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0. Introduction
Quantum entanglement is a keyword that has become more and more famous and
fancy over the last years. But why? The notion itself is rather old, even as old
as the introduction of the mathematical formalism of quantum physics. Erwin
Schrödinger introduced the term “Verschränkung” in 1935 [113], when he realized
that some states allow correlated measurement results, and that one can have
maximal information about the state of the whole system, but less information
about its parts. The term “system” is used to abstract from a concrete physical
realization, in quantum physics it usually comprises one, two, some, or even
many particles. In the same year, Einstein, Podolsky, and Rosen (EPR) claimed
that quantum theory is incomplete [47], since in their opinion it lacked so-called
elements of reality, i.e. parameters that determine measurement outcomes if the
notion of locality is to be maintained. Locality assumes that no information can
be transmitted faster than the speed of light, according to Einstein’s theory of
special relativity, and was, in EPR’s opinion, unquestionable. The quantum states
that allow this so-called EPR paradox are entangled states. However, in 1964,
John S. Bell showed that the existence of these parameters, called local hidden
variables, based on the notions of reality and locality, was not compatible with
quantum theory. This actuality is called Bell’s theorem, which claims a violation
of the so-called Bell inequalities by quantum theory. The violation becomes
evident for entangled states only. Moreover, Bell inequalities were put into an
experimentally testable form by Clauser, Horne, Shimony and Holt (CHSH) [37]
in 1969, and a first experimental test that supported Bell’s theorem was done by
Aspect, Grangier and Roger in 1982 [3].

Not until the 1990’s it became clear that entanglement is also a resource in
quantum information theory, especially for quantum communication protocols,
e.g. quantum dense coding, quantum teleportation, and quantum cryptography.
For overviews, see, e.g., Refs. [29, 97, 26] and references therein. In these protocols
quantum entanglement is the ingredient that distinguishes quantum from classical
procedures and provides advantages for security issues or the amount of data
transfer. Nowadays entanglement theory is a growing research field.

The fundamental questions of entanglement theory are: Given an arbitrary
quantum state,

• is it entangled or not?

• if it is entangled, how much is it entangled?

• if it is entangled, can it be used to perform the usual quantum communi-
cation protocols?
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0. Introduction

• if it is entangled, does it violate some type of Bell inequality?

Although the mathematical definition of entanglement is simple (see Sec. 1.3),
each of the above questions has not yet been answered in general, i.e. for an arbi-
trary state of a system that comprises an arbitrary number of subsystems. Much
has been achieved, however, and many of the above questions can be answered
for pure states or lower dimensional systems, or for particular families of states;
for reviews of entanglement theory, see, e.g., Refs. [65, 30, 120, 69, 54].

The aim of this thesis is to present new methods for entanglement detection
and quantification. The methods used are predominantly those of standard ana-
lytical linear algebra. The greater part of the thesis presents entanglement detec-
tion methods, in particular, geometric constructions of entanglement witnesses
(called geometric entanglement witnesses). A mathematical formalism that sup-
ports these methods is supplied by Bloch decompositions, to which also a chapter
is dedicated and is used throughout the whole thesis. These decompositions are
presented for arbitrary dimensions, where properties of the well-known case of two
dimensions are generalized to higher dimensions. Moreover, it is demonstrated
how to geometrically quantify entanglement with geometric entanglement wit-
nesses. Entanglement witnesses are also the subject of the last part, where we
extend the Hilbert space to more than two subsystems and construct entangle-
ment witnesses on a more “physical” ground. All of the presented results are
illustrated by relevant examples, and related literature is cited throughout the
whole text. The articles that the thesis is based upon are cited in the introduction
of each chapter.

What makes entanglement theory a fascinating field of research? It is on the
one hand a challenge to contribute to a subject that has so many open problems,
regardless of the fact that the underlying mathematical structure is rather sim-
ple, as it is mere linear algebra. On the other hand, the development of quantum
information theory and applications has become rapidly increasing and excit-
ing in recent years, since it allows extensions of classical information tasks with
quantum ones. With the ongoing progress in computation technologies, quantum
information processing will become inevitable and necessary in the near future.

The thesis is organized as follows:
In Chapter 1 we start with the mathematical basics of quantum theory that will

be frequently used in the course of the thesis, and the definition of entanglement
is presented.

In Chapter 2 we investigate the formalism of Bloch decompositions, i.e. the
decomposition of operators into suitable bases of orthogonal operators, for arbi-
trary dimensions. Three particular bases are presented, and we derive a method
to decompose any density operator via the decomposition of so-called standard
operators, which are given and proven in Lemma 2.1, Lemma 2.2, and Lemma 2.3.
As an example we determine the decomposition of the isotropic two-qudit state
into these bases.

In Chapter 3 we briefly review entanglement detection criteria relevant for the
later presented detection methods. We derive approaches to identify operators
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as entanglement witnesses using Bloch decompositions, given in Corollary 3.2
and Lemma 3.1. Moreover, we give the definitions of geometric operators and
geometric entanglement witnesses and present a method to detect entangled and
bound entangled states, and to identify separable states by shifting geometric
operators (Proposition 3.1). We illustrate and apply the introduced procedures
on a three-parameter family of two-qutrit states, where we determine the regions
of entangled, bound entangled, and separable states. In the last section we briefly
show a possible decomposition of entanglement witnesses for three-dimensional
subsystems into measurable quantities, such that this decomposition should allow
an experimental application.

In Chapter 4 we show how to use geometric entanglement witnesses in the con-
text of entanglement quantification. In detail, we determine the Hilbert-Schmidt
measure of entanglement, which is a special kind of geometric entanglement mea-
sure, for the isotropic two-qudit states and two-parameter families of two-qubit
and two-qutrit states.

In Chapter 5 we present a construction of multipartite entanglement witnesses
using so-called structure factors, which contain two-point correlations only and
can be tested in experiments (Definition 5.7). These structural entanglement
witnesses can be either used in photon experiments where expectation values
can be obtained by locally measuring the involved operators, or in calculations
and/or experiments on spin chains, where the structure factor provides a quantity
that can be obtained in scattering experiments. We furthermore show which
states are detected by the structural witnesses, among them Dicke states and
non-symmetric versions of Dicke states with changed phases of the constituting
terms, and give an alternative construction of particular structural witnesses with
symmetric Bell states of qubit pairs.

We conclude and take an outlook on further possible research in Chapter 6.
The bibliography is listed alphabetically. Identical authors of different references
are cited only once, and are abbreviated with a line in the following references.
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1. Basic mathematical framework

1.1. Vector states and operators
We consider quantum systems described by a Hilbert space of finite dimension,
i.e., the corresponding physical quantities have discrete measurement outcomes
of a limited number. The physical realization of such systems can be diverse, e.g.,
particles with a particular spin quantum number s (half integer or integer), or
photons of particular polarization (horizontal or vertical), or atoms that can be
in particular discrete quantum states.

One way to describe such systems mathematically is via vector states |ψ〉 that
are elements of the vector space Cd, where d is the dimension of the system,
i.e. the number of possible measurement outcomes. The vector space Cd is a
Hilbert space of dimension d, denoted as Hd, with a scalar product 〈φ|ψ〉 ∈ C
for |ψ〉, |φ〉 ∈ Cd and 〈φ| is the Hermitian conjugate of |φ〉. It is the familiar
scalar product of complex vectors in Cd. A norm is given by ‖ψ‖ = 〈ψ|ψ〉1/2,
and usually vector states are normalized by ‖ψ‖ = 1. A basis {|φi〉} that spans
the Hilbert space consists of d vector states. Usually the basis states are chosen
mutually orthogonal, 〈φi|φj〉 = δij, and any vector state |ψ〉 can be decomposed
into the basis by

|ψ〉 =
∑

i

ci|φi〉 , (1.1)

with coefficients ci = 〈ψ|φi〉 ∈ C and i = 0, . . . , d−1 or, equivalently, i = 1, . . . , d.
Via unitary matrices U (U †U = 1) we can transform one orthogonal basis {|φi〉}
into another orthogonal basis {|φ̃i〉},

|φ̃〉 =
∑

j

uij|φj〉 , (1.2)

where uij are the matrix elements of a unitary matrix U , i.e. the entry in the i-th
column and j-th row. The fact that quantum states correspond to elements of a
vector space mirrors the physical features that distinguishes them from classical
states - like the superposition of quantum states, given in Eq. 1.1. From a his-
torical point of view, the regarded Hilbert space is the discrete finite dimensional
analogue of the continuous infinite dimensional Hilbert space L2. In this case
the vector states are quadratically integrable functions ψ ∈ L2, the “wave func-
tions” that Erwin Schrödinger introduced at the beginning of the 20th century
and marked the beginning of the mathematical formalism of quantum physics.

An operator O acts on vector states and assigns another vector state to the
vector state it acts upon, O|ψ〉 = |φ〉. The adjoint operator O† to the operator
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1. Basic mathematical framework

O is defined via the scalar product

〈φ|O|ψ〉 = 〈ψ|O†|φ〉∗ , (1.3)

where “*” denotes complex conjugation. If A = A†, then A is called Hermitian
(or selfadjoint, the two notations are equivalent for finite dimensional Hilbert
spaces) and an observable since the physical meaning becomes evident: The op-
erator corresponds to a measurement and its eigenvalues λi correspond to possible
measurement outcomes, they are real for Hermitian operators and given by the
eigenvalue equation

A|λi〉 = λi|λi〉 . (1.4)

The eigenvectors |λi〉 form an orthogonal basis of the Hilbert space and thus can
be used to decompose any vector states like in Eq. (1.1).1 In quantum information
theory one abstracts and simplifies notation and refers to a “standard” basis {|i〉}
that replaces the eigenvectors of realizations in physical systems. According to
this notation a vector state can be decomposed into the standard basis as

|ψ〉 =
∑

i

ci|i〉 . (1.5)

The notation of the vector states as vectors of Cd is obtained by just calculating
the coefficients cj = 〈j|ψ〉,

|ψ〉 =




c0

c1
...

cd−1


 . (1.6)

Following this notation the basis states |i〉 simply have one entry 1 at the i-th
position 0 at all other positions. Another important quantity is the expectation
value of an observable (the average measurement outcome) for a vector state |ψ〉,
given by

〈O〉ψ = 〈ψ|O|ψ〉 . (1.7)

Remark on terminology. A vector state that is an element of the two dimen-
sional Hilbert space H2 is called “qubit” in quantum information terminology.
The term is the quantum analogue of the familiar expression bit, which is the
classical minimum information quantity that can take only two values, 0 and 1.
In quantum theory, the Hilbert space H2 has the two standard basis states |0〉
and |1〉, and, unlike to classical information theory, a qubit |ψ〉 cannot only be in
these two basis states but also in a superposition, |ψ〉 = c0|0〉+ c1|1〉. For higher
dimensional systems one extends the terminology and calls a vector state of H3

qutrit, and a vector state of a Hilbert space Hd of arbitrary dimension d “qudit”.

1Note that for degenerate eigenvalues we can have different eigenvectors to the same eigenvalue,
in which case this should be accounted for in the notation |λi〉.
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1.1. Vector states and operators

Just as vector states can be expressed as vectors, operators can be expressed
as matrices by constructing the entries with any orthogonal basis, usually the
standard basis,

(O)ij = 〈i|O|j〉 , (1.8)

where the adjoint operator can be readily obtained by taking the transpose and
complex conjugate of the matrix,

(O†)ij = (O)∗ji = 〈j|O|i〉∗ . (1.9)

Operators also form a Hilbert space, called Hilbert-Schmidt space A, with an
inner product

〈A,B〉 := TrA†B , A, B ∈ A . (1.10)

Using this definition of the inner product the Hilbert-Schmidt norm is given by

‖A‖ =
√
〈A,A〉 =

√
TrA†A , (1.11)

and the Hilbert-Schmidt distance is defined by the norm as

d(A,B) = ‖A−B‖ . (1.12)

The trace operation is defined by the matrix elements,

TrO =
∑

i

(O)ii =
∑

i

〈φi|O|φi〉 , (1.13)

with any orthogonal basis of vector states {|φi〉}, e.g. the standard basis or the
basis out of the eigenvectors of the operator, in which case we can also write the
trace as the sum of the eigenvalues λi of the operator,

TrO =
∑

i

λi . (1.14)

The trace operation is independent of the choice of the basis, since
∑

i

〈φ̃i|O|φ̃i〉 =
∑

i,j,k

〈φj|u∗ijOuik|φk〉 =
∑

i,j,k

u∗ijuik〈φj|O|φk〉

=
∑

j,k

(
U †U

)
jk
〈φj|O|φk〉 =

∑

j,k

δjk〈φj|O|φk〉 =
∑

j

〈φj|O|φj〉 ,

(1.15)

where we used Eq. (1.2) for the transformation between two different bases.
As convenient as the description of quantum states with vector states might

seem at first sight, unfortunately it is often not quite adequate to describe the
properties of quantum systems. In experiments vector states cannot be prepared
perfectly and it cannot be avoided that the system interacts with the environment.
Therefore the concept of vector states has to be extended to the concept of density
operators, where we can differentiate between pure states that are equivalent to
the vector states considered before, and mixed states, that take the mentioned
imperfections and interactions into account.

7



1. Basic mathematical framework

1.2. Density operators

Definition 1.1. A quantum state (or just “state”) is an operator ρ ∈ A that has
the following properties:

ρ† = ρ , (1.16)
Trρ = 1 , (1.17)

ρ ≥ 0 , (1.18)

where property (1.18) means that ρ is positive semidefinite2, i.e. it has no negative
eigenvalues.

Another frequently used term for an operator that satisfies the above properties
is density operator or density matrix. Any state ρ also satisfies Trρ2 ≤ 1. If
Trρ2 = 1 we call the state pure, if Trρ2 < 1 we call it mixed. The value of
Trρ2 is a measure for the mixedness of the state that varies between 1/d for the
maximally mixed state 1/d1 and 1 for pure states. The origin of the classification
into pure and mixed states lies in the notation of a state as a decomposition into
projectors onto vector states,

ρ =
∑

i

pi|ψi〉〈ψi| , pi ≥ 0,
∑

i

pi = 1 , (1.19)

which physically describes an ensemble (or, equivalently, a classical mixture) of
vector states |ψ〉, where each vector state occurs with probability pi. If we have
only one term in the decomposition, ρ = |ψ〉〈ψ|, then ρ is just the projector
onto the vector state |ψ〉, and is therefore called “pure”, and we have Trρ2 = 1.
Consequently the state is called “mixed” if we have more that one term in the
decomposition, and in this case Trρ2 < 1. It is important to notice that in the
case of mixed states a decomposition of ρ (1.19) is not unique, in general infinitely
many decompositions of vector states that result in the same density operator ρ
exist.

Note that in this general mathematical description of quantum states the states
are elements of the Hilbert-Schmidt space of operators that act upon the Hilbert
space of vector states. The expectation value of an operator O for a state ρ is
defined by the Hilbert-Schmidt inner product (1.10),

〈O〉ρ := TrρO . (1.20)

For pure states ρp = |ψ〉〈ψ| we have Trρp O = 〈ψ|O|ψ〉, since we can take the
trace using an orthogonal basis where |ψ〉 is one of the basis vectors. Hence it
is evident that the density operator formalism is equivalent to the vector state
formalism in the handling of pure states. Vector states thus are fully equivalent to

2In this work usually omit the word “semidefinite”, where by “positive” we implicitly mean
“positive semidefinite”.
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1.3. Bipartite systems, entanglement, and separability

pure states, and one sometimes mixes notation, where it is clear from the context
if |ψ〉 or |ψ〉〈ψ| is meant.

Evidently we can also express a state ρ as a matrix, just like any operator (see
Eq. (1.8)). Usually one uses the standard basis, obtaining the matrix elements

ρij = 〈i|ρ|j〉 . (1.21)

From the density matrix elements we can easily reconstruct the density operator,

ρ =
∑
i,j

ρij|i〉〈j| . (1.22)

1.3. Bipartite systems, entanglement, and
separability

Quantum systems can be composite systems of many subsystems, e.g. a system
of many particles. The suitable mathematical description of such systems is
straightforward; one considers a Hilbert space that comprises the Hilbert spaces
of N subsystems:

HD = Hd1 ⊗Hd2 ⊗ . . . ⊗HdN , where D = d1d2 · · · dN . (1.23)

In the case of few subsystems, one also uses a notation by labeling the Hilbert
spaces of the subsystems alphabetically, e.g. in the case of two subsystems,
HA ⊗HB, with dimension dA × dB. In the language of quantum communication,
one calls the two subsystems “parties” and usually names them “Alice” and “Bob”.
For the sake of clarity and shortness we will in the following definitions consider
bipartite systems. The greater part of this thesis deals with bipartite systems.
In Chapter 5, however, we also consider multipartite systems, where we briefly
generalize the definitions of this section.

1.3.1. Vector states

The notation of the composite Hilbert space (1.23) using the tensor multiplica-
tion originates in the definition of the tensor product of vector states of the two
subsystems, which is defined via the scalar product,

〈φA ⊗ φB|ψA ⊗ ψB〉 = 〈φA|ψA〉〈φB|ψB〉 . (1.24)

Here we used the notation |ψA⊗ψB〉 = |ψA〉⊗|ψB〉 . A vector state |ψp〉 ∈ HA⊗HB

that can be written in the form

|ψp〉 = |ψA〉 ⊗ |ψB〉 (1.25)

is called product vector state.

9



1. Basic mathematical framework

Operators of bipartite systems are elements of the Hilbert-Schmidt space AD =
AA ⊗AB and act on the Hilbert space HA ⊗HB. A tensor product of operators
is defined via their action on product vector states,

(A⊗B)|ψA ⊗ ψB〉 = A|ψA〉 ⊗B|ψB〉 , A, B ∈ AD . (1.26)

Operators O that can be written as O = A⊗B are called local, since their effect
can be reduced to the action on the states of the two subsystems. Operators
that cannot be put into the form A ⊗ B are called global, they have effects on
the whole state that cannot be reduced to the subsystems. The expression of an
operator C ∈ AD as a D ×D matrix can be obtained with any orthogonal basis
of the whole system, see Eq. (1.8), but a reasonable choice if one is interested
in local properties is the standard product basis, which is a basis of D product
vector states |i〉 ⊗ |j〉, shortly written as {|ij〉}, where |i〉 are the vector states of
the standard basis for Alice’s subsystem, and |j〉 are Bob’s:

(C)ijkl = 〈ij|C|kl〉 . (1.27)

A product vector state is also called uncorrelated, since expectation values of local
operators can be written as a single factor,

〈ψA ⊗ ψB|A⊗B|ψA ⊗ ψB〉 = 〈ψA|A|ψA〉〈ψB|B|ψB〉 . (1.28)

Interestingly, and unique for quantum theory, there exist states that cannot be
written in the form of Eq. (1.25).

Definition 1.2. A vector state |ψ〉 ∈ HD that is not a product vector state, i.e.
that cannot be written in the form of Eq. (1.25), is called entangled.

Example. As an example of an entangled state consider the famous Bell singlet
state that is an element of H2 ⊗H2,

|ψ−〉 =
1√
2

(|01〉 − |10〉) , (1.29)

where |ij〉 is the short notation of |i〉 ⊗ |j〉. It is entangled since it cannot be
written as a single product term, for details concerning entanglement detection
for vector states see Sec. 3.2.

Entangled states are correlated because obviously expectation values of local
operators cannot be written as a single factor like it can be done for uncorrelated
vector states in Eq. (1.28). One calls a bipartite state of dimension 2× 2 shortly
a two-qubit state, of dimension 3× 3 two-qutrit state, and of arbitrary dimensions
d× d two-qudit state.
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1.3. Bipartite systems, entanglement, and separability

1.3.2. Density operators

In contrast to the vector states, density operators of bipartite systems are el-
ements of the Hilbert-Schmidt space, AD = AA ⊗ AB on the Hilbert space
HD = HA ⊗ HB that satisfy the defining properties (1.16) - (1.18). The defi-
nition of entanglement for density operators is conceptually different than that
for vector states, since unentangled states need not be uncorrelated, there also
exist so-called classically correlated states. A state ρ of the whole system can be
easily expressed as a matrix like in Eq. (1.27), where usually we use the standard
product basis,

(ρ)ikjl = 〈ik|ρ|jl〉 . (1.30)

If the density matrix elements are known, the density operator can be simply
obtained by the decomposition

ρ =
∑

i,j,k,l

ρikjl|ik〉〈jl| =
∑

i,j,k,l

ρikjl|i〉〈j| ⊗ |k〉〈l| . (1.31)

A product state is a state of the whole system that can be written as σp = ρA⊗ρB.
It is uncorrelated, since we have a single factor for the expectation value of local
operators,

TrρA ⊗ ρBA⊗B = TrρAATrρBB . (1.32)

One can also classically prepare states that involve correlations [138]. Consider,
e.g., a state preparation device that can be switched to a number n of different
settings, where a setting i occurs with a certain probability pi, and if a setting i
occurs, then the party j prepares a particular state ρ

(j)
i , such that the prepared

mixed state σ is in total a mixture of product states,

σ =
∑

i

piρ
A
i ⊗ ρB

i , pi ≥ 0,
∑

i

pi = 1 . (1.33)

In Ref. [138] this preparation procedure is described in detail, and a state that
can be written in the form of (1.33) is called classically correlated. Unlike the
product state, it contains correlations if max{i} ≥ 2, since the expectation value
of local observables now no longer factorizes,

TrσA⊗B =
∑

i

piTrρA
i ATrρB

i B . (1.34)

Nevertheless, it is not entangled since the correlations are due to the statistical
“classical” mixture only. In the recent literature one calls a state (1.33) separa-
ble to emphasize the counterpart to an entangled state, which is defined in the
following:

Definition 1.3. A state ρ ∈ AD that is not a separable state, i.e. that cannot
be written in the form of Eq. (1.33), is called entangled.

11



1. Basic mathematical framework

Remark 1.1. Note that a separable state σ (1.33) can always be written as a
mixture of pure product states, because the mixed states ρi

A and ρi
B describe

ensembles of pure states (see Eq. (1.19)):

σ =
∑

i

p̃i|ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i | , p̃i ≥ 0,
∑

i

p̃i = 1 . (1.35)

Despite the clear and simple definition of entanglement, there is in general no
straightforward and generally applicable method (called operational method) to
decide for a given density operator if it can be written in a form (1.33). Only in
the case of pure states (Trρ2 = 1), which is equivalent to the vector state case,
and for mixed states in dimensions 2×2 and 2×3, one can always easily decide if
the state is entangled or not. Concrete criteria for the detection of entanglement
will be presented in Sec. 3.3.

Reduced density operators. An important concept of composite quantum
systems are reduced density operators and, in connection to them, partial traces.

Definition 1.4. We define the reduced density operators ρA and ρB to a state
(density operator) ρ of the whole system as

ρA := TrBρ , ρB := TrAρ , (1.36)

where the partial traces are given by

TrBρ :=
∑
i,j

∑

b

〈i⊗ b|ρ|j ⊗ b〉|i〉〈j| ,

TrAρ :=
∑
i,j

∑
a

〈a⊗ i|ρ|a⊗ j〉|i〉〈j| . (1.37)

Note that the matrix elements of the reduced density matrices are then simply
given by (

ρA
)

ij
= (TrBρ)ij =

∑

b

〈i⊗ b|ρ|j ⊗ b〉 , (1.38)

and equally for Bob’s reduced density operator.
The reduced density operators describe the states that Alice and Bob locally

have at their hands. It is important to notice that they can be mixed even if
the whole state is pure, in which case the whole state has to be an entangled
pure state, see Sec. 3.2. The motivation for Definition 1.4 is that the partial
trace operation is the only operation that guarantees a consistent measurement
statistics (see Ref. [97]), i.e.

