashes within axons (a) and growth cones (b) was 
calculated with MetaMorph software. Observed comets for quantification, 95 (a) and 28 (b) 
from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations. Asterisks indicate that the 
values for neurons treated with LPA were significantly different from corresponding values of 
untreated neurons (**, p<0.05). 
 
In the growth cones of wild-type DRG neurons the velocity of EB1-GF dashes was 

higher after addition of LPA (0.048µm/sec compared to 0.041µm/sec in the growth 

cones from untreated cells). In the axons no differences were observed between the 

mean velocity of comets in untreated cells and in cells treated with LPA (0.053µm/sec 

and 0.055µm/sec, respectively; Fig. 59). When the velocity of comets was measured in 

the MAP1B-/- DRG neurons, no differences were observed neither in axons nor in the 
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growth cones. In axons the mean velocities of dashes were 0.067µm/sec and 

0.064µm/sec in case of untreated and LPA treated cells, respectively, whereas in the 

growth cones velocities were 0.052µm/sec in both untreated and LPA treated cells (Fig. 

60). 

      
Fig. 60. LPA does not alter the velocity of EB1-GFP comets in MAP1B-/- DRG neurons. 
DRG neurons from MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Cells were 
treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken for 
1min every 2s. The velocity of EB1-GFP dashes within axons (a) and growth cones (b) was 
calculated with MetaMorph software. Observed comets for quantification, 77 (a) and 25 (b) 
from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations.  
 
The mean distance of EB1-GFP comets was decreased in axons of wild-type DRG 

neurons treated with LPA when compared to untreated cells (0.79µm and 1µm, 

respectively). In the growth cones this value was also reduced, from 0.84µm when cells 

were untreated to 0.069µm when cells were treated with LPA, but difference was not 

statistically significant (Fig. 61). In case of MAP1B-/- DRG neurons no differences 

were observed concerning the distance of dashes moving in axons (1.14µm both in 

untreated cells and in cells treated with LPA). On the other hand, a decrease in the mean 

distance was found in the growth cones (0.67µm when cells were treated with LPA 

compared to 1.00µm in untreated cells; Fig. 62). 
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Fig. 61. EB1-GFP comets moves for shorter distance in axons of LPA-treated wild-type 
DRG neurons. DRG neurons from wild-type mice were transfected with a construct encoding 
EB1-GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
were treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The distance of EB1-GFP dashes within axons (a) and growth cones (b) was 
calculated with MetaMorph software. Observed comets for quantification, 95 (a) and 28 (b) 
from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations. Asterisks indicate that the 
values for neurons treated with LPA were significantly different from corresponding values of 
untreated neurons (*, p<0.005). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 62. EB1-GFP comets moves for shorter distance in the growth cones of LPA-treated 
MAP1B-/- DRG neurons. DRG neurons from MAP1B-/- mice were transfected with a 
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construct encoding EB1-GFP, grown on coverslips coated with poly-L-lysine and laminin for 
48h, and microtubule dynamics were monitored with an inverted microscope equipped with 
fluorescence optics. Cells were treated with 10µM LPA and recording was continued for 30-
50min. Pictures were taken for 1min every 2s. The distance of EB1-GFP dashes within axons 
(a) and growth cones (b) was calculated with MetaMorph software. Observed comets for 
quantification, 77 (a) and 25 (b) from 4 independent experiments. In case of the untreated group 
the values came from videos taken before addition of LPA and previous experiments to obtain 
the same number of samples as in the LPA treated group. Error bars represent standard 
deviations. Asterisks indicate that the values for neurons treated with LPA were significantly 
different from corresponding values of untreated neurons (*, p<0.01). 
 
LPA reduced the time of EB1-GFP comet life both in axons and growth cones from 

wild-type DRG neurons. In axons, the time of comet life was reduced upon treatment 

with LPA from 28.76sec (untreated neurons) to 21,79sec (LPA treated neurons), 

whereas in the growth cones it was reduced from 30.27sec (untreated neurons) to 

23.50sec (LPA treated neurons), but in the growth cone the difference was not 

statistically significant (Fig. 63). In MAP1B-/- DRG neurons no difference was 

observed in the axons, as well in the growth cones, upon treatment with LPA. The mean 

time of EB1-GFP comet life in the axons was 30.38sec after treatment with LPA, 

whereas without treatment the mean time was 30.11sec. In the growth cones time of 

comet life was 26.72sec in case of untreated cells, while after addition of LPA it was 

reduced to 21.20sec, but the difference was not statistically significant (Fig. 64). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 63. LPA decreases the time of EB1-GFP comet life in axons of wild-type DRG 
neurons. DRG neurons from wild-type mice were transfected with a construct encoding EB1-
GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
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were treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The time of EB1-GFP dashes life within axons (a) and growth cones (b) was 
calculated with MetaMorph software. Observed comets for quantification, 95 (a) and 28 (b) 
from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations. Asterisks indicate that the 
values for neurons treated with LPA were significantly different from corresponding values of 
untreated neurons (*, p<0.005). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 64. LPA does not alter the time of EB1-GFP comet life in MAP1B-/- DRG neurons. 
DRG neurons from MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Cells were 
treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken for 
1min every 2s. The time of EB1-GFP dashes life within axons (a) and growth cones (b) was 
calculated with MetaMorph software. Observed comets for quantification, 77 (a) and 25 (b) 
from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations.  
 
LPA did not alter the stop frequency of dashes, neither in axons nor in growth cones of 

wild-type DRG neurons. In axons, the mean stop frequency of EB1-GFP comets in case 

of untreated cells was 0,084stops/sec, whereas in cells treated with LPA it was 

0,087stops/sec. In the growth cones, the mean stop frequency of dashes was 

0.077stops/sec after treatment with LPA, compared to 0.083stops/sec when cells were 

left untreated (Fig. 65). Similarly, the stop frequency of EB1-GFP comets was not 

changed in axons and growth cones of MAP1B-/- DRG neurons. In axons it was 

0.095stops/sec after application of LPA compared to 0.088stops/sec when cells were 

untreated. In the growth cones of neurons treated with LPA the mean stop frequency 
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was 0.087stops/sec whereas in the growth cones of untreated neurons it was 

0.075stops/sec (Fig. 66). 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 65. LPA does not alter the stop frequency of EB1-GFP comets in wild-type DRG 
neurons. DRG neurons from wild-type mice were transfected with a construct encoding EB1-
GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
were treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The stop frequency of EB1-GFP dashes within axons (a) and growth cones 
(b) was calculated with MetaMorph software. Observed comets for quantification, 95 (a) and 28 
(b) from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations.      
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 66. LPA does not alter the stop frequency of  EB1-GFP comets in MAP1B-/- DRG 
neurons. DRG neurons from MAP1B-/- mice were transfected with a construct encoding EB1-
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GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
were treated with 10µM LPA and recording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The stop frequency of EB1-GFP dashes within axons (a) and growth cones 
(b) was calculated with MetaMorph software. Observed comets for quantification, 77 (a) and 25 
(b) from 4 independent experiments. In case of the untreated group the values came from videos 
taken before addition of LPA and previous experiments to obtain the same number of samples 
as in the LPA treated group. Error bars represent standard deviations. 
 
Since I observed an increased number of comets in axons and growth cones of MAP1B-

/- DRG neurons in comparison to wild-type neurons, I decided to examine if LPA has 

an influence on the number of EB1-GFP dashes. I hypothesized that LPA might 

increase microtubule binding of MAP1B, resulting in reduction of their dynamics. 

Therefore I expected that upon LPA treatment the number of comets is decreased. I 

observed that in axons of wild-type DRG neurons the number of comets was decreased 

upon treatment with LPA, 0.059comets/µm compared to 0.12comets/µm when cells 

were untreated. In the growth cones I also observed a reduction in the number of comets 

after application of LPA, but the difference was not statistically significant 

(0.020comets/µm2 and 0.025comets/µm2, when cells were treated with LPA and were 

untreated, respectively; Fig. 67). 

 

     
 
Fig. 67. LPA decreases the number of EB1-GFP comets in axons of wild-type DRG 
neurons. DRG neurons from wild-type mice were transfected with a construct encoding EB1-
GFP, grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule 
dynamics were monitored with an inverted microscope equipped with fluorescence optics. Cells 
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were treated with 10µM LPA and  ecording was continued for 30-50min. Pictures were taken 
for 1min every 2s. The number of EB1-GFP comets per axon length (number of comets/µm) 
and the number of EB1-GFP comets per growth cone area (number of comets/µm2) were 
calculated with MetaMorph and ImageJ softwares. Observed comets for quantification, in axons 
(a), 192 (untreated) and 187 (LPA); in growth cones (b), 18 (untreated) and 23 (LPA) from 4 
(LPA) and 6 (untreated) independent experiments. Error bars represent standard deviations. The 
values for axons from cells treated with LPA were significantly different from corresponding 
values of axons from untreated neurons (**, p<0.001). 
 
In axons of MAP1B-/- DRG neurons the number of comets was also reduced when cells 

were treated with LPA (0.12comets/µm in comparison to 0.204comets/µm in case of 

untreated cells). Similarly to wild-type neurons, in growth cones the number of EB1-

GFP dashes was reduced, but the difference was not statistically significant 

(0.057comet/µm2 and 0.117comet/µm2 for cells treated with LPA and for untreated 

cells, respectively; Fig. 68). 

 

     
Fig. 68. LPA decreases the number of EB1-GFP comets in axons MAP1B-/- DRG neurons. 
DRG neurons from MAP1B-/- mice were transfected with a construct encoding EB1-GFP, 
grown on coverslips coated with poly-L-lysine and laminin for 48h, and microtubule dynamics 
were monitored with an inverted microscope equipped with fluorescence optics. Cells were 
treated with 10µM LPA and  ecording was continued for 30-50min. Pictures were taken for 
1min every 2s. The number of EB1-GFP comets per axon length (number of comets/µm) and 
the number of EB1-GFP comets per growth cone area (number of comets/µm2) were calculated 
with MetaMorph and ImageJ softwares. Observed comets for quantification, in axons (a), 248 
(untreated) and 168 (LPA); in growth cones, 44 (untreated) and 24 (LPA) from 4 (LPA) and 6 
(untreated) independent experiments. The values for axons from cells treated with LPA were 
significantly different from corresponding values of axons from untreated neurons (**, 
p<0.001). 
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In addition, I observed increased an number of axons and growth cones without any 

EB1-GFP comets after treatment with LPA in both wild-type and MAP1B-/- DRG 

neurons. In case of growth cones after treatment with LPA many more dashes were 

moving retrogradely, when compared to dashes in the growth cones from untreated 

neurons. More EB1-GFP comets were pausing and/or oscillating, when compared to 

untreated cells.  
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DISCUSSION 

 
Calcimycin-induced axon retraction was shown to be dependent on the activation of 

nNOS. It involves S-nitrosylation of LC1 on cys2457 as a critical step and S-

nitrosylation increased microtubule binding of full length MAP1B in PtK2 cells 

(Stroissnigg et al., 2007). However, the exact mechanism leading to axon retraction 

remains unknown. When I inhibited nNOS prior to application of calcimycin, retraction 

of wild-type DRG neurons was abolished almost completely, which is consistent with 

previous results (Stroissnigg et al., 2007). On the other hand, calcimycin-induced 

increase in Ca2+ levels can activate other calcium effectors, which can induce or inhibit 

axon growth. For example, it was shown in cultured embryonic Xenopus spinal neurons 

that at the normal resting level of [Ca2+]i small local Ca2+signals activated calcineurin 

and high local Ca2+ signals activated CaMKII resulting in repulsion and attraction, 

respectively (Wen et al., 2004). In addition, repulsive turning in Xenopus spinal neurons 

induced by large changes in calcium level required activation of calpains and inhibition 

of calpain attenuated this repulsive effect (Robles et al., 2003). On the other hand, 

calpain was found to cleave proteolytically nNOS (Hajimohammadreza et al., 1995). 

Therefore, inhibition of calpain might enhance retraction of axons in response to 

calcimycin. I decided to determine the potential role of calcium transducers other than 

nNOS in axon retraction induced by calcimycin. Wild-type DRG neurons were treated 

with inhibitors specific for CaMKII, calcineurin, calpain, or PKC, followed by 

application of calcimycin. Inhibition of any of these Ca2+ effectors did not prevent 

retraction, suggesting that none of them is involved in axon retraction induced by 

calcimycin in adult mouse DRG neurons. One could expect that inhibition of CaMKII 

can increase the level of cells showing retraction hallmarks, since it was shown that 

CaMKII can phosphorylate nNOS at Ser847, resulting in decrease of nNOS activity, 

potentially by blocking the binding of Ca2+/CaM (Komeima et al., 2000; Song et al., 

2008). However, no such exacerbation of calcimycin-induced axon retraction was 

observed in the presence of an CaMKII inhibitor. On the other hand, it is known that 

NO can inhibit CaMKII via S-nitrosylation of CaMKII on Cys6 (Song et al., 2008). It is 

possible, that CaMKII is already inhibited by basal levels of NO and can not 

phosphorylate nNOS, thus has no influence on axon retraction induced by calcimycin. 

Increased Ca2+ levels can activate various pathways depending on the global Ca2+ level, 
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local Ca2+ signals, cell types, culture systems and age of neurons. For example, exposure 

of cultured young hippocampal neurons to glutamate, which induces increase in Ca2+ 

levels, leads to activation of calpain above basal levels and cell death, while it has no 

influence on calpain in aged neurons (Hajieva et al., 2009). It seems that calcimycin-

induced retraction of adult wild-type DRG neurons is triggered by activation of nNOS, 

and does not involve CaMKII, calcineurin, calpain and PKC, but we can not exclude 

contribution of other calcium effectors, which were not examined here. 

Axon elongation and retraction depend on the balance between the extension force, 

which is based on microtubules and dynein, and the retraction force, which is based on 

F-actin and myosin (Ahmad et al., 2000; Baas and Ahmad, 2001). Reduction of the 

extension force, for example by inhibition of dynein, or enhancement of acto-myosin 

contractility can lead to axon retraction. It was proposed that an increased Ca2+ levels 

activates nNOS, which leads to S-nitrosylation of LC1 on cys2457, resulting in a 

conformational change that enhances microtubule binding activity. Interaction between 

MAP1B and microtubule might inhibit dynein, leading to axon retraction (Stroissnigg et 

al., 2007). On the other hand, several guidance cues induce growth cone collapse and 

axon retraction that involve activation of the Rho/ROCK pathway and increase of acto-

myosin contractility. For example, inhibition of RhoA by C3 transferase from 

C.botulinum abolished LPA-induced neurite retraction in mouse neuroblastoma NIE-

115 cells (Jalink et al., 1994), and inhibition of its downstream effector ROCK with 

Y27632 reduced growth cone collapse induced by ephrin-A5 in retinal ganglia neurons 

(Wahl et al., 2000). To investigate the potential role of acto-myosin contractility in axon 

retraction induced by NO, wild-type DRG neurons were treated with Y27632, followed 

by treatment with calcimycin or SNAP. Inhibition of ROCK completely prevented 

retraction induced by both SNAP and calcimycin. Likewise, it was shown that increased 

levels of NO induced retraction of neurites in neuroblastoma N2a cells (Stroissnigg et 

al., 2007). Pretreatment with Y27632 reduced the level of cells retracting in response to 

SNAP treatment. Moreover, inhibition of myosin with blebbistatin abolished retraction 

of neurites induced by both calcimycin and SNAP in wild-type DRG neurons and in 

neuroblastoma N2a cells. These results demonstrated that ROCK and myosin are 

necessary for neurite retraction induced by NO, but did not elucidate if acto-myosin 

forces are enhanced in response to NO. Myosin II activity is stimulated by 

diphosphorylation of MRLC at Ser19 and Thr18 (Somlyo and Somlyo, 2003). 
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Monophosphorylation of MRLC at Ser19 increases its ATPase activity and the stability 

of myosin II filaments. Additional phosphorylation at Thr18 further enhances activity of 

myosin II and stabilizes its filaments. It was observed that LPA-increased intracellular 

tension involves the Rho/ROCK pathway and increases the phosphorylation of MRLC 

at both Ser19 and Thr18 (Mizutani et al., 2006). Thus, I decided to examine levels of 

mono- and diphosphorylation of MRLC in response to SNAP and LPA in N2a 

neuroblastoma cells. I observed a tendency towards an increase of mono- and 

diphosporylation of MRLC upon application of SNAP and LPA, but only treatment 

with 100µM SNAP for 1h induced a statistically significant increase in 

monophosphorylation of MRLC (Ser19). Although the increase in the level of mono- 

and diphosphorylation induced by LPA was not significant, the tendency is consistent 

with previous studies showing that LPA induced phosphorylation of MRLC at both 

Ser19 and Thr18 in hepatic myofibroblasts, resulting in enhanced contractile forces and 

migration velocity (Tangkijvanich et al., 2003). In addition, it was observed that LPA-

enhanced intracellular tension in NIH-3T3 fibroblasts involved activation of ROCK, 

which directly diphosphorylated MRLC (Mizutani et al., 2006). Moreover, Y27632 was 

found to reduce levels of mono- and diphosphorylation of MRLC in Madin Darby 

canine kidney (MDCK) II epithelial cells. Thus, it was surprising that Y27632 did not 

decrease the level of monophosphorylation of MRLC in my experiments. It is important 

to mention that in previous experiments mainly diphosphorylation was affected 

(Watanabe et al., 2007). Likewise, Y27632 decreases levels of diphosphorylated MRLC 

in cortices from sea urchin eggs, but does not significantly alter levels of 

monophosphorylated MRLC (Uehara et al., 2008). Thus, additional experiments 

examing MRLC diphosphorylation in N2a cells treated with Y27632 are needed to 

clarify thus issue. As it stands, the main outcome from studies performed by me is that 

LPA and SNAP increased Ser19 monophosphorylation of MRLC in N2a cells. 

Growth cone guidance can be influenced by cyclic nucleotides, such as cAMP and 

cGMP (Song et al., 1998; Song and Poo, 1999). It was shown that cAMP can enhance 

regeneration of injured adult axons, possibly by increasing their ability to grow and by 

reducing the repulsive response of the growth cone to inhibitory factors from the 

surrounding milieu (Song et al., 1998; Lu et al., 2004). It was also found that the ratio of 

cAMP/cGMP determined the response of the axon to the netrin-1. A high ratio of 

cAMP/cGMP stimulated L-type Ca2+ channels, resulting in increased [Ca2+]i levels and 
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an attractive response of growth cones to netrin-1. A low ratio of cAMP/cGMP reduced 

[Ca2+]i levels and led to the repulsive response to netrin-1, which was converted to an 

attractive response by increasing cAMP levels (Nishiyama, 2003). Moreover, enhanced 

levels of cAMP inhibited calcineurin-mediated retraction of neurites induced by high 

local Ca2+ signals in cultured embryonic Xenopus spinal neurons (Wen et al., 2004). 

Similarly, repulsion of growth cones in cultured Xenopus spinal neurons induced by 

MAG was converted to attraction, when cAMP levels were pharmacologically increased 

(Song et al., 1998). Finally, Sema3A-induced growth cone collapse was abolished by 

activation of cAMP pathway in chicken DRG (Dontchev and Letourneau, 2002). Thus, I 

decided to examine if stimulation of cAMP can influence axon retraction induced by 

NO. Bath application of either dibutryl-cAMP or forskolin, which stimulates production 

of cAMP, partially abolished calcimycin- and SNAP-induced retraction. In case of 

SNAP, effects of cAMP stimulation were more pronounced. This could be due to the 

fact that SNAP works as NO donor, bypassing the necessity of nNOS activation, 

whereas calcimycin-induced axon retraction is more complex. The exact mechanism by 

which cAMP prevents axon retraction and growth cone collapse is not known. It was 

shown that cAMP can modulate actin dynamics via activation of PKA, which 

phosphorylates RhoA at Ser188, leading to a decrease in guanine nucleotide exchange 

(Schoenwaelder and Burridge, 1999). It is proposed that the phosphorylation of RhoA 

increases its binding to GDIs, resulting in stabilization of RhoA in an inactive state, 

followed by its detachment from the membrane and translocation to the cytosol (Busca 

et al., 1998; Dong et al., 1998; Schoenwaelder and Burridge, 1999; Khodair et al., 

2005). Moreover, phosphorylation of RhoA reduces its interaction with its effectors, 

such as ROCK (Dong et al., 1998; Schoenwaelder and Burridge, 1999). In addition, 

PKA can directly phosphorylate MLCK, which inhibits MLCK activity, leading to a 

decrease phosphorylation of MRLC. As a result, ATPase and motor activity of myosin 

II are inhibited and acto-myosin contractility is decreased (Lamb et al., 1988). Thus, the 

mechanism by which cAMP reduces SNAP- and calcimycin-induced axon retraction 

could be similarly through inhibition of ROCK and myosin, which I demonstrated to be 

necessary for retraction. Likewise, elevated cAMP overcome myelin-induced growth 

inhibition by activation of the transcription factor cAMP response element binding 

protein (CREB), leading to upregulated expression of Arginase I and increased 

synthesis of polyamines, such as putrescine (Cai et al., 2002; Filbin, 2003; Gao et al., 

2004). It was shown that that putrescine is converted to spermidine to overcome 
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inhibition by myelin and spermidine can promote regeneration of optic nerve (Deng et 

al., 2009). The exact mechanism how polyamines promote axon growth on myelin or 

regeneration after injury is still unknown. They can influence the cytoskeleton, probably 

by affecting the polymerization and organization of microtubules (Kaminska et al., 

1992; Banan et al., 1998). Thus, polyamines by influencing cytoskeleton might prevent 

its reorganization induced by SNAP or calcimycin. In addition, polyamines were found 

to block ion channels (Williams, 1997; Deng et al., 2009) and to modify 

postranslationally proteins (Huang et al., 2007). Finally, PKA was also shown to 

phosphorylate MAPs, for example MAP2 and MAP1B (Khodair et al., 2005). PKA 

phosphorylates MAP2 on specific serine residues in the microtubule binding domain 

and in the proline-rich region, promoting neuritogenesis (Sanchez Martin et al., 2000). 

On the other hand, it was shown that LPA induced an increase in phosphorylation of 

tau, which was prevented by application of di-butryl-cAMP before treatment with LPA 

(Sayas et al., 1999). Thus, PKA might potentially influence also properties of MAP1B, 

for example its microtubule binding activity (Fig. 71). 

It seems that upon SNAP, calcimycin and LPA treatment microtubules retreat backward 

rather than depolymerise to accommodate the shortening of the axon, resulting in a 

bundled configuration. On the other hand, I did not measure the level of microtubules 

after treatment with SNAP, calcimycin or LPA, therefore I can not exclude that 

depolymerization takes place during retraction. To examine this, wild-type DRG 

neurons were exposed for 30min to 100nM taxol, which stabilizes microtubules against 

disassembly, and then they were treated with SNAP or LPA (in the presence of taxol). 

Surprisingly, I observed that the number of cells showing retraction hallmarks in 

response to SNAP or LPA was even higher in the presence of taxol than in case of cells 

treated with SNAP or LPA only. These results are consistent with previous reports 

showing that pretreatment with taxol did not prevent LPA-induced axon retraction in 

mouse embryonic cortical neurons (Fukushima and Morita, 2006) nor NOC7-induced 

axon retraction in embryonic chick DRG neurons (NOC7 is a nitric oxide donor; He et 

al., 2002). Even more surprising, both wild-type and MAP1B-/- DRG neurons retracted 

in response to treatment with taxol only, showing all characteristic hallmarks - 

retraction bulb, sinusoidal bundles of microtubules, and trailing remnant. It is known 

that high concentrations of taxol (>1μM) induce significant increase of microtubules 

assembly and completely inhibit their dynamics (Derry et al., 1995). The concentration 
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of taxol that I used was much lower and in other studies was shown not to alter 

morphology of axons (Derry et al., 1995; He et al., 2002). The low concentration of 

taxol (≤100nM) was found to suppress selectively the rate of shortening at the plus ends 

of microtubules what was correlated with an increase in the level of microtubule 

polymers, but it did not inhibit completely the dynamic of microtubules (Derry et al., 

1995). I decided to use an even lower concentration of taxol (3nM), and obtained the 

same results as in case of 100nM taxol. Both wild-type and MAP1B-/- DRG neurons 

retracted in response to treatment with taxol only. In addition, I investigated the 

influence of taxol on LPA- and calcimycin-induced retraction in N2a cells. Similarly, 

taxol did not prevent neurite retraction and also induced retraction on its own. These 

results are contradictory to those obtained by Ertürk and colleagues (Ertürk et al., 2007). 

They observed that application of taxol to the site of injury after performing unilateral 

lesion in the dorsal column of the spinal cord prevents the formation of retraction bulbs 

and axonal degeneration. Moreover, taxol-induced stabilization of microtubules 

enhanced growth of cerebellar granule neurons on myelin overcoming its inhibitory 

properties (Ertürk et al., 2007). However, treatment of zebrafish forebrain neurons with 

20nM taxol resulted in formation of many microtubule loops within neurites, similar to 

sinusoidal bundles which I observed in adult mouse DRG neurons after application of 

3nM or 100nM taxol (Hendricks and Jesuthasan, 2009). In addition, forebrain neurons 

from zebrafish phr mutants (PHR is a neuronal ubiqutin ligase) showed increased 

microtubule looping caused by extensive polimerization, resulting in the growth cone 

arrest and a morphology similar to morphology of DRG neurons treated with taxol, 

SNAP, calcimycin or LPA. Application of nocodazole, which a microtubule 

depolymerising agent, to phr mutant neurons reduced the number of cells showing the 

retraction phenotype (Hendricks and Jesuthasan, 2009). The discrepancy between all 

theses results could be due to different types of researches (in vivo and in vitro), 

different conditions of culture (culture medium, temperature), different cell types, and 

different species. It is known that the initiation and maintenance of axon growth 

requires a basal level of dynamic microtubules (Letourneau and Ressler, 1984). During 

extension the growth cones usually pause at the intermediate targets and become larger. 

At this point they contain a lot of microtubules and microtubule loops (Hendricks and 

Jesuthasan, 2009). Taxol potentially can inhibit growth of neurites by inducing 

uncontrolled assembly and increased stability of microtubules, leading to arrest of the 

growth cone in the paused state (Letourneau and Ressler, 1984; Hendricks and 
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Jesuthasan, 2009). This mechanism could be also involved in SNAP-, calcimycin- and 

LPA-induced retraction of wild-type DRG neurons. It was shown that each of these 

reagents induced MAP1B-dependent axon retraction with the same hallmarks as taxol-

induced retraction. I propose that LPA, SNAP and calcimycin modified MAP1B, 

leading to conformational changes of MAP1B characterized by increased microtubule 

binding activity that results in their overstabilization. Overstabilized microtubules might 

produce a large tension, but the growth cone can not advance, leading to microtubules 

retreat, growth cone collapse and axon retraction. In case of SNAP- and calcimycin-

induced axon retraction microtubule binding properties of MAP1B are increased 

probably by a conformational change induced by S-nitrosylation on cys2457, which was 

shown to be critical step for NO-induced axon retraction (Stroissnigg et al., 2007). The 

exact mechanism by which LPA increases microtubule binding of MAP1B is still 

unknown, but it might involve phosphorylation of MAP1B, as it was shown that LPA 

activates GSK3, mainly GSK3β, by inducing its phosphorylation at a tyrosine residue in 

addition to serine phosphorylation (Sayas et al., 1999; Sayas et al., 2006). A transient 

increase in activity of GSK3β upon treatment with LPA was accompanied by enhanced 

phosphorylation of tau (Sayas et al., 1999; Sayas et al., 2006). Inhibition of GSK3β with 

specific inhibitors (LiCl, SB-216763 and SB-415286) prevented  the increase in tau 

phosphorylation and neurite retraction in B103-LPA1 and cerebellar granule neurons 

(Sayas et al., 2002a; Sayas et al., 2006). GSK3β is known to phosphorylate also 

MAP1B and phosphorylation of MAP1B regulates its microtubule binding activity. 

Indeed, it was shown that LPA increased phosphorylation of MAP1B in SH-SY5Y cells 

reaching a maximum level at 1h after treatment with LPA (Sayas et al., 2002b). 

Moreover, it was observed that LPA stabilized microtubules in 3T3 fibroblasts, 

although not in SH-SY5Y cells (Sayas et al., 2002b), as judged by an increased level of 

detyrosinated microtubules (Cook et al., 1998). Thus, it is conceivable that LPA 

stimulates phosphorylation of MAP1B by GSK3β, leading to increased binding to 

microtubules and their stabilization, resulting in axon retraction. In contrast, it was 

observed that LPA addition to neuroblastoma SH-SY5Y cells decreased the level of 

detyrosinated tubulin, while increasing the level of tyrosinated-tubulin (Sayas et al., 

2002b). In addition, high levels of MAP1B-P were shown to be associated with the loss 

of detyrosinated microtubules in COS cells transfected with both MAP1B and GSK3β, 

suggesting that MAP1B phosphorylated by GSK3β regulates microtubule stability in 

axons (Goold et al., 1999). We have to take into consideration that different cell types 
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were used in all these studies and the response of cells to the same guidance cue can 

differ from type to type. Moreover, there are many contradictory results concerning 

MAP1B phosphorylation and its influence on MAP1B functions, probably resulting 

from the existence of more than 30 phosphorylation sites on MAP1B. Potentially in all 

these studies effects of phosphorylation at different sites were analysed. Thus, it should 

be further examined how exactly LPA increases microtubule binding of MAP1B. 

MAP1B deficiency impairs axon retraction in response to SNAP, calcimycin or LPA, 

since no stabilization takes place. Taxol stabilizes microtubules on its own without 

MAP1B involvement, triggering retraction in both wild-type and MAP1B-/- DRG 

neurons. One should take into account that taxol-induced stabilization of microtubules 

can involve different mechanism than stabilization stimulated by LPA or SNAP. At the 

very least, taxol-induced axon retraction is not MAP1B-dependent and could not be 

prevented by inhibition of ROCK and myosin (my results). 

To test the hypothesis that SNAP and LPA increase the interaction of MAP1B with 

microtubules, I transfected non-neuronal PtK2 cells with constructs encoding full length 

MAP1B and determined its intracellular localization. MAP1B was found predominately 

in the cytoplasm of untreated PtK2 cells, whereas treatment with SNAP or LPA 

increased the level of microtubule-bound MAP1B (19% and 15% of cells expressed full 

length MAP1B, in case of SNAP and LPA treatment, respectively, compared to 6% 

when cells were left untreated). Results from experiments with SNAP confirmed 

previous results, which also showed increase in microtubule binding of full length 

MAP1B upon SNAP treatment in PtK2 cells (Stroissnigg et al., 2007).  

To assess influence of MAP1B on microtubule dynamics, DRG neurons from wild-type 

and MAP1B-/- DRG neurons were transfected with constructs encoding EB1-GFP. As I 

mentioned, microtubule plus end-binding proteins are incorporated into the growing end 

of microtubules and after a microtubule stops to polymerize they dissociate. I observed 

that EB1-GFP dashes were more dynamic in MAP1B-/- DRG neurons when compared 

to wild-type DRG neurons. The mean velocity of the EB3-GFP dashes in axons from 

MAP1B-/- neurons was 0.068µm/sec, whereas in the wild-type neurons it was 

0.056µm/sec. Similarly, in growth cones of MAP1B-/- DRG neurons the mean velocity 

of EB1-GFP comets was higher compared to comets from growth cones of wild-type 

DRG neurons, 0.052µm/sec and 0.041µm/sec, respectively. The velocity of EB1-GFP 

dashes in wild-type DRG neurons was slower than the velocity of EB3-GFP dashes in 
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wild-type hippocampal neurons observed by Stepanova et al. (Stepanova et al., 2003), 

but were comparable to the velocity of EB3-GFP dashes in neuroblastoma-spinal cord 

34 (NSC34) cells (Riano et al., 2009). In addition, I observed differences in the mean 

velocity of the EB1-GFP comets in the growth cone and axon, whereas Stepanova et al. 

did not find that (Stepanova et al., 2003). This discrepancy can be due to different cell 

types and age of cells, different culture conditions and different +TIPs used in both 

experiments.  