TrρAA = TrρA⊗ 1 . (1.39)
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1.4. Bound entanglement

1.4. Bound entanglement
Apart from being separable or entangled, quantum states have another classifying
property: the distillability. The concept of distillation can be briefly described as a
procedure in which the two parties, Alice and Bob, are in possession of a certain
entangled mixed state, and they would like to transform it into a maximally
entangled pure state by statistical local operations and classical communication.
A statistical local operation is a quantum operation that each party can perform
only on her/his part of the state and leads to a particular outcome that occurs
with some probability (for details on quantum operations see, e.g., Refs. [97, 69]).
Classical communication allows the parties to inform each other about intentions
and outcomes via classical channels (e.g. via telephone). Distillation protocols
are protocols that give a series of operations that have to be performed on many
identical copies of the same entangled mixed state, such that in the end one ends
up with fewer more entangled states. In the limit of infinitely many copies of
the input state (and thus also infinitely many iterations of the protocol), one
obtains a maximally entangled pure state. The first distillation protocol was
given by Bennett, Brassard, Popescu, Schumacher, and Smolin in Ref. [15] and
is therefore called BBPSSW protocol. Note that distillation is also referred to
as “purification” for obvious reasons. Extensions of this protocol can be found
in Ref. [17]. The quantification of entanglement, i.e. the precise meaning of
saying “more entangled” is done via the fraction with respect to some maximally
entangled pure state. If, e.g., we want to distill the Bell singlet state |ψ−〉 out of
the input states ρ, we observe the singlet fraction 〈ψ−|ρ|ψ−〉 that should increase
after an application of the protocol.

We say that an entangled state is distillable, if there exists a protocol such that
we can distill a maximally entangled pure state out of it. Interestingly, mixed
entangled states for which this is not the case, i.e. which are not distillable,
exist. Such states are called bound entangled [105]. But which states are bound
entangled? The following two theorems help in answering this question, which
we state without proofs; these are given in the corresponding references.

Theorem 1.1 ([63, 65]). Any two-qubit entangled state is distillable.

Theorem 1.2 ([64, 65]). All bipartite PPT entangled states (states that remain
positive under partial transposition) are bound entangled.

The partial transposition and the corresponding entanglement criterion will be
explained in more detail in Sec. 3.3.1.

The first evidence for bound entangled states was given in Ref. [67], where the
first PPT entangled states were constructed. Many references including exam-
ples and construction procedures for bound entangled states followed, see e.g.
Refs. [16, 41, 68, 32, 71, 23, 22, 83]. Bound entanglement in multipartite systems
is investigated, e.g., in Refs. [45, 43, 115, 58].
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2. Bloch decompositions beyond
qubits

2.1. Introduction

Bloch decompositions are an alternative representation of operators and states
to the usual matrix notation. Since the space of operators is a Hilbert space -
the so-called Hilbert-Schmidt space - there exist bases of operators which can be
used to decompose any operator that is an element of Hilbert-Schmidt space. For
two-dimensional Hilbert-Schmidt spaces (qubits) we have the well known decom-
position into Pauli operators, where an operator can be characterized in general
by four parameters, and a state by three parameters. These three parameters
are the coefficients of the Bloch decomposition into the Pauli operators (the co-
efficient of the identity operator is fixed), and form a real vector, the so-called
Bloch vector [27, 97]. Any density operator is uniquely characterized by a Bloch
vector, and all Bloch vectors are contained in the Bloch ball, where pure states
lie on the surface and mixed states inside. For higher dimensions there exist var-
ious operator bases apt for decomposing operators and states, we discuss three
possible choices: the generalized Gell-Mann operator basis, the polarization op-
erator basis, and the Weyl operator basis. Different to the qubit case, not all
possible vectors of in general complex numbers can be assigned to states, and
the geometry of the Bloch vectors is rather complicated (see Refs. [80, 92, 86] for
analytical and numerical calculations in this respect). The aim of this chapter
is, however, a more practical one: Since for high dimensions the matrix notation
of operators and states can become quite unhandy, Bloch decompositions offer a
relief in computational effort. They also turn out to be adequate for identifying
operators as entanglement witnesses (see Sec. (3.5)). We present a method to
decompose an arbitrary operator into one of the bases by using decompositions
of the so-called standard operators (see Lemma 2.1, Lemma 2.2, and Lemma 2.3)
and demonstrate the application for the maximally entangled two-qudit state.

The chapter is organized as follows: In Sec. 2.2 we shortly review the Bloch
vector concept for qubits, and in Sec. 2.3 we give the general properties of an
operator basis for qudits. In Secs. 2.4, 2.5, and 2.6 we define the three bases
that can be used as generalizations of the Pauli operator basis, the generalized
Gell-Mann operator basis, the polarization operator basis, and the Weyl operator
basis. Various examples for concrete dimensions are given. We present a method
to decompose operators and states of general dimension into the operator bases by
using decompositions of the standard operators, given in Lemma 2.1, Lemma 2.2,
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2. Bloch decompositions beyond qubits

and Lemma 2.3. In Sec. 2.7 we show how to extend Bloch decompositions to
bipartite systems. We illustrate the method to find the Bloch decomposition by
determining the decomposition of the maximally entangled two-qudit state for
the three bases. We conclude in Sec. 2.8.

This chapter is based on Ref. [21]:

• Reinhold A. Bertlmann and Philipp Krammer
Bloch vectors for qudits
J. Phys. A: Math. Theor. 41, 235303 (2008)

2.2. Bloch decompositions for qubits
Let us start with a simple introduction into the subject, the case of a two-
dimensional Hilbert space. In this case we have two standard basis vectors, |0〉
and |1〉, so that the matrix form of any operator O is a 4× 4 matrix with entries
ρij = 〈i|O|j〉. A convenient choice of a basis of operators are the identity operator
12 and the Pauli operators {σi} = {σx, σy, σz}. In this way an operator O can
be decomposed as

O = a12 + ~c · ~σ, a, ci ∈ C , (2.1)
where ~c·~σ =

∑3
i=1 ciσ

i. The coefficients are given by a = 1/2TrO, ci = 1/2TrOσi.
A state ρ has to meet the requirements (1.16) - (1.18). Therefore we decompose
it as

ρ =
1

2
(12 + ~n · ~σ) , ni ∈ R, |~n|2 ≤ 1 , (2.2)

with |~n|2 :=
∑

i n
2
i . The Pauli operators are traceless (Trσi = 0) and orthogonal

to each other in the sense of the Hilbert-Schmidt inner product

Trσiσj = 2δij , (2.3)

and therefore one can easily find the Bloch coefficients ni of the decomposition
(2.2) via ni = Trρσi. The vector ~n is called Bloch vector, it has only real entries
since the Pauli operators and states ρ are Hermitian operators. Additionally in
the qubit case, the state properties Trρ = 1 and ρ ≥ 0 are equivalent to Trρ = 1
and det ρ ≥ 0. For any Bloch decomposition (2.2) we find

det ρ =
1

4

(
1− |~n|2) ≥ 0 , (2.4)

and thus any three-dimensional Bloch vector ~n with |~n|2 ≤ 1 and real entries
corresponds to a state ρ, and can be seen as an alternative representation of the
density matrix. Geometrically, the Bloch vectors are points in a three-dimensional
vector space that lie inside a ball given by |~n|2 ≤ 1, and the pure states lie on the
surface of the ball, |~n|2 = 1, which follows immediately from condition Trρ2 = 1.

Also expectation values of observables O can be conveniently expressed with
the Bloch decompositions (2.1) and (2.2),

TrρO = a + ~c · ~n . (2.5)
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2.3. Bloch decompositions for qudits

2.3. Bloch decompositions for qudits

In order to generalize the Bloch vector concept of qubits to arbitrary dimensional
Hilbert spaces, we have to identify the properties of a suitable basis into which
the operators can be decomposed. Such a basis of the Hilbert-Schmidt space on
a Hilbert space of dimension d should inherit the following properties from the
qubit case:

i) The basis includes the identity operator 1d and d2−1 operators {Ai} which
are traceless, i.e.

TrAi = 0 . (2.6)

ii) The operators {Ai} are orthogonal,

TrA†
iAj = NA δij with NA ∈ R . (2.7)

Hence with a basis {1d, Ai} that satisfies the properties (2.6) and (2.7) we can
decompose an operator O as

O = a1d + ~c · ~A , (2.8)

where ~c · ~A =
∑d2−1

i=1 ciAi and the coefficients are given by

a =
1

d
TrO, ci =

1

NA

TrOA†
i , a, ci ∈ C . (2.9)

We decompose a state ρ as

ρ =
1

d


1d +

√
d(d− 1)

NA

d2−1∑
i=1

~n · ~A


 , ni ∈ C , (2.10)

where |~n|2 =
∑

i n
∗
i ni ≤ 1. This decomposition implies Trρ = 1 and Trρ2 ≤ 1.

Alternatively to Trρ2 we can use |~n|2 as a measure of the purity of ρ instead of
Trρ2, where the relation is

|~n|2 =
dTrρ2 − 1

d− 1
, (2.11)

and the measure varies between 0 (for the maximally mixed state) and 1 (for pure
states).

Any vector ~n ∈ Cd2−1 with |~n|2 ≤ 1 for which ρ† = ρ and ρ ≥ 0 in the
decomposition (2.10) is called Bloch vector. The components of the Bloch vector
are given by

ni =

√
d

NA(d− 1)
TrρA†

i . (2.12)
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2. Bloch decompositions beyond qubits

Remark 2.1. For qubits the basis of Pauli operators is unitary and Hermitian.
It seems that these two properties cannot be satisfied simultaneously for bases of
higher dimensions. If a basis consists of non-Hermitian operators, then in general
the coefficients are complex numbers. The most significant difference to the qubit
case is, however, that a vector ~n ∈ Cd2−1 with |~n|2 ≤ 1 that implies ρ† = ρ in the
decomposition (2.10) does not necessarily imply ρ ≥ 0. The imposed map is not
bijective: all qudit states ρ ∈ Ad can be mapped onto vectors ~n ∈ Cd2−1 with
|~n|2 ≤ 1, but not all vectors |~n|2 ≤ 1 can be mapped onto states ρ. Nevertheless,
it is always true that pure states lie on the surface of the hyperball |~n|2 ≤ 1
(|~n|2 = 1) and the mixed ones inside (|~n|2 < 1).

The geometric character of the space of Bloch vectors in higher dimensions
turns out to be quite complex (see Refs. [80, 86, 76, 81, 92] for details). In
the next sections we will present concrete operator bases appropriate for Bloch
decompositions.

2.4. The generalized Gell-Mann operator basis

2.4.1. Definition and examples

The generalized Gell-Mann operators (GGO) are higher–dimensional extensions
of the Pauli operators (for qubits) and the Gell-Mann operators (for qutrits), they
are the standard generators of the group SU(N) of all complex unitary N × N
matrices with determinant 1 (in our case N = d). They are defined as three
different types of operators (see, e.g., Refs. [80, 106]). The matrix expression
of the GGO is then simply derived by determining the matrix elements in the
standard basis (1.8).

Definition 2.1. The generalized Gell-Mann operators are defined as

i) d(d−1)
2

symmetric GGO:

Λjk
s = |j〉〈k| + |k〉〈j| , 1 ≤ j < k ≤ d , (2.13)

ii) d(d−1)
2

antisymmetric GGO:

Λjk
a = −i |j〉〈k| + i |k〉〈j| , 1 ≤ j < k ≤ d , (2.14)

iii) (d− 1) diagonal GGO:

Λl =

√
2

l(l + 1)

(
l∑

j=1

|j〉〈j| − l |l + 1〉〈l + 1|
)

, 1 ≤ l ≤ d− 1 . (2.15)
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2.4. The generalized Gell-Mann operator basis

In total we have d2 − 1 GGO; it follows from the definitions that all GGO are
Hermitian and traceless. They are also orthogonal,

TrΛiΛj = 2δij , (2.16)

where we shortly write Λi for anyone of the GGO, and, together with the identity
operator 1d they form a basis of the operator space, the generalized Gell-Mann
operator basis (GGB). It takes some lines to proof the orthogonality of the GGB
which is done in Appendix A.1.

Examples. For d = 3 the GGO are the familiar Gell-Mann operators, which
have the following matrix form (where we altered the usual notation to the pre-
viously introduced one that considers the three different types):

i) three symmetric Gell-Mann matrices:

λ12
s =




0 1 0
1 0 0
0 0 0


 , λ13

s =




0 0 1
0 0 0
1 0 0


 , λ23

s =




0 0 0
0 0 1
0 1 0


 , (2.17)

ii) three antisymmetric Gell-Mann matrices:

λ12
a =




0 −i 0
i 0 0
0 0 0


 , λ13

a =




0 0 −i
0 0 0
i 0 0


 , λ23

a =




0 0 0
0 0 −i
0 i 0


 ,

(2.18)

ii) two diagonal Gell-Mann matrices:

λ1 =




1 0 0
0 −1 0
0 0 0


 , λ2 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (2.19)

The matrix form of the GGO - which we call generalized Gell-Mann matrices
(GGM) - for d = 4 shows the generalization procedure:

i) 6 symmetric GGM:

Λ12
s =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , Λ13

s =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,

Λ14
s =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 , Λ23

s =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 ,

19



2. Bloch decompositions beyond qubits

Λ24
s =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , Λ34

s =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 , (2.20)

ii) 6 antisymmetric GGM:

Λ12
a =




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , Λ13

a =




0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0


 ,

Λ14
a =




0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0


 , Λ23

a =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 ,

Λ24
a =




0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0


 , Λ34

a =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 , (2.21)

iii) 3 diagonal GGM:

Λ1 =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 , Λ2 =

1√
3




1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0


 ,

Λ3 =
1√
6




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


 . (2.22)

Using the GGB we obtain, in general, the following Bloch vector expansion of
a density matrix:

ρ =
1

d

(
1+

√
d(d− 1)

2
~n · ~Λ

)
, (2.23)

with the Bloch vector ~n =
({njk

s }, {njk
a }, {nl}) , where the components are ordered

and for the indices we have the restrictions 1 ≤ j < k ≤ d and 1 ≤ l ≤ d−1 , and ~λ
is a vector of all GGO. For example, for qutrits the Bloch vector components are
~n = (n12

s , n13
s , n23

s , n12
a , n13

a , n23
a , n1, n2) corresponding to the Gell-Mann matrices

(2.17), (2.18), (2.19). The components are given by

ni =

√
d

2(d− 1)
TrρΛi , ni ∈ R , (2.24)
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2.4. The generalized Gell-Mann operator basis

where we use the short notation of Eq. (2.16) again. The coefficients ni are real
because the GGO are Hermitian. All Bloch vectors lie within a hyperball of
radius |~n|2 ≤ 1. As mentioned in Remark 2.1, the allowed range of ~n is restricted
concerning its correspondence to states. For the GGB the set of all Bloch vectors
has an interesting geometric structure which has been calculated analytically for
the case of qutrits by studying two-dimensional planes in the eight-dimensional
Bloch space [80] or numerically by considering three-dimensional cross-sections
[92].

2.4.2. Decomposing the standard operators with the GGB

The simplest operator basis of Ad is given by the operators

|j〉〈k| , with j, k = 1, . . . , d , (2.25)

which we call standard operators. They form an orthogonal basis and a decompo-
sition of an operator O into this basis is merely a decomposition into the matrix
elements of O in the standard basis {|i〉} (see Eq. (1.8)),

O =
∑

jk

(O)jk|j〉〈k| . (2.26)

This is not a Bloch decomposition since the standard operators do not satisfy
the desired property of tracelessness (2.6). The matrix notation of the standard
operators are just d×d matrices that have only one entry 1 and the other entries
0. Hence if we know the Bloch decomposition of the standard operators into any
suitable operator basis, we can find the Bloch decomposition of any operator.

Lemma 2.1. The Bloch decompositions of the standard operators (2.25) in the
generalized Gell-Mann operator basis are given by

|j〉〈k| =





1
2

(
Λjk

s + iΛjk
a

)
for j < k

1
2

(
Λkj

s − iΛkj
a

)
for j > k

−
√

j−1
2j

Λj−1 +
d−j−1∑
n=0

1√
2(j+n)(j+n+1)

Λj+n + 1
d
1 for j = k .

(2.27)

Proof. The first two cases can be easily verified using Eqs. (2.13) and (2.14).
To show the last case we first set up a recurrence relation for |l〉〈l|, which we

obtain by eliminating the term
∑l−1

j=1 |j〉〈j| in the two expressions (2.15) for Λl

and Λl−1,

|l〉〈l| = −
√

l − 1

2l
Λl−1 +

√
l + 1

2l
Λl + |l + 1〉〈l + 1| , (2.28)

and we consider the case l + 1 = d,

|d− 1〉〈d− 1| = −
√

d− 2

2(d− 1)
Λd−2 +

√
d

2(d− 1)
Λd−1 + |d〉〈d| . (2.29)
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2. Bloch decompositions beyond qubits

From Λd−1 given by Eq. (2.15),

Λd−1 =

√
2

(d− 1)d

(
d−1∑
j=1

|j〉〈j| − (d− 1)|d〉〈d|
)

, (2.30)

we get the Bloch decomposition of |d〉〈d|,

|d〉〈d| = 1

d

(
−

√
(d− 1)d

2
Λd−1 + 1d

)
, (2.31)

where we have applied
∑d−1

j=1 |j〉〈j| = 1d − |d〉〈d| .
Inserting now decomposition (2.31) into relation (2.29) we gain the Bloch vector

expansion for |d− 1〉〈d− 1| and recurrence relation (2.28) provides |d− 2〉〈d− 2|
and so forth. Thus finally we find (via mathematical induction)

|d− n〉〈d− n| =−
√

d− n− 1

2(d− n)
Λd−n−1

+
n−1∑

k=0

1√
2(d− n + k + 1)(d− n + k)

Λd−n+k +
1

d
1, (2.32)

the relation we had to prove, where d− n = j.

2.5. The polarization operator basis

2.5.1. Definition and examples

Definition 2.2. The polarization operators of the Hilbert-Schmidt space Ad are
defined as the following d2 operators [127, 86]:

TLM =

√
2L + 1

2s + 1

d∑

k,l=1

Csmk
sml, LM |k〉〈l| . (2.33)

The used indices have the properties

s =
d− 1

2
,

L = 0, 1, . . . , 2s ,

M = −L,−L + 1, . . . , L− 1, L ,

m1 = s, m2 = s− 1, . . . , md = −s . (2.34)

The coefficients Csmk
sml, LM are identified with the usual Clebsch-Gordan coefficients

Cjm
j1m1, j2m2

of the angular momentum theory and are displayed explicitly in tables,
e.g., in Ref. [127].
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For L = M = 0 the polarization operator is proportional to the identity oper-
ator [127, 86],

T00 =
1√
d
1 . (2.35)

It is shown in Ref. [86] that all polarization operators (except T00) are traceless,
in general not Hermitian, and that orthogonality relation (2.7) is satisfied,

TrT †
L1M1

TL2M2 = δL1L2δM1M2 . (2.36)

Therefore the d2 polarization operators (2.33) form an orthogonal operator basis
suitable for Bloch decompositions - the polarization operator basis (POB) - of
the Hilbert-Schmidt space Ad.

Examples. For qubit states (d = 2) the POB is given by the following operators
in matrix form (s = 1/2; L = 0, 1; M = −1, 0, 1):

T00 =
1√
2

(
1 0
0 1

)
, T11 = −

(
0 1
0 0

)
,

T10 =
1√
2

(
1 0
0 −1

)
, T1−1 =

(
0 0
1 0

)
. (2.37)

For the next higher dimension, d = 3 (s = 1), the case of qutrits, we get 9
polarization operators TLM with L = 0, 1, 2 in the matrix form

T11 = − 1√
2




0 1 0
0 0 1
0 0 0


 , T10 =

1√
2




1 0 0
0 0 0
0 0 −1


 ,

T1−1 =
1√
2




0 0 0
1 0 0
0 1 0


 , T22 =




0 0 1
0 0 0
0 0 0


 ,

T21 =
1√
2




0 −1 0
0 0 1
0 0 0


 , T20 =

1√
6




1 0 0
0 −2 0
0 0 1


 ,

T2−1 =
1√
2




0 0 0
1 0 0
0 −1 0


 , T2−2 =




0 0 0
0 0 0
1 0 0


 . (2.38)

The decomposition of any density matrix into a Bloch vector by using the POB
has, in general, the following form:

ρ =
1

d

(
1d +

√
d(d− 1)

2s∑
L=1

L∑
M=−L

nLMTLM

)
=

1

d

(
1d +

√
d(d− 1)~n · ~T

)
,

(2.39)

23



2. Bloch decompositions beyond qubits

with the Bloch vector ~n = (n1−1, n10, n11, n2−2, n2−1, n20, ..., nLM), where the com-
ponents are given by

nLM =

√
d

d− 1
TrρT †

LM , nLM ∈ C . (2.40)

In general, the components nLM are complex numbers, since the polarization
operators TLM are not Hermitian. Again all Bloch vectors lie within a hyperball
|~n|2 ≤ 1. For qubits the decomposition with the POB (2.37) is equivalent to the
standard description of Bloch vectors with Pauli matrices. In higher dimensions,
however, the structure of the allowed range of ~n (due to the positivity requirement
ρ ≥ 0) is quite complicated, as can be seen already for d = 3 (for details see
Ref. [86]).

2.5.2. Decomposing the standard operators with the POB

Lemma 2.2 ([127]). The standard operators (2.25) can be decomposed into the
POB as

|i〉〈j| =
∑

L

∑
M

√
2L + 1

2s + 1
Csmi

smj , LM TLM . (2.41)

Note that
∑

M is actually fixed by the condition mj + M = mi.1

Proof. Inserting definition (2.33) on the right–hand side (RHS) of equation (2.41)
we find

RHS =
∑

k,l

(∑
L

2L + 1

2s + 1
Csmi

smj , LM Csmk
sml, LM

)
|k〉〈l| =

=
∑

k,l

δjl δik |k〉〈l|

= |i〉〈j| , (2.42)

where we used the sum rule for Clebsch–Gordan coefficients [127]

∑
c,γ

2c + 1

2b + 1
Cbβ

aα, cγ Cbβ′
aα′, cγ = δαα′ δββ′ . (2.43)

1Relation (2.41) is given in Ref. [127] without proof.
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2.6. The Weyl operator basis

2.6.1. Definition and example

Finally, we want to discuss a basis of operators in Ad that consists of the following
d2 operators:

Unm =
d−1∑

k=0

e
2πi
d

kn |k〉〈(k + m)mod d|, n, m = 0, 1, . . . , d− 1 . (2.44)

The operators in notation (2.44) have been introduced in the context of quan-
tum teleportation of qudit states [13] and are often called Weyl operators in the
literature (see, e.g., Ref. [96]). They have been introduced in classical theories of
discrete phase space. The d2 operators (2.44) are unitary, traceless (except for
U00), and orthogonal,

TrU †
nmUlj = d δnl δmj , (2.45)

and thus form an appropriate Bloch basis (a proof is presented in Appendix A.3,
see also Refs. [49, 101]) – the Weyl operator basis (WOB). They can be used
to create a basis of d2 maximally entangled qudit states [96, 139, 134], see also
Sec. 3.5.2.

The operator U00 represents the identity U00 = 1d, where Eq. (2.44) reduces to
the completeness relation

∑d−1
k=0 |k〉〈k| = 1d.