The higher speed of comets in axons of MAP1B-/- neurons corresponds to a longer 

mean distance that they travelled (the mean distance for EB1-GFP dashes in axons of 

MAP1B-/- and wild-type DRG neuons were 1.57µm and 1.16µm, respectively) and 

longer time of comet life (32.43sec in MAP1B-/- DRG neurons and 28.83sec in wild-

type DRG neurons). I also observed a tendency towards longer distance of dashes in the 

growth cones of MAP1B-/- neurons. I did not find a difference in the time of comet life 

between comets in wild-type and MAP1B-/- DRG neurons. Lack of MAP1B did not 

affect stop frequency of dashes both in the growth cones and in the axons either. In 

addition, I found a significantly higher number of EB1-GFP comets in the growth cones 

and axons of MAP1B-/- DRG neurons. For example, in the axons of MAP1B-/- DRG 

neurons I observed 0.204comets/µm, whereas in the axons of wild-type DRG neurons 

only 0.120comets/µm. 

Differences in the dynamics of EB1-GFP dashes in wild-type and MAP1B-/- neurons 

could be due to a functional interaction between MAP1B and microtubule-severing 

proteins, such as spastin and P60-katanin. Spastin is expressed mainly in nervous 

system, whereas P60-katanin can be detected in several cell types (Yu et al., 2008). 

Both are involved in severing long stable microtubules into short dynamic ones, which 

plays an important role during neurite elongation and branching. Spastin is mostly 

localized in regions characterized by intensive reorganization of the cytoskeleton and 

correlates with the presence of dynamic tyrosinated microtubules, particularly in the 

growth cones and branching points (Yu et al., 2008). P60-katanin is more abundant in 

the neuron than spastin, but it is uniformly distributed along the axons and only at low 

levels in actively growing areas, such as branching points (Yu et al., 2008). 

Overexpression of spastin in adult mouse hippocampal neurons affected preferentially 

acetylated and detyrosinated microtubules, since cells overxpressing spastin showed 

significant decrease in the level of acetylated tubulin (Riano et al., 2009). Moreover, 

overexpression of spastin in adult rat hippocampal neurons resulted in an increased 
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number of short microtubules and great loss of microtubule mass in both the cell body 

and the axon, whereas overexpression of P60-katanin led to diminution of microtubule 

mass only in the cell body (Yu et al., 2008). In addition, a striking increase in axonal 

branching was observed in neurons overexpressing spastin, whereas in cells 

overexpressing P60-katanin the number of branches was not significantly different 

when compared to control cells (Yu et al., 2008). Newly formed branches in cells 

overexpressing spastin were not transient, they did not retract, but they extended further 

(Yu et al., 2008; Riano et al., 2009). Finally, depletion of spastin led to decrease in the 

length of the longest process in hippocampal neurons and a reduction in dynamic EB3-

GFP dashes in NSC34 cells (Riano et al., 2009). MAP1B-/- DRG neurons, similarly to 

cells overexpressing spastin, are characterized by an increased branching and a 

decreased level of acetylated “stable” microtubules (Bouquet et al., 2004; Riano et al., 

2009). Likewise, EB1-GFP dashes in MAP1B-/- DRG neurons showed increased 

dynamics when compared to wild-type DRG neurons, which is what one could expect 

from spastin overexpressing cells, since silencing of spastin reduced velocity of EB3-

GFP comets (Riano et al., 2009). In addition, it was observed that binding of MAP4 or 

tau to microtubules reduced their accessibility to P60-katanin, but it did not protect 

them from severing by spastin (Qiang et al., 2006; Yu et al., 2008). Potentially MAP1B 

binding to microtubules could protect them against severing by spastin, similarly to 

protection of microtubules by tau against severing by P60-katanin.  

Taking together my results and current knowledge published in the literature (Yu et al., 

2008), I propose a model for spastin-triggered increase in microtubule dynamics and 

branching in MAP1B-/- neurons. In wild-type DRG neurons MAP1B binds to 

microtubules and makes them more resistant to severing by spastin, thus promotes 

formation of long stable microtubules and long axons. Spastin would preferentially 

sever microtubules, which are associated with smaller amounts of protective MAP1B or 

are free from MAP1B. Microtubules protected by MAP1B could be more easily 

stabilized and posttranslationally modified to be even more resistant to severing by 

spastin (Fig. 69). In MAP1B-/- neurons microtubules are not protected by MAP1B and 

they are more accessible for spastin. Since it was shown that tau binding to 

microtubules did not protect them from cutting by spastin, it can not compensate lack of 

MAP1B (Yu et al., 2008). Unprotected microtubules are severed by spastin, resulting in 

an increased number of short microtubules, a decreased number of acetylated tubulin 

and increased number of branches characteristic for MAP1B-/- DRG neurons (Bouquet 
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et al., 2004). A greater number of free microtubule plus ends recruits more EB1-GFP 

comets, as the +TIP proteins were shown to be recruited by tyrosine microtubules 

preferentially (Peris et al., 2006). Indeed, I observed an enhanced number of EB1-GFP 

dashes in the growth cones and axons of MAP1B-/- DRG neurons. In addition, it was 

shown that low concentrations of taxol inhibit branching of neurites of adult chicken 

DRG and sympathetic neurons without affecting the rate of extension (Letourneau et al., 

1986). MAPs, such as MAP1B, could act like taxol to control organization of the 

cytoskeleton and branching. The observation that EB1-GFP comets are more dynamic 

in MAP1B-/- DRG neurons, supports the hypothesis that MAP1B stabilizes 

microtubules and the absence of MAP1B enhances microtubule dynamics. Taken in 

consideration similar effects of an overexpression of spastin and the absence of MAP1B 

in neurons, I propose spastin as the main severing protein playing a role in microtubule 

cutting and increased branching in MAP1B-/- DRG neurons, but I can not exclude p 

role of P60-katanin. It is possible that tau can partially compensate absence of MAP1B, 

but microtubules are also more accessible for P60-katanin, in addition to spastin. On the 

other hand, as I mentioned no significant increase in axonal branching was observed 

after overexpression of P60-katanin, suggesting that spastin not P60-katanin plays a 

crucial role in the regulation of branching (Yu et al., 2005; Qiang et al., 2006; Yu et al., 

2008).  
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Fig. 69. Model for regulation of microtubule severing in wild-type (a) and MAP1B-/- (b) 
DRG neurons. Axonal elongation, branching and turning of the growth cones requires 
reorganization of microtubules. The axon shaft contains mainly very long stable microtubules, 
whereas branching points and growth cones are rich in short dynamic microtubules. The long 
stable microtubules within axon shaft have to be cut into short motile pieces able to move into 
new branches and mobile growth cone (Yu et al., 2008). Severing of microtubules is regulated 
by microtubule-severing proteins (green scissors), such as spastin and P60-katanin. (a) In wild-
type DRG neurons cutting of microtubules by severing proteins, most likely by spastin, might 
be regulated by binding of MAP1B to microtubules, which makes them more resistant to 
severing. Despite the fact that there is enhanced concentration of spastin in the growth cones 
and branching points, MAP1B bound to microtubules could protect them from severing, thus 
preventing uncontrolled branching. (b) In MAP1B-/- DRG neurons due to the lack of MAP1B, 
the function of which might not be compensated for by other MAPs, such as tau, microtubules 
are not protected. They are more accessible for spastin, resulting in enhanced severing and an 
increased number of branches (adapted from Yu et al., 2008). 
 

Treatment of wild-type DRG neurons with LPA reduced distance and the time of EB1-

GFP comet life within axons. LPA also reduced the number of comets per axon length. 

As I mentioned +TIPs bind preferentially to free microtubule plus ends (Stepanova et 

al., 2003). According to model that I proposed LPA increases MAP1B binding to 

microtubules resulting in their overstabilization and a reduced number of free 

microtubule plus ends. Since the number of free microtubule plus ends is decreased less 

EB1-GFP comets are observed. It is consistent with previous studies showing that upon 

low concentration of taxol EB1- and EB3-positive comets disappeared and binding of 
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+TIPs to the ends of growing microtubules was abolished (Stepanova et al., 2003; Peris 

et al., 2006). Stabilization of microtubules by LPA is not as strong as in case of taxol 

treatment, thus not complete disappearance, but only reduction in the number of comets 

was found. In case of MAP1B-/- DRG neurons a decrease in the number of comets per 

axon length was also observed. This suggests that the reduction in axonal comet number 

is not crucial for axon retraction, since MAP1B-/- DRG neurons do not retract. 

Alternatively, the reduction in the number of actively polymerizing microtubules might 

indeed have an influence, but only when it reaches a critical value. In case of axons 

from wild-type DRG neurons LPA reduced the number of comets to 0.059comets/µm 

(compared to 0.120comets/µm in untreated cells), whereas in case of MAP1B-/- DRG 

neurons number of comets was reduced to 0.12comets/µm (compared to 

0.204comets/µm in untreated cells). The number of EB1-GFP dashes in axons from 

MAP1B-/- neurons after LPA treatment is still 2-fold higher than the number in wild-

type axons and is equal to the number of EB1-GFP dashes in axons from untreated 

wild-type DRG neurons.  

Analysis of EB1-GFP comets in growth cones revealed that LPA increased velocity in 

wild-type DRG neurons and decreased distance in MAP1B-/- DRG neurons. My finding 

that during retraction the velocity of EB1-GFP dashes is enhanced is consistent with 

previous observations that the velocity of EB3-GFP dashes in spontaneously retracting 

neurons was higher than in extending neuritis (Stepanova et al., 2003). No significant 

changes in number of comets per growth cone area was found. On the other hand, after 

treatment with LPA I observed increased number of EB1-GFP comets oscillating, 

pausing or moving backward in the growth cones, when compared to the growth cones 

from untreated neurons.  

I expect that NO-induced axon retraction involves a similar mechanism as retraction 

induced by LPA. For example, both LPA- and SNAP-induced retractions are MAP1B-

dependent and both LPA and SNAP enhanced microtubule binding of full length 

MAP1B in PtK2 cells. However, time-lapse microscopy to analyse microtubule plus 

ends activity could not be performed for studies of S-nitrosylation, since this 

modification is highly light sensitive.  

I propose that under normal conditions MAP1B binds to the microtubules at the certain 

optimal level and stabilized them enhancing axon extension, but upon treatment with 

LPA, SNAP or calcimycin microtubule binding by MAP1B is increased above this 

optimal level, overstabilizing them and preventing cutting by severing proteins. 
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Microtubules lose their dynamicity completely, they can not extent further, but also can 

not undergo catastrophe, thus they fold back and form sinusoidal bundles (Fig. 70).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 70. Model for role of MAP1B in SNAP-, calcimycin- and LPA-induced axon 
retraction. According to our model in wild-type DRG neurons severing of microtubules is 
regulated by binding of MAP1B to them. Binding of MAP1B protects microtubules from 
uncontrolled cutting by spastin. We propose that SNAP, calcimycin and LPA induce 
modifications of MAP1B, for example by S-nitrosylation (SNAP, calcimycin), which results in 
a conformational change of MAP1B characterized by enhanced microtubule binding activity. 
Association of MAP1B with microtubules above threshold level stabilizes them and further 
protects from cutting by severing proteins. Thus, the number of short highly mobile 
microtubules is reduced and reaches a critical point. Overstabilized microtubules can not 
undergo reorganization, resulting in the growth cone arrest and growth cone collapse. As a 
consequence of the shortening of the axon it adopts a coiled and bundled configuration. In 
addition, binding of MAP1B to microtubules can affect dynein forces or increase acto-myosin 
contractility. It is also potential that the Rho/ROCKpathway is stimulated parallel inducing 
rearrangements of actin filaments. Another possibility is that acto-myosin forces are the primary 
target and MAP1B plays a role as a signal transducer linking an induced acto-myosin 
contraction to microtubules. Upon stimulation by actin-myosin forces MAP1B binding to 
microtubules increases, resulting in their overstabilization and axon retraction. In MAP1B-/- 
DRG neurons SNAP, calcimycin and LPA do not affect stabilization of microtubules or at least 
do not induce overstabilzation due to the lack of MAP1B, the functions of which can not be 
overtaken by other MAPs. Thus retraction is not observed (adapted from Yu et al., 2008). 
 
It is still an open question whether the increased activity of the Rho/ROCK pathway and 

acto-myosin contractility, which were shown to be involved in LPA-, calcimycin- and 

SNAP-induced axon retraction, are the cause or consequence of MAP1B binding to 

 ✂ 

microtubules actin/myosin 

dynein MAP1B severing proteins 

Legend 
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microtubules. It was shown that in MAP1B-/- DRG neurons LPA-induced retraction 

and backward retreat of microtubules was impaired, whereas growth cone collapse, 

involving actin rearrangements, was not affected and was prevented by inhibition of 

myosin with blebbistatin (Bouquet et al., 2007). In addition, inhibition of ROCK with 

Y27632 or inhibition of myosin with blebbistatin abolished LPA-induced microtubule 

rearrangement and neurite retraction in mouse embryonic cortical neurons (Fukushima 

and Morita, 2006). It is proposed that LPA interacts with G13 stimulating the 

Rho/ROCK pathway resulting in actin polymerization. In addition, LPA-induced 

Rho/ROCK pathway activates GSK3, leading to phosphorylation of MAPs and 

disorganization of microtubules (Fukushima, 2004). These studies suggest that actin is 

the primary target of LPA-signalling and MAP1B plays a role as a signal transducer 

linking LPA-induced acto-myosin contraction to microtubules, resulting in their 

overstabilization and formation of sinusoidal bundles and axon retraction (Fig. 71). On 

the other hand, I can not exclude that MAP1B-dependent overstabilization of 

microtubules and activation of the Rho/ROCK pathway are triggered paraller and none 

of them works upstream the other. Thus, observed retraction might be a result of 

combined acto-myosin contraction and microtubule overstabilization. Similar 

mechanism might be involved in calcimycin- and SNAP-induced retraction. NO might 

activate direct the Rho/ROCK pathway by S-nitrosylation of Rho or ROCK, or indirect 

by S-nitrosylation of other effectors that influence the Rho/ROCK pathway. 

Alternatively NO can trigger postranslational modification of the Rho/ROCK pathway 

effectors other than S-nitrosylation. It was found that NO induced S-gluthationylation of 

Rho-GDIβ, which as I mentioned stabilized Rho in an inactive GDP-bound form 

(Townsend et al., 2006), but the effects of this modification on Rho-GDIβ function is 

not clear. One possibility is that S-gluthationylation of Rho-GDIβ results in its inhibiton 

and activation of Rho. Most likely NO-stimulated acto-myosin contractility is not 

triggered via cGMP pathway, since it was shown that PKG phosphorylates RhoA at 

Ser188 resulting in its inhibition (Sauzeau et al., 2000; Rolli-Derkinderen et al., 2005). 

For example it was observed that NO-induced vasodilation of rat aorta involves cGMP-

dependent inhibition of Rho (Chitaley and Webb, 2002). Thus, the mechanism by which 

NO stimulates acto-myosin contraction should be further investigated. 
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Fig. 71. Model for MAP1B-mediated axon retraction. SNAP, calcimycin and LPA induce 
MAP1B-dependent axon retraction. I and others (Stroissnigg et al., 2007) provide evidence 
that each of them increases microtubule binding activity of MAP1B. Calcimycin increases the 
level of Ca2+, leading to activation of nNOS and enhanced production of NO. NO S-nitrosylates 
MAP1B increasing its affinity to microtubules and their overstabilization. Inhibition of nNOS 
with NPA prevents retraction induced by calcimycin. Parallel, RhoA is stimulated, activating 
further ROCK and MLCK. MLCK phosphorylates MRLC at Ser19 and Thr18, activates myosin 
and induces rearrangements of actin filaments. Another possibility is that acto-myosin forces are 
the primary target and MAP1B plays a role as a signal transducer linking an induced acto-
myosin contraction to microtubules without direct activation by SNAP, calcimycin and LPA 
(red interrupted arrow). Upon stimulation by actin-myosin forces MAP1B binding to 
microtubules increases, resulting in their overstabilization and axon retraction. SNAP-, 
calcimycin- and LPA-induced retraction can be prevented by inhibition of ROCK and myosin 
by Y27632 and blebbistatin, respectively. The mechanism by which SNAP and calcimycin 
stimulate the Rho/ROCK pathway is still unknown (red interrupted arrow). NO might activate 
direct the Rho/ROCK pathway by S-nitrosylation of Rho or ROCK, or indirect by S-
nitrosylation of other effectors that can influence the Rho/ROCK pathway. In addition, 
stimulation of cAMP, by application of di-butryl-cAMP (db-cAMP) or forskolin, which induces 
production of cAMP by soluble adenyl cyclase (sAC), partially prevents retraction induced by 
SNAP and calcimycin. cAMP activates PKA, which phosphorylates ROCK and MLCK, 
resulting in their inhibition and prevention of axon retraction. Moreover, cAMP might abolish 
retraction by upregulated expression of Arginase I and increased synthesis of polyamines, as it 
was shown to be the case in the overcoming the inhibitory properties of myelin. Polyamines 
were shown to affect microtubule polymerization and organization (Banan et al., 1998), and 
thus they might prevent reorganization of cytoskeleton induced by SNAP, calcimycin, or LPA 
(adapted from Filbin, 2003). 
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RESULTS 

 

Laminin induces different morphology of wild-type and MAP1B-/- 

DRG neurons 

 

The extracellular milieu, in which axons have to grow, composes of many adhesive 

substrates, which promote elonagation and branching, for example laminin, collagen, 

tenascin, fibronectin and vitronectin. Information from the surrounding environment has 

to be translated into intracellular signals that act on the cytoskeleton directly or 

indirectly by modulation of cytoskeleton-associated proteins, resulting in extension of 

axons. Both microtubules and microfilaments are involved in directed growth cone 

migration. Microfilaments play a main role in formation of filopodia and lamellipodia, 

whereas microtubules are involved in elongation of the axon. Stability and assembly of 

microtubules are regulated by MAPs. There is considerable evidence indicating a role of 

MAP1B and tau in formation of axons. MAP1B and tau activity is controlled by 

phosphorylation (DiTella et al., 1996; Edelmann et al., 1996; Takei et al., 1997). 

It was shown that laminin induced activation of cdk5 and increased mode I 

phosphorylation of MAP1B (DiTella et al., 1996). Activation of cdk5 was regulated by 

expression and distribution of p35, which is a brain-specific activator of cdk5 (Paglini et 

al., 1998).  

It was also observed that DRG neurons from wild-type and MAP1B-/- mice show a 

different morphology when grown on laminin coated surfaces. Wild-type DRG neurons 

extended usually long, straight axons with only a few branches that covered a large 

area, whereas MAP1B-/- DRG neurons had wavy axons with many branches and 

covered a smaller surface (Bouquet et al., 2004). The number of branching points per 

main neurite was two-fold higher in case of MAP1B-/- neurons than in wild-type 

neurons (Bouquet et al., 2004). I found that the neurons showed these different 

morphologies only when they were grown on coverslips coated with both poly-L-lysine 

and laminin. When MAP1B-/- and wild-type DRG neurons were grown on coverslips 

coated with poly-L-lysine only, they were indistinguishable from one another. Neurons 

extended long axons, which were coiled rather than straight (Fig. 72). In addition, 

neuritic extension appeared between 24 and 48h when DRG neurons were grown on 
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poly-L-lysine, whereas DRG neurons cultured on coverslips coated with poly-L-lysine 

and laminin showed advanced processes within 20-24h after plating. It seems that 

laminin signals through a pathway that involves MAP1B and lack of MAP1B triggers 

branching in DRG neurons. Thus, I investigated the role of MAP1B during laminin-

promoted axonal growth using DRG neurons from wild-type and MAP1B-/-neurons. 

 

 
 
Fig. 72. Laminin induces different morphology of regenerating wild-type and MAP1B-/- 
DRG neurons. DRG neurons from wild-type and MAP1B-/- mice were grown on coverslips 
coated with poly-L-lysine and laminin  or on coverslips coated with poly-L-lysine only, fixed 
with 4% PFA, stained for tubulin, and analyzed by confocal microscopy. 
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Axon retraction induced by roscovitine is MAP1B-dependent 

 

Since it was shown that inhibition of cdk5 with antisense oligonucleotides reduces 

elongation of axons and decreases phosphorylation of MAP1B (DiTella et al., 1996), we 

inhibited cdk5 with roscovitine to see whether it has an influence on growth of axons 

from wild-type and MAP1B-/- DRG neurons grown on laminin. Roscovitine is an 

olomoucine-related purine flavopiridol, and is an selective inhibitor for the kinase 

activity of cdk1, cdk2, cdk5, and cdk7, but is a poor inhibitor for cdk4 and cdk6. 

Roscovitine competes with ATP at the ATP binding site of the kinase leading to 

inhibition of the kinase activity. Adult DRG neurons from wild-type and MAP1B-/- 

mice were grown on poly-L-lysine and laminin coated coverslips. After 20-24h cells 

were treated with 50µM roscovitine for 1h, with 3µl of DMSO for 1h (a solvent 

control), or were left untreated, fixed and stained for tubulin and MAP1B HC as a 

control. Application of solvent (DMSO) did not influence the morphology of the 

neurons, the level of retracted neurons was comparable to the level in case of untreated 

cells (not shown). Approximately 48% of wild-type neurons showed retraction 

hallmarks (sinusoidal bundles along axonal shaft, retraction bulb and trailing remnant) 

compared to 1% when cells were treated with DMSO only (Fig. 73). In contrast, only 

21% of MAP1B-/- DRG neurons retracted in response to roscovitine treatment (when 

cells were treated with DMSO about 3% neurons showed hallmarks of retraction). 

Additionally, I compared the behaviour of wild-type and MAP1B-/- DRG neurons after 

inhibition of cdk5 using time-lapse microscopy. Cells were cultured for 20-24h and then 

were monitored for 45min prior to application of roscovitine. After the first 15min of 

observation, half of the medium in the dish was exchanged with fresh medium to 

exclude any influence of medium change per se on axonal behaviour (-30’), then 

observation was continued for another 30min. Without any stimulation, axons from both 

types of neurons elongated at the same rate, and exchange of medium did not affect 

axon growth. Addition of 50µM roscovitine to wild-type DRG neurons (time point 0’ 

on graphs) induced growth cone collapse within 3-5min followed by retraction with 

formation of sinusoidal bends, reminiscent of the sinusoidal microtubule bundles 

revealed by immunofluorescences (Fig. 74). After addition of roscovitine to MAP1B-/- 

DRG neurons I did not observe growth cone collapse and neurites continued elongation 

at the same rate as before treatment (Fig. 74).  
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Fig. 73. Roscovitine-induced axon retraction is impaired in MAP1B-/- DRG neurons. DRG 
neurons from wild-type and MAP1B-/- mice were grown on coverslips coated with poly-L-
lysine and laminin, were treated with 50µM roscovitine for 1h or with 3µl of DMSO for 1h, 
fixed with 4% PFA, stained for tubulin and MAP1B HC. (a, b) Representative micrographs of 
axons from wild-type (a) and MAP1B-/- (b) DRG neurons. Wild-type DRG neurons retracted in 
response to roscovitine treatment with all characteristic hallmarks (sinusoidal microtubules 
(interrupted arrow), retraction bulb (filled arrows), trailing remnant (open arrow)). (c, d), for 
quantitative analysis, approximately 100 cells in each of 5 independent (c) or 3 (d) experiments 
were assessed for microtubule configuration which was classified as unchanged, retracted or 
collapsed. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with roscovitine were significantly different from corresponding values of neurons 
treated with DMSO (*, p<0.05, and **, p<0.001). 
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Fig. 74. Response of wild-type and MAP1B-/- neurons to roscovitine treatment. Adult wild-
type (WT) and MAP1B-/- (KO) DRG neurons were grown for 24h on coverslips coated with 
poly-L-lysine and laminin. Images were recorded with 5min intervals and selected images taken 
at the indicated times are shown. After 15min of observation the medium was changed to 
determine if changing the medium does have an influence on growing axons (-30’), and 
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observation was continued for 30min. No retraction or retraction and reextension of axon was 
observed after the medium exchange. Stack taken 30min after changing the medium is shown, 
as indicated, the pictures from time between these two times points are not shown. After 30min 
50µM roscovitine was added and recording was continued for 2h 30min with 5min intervals 
between images. Application of roscovitine induced growth cone collapse (blue arrows) within 
3-5min followed by axon retraction with sinusoidal bundles (black arrow) in wild-type neurons. 
Axons retracted completely after 60-75min and no reextension was observed. Axons of 
MAP1B-/- neurons did not retract and continued growth (protrusion of filopodia by axons is 
indicated by red arrows). 
 

Axon retraction induced by roscovitine involves ROCK and myosin 

 

As axon retraction induced by inhibition of cdk5 by roscovitine is MAP1B-dependent 

as are retractions induced by SNAP, calcimycin, or LPA and shows the same retraction 

hallmarks, it was interesting to see whether it involved ROCK and myosin too. To 

investigate involvement of ROCK, DRG neurons from wild-type and MAP1B-/- mice 

were grown on poly-L-lysine and laminin coated coverslips for 20-24h and then were 

treated with 3µl of DMSO for 1h, with 10µM Y27632 for 1h, with 50µM roscovitine 

for 1h, or with 10µM Y27632 for 1h followed by treatment with 50µM roscovitine for 

1h. Inhibition of ROCK reduced the amount of retracted neurons from wild-type mice; 

12% in comparison to 48% when cells were treated with roscovitine only (Fig. 75). In 

addition, pretreatment with Y27632 also decreased the number of neurons showing 

retracted hallmarks in case of  MAP1B-/- DRG neurons (11% when compared to 21% 

when cells were treated with roscovitine only; Fig. 75).  

To investigate involvement of myosin in axon retraction induced by inhibition of cdk5, 

DRG neurons from wild-type and MAP1B-/- mice were cultured as described before 

and treated with 100µM blebbistatin for 15min prior to treatment with 50µM 

roscovitine for 1h. Inhibition of myosin abolished roscovitine-induced retraction, only 

10% of wild-type neurons showed the retraction phenotype in comparison to 40% when 

cells were treated with roscovitine only (Fig. 76). In case of MAP1B-/- DRG neurons 

there were no differences in the number of retracted neurons between untreated cells 

and cells treated with DMSO, roscovitine, blebbistatin, or blebbistatin and roscovitine. 

In all cases no more than 10-15% of neurons showed retraction hallmarks. This is 

slightly higher than what I saw in previous experiments with MAP1B-/- DRG neurons 

(for example, Fig. 75) and might be due to slightly diverse culture conditions (pH, 
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temperature) in theses experiments. In any case, roscovitine and blebbistatin were 

without effect.  

 

 
Fig. 75. Axon retraction induced by roscovitine is MAP1B- and ROCK-dependent. DRG 
neurons from wild-type (a) and MAP1B-/- (b) mice were grown on coverslips coated with poly-
L-lysine and laminin, were treated with 3µl DMSO for 1h, with 50µM roscovitine for 1h, with 
10μM Y27632 for 1h, or with 10μM Y27632 for 1h followed by 50µM roscovitine for 1h, as 
indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For 
quantitative analysis, approximately 100 cells in each of 5 independent (a) or 3 (b) experiments 
were assessed for microtubule configuration which was classified as unchanged, retracted or 
collapsed. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with roscovitine were significantly different from corresponding values of cells treated 
with DMSO (solvent for roscovitine) and values for cells treated with roscovitine and Y27632 
were significantly different from corresponding values of cells treated with roscovitine only (*, 
p<0.05, and **, p<0.001). 
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Fig. 76. Axon retraction induced by roscovitine involves myosin. DRG neurons from wild-
type (a) and MAP1B-/- (b) mice were grown on coverslips coated with poly-L-lysine and 
laminin, were treated with 3µl DMSO for 1h, with 50µM roscovitine for 1h, with 100μM 
blebbistatin for 15min, or with 100μM blebbistatin for 15min followed by 50µM roscovitine for 
1h, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. 
For quantitative analysis, approximately 100 cells in each of 3 independent (a) or 4 (b) 
experiments were assessed for microtubule configuration which was classified as unchanged, 
retracted or collapsed. Error bars represent standard deviations. Asterisks indicate that the 
values for cells treated with roscovitine were significantly different from corresponding values 
of cells treated with DMSO (solvent for roscovitine) (*, p<0.05). 
 

These results demonstrated that ROCK and myosin are necessary for axon retraction 

induced by roscovitine. To examine if acto-myosin forces are enhanced in response to 

roscovitine I decided to study the level of monophosphorylation of MRLC in response 
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Thr18 (Somlyo and Somlyo, 2003). I observed an increased level of 

monophosphorylated MRLC after treatment with roscovitine, 186% of values from 

untreated cells (Fig. 77), suggesting activation of myosin by roscovitine. 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 77. Roscovitine-induced axon retraction involves activation of myosin. (a) N2a cells 
were grown on 6cm plates, and either were left untreated, or treated with 50μM roscovitine for 
30min, as indicated. Cell lysates were fractioned by SDS-PAGE and analyzed by 
immunoblotting using anti-Ser19 antibody (phospho-MRLC). (b), bands were quantified using 
the Quanti Scan 3 software. For quantitative analysis, blots from 2 independent experiments 
were scored. In each treatment the values show levels of phosphorylation at Ser19 normalized to 
tubulin that was used as a loading control. Error bars represent standard deviations. Asterisks 
indicate that the level of phospho-MRLC from lysates of cells treated with roscovitine for 
30min was significantly different from corresponding value of untreated cells (*, p<0.05). 
 

Axon retraction induced by roscovitine does not involve nNOS 

activation 

 

We were also interested if axon retraction induced by roscovitine involves activation of 

nNOS, NO and S-nitrosylation. Thus, DRG neurons from wild-type and MAP1B mice 

were cultured as described before, treated with 300µM NPA for 1h to inhibit nNOS and 

then treated with 50µM roscovitine for 1h. Inhibition of nNOS did not affect retraction 

induced by roscovitine in wild-type DRG neurons, 58% of neurons showed retracted 
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morphology when compared to 64% when cells were treated with roscovitine only (Fig. 

78). Likewise, application of NPA prior to treatment with roscovitine did not influence 

the response of MAP1B-/- DRG (22% of neurons showed retraction hallmarks when 

treated with NPA followed by roscovitine compare to 21% when cells were treated with 

roscovitine only). 

  
 

 

 
 
Fig. 78. Axon retraction induced by roscovitine does not involve  nNOS. DRG neurons from 
wild-type (a) and MAP1B-/- (b) mice were grown on coverslips coated with poly-L-lysine and 
laminin, were left untreated, or were treated with 50µM roscovitine for 1h, with 300μM NPA 
for 1h, or with 300μM NPA followed by 50µM roscovitine for 1h, as indicated, fixed with 4% 
PFA, stained for tubulin and analyzed by confocal microscopy. For quantitative analysis, 
approximately 100 cells in each of 3 independent experiments were assessed for microtubule 
configuration which was classified as unchanged, retracted or collapsed. Error bars represent 
standard deviations. Asterisks indicate that the values for cells treated with roscovitine or with 
NPA followed by treatment with roscovitine were significantly different from corresponding 
values of untreated neurons (*, p<0.05 the same; **, p<0.005 and ***, p<0.001).  
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Axon retraction induced by roscovitine involves GSK3β 

 

It was observed that inhibition of cdk5 with olomoucine increased activity of GSK3β in 

the axoplasm extruded from squid giant axons (Morfini et al., 2004). As mentioned 

above, GSK3β phosphorylates MAP1B in mode I. It is possible that inhibition of cdk5 

leads to increased phosphorylation of MAP1B by GSK3β, resulting in increased binding 

of MAP1B to microtubules and axon retraction. To examine the potential involvement 

of GSK3β, wild-type DRG neurons were cultured as described before and GSK3β was 

inhibited with 20mM LiCl, which was applied for 14-16h  before treatment with 

roscovitine. Inhibition of GSK3β reduced the number of neurons showing retraction 

hallmarks in response roscovitine, 24% compared to 57% when cells were treated with 

roscovitine only, and this difference was statistically significant (Fig. 79). In addition, 

neurons treated with LiCl grow shorter axons with more branches than untreated cells 

(not shown). 