Example. As an example let us consider qutrits, d = 3. In this case the Weyl
operators (2.44) have the matrix form

U01 =




0 1 0
0 0 1
1 0 0


 , U02 =




0 0 1
1 0 0
0 1 0


 ,

U10 =




1 0 0
0 e2πi/3 0
0 0 e−2πi/3


 , U11 =




0 1 0
0 0 e2πi/3

e−2πi/3 0 0


 ,

U12 =




0 0 1
e2πi/3 0 0

0 e−2πi/3 0


 , U20 =




1 0 0
0 e−2πi/3 0
0 0 e2πi/3


 ,

U21 =




0 1 0
0 0 e−2πi/3

e2πi/3 0 0


 , U22 =




0 0 1
e−2πi/3 0 0

0 e2πi/3 0


 . (2.46)

Using the WOB we can find the Bloch decomposition of a density operator,

ρ =
1

d

(
1d +

√
(d− 1)

d−1∑

l,m=0

nlmUlm

)
=

1

d

(
1d +

√
(d− 1)~n · ~U

)
, (2.47)
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2. Bloch decompositions beyond qubits

where n00 = 0. The components of the Bloch vector ~n = ({nlm}) are ordered and
given by

nlm =
1√

(d− 1)
TrρU †

lm, nlm ∈ C . (2.48)

In general, the components nlm are complex numbers, since the Weyl opera-
tors are not Hermitian. The complex conjugates satisfy the relation n∗lm =

e−
2πi
d

lm n−l−m ,2 which follows easily from definition (2.44) together with the her-
miticity of ρ.

All Bloch vectors lie within a hyperball |~n| ≤ 1. For example, for qutrits the
Bloch vector is expressed by ~n = (n01, n02, n10, n11, n12, n20, n21, n22) and for all
dimensions d > 2 the detailed structure of the geometry of Bloch vectors is not
known yet.

2.6.2. Decomposing the standard operators with the WOB

Lemma 2.3. The standard operators (2.25) can be decomposed with the WOB as

|j〉〈k| = 1

d

d−1∑

l=0

e−
2πi
d

lj Ul (k−j)mod d . (2.49)

Proof. For the proof we need the equivalence
d−1∑
n=0

e
2πi
d

nx =

{
d if x = 0

0 if x 6= 0
, x ∈ Z . (2.50)

We insert the definition of the Weyl operators (2.44) on the right hand side (RHS)
of Eq. (2.49), use Eq. (2.50) and get

RHS =
1

d

d−1∑

l,r=0

e
2πi
d

l(r−j) |r〉〈(r + k − j)mod d|

= |j〉〈k| +
1

d

d−1∑

r 6=j, r=0

d−1∑

l=0

e
2πi
d

l(r−j) |r〉〈(r + k − j)mod d|

= |j〉〈k| . (2.51)

Remark 2.2. Note that in two dimensions the WOB as well as the GGB coincides
with the Pauli matrix basis and the POB represents a rotated Pauli basis (where
σ± = 1

2
(σ1 ± iσ2), in particular we have

{U00, U01, U10, U11} = {1, σ1, σ3, iσ2} , (2.52){
1, λ12

s , λ12
a , λ1

}
= {1, σ1, σ2, σ3} , (2.53)

{T00, T11, T10, T1−1} =

{
1√
2
1, −σ+,

1√
2

σ3, σ−

}
. (2.54)

2Negative indices are taken mod d.
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2.7. Bloch decompositions for bipartite systems
Of course Bloch decompositions of operators and states are possible for composite
systems as well. However, we restrict ourselves to the case of two subsystems,
since the generalized Bloch decompositions for more parties are lengthy and rather
inconvenient, but nevertheless straightforward to obtain from the general equa-
tions in the bipartite case.

We consider a Hilbert space of a bipartite system, HD = HdA ⊗ HdB . Useful
definitions are given in Sec. 1.3. Let {1, Ai} and {1, Bi} be bases for Alice and
Bob, respectively, that satisfy the properties (2.6) and (2.7), then any operator
O ∈ AD can be decomposed into a basis of (d2)2 operators as

O = e1dA
⊗ 1dB

+

dA−1∑
i=0

ai Ai ⊗ 1dA
+

dB−1∑
j=0

bj 1dB
⊗Bj +

∑
i,j

cij Ai ⊗Bj ,

e, ai, bi, cij ∈ C . (2.55)

Any bipartite state ρ ∈ AD can be decomposed in the way of Eq. (2.55), with
e = 1/d2 (introduced in [48] for two-qubit systems). A bipartite product state
σp := ρA ⊗ ρB on HD of dimension dA × dB can be written as

σp =
1

d2

(
1dA

⊗ 1dB
+

dA−1∑
i=0

fA ni Ai ⊗ 1d +

dB−1∑
j=0

fB mj 1d ⊗Bj

+
∑
i,j

fAfB nimjAi ⊗Bj

)
, nnm,mlk ∈ C , |~n| ≤ 1 , |~m| ≤ 1 ,

fA :=

√
dA(dA − 1)

NA

, fB :=

√
dB(dB − 1)

NB

, (2.56)

where the state is pure if and only if |~n| = |~m| = 1. To obtain the Bloch decompo-
sition (2.56), we simply perform the tensor product of two Bloch decompositions
of the one-partite states (2.10) of each party.

Singular value optimization (SVO). For a given operator O and same di-
mensions of the subsystems dA = dB =: d, one can always find an orthogonal
basis in which the coefficient matrix Ccor = (cij), called correlation coefficient
matrix, is diagonal: Given an operator decomposition (2.55), we have to perform
a singular value decomposition of C,

S = UCcorV † , (2.57)

where U and V are unitary matrices with entries uij and vij and S is the resulting
diagonal matrix with the d2 diagonal real positive singular values si of Ccor as
diagonal entries. The new operators of the basis {1d, Di} are then given by a
linear combination of the old operators,

DA
i =

∑
j

u∗ijAj, DB
i =

∑
j

vijBj , (2.58)
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2. Bloch decompositions beyond qubits

which satisfies the same orthogonality condition, TrDA
i DA

j = NAδij (and equiva-
lently for DB

i ). So we can rewrite Eq. (2.55) as

O = e1d ⊗ 1d +
d−1∑
i=0

ri D
A
i ⊗ 1d +

d−1∑
j=0

tj 1d ⊗DB
j +

∑
i,j

siD
A
i ⊗DB

i ,

(2.59)

where ri =
∑

j ajuij, tj =
∑

k bkv
∗
jk and si =

∑
j,l uijcjlv

∗
il. We call the decom-

posed operator that is written in the optimized way of Eq. (2.59) “singular value
optimized” (SVO). Of course a product state can then also be decomposed in
terms of the new basis,

σp =
1

d2

(
1d ⊗ 1d +

dA−1∑
i=0

fA n̄i D
A
i ⊗ 1d +

dB−1∑
j=0

fB m̄j 1d ⊗DB
j

+
∑
i,j

fAfB n̄im̄jD
A
i ⊗DB

j

)
, n̄i, m̄j ∈ C ,

∣∣~̄n
∣∣ ≤ 1 ,

∣∣ ~̄m
∣∣ ≤ 1 . (2.60)

Remark 2.3. Note that the SVO bases {1, DA
i } and {1, DB

i } depend on the
decomposed operator, in general they do not imply a real positive diagonal cor-
relation coefficient matrix for other operators or states.

2.7.1. Bloch decompositions of the maximally entangled
two-qudit state

The usual method to find the Bloch decomposition of an operator or state is
via the trace methods of Eqs. (2.9) and (2.12). However, if the operator or
state does not have a concrete expression in a certain dimension of the Hilbert
space, but the dimension is left as a variable, it might get inconvenient and
unclear to perform these trace methods. The method via the standard operators
is then easier to apply: We just have to insert the Bloch decompositions of the
standard operators into the standard operator decomposition of the operator
(2.26) and get the desired Bloch decomposition of the operator. The standard
operator decompositions for the considered three operator bases are provided in
Lemma 2.1, Lemma 2.2, and Lemma 2.3.

The maximally entangled two-qudit vector state is given by
∣∣φd

+

〉
=

1√
d

∑
j

|j〉 ⊗ |j〉 , (2.61)

where the sum runs from j = 0, . . . , d− 1 or from j = 1, . . . , d, respectively. The
terminology “maximally entangled” is explained in Sec. 3.2.

The corresponding two-qudit state, i.e. the density operator to the vector state
(2.61), can be written in terms of standard operators as

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d

d∑

j,k=1

|j〉〈k| ⊗ |j〉〈k| . (2.62)
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2.7. Bloch decompositions for bipartite systems

We can use this expression to insert the standard operator decompositions in the
three bases, the GGB, the POB, and the WOB.

Expansion into GGB. For the generalized Gell-Mann matrix basis, it is con-
venient to split the state

∣∣φd
+

〉 〈
φd

+

∣∣ into two parts,
∣∣φd

+

〉 〈
φd

+

∣∣ = A + B , (2.63)

where A and B are defined by

A =
1

d

∑

j<k

|j〉〈k| ⊗ |j〉〈k| +
1

d

∑

j<k

|k〉〈j| ⊗ |k〉〈j| , (2.64)

B =
1

d

∑
j

|j〉〈j| ⊗ |j〉〈j| , (2.65)

and to calculate the two terms separately.
For term A we use the standard operator decomposition of Lemma 2.1 for the

case j 6= k and get

A =
1

4d

[∑

j<k

(
Λjk

s + iΛjk
a

)⊗ (
Λjk

s + iΛjk
a

)
+

∑

j<k

(
Λjk

s − iΛjk
a

)⊗ (
Λjk

s − iΛjk
a

)
]

=
1

2d

∑
i<j

(
Λjk

s ⊗ Λjk
s − Λjk

a ⊗ Λjk
a

)
. (2.66)

The calculations for the GGB decomposition of term B are a bit more involved
and are presented in Appendix A.2. We obtain

B =
1

2d

d−1∑
m=1

Λm ⊗ Λm +
1

d2
1d ⊗ 1d . (2.67)

Thus all together for the state
∣∣φd

+

〉 〈
φd

+

∣∣ we find the GGB Bloch decomposition

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d2
1d ⊗ 1d +

1

2d
Λ , (2.68)

where we defined

Λ =
∑
i<j

Λjk
s ⊗ Λjk

s −
∑
i<j

Λjk
a ⊗ Λjk

a +
d−1∑
m=1

Λm ⊗ Λm . (2.69)

Expansion into POB. To find the Bloch decomposition of
∣∣φd

+

〉 〈
φd

+

∣∣ in the po-
larization operator basis we use the standard operator decomposition of Lemma 2.2
and the sum rule for the Clebsch-Gordan coefficients [127]

∑
α,γ

Ccγ
aα,bβ Ccγ

aα,b′β′ =
2c + 1

2b + 1
δbb′ δββ′ . (2.70)

29



2. Bloch decompositions beyond qubits

We obtain

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d

d∑
i,j=1

|i〉〈j| ⊗ |i〉〈j|

=
1

d

∑

L,L′

√
(2L + 1)(2L′ + 1)

2s + 1

(∑
i,j

Csmi
smj ,LMCsmi

smj ,L′M

)
TLM ⊗ TL′M

=
1

d

∑

L,L′

√
(2L + 1)(2L′ + 1)

2L + 1
δL,L′ TLM ⊗ TL′M

=
1

d

∑
L

TLM ⊗ TLM . (2.71)

We separate the term with the identity operator (recall Eq. (2.35)) in correspon-
dence with Eq. (2.55), which yields

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d2
1⊗ 1 +

1

d
T , (2.72)

with
T :=

∑

L,M 6=0,0

TLM ⊗ TLM . (2.73)

Expansion into WOB. Finally we obtain the WOB expansion of
∣∣φd

+

〉 〈
φd

+

∣∣
with the WOB standard operator decomposition of Lemma 2.3 (see also Ref. [96]
for an alternative derivation),

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d

d∑

j,k=1

|j〉〈k| ⊗ |j〉〈k|

=
1

d3

d−1∑

j,k=0

d−1∑

l,l′=0

e−
2πi
d

j(l+l′)Ul(k−j)mod d ⊗ Ul′(k−j)mod d

=
1

d3

d−1∑

m,k=0

d−1∑

l,l′=0

e−
2πi
d

(k−m)(l+l′)Ulm ⊗ Ul′m

=
1

d2

(∑
m

U0m ⊗ U0m +
∑
m

∑

l,l′; l+l′=d

Ulm ⊗ Ul′m

)

+
1

d3

∑
m

∑

l,l′; l,l′ 6=0,0; l+l′ 6=d

(∑

k

e−
2πi
d

(k−m)(l+l′)

)
Ulm ⊗ Ul′m . (2.74)

The last term in Eq. (2.74) vanishes due to relation (2.50). Identifying U00 = 1d

and using a comfortable notation with negative values of the index l, which have
to be considered as mod d , we gain the WOB Bloch decomposition

∣∣φd
+

〉 〈
φd

+

∣∣ =
1

d2
1⊗ 1+

1

d2
U , (l, m) 6= (0, 0) , (2.75)
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where

U :=
d−1∑

l,m=0

Ulm ⊗ U−lm, (l, m) 6= (0, 0) . (2.76)

2.8. Summary and conclusion
In this chapter we present three operator bases that are appropriate for Bloch
decompositions of operators and states, the generalized Gell-Mann operator ba-
sis (GGB), the polarization operator basis (POB), and the Weyl operator basis
(WOB). We give a method to derive a decomposition of arbitrary operators and
states for general dimensions via the decomposition of standard operators, which
we explicitly provide for the three bases. By the example of the decomposition
of the maximally entangled two-qudit states we illustrate the application of the
method.

By investigating the three presented bases we conclude that there is no unique
way to generalize the Pauli operator basis for qubits. The main reason is the
fact that the Pauli operators are both unitary and Hermitian, whereas there does
not seem to be an operator basis for higher dimensions that reveals these two
properties at once. Hence for different intentions different operator bases should
be used. The generalized Gell-Mann operators are Hermitian, and thus useful
with respect to experimental applications, as Hermitian operators are observables
(see also Sec. 3.6). They are, however, not unitary. The polarization operators
are neither Hermitian nor unitary, but calculations of decompositions can be
performed quicker than with the generalized Gell-Mann operators, if the relations
for the Clebsch-Gordan coefficients are known, respectively. The Weyl operators
are not Hermitian but unitary, which has the advantage that one can use them
to construct a basis of maximally entangled vector states, and then easily find
decompositions of mixtures of these states (see Sec. 3.5.2 in this context). The
disadvantage of non-Hermiticity is, however, that the decomposition coefficients
(and hence also the Bloch vectors) are in general complex numbers, and thus a
direct geometrical interpretation cannot be done in the same straightforward way
as in the qubit case.

In the presented example of the decomposition of the maximally entangled
two-qudit state, the result could be obtained quicker and easier with the POB
and the WOB, whereas the calculations were lengthy for the GGB, due to the
rather complicated definition of the diagonal generalized Gell-Mann operators.
On the whole the definition of the POB and the WOB is more compact and
better arranged that that of the GGB, which simplifies application for these two
bases. In the literature, however, the predominantly used basis is the GGB.
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3. Geometric entanglement
detection

3.1. Introduction

In this chapter we present geometric methods to detect entanglement. In particu-
lar, we construct geometric entanglement witnesses that bear the advantage that
the corresponding hyperplanes in Hilbert-Schmidt space can be directly related
to a Euclidean geometry representation. First constructions of this kind were
introduced in Refs. [102, 25]. The mathematical application is simplified by the
Bloch decompositions of operators and states that we have provided in Chapter 2
and are extended here to identify operators as entanglement witnesses (see Corol-
lary 3.2 and Lemma 3.1). We show how to use geometric entanglement witnesses
to detect PPT entangled (bound entangled) states and how to identify separable
states by using optimal geometric entanglement witnesses. This is attained by
shifting the witnesses along parameterized lines of states (see Proposition 3.1).
Two main methods are explained in detail: the outside-in shift and the inside-out
shift. The outside-in shift is used for detecting (bound) entangled states, whereas
with the inside-out shift we can construct the shape of the set of separable states
for convex families of states.

Additionally, we use the decomposition into the generalized Gell-Mann matrices
basis to derive a further decomposition into measurable observables constructed
with spin-1 operators. This decomposition is intended to simplify experimental
application of entanglement witnesses for two-qutrit states. An example for the
optimal witness detecting the entangled isotropic two-qutrit states is presented.

The chapter is organized as follows: In Sec. 3.2 we briefly discuss entanglement
detection for vector states. In Sec. 3.3 we review three important entanglement
criteria for mixed states: the PPT criterion [100, 62], the realignment criterion
[109, 34], and the entanglement witness criterion [62, 119]. In Sec. 3.4 we for-
mulate Corollary 3.2 and Lemma 3.1 for the identification of operators as entan-
glement witnesses using Bloch decompositions. In Sec. 3.5 we define geometric
operators and the related geometrical entanglement witnesses and present the
mentioned outside-in and inside-out shift methods. Furthermore we give an ap-
plication example of these two methods for a three-parameter family of two-qutrit
states, for which we determine the entanglement properties (i.e. the regions of
NPT entangled, PPT entangled, and separable states). Finally, in Sec. 3.6 we
show how to decompose entanglement witnesses into observables constructed with
spin-1 operators and give an example of the witness for the isotropic two-qutrit
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states. In Sec. 3.7 final conclusions are drawn.

The chapter is mainly based on Refs. [23, 22, 83, 24]:

• Reinhold A. Bertlmann and Philipp Krammer
Geometric entanglement witnesses and bound entanglement
Phys. Rev. A 77, 024303 (2008)

• Reinhold A. Bertlmann and Philipp Krammer
Bound entanglement in the set of Bell-state mixtures of two qutrits
Phys. Rev. A 78, 014303 (2008)

• Philipp Krammer
Characterizing entanglement with geometric entanglement witnesses
J. Phys. A: Math. Theor. 42, 065305 (2009)

• Reinhold A. Bertlmann and Philipp Krammer
Entanglement witnesses and geometry of entanglement of two-qutrit states
Ann. Phys. 324, 1388 (2009)

3.2. Vector states

For a vector state |ψ〉 or, equivalently, the corresponding density operator |ψ〉〈ψ|,
we can easily and operationally decide whether it is entangled or not, for an
arbitrary dimension of the Hilbert space. In Definition 1.2 we defined an entangled
vector state as a vector state that cannot be written as a product vector state
|ψA〉⊗ |ψB〉. Given a vector state |ψ〉 this might not always be possible to decide
at first sight, since it could be given by several product terms, and in general
it is not trivial to find the particular basis in which we can write it as only one
product term. Consider in this respect, e.g., the vector state

|ψ̃〉 =
1

2
(|00〉 − |11〉+ |10〉 − |01〉) . (3.1)

It can be written as
|ψ̃〉 = |+〉 ⊗ |−〉 , (3.2)

with |+〉 = 1/
√

2(|0〉 + |1〉) and |−〉 = 1/
√

2(|0〉 − |1〉), but this is maybe not
straightforward to see from Eq. 3.1.

We can take, however, advantage of the density operator formalism: The cor-
responding pure density operator to a vector state |ψ〉 is the projector |ψ〉〈ψ|.
For a product vector state the reduced density operators ρA and ρB are the pure
states |ψA〉〈ψA| and|ψB〉〈ψB|. Thus we can state the following theorem:

Theorem 3.1. The state |ψ〉〈ψ| is entangled if and only if the reduced density
operators are pure states.
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3.3. Density operators

Confirming the purity of one reduced density operator is enough, as the reduced
density operator for the other subsystem has to be pure as well, since the whole
state is a pure state. Remember that a state ρ is pure if and only if it has the
property Trρ = 1, or, equivalently, ρ2 = ρ, or R(ρ) = 1, where R(ρ) is the rank of
the density matrix, i.e. the number of its non-vanishing eigenvalues. Furthermore,
we call a vector state maximally entangled if the reduced density matrix of the
lower dimensional system is the maximally mixed state 1/min{dA, dB}1. It is
“maximally” entangled because the reduced density matrix is “maximally” far
away from being pure. A consistent method to quantify the entanglement of
pure states is provided by the entropy measure of entanglement and is given in
Refs. [17, 14].

Examples. As an example let us first consider the vector state |ψ̃〉 of Eq. (3.1).
The reduced density operator ρA (see Definition 1.4) of |ψ̃〉〈ψ̃| is

ρA =
1

2
(|0〉〈0|+ |1〉〈1|+ |1〉〈0|+ |0〉〈1|) , (3.3)

which is a pure state and hence |ψ̃〉 is not entangled.
In a second example we want to determine the entanglement properties of the

two-qubit Bell state |ψ−〉 (1.29). It has the reduced density operators

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2
12 , (3.4)

which is the maximally mixed state. Therefore |ψ−〉 is entangled, in particular it
is also maximally entangled.

3.3. Density operators
The definition of entangled density operators (states) is given in Definition 5.2. It
implies that in order to find out whether a given state is entangled or separable,
we have to know if it can be written in the form of a separable state (1.33). This
mathematical problem is known as the separability problem. So far no general
solution has been found, apart from the case of pure states, where the separable
states are uncorrelated pure product states; a method for entanglement detection
in this case is given in the previous section. In the case of mixed states ρ (with
Trρ2 < 1) there is no operational method to detect the entanglement of any
state on an arbitrary dimensional Hilbert space. This problem is known as the
separability problem.

In order to classify existing criteria for separability or entanglement, the fol-
lowing terminology is used: We say a criterion is necessary for separability if it is
satisfied by any separable state. Therefore a violation of a necessary separability
criterion detects the entanglement of a state with certainty and hence it implies a
sufficient entanglement criterion (when negating the involved condition). States
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3. Geometric entanglement detection

that satisfy the necessary separability criterion can be separable or entangled.
A sufficient separability criterion on the other hand guarantees that a state is
separable for sure if it satisfies the criterion, but can be entangled or separable if
the criterion is violated (and so implies a necessary criterion for entanglement).
Therefore only a necessary and sufficient criterion for separability can give a def-
inite answer for any state: If it is violated, the state is entangled, if it is satisfied,
the state is separable1. Apart from the classification into necessary and sufficient
criteria, we classify the criteria according to their employability as operational
and non-operational [30]. An operational criterion gives a “recipe” that has to be
performed on the state in question in order to decide if it satisfies the criterion or
not, and can be applied to any state. A non-operational criterion, on the other
hand, is characterized by a lack of a general recipe, it provides a mathematical
necessity, it is in general difficult to find out if it is satisfied by a given state, but
in principle possible.

The criteria presented in the forthcoming sections help in detecting the en-
tanglement of mixed states. Of course, they can be also used for entanglement
detection of pure states, as they can be applied for all density operators.

We call an entanglement criterion C1 stronger than a criterion C2, if C1 detects
all the entangled states that C2 detects, and even more than those states. C2 is
then called weaker than C1. Two or more entanglement criteria are called equal,
if they detect the same entangled states. If they detect different sets of entangled
states that do not coincide, but might have overlaps, then the criteria are neither
stronger nor weaker with respect to each other.

3.3.1. The PPT criterion

A simple and strong entanglement criterion is the PPT criterion [100, 62]. To
understand it, we first need to introduce the partial transposition. The transpo-
sition T is just the standard matrix transposition, i.e. a map that maps a matrix
onto its transpose. Applied on a one-partite state ρ it is defined as

ρT := T (ρ) =
∑
i,j

ρij (|i〉〈j|)T =
∑
i,j

ρij|j〉〈i| . (3.5)

The matrix elements are given by

〈i|ρT |j〉 = 〈j|ρ|i〉 . (3.6)

Definition 3.1. The partial transposition 1⊗T of a bipartite state is defined as

ρΓ := (1⊗ T )(ρ) =
∑

i,j,k,l

ρikjl|i〉〈j| ⊗ (|k〉〈l|)T =
∑

i,j,k,l

ρikjl|i〉〈j| ⊗ |l〉〈k| , (3.7)

and the matrix elements are given by

〈ik|ρΓ|jl〉 = 〈il|ρ|jk〉 . (3.8)
1Or: If we consider the corresponding necessary and sufficient entanglement criterion, then of
course the state is entangled if it satisfies the criterion and separable if it violates it.
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3.3. Density operators

The partial transposition therefore is a map where only one subsystem applies
transposition, while the other one does not. Here it is irrelevant if Alice or Bob
applies the transposition, it could also be defined as T ⊗ 1. With Definition 3.1
at hand, the following useful theorem can be formulated:

Theorem 3.2 (PPT criterion [100]). A separable state σ (1.33) stays positive
under partial transposition (PPT).