 

 
Fig. 79. Inhibition of GSKβ partially abolishes axon retraction induced by roscovitine. 
Wild-type DRG neurons were grown on coverslips coated with poly-L-lysine and laminin, were 
left untreated, or were treated with 50µM roscovitine for 1h, with 20mM LiCl over night (14-
16h), or with 20mM LiCl over night (14-16h) followed by 50µM roscovitine for 1h, as 
indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal microscopy. For 
quantitative analysis, approximately 100 cells in each of 3 independent experiments were 
assessed for microtubule configuration which was classified as unchanged, retracted or 
collapsed. Error bars represent standard deviations. Asterisks indicate that the values for cells 
treated with roscovitine were significantly different from corresponding values of untreated 
neurons and the values from cell treated with LiCl followed by roscovitine were significantly 
different from corresponding values of cells treated with roscovitine only (*, p<0.05). 
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Axon retraction induced by roscovitine does not involve 

depolymerization of microtubules 

 

It seems that roscovitine, similar to SNAP, calcimycin, and LPA, induces backward 

retreat of microtubules resulting in their coiled and bundled configuration, rather than 

their depolymerization. To examine whether depolymerization does not take place like 

in case of SNAP-, calcimycin- and LPA-induced neurite retraction, wild-type and 

MAP1B-/- DRG neurons were grown on poly-L-lysine and laminin coated coverslips 

for 20-24h, treated with 3nM taxol for 30min, with 50µM roscovitine for 1h, or with 

3nM taxol for 30min followed by treatment with 50µM roscovitine for 1h, or were left 

untreated.  

      

       
Fig. 80. Axon retraction induced by roscovitine does not involve depolymerization of 
microtubules. DRG neurons from wild-type (a) and MAP1B-/- (b) mice were grown on 
coverslips coated with poly-L-lysine and laminin, were left untreated, or were treated with 
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50µM roscovitine for 1h, with 3nM taxol for 30min, or with 3nM taxol for 30min followed by 
50µM roscovitine for 1h, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis, approximately 100 cells in each of 4 
independent experiments were assessed for microtubule configuration which was classified as 
unchanged, retracted or collapsed. Error bars represent standard deviations. Asterisks indicate 
that the values for cells treated with roscovitine, with taxol and with taxol followed by treatment 
with roscovitine were significantly different from corresponding values of untreated neurons (*, 
p<0.05; **, p<0.01 and ***, p<0.001). 
 

As in case of LPA, calcimycin and SNAP, taxol pretreatment did not prevent axon 

retraction induced by roscovitine in wild-type DRG neurons, but rather increased it, 

82% of neurons showing retraction hallmarks when compared to 47% when cells were 

treated with roscovitine only (Fig. 80). Approximately 58% and 63% of MAP1B-/- 

DRG neurons retracted when treated with taxol or with taxol and roscovitine, 

respectively (Fig. 80). 

Roscovitine and LPA induce retraction only in the presence of laminin 

 

Since DRG neurons grown on laminin showed a different morphology than DRG 

neurons grown on poly-L-lysine, it was interesting to investigate if roscovitine has an 

influence on the morphology of neurons grown on poly-L-lysine only. Wild-type DRG 

neurons were cultured on coverslips coated with poly-L-lysine and laminin or on poly-

L-lysine only, treated with 50µM roscovitine for 1h or were left untreated. When cells 

were grown on poly-L-lysine only, 9% of cells showed retraction hallmarks in response 

to roscovitine treatment, compared to 5% when neurons were untreated (Fig. 81). This 

is in contrast to 35% of retracted neurons in response to application of roscovitine when 

cells were grown on poly-L-lysine and laminin coated coverslips.  

SNAP, calcimycin and LPA induced retractions in wild-type DRG neurons cultured on 

coverslips covered by poly-L-lysine and laminin. As response of DRG neruons to 

treatment with roscovitine was impaired when cells were grown on poly-L-lysine only, I 

decided to examine if LPA induces retraction when neurons are grown on poly-L-

lysine. Wild-type DRG neurons were cultured on coverslips coated with poly-L-lysine 

and laminin or poly-L-lysine only, treated with 10µM LPA or were left untreated. I 

found that levels of cells showing retraction hallmarks were almost the same in case of 

untreated neurons and neurons treated with LPA when cells were grown in the absence 

of laminin. In case of DRG neurons cultured on coverslips coated with poly-L-lysine 

only approximately 13% of cells retracted in response to LPA treatment, whereas in 
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case of cells cultured on coverslips coated with poly-L-ysine and laminin about 30% 

showed retraction hallarks (Fig. 82). These results suggest that laminin signalling, in 

addition to MAP1B, plays an important role in mediating axon retraction. 

 

                

                  
Fig. 81. Axon retraction induced by roscovitine is laminin-dependent. DRG neurons from 
wild-type mice were grown on coverslips coated with poly-L-lysine and laminin (a) or with 
poly-L-lysine only (b) for 24h or 48h, respecively, were left untreated, or were treated with 
50µM roscovitine for 1h, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by 
confocal microscopy. For quantitative analysis approximately 50 cells in each of 3 independent 
experiments were assessed for microtubule configuration which was classified as unchanged, 
retracted or collapsed. Error bars represent standard deviations. Asterisks indicate that the 
values for cells treated with roscovitine were significantly different from corresponding values 
of untreated neurons (*, p<0.05). 
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Fig. 82. Axon retraction induced by LPA is laminin-dependent. DRG neurons from wild-
type mice were grown on coverslips coated with poly-L-lysine and laminin (a) or with poly-L-
lysine only (b) for 24h or 48h, respecively, were left untreated, or were treated with 10µM LPA 
for 30min, as indicated, fixed with 4% PFA, stained for tubulin and analyzed by confocal 
microscopy. For quantitative analysis approximately 50 cells in each of 2 independent 
experiments were assessed for microtubule configuration which was classified as unchanged, 
retracted or collapsed. Error bars represent standard deviations. 
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overexpressed in PtK2 cells and MAP1B was predominantly found in the cytoplasm of 

untreated cells, while treatment with SNAP and LPA increased binding of MAP1B to 

microtubules. I also examined the effect of roscovitine on MAP1B microtubule binding 

properties by expressing myc-tagged full length MAP1B in PtK2 cells. As in previous 

experiments, in most of untreated cells MAP1B was found localized in the cytoplasm 

and only in 4% of cells MAP1B was bound to microtubules. In cells treated with 

roscovitine, microtubular association of MAP1B increased to 26%, but no induction of 

microtubule reconfiguration was observed (Fig. 83). These results suggest that a 

potential mechanism by which roscovitine induces axon retraction is similar or even the 

same as the mechanism by which SNAP or LPA induce axon retraction. This 

mechanism involves an increase of MAP1B binding to microtubules, leading to their 

stabilization and retraction of neurites. 

 
Fig. 83. Increased microtubule binding by MAP1B induced by treatment with roscovitine. 
PtK2 cells were transiently transfected with constructs encoding myc-tagged FL MAP1B. 
Before fixation, cells were left untreated, or were treated with 50μM roscovitine for 2h, as 
indicated. Cells were scored for localization of the ectopically expressed protein in the 
cytoplasm, or on microtubules by double immunofluorescence microscopy using anti-myc and 
anti-tubulin antibodies. For quantification, 200 cells from 4 independent transfections were 
assessed for microtubule binding of MAP1B. Error bars represent standard deviations. Asterisks 
indicate that the values for cells treated with roscovitine were significantly different from 
corresponding values of untreated neurons (**, p<0.001). 
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examine whether different response of wild-type and MAP1B-/- DRG neurons to 

laminin signalling is due to altered expression of p35. I stained wild-type and MAP1B-

/- DRG neurons for p35 to determine its localization, but I could not see any 

differences. p35 staining was continuous within cell bodies and along axons, with a 

significant levels in the periphery of the growth cones, in both types of neurons (not 

shown).  

We also tested expression of p35 and cdk5 in tissues from wild-type and MAP1B mice. 

Protein lysates from brains and DRGs from wild-type and MAP1B-/- mice were 

fractioned  on polyacrylamide gels and analyzed by immunoblot for expression of p35 

and cdk5. I did not observed any consistent differences between tissues from both types 

of mice in 2 separate experiments (not shown). 
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DISCUSSION 

 

Laminin is an extracellular matrix protein, which modulates the extension and 

morphology of neurites (Kohno et al., 2005). In vitro, of neurite growth is stimulated 

both by surface-bound laminin and by soluble laminin added to the medium (Kohno et 

al., 2005). For example, it was shown that addition of soluble laminin into the medium 

stimulated branching and elongation of small-diameter collaterals in adult mouse DRG 

neurons (Kohno et al., 2005). How exactly the presence of laminin is translated into 

intracellular events is unknown. It is postulated that laminin promotes axonal growth by 

its interaction with integrin receptors followed by activation of the p35/cdk5 pathway 

and recruitment of MAP1B, which regulates microtubule dynamics (Rossino et al., 

1991; Choi et al., 1994; Pigino et al., 1997; Paglini et al., 1998; Li et al., 2000). During 

laminin-induced axonal elongation in cerebellar macroneurons cdk5 was redistributed 

from the cell body to the periphery of the growth cone and expression of its activator 

p35 was upregulated (Pigino et al., 1997; Paglini et al., 1998). It was shown in SH-

SY5Y neuroblastoma cells that laminin stimulated upregulation of p35 and activation of 

cdk5 by interaction with the intergrin receptors α1β1 (Rossino, 1991; Choi, 1994; Li, 

2000). Inhibition of α1- and β1- integrins with specific antibodies abolished laminin-

induced upregulation of p35 and cdk5 activity (Li et al., 2000), and inhibition of p35 

with antisense oligonucleotides prevented laminin-induced axonal elongation (Paglini, 

1998). In embryonic chick retina neurons cdk5 and its activator p35 are expressed in the 

distal parts the growth cone, where they colocalize with mode I phosphorylated MAP1B 

(Hahn et al., 2005). Moreover, laminin-induced increase in axonal length and formation 

of minor neurites in adult rat cerebellar macroneurons was found to correlate with 

enhanced association of MAP1B with microtubules, whereas in neurons grown on poly-

L-lysine only small amounts of MAP1B were integrated with microtubules (DiTella et 

al., 1996; Pigino et al., 1997). Inhibition of cdk5 suppressed elongation of neurites and 

reduced mode I phosphorylation of MAP1B and resulted in decreased binding of 

MAP1B to microtubules (Pigino et al., 1997). Application of MAP1B antisense 

oligonucleotides reduced extension of neurites in neurons cultured on laminin, whereas 

it did not influence axonal growth of cells cultured on poly-L-lysine (DiTella et al., 

1996). In addition, inhibition of tau with antisense oligonucleotides had no influence on 

cells grown on laminin, while it abolished axon formation in neurons grown on poly-L-
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lysine, suggesting role of MAP1B in laminin signalling and a role of tau in poly-L-

lysine signalling (DiTella et al., 1996).  

It was also observed that DRG neurons from wild-type and MAP1B-/- mice show a 

different morphology when grown on laminin. Wild-type DRG neurons extended 

usually long, straight axons with only a few branches that covered a large surface, 

whereas MAP1B-/- DRG neurons had curled axons with many more collaterals and 

covered a smaller area (Bouquet et al., 2004). The number of branch points per parent 

neurite was two-fold higher in MAP1B-/- DRG neurons when compared to wild-type 

DRG neurons (Bouquet et al., 2004). Thus, I decided to examine whether wild-type and 

MAP1B-/- DRG neurons show different morphology when they are cultured on another 

substrate. I observed that when they were grown on coverslips coated with poly-L-

lysine only they did not show any difference in growth pattern. Most neurons extended 

long processes, which were coiled rather than straight. Moreover, DRG neurons grown 

on coverslips coated with poly-L-lysine and laminin showed advanced processes within 

20-24h after plating, whereas in neurons grown on poly-L-lysine axon extension was 

observed later, between 24 and 48h. It seems that laminin promotes axonal elongation 

through a pathway that involves MAP1B and lack of MAP1B alters laminin signalling 

resulting in increased branching in DRG neurons. In addition, it seems that axonal 

formation is not altered in MAP1B-/- DRG neurons grown on laminin, but rather 

branching and directionality of the growth cone (Bouquet et al., 2004). This is 

consistent with previous results showing that inhibition of MAP1B with antisense 

oligonuclotides did not abolish formation of axons in cerebellar macroneurons grown on 

laminin, but altered their growth (DiTella et al., 1996). Likewise, relocalization of cdk5 

stimulated by laminin was observed after axons were already formed, suggesting that 

laminin and cdk5 stimulate elongation of neurites rather than their formation (Paglini et 

al., 1998). Moreover, when embryonic chick RGC neurons were cultured from the 

beginning with roscovitine, an inhibitor of cdk5, axons were initially formed, but they 

retracted after 4h (Hahn et al., 2005).  

Since it was shown that inhibition of cdk5 abolished axonal extension induced by 

laminin and decreases mode I phosphorylation of MAP1B (DiTella et al., 1996), I 

decided to examine if inhibition of cdk5 with roscovitine has an influence on growth of 

wild-type and MAP1B-/- DRG neurons. In case of wild-type DRG neurons about 48% 

of neurons retracted in response to roscovitine treatment, showing characteristic 

hallmarks – retraction bulb, sinusoidal bundles and trailing remnant. In MAP1B-/- DRG 
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neurons the response seemed to be impaired, since only 21% of neurons showed 

retraction morphology. These results were confirmed by time-lapse microscopy, as in 

wild-type DRG neurons roscovitine induced growth collapse within 3-5min, which was 

followed by axon retraction, while the majority of MAP1B-/- neurons did not respond 

and continued extend at the normal rate. Retraction was not reversible and once the 

growth cone collapsed it did not reextend within the time that images were taken 

(90min). Similarly, retraction was observed in embryonic chick RGC neurons after 

inhibition of cdk5 with roscovitine or with an anti-cdk5 antibody (Hahn et al., 2005). In 

addition, Hahn and colleagues observed that after inhibition of cdk5 mode I 

phosphorylated MAP1B was not detected anymore in neurons, supporting a role of 

MAP1B in laminin signalling through the p35/cdk5 pathway (Hahn et al., 2005) .  

Neurons retracting in response to roscovitine showed hallmarks similar to those 

retracting in response to SNAP, calcimycin and LPA. Therefore, it was interesting to 

see if the mechanism underlying roscovitine-induced retraction is the similar. First, I 

decided to examine if ROCK and myosin are necessary for axon retraction induced by 

roscovitine. Indeed, inhibition of ROCK with Y27632, as well as inhibition of myosin 

with blebbistatin, abolished retraction of neurons. In addition, I observed that in N2a 

neuroblastoma cells upon treatment with roscovitine the level of monophosphorylation 

of MRLC increased, which corresponds to an increase in the activity of myosin and 

suggests that acto-myosin forces are enhanced during roscovitine-stimulated axon 

retraction. To our knowledge these are the first studies showing involvement of the 

Rho/ROCK pathway and acto-myosin contractility in neurite retraction induced by 

roscovitine. Growth cone collapse and axon retraction induced by several guidance cues 

involve activation of the Rho/ROCK pathway and increase of acto-myosin forces. For 

example, I showed in the first and second parts of my thesis that LPA-, SNAP- and 

calcimycin-induced axon retraction involved acto-myosin contractility. In addition, it 

was shown that ROCK was necessary for growth cone collapse induced by ephrin-A5 in 

retinal ganglia neurons (Wahl et al., 2000) and by Sema3A in embryonic chick DRG 

explants (Dontchev and Letourneau, 2002). These results show that different cues can 

induce growth cone collapse and axon retraction through analogous mechanisms. 