Proof. Applying the partial transposition on a separable state (1.33), we get
σΓ =

∑
i piρ

A
i ⊗

(
ρB

i

)T . The transposition of the states ρB
i does not affect the

positivity condition,
(
ρB

i

)T ≥ 0. Thus the whole separable state is still a positive
operator after partial transposition.

Remark 3.1. In Ref. [62] the PPT criterion was proven to be a necessary and
sufficient separability criterion for states of 2× 2 and 2× 3 dimensional systems.

For states on Hilbert spaces of this low dimensions, e.g. two qubits, we can
always decide if it is entangled or separable – hence for these cases the separability
problem is solved. In Ref. [100] Peres provided the necessary PPT criterion, that
of course is valid for bipartite systems of arbitrary dimension, and the sufficiency
for low dimensions was added by the Horodeckis in Ref. [62]. The criterion is
therefore also referred to as the Peres-Horodecki criterion.

States that are positive under partial transposition are called PPT states, states
that are negative under partial transposition are called NPT states. All NPT
states are entangled, PPT states can be separable or entangled. As already
stated in Sec. 1.4, entangled PPT states are bound entangled, i.e. not distillable.
Thus one can find bound entangled states with criteria that are stronger than the
PPT criterion. It is still an open question if there exist bound entangled NPT
states, although there are strong implications that such states exist [44, 42].

3.3.2. The realignment criterion

An entanglement criterion that has structural similarities to the PPT criterion is
the realignment criterion (or greatest cross norm criterion) [110, 109, 111, 34].
First, we have to define the definition of the realignment operation on a density
operator [34, 69]:

Definition 3.2. The realignment map R of a bipartite state ρ is defined as

ρR := R(ρ) =
∑

i,j,k,l

ρikjl (|i〉〈j| ⊗ |k〉〈l|)R =
∑

i,j,k,l

ρikjl|i〉〈k| ⊗ |j〉〈l|, (3.9)

and the matrix elements are given by

〈ik|ρR|jl〉 = 〈ij|ρ|kl〉 . (3.10)
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3. Geometric entanglement detection

The realignment criterion is formulated as follows (in this form it can be found
in Ref. [69], it was introduced and proven in Ref. [109] as a computable criterion
and formulated and proven in terms of matrix operations in [34]):

Theorem 3.3 (Realignment criterion [109, 34]). For a separable state σ the sum
of the singular values si of the realigned operator σR has to be smaller or equal to
1, ∑

i

si = Tr
√

σ†RσR ≤ 1 . (3.11)

Thus, if a state ρ violates the criterion, it has to be entangled, but both sep-
arable and entangled states can satisfy it. The realignment criterion is neither
weaker nor stronger than the PPT criterion, meaning that it detects some entan-
gled states that the PPT criterion does not, and vice versa. Thus an application
of both criteria is easy to perform and allows a detection of many entangled
states, both free and bound entangled, but they do not constitute a necessary
and sufficient criterion together, since there exist PPT entangled states that are
not detected by the realignment criterion [34].

3.3.3. Entanglement witnesses

Entanglement witnesses provide a simple and useful necessary and sufficient en-
tanglement criterion. It is, however, nonoperational.

Theorem 3.4 (Entanglement Witness Criterion (EWC) [62, 119, 120]). A state
ρ ∈ AD is entangled if and only if there exists a Hermitian operator W such that

TrρW = 〈ρ,W 〉 < 0 and (3.12)
TrσW = 〈σ,W 〉 ≥ 0 ∀ σ ∈ S , (3.13)

where S is the set of all separable states. An operator W that satisfies the above
conditions is called “entanglement witness”.

We call inequality (3.12) “entanglement condition” and inequality (3.13) “sep-
arability condition”. If for a witness Wopt a separable state σ̃ exists for which
Trσ̃Wopt = 0, then Wopt is called an optimal entanglement witness.2 It is closest
to the set of separable states and thus detects more entangled states than not
optimal witnesses.

The EWC is a consequence of the Hahn-Banach theorem of functional analysis.
It geometrically corresponds to the fact that an element of a Banach space can
always be separated by a hyperplane from a convex and compact subset that
does not contain the element (see, e.g., Ref. [107] for details on the Hahn-Banach
theorem). This geometrical connection is illustrated in Fig. 3.1.

2An alternative definition of optimal entanglement witnesses that is similar to the one pre-
sented here but mathematically more elaborate can be found in [88].
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r
0, =optpl Wr

SS

r
0, =

pl Wr

Figure 3.1.: Graphic illustration of the EWC. The left picture displays a non-optimal,
the right picture an optimal entanglement witness as a hyperplane that
includes the states ρpl and separates the entangled state ρ from the set of
separable states S.

Although it is intuitive and simple, the EWC is not easy to implement given
an arbitrary state ρ, since in general it is difficult to find a suitable witness that
satisfies Eq. (3.13), and even more difficult to state that there does not exist any
witness for this state, which would imply separability. Nevertheless the criterion
plays an important role in the theoretical understanding of entanglement, and has
the advantage that a witness W corresponds to a physical observable that can
be implemented in experiments, and therefore allows a detection of entanglement
without performing a full tomography of the state [52, 53, 28, 7, 2, 114]. Various
construction methods of entanglement witnesses can be found, e.g., in Refs. [88,
89, 31, 75, 72, 74, 35]. In Sec. 3.5 a geometric construction of entanglement
witnesses is investigated in detail.

3.4. Bloch decompositions and entanglement
witnesses

The cumbersome task in the application of entanglement witnesses is the veri-
fication of the separability condition (3.13). In this context it turns out to be
helpful to consider Bloch decompositions of operators, as introduced in Sec. 2.3.
First, let us reformulate and, for our purposes, simplify the separability condition
(3.13) of the EWC (Theorem 3.4):

Corollary 3.1. An operator C ∈ AD satisfies TrσC ≥ 0 ∀σ ∈ S if and only if
TrσpC ≥ 0 for all pure product states σp := ρA ⊗ ρB.

Proof. If we have TrσC ≥ 0 ∀σ ∈ S then of course also TrσpC ≥ 0 since the
pure pruduct states σp are separable states as well. Consider the form (1.35)
of a separable state. If TrσpC ≥ 0, it follows that TrσC = Tr

∑
i piσ

i
pC =∑

i piTrσi
pC ≥ 0 since pi ≥ 0.
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3. Geometric entanglement detection

At first sight Corollary 3.1 may appear redundant, but it bears the advantage
that in order to check if a given operator satisfies the separability condition (3.13),
we do not have to check all separable states but consider pure product states only,
which implies a decrease in effort. Purity of the states is not essential, but is more
convenient for parameterizations.

For an arbitrary operator basis we use the Bloch decomposition (2.55) to write
a Hermitian operator C ∈ AD as

C = δ
(
µ1dA

⊗ 1dB

+

dA−1∑
i=0

ãi Ai ⊗ 1dB
+

dB−1∑
j=0

b̃j 1dA
⊗Bj +

∑
i,j

c̃ijAi ⊗Bj

)
,

µ :=

√
(dA − 1)(dB − 1)NANB

dAdB

, δ ∈ R+ . (3.14)

The condition of Hermiticity, C† = C, allows only real values for the overall co-
efficient δ, its value is insignificant for the forthcoming arguments, but should be
positive: If a Hermitian operator Cpre has a negative constant δ in the decompo-
sition (3.14), we “make” it positive by considering C = −Cpre.

For dA = dB = d we use Eq. (2.59) to get the singular value optimized (SVO)
form,

C = δ
(
µ̃1d ⊗ 1d

+
d−1∑
i=0

r̃i D
A
i ⊗ 1d +

d−1∑
j=0

t̃j 1d ⊗DB
j +

∑
i

s̃iD
A
i ⊗DB

i

)
,

µ̃ :=
d− 1

d

√
NANB , (3.15)

and obtain for the expectation value with product states σp from Eqs. (2.56) and
(3.14) (we use σ†p in order to conveniently utilize the orthogonality condition of
the operator bases (see Eq. (2.7)))

Trσ†pC = δµ
(
1 +

√
dB

NB(dB − 1)

∑
i

ãin
∗
i +

√
dA

NA(dA − 1)

∑
j

b̃jm
∗
j

+
∑
i,j

c̃ijn
∗
i m

∗
j

)
, (3.16)

which simplifies for dA = dB = d to (using Eqs. (2.60) and (3.15))

Trσ†pC = δµ̃
(
1 +

√
d

NB(d− 1)

∑
i

r̃in̄
∗
i +

√
d

NA(d− 1)

∑
j

t̃jm̄
∗
j

+
∑

i

s̃in̄
∗
i m̄

∗
i

)
. (3.17)
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Using the above expressions for the expectation values we obtain a condition for
TrCσp ≥ 0 (of Corollary 3.1) in terms of Bloch decompositions:

Corollary 3.2. Given a decomposition (3.14) of an operator C into an arbitrary
operator basis, the expectation value for any product state (2.56) is positive or
vanishes, TrCσp ≥ 0, if and only if

S :=

√
dB

NB(dB − 1)

∑
i

ãin
∗
i +

√
dA

NA(dA − 1)

∑
j

b̃jm
∗
j +

∑
i,j

c̃ijn
∗
i m

∗
j ≥ −1

(3.18)

for all Bloch vectors ~n, ~m. For equal dimensions of the subsystems, dA = dB = d,
the condition (3.18) can be simplified to

S :=

√
d

NB(d− 1)

∑
i

r̃in̄
∗
i +

√
d

NA(d− 1)

∑
j

t̃jm̄
∗
j +

∑
i

s̃in̄
∗
i m̄

∗
i ≥ −1 , (3.19)

where we used the SVO form (2.59) of C.

Proof. The proof is evident from the expressions for the expectation values in
Eqs. (3.16) and (3.17).

Remark 3.2. Consider the case when there also exists at least one state ρ for
which TrCρ < 0. Then C is an entanglement witness if S ≥ −1. Note that
by stating “Bloch vector” we mean vectors ~n, ~m that correspond to states (i.e.
ρA ≥ 0 and ρB ≥ 0 in Eq. (2.10)). For arbitrary dimensions d of the Hilbert
space, an arbitrary vector ~n ∈ Cd2−1 for which ρ has real eigenvalues does not
always implicate ρ ≥ 0, this is only true for d = 2, where the familiar matrix
basis out of the Pauli matrices or rotations thereof is used.

Remark 3.3. It directly follows from Corollaries 3.1 and 3.2 that C is an optimal
entanglement witness if and only if there exists a state ρ such that TrCρ < 0 and
Bloch vectors ~n, ~m such that S = −1.

Remark 3.4. For operators C (3.14) with vanishing coefficients ãi, b̃i, condition
(3.18) reduces to ∑

i,j

c̃ijn
∗
i m

∗
j ≥ −1 , (3.20)

and (3.19) to ∑
i

s̃in̄
∗
i m̄

∗
i ≥ −1 . (3.21)

This is for example the case if we consider geometric operators (see Sec. 3.5.2)
constructed with states that are locally maximally mixed, which means their re-
duced density matrices are the maximally mixed states (1/dA)1 and (1/dB)1.
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Lemma 3.1. For operators C (3.14) on a Hilbert space H of equal dimensional
subsystems, dA = dB, with vanishing coefficients ãi, b̃i, the expectation value for
product states is greater than or equal to zero, Trσp ≥ 0, if the singular values s̃i

of the correlation coefficient matrix c̃ij are smaller or equal to one, s̃i ≤ 1.

Proof. With vanishing coefficients ãi, b̃i, the term S in Eq. (3.18) reduces to
S =

∑
i,j c̃ijnimj. For dA = dB we can write the operator in SVO form, which

gives S =
∑

i s̃in̄
∗
i m̄

∗
i . With the condition si ≤ 1 and the Cauchy-Schwartz

inequality we get

|S| =
∣∣∣∣∣
∑

i

s̃in̄
∗
i m̄

∗
i

∣∣∣∣∣ ≤
∑

i

s̃i|n̄∗i ||m̄∗
i | ≤

∑
i

|n̄∗i ||m̄∗
i | ≤ 1 , (3.22)

and thus S ≥ −1.

Remark 3.5. Note that Lemma 3.1 gives only a sufficient condition for satisfying
the inequality Trσp ≥ 0. It is necessary for dimensions 2 × 2 only, since in this
case any vectors ~n and ~m (2.56) correspond to states, see Remark 3.2, and with
at least one singular value si > 1 one can easily construct Bloch vectors such that
S < −1. For higher dimensions it is possible that some si > 1, and still there
exist no Bloch vectors ~n and ~m (that provide ρ ≥ 0) such that S < −1.

3.5. Geometric entanglement witnesses

3.5.1. Definitions and general methods

A possible method to construct entanglement witnesses are geometric entangle-
ment witnesses. They bear the advantage that they can be constructed directly
out of two states, where one of them is detected by the witness, if it is entan-
gled. They are called geometric entanglement witnesses, since they can directly
be related to hyperplanes in Hilbert-Schmidt space that are orthogonal to the
“vector” between the two states from which they were constructed. Thus the wit-
nesses have a direct geometrical representation as hyperplanes in the Euclidean
representation of Hilbert-Schmidt space.

Let us start with the definition of a geometric operator, from which we can
continue with defining a geometric entanglement witness.

Definition 3.3. A geometric operator G ∈ AD is defined as

G := ρ1 − ρ2 − 〈ρ1, ρ1 − ρ2〉1D , (3.23)

where ρ1 and ρ2 are arbitrary states in AD and ρ1 6= ρ2.

The definition originates from the construction of entanglement witnesses in
Refs. [102, 25], with the difference that in our definition the geometric operator
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(3.23) does not yet have to be an entanglement witness. The construction (3.23)
provides Trρ1G = 0 and Trρ2G < 0,

Trρ1G = 〈ρ1, G〉 = 〈ρ1 − ρ1, ρ1 − ρ2〉 = 0 ,

Trρ2G = 〈ρ2, G〉 = 〈ρ2 − ρ1, ρ1 − ρ2〉 = −‖ρ1 − ρ2‖2 < 0 . (3.24)

A geometric operator corresponds to a hyperplane in the Hilbert-Schmidt space
AD that divides the whole state space into states ρn for which TrρnG < 0 and
states ρp for which TrρpG ≥ 0, see Ref [19]. The hyperplane is orthogonal to
ρ1 − ρ2 since for all states ρG on the plane, i.e. that satisfy TrρGG = 0, the
operator ρ1−ρ2 is orthogonal to ρG−ρ1 because TrρGG = 〈ρG−ρ1, ρ1−ρ2〉 = 0.

Definition 3.4. A geometric entanglement witness (GEW) WG is a geometric
operator that satisfies TrσpWG ≥ 0 for all pure product states σp.

Due to its construction, a geometric entanglement witness (see also Refs. [102,
25, 103, 19] has to witness at least the entanglement of ρ2. For arbitrary states ρ2

it is easy to construct geometric operators G (Definition 3.3) that ensure Trρ2G <
0, but difficult to confirm that also TrσpG ≥ 0 for all pure product states, which
would yield G = WG. Nevertheless, due to their simple geometric construction,
geometric operators provide useful tools to characterize entanglement, as we will
see in the further sections of this paragraph.

To detect entanglement it is sufficient to consider geometric entanglement wit-
nesses only:

Lemma 3.2. Any entangled state is witnessed by a geometric entanglement wit-
ness.

Proof. If ρ is entangled, then there exists a so-called nearest separable state σ0,
i.e. the separable state for which the Hilbert-Schmidt distance (1.12) from ρ
to the set of separable states S is minimal, because S is convex and compact.
The corresponding geometric operator σ0−ρ−〈σ0, σ0−ρ〉1D is an entanglement
witness, since the corresponding hyperplane includes σ0, is orthogonal to σ0 − ρ
and is therefore tangent to S. For more details on nearest separable states and
the related Hilbert-Schmidt measure of entanglement, see Sec. 4.2 and Refs. [142,
25, 19].

Geometric entanglement witnesses bear the advantage that they can be “shifted”
along lines of parameterized states.

Proposition 3.1 (Shift method). If a geometric operator

Gλ = ρλ − ρ− 〈ρλ, ρλ − ρ〉1D (3.25)

with a parameterized family of states

ρλ := λρ + (1− λ)ρ̃, 0 ≤ λ < 1, ρ, ρ̃ ∈ AD (3.26)

is an entanglement witness in a parameter region λ ∈ [λi, 1), i.e. if it satisfies
TrσP Gλ ≥ 0 for all pure product states σp, then ρλ is entangled for λ ∈ (λi, 1].
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Figure 3.2.: Outside-in shift method. On the line between the entangled state ρ and
the separable state σ one can detect more entangled states, e.g. bound
entangled states, by shifting the geometric operator Gλ.

Proof. We consider states ρλ with λi < λ ≤ 1 and the geometric entanglement
witness Wλi

= ρλi
− ρ− 〈ρλi

, ρλi
− ρ〉1D. The expectation value in ρλ is

TrρλWλi
= 〈ρλ,Wλi

〉 = 〈ρλ − ρλi
, ρλi

− ρ〉
= (λi − λ)(1− λi)〈ρ− ρ̃, ρ− ρ̃〉 = (λi − λ)(1− λi)‖ρ− ρ̃‖2 < 0 ,

(3.27)

hence the states ρλ with λi < λ ≤ 1 are entangled.

An effective way to use the shift method of Proposition 3.1 is to identify ρ̃
in Eq. (3.26) with a separable state, and ρ with a state which is known to be
entangled. There are two cases where this is of particular interest:

1. (Outside-in shift.) Starting from the entangled state ρ, we can detect further
entangled states along the line in direction to the separable state. By prov-
ing that Gλ is an entanglement witness for a parameter region λi ≤ λ < 1
(the case λ = 1 can be included with a suitable normalization of Gλ), one
can infer that all states ρλ within this region are entangled. A reasonable
choice for the separable state is the maximally mixed state (1/D)1. In this
way one can detect bound entangled states, for example if we choose a PPT
entangled “starting state” ρ, then we are likely to find more bound entangled
states along the parameterized line ρλ. The outside-in shift is illustrated in
Fig. 3.2.

2. (Inside-out shift.) Another application of the shift method is the step-by-
step construction of the convex set of separable states. Here one has to
use optimal GEWs that correspond to hyperplanes tangent to the set of
separable states. In the following we assume that we are given a specific
convex subset of states for which we want to determine the entanglement
properties, and that some separable states are known. From these we can
construct a kernel polytope of separable states, i.e. the convex hull of the
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known separable states. Then we assign geometric operators to hyperplanes
tangent to the kernel polytope. For example, an operator corresponding to a
plane that includes the line between two separable states can be constructed
in the following way: Given two separable states σ1 and σ2, the convex line
between them is σµ = µσ1 + (1 − µ)σ2. Now we choose an entangled
state ω, that of course lies outside the kernel polytope, such that there
exists a µi with σ̃ = σµi

for which we have the orthogonality condition
〈σ1 − σ2, ω − σ̃〉 = 0. The geometric operator is then given by

G = σ̃ − ω − 〈σ̃, σ̃ − ω〉1D (3.28)

and a shift operator Gλ between σ̃ and ω according to Eqs. (3.25) and
(3.26). The construction of operators that correspond to boundary planes
of the kernel polygon identified by more than two separable states is done
similarily, using more orthogonality conditions and the convex hull between
three states.

Once we assigned geometric operators to the boundary of the kernel poly-
tope, we utilize Proposition 3.1 to “shift” the operators outside and survey
the minimum of S in Eq. (3.18) or (3.19). At one point of the parameter-
ized line (3.26) we obtain S = −1; the geometric operators become optimal
geometric entanglement witnesses. In this way we can assemble the shape
of the set of separable states for the considered set of states and distinguish
it from the set of entangled states. It may likely be that we have an idea of
the shape of the set of separable states that we got from applying necessary
separability criteria. Then we can use the inside-out shift to verify or falsify
that shape: The inside-out shifted geometric operators should correspond
to optimal GEWs when they become tangent to the estimated shape. In this
way we get vertices of a new polytope, whose boundary planes are shifted
again. Thus we either verify the estimated shape of separable states, or, if
a shifted plane is an optimal GEW before it is tangent to the shape, it is an
enclosure of all separable states and also entangled ones. We require finite
steps of this method if the estimated shape is a polygon, and (in principle)
infinite steps if it is not a polygon, i.e. if it has a curved surface.

If we have no idea of a possible shape of the set of separable states, or if
our estimation turned out to be wrong, we can use the inside-out shift to
obtain at least a tight enclosure polytope. It is a polytope that encloses
all separable states but might also contain some entangled states, it can
be obtained by applying the shift to more than one kernel polytope. Both
situations are sketched in Fig. 3.3.

The difficult part of Proposition 3.1 is to prove that Gλ is an entanglement wit-
ness, in particular the verification of the separability condition (3.13). To accom-
plish this we can efficiently use Corollary 3.2 and Lemma 3.1 derived from Bloch
decompositions, which will be demonstrated by the example of the next section.
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3. Geometric entanglement detection

Figure 3.3.: Left: Sketch of the inside-out shift with an estimate of the shape of separa-
ble states, which in this case coincides with the true set of separable states,
pictured by the circle. We start with a kernel polytope (black triangle) and
shift the boundary planes outside until they become optimal GEWs, which
are tangents to the circle (dashed lines). In this way we can draw a new
polytope (hexagon, grey). In the next steps (not illustrated) the boundaries
of the new polytope are shifted and we gain a new polytope, and so on. In
this way we reconstruct the circle shape. Right: Sketch of the inside-out
shift where we do not rely on an estimate of the shape of separable states.
The true set of separable states is again pictured by a circle. Here we get a
first enclosure polytope (biggest triangle with dashed lines), by shifting the
boundaries of a first kernel polytope outside (dark grey triangle). A tighter
enclosure polytope (hexagon with dashed lines) is obtained by shifting the
boundaries of a second kernel polytope (small black triangle) outside. The
light grey areas mark states inside the enclosure polytope that are not sep-
arable and thus account for the deviation of the enclosure polytope from
the true set of separable states.
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3.5.2. Entanglement properties of a family of two-qutrit
states

Before we show the explicit example, it is useful to give a construction method
of a basis of maximally entangled vector states for two qudits, i.e. vector states
of the Hilbert space Hd ⊗Hd. The method uses local unitary operations on one
subsystem, in which way we can construct a basis of d2 maximally entangled
vector states |φi〉 [134, 139],

|φi〉 = Vi ⊗ 1d |φd
+〉, i = 0, 1, 2, . . . , d2 − 1 , (3.29)

where {Vi} is a unitary and orthogonal operator basis ofAd, and V0 = 1d. The vec-
tor state |φd

+〉 is the usual maximally entangled two-qudit state given in Eq. (2.61).
Note that it is crucial to use unitary operators in Eq. (3.29), since only in this
case we obtain maximally entangled and orthogonal vector states. For the uni-
tary operator basis {Vi} we choose, e.g., the Weyl operator basis (see Sec. 2.6).
In this way we construct the so-called two-qudit Bell states

|φnk〉 := (Unk ⊗ 1d) |φd
+〉, n, k = 0, 1, . . . , d− 1 , (3.30)

which can be seen as a higher dimensional generalization of the well known two-
qubit Bell states. The projectors onto these generalized Bell states are given
by

Pnk := (Unk ⊗ 1d) |φd
+〉〈φd

+| (U †
nk ⊗ 1) . (3.31)

Note that the two-qudit Bell states (3.30) have a practical importance in quantum
communication: In the teleportation protocol of Ref. [13] the states (3.31) serve
as the higher dimensional generalization of the two-qubit Bell states and the Weyl
operators Unm are the analogue of the Pauli operators, they correspond to the
operators Bob has to apply at the end of the protocol in order to obtain the
teleported state. A construction of the type (3.29) can in general be done with
any unitary operators that form a matrix basis of the Hilbert-Schmidt space,
obtaining other bases of orthogonal maximally entangled states.