Since it appears that NO- and roscovitine-induced retractions involve similar 

mechanisms, I decided to examine the potential involvement of nNOS. DRG neurons 

were treated with NPA, a specific nNOS inhibitor, followed by roscovitine. As in case 

of LPA treatment, inhibition of nNOS did not abolish retraction induced by roscovitine. 
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Thus, it seems that retraction induced by inhibition of cdk5 with roscovitine does not 

involve activation of nNOS or NO. 

Inhibition of cdk5 with olomoucine increased activity of GSK3β in the axoplasm 

extruded from squid giant axons (Morfini et al., 2004). In addition, in p35-/- mice 

increased phosphorylation of tau and enhanced activity of GSK3β was observed 

(Hallows et al., 2003). Phosphorylation of GSK3β on Ser9 leads to its inactivation and it 

was shown that PP1 dephosphorylated GSK3β in vitro (Morfini et al., 2004). Since it 

was observed that cdk5 inhibited protein phosphatase 1 (PP1) and inhibition of cdk5 led 

to dephosphorylation of GSK3β, it is proposed that inhibition of PP1 by cdk5 maintains 

GSK3β in an inactive state (Morfini et al., 2004). It is important to mention that 

decreased levels of mode I phosphorylated MAP1B observed after inhibition of cdk5 

were measured by antibodies specific for mode I phosphorylated MAP1B, but only for 

sites specific for cdk5 (mAB150; DiTella et al., 1996; Gordon-Weeks and Fisher, 2000) 

and not for other kinases, such as GSK3β. GSK3β is supposed to phosphorylate proteins 

at sites primed by cdk5 phosphorylation, but it can phosphorylate MAP1B also at non-

primed sites (Gonzalez-Billault, 2005; Scales et al., 2009). As GSK3β is known to 

phosphorylate MAP1B one possibility is that inhibition of cdk5 leads to increased 

phosphorylation of MAP1B by GSK3β, resulting in axon retraction. To analyze a 

potential involvement of GSK3β in axon retraction induced by roscovitine, wild-type 

DRG neurons were pretreated with LiCl, the GSK3β inhibitor, followed by roscovitine. 

Inhibition of GSK3β reduced the number of retracting neurons, 24% compared to 57% 

when cells were treated with roscovitine only. I have to point here that LiCl had an 

effect on neurons on its own, since neurons treated with LiCl only and with LiCl and 

roscovitine grow shorter axons with more branches and larger growth cones than 

untreated cells. This is consistent with previous results showing that inhibition of 

GSK3β with LiCl and SB-216763 reduced the length of axons and enhanced growth 

cone area in embryonic chick DRG explants and in early postnatal mouse DRG neurons 

(Goold et al., 1999; Owen and Gordon-Weeks, 2003). I did not see a severe phenotype 

as Goold and colleagues, but most likely it is due to a shorter time of treatment with 

LiCl.  

As I showed in a previous part of my thesis, axon retraction of adult mouse DRG 

neurons induced by LPA, SNAP, or calcimycin was accomplished by backfolding of 

microtubules rather than microtubules destabilization. My experiments showed that in 

case of all three reagents axon retraction was not prevented by taxol and seemed to be 
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induced by enhanced binding of MAP1B to microtubules, resulting in their 

overstabilization. Similarly, stabilization of microtubules by taxol did not prevent 

roscovitine-induced axon retraction. Moreover, roscovitine increased binding of 

MAP1B to microtubules in PtK2 cells, like SNAP and LPA. All these results suggest 

that a potential mechanism by which roscovitine induces axon retraction is similar or 

even the same as the mechanism by which SNAP or LPA induce axon retraction. 

It was found that wild-type and MAP1B-/- DRG neurons show different morphology 

when they are grown on laminin, but not on poly-L-lysine (my results; Bouquet et al., 

2004). Suppression of MAP1B with antisense oligonuleotides reduced growth of axons 

stimulated by laminin, but had no influence on extension of axons from neurons grown 

on poly-L-lysine (DiTella et al., 1996). Thus, I decided to investigate if roscovitine has 

an influence on axon growth when neurons are cultured on poly-L-lysine. I found that 

neurons did not retract in response to roscovitine when they were grown on poly-L-

lysine, suggesting a specific role of the p35/cdk5 pathway and MAP1B in laminin 

signalling. Moreover, I observed that also LPA did not induce axon retraction when 

neurons were grown on poly-L-lysine. Thus, it seems that in addition to MAP1B also 

laminin/integrin signalling plays a crucial role in mediating axon retraction. It would be 

interesting to examine if laminin/integrin signalling is involved in growth cone collapse 

and axon retraction induced by cues other than roscovitine and LPA.  

One could expect that the morphology of MAP1B-/- DRG neurons grown on laminin 

and their impaired response to inhibition of cdk5 by roscovitine can be due to altered 

expression of p35 or cdk5 in these neurons rather than due to lack of MAP1B. 

Therefore, I decided to examine expression of both p35 and cdk5 in DRG neurons. 

DRG neurons from wild-type and MAP1B-/- mice were immunostained with p35 

antibody, but I did not see any difference. p35 staining was continuous within cell 

bodies and along axons in both types of neurons, with a higher levels in the periphery of 

the growth cones. To further confirm that expression of p35 is not altered in MAP1B-/- 

DRG neurons I measured expression of p35 in DRG and brain extracts by western blot, 

but I did not observe any consistent differences. In addition, I did not find differences in 

the level of cdk5 in DRGs and brains from wild-type and MAP1B-/- mice. These results 

suggest that the impaired response of MAP1B-/- DRG neurons to laminin signalling is 

not due to altered expression of p35 and cdk5. 

To summarize, all these results suggest that laminin, perhaps by interaction with 

integrin α1β1, induces relocation of cdk5 from the cell body to the distal regions of the 



                                                                                                       Part III – Discussion 

 178 

growth cone and upregulates expression of p35 (Rossino et al., 1991; Choi et al., 1994; 

DiTella et al., 1996; Pigino et al., 1997; Paglini et al., 1998; Li et al., 2000). As a 

consequence p35 activates cdk5, which phophorylates MAP1B and induces a 

conformation characterized by increased microtubules binding properties. MAP1B 

binds to microtubules and stabilizes them, promoting axon growth (Fig. 84). It was 

observed that microtubules in COS cells transfected with constructs encoding full length 

MAP1B and in PtK2 cells transfected with constructs encoding LC1 were stabilized 

against nocodazole, a microtubule depolymerising agent, and the levels of acetylated 

tubulin in theses cells was enhanced (Takemura et al., 1992; Tögel et al., 1998), 

supporting a role of MAP1B in microtubule stabilization. Moreover, MAP1B 

phosphorylated by cdk5 was shown to bind mirotubules more efficiently than 

unphosphorylated MAP1B (Mack et al., 2000).  

 

 
 
Fig. 84. Model for p35/cdk5 and MAP1B-mediated laminin signaling. Laminin interacts 
with the integrin receptor α1β1 stimulating upregulation of p35, which activates cdk5. Activated 
cdk5 phosphorylates many proteins, for example MAP1B. In addition, it inhibits PP1 keeping 
GSK3β in an inactive state. Upon phosphorylation MAP1B binds more efficiently to 
microtubules, leading to their stabilization and promotion of axon growth. 
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In MAP1B-/- DRG microtubules are not protected, thus they are more accessible to 

microtubule severing proteins, such as spastin or P60-katanin, which cut long 

microtubules into more dynamic short microtubules, resulting in an increased number of 

collateral neurites, what I described in more detail in the second part of my thesis, titled 

“Mechanism of NO-induced axon retraction“, in section concerning microtubule 

dynamics in wild-type and MAP1B-/- DRG neurons. It seems that laminin signalling 

plays an important role in regulation of morphology of wild-type and MAP1B-/- DRG 

neurons, since increased branching of MAP1B-/- DRG neurons was observed only 

when neurons were cultured on laminin.  

 

 
Fig. 85. Model for role of MAP1B in axon retraction induced by roscovitine. Interaction 
between laminin and the integrin receptor α1β1 stimulates upregulation of p35 and activation of 
cdk5. Activated cdk5 phosphorylates MAP1B, leading to its increased binding to microtubules, 
their stabilization and promotion of axon growth. In addition, cdk5 inhibits PP1 maintaining 
GSK3β in an inactive state. Inhibition of cdk5 with roscovitine releases PP1 from inhibition by 
cdk5. PP1 dephosphorylates GSK3β, which in turn phosphorylates MAP1B. This, further 
enhances MAP1B microtubule binding activity, resulting in overstabilization of microtubules, 
growth cone collapse and axon retraction. Axon retraction can be partially prevented by 
inhibition of GSK3β with LiCl. In addition, roscovitine-induced axon retraction involves also 
the Rho/ROCK pathway and acto-myosin contractility. Axon retraction can be almost 
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completely abolished by inhibition of ROCK with Y27632 or myosin with blebbistatin . It is not 
known whether activation of the Rho/ROCK pathway is cause or a consequence of MAP1B-
mediated axon retraction. 
 
Inhibition of cdk5 by roscovitine results in decreased phosphorylation of MAP1B by 

cdk5, but increases phosphorylation by other kinases, for example by GSK3β. Increased 

phosphorylation of MAP1B results in its upregulated binding to microtubules, their 

overstabilization and axon retraction (Fig. 85). I propose that MAP1B binding to 

microtubules at the certain optimal level leads to their stabilization promoting axon 

growth (what seems to be triggered by laminin), but when this binding is enhanced 

above a critical value, microtubules are overstabilized resulting in growth cone collapse 

and axon retraction, what one could observe after treatment of neurons with LPA, 

SNAP, calcimycin or roscovitine. When MAP1B does not bind or binds microtubules 

with affinity lower than the optimal, axon growth is also affected, resulting for example 

in uncontrolled branching and misguidance of the growth cones (morphology of 

MAP1B-/- DRG neurons). Similarly, regulation of growth cone motility and turning by 

Ca2+ is proposed to depend on the optimal range of Ca2+ signals (Gomez and Zheng, 

2006). It was observed that a small range local elevation in Ca2+ levels induced growth 

cone repulsion, whereas a medium range local increase in Ca2+ levels triggered 

attractive response of the growth cone (Wen et al., 2004; Henley et al., 2004b). On the 

other hand, a high range local increase in Ca2+ levels also stimulated growth cone 

repulsion (Robles et al., 2003). Likewise, Letourneau and colleagues observed that 

when Ca2+ levels were decreased below 200nM or enhanced above 300nM the motility 

and the extension of neurites in chicken DRG neurons were inhibited. The neurite 

growth was observed only when Ca2+ levels were between 200nM and 300nM 

(Lankford and Letourneau, 1991). These results suggest that only optimal elevations of 

Ca2+ promotes growth and/or attraction, while signals below or above the medium range 

inhibit neurites extension and/or induce growth cone collapse (Kater and Mills, 1991; 

Gomez and Zheng, 2006).  

In addition, roscovitine-induced axon retraction involves acto-myosin contractility, but 

whether it is a cause or a consequence of increased binding of MAP1B to microtubules 

it is not clear (Fig. 85). Finally, laminin/integrin signalling seems to play an important 

role in triggering axon retraction in addition to promoting axonal growth, since it was 

found that DRG neurons do not retract in response to LPA or roscovitine, when they are 

grown on poly-L-lysine only. 
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Finally, MAP1B can play a role in laminin-integrin signalling in vivo during 

development of nervous system. It is proposed that laminin can regulate neurite 

extension in vivo, since it was found to be expressed at stages crucial for terminal 

differentiation (DiTella et al., 1996). MAP1B also seems to play a role during 

development of nervous system as its expression is developmentally regulated, with the 

highest expression in both growing and regenerating neurons (Calvert et al., 1987; Avila 

et al., 1994; Gordon-Weeks and Fischer, 2000). The most striking defect in MAP1B-/- 

mice is the lack of corpus callosum (Meixner et al., 2000). As laminin is expressed by 

midline glial cells and MAP1B was shown to play a role in laminin signalling in vitro, 

potentially MAP1B could play a role in laminin signalling in vivo too. Its absence 

would render axons unable to cross the midline (Meixner et al., 2000). In addition, in 

p35-/- mice corpus callosum is missing and they show severe defects in cortical 

lamination (Chae et al., 1997). Thus, results from in vitro studies and phenotypes of 

MAP1B-/- mice and p35-/- mice, suggest that indeed the p35/cdk5 pathway and 

MAP1B are the components of a signalling pathway capable of responding to laminin 

signalling during development of the nervous system. Lack of one of them affects 

laminin signalling and leads to severe developmental brain defects. 
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MATERIALS AND METHODS 

 

DNA METHODS 

 

DNA preparation, restriction digest and ligation 

 

JetStar 2.0 Midi columns (Genomed, Bad Oeynhausen, Germany) were used for 

plasmid DNA purification from bacteria. The alkaline method was used for small-

quantity plasmid DNA preparation (Sambrook et al., 2001).  All other basic cloning 

techniques like DNA restriction digest, ligation of DNA fragments, precipitation of 

DNA was performed as described (Sambrook et al., 2001). DNA fragment gel 

extraction was performed according the manufacturer’s protocol (QIAquick gel 

extraction kit, QIAGEN or NucleoSpin Extract II, MACHEREY-NAGEL, Germany). 

The concentration of double stranded DNA was measured spectrophotometrically at 

260nm.  

 

Agarose gel 

 

1g of agarose powder was dissolved in 100ml of electrophoresis TAE buffer, heated in 

the microwave oven and cooled down to ∼60°C. After adding ethidium bromide 

(0.5μg/ml final concentration) it was poured into a casting tray.  

 

10x TAE buffer (for 1 l) 

Tris base   48.4g/l 

Glacial acetic acid  10.9g/l 

EDTA    2.92g/l 

H2O                                        up to 1l 
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Transformation of E. coli  

 

Preparation of competent cells 

 

Rubidium chloride competent cells 

 

DH5α and BL21 bacteria were inoculated and grown overnight. 5ml of this fresh 

overnight culture were inoculated into 500ml LB medium and shacked at 37°C until an 

OD600 of 0.5 was obtained. The bacterial cells were incubated on ice for 15 minutes, 

pelleted for 5min at 5000rpm (GSA rotor, 4°C) and resuspended in 200ml TfbI buffer. 

The bacterial resuspension was placed again on ice for 15 min and centrifuged 

afterwards for 5 minutes at 5000rpm (GSA rotor, 4°C). The pelleted cells were 

resuspended in 20ml TfbII buffer, put on ice for 15 minutes and aliquoted. The aliquots 

of competent cells were stored at -80°C. 

 

CaCl2 competent cells 

 

DH5α and BL21 bacteria were inoculated and grown overnight. 2.5ml of this fresh 

overnight culture were inoculated into 500ml LB medium and shacked at 37°C until an 

OD600 of 0.5 was obtained. The bacterial cells were incubated on ice for 15 minutes, 

pelleted for 5min at 5000rpm (GSA rotor, 4°C) and resuspended in 250ml 100mM 

CaCl2. The bacterial resuspension was placed again on ice for 30-45 min and 

centrifuged afterwards for 5 minutes at 5000rpm (GSA rotor, 4°C). The pelleted cells 

were resuspended in 5ml 100mM CaCl2 and aliquoted with 10% glycerol. The aliquots 

of competent cells were stored at -80°C. 

 

Transormation of cells 

 

Rb competent E.coli (DH5α or BL21) were thawed on ice for 5min, mixed with 1μg 

plasmid DNA or ligation mixture at ratio 5:1 (E.coli:DNA) and incubated on ice for 

30min. After heat shock (45sec at 42°C) cells were cooled down on ice, 1ml of fresh LB 
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medium (Sambrook at al., 1989) was added and cells were incubated for 1h at 37°C 

with gentle shaking. Then they were centrifuge for 4min at 2000rpm, 900μl of medium 

was discarded and bacteria were resuspended in the rest volume of medium. Afterwards 

bacteria were plated on appropriate solid medium with antibiotics (ampicillin or 

kanamycin). 