An interesting set of states is the magic simplex of two-qudit states [10, 11, 12].
It is the set of all states that are mixtures of Bell states Pnm,

W :=

{
d−1∑

n,m=0

qnmPnm | qnm ≥ 0,
∑
n,m

qnm = 1

}
. (3.32)

The reduced density operators of states that are elements of the magic simplex
are the maximally mixed states 1/d1d. Nevertheless, not all two-qudit states with
maximally mixed reduced density operators are elements of the magic simplex,
apart from dimension 2×2, where all locally maximally mixed states are included
in the tetrahedron of all Bell state mixtures [12]. The magic simplex has a high
symmetry in the phase space of the coefficients nm, for a detailed discussion see
Refs. [10, 11].
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The Bell states Pnm (3.31) can be expressed with Weyl operators as (where the
indices have to be taken mod d)

Pnk =
1

d2

d−1∑

m,l=0

e
2πi
d

(kl−nm) Ulm ⊗ U−lm =
1

d2

d−1∑

l,m=0

clm Ulm ⊗ U−lm . (3.33)

Obviously the Bloch vectors corresponding to the Bell states have a diagonal but
in general complex coefficient matrix (cij), where i counts the different combina-
tions of lm and j those of kn, and cii := clm.

A subset of the magic simplex of two-qutrit states (dimension 3×3) that reveals
interesting entanglement characteristics is the three-parameter family

ρα,β,γ :=
1− α− β − γ

9
19 + αP00 +

β

2
(P10 + P20) +

γ

3
(P01 + P11 + P21) , (3.34)

where we write 19 for 13⊗13 and the parameters are constrained by the positivity
requirement ρα,β,γ ≥ 0,

α ≤ 7

2
β + 1− γ , α ≤ −β + 1− γ ,

α ≤ −β + 1 + 2γ , α ≥ β

8
− 1

8
+

1

8
γ . (3.35)

The family of states (3.34) contains a one-parameter family of states that have
three entanglement properties; they can be separable, PPT entangled and NPT
entangled. We call them Horodecki states ρb [68],

ρb =
2

7

∣∣φ3
+

〉 〈
φ3

+

∣∣ +
b

7
σ+ +

5− b

7
σ− , 0 ≤ b ≤ 5 , (3.36)

σ+ =
1

3
(|01〉 〈01|+ |12〉 〈12|+ |20〉 〈20| ) , (3.37)

σ− =
1

3
(|10〉 〈10|+ |21〉 〈21|+ |02〉 〈02| ) . (3.38)

According to the parametrization of Eq. (3.34), the Horodecki states can be writ-
ten as

ρb := ρα,β,γ with α =
6− b

21
, β = −2b

21
, γ =

5− 2b

7
. (3.39)

Using the PPT criterion (Theorem 3.2) we find regions of PPT and NPT Horodecki
states: They are NPT for 0 ≤ b < 1, PPT for 1 ≤ b ≤ 4 and again NPT for
4 < b ≤ 5 . In Ref. [68] it is shown that the states are separable for 2 ≤ b ≤ 3
and PPT entangled for 3 < b ≤ 4.

Now let us apply the PPT criterion and the realignment criterion (Theorem 3.3)
to our three-parameter family (3.34). The PPT criterion provides the following
parameter constraints for PPT states ρα,β,γ:

α ≤ −β − 1

2
+

1

2
γ ,

α ≤ 1

16
(−2 + 11β + 3∆) , α ≥ 1

16
(−2 + 11β − 3∆) , (3.40)

48



3.5. Geometric entanglement witnesses

where ∆ =
√

4 + 9β2 + 4γ − 7γ2 − 6β(2 + γ). Hence all states ρα,β,γ with con-
straints (3.40) are either bound entangled or separable, whereas the others are
NPT entangled.

From the realignment criterion we obtain the constraints

α ≤ 1

16
(6 + 11β − γ −∆1) , (3.41)

α ≤ 1

16
(6 + 11β − γ + ∆1) , (3.42)

α ≥ 1

16
(−6 + 11β − γ −∆2) , (3.43)

α ≥ 1

16
(−6 + 11β − γ + ∆2) , (3.44)

where

∆1 :=
√

4 + 36β + 81β2 − 12γ − 54βγ + 33γ2 and

∆2 :=
√

4− 36β + 81β2 + 12γ − 54βγ + 33γ2. (3.45)

Only constraint (3.41) is violated by some PPT states, which thus have to be
bound entangled. The PPT entangled states exposed by the realignment criterion
are therefore concentrated in the region confined by the constraints

α ≤ 7

2
β+1−γ, α ≤ 1

16
(−2 + 11β + 3∆) , α ≥ 1

16
(6 + 11β − γ −∆1) . (3.46)

Remark 3.6. The three-parameter family (3.34) also bears the advantage that
it can be nicely illustrated by the Euclidean geometry. To do this, note that
the orthogonality conditions of the Hilbert-Schmidt space A9 = A3 ⊗ A3 have
to be transferred correctly, which is achieved by choosing a nonorthogonal and
differently scaled coordinate system of parameter axes α, β, and γ. They are
chosen such that they each become orthogonal to one of the boundary planes of
the set of the three-parameter family of states, given by the positivity constraints
(3.35). If the Hilbert-Schmidt inner product 〈ρ1 − ρ2|ρ3 − ρ4〉 vanishes for four
states of the family, in the geometrical picture this would correspond to two
orthogonal lines, where one line is drawn between the points corresponding to
the states ρ1 and ρ2 and the other line between the points corresponding to ρ3

and ρ4. See also Remark 4.2.

In order to calculate quantities well known in an Euclidean space spanned by an
orthogonal equally scaled coordinate system, we have to transform points of the
non-orthogonal coordinates (α, β, γ) into points of orthogonal coordinates (a, b, c)
and vice versa by

a = α− 1

8
β − 1

8
γ, b =

√
3

8
(3β − γ) , c =

√
3

4
γ . (3.47)

In Fig. 3.4 the three-parameter family of states ρα,β,γ (3.34) including NPT en-
tangled, PPT entangled (bound entangled) and further PPT states is illustrated
in the Euclidean geometry picture.
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a=1

b=1g=1

Figure 3.4.: Illustration of the family of states ρα,β,γ (3.34) by Euclidean geometry. Left:
All states ρα,β,γ lie within a pyramid due to the positivity constraints (3.35).
The dot represents the origin of the coordinate axes, which is the maximally
mixed state (1/9)1. The line (blue) on the left boundary plane represents
the Horodecki states (3.36). Right: Illustration of the PPT and realignment
criteria. The cone with tip on the right vertex line of the pyramid contains
the PPT states, which is intersected by a cone (tip on the left boundary
plane of the pyramid) of states that satisfy the realignment criterion, and
hence PPT entangled states can be revealed (translucent yellow region).
All other states of the pyramid are NPT entangled.
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3.5.2.1. Applying the outside-in shift

We can apply the outside-in shift method to detect most of the bound entangled
states (3.46), which we want to show in the following. The idea is to choose PPT
starting points on the boundary plane α = 7

2
β + 1− γ of the positivity pyramid,

on the Horodecki line and in a region close to this line, and shift the operators Gλ

along the parameterized lines that connect the starting points with the maximally
mixed states. If we can show that Gλ is an entanglement witness until a certain
λmin, all states ρλ (3.26) with 1 ≤ λ < λmin are PPT entangled.

We parameterize our “starting states” on the boundary plane by

ρplane ≡ ρα,β,γ with
(

α =
1 + γ + ε

6
, β =

−5 + 7γ + ε

21
, γ

)
, ε ∈ R , (3.48)

where we introduced an additional parameter ε to account for the deviation from
the line within the boundary plane.

Depending on γ and ε the shifting operator Gγ,ε,λ (3.25) has the following form:

Gγ,ε,λ = ρλ − ρpl − 〈ρλ, ρλ − ρpl〉1 = a (21+ c1U1 + c2U
I
2 + c?

2U
II
2 ) ,

with a =
d

36
λ(1− λ) , d = 1 + 3γ2 + 3ε(2 + ε)/7 ,

c1 = −4(2 + ε)

7dλ
, c2 =

2(1− 7
√

3γ i− 3ε)

7dλ
. (3.49)

The operators U1, U
I
2 , U II

2 are defined by

U1 := U01 ⊗ U01 + U02 ⊗ U02 + U11 ⊗ U−11 + U12 ⊗ U−12

+ U21 ⊗ U−21 + U22 ⊗ U−22 ,

U2 := U I
2 + U II

2 with U I
2 := U10 ⊗ U−10 , U II

2 := U20 ⊗ U−20 , (3.50)

and the singular values of the correlation coefficient matrix are given by si = |ci|.
The family of states ρλ is the parameterized line between our starting states (3.48)
and the maximally mixed state,

ρλ = λ ρplane +
1− λ

9
1 . (3.51)

We want to find the minimal λ, denoted by λmin, depending on the parameters γ
and ε, such that all states on the line (3.51) are bound entangled for λmin < λ ≤ 1.
To accomplish this we define the functions

g1(γ, ε, λ) := |c1| and g2(γ, ε, λ) := |c2| , (3.52)

then λmin is attained at max{g1(γ, ε, λ), g2(γ, ε, λ)} = 1 (see Lemma 3.1). Bound
entanglement can be found in a region where λmin < 1 and the starting points of
the lines (3.51) are PPT states. That means, ε and γ are chosen such that the
starting points are PPT states and the corresponding line allows a λmin < 1. The
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Figure 3.5.: Plot of the parameter range γ versus ε of starting points of the lines (3.51)
such that bound entangled states can be detected.

parameter ε is bounded by −1/4 < ε < 1/3 , where the lower bound is reached
for λmin → 1 at |γ| = 1/4 and the upper bound arises from the boundary of the
PPT states at γ = 0. For every ε in this interval we have an interval of |γ| where
bound entangled states are located.

More precisely, in the interval for the ε parameter −1/4 < ε < ε0 with ε0 =(
8− 7(2/(−5 +

√
29))1/3 + 7(2/(−5 +

√
29))−1/3

)
/3 ' −0.03 the parameter γ is

confined by
√

1− 2ε + 3ε2/
√

21 < |γ| <
√

7− 6ε− 3ε2 − 2(1− 48ε− 12ε2)1/2/
√

21,
under the constraint λmin < 1. For the remaining interval ε0 < ε < 1/3 we get the
bounds

√
1− 2ε + 3ε2/

√
21 < |γ| < √

9− 26ε− 3ε2/7, where the lower bound is
again constrained by λmin < 1 and the upper one by the PPT condition. A plot
of the allowed values of ε and γ for the starting points on the boundary plane
is depicted in Fig. 3.5. We have equality of the coefficient functions g1 = g2

for |γ| =
√

15 + 22ε− 5ε2 / 7
√

3 =: γ0, g1 > g2 for |γ| < γ0 and g1 < g2 for
|γ| > γ0, where |γ| is always restricted to the allowed range described above. As
mentioned, λmin is gained from the condition max{g1(γ, ε, λ), g2(γ, ε, λ)} = 1 for
particular values of γ and ε. The total minimum λtot

min is finally reached at

λtot
min =

1

8
(3 +

√
13) ' 0.826 , (3.53)

which is significantly below the value 1. The total minimum (3.53) is attained
at ε = (7

√
13− 25) / 2 ' 0.12 and |γ| =

√
5 + 11γ0/3− 5γ2

0/12 / 7 ' 0.35 where
γ0 = −25 + 7(13)1/2. The whole line of states ρλ (3.51) within the interval
λtot

min < λ ≤ 1 is found to be bound entangled. The volume of the detected bound
entangled states is illustrated in Fig. 3.6. For γ = 0 no bound entanglement
is detected (cf. the two-parameter case in Sec. 4.4.2), which is represented in
Fig. 3.6 at the meeting point of the two bound entangled regions.

Actually all PPT entangled states of Eq. (3.46), Fig. 3.4, can be detected using
Lemma 3.1. To see this, we construct tangent planes onto the surface of the
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Figure 3.6.: Regions of detected bound entangled states within the pyramid represented
by the three–parameter states ρα,β,γ (3.34). The dot represents the maxi-
mally mixed state, the Horodecki states are represented by the line through
the boundary plane from which the regions of bound entanglement emerge.
In the magnified picture on the right hand side the viewpoint is altered a
bit to gain a better visibility.

function
α =

1

16
(6 + 11β − γ −∆1) (3.54)

from the realignment criterion (3.41), where we use orthogonal coordinates (3.47).
In this way we can assign geometric operators to the tangential planes by choos-
ing points ~a inside the planes and points ~b outside the planes such that ~a −~b is
orthogonal to the planes. Since the Euclidean geometry of our picture is isomor-
phic to the Hilbert-Schmidt geometry, the points ~a and ~b correspond to states ρa

and ρb and we can construct the geometric operator accordingly,

Gre = ρa − ρb − 〈ρa, ρa − ρb〉19 . (3.55)

These operators (3.55) are linear combinations of the three-parameter states ρα,β,γ

which are linear combinations of the Bell states Pnm (3.31) and can be written
as a Bloch decomposition using Eq. (3.33).

The geometric operators (3.55) corresponding to tangent planes in points (αt, βt, γt),
where αt is a function of βt and γt, given by the realignment function (3.54), are

Gre = a (21− U1 + c U I
2 + c∗U II

2 ) , with

a =
1

36
(−2− 9βt + 3γt + 3∆c) ,

c =
9γ2

t + (−2− 9βt + 3γt)∆c +
√

3γt (2 + 9βt − 3γt + 3∆c) i

(2 + 9βt)2 − 6(2 + 9βt)γt + 36γ2
t

,

∆c :=
√

4 + 36 + 81β2
t − 12γt − 54βtγt + 33γ2

t . (3.56)

The singular values of the correlation coefficient matrix are the absolute values
of the coefficients −1, c and c∗ in Eq. (3.56), which are all one,

{si} = {1, 1, 1, 1, 1, 1, 1, 1} , (3.57)
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1

2

3

4 5

4

5 1

Figure 3.7.: Left: The entanglement properties of the three-parameter family on the
boundary plane (3.58) where the Horodecki states are located. The tri-
angular region (green) contains the separable states, the bound entangled
states are located in the parabolic region (yellow), and the remaining states
are NPT entangled. Right: The kernel polytope is a polygon (green) that
includes states that are necessarily separable.

and therefore, according to Lemma 3.1, the geometric operators Gre are entan-
glement witnesses that detect the entanglement of all states “above” the corre-
sponding planes, thus also the bound entangled states in the region of Eq. (3.46).

3.5.2.2. Applying the inside-out shift

We might ask ourselves if the PPT entanglement of Eq. (3.46), revealed by the
realignment criterion and also by GEWs, is all there is for the three-parameter
family (3.34). Or, to put it differently, are all the three-parameter states that
satisfy both the PPT and the realignment criterion separable? We can answer
this question by using GEWs and the inside-out shift method. The entanglement
properties of the states on the boundary plane

α =
7

2
β + 1− γ (3.58)

of the positivity pyramid are already fixed. The realignment function (3.54)
and also the GEWs Gre (3.56) draw a triangle on this plane, whose vertices are
separable states. The tip of the triangle is a separable state since it is PPT and
γ = 0 (all PPT states of the two-parameter subset γ = 0 are separable, shown
in Ref. [10]), the other two, at γ = 1 and γ = −1, are simple mixtures of Bell
states Pnm that are also shown to be separable in Ref. [10]. So the the triangle
is the convex hull of the three separable states and thus has to be separable.
For an illustration of the entanglement properties on the boundary plane (3.58)
see Fig. 3.7. But what about all the three-parameter states (3.34)? First, we
construct a kernel polytope of those states that are necessarily separable. This
can be done by identifying five separable states that serve as vertices for the kernel
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polytope. Three arise from the two-parameter subset γ = 0, where all PPT states
are separable, the remaining two vertices are the separable states with γ = 1 and
γ = −1 on the boundary plane (3.58). The resulting kernel polytope is a polygon
with five vertices, see Fig. 3.7. Alternatively, one can also use sufficient criteria
for separability to construct a kernel polytope of separable states. In Ref. [36]
a sufficient separability criterion is presented that is shown to be applicable for
states of the magic simplex.

The question is if this polygon contains all separable states of the three-
parameter family (3.34), which would imply much greater regions of bound en-
tanglement than detected before. In the following we want to show that this is
not the case.

We can assign geometric operators to four boundary planes of the kernel poly-
gon, in the same way as we did for the planes on the realignment surface, see
Eq. (3.55), where we use the geometric isomorphism again. We call the four
geometric operators Gu

±, Gd
±, which correspond to the following planes given by

three vertex points (see Fig. 3.7): Gu
+ to 1, 3, 4, Gu

− to 3, 4, 5, Gd
+ to 1, 2, 3, and

Gd
− to 2, 3, 5. The plus and minus sign indicates the side with positive or negative

values of the parameter γ. The operators are

Gu
± = a (21− U1 + c U I

2 + c∗U II
2 ) , with a =

1

63
, c = −1±

√
3i ,

Gd
± = a (21+ U1 + c U I

2 + c∗U II
2 ) , with a =

1

63
, c = −1±

√
3i . (3.59)

The boundary planes can be easily shifted along parameterized lines through
their normal vectors, and so can the assigned geometric operators (3.59). Note
that we have a simplified picture of locally maximally mixed states, see Re-
mark 3.4. The operators Gu

±, Gd
± themselves are not entanglement witnesses,

since the condition (3.20) can be numerically shown to be violated (see Corol-
lary 3.2). The singular values are again the absolute values of the correlation
coefficients, {si} = {1, 1, 1, 1, 1, 1, 2, 2}, hence Lemma 3.1 does not give an an-
swer. It is difficult to show a violation analytically because of the complex Bloch
vector geometry of qutrits, see Remarks 3.2 and 3.5. In order to check the con-
dition (3.20) we minimize the left-hand term numerically by varying the possible
Bloch vectors ~n∗, ~m∗, restricted by the condition ρ ≥ 0 with ρ of Eq. (2.47). Shift-
ing the operators outside, we find a minimum S = −1 of condition (3.20) when
the planes become tangent to the shape enclosed by the PPT and realignment
criterion3, achieving new vertices at the touch points. Employing the inside-out
shift method, see Sec. 3.5 and Fig. 3.3, we construct a new polygon with the new
vertices, and assign new geometric operators corresponding to the new boundary
planes. Shifting the new operators outside, we again find the minimum S = −1
at planes tangent to the PPT and realignment shape. Therefore there is a very
strong implication that the PPT and realignment shape, seen as the two-cone

3Standard numerical procedures suffice (e.g. with Mathematica), since due to the convexity
of the set of separable states, the achieved minimum has to be a global minimum.
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shape in Fig. 3.4, is the shape of the separable states. Fig. 3.4 thus is a picture
of all entanglement properties of the three-parameter family.

3.6. Decomposition of entanglement witnesses for
experimental application

Entanglement witnesses are Hermitian operators and therefore observables that
should be measurable in a given experimental setup. According to the entangle-
ment witness criterion (Theorem 3.4) one can reliably detect entangled states by
measuring the expectation value of the witness. In this way one is in principle
able to detect entanglement in experiments without performing a full tomogra-
phy of the density matrix. The advantage of using entanglement witnesses for
entanglement detection over Bell inequalities (see Refs. [39, 78, 51, 128] for Bell
inequalities in higher dimensional systems) is that witnesses usually detect more
entangled states than Bell inequalities, especially if they are optimal. Bell in-
equalities correspond to non-optimal entanglement witnesses [119, 72] and detect
states for which certain measurement outcomes are not compatible with local re-
alistic theories (so-called non-local states). The expectation value of the witness
W is given by

〈W 〉 = TrρW (3.60)

for some state ρ. If 〈W 〉 < 0 then the state ρ is entangled. But which measure-
ments have to be performed? Even if it is theoretically known that the witness
is an observable, it is not trivial to find the concrete measurements that have to
be performed in experiments.

Obviously it is appropriate to express the entanglement witness in terms of
generalized Gell-Mann matrices (2.13) - (2.15), since they are Hermitian. For
d = 3 – the qutrit case – the Gell-Mann matrices (2.17) - (2.19) can be expressed
in terms of eight “physical” operators, the observables Sx, Sy, Sz, S2

x, S2
y , {Sx, Sy},

{Sy, Sz}, {Sz, Sx} of a spin-1 system, where ~S = (Sx, Sy, Sz) is the spin operator
and {Si, Sj} = SiSj + SjSi (with i, j = x, y, z) denotes the corresponding anti-
commutator. We can decompose the Gell-Mann matrices into spin-1 operators
as follows (for a similar expansion, see Ref. [92]):

λ12
s =

1√
2~2

(~Sx + {Sz, Sx}) , λ13
s =

1

~2

(
S2

x − S2
y

)
,

λ23
s =

1√
2~2

(~Sx − {Sz, Sx}) , λ12
a =

1√
2~2

(~Sy + {Sy, Sz}) ,

λ13
a =

1

~2
{Sx, Sy} , λ23

a =
1√
2~2

(~Sy − {Sy, Sz}) ,

λ1 = 21+
1

2~2

(
~Sz − 3S2

x − 3S2
y

)
, λ2 =

1√
3

(
−21+

3

2~2

(
~Sz + S2

x + S2
y

))
.

(3.61)
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All operators can be represented by the following matrices:

Sx =
~√
2




0 1 0
1 0 1
0 1 0


 , Sy =

~√
2




0 −i 0
i 0 −i
0 i 0


 , Sz = ~




1 0 0
0 0 0
0 0 −1


 ,

S2
x =

~2

2




1 0 1
0 2 0
1 0 1


 , S2

y =
~2

2




1 0 −1
0 2 0
−1 0 1


 ,

{Sx, Sy} = ~2




0 0 −i
0 0 0
i 0 0


 , {Sy, Sz} =

~2

√
2




0 −i 0
i 0 i
0 −i 0


 ,

{Sz, Sx} =
~2

√
2




0 1 0
1 0 −1
0 −1 0


 . (3.62)

Thus we can express any observable on a n-qutrit Hilbert space - a composite
system of n particles with three degrees of freedom - in terms of the spin operators
(3.62).

As an example we want to study the entanglement witness for the isotropic
two-qutrit state, i.e. state (4.4) for d = 3 (a detailed study of entanglement
witnesses and entanglement quantification of the isotropic two-qudit state follows
in Sec. 4.3). In this case we obtain for the optimal entanglement witness

Wiso =
1

4
√

2

(
4

3
1⊗ 1− Λ

)
, (3.63)

(i.e. Eq. (4.10) for d = 3) where the operator Λ is defined in Eq. (2.69).
Expressing the Gell-Mann matrices in Λ by the spin operator decomposition

(3.61) the expectation value of the entanglement witness Wiso is given by

〈Wiso〉 =
1

3
√

2
− 1

4
√

2
〈Λ〉 , (3.64)

where

〈Λ〉 =
1

~2

(
〈Sx ⊗ Sx〉 − 〈Sy ⊗ Sy〉+ 〈Sz ⊗ Sz〉

)
+

16

3
〈1⊗ 1〉

− 4

~2

(
〈1⊗ S2

x〉+ 〈1⊗ S2
y〉+ 〈S2

x ⊗ 1〉+ 〈S2
y ⊗ 1〉

)

+
4

~4

(
〈S2

x ⊗ S2
x〉+ 〈S2

y ⊗ S2
y〉

)
+

2

~4

(
〈S2

x ⊗ S2
y〉+ 〈S2

y ⊗ S2
x〉

)

+
1

~4

(
〈{Sz, Sx} ⊗ {Sz, Sx}〉 − 〈{Sy, Sz} ⊗ {Sy, Sz}〉 − 〈{Sx, Sy} ⊗ {Sx, Sy}〉

)
.