 

LB (Luria Bertani Medium) medium (for 1l), pH 7.5 

Bacto-Trypton   10g/l 

Bacto-Yeast extract  5g/l 

NaCl     10g/l 

 

TfbI buffer (pH 5.8 ) 

30mM potassium acetate 

100mM rubidium chloride 

10mM calcium chloride 

50mM manganese chloride 

15% v/v glycerol 

 

TfbII buffer (pH 6.5) 

10mM MOPS 

75mM calcium chloride 

10mM rubidium chloride 

15% v/v glycerol 

Cloning 

 

pMT22emptymCherry – pMT22mCherry was cut with restriction enzymes, so LC1A 

was cut out from pMT22mCherry and vector was religated; 

 

pMT22emptyGFP – pMT22GFP was cut with   restriction enzymes, so LC1A was cut 

out from pMT22mCherry and vector was religated; 
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pMT22mCherry – mCherry was recloned from mCherry-C1 plasmid into pMT22Tet 

plasmid; both plasmids (mCherry-C1 and pMT22tet) were opened with NheI and ApaI 

restriction enzymes. The construct encodes MAP1B LC (LC1) and mCherry protein.  

 

pMT5mCherry  - mCherry was recloned from mCherry-C1 plasmid into pMT5Tet 

plasmid; both plasmids (mCherry-C1 and pMT5tet) were opened with NheI and ApaI 

restriction enzymes. The construct encodes full length MAP1B and mCherry protein.  

 

pMT22C246SmCherry  - mCherry was recloned from mCherry-C1 plasmid into 

pMT22C246STet plasmid; both plasmids (mCherry-C1 and pMT22C246STet) were 

opened with NheI and ApaI restriction enzymes. The construct encodes full length 

MAP1B and mCherry protein.  

 

pMT22C143SmCherry  - mCherry was recloned from mCherry-C1 plasmid into 

pMT22C143STet plasmid; both plasmids (mCherry-C1 and pMT22C143STet) were 

opened with NheI and ApaI restriction enzymes. The construct encodes full length 

MAP1B and mCherry protein.  

 

pEF1aHis-Tag – EF1a was recloned from plasmid pEGFPEfull into pMA1a plasmid; 

Both plasmids (pEGFPEfull and pMA1a) were opened with XhoI and EcoRI restriction 

enzymes. The construct encodes EF1a and COOH-terminally located 6xHIS tag.  

 

pEF1aStag - EF1a was recloned from pEGFPEfull plasmid into pET32a(+) plasmid; 

Both plasmids (pEGFPEfull and pET32a(+)) were opened with XhoI and EcoRI 

restriction enzymes. The construct encodes EF1a, Trx-tag, His-tag, S-protein.  

 

PROTEIN METHODS  

 

Preparation of cell extracts 

 

Cells grown on 6 dishes in DMEM medium supplemented with 10% FCS, L-glutamate 

and antibiotics. Then they were washed with PBS and 200µl of 2x sample buffer 
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(100mM Tris-HCl pH 6.8, 4% SDS, 20% (v/v) glycerol, 12mM EDTA, 0.2% 

bromphenol blue, 0.3% DTT and Complete Mini protease inhibitors tablets (Roche 

Diagnostics)) was added, and cells were scraped with plastic cell scrapers off the 

substrate and transferred to eppendorf tubes. Samples were sonicated 2 times 30sec. at 

80% of intensity, heated at 95°C for 5 min., and stored at -20°C. 

  

Preparation of brain and DRG homogenates 

 

Whole brains or DRGs were homogenized in 2x sample buffer (100mM Tris-HCl pH 

6.8,  4% SDS, 20% (v/v) glycerol, 12mM EDTA, 0.2% bromphenol blue, 0.3% DTT 

and Complete Mini protease inhibitors tablets (Roche Diagnostics)) in a Dounce 

homogenizer. Then the samples were centrifuged at 14 000rpm for 10min. Supernatants 

were sonicated 2 times 30 sec. at 80% of intensity, heated at 95°C for 5 min., and stored  

at -20°C.  

 

Deteremination of protein concentration (Bradford Method) 

 

100mg of Coomassie Brilliant Blue G-250 was dissolved in 50 ml 95% ethanol, 100 ml 

of 5% phosphoric acid was added and adjusted to 1l with ddH2O. The solution was 

filtrated through Whatman No.1 filter paper and stored at 4°C. 1ml of Coomassie 

solution was added to 100 µl of (diluted) protein sample. The solution was mixed, 

incubated for 5-10 min.at RT and absorbance was measured at 595nm. BSA solutions 

were used as a standard.  

 

Immunoblot analysis 

 

Proteins were separated on 12% SDS polyacrylamide gels according to protein size as 

described (Sambrook et al., 1989) and then were transferred to a nitrocellulose 

membrane (0.2μM, Schleicher Schuell, Dassel, Germany) in transfer buffer (48mM 

Tris, 40mM glycine 20% methanol) using BioRad Semi-Dry Electrophoretic Transfer 

Cell (Biorad, München, Germany) for 30-40min at 15V, 500mA. After the transfer 
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proteins on membrane were stained with Ponceau S solution or amidoblack solution and 

blots were blocked in 2% BSA or 5% milk in PBS/0.25% Tween20 for 1h at RT or over 

night at 4˚C. After washing 3 times 5 min with PBS/0.25% Tween20 blots were 

incubated with primary antibodies diluted in 1% BSA in PBS/0.25% Tween20 for 1h at 

RT or over night at 4°C. The immune complexes were detected with appropriate 

secondary antibodies conjugated with horseradish peroxidase (HRP) or with alkaline 

phosphatase (AP) (Promega, Mannheim, Germany).  

 

Solutions: 

 

Ponceau solution   

0.2% Ponceau-S 

3% Trichloroacetic acid 

 

Amidoblack solution   

0.1% Amidoblack 

45% Ethanol 

10% Acetic Acid 

  

Phosphate buffered saline (PBS), pH 7.4 

137mM NaCl 

2.6mM KCl 

8mM Na2HPO4 

1.5mM KH2PO4 

 

AP-buffer    

100mM Tris/HCl (pH 9.5) 

100mM NaCl 

5mM MgCl2 

 

NBT-solution    

0.5g Nitro blue tretrazolium (NBT) 

10ml 70% DMF, stored at -20°C 
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BCIP-solution 

0.5g Bromchoroindolyl phosphate (BCIP)  

10ml 100% DMF, stored at -20°C 

 

STE buffer 

10mM Tris pH 8,0 

150mM NaCl 

1mM EDTA 

 

5xMg++buffer 

125mM Hepes pH 7,5 

750mM NaCl 

5% NP.-40 

50mM MgCl2 

5mM EDTA 

 

2xMg++buffer 

50mM NaF 

2mM NaO4Va 

20µg/ml Aprotinine 

20µg/ml benzamidine 

200µM PMSF 

20% Glycerol 

 

1xMg++buffer 

50mM NaF 

2mM NaO4Va 

20µg/ml Aprotinine 

20µg/ml benzamidine 

200µM PMSF 

20% Glycerol 
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MAMMALIAN CELL CULTURE METHODS 

 

Maintenance of the cell lines 

 

Frozen cells were thawed in 37°C water-bath, transferred into a 15ml Falcon tube, 

which contained 9ml DMEM (Dulbecco`s Modified Eagle Medium) supplemented with 

10% FCS (Fetal Calf Serum), 2mM L-glutamate and 50u/ml Penicillin/Streptomycin. 

Cells were pelleted by centrifugation at 1000rpm for 5 min. at RT (Heraeus Megafuge) 

and resulted pellets were resuspended in adequate volume of growth medium. PtK2, 

NIH3T3, COS7 and N2a cells were cultured in T75 culture flask or 10cm Petri Dish in 

growth medium that consisted of DMEM, 10% FCS, 2mM L-glutamate and 50u/ml 

Penicillin/Streptomycin, in case of PtK2 cells additionally Fungizone and non-essential 

amnioacids were added to medium. Cells were incubated at 37°C in humidified 

atmosphere containing 8.5% CO2. When confluence of cells was about 80% they were 

washed with PBS and treated with the 2ml of trypsin solution (0.05% trypsin, 0.2% 

EDTA) for 5min. at 37°C. Growth medium was added to stop trypsinization and 

detached cells were transferred to Falcon tube and pelleted by centrifugation at 

1000rpm for 3 min. at RT. Pellets were resuspended in fresh growth medium and 

transferred into new culture flasks T75 or 10cm Petri Dish. 

For freezing, cells were washed with PBS, trypsinized, centrifuged and resuspended in 

growth medium containing 10% DMSO, aliquoted into cryotubes (Nunc) and frozen on 

dry ice. Then they were stored at -80°C for 2-3months or after 24h stored at -80°C 

transferred into a liquid nitrogen tank. 

 
Designation  Cell type Organism  
N2a (Neuro-2a)  neuroblast Mus musculus 
PtK2 (NBL-5)  epithelial  Potorous tridactylis 
NIH3T3 fibroblast  Mus musculus 
COS7 fibroblast  Cercopithecus ethiops 

Table 1. List of cell lines. 
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Cultivation of dissociated adult DRG neurons 

 

Isolation and cultivation of mouse DRG neurons was performed following the protocol 

described by Tonge (Tonge et al., 1996). Mice were anesthetized with IsoFlo (Abbott, 

Rungis, France) and killed by decapitation. DRG neurons were harvested in F-12 

medium, cut into smaller pieces and dissociated by collagenase (4 000U/ml, Sigma, St. 

Louis, MO) in DMEM/F12 medium with 4% Horse Serum for 90min. at 37°C followed 

by trypsin/EDTA (Invitrogen) and DNAseI (50μg/ml; Sigma)  treatment for 9min. at 

37°C. Trypsinization was stopped by adding heat-inactivated Horse Serum and DRG 

neurons were finally triturated several times with narrowed Pasteur pipettes. After 

harvesting cells with centrifugation at 800rpm for 5min, cells were resuspended in fresh 

F-12 medium and centrifuged again, which was repeated 2 times. Finally cells were 

resuspended in growth medium (DMEM/F-12 medium supplemented with N3 (Romijn 

et al., 1981) , 5% Horse Serum, 40% glucose,  penicillin-streptomycin (Bottenstein and 

Sato, 1979), plated of density  100cells/cm2 on 13mm glass coverslips pre-coated with 

poly-L-lysine and laminin and incubated at 37°C, 5% CO2 incubator. After 20-24h 

neurons were treated as indicated, fixed with solution containing 8% PFA 

(paraformaldehyde) and 22% sucrose for 45min at RT. After blocking with 5% BSA in 

PBS and 0.3% Triton X-100 for 1h at RT or over night at 4°C, cells were incubated with 

primary and secondary antibodies as described above. 

 
Chemical Concentration company/cat.nr volume for 10 ml (ml) 

HBSS –Ca, -Mg  invitrogen 6 

BSA in HBSS-/- 10 mg/ml (150μM) Sigma, A4261 1 

Transferine in Hanks 100 mg/ml (1.1mM) Sigma, T1147 1 

Na-Selenite in HBSS-/- 0.01 mg/ml (58μM) Sigma, S9133 1 

Petrescine in HBSS-/- 80 mg/ml (500μM) Sigma, P5780 0.4 

Progesterone in EtOH 0.125 mg/ml (400Mm) Sigma, P6149 0.1 

Corticosterone in EtOH 2 mg/ml (5.8mM) Sigma, C2505 0.02 

Triiodothyronine in 0,01N 

NaOH 

0.2 mg/ml (300μM) Sigma, T6397 0.1 

Insuline in 20mM HCl 25 mg/ml (4.4M) Sigma, I6634 0. 

Table 2. N3 components. 
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Coating of coverslips for N2a cells and DRG neurons 

 
13mm glass coverslips were washed with ethanol and methanol, autoclaved and then 

coated with 10µg/µl poly-L-lysine in H2O for 1h or over night at 37°C. Afterwards they 

were washed with PBS and cells were plated on them, or after washing with PBS they 

were coated with 10µg/µl laminin for at least 3h at 37°C, then washed three times with 

PBS and cells were plated on them. 

Transfection of mammalian cells using Fugene6 

 

Cells were transfected with the Fugene6 (Roche Diagnostics), which is a lipid based 

transfection reagent, that efficiently transfect a wide variety of eukaryotic cells with 

high efficiency and minimal cytotoxicity. Cells were seeded onto 13mm glass 

coverslips in 24-well plates 24h before transfection. All constructs were expressed in 

Tet responsive expression vector and DNA mixture was prepared in ratio 1:6 vector:Tet 

transactivator.   

 
Name of plazmid construct Tag Expression system source 

pMT5 Tet 

(FL) 

Full length 

MAP1B (FL) 

C-myc Tet-off M. Tögel 

pMT22tet 

(LC1) 

Light chain of 

MAP1B (LC1) 

C-myc Tet-off M. Tögel 

pMT22C2457Stet 

(LC1 C2354S) 

Mutated  light of 

MAP1B (LC1) 

C-myc Tet-off A. Trancikova 

pMT22C2354Stet 

(LC1 C2354S) 

Mutated  light of 

MAP1B (LC1) 

C-myc Tet-off A. Trancikova 

pMT5mCherry Full length (FL) C-mCherry Tet-off E.Krupa 

pMT22mCherry 

(LC1) 

Light chain (LC1) C-mCherry Tet-off E.Krupa 

pMT22C2457SmCherry 

( LC1 C2354S) 

Mutated  light of 

MAP1B (LC1) 

C-mCherry Tet-off E.Krupa 

pMT22C2354SmCherry 

(LC1 C2354S) 

Mutated  light of 

MAP1B (LC1) 

C-mCherry Tet-off E.Krupa 

EB3-GFP EB3 EGFP CMV  

EB1-GFP EB1 EGFP CMV  

Table 3. Construct used for transfection of mammalian cell lines 



                                                                                                       Materials and Methods 

 192 

0.5μg of DNA mixture and 1.5μl of Fugene6 was required for one 13mm coverslip in 

24-well plate. Fugene6 was added directly to 25μl of serum free medium (DMEM) in 

polypropylene tubes and DNA was diluted in this mixture. The solution was gently 

mixed and incubated for 30 min. at RT. Then 75μl of OptiMEM was added and mixture 

was added drop-wise directly on the cells (100μl/well containing 900μl medium). After 

gentle mixing, the plates were incubated at 37°C for 48-72h. 

 

Transfection of DRG neurons with Amaxa 

 

DRG neurons were isolated as described above, but in all steps RPMI medium was used 

instead of F12 medium. After trituration cells were harvestd by centrifugation at 

800rpm for 5min, resuspended in 1,8ml of RPMI medium and solution was divided into 

two aliquots – 300µl which was a control and 1500µl which was taken for transfection. 

Both aliquots were centrifuged at 1000rpm for 3min. Cells from control part were 

resuspended in 300µl of growth medium and plated on poly-L-lysine and laminin 

coated dishes. The second part of cells were resuspended in 20µl of Nucleofactor 

solution and 0,6-1,0µg of DNA was added. The mixture was transferred into CSN 

cuvette, transfection was done in Amaxa machine with SCN Basic Neuro Program 6, 

then 400µl of prewarmed growth medium was apllied into cuvette, which was then put 

into incubator to let cells to recover. After 10min cells were plated onto dishes coated 

with  poly-L-lysine and laminin and images were taken after 48h. 

 

Treatment DRG neurons, N2a cells and Ptk2  

 

Treatment of DRG neurons, N2a cells and transfected PtK2 cells with LPA 

 

DRG neurons, N2a cells and transfected Ptk2 cells were grown on coverslips, treated 

with 10μM LPA for 30min (DRG neurons, N2a cells) or for 2h (PtK2 cells), fixed, 

stained and analyzed by microscopy. 
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Inhibition of cdk5 in DRG neurons, N2a cells and  transfected Ptk2 cells 

 

To inhibit cdk5 DRG neurons, N2a cells and transfected Ptk2 cells were grown on 

coverslips, treated with 50μM roscovitine (Sigma, Table 6) for 1h (DRG neurons, N2a 

cells) or 2h (PtK2 cells) at 37˚C. DRG neurons were treated with 20mM LiCl (Sigma, 

Table 6) for 3h at 37˚C to inhibit GSK3β. Afterwards N2a and PtK2 cells were fixed, 

stained with antibodies and analyzed by microscopy. 

 

Inhibition of cdk5/GSK3β in DRG neurons 

 
DRG neurons were treated with 20mM LiCl (Sigma, Table 6) for 14-16h at 37˚C to 

inhibit GSK3β, fixed with PFA, stained with antibodies and analyzed by microscopy. 

 

Treatment of DRG neurons, N2a cells and transfected PtK2 cells  with LPA  

 

DRG neurons, N2a cells and transfected Ptk2 cells grown on coverslips were treated 

with 10μM LPA (Cayman, Table 6) for 30min (N2a cells, DRG neurons) or for 2h 

(PtK2 cells) at 37˚C. Afterwards cells were fixed with PFA, stained with antibodies as 

described and analyzed by microscopy. 

 

Inhibition of ROCK (Rho-associated kinase) and myosin in DRG neurons and N2a 

cells 

 

DRG neurons and N2a cells were treated with 10μM Y27632 (Sigma, Alexis, Table 6) 

for over night or 1h before to inhibit ROCK or with 100μM blebbistatin (Sigma, Table 

6) for 15min to inhibit myosin, left untreated or followed by treatment with or followed 

by 50μM roscovitine for 1h, 10μM LPA for 30min, 10μM calcimycin for 15min, or 

100μM SNAP for 1h (Table 6). Afterwards cells were fixed, stained and analyzed by 

microscopy. 
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Inhibition of CaMKII, calcineurin, calpain, PKC in DRG neurons  

 

DRG neurons were pretreated with 10μM myrAIP (Alexis, Table 6) for 30min, 5μM 

Cyclosporin A (CSA, Calbiochem, Table 6) for 20min, 200μM ALLN (Calbiochem, 

Table 6) for 1h or 50μM GÖ6976 for (Sigma, Table 6) 1,5h to inhibit respectively 

CaMKII, calcineurin, calpain or PKC, and then treated with 10μM calcimycin for 

15min (Sigma, Table 6). Afterwards cells were fixed with PFA, stained and analyzed by 

microscopy.  

 

S-nitrosylation of MAP1B in DRG neurons and transfected PtK2 cells  

 

DRG neurons and transfected Ptk2 cells were grown on 13mm coverslips, treated with 

100μM S-Nitroso-N-acetylpenicillamin (SNAP, Calbiochem, Table 6) for 1h (DRG 

neurons) or 4h (Ptk2 cells) at 37°C in the dark. After PFA (DRG neurons) or methanol 

(Ptk2 cells) fixation cells were stained as described above and analyzed by microscopy.  

Inhibition and activation of nNOS in DRG neurons  

 

DRG neurons were grown on coverslips coated with poly-L-lysine and laminin, nNOS 

or all NOSs were inhibited by adding inhibitor N-ω-propyl-L-arginine NPA, (Tocris 

biosciences, Table 6) at a final concentration of 300µM or 1mM for 1h or L-NAME 

(Cayman, Table 6) at a final concentration 300µM for 1h, respectively. Afterwards cells 

were left untreated or were treated with 50μM roscovitine for 1h, 10μM LPA for 30min, 

10μM calcimycin for 15min or 3nM taxol for 30min (Table 6). To activate nNOS cells 

were treated with the calcium ionophore calcimycin A23187 (Sigma, Table 6) at a final 

concentration of 10μM and incubated for 15min. at 37°C. Neurons were fixed with 

PFA, stained and analyzed by microscopy. 
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Stabilization of microtubules with taxol in DRG neurons and N2a cells 

 

Wild-type and MAP1B -/- neurons were treated with 3nM or 100nM taxol (Sigma, 

Table 6) for 30min only, or followed by treatment with reagents as indicated. 

Afterwards cells were fixed, stained and analyzed by microscopy. 

 

Stimulation of cAMP in DRG neurons 

 
Stimulation of cAMP was induced by addition of 1µM dibutryl-cAMP (Sigma, Table 6) 

or 20µM forskolin (Calbiochem, Table 6), triggers production of cAMP by sAC, for 3h. 

Afterwards cells were treated with 100μM SNAP for 1h or 10μM calcimycin for 15min 

(Sigma, Table 6), fixed, stained and analyzed by microscopy. 

 

Treatment with DMSO –a solvent control 

 
DRG neurons were cultured as described, treated with 3µl or 6µl of DMSO for 

indicated time, fixed, stained and analyzed by microscopy. 

 

MICROSCOPY STUDIES OF CELLS 

 

Immunofluorescence microscopy of the cells 

 

PtK2 or NIH3T3 cells were grown on glass coverslips and N2a neuroblastoma cells 

were grown on laminin-2 (Sigma) precoated 13mm coverslips. When they reached the 

desired density they were transfected and/or treated with drugs and/or inhibitors, then 

cells were washed once with PBS and fixed with pre-cooled (-20°C) methanol for 2-

5min at RT on pre-cooled (-20˚C )metal block. Afterwards cells were washed 3 times 

with PBS. For blocking of unspecific binding sites, they were incubated with 5% BSA 

in PBS for 1h at RT or over night at 4˚C. Following 3 times 5min. washing with PBS 

cells were incubated with first antibodies diluted in 1% BSA in PBS for 1h at RT. Then 

cells were washed again 3 times 5 min with PBS and incubated with secondary 
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antibodies diluted again in 1% BSA in PBS for 1h at RT in the dark. Finally cells were 

washed 3 times 5 min with PBS and once with water. Coverslips with the samples were 

put on 6μl of Mowiol 4-88 placed onto a microscope slide. Samples were stored at 4°C. 

DRG neurons were plated of density 100cells/cm2 on laminin-2 (Sigma) pre-coated 

13mm glass coverslips and incubated at 37°C, 5% CO2 incubator  for 24h. After 

treatment mouse DRG neurons were fixed with solution containing 8% PFA 

(paraformaldehyde) and 22% sucrose for 45min. at RT. After extensive washing 3 times 

5 min with PBS, unspecific binding sites were blocked and cells were permeabilized 

with blocking solution containing 5% BSA in PBS and 0.3% Triton X-100 for 1h at RT 

or over night at 4°C. Then cells were washed 3 times 5 min. with PBS and incubated 

with primary antibodies, diluted in 5% BSA in PBS for 3h at RT, washed again 3 times 

5min. with PBS and incubated with secondary antibodies for 2h at RT in the dark. 

Finally samples were washed 3 times with PBS and once with water and mounted on 

glass slides with Mowiol 4-88. Slides were stored at 4°C. 

 

Time-lapse video microscopy studies of DRG neurons 

 

For analysis of drug effect on axon growth, DRG neurons were isolated as described, 

plated of density 100cells/cm2 on laminin (Sigma) pre-coated 13mm glass coverslips 

fixed with 35mm Petri Dish, and incubated at 37°C, 5% CO2 incubator. After 20-24h, 

20 mM HEPES, pH 7.4, was added to growth medium, and cultures were placed at 37 C 

on the stage of an inverted microscope equipped with phase contrast and a Plan Apo 

100×/0.7 numerical aperture lens. Acquisition and illumination devices were driven by 

MetaMorph software (Universal Imaging, West Chester, PA) or Axiophot (Zeiss). 

Images of wild-type and MAP1B -/- neurons transfected with EB1-EGFP were taken 

for 15min or 20min with 1min or 5min intervals. In case of roscovitine treatment, after 

15min of observation the medium was changed to determine if changing the medium 

does have an influence on growing axons, and observation was continued for 30min. 

Afterwards, 10µM LPA or 50µM roscovitine was added and recording was continued 

for 30 min (LPA) or 2h 30min with 1min (LPA) and 5min (roscovitine) intervals 

between images.  

For analysis of microtubule dynamic, DRG neurons were isolated as described, 

transfected with construct encoding EB1-GFP, plated of density 100cells/cm2 on 
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laminin (Sigma) pre-coated 13mm glass coverslips fixed with 35mm Petri Dish, and 

incubated at 37°C, 5% CO2 incubator. After 48h, 20 mM HEPES, pH 7.4, was added to 

growth medium, and cultures were placed at 37 C on the stage of an inverted 

microscope () equipped with phase contrast and fluorescence optics, and a Plan Apo 

100×/0.7 numerical aperture lens. Acquisition and illumination devices were driven by 

MetaMorph software (Universal Imaging, West Chester, PA). For analysis of 

microtubule dynamics, images of wild-type and MAP1B -/- neurons transfected with 

EB1-EGFP were taken for 1min with 2sec intervals. For analysis of the drug effects 

images were taken for at least 5min (1min from each video) before adding drug. After 

addition of 10µM LPA or 100µM SNAP (at the time-point indicated in results), image 

recording was continued for 30min or 90min (1min for each video) with 2sec intervals. 

 

PREPARATION OF AGGRECAN-LAMININ SPOT GRADIENT 

COVERSLIPS 

 

Preparation was done according to protocol published by (Tom 2004). Coverslips were 

coated with 10µg/ml or 100µg/ml Poly-L-lysine or Poly-D-lysine for 1h or over night at 

37ºC. Then coverslips were spotted with 2 µl of a solution of aggrecan (0.7mg/ml) and 

laminin (5µg/ml or 10µg/ml) in calcium- and magnesium-free PBS. After the spots 

were allowed to air dry, the coverslips were completely covered with laminin (10µg/ml) 

in PBS or left uncovered and kept at 37°C until cell plating ( 5 hr). . DRG neurons were 

plated on coverslips, 6h or 12h after plating 25µM Y27632, 100µM blebbistatin, 

300µM NPA or 300µM L-NAME were applied or cells were left untreated. For 

immunofluorescence microscopy cells fixed with PFA after 24h or 48h and stained as 

listed above. 

PREPARATION OF MYELIN SPOTTED COVERSLIPS 

 

Isolation of myelin from mouse brain 

 
Isolation of the CNS myelin was done according to protocol from Norton and Poduslo 

1973 with some modification (Norton and Poduslo, 1973; Sheads et al., 1977). Brains 

from adult wild-type mice were homogenized in 25ml of 0.3M sucrose diluted in PBS 
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(5% (w/v ), then homogenates were softly laid on 25ml of 0.085M sucrose in PBS and 

centrifuged at 25000 x g for 90min. The crude myelin formed an interface, which was 

harvested and c submitted to a hypoosmotic shock in 50ml H20 and centrifuged at 

25000 x g for 25min. Then the myelin fraction was again resuspended in H20 and 

centrifuged at 10000 x g for 15min. Pellet was resuspended in 0.3M sucrose and layered 

on 0.85 sucrose, centrifuged at 25000 x g for 90min. Interface again was dissolved in 

H20 and centrifuged at 25000 x g for 25min. The pellet was resuspended in 10mM 

Hepes buffer. The protein concentration was determined by Bradford Method and the 

myelin was stored at -20ºC. 

Preparation of coverslips 

 

Coverslips were coated with 100µg/ml Poly-L-lysine for 1h or over night at 37ºC. Then 

coverslips were spotted with a myelin (1.5-6µg/spot) in calcium- and magnesium-free 

PBS. And the spots were allowed to air dry at RT. DRG neurons were plated on 

coverslips, 6h or 12h after plating 25µM Y27632, 100µM blebbistatin, 300µM NPA or 

300µM L-NAME were applied or cells were left untreated. For immunofluorescence 

microscopy cells fixed with PFA after 24h or 48h and stained as listed above. 

 

ANTIBODIES 

 

All primary and secondary antibodies used for immunofluorescence were diluted in 

1%BSA in PBS. Antibodies used for the western blot analysis were diluted in 1%BSA 

in PBS/0.25% Tween20 and in case of blot overlay assay in 1%BSA in PBS/0.25% 

Tween20 with 150mM NaCl. All antibodies are listed below (Table 4; Table 5.). 

 

Antygen name/clone spieces IF WB company/source 

α-tubulin B512 Mouse 1:1000 1:5000 Sigma 

α-tubulin YL1/2 Rat 1:300 1:1000 Abcam/Acris 

α-/β-actin AC74/15 Mouse 1:400 1:1000 Sigma 

MAP1B HC HC891 Rabbit 1:200 1:800 A.Meixner 

MAP1B HC AA6 Mouse 1:100 1:500 Sigma 

MAP1B LC LC1A Rabbit 1:200 1:1000 M.Tögel 
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myc (IF) myc1/2 Rabbit 1:300 - M.Tögel 

phosphorylated myosin 

light chain 2 (Ser19) 

Ser19 Mouse 1:50 1:1000 Cell signalling 

diphosphorylated myosin 

light chain 2 

(Ser19/Thr18) 

Thr18/Ser19 Rabbit - 1:1000 Cell signalling 

cdk5 C-8 Rabbit 1:50 1:200 Santa Cruz 

p35 N-20 Rabbit 1:50 1:100 Santa Cruz 

Laminin  Rabbit 1:100 - Sigma 

CSPG CS-56 Mouse 1:200 - Sigma 

MAP1B type-1 

phosphorylated 

population 

mab1E11 Mouse ready to 

use 

solution 

- Elizabeth 

Pollerberg 

MAG 513 Mouse 1:400 1:1000 Chemicon 

MBP  Rat 1:1000 1:2000 Chemicon 

acetylated tubulin 6-11B-1 mouse 1:300 1:2000 Sigma 

Table 4. List of primary antibodies 

 
Antygen spieces IF WB company/source 

HRP-anti rabbit IgG goat - 1:10000 Jackson lab./Vector 

HRP-anti mouse IgG goat - 1:10000 Jackson lab. 

AP-anti rabbit IgG goat  1:7500 Jackson lab. 

AP-anti mouse IgG goat - 1:3000 Jackson lab. 

Alexa 488-anti-mouse IgG goat 1:1000 - Mol. Probes 

Alexa 488-anti-rabbit IgG goat 1:1000 - Mol. Probes  

FITC-anti-rat IgG goat 1:1000 - Jackson lab 

Texas red-anti-mouse IgG goat 1:1000 - Jackson lab. 

Texas red-anti-rabbit IgG donkey 1:1000 - Jackson lab. 

Texas red-anti-rat IgG goat 1:1000 - Jackson lab. 

Rhodamine Red-anti-

mouse IgG 

donkey 1:1000 - Jackson lab. 

Cy5-anti-mouse IgG donkey 1:1000 - Jackson lab. 

Cy5-anti-rabbit IgG donkey 1:1000 - Jackson lab. 

Cy5-anti-rat IgG donkey 1:1000 - Jackson lab. 

Texas Red–X-phalloidine  1:50 - Invitrogen 

Table 5. List of secondary antibodies 
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INHIBITIORS  

 
Inhibitor/Activator Function Final 

concentration 

Incubation 

time 

Company 

SNAP Nitrosylating agent 100μM 1h or 4h Calbiochem 

calcimycin A23187 Activation of nNOS 10μM 15min. Sigma 

NPA Inhibition of nNOS 1mM or 

300μM 

1h or over 

night 

Tocris 

biosciences 

L-NAME Inhibition of NOSs 300μM 1h or over 

night 

Cayman 

Y27632 Inhibition of ROCK  10μM 1h or over 

night 

Sigma/Alexis 

myrAIP Inhibition of CaMKII 10μM 30min Alexis 

Cylosporine A (CSA) Inhibition of 

calcineurin 

5μM 20min Calbiochem 

ALLN Inhibition of calpain 200μM 1h Calbiochem 

GÖ6976 Inhibition of PKC 50μM 1,5h Sigma 

roscovitine Inhibiton of cdk5α 50μM 1h or 2h Sigma 

LiCl Inhibition of GSK3β 20mM over night 

(14-16h) 

Sigma 

blebbistatin Inhibition of myosin 100μM 15min Sigma 

LPA Retraction of axons 10μM 30min or 2h Cayman 

aggrecan Inhibition of axon 

growth  

100μM 4h, 8h or 

over night 

Sigma 

taxol Stabilization of 

microtubules 

3nM or 100nM 30min Sigma 

dibutryl-cAMP Stimulation of cAMP 

pathway 

1µM 1h Sigma 

forskolin Induction of cAMP 

production and 

stimulation of cAMP 

pathway 

20µM 3h Calbiochem 

Table 6. List of inhibitors and activators. 
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