(3.65)

In principle it should be possible to determine the various expectation values in
(3.65) experimentally, possible procedures to measure expectation values of the
observables in Eq. (3.62) are given in Ref. [6].
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3. Geometric entanglement detection

3.7. Summary and conclusion

In this chapter we first review entanglement criteria for vector states and density
operators. We combine the concept of Bloch vector decompositions for opera-
tors and states (previously discussed in Chapter 2) with entanglement witnesses
and derive conditions that can be used to identify operators as entanglement
witnesses. Furthermore, we give the definition of geometric entanglement wit-
nesses and present methods to “shift” them along parameterized lines of states to
detect entanglement and identify separable states. This is illustrated on a three-
parameter family of two-qutrit states for which we determine regions of NPT
entangled, PPT entangled and separable states. Finally we present a decompo-
sition of entanglement witnesses via measurable spin-1 operators.

Our approach to entanglement detection is guided by the geometrically intuitive
way of using entanglement witnesses. The construction of geometric entanglement
witnesses directly uses the fact that entanglement witnesses correspond to hyper-
planes in the Hilbert-Schmidt geometry. In this way it becomes easier to apply
geometric operations like the shifting of planes, and representations in Euclidean
geometry are easy to perform. By employing the convenient parametrization of
the Bloch vector decompositions of operators and states, the conditions for iden-
tifying geometric entanglement witnesses can be simplified. The construction of
geometric entanglement witnesses does not rely on special properties of the states,
i.e. it can be done for NPT or PPT entangled states likewise.

The presented example is relevant in many aspects. First of all, the states of the
magic simplex are a higher dimensional analogy of Bell-state mixtures of the two-
qubit case that are relevant for quantum communication tasks; they are used for a
higher dimensional teleportation protocol, as explained in Sec. 3.5.2. Furthermore
it is interesting and surprising that this particular three-parameter family includes
the Horodecki states that were among the first examples of bound entangled states
and are an example of a family of states that include all entanglement properties.
Thus the three-parameter family can be viewed as a more-parameter extension
of the Horodecki states that includes significantly more bound entangled states.
Finally, the presented family of states allows a nice three-dimensional Euclidean
illustration that makes the regions of entangled, bound entangled and separable
states visible.

In this chapter only bipartite systems are investigated. Of course a multipar-
tite extension is trivially possible if we only want to distinguish between states
that contain entanglement between any of the subsystems and states that are
fully separable into all subsystems. The definition of separable states just has
to be extended with additional tensor products, respectively (see Sec. 5.2). The
distinction of states that are separable with respect to a certain number of sub-
systems, is, however, not trivial [69, 58, 59]. In this respect a generalization of the
used Bloch decompositions of product states seems to be non-trivial. In the case
of multipartite states one can distinguish between the distillability of states into
entangled states of a fixed number of particles [57], and the notion of bound en-
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tanglement becomes more involved. Entangled multipartite states can themselves
be classified in different ways, see, e.g., Refs. [46, 1, 132] and Chapter 5.
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4. Geometric quantification of
entanglement

4.1. Introduction

In the last chapter we discussed the concept of geometric entanglement witnesses
and how to use them for entanglement detection. In this chapter we show that ge-
ometric entanglement witnesses are also applicable in the context of entanglement
quantification by giving concrete examples for families of two-qubit, two-qutrit
and two-qudit states.

Entanglement quantification is a mathematical task in which one seeks for
continuous functions that “measure” the amount of entanglement of a given vector
state or density operator. Of course, since the separability problem has not yet
been solved, neither is the problem of entanglement quantification of states of
arbitrary dimensional Hilbert spaces and arbitrary many subsystems. For lower
dimensions, in particular for two-qubit states, entanglement measures exist that
can be computed for all density operators of this dimensions, which matches
the fact that in this case we can also always determine if a density operator is
entangled or separable.

For vector states of bipartite systems a computable and convenient entangle-
ment measure is provided by the entropy measure of entanglement [17, 14]; it is
defined as the von-Neumann entropy of the reduced density operators. A gener-
alization of this concept is given by the entanglement of formation [17]. Here a
standard method to generalize an entanglement measure for pure states to mixed
states is used: It is defined as the mean value of the entropy measure for the pure
states that the mixed states can be decomposed into, and takes the infimum over
all possible decompositions. This method is in general not computable. For two
qubits, however, entanglement of formation can be related to the concurrence
[17], which can be computed [60, 143]. For bipartite systems of arbitrary dimen-
sion the concurrence can be generalized [126, 112, 4, 94, 95], for mixed states
only lower bounds are calculable [94]. The generalized concurrence can, however,
detect PPT entangled states [94, 5]. A computable entanglement measure for
bipartite systems of arbitrary dimension is the negativity [133], which, however,
vanishes not only for separable states but also for PPT entangled states. So
far no universally computable entanglement measure for PPT entangled states is
known. In the case of multipartite systems, various approaches to entanglement
quantification exist [38, 18, 93, 108, 9, 95, 40, 90, 85, 73], but even for pure states
there is no uniquely approved entanglement measure. The reason is that the
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4. Geometric quantification of entanglement

purpose of what entanglement to quantify can vary, e.g. if one wants to measure
the amount of entanglement present in the whole composite system, or between
various subsystems. An approach that embraces both aspects is presented in
Ref. [59].

A geometric approach to entanglement quantification is provided by so-called
geometric entanglement measures that are defined as the minimal distance of a
state to the set of separable states1 [130, 129]. This distance can be defined in
multiple ways, e.g. by distances induced by the Hilbert-Schmidt metric [142, 98,
25, 19] or the Bures metric [129] of the operator space. Also the relative entropy
of entanglement [130, 129] is widely used, which is not a distance in the usual
sense as it is not defined via a metric.

The chapter is organized as follows: In Sec. 4.2 we start with the definition
of the Hilbert-Schmidt measure of entanglement and explain how geometric en-
tanglement witnesses can be used in this respect. In Sec. 4.3 we determine the
Hilbert-Schmidt measure for the isotropic two-qudit states using geometric en-
tanglement witnesses and Bloch decompositions into the three bases discussed
in Chapter 2. In Sec. 4.4 we calculate the Hilbert-Schmidt measure for two-
parameter families of two-qubit and two-qutrit states. We draw conclusions in
Sec. 4.5.

The chapter is based on Refs. [20, 23, 24]:

• Reinhold A. Bertlmann and Philipp Krammer
Bloch vectors for qudits and geometry of entanglement
e-print arXiv:0706.1743

• Reinhold A. Bertlmann and Philipp Krammer
Geometric entanglement witnesses and bound entanglement
Phys. Rev. A 77, 024303 (2008)

• Reinhold A. Bertlmann and Philipp Krammer
Entanglement witnesses and geometry of entanglement of two-qutrit states
Ann. Phys. 324, 1388 (2009)

4.2. The Hilbert-Schmidt measure and geometric
entanglement witnesses

Geometric entanglement measures have a simple geometric approach to the quan-
tification of entanglement: A state has as much entanglement as its minimal dis-
tance to the set of separable states. This concept was initiated in Refs. [130, 129],
where also the properties that the measure should satisfy were listed:

1Note that the definition of geometric entanglement measures given here is different to the
measure introduced in [137].
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4.2. The Hilbert-Schmidt measure and geometric entanglement witnesses

(G1) It should vanish for separable states, which is trivially satisfied,

(G2) it should be invariant under local unitary transformations, and

(G3) it should not increase on average under local operations and classical com-
munication.

A concrete realization is the Hilbert-Schmidt measure of entanglement, intro-
duced in Ref. [142]. It uses the Hilbert-Schmidt distance (1.12) to define the
measure of a state ρ as

DHS(ρ) := min
σ∈S

d(ρ, σ) = ‖ρ− σ0‖ , (4.1)

where σ0 is the separable state for which d(ρ, σ) takes the minimum. Such a
state always exists since the set of separable states is convex and compact. It
is called the nearest separable state to the state ρ, and DHS(ρ) is called the
Hilbert-Schmidt measure of entanglement. This geometric measure induced by
the Hilbert-Schmidt measure is believed to be a proper entanglement measure, it
satisfies the properties G1 (of course the nearest separable state to a separable
state is the state itself, yielding a zero Hilbert-Schmidt measure for separable
states) and G2 [142]. However, a proof of property G3 is still outstanding [98],
but since no counterexample has been found yet that would prove a violation, it
can be reasonably conjectured that the property is satisfied. Clearly the greatest
difficulty in the evaluation of the Hilbert-Schmidt measure is to find the nearest
separable state to a given entangled state. This cannot be achieved operationally.
In Ref. [87], e.g., an algorithm for a detection of the nearest separable state is
presented that gives a solution or good approximation in many cases. Another
method, introduced in Ref. [19], tests if a good guess is indeed equal to the nearest
separable state, given in the following lemma.

Lemma 4.1 ([19]). Let ρ ∈ AD be an arbitrary entangled state on a bipartite
Hilbert space HA ⊗ HB. A state σ̃ ∈ AD is equal to the nearest separable state
σ0, σ̃ = σ0, if and only if the geometric operator

G̃ := σ̃ − ρ− 〈σ̃, σ̃ − ρ〉1 (4.2)

is an entanglement witness.

Proof. The detailed proof can be found in Ref. [19]. The idea is the following:
If σ̃ is the nearest separable state, then the hyperplane corresponding to G̃ is
tangent to the set of separable states due to its convexity and thus is an optimal
entanglement witness. It remains to prove that if σ̃ is not the nearest separable
state, then G̃ is not an entanglement witness. This is easy to see, since if σ̃ is not
the nearest separable state, G̃ is no longer tangent to the set of separable states
and hence cannot be an entanglement witness, see Fig. 4.1.
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Figure 4.1.: Illustration of the proof of Lemma 4.1. As usual, the geometric operator G̃
is represented by the hyperplane 〈ρpl, G̃〉 = 0.

Remark 4.1. Once the nearest separable state σ0 to an entangled state ρ has
been found, an optimal geometric entanglement witness that detects the entan-
glement of ρ is given by [102, 25, 19] (see also Lemma 3.2)

Wopt := σ0 − ρ− 〈σ0, σ0 − ρ〉1 . (4.3)

The method of Lemma 4.1 is non-operational, since in general it is not straight-
forward to see whether the geometric operator (4.2) is an entanglement witness or
not. Corollary 3.2 and Lemma 3.1, which are derived using Bloch decompositions,
however, often help to decide this.

4.3. Hilbert-Schmidt measure for the isotropic
two-qudit states

The isotropic two-qudit states are defined as the one-parameter family of states
[61, 105, 65]

ρ(d)
α = α

∣∣φd
+

〉 〈
φd

+

∣∣ +
1− α

d2
1d2 , α ∈ R , − 1

d2 − 1
≤ α ≤ 1 , (4.4)

i.e. the maximally entangled state (2.61) subjected to white noise. We shortly
write 1d2 for 1d ⊗ 1d. It is shown in Ref. [61] that these states are separable for
−1/(d2 − 1) ≤ α ≤ 1/(d + 1), and entangled for 1/(d + 1) < α ≤ 1. Using the
decompositions of the maximally entangled state

∣∣φd
+

〉 〈
φd

+

∣∣ into the generalized
Gell-Mann matrices basis (GGB), the polarization operator basis (POB), and the
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4.3. Hilbert-Schmidt measure for the isotropic two-qudit states

Weyl operator basis (WOB), we can decompose the isotropic two-qudit states as

ρ(d)
α =

1

d2
1d2 +

α

2d
Λ , (4.5)

=
1

d2
1d2 +

α

d
T , (4.6)

=
1

d2
1d2 +

α

d2
U , (4.7)

where Λ, T , and U are defined in Eqs. (2.69), (2.73), and (2.76), respectively. To
calculate the Hilbert-Schmidt measure, we have to determine the nearest separa-
ble states σ

(d)
0 to the entangled isotropic states of Eq. (4.4). A reasonable guess

σ̃(d) is the isotropic state with α = 1/(d + 1), i.e. the isotropic state that lies
on the boundary of the set of separable states. Using the decomposition of the
isotropic states into the GGB (4.5), this state has the form

σ̃(d) = ρ
(d)

α= 1
d+1

=
1

d2
1d2 +

1

2 d(d + 1)
Λ , (4.8)

and we can set up the operator (4.2) and bring it in the form of Eq. (3.14),

G̃(ρ
(d)
α, ent) =

1

2
√

d2 − 1

(
2(d− 1)

d
1d2 − Λ

)
. (4.9)

To apply Lemma (3.1) we have to calculate the singular values of the correlation
coefficient matrix. These are the absolute values of the coefficients of the terms
of Λ, which are ±1, and thus for the singular values we have si = 1 ∀i. Hence
(see Lemma 3.1) G̃(ρ

(d)
α, ent) is an optimal entanglement witness and we can write

Wopt(ρ
(d)
α, ent) =

1

2
√

d2 − 1

(
2(d− 1)

d
1d2 − Λ

)
. (4.10)

According to Lemma 4.1, σ̃(d) is the nearest separable state σ
(d)
0 for all possi-

ble values of α of the entangled isotropic two-qudit state. Of course the above
quantities can be decomposed into the POB and the WOB likewise. Comparing
the three forms for the isotropic qudit states (4.5), (4.6) and (4.7) we find the
relations

Λ = 2 T and T =
1

d
U , (4.11)

and obtain for the nearest separable states and the optimal entanglement wit-
nesses

σ
(d)
0 = ρ

(d)

α= 1
d+1

=
1

d2
1d2 +

1

d(d + 1)
T ,

=
1

d2
1d2 +

1

d2(d + 1)
U , (4.12)
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Wopt(ρ
(d)
α, ent) =

1√
d2 − 1

(
d− 1

d
1d2 − T

)
,

=
1

d
√

d2 − 1
((d− 1)1d2 − U) , (4.13)

where we used Lemma 3.1 and Lemma 4.1 in the same way as for the GGB.
The Hilbert-Schmidt measure is of course independent of the choice of basis

for the operator decompositions and is given by

D(ρ
(d)
α, ent) =

∥∥∥σ
(d)
0 − ρ

(d)
α, ent

∥∥∥ =

√
d2 − 1

d

(
α − 1

d + 1

)
. (4.14)

4.4. Hilbert-Schmidt measure for two-parameter
families of states

To further demonstrate the methods for a geometrical quantification of entangle-
ment given in the previous section, we want to determine the Hilbert-Schmidt
measure for particular two-parameter families of states that are mixtures of max-
imally entangled vector states.

4.4.1. Two-qubit states

As a first example we consider the following family of two-parameter two-qubit
states:

ρα,β =
1− α− β

4
14 + α|φ+〉〈φ+|+ β

2

(|ψ+〉〈ψ+|+ |ψ−〉〈ψ−|) , (4.15)

where 14 = 12 ⊗ 12 and the used states are projectors onto the vector states

|φ+〉 =
1√
2

(|00〉+ |11〉) , (4.16)

|φ−〉 =
1√
2

(|00〉 − |11〉) , (4.17)

|ψ+〉 =
1√
2

(|01〉+ |10〉) , (4.18)

|ψ−〉 =
1√
2

(|01〉 − |10〉) , (4.19)

which are called Bell states and form an orthogonal basis of the 2×2 dimensional
Hilbert space. The convex set B of all mixtures of the four Bell states is given
by (we write Pφ+ for |φ+〉〈φ+| (the projector onto |φ+〉), and equivalently for the
other states)

B :=

{
p1Pφ+ + p2Pφ− + p3Pψ+ + p4Pψ− ; pi ≥ 0,

∑
i

pi = 1

}
. (4.20)
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To get an Euclidean geometric analogue of B we first notice that the four param-
eters of Eq. (4.20) can be reduced to three by using the completeness relation

Pφ+ + Pφ− + Pψ+ + Pψ− = 14 (4.21)

and expressing one Bell state in terms of the others. This reduces the parame-
ter space to three dimensions, which can be illustrated. All Bell states (in their
density operator form) are equidistant from each other with respect to the Hilbert-
Schmidt distance, thus the Euclidean representation is a three-dimensional tetra-
hedron with the four Bell states as vertices [66, 135, 25], see Fig. 4.3.

The two-parameter family (4.15) is a subset of the whole set B. The require-
ment of positivity, ρα,β ≥ 0, constrains the possible parameter values:

α ≤ −β + 1, α ≥ 1

3
β − 1

3
, α ≤ β + 1 , (4.22)

and the PPT criterion (Theorem 3.2) gives parameter constraints for the positive
partial transpose2:

α ≥ β − 1, α ≤ 1

3
β +

1

3
, α ≥ −β − 1 , (4.23)

The two-dimensional geometric illustration of the positivity and the PPT regions
of the two-parameter states (4.15) is shown in Fig. 4.2.

Remark 4.2. Note that the Bell state |φ−〉〈φ−| is also included in this family
for α = −1 and β = −2. The coordinate axes according to the parameters α
and β are chosen non-orthogonal and differently scaled, such that orthogonality
relations in Hilbert-Schmidt space are reflected in the Euclidean geometry (see
also Remark (3.6)). Of course the maximally mixed state 1/414 lies in the ori-
gin. Both parameter axes thus have to be orthogonal to a boundary line of the
positivity condition, since in Hilbert-Schmidt space we have the orthogonality
relations

〈1
2

(Pψ+ + Pψ−)− Pφ−,
1

4
1− Pφ+〉 =

1

8
TrPψ+ +

1

8
TrPψ− − 1

4
TrPψ− = 0 , (4.24)

〈1
4
1− 1

2
(Pψ+ + Pψ−) , Pφ+ − Pφ−〉 =

1

4
TrPφ+ − 1

4
TrPφ− = 0 . (4.25)

The location of the plane of the two-parameter states in the simplex B is shown
in Fig. 4.3. In order to determine the Hilbert-Schmidt measure, we need to find
the nearest separable states to the entangled states of the two-parameter family.
For that purpose we pursue the following idea: We calculate the “points” in the
separable region that are nearest to the entangled states in the Euclidean two-
dimensional picture (see Fig. 4.2), and then use Lemma 4.1 to check if the found
nearest point indeed corresponds to the nearest separable state (with respect to
2the constraints give the region of operators (4.15) that are positive under partial transposition,
they include also non-positive operators that nevertheless become positive under PT
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Figure 4.2.: Euclidean geometric representation of the family of two-parameter two-
qubit states ρα,β . The darker (purple) triangle includes all “points” (α, β)
that correspond to a positive operator after partial transposition, it in-
tersects the lighter (yellow) triangle of all states (ρ ≥ 0). The PPT and
separable states thus lie in the intersection region, the NPT entangled states
in the triangular regions I and II.
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Figure 4.3.: The plane of the states ρα,β (4.15) is located in the tetrahedron of all Bell
state mixtures, the set B (4.20).
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the whole state space). This task is further simplified if we introduce orthogonal
and equally scaled coordinates a and b that depend on the original coordinates α
and β,

a = α− 1

3
β, b =

√
2

3
β . (4.26)

The concrete operator of the form (4.2) can then be decomposed in terms of Pauli
matrices in order to apply Lemma 3.1. It is therefore convenient to express the
whole family as

ρα,β =
1

4
(14 + α (σx ⊗ σx − σy ⊗ σy) + (α− β) σz ⊗ σz) , (4.27)

where we used the decomposition of the Bell states

|φ+〉〈φ+| = 1

4
(14 + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) , (4.28)

|φ−〉〈φ−| = 1

4
(14 − σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) , (4.29)

|ψ+〉〈ψ+| = 1

4
(14 + σx ⊗ σx + σy ⊗ σy − σz ⊗ σz) , (4.30)

|ψ−〉〈ψ−| = 1

4
(14 − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz) . (4.31)

4.4.1.1. Region I

Let us consider the entangled states in region I (see Fig. 4.2) first, which is given
by

α ≤ β + 1, α ≤ −β + 1, α >
β

3
+

1

3
. (4.32)

The points in the separable region that are nearest to points in region I, i.e.
to points (α, β) that satisfy the constraints (4.32), can be found by applying
a standard point-to-line distance calculation (using the orthogonal coordinates
(4.26)). These are the points (1/3+β/3, β) that do not depend on α anymore and
correspond to the states (where we insert the parameter values into Eq. (4.27))

σ̃β =
1

4

(
14 +

1 + β

3
(σx ⊗ σx − σy ⊗ σy) +

1− 2β

3
σz ⊗ σz

)
. (4.33)

To find out if the reasonable candidate σ̃β is indeed the nearest separable state,
according to Lemma 4.1 we have have to check if the operator

C̃I
pre = σ̃β − ρI

α,β − 〈σ̃β, σ̃β − ρI
α,β〉14 , (4.34)

where we denote ρI
α,β as the states that lie in region I, is an entanglement witness.

The decomposition into Pauli operators yields

C̃I
pre =

1

4

(
α− β

3
− 1

3

)
(14 − σx ⊗ σx + σy ⊗ σy − σz ⊗ σz) . (4.35)
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To get an easier expression, the operator (4.35) can be multiplied by any positive
scalar, since this only changes the value but not the sign of expectation values.
In our region of interest (4.32) the term 1/4(α − β/3 − 1/3) is always positive
and we can multiply C̃pre with [1/4(α− β/3− 1/3)]−1 to obtain

C̃I = 14 − σx ⊗ σx + σy ⊗ σy − σz ⊗ σz , (4.36)

which is independent of the parameters α and β. Let us now check the properties
(3.12) and (3.13). For the entangled states in Region I we obtain

〈ρI
α,β, C̃I〉 = −3

(
α− 1

3
− β

3

)
< 0 , (4.37)

which is negative due to the last inequality in Eq. (4.32), but which has to be
negative anyway due to the definition of a geometric operator (see Definition 3.3).
The crucial point is to show that property (3.13) is satisfied. But this can be
quickly accomplished using Lemma 3.1: The singular values of the correlation
coefficient matrix are the absolute values of the coefficients of the σi ⊗ σi terms:
s1 = s2 = s3 = 1, and thus according to Lemma 3.1 we have TrσpC̃

I ≥ 0 for
all product states σp and hence also TrσC̃I ≥ 0 for all separable states (see
Corollary 3.1). Thus C̃I is an entanglement witness and therefore (Lemma 4.1)
the states σ̃β are the nearest separable states σ0,β to the entangled states ρI

α,β of
region I. Finally for the Hilbert-Schmidt measure we obtain

D(ρI
α,β) = ‖σ0,β − ρI

α,β‖ =

√
3

2

(
α− 1

3
− β

3

)
. (4.38)

4.4.1.2. Region II

The second region of entangled states in the three-parameter family is given by
the constraints

α ≤ β + 1, α ≥ 1

3
β − 1

3
, α < −β − 1 , (4.39)

illustrated as Region II in Fig. (4.32). The nearest separable points to the points
(α, β) are (

α̃

β̃

)
=

(
1/3 (−1 + 2α− β)
1/3 (−2− 2α + β)

)
, (4.40)

they correspond to the states σ̃α,β that now depend on both parameters α and
β. The geometric operator is then given by

C̃II
pre = σ̃α,β − ρII

α,β − 〈σ̃α,β, σ̃α,β − ρII
α,β〉14

=
1

12
(−α− β − 1) (1+ σx ⊗ σx − σy ⊗ σy − σz ⊗ σz) (4.41)

which is proportional to the simplified form

C̃II = 1+ σx ⊗ σx − σy ⊗ σy − σz ⊗ σz. (4.42)
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We have (cf. the last term in Eq. (4.39))

〈ρII
α,β, C̃II〉 = α + β + 1 < 0 , (4.43)

and, according to Lemma 3.1, the operator C̃II (4.42) is an entanglement witness,
since the singular values of the correlation coefficient matrix are again s1 = s2 =
s3 = 1. Therefore, according to Lemma 4.1, the states σ̃α,β are the nearest
separable states σ0;α,β and the Hilbert-Schmidt measure of the entangled states
in Region II evaluates to

D(ρII
α,β) = ‖σ0;α,β − ρII

α,β‖ =
1

2
√

3
(−α− β − 1) . (4.44)

4.4.2. Two-qutrit states

The procedure of determining the Hilbert-Schmidt measure, as discussed in the
last subsection for the two-parameter family of two-qubit states (4.15), can also
be applied to two-qutrits, i.e. 3× 3 dimensional systems.

We are interested in the following two-parameter states of two qutrits as a
generalization of the qubit case (4.15),

ρα,β =
1− α− β

9
19 + α P00 +

β

2
(P10 + P20) . (4.45)

These states are elements of the magic simplex (3.32), and is the two-parameter
case of the family of states (3.34), where γ = 0. The indices n, k can be interpreted
as “quantized” phase space coordinates. The Bell states P00, P10 and P20 lie on
a line in this phase space picture of the maximally entangled states and exhibit
the same geometry as other lines, see Refs. [10, 11, 12] for details.

Inserting the Bloch vector form of P00, P10 and P20 (3.33) we find the Bloch
decomposition into the Weyl operator basis (see Sec. 2.6) of the two-parameter
states (4.45),

ρα,β =
1

9

(
19 +

(
α− β

2

)
U1 + (α + β) U2

)
, (4.46)

where U1 and U2 are defined in Eq. (3.50).
The constraints for the positivity requirement (ρα,β ≥ 0) are

α ≤ 7

2
β + 1, α ≤ −β + 1, α ≥ β

8
− 1

8
, (4.47)

and those for positivity under partial transposition are

α ≤ −β − 1

2
, α ≥ 5

4
β − 1

2
, α ≤ β

8
+

1

4
. (4.48)

The Euclidean picture representing the Hilbert-Schmidt space geometry of the
states (4.45) is shown in Fig. 4.4. The parameter coordinate axes are again
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a

b

rÀ¥À0
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(1-2

P00

+P10 P20 (

1

1
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Figure 4.4.: Illustration of the two-qutrit states ρα,β (4.45) and their partial transpo-
sition. The regions I and II label the regions where the states are NPT
entangled, they are PPT and separable in the overlap with the region of
PPT points.

chosen non-orthogonal and not equally scaled to mirror the correct orthogonal-
ity conditions in Hilbert-Schmidt space (see Remarks 3.6 and 4.2). We saw in
Sec. 3.5.2 that the three-parameter family of states (3.34) does not contain PPT
entangled states if it is reduced to the two-parameter case γ = 0. It is also shown
in Ref. [10] that the PPT states ρα,β (4.45) are all separable.

To determine the Hilbert-Schmidt measure for the entangled two-parameter
two-qutrit states we apply the same procedure as in Sec. 4.4.1: We determine the
states that are the nearest separable ones in the Euclidean sense of Fig. 4.4 and
use Lemma 4.1 to check whether these are indeed the nearest separable ones with
respect to the whole state space.

4.4.2.1. Region I

First we consider Region I in Fig. 4.4, i.e., the triangle region of entangled states
ρI

α,β around the α-axis, constrained by the parameter values

α ≤ 7

2
β + 1, α ≤ −β + 1, α >

β

8
+

1

4
. (4.49)

In the Euclidean picture the point that is nearest to a point (α, β) in this region
is given by (1

4
+ 1

8
β, β), which corresponds to the separable two-qutrit state

σ̃β =
1

9

(
19 +

(
1

4
− 3

8
β

)
U1 +

(
1

4
+

9

8
β

)
U2

)
, (4.50)
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with U1 and U2 defined in Eq. (3.50).
For the difference of this state and the entangled states we find

σ̃β − ρI
α,β =

1

9

(
1

4
+

1

8
β − α

)
U , (4.51)

where U = U1 + U2. Using the norm ‖U‖ = 3
√

8 = 6
√

2 we gain the Hilbert-
Schmidt distance

‖σ̃β − ρI
α,β‖ =

2
√

2

3

(
α− 1

4
− 1

8
β

)
. (4.52)

It remains to calculate

〈σ̃β, σ̃β − ρI
α,β〉 = Tr σ̃β(σ̃β − ρI

α,β) = −2

9

(
α− 1

4
− 1

8
β

)
(4.53)

to set up the operator

C̃I
pre = σ̃β − ρI

α,β − 〈σ̃β, σ̃β − ρI
α,β〉19 =

1

9

(
α− 1

4
− 1

8
β

)
(21− U) , (4.54)

which can be simplified to the parameter-independent operator

C̃I = 21− U . (4.55)

To test whether C̃ (4.55) represents an entanglement witness we have to check
if the operator satisfies the inequalities (3.12) and (3.13). For the first condition
we find, as expected (it is already provided by the construction)

〈ρI
α,β, C̃I〉 = −8

(
α− 1

4
− 1

8
β

)
< 0 . (4.56)

To check the second condition (3.13) we use Lemma 3.1. The singular values
of the correlation coefficient matrix of C̃I are si = |cnm|, where cnm are the
coefficients of the Unm⊗Unm terms. Since cnm = 1 ∀ n, m, we have si = 1 ∀i and
hence 〈σ, C̃〉 ≥ 0 ∀σ ∈ S. Thus C̃I (4.55) is indeed an entanglement witness and
σ̃β is the nearest separable state σ̃β = σ0; β for the entangled states ρent

α,β in Region
I.

For the Hilbert-Schmidt measure of the entangled two-parameter two-qutrit
states (4.45) we find

D(ρI
α,β) = ‖σ0; β − ρI

α,β‖ =
2
√

2

3

(
α− 1

4
− 1

8
β

)
. (4.57)

4.4.2.2. Region II

In Region II of Fig. 4.4 the entangled two-parameter two-qutrit states ρII
α,β are

constrained by

α <
5

4
β − 1

2
, α ≥ 1

8
β − 1

8
, α ≤ −β + 1 . (4.58)
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The points that have minimal Euclidean distance to the points (α, β) located in
this region are (

α̃

β̃

)
=

(
1/24 (−2 + 20α + 5β)

1/6 (2 + 4α + β)

)
, (4.59)

and correspond to the states σ̃α,β. The quantities needed for calculating C̃II are

σ̃α,β − ρII
α,β = − 1

72
(4α + 2− 5β) (U1 − U2) , (4.60)

〈σ̃α,β, σ̃II
α,β − ρα,β〉 =

1

36
(4α + 2− 5β) , (4.61)

so that operator C̃II
pre is expressed in its Weyl operator decomposition as

C̃II
pre = σ̃β−ρII

α,β−〈σ̃β, σ̃β−ρII
α,β〉19 =

1

72
(−4α− 2 + 5β) (21+ U1 − U2) , (4.62)

or, in the simplified form,

C̃II = 21+ U1 − U2 . (4.63)

The check of conditions (3.12) for an entanglement witness gives (this is again
only a consistency check of the construction)

〈ρII
α,β, C̃II〉 = 4α + 2− 5β < 0 , (4.64)

since 4α < 5β−2 , see Eq. (4.58). The singular values of the correlation coefficient
matrix are again si = |cnm| = 1 ∀n,m and thus, according to Lemma 3.1, we have
〈σ, C̃II〉 ≥ 0 ∀ σ ∈ S. Therefore C̃II (4.63) is indeed an entanglement witness
and the states σ̃α,β are the nearest separable ones σ̃α,β = σ0; α,β to the entangled
two-parameter states (4.45) of Region II.

Finally, for the Hilbert-Schmidt measure of these states we find

D(ρII
α,β) = ‖σ0; α,β − ρII

α,β‖ =
1

6
√

2
(−4α− 2 + 5β) . (4.65)

Another way to derive the nearest separable states for the two-parameter states
is to calculate the nearest PPT states with the method of Ref. [131] first and then
check if the gained states are separable. If we do so we obtain for the nearest
PPT states the same states that we found with the “guess method”, and since for
the considered cases of two qubits and two qutrits we know that these states are
separable, they have to be the nearest separable states.

4.5. Summary and conclusion
In this chapter we extend the application of geometric entanglement witnesses to
the field of entanglement quantification, where we show that they are useful to de-
termine the nearest separable state to a given state in the Hilbert-Schmidt metric.
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4.5. Summary and conclusion

This outlines the fact that geometric entanglement detection and quantification
are closely related to each other. We explicitly determine the Hilbert-Schmidt
measure of entanglement for the isotropic two-qudit states and two-parameter
families of two-qubit and two-qutrit states. To achieve this, we apply the meth-
ods derived in Chapters 2 and 3 using Bloch decompositions. In the case of the
isotropic two-qudit state, either of the bases studied in Chapter 2 can be used. For
the two-parameter family of two-qutrit states, the Weyl operator basis is the best
choice, since these states are mixtures of maximally entangled states constructed
with the Weyl operators (see Eq. 3.30), and Bloch decompositions can thus be
easily obtained. Lemma 3.1 is used to identify the entanglement witnesses.

We use the Hilbert-Schmidt metric for a geometric quantification of entan-
glement, since it is closely related to the definition of geometric operators (see
Ref. [19] for details).

75





5. Structural multipartite
entanglement witnesses

5.1. Introduction

In this chapter we present a construction of multi-qubit entanglement witnesses
with linear combinations of operators associated with static structure factors. We
give an analytical proof that the operators have a non-negative expectation value
for all separable states, using Bloch decompositions of full product states and
show examples of genuinely multipartite entangled states that are detected by
the witness. With this construction the expectation value of the entanglement
witnesses can be measured locally, involving two-point correlations only, but de-
tecting genuinely multipartite entangled states. In this way a connection between
diffractive properties of many-body systems and multipartite entanglement is ex-
hibited. The witnesses are appropriate for different physical realizations, e.g. for
many-photon systems and solids. Some experiments with photons on the de-
tection of genuine multipartite entanglement in the vicinity of Dicke states have
already been performed, as reported in Refs. [79, 140, 104]. Theoretical work on
numerical constructions of multi-qubit entanglement witnesses can be found in
Refs. [125, 33].

The structure factor we use for the construction of the witness (5.3) is relevant
in condensed matter physics in neutron scattering, when probing the magneti-
zation properties of solids. It is related to the neutron scattering cross section
and its dynamic formulation describes the “response” of the probed system [91].
Typically, the structure of particular molecules that can be described via Hamil-
tionians of spin chains, are the interest of experiments [118, 70]. Also much
theoretical work on determining the structure factor and the related spectral
weights of particular spin chain models has been done, numerically and analyti-
cally [8, 56, 55, 99]. Moreover, the structure factor plays an important role in the
physics of ultracold atoms in optical lattices since it is related to the visibility of
the interference pattern [50]. One-particle spectral functions that are related to
the structure factor are investigated for various materials in [77, 117, 82].

For constructions of inequalities for multipartite entanglement detection with
collective spin measurements (so-called spin-squeezing inequalities), see Refs. [121,
124, 123, 54]. A macroscopic entanglement witness that also uses two-point cor-
relations is provided by the magnetic susceptibility, see Ref. [141].

The chapter is organized as follows: In Sec. 5.2 we shortly generalize the def-
inition of entanglement to multipartite systems. In Sec. 5.3 we introduce the
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construction of multi-qubit entanglement witnesses, which we call structural en-
tanglement witnesses and give an analytical proof that they have a positive expec-
tation value for all fully separable states. Moreover, we show that the entangle-
ment witnesses detect so-called Dicke states and Dicke-like states with changed
phases of the constituting terms and give relations to the robustness of the wit-
nesses if these states are subjected to white noise. Dicke states are useful in
applications of quantum networking protocols [104]. In Sec. 5.3.2 we provide an
alternative construction for particular structural entanglement witnesses via sym-
metric two-qubit Bell states, for the case of three qubits, which is investigated in
detail, and for the general case of N qubits. We close the chapter with summary
and conclusion in Sec. 5.4.

The chapter is based on Ref. [84]:

• Philipp Krammer, Hermann Kampermann, Dagmar Bruß, Reinhold A.
Bertlmann, Leong C. Kwek, and Chiara Macchiavello
Multipartite entanglement witnesses via structure factors
e-print arXiv:0904.3860 (submitted)

5.2. Multipartite generalization of the
entanglement definition

In order to study entanglement properties of multipartite systems, we have to
generalize the definitions of entanglement and separability given in Sec. 1.3 for
bipartite systems to multipartite systems. A multipartite vector state of a quan-
tum system consisting of N parties is an element of the Hilbert-Schmidt space
HD = Hd1 ⊗Hd2 ⊗ . . . ⊗HdN with D = d1d2 · · · dN . A full product vector state
is defined as

|ψp〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . ⊗ |ψN〉 . (5.1)

Definition 5.1. A vector state |ψ〉 ∈ HD that is not a full product vector state,
i.e. that cannot be written in the form of Eq. (5.1), is called entangled.

This definition of entanglement is the obvious generalization of the bipartite
case. There are, however, different notions of entanglement for multipartite sys-
tems of more than two parties. This is intuitively clear, since the entanglement
can manifest itself between two, three, . . ., N subsystems. Thus one can define
the entanglement of vector states as the entanglement between those subsystems
that cannot be written as a product vector state. If we cannot write a state |ψ〉
as any product between any of the subsystems, it is called genuinely multipartite
entangled (GME). Even the genuinely multipartite entangled states can be classi-
fied according to possible statistical local operations and classical communication
(SLOCC). For vector states of three particles this leads to two different classes
of GME states, called W class and Greenberger-Horne-Zeilinger (GHZ) class [46]
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(see also Sec. 5.3.2.1). According to the same classification, four particles can be
entangled in nine inequivalent ways, as shown in Ref. [132].

For density operators a fully separable state is defined as

σ =
∑

i

piρ
1
i ⊗ ρ2

i ⊗ . . . ⊗ ρN
i , pi ≥ 0,

∑
i

pi = 1 , (5.2)

and we can accordingly define entangled density operators.

Definition 5.2. A state ρ ∈ AD that is not a separable state, i.e. that cannot
be written in the form of Eq. (5.2), is called entangled.

For density operators, the notion of entanglement between a given number of
particles is more involved than for vector states. A density operator is usually
defined as separable with respect to a fixed number k of subsystems if it can be
written as a mixture of product states between k subsystems [69]. Thus, there is
entanglement between N − k subsystems. This notion of multipartite entangle-
ment is however not completely satisfactory, since it is not clear which particular
subsystems share the entanglement. A definition of separability and entanglement
for density operators that distinguishes between concrete subsystems is given in
Ref. [59]. Nevertheless, in the literature one calls a density operator GME if it
cannot be decomposed into vector states that contain tensor products between
any subsystems.

In the case of three particles, the classification into classes according to SLOCC
operations for vector states can be generalized to density operators, as done in
Ref. [1].

5.3. A construction of multi-qubit entanglement
witnesses

5.3.1. Construction with structure factors

We consider a multi-qubit quantum system, i.e. a system consisting of N two-
level subsystems, which is described by N -qubit states on the Hilbert space H1⊗
H2⊗ . . .⊗HN of dimension 2×2× . . .×2. The physical realization of the system
can be manifold, e.g. photons in horizontal or vertical polarization, or chains of
spin-1/2 particles.

To construct an entanglement witness, we use a quantity known in condensed
matter physics as the static structure factor (apart from a different summation
and normalization, this form appears in, e.g., Ref. [55]),

Sαβ(k) =
∑
i<j

eik(rj−ri)〈σα
i σβ

j 〉 , (5.3)

where i, j denote the i-th and j-th spins on the one-dimensional chain, ri, rj their
positions, and α, β = x, y, z (the usual Pauli spin-1/2 operators). The structure
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factor operator is defined as

Ŝαβ(k) :=
∑
i<j

eik(ri−rj)σα
i σβ

j , (5.4)

i.e. the static structure factor without considering the expectation value. For
periodic systems such as, e.g., spin chains, k is the wave-vector transfer in scat-
tering experiments, and the structure factor can be determined as a function of k.
The distance between spins is either defined via the periodic structure, where for
two neighboring spins we normalize it to 1, or - in a non-periodic situation, like
e.g. for entangled photons - via the labels of the spins. The two-qubit correlation
term σα

i σβ
j denotes the tensor product of the σα operator at the i-th position,

the σβ operator at the j-th position, and of the identity operators at the other
positions. Note that for α = β and k = 0 we can also express the structure factor
operator with the collective spin operator,

Jα := 1/2
N∑

k=1

σα
k . (5.5)

The relation to the structure factor operator is

Ŝαα(0) = (4J2
α −N1N)/2 , (5.6)

where 1N is the identity operator on the 2N -dimensional Hilbert space.

Definition 5.3. We define a structural entanglement witness using the structure
factor operator as

W (k) := 1N − Σ(k) , (5.7)

where

Σ(k) =
1

B(N, 2)

(
cxŜ

xx(k) + cyŜ
yy(k) + czŜ

zz(k)
)

,

ci ∈ R, |ci| ≤ 1, k = nπ, n ∈ N0 . (5.8)

Here the restriction to real coefficients ci and integers n ensures that the op-
erator is Hermitian, and B(N, 2) is the binomial coefficient, with B(N, 2) =
N(N − 1)/2. Non-integer values of n would in general lead to non-Hermitian op-
erators Σ(k) and would thus be not appropriate to use as entanglement witnesses.
In principle, one could also construct the witness with arbitrary real values of ci,
but this would have to be considered in an additional factor 1/ max(|cx|, |cy|, |cz|)
of Σ(k), which leads to the same expression as normalizing the coefficients be-
forehand. The meaning of the parameter k depends on the physical system: For
the detection of entanglement for states of multiple photons, it just fixes a sign
rule for the two-point correlation terms of the witness and has no further physical
meaning. For spin chains, as mentioned, k is the wave vector transfer in scatter-
ing experiments. Here the entanglement witness can be determined via a readout
of values of the structure factor for various k.
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The expectation value of the witness (5.7) is

〈W (k)〉 = 1− 〈Σ(k)〉 . (5.9)

It remains to show that W (k) is an entanglement witness.

Proof. The crucial point is to show that for all full product states

σN
p := ρ1 ⊗ ρ2 ⊗ . . .⊗ ρN (5.10)

we have 〈W (k)〉σN
p
≥ 0, or, equivalently, 〈Σ(k)〉σN

p
≤ 1 (cf. Corollary 3.1 which is

easily generalized for multipartite full product states). It is helpful to remember
the Bloch decomposition for a qubit density operator (2.2), and use it for any of
the terms of the product state σN

p ,

ρi =
1

2

(
1+

∑
α

ni
ασα

)
, (ni

x)
2 + (ni

y)
2 + (ni

z)
2 ≤ 1 . (5.11)

The product state σN
p should then be regarded as a product of Bloch decomposi-

tions (5.11). In this way we obtain the following bound on the expectation value
of Σ(k) for product states:

|〈Σ(k)〉ρN
p
| =

=
1

B(N, 2)
|
∑
i<j

(
cxe

ikmij〈σx
i σx

j 〉+ cye
ikmij〈σy

i σ
y
j 〉+ cze

ikmij〈σz
i σ

z
j 〉

)
|

=
1

B(N, 2)
|
∑
i<j

(
cxe

ikmijni
xn

j
x + cye

ikmijni
yn

j
y + cze

ikmijni
zn

j
z

)
|

≤ 1

B(N, 2)

∑
i<j

(|ni
x||nj

x|+ |ni
y||nj

y|+ |ni
z||nj

z|
) ≤ 1 , (5.12)

where mij = rj − ri ∈ N.
Thus, for full product states we have

〈Wgen〉ρN
p
≥ 0. (5.13)

Remark 5.1. Note that one could construct the structural witness (5.7) in an
even more general way, where the argumentation of Eq. (5.12) would be still valid:
the two-point correlation terms of Ŝαβ could be summed up with arbitrary signs,
and/or one could construct W (k) with cyclic permutations of x, y, and z, e.g.
Ŝxy, Ŝyz, and Ŝzx. At the moment it is open if this would lead to advantages, the
structure of the obtained witnesses would be, however, less easy to investigate.
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5.3.1.1. Detecting entanglement with W(0)

Which states can be detected by W (k)? For k = 0 symmetric states like the
Dicke states can be detected. These states are defined as pure states that are
a superposition of all possible permutations of l excitations (states |1〉) in N
particles [116] and denoted as |N, l〉. Examples are the W state

|W 〉 = |3, 1〉 = 1/
√

3(|001〉+ |010〉+ |100〉) (5.14)

or the four-particle Dicke state

|4, 2〉 = 1/
√

6(|0011〉+ |0110〉+ |1100〉+ |1001〉+ |1010〉+ |0101〉). (5.15)

Dicke states are detected by the witness (5.7) with cx = cy = 1, cz = −1. To see
this, we calculate the expectation value 〈Σ(0)〉 of Eq. (5.8) for the Dicke states
|N, l〉. Entanglement is detected if 〈N, l|Σ(0)|N, l〉 > 1. For the term Szz(0) we
get

〈N, l|Ŝzz(0)|N, l〉 = (4〈J2
z 〉 −N)/2 = ((N − 2l)2 −N)/2 , (5.16)

where we just count the excitations of each term in |N, l〉 with a negative sign in
the collective spin expectation value 〈Jz〉. To obtain 〈N, l|Ŝxx(0)|N, l〉, remember
that σx flips spins and that the terms in the expectation value only give a nonzero
contribution if a |0〉 spin and a |1〉 spin are flipped. With l excitations this can
happen l(N − l) times, thus

〈N, l|Ŝxx(0)|N, l〉 = l(N − l) . (5.17)

For 〈N, l|Ŝyy(0)|N, l〉 we also get l(N − l) since with two σy operators acting on
|0〉 and |1〉 the additional phases after the flip cancel out. In total we have

〈N, l|Σ(0)|N, l〉 =
2

N(N − 1)

(
cxl(N − l)

+ cyl(N − l) + cz
(N − 2l)2 −N

2

)
. (5.18)

For cx = cy = 1, cz = −1 we write Σ̃(0) and get

〈N, l|Σ̃(0)|N, l〉 =
4l(N − l)− (N − 2l)2 + N

N(N − 1)
. (5.19)

In particular, for an even particle number N and l = N/2 the expectation value
(5.19) becomes

〈Σ̃(0)〉even = (N + 1)/(N − 1) > 1 (5.20)

and for odd N and l = (N − 1)/2 or l = (N + 1)/2 we get

〈Σ̃(0)〉odd = (N(N + 1)− 2)/N(N − 1) > 1 , (5.21)

and thus these states are always detected. It can be seen, however, that for
N → ∞ we have 〈Σ̃(0)〉 → 1 and thus with increasing particle number it gets
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more and more difficult to detect the entanglement of these Dicke states. Also
other Dicke states are detected, e.g. |6, 2〉 where 〈6, 2|Σ̃(0)|6, 2〉 = 17/15 ≥ 1.

Choosing different coefficients in the construction of the witness (5.7), states
different from Dicke states can be detected. An interesting example for four
particles is the superposition between two Greenberger-Horne-Zeilinger (GHZ)
states,

cos θ

2
(|0011〉+ |1100〉)± sin θ

2
(|0000〉+ |1111〉) . (5.22)

This state is detected for π/4 < θ < π/2 if we choose cx = −1, cy = cz = 1
(minus sign) or cx = 1, cy = −1, cz = 1 (plus sign). In Ref. [136] an experimental
preparation of a four-qubit cluster state is reported, and from the presented
method it seems likely that also the above GHZ superposition states can be
prepared with this setup. Other detected symmetric states are superpositions of
Dicke and GHZ states, e.g., for four particles

cos θ|4, 2〉 ± sin θ√
2

(|0000〉+ |1111〉) (5.23)

is detected for arccos 3
√

2/19 < θ < π/2 with the witness coefficients cx =
−1, cy = cz = 1 (minus sign) and cx = 1, cy = −1, cz = 1 (plus sign).

5.3.1.2. Detecting entanglement with W (π)

So far we have considered the case k = 0 only. If we choose k = π in the construc-
tion of the witness W (k) (5.7), still more entangled states can be detected. Note
that in this case the witness is no longer symmetric under particle exchange.
An example of detected states are non-symmetric Dicke states with additional
phases. Choosing W (π) with cx = cy = cz = 1 we can detect the four-particle
entangled state

|Dph
4 〉 =

1√
6

(|0011〉+ |1100〉+ |0110〉+ |1001〉 − |0101〉 − |1010〉). (5.24)

For six particles and W (π) with cx = cy = cz = 1 again, the state

|Dph
6 〉 =

1√
20

( |111000〉+ |001110〉+ |010101〉+ |011010〉
+ |100011〉+ |100110〉+ |101001〉+ |101100〉
+ |110010〉+ |001011〉 − |000111〉 − |110001〉
− |101010〉 − |100101〉 − |011100〉 − |011001〉
− |010110〉 − |010011〉 − |001101〉 − |110100〉) (5.25)

is detected. In general, all “phased” Dicke states |N, lph〉, i.e. Dicke states with
different signs before terms that correspond to even and odd permutations of 0s
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and 1s, and with l = N/2 for even N and l = (N + 1)/2 or l = (N − 1)/2 for odd
N, are detected. Consider, e.g., the state |6, 3ph〉 = |Dph

6 〉 (5.25). Starting with
the state |111000〉, all even permutations, i.e. an even number of transpositions of
neighboring spins, have a positive sign, and all odd permutations have a negative
sign. This scheme can be generalized to construct the general phased Dicke states
|N, lph〉 of N particles and l excitations. The states |N, lph〉 for the mentioned
particular values of l are already detected by the witness W (π) with cx = cy =
1, cz = 0. This can be seen as follows:

To determine 〈N, lph|Ŝxx(π)|N, lph〉 we note that again we only get a nonzero
contribution of each of the σx

i σx
j terms if a |0〉 and a |1〉 spin are flipped. If this is

the case, let us furthermore distinguish two different cases. First, if the spin flip
acts on a term with positive (negative) sign and results in a term with positive
(negative) sign in the state |N, lph〉, then the resulting state could be obtained
with an even number of transpositions, which is equivalent to an even distance
rj − ri, and thus σx

i σx
j in Ŝxx(π) has a positive sign. Thus we get a positive

overall sign for this particular term. Second, if the spin flip acts on a term with
positive (negative) sign and results in a term with negative (positive) sign in the
state |N, lph〉, then the resulting state could be obtained with an odd number of
transpositions, which is equivalent to an odd distance rj − ri, and thus the sign
of the resulting state is changed, yielding again an overall positive sign for this
term. Thus, thanks to the changing signs in the terms of Ŝxx(π) and Ŝyy(π), all
the negative signs cancel out, and we obtain

〈N, lph|Ŝxx(π)|N, lph〉 = 〈N, lph|Ŝyy(π)|N, lph〉 = l(N − l) , (5.26)

just as for the Dicke states |N, l〉 in the previous paragraph. For phased Dicke
states with even N and l = N/2 and for Σ(π) with cx = cy = 1, cz = 0 we get

〈Σ(π)〉 = 2〈Ŝxx(π)〉 = N/(N − 1) > 1 , (5.27)

and for odd N with l = (N + 1)/2 or l = (N − 1)/2 we obtain

〈Σ(π)〉 = (N + 1)/N > 1 . (5.28)

Therefore these states are always detected. Note that an additional term Ŝzz(π)
in Σ(π), now with a positive sign, i.e. cz = 1, can again improve the amount of
violation of 〈Σ(π)〉 ≤ 1. This is the case for the state |Dph

4 〉, for which 〈Ŝzz(π)〉
= 2/3 and thus 〈Σ(π)〉 = 13/9 > 4/3, and also for |Dph

6 〉, where 〈Ŝzz(π)〉 = 3/5
and 〈Σ(π)〉 = 31/25 > 6/5.

The general phased Dicke states |N, lph〉 that include the states (5.24) and
(5.25) are not detected by W (0) for any choice of the coefficients cx, cy, and cz,
and W (π) does not detect the “usual” Dicke states.

5.3.1.3. Robustness against noise

Furthermore, we want to study the robustness of the witness in Eq. (5.7) under
the influence of noise. In particular, we consider two depolarizing channels, one
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that acts collectively on all qubits, which efficiently results in the addition of
white noise to the multipartite state, and one that affects the single qubits inde-
pendently, i.e. that adds white noise to a single qubit ρs; ρs,dp = (1−q)ρs +q1/2.

We study the collective depolarizing channel first. The Dicke states |N,N/2〉
then change accordingly to

p1N/2N + (1− p) |N, N/2〉〈N,N/2| . (5.29)

The witness W (0) with cx = cy = 1, cz = −1 detects entanglement of this state for
0 ≤ p < 2/(N +1). The robustness decreases with a growing number of qubits N .
In Ref. [122], the robustness of certain witnesses against the collective depolarizing
channel, corresponding to cz = 0, has been studied. These witnesses, that can
detect Dicke states of the form |N,N/2〉, allow noise with p < 1/N . Thus, adding
the z-direction measurement to the witness improves its robustness against white
noise. For the general “phased” Dicke states and using the witness W (π) with
cx = cy = 1 and cz = 0, we obtain 0 ≤ p < 1/N for entanglement detection.
Again, a greater robustness can be achieved when an additional z-direction term,
cz = 1, is introduced. For the noisy “phased” Dicke state (cf. Eq. (5.24)), i.e.

p1/16 + (1− p)|Dph
4 〉〈Dph

4 | , (5.30)

the witness W (π) with cx = cy = cz = 1 detects entanglement of this state for
0 ≤ p < 4/13. In the case of six particles, it detects entanglement of the noisy
state

p1/26 + (1− p)|Dph
6 〉〈Dph

6 | (5.31)

(cf. Eq. (5.25)) for a parameter interval 0 ≤ p < 6/31. The maximal values of p
are in both cases bigger than 1/N .

In the following we investigate the robustness for the individual depolarizing
channel, where the noise affects each qubit independently. Since we are interested
in expectation values only, it is convenient to shift the influence of the Kraus
operators Ki characterizing the noise model (see Ref. [97]) to the observable and
leave the initial state unchanged. This is possible, because in the operator sum
representation of the channel we have (where the subscript dp denotes affection
by the channel)

Tr(Oρdp) =
∑

i

Tr(OKiρK†
i ) =

∑
i

Tr(K†
i OKiρ) = Tr(Odpρ) . (5.32)

Since the individual depolarizing channel transforms the Pauli operators as [33]

σα
dp = (1− q)σα, α = x, y, z , (5.33)

the two-point correlation terms of the structure factor simply change to

(σα
i σβ

j )dp = (1− q)2σα
i σβ

j . (5.34)
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Thus the observable Σ(k) in Eq. (5.8) is influenced by the channel according to
Σ(k)dp = (1− q)2Σ(k), and for the expectation value we have

〈Σ(k)dp〉 = (1− q)2〈Σ(k)〉 . (5.35)

Thus we can determine the robustness of W (k), i.e. the region of q for which
〈Σ(k)dp〉 > 1, where entanglement is detected. For the Dicke states |N,N/2〉
and cx = cy = 1, cz = −1 for W (0) we obtain a robustness region 0 ≤ q < 1 −√

(n− 1)/(n + 1). For the phased Dicke states |N,N/2ph〉 and cx = cy = 1, cz = 0

for W (π) we find 0 ≤ q < 1−
√

(n− 1)/n. For cx = cy = cz = 1 and the four and
six particle case (see Eqs. (5.24) and (5.25)) we obtain 0 ≤ q < 1−3/

√
13 ' 0.168

for |Dph
4 〉 and 0 ≤ q < 1 − 5/

√
31 ' 0.102 for |Dph

6 〉. Both states exhibit a
robustness region that is larger for cz = 1 than for the cz = 0 case, it therefore
seems favorable to add the z-direction measurement setting also in the case of
the individual depolarizing channel. A detailed noise study for witnesses of Dicke
states that includes the amplitude and phase damping channels, in connection
with the numerical detection of genuine multipartite entanglement, can be found
in Ref. [33].

5.3.2. Construction with symmetric Bell states

Particular structural entanglement witnesses (5.7) for k = 0 can be also con-
structed differently, using mixtures of states where two pairs of spins are in a
symmetric Bell state. For simplicity reasons we show this construction method
for the case of three qubits first.

5.3.2.1. Bell-state construction for three qubits

Vector states of three qubits can be classified according to the number of particles
that are entangled and according to properties under SLOCC transformations (see
Ref. [46] for details):

Remark 5.2. Let |ψ〉 ∈ H2 ⊗ H2 ⊗ H2 be an arbitrary vector state of three
qubits. If the reduced density operators ρA, ρB and ρC of |ψ〉 are all mixed states
(Trρ2

X < 1, X = A,B or C), then |ψ〉 is genuinely tripartite entangled. If it
additionally has a vanishing three-tangle τ (see Ref. [38]), it belongs to the W
class, if τ > 0, it belongs to the GHZ class1. If only two reduced density operators
are mixed states, |ψ〉 is biseparable (only two particles are entangled), and if all
three reduced density operators are pure states (Trρ2

X = 1), then |ψ〉 is fully
separable.

Definition 5.4. We define an entanglement witness for three qubits constructed
with symmetric Bell states as

Wψs := x1ABC − ρ̄s , (5.36)
1Vector states of the W class cannot be transformed into states of the GHZ class by SLOCC
and vice versa.
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where A, B, and C denote the three subsystems, 1ABC is the identity operator
on the three-qubit Hilbert space and

ρ̄s :=
1

6
(1A ⊗ |ψs〉〈ψs|BC + 1B ⊗ |ψs〉〈ψs|AC + 1C ⊗ |ψs〉〈ψs|AB) . (5.37)

The vector state |ψs〉 can be one of the three symmetric Bell states (4.16), (4.17),
and (4.18). The quantity x is defined as

x = max
σ∈S

Trσρ̄s. (5.38)

With this construction the expectation value of the witness Wψs (5.36) has to
be positive for all separable states, as desired. The value of x can be determined
in the following way: We first remember (see Corollary 3.1) that in order to find
the maximum in (5.38) for all separable states it is enough to check it for pure
product states σp := |φp〉〈φp| with |φp〉 := |φA〉 ⊗ |φB〉 ⊗ |φC〉. We have

max
σp

Trσpρ̄s =

max
σp

1

6

(
Tr|φA〉〈φA|Tr (|φB〉 ⊗ |φC〉〈φB| ⊗ 〈φC |) |ψs〉〈ψs|

+Tr|φB〉〈φB|Tr (|φA〉 ⊗ |φC〉〈φA| ⊗ 〈φC |) |ψs〉〈ψs|
+Tr|φC〉〈φC |Tr (|φA〉 ⊗ |φB〉〈φA| ⊗ 〈φB|) |ψs〉〈ψs|

)
. (5.39)

Now when calculating the maximum of Eq. (5.39) for a given σp we first notice
that Tr|φA〉〈φA| = 1 and likewise for the subsystems B and C, so that we are only
interested in the overlaps Tr(|φB〉⊗|φC〉〈φB|⊗〈φC |)|ψs〉〈ψs| = |(〈φB|⊗〈φC |)|ψs〉|2
(and an equivalent expression for permutations of the subsystems). Then, for
a particular σp we first spot one of the three overlaps that gives the maximal
value, without loss of generalization, let us assume it is the first term. Now if
|φB〉 6= |φC〉, due to the symmetry of the states |ψs〉, we can always find a product
state |φ〉 ⊗ |φ〉, i.e. with the same states of the subsystems, that has the same
overlap with |ψs〉 as |φB〉 ⊗ |φC〉. That means that with the state |φ〉 ⊗ |φ〉 ⊗ |φ〉
we have the same maximal overlap in all three terms. Thus the maximization
procedure reduces to

max
σp

Trσpρ̄s =
1

2
max

φ
|(〈φ| ⊗ 〈φ|)|ψs〉|2 . (5.40)

Choosing a general |φ〉 = α|0〉+ β|1〉, α, β ∈ C, we obtain a maximum value

x = max
σp

Trσpρ̄s =
1

4
(5.41)

for all the three symmetric Bell states |ψs〉, since maxφ |(〈φ| ⊗ 〈φ|)|ψs〉|2 = 1/2.
To find the entangled states that are detected by a witness W , it is useful

to determine its eigensystem, since an entanglement witness always detects the
eigenstates |λneg〉 corresponding to its negative eigenvalues λneg < 0, as

〈λneg|W |λneg〉 = λneg < 0 . (5.42)
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All states of the subspace spanned by these eigenvectors are also detected, since
with |ψneg〉 = αi|λi

neg〉 we have

〈ψneg|W |ψneg〉 =
∑

i

|αi|2λi
neg < 0 . (5.43)

Also mixtures of eigenvectors to negative eigenvalues,

ρneg =
∑

i

pi|λi
neg〉〈λi

neg| , pi ≥ 0,
∑

i

pi = 1 , (5.44)

are detected, since
TrρnegW =

∑
i

piλ
i
neg < 0 . (5.45)

In the next paragraphs we want to study which states are detected by the struc-
tural witness (5.36) constructed with the three symmetric Bell states by investi-
gating their eigensystems.

The witness W φ+. The witness W φ+, i.e. the witness of Eq. (5.36) with ψs =
φ+, has two negative eigenvalues, λφ+

7 = λφ+
8 = −1/12. The eigenstates are the

two (naturally orthogonal) vector states

|λφ+
7 〉 =

1

2
|W 〉+

√
3

2
|111〉 , (5.46)

|λφ+
8 〉 = |λφ+

7 〉flip (5.47)

where |W 〉 is defined in Eq. (5.14) and flip denotes a spin flip in all subsystems.
For these two vector states the expectation values of the witness are given by
the negative eigenvalues, 〈λφ+

7 |W |λφ+
7 〉 = 〈λφ+

8 |W |λφ+
8 〉 = −1/12. As mentioned

above, superpositions and mixtures of |λφ+
7 〉 and |λφ+

8 〉 are also detected and are
thus entangled states. The reduced density operators ρ

λ7,8

X (with X = A,B, or C)
of |λφ+

7,8〉〈λφ+
7,8 | for the three subsystems all correspond to (the same) mixed states,

ρλ7
X =

1

12
(2|0〉〈0|+ 10|1〉〈1|) ,

ρλ8
X =

1

12
(10|0〉〈0|+ 2|1〉〈1|) , (5.48)

with Trρ2
X = 13/18 < 1, and therefore the states |λφ+

7 〉 and |λφ+
8 〉 have to be

genuinely tripartite entangled. To check if these states and their superpositions
belong to the GHZ or W class of genuinely tripartite entangled states, we have to
calculate the three-tangle τ [38]. We obtain τ > 0 for |λφ+

7 〉 and |λφ+
8 〉 and their

superpositions a|λφ+
7 〉 + b eiφ|λφ+

8 〉, a, b, φ ∈ R, which thus belong to the GHZ
class, except for the state

|ψW 〉 =
1√
2
|λφ+

7 〉 − 1√
2
eiπ/4|λφ+

8 〉 (5.49)
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which has a vanishing three-tangle τ = 0 and therefore belongs to the W class.
We can also calculate the expectation value of the witness for the more general

one-parameter superposition states

|ψ7〉 =
√

1− β2|W 〉+ β|111〉, β ∈ R, (5.50)

for which we obrain

〈ψ7|W φ+|ψ7〉 =
1

6

(
1− β2 − β

√
3(1− β2)

)
. (5.51)

It is negative for 1/2 < β < 1 and hence detects the entanglement of |ψ7〉 for this
parameter interval.

Does the witness W φ+ also detect biseparable states? It does not detect the
biseparable states

|ψA−BC〉 = (α|0〉+ β|1〉)⊗ |φ+〉, α, β ∈ C, |α|2 + |β|2 = 1 , (5.52)

since we have
〈ψA−BC |ρ̄φ+|ψA−BC〉 =

1

4

(|α|2 + |β|2) =
1

4
(5.53)

and thus 〈ψA−BC |W φ+|ψA−BC〉 = 0. But it does detect, e.g., the entanglement of
the states

|φA−BC〉 = |0〉 ⊗ (a|00〉+ beiϕ|11〉),
a, b, ϕ ∈ R+, a2 + b2 = 1, −π ≤ ϕ ≤ π (5.54)

for the parameter intervals 1/
√

1− cos2 ϕ < a < 1 and 0 ≤ |ϕ| < π/2, since here
we have

〈φA−BC |ρ̄φ+|φA−BC〉 =
1

12

(
1 + 2a2 + 2a

√
1− a2 cos ϕ

)
> 1/4 (5.55)

and thus 〈ψA−BC |W φ+|ψA−BC〉 < 0.

The witness W φ−. The witness W φ−, i.e. the witness of Eq. (5.36) with ψs =
φ−, also has two negative eigenvalues, λφ−

7 = λφ−
8 = −1/12. The eigenstates are

similar to the ones of W φ+, but have a changed sign before the |111〉 (|λφ−
7 〉) or

|000〉 (|λφ−
8 〉) term:

|λφ−
7 〉 =

1

2
|W 〉 −

√
3

2
|111〉 , (5.56)

|λφ−
8 〉 = |λφ+

7 〉flip . (5.57)

Again superpositions and mixtures of these states are also detected, the superpo-
sitions exhibit the same GHZ or W class properties as for W φ+, where of course
|λφ+

7 〉 and |λφ+
8 〉 are replaced by |λφ−

7 〉 and |λφ−
8 〉. Then the equivalent states to

(5.50) are detected for −1 < β < −1/2.
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The biseparable states

|ψA−BC〉 = (α|0〉+ β|1〉)⊗ |φ−〉, α, β ∈ C, |α|2 + |β|2 = 1 , (5.58)

are not detected, but the states

|φA−BC〉 = |1〉 ⊗ (a|00〉 − beiϕ|11〉),
a, b, ϕ ∈ R+, a2 + b2 = 1, −π ≤ ϕ ≤ π (5.59)

are detected for the same parameter intervals of a and ϕ as in the case of W φ+

(i.e. 1/
√

1− cos2 ϕ < a < 1 and 0 ≤ |ϕ| < π/2).

The witness Wψ+. The witness Wψ+, i.e. the witness of Eq. (5.36) with ψs =
ψ+, has the two negative eigenvalues λψ+

7 = λψ+
8 = −1/12 with the eigenstates

|λψ+
7 〉 = |W 〉 , (5.60)

|λψ+
8 〉 = |W 〉flip . (5.61)

Of course again superpositions and mixtures of |λψ+
7 〉 and |λψ+

8 〉, i.e. super-
positions and mixtures of |W 〉 and |W 〉flip are also detected. Superpositions
α|W 〉 + β|W 〉flip always belong to the GHZ class (here the states have a non-
vanishing three-tangle) if α 6= 0 and β 6= 0.

Wψ+ does not detect the entanglement of the biseparable states

|ψA−BC〉 = (α|0〉+ β|1〉)⊗ |ψ+〉, α, β ∈ C, |α|2 + |β|2 = 1 , (5.62)

but the entanglement of the states

|φA−BC〉 = |+〉 ⊗ (a|+ +〉 − beiφ| − −〉),
a, b, φ ∈ R+, a2 + b2 = 1, −π ≤ φ ≤ π (5.63)

is detected for the parameter intervals 1/
√

1− cos2 φ < a < 1 and 0 ≤ |φ| < π/2.
We defined |+〉 := 1/

√
2(|0〉+ |1〉) and |−〉 := 1/

√
2(|0〉 − |1〉).

5.3.2.2. Bell-state construction for N qubits

The construction of the previous section can be generalized to N qubits.

Definition 5.5. We define the entanglement witness for N qubits as

Wψs

N := xN1N − ρ̄s
N , (5.64)

where the mixed state ρ̄s
N is defined as

ρ̄s
N =

1

2N−2B(N, 2)

∑
T

1\{iN−1,iN} ⊗ |ψs〉〈ψs|iN−1iN , (5.65)
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with 1\iN−1,iN = 1i1 ⊗ 1i2 ⊗ . . . ⊗ 1iN−2
. The indices i1, . . . , iN denote the po-

sition of the spin (i.e. the number of the subsystem) in the chain and are all
different, and the sum is taken over all two-party transpositions, i.e. all possible
different combinations of the indices {iN−1, iN} for the bipartite symmetric Bell
state |ψs〉〈ψs|. The indices are ordered according to i1 < i2 < . . . < iN−2 and
iN−1 < iN . The quantity xN is again defined as

xN = max
σ∈S

Trσρ̄s
N , (5.66)

which guarantees that TrWψs

N ≥ 0 for all separable states.

We determine xN in quite the same way as in the case of three qubits (see
Eq. (5.39). It is again enough to check the condition for product vector states
|φN

p 〉 := |φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φN〉, where we have, with σN
p = |φN

p 〉〈φN
p |,

max
σN

p

TrσN
p ρ̄s

N =

max
σN

p

1

2N−2B(N, 2)

∑
T

(
Tr|φi1〉〈φi1|Tr|φi2〉〈φi2| · · ·Tr|φiN−3

〉〈φiN−3
|

·Tr (|φiN−1
〉 ⊗ |φiN 〉〈φiN−1

| ⊗ 〈φiN |
) |ψs〉〈ψs|iN−1iN

)
,

(5.67)

which leads to

xN = max
σp

Trσpρ̄
s
N =

1

2N−2B(N, 2)
·B(N, 2) max

φ
|(〈φ| ⊗ 〈φ|)|ψs〉|2 =

1

2N−1
,

(5.68)
where we used maxφ |(〈φ| ⊗ 〈φ|)|ψs〉|2 = 1

2
.

The three witnesses (5.64) constructed with the three symmetric Bell states
are special cases of the structural witness (5.7). In particular, the relations

W φ− =
1

2N
W (0) with cx = −1, cy = 1, cz = 1 ,

W φ+

=
1

2N
W (0) with cx = 1, cy = −1, cz = 1 ,

Wψ+

=
1

2N
W (0) with cx = 1, cy = 1, cz = −1

(5.69)

hold. Note that the operator Wψ− would correspond to the case W (0) with cx =
cy = cz = 1, but it is not an entanglement witness since it is a positive operator
and thus does not detect any entangled state.

5.4. Summary and conclusion
In this chapter we consider composite systems of N qubits and construct entan-
glement witnesses using two-point correlations only, via static structure factors.
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We give an analytical proof for identifying the constructed operators as entangle-
ment witnesses, using Bloch decompositions of the full product states. Examples
of genuinely multipartite entangled states that are detected by the structural wit-
nesses are presented. We also give relations to the robustness of the witnesses
against noise and provide an alternative construction with symmetric two-qubit
Bell states. For the case of three particles, we analyze the eigensystems of these
alternatively constructed witnesses, and in this way give a detailed description of
the detected states.

The presented results for k = 0 can be compared with those of Ref. [121],
where an inequality similar to the witness W (0) is derived and further reduced
to the case of two measurement settings in the x− and y−direction. It is shown
that these two settings are enough to detect Dicke states. However, an advantage
of adding the z-direction setting is the greater robustness against noise. The
general construction with structure factors offers flexible application possibilities
for systems different to linear optics, which distinguishes the structural witnesses
from spin-squeezing inequalities.

The witnesses are dependent on the wavevector k, and thus detect a variety
of different entangled states for the cases k = 0 and k = π, as the Dicke states
and a non-symmetric version of the Dicke states, i.e. Dicke states with different
phases in the constituting terms.

For particular spin chains the structure factor can be calculated or experimen-
tally obtained, and thus it should be possible to utilize the witness for entangle-
ment investigations of spin chains. Since the witnesses are, however, constructed
for a finite number of subsystems, it seems difficult to apply them to macroscopic
systems, where one would have to consider the thermodynamical limit. This
problem is still under investigation.
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In this last chapter final conlusions are drawn and we take an outlook on possible
future research on the discussed issues.

In this thesis we show that:

• Bloch decompositions are appropriate to shorten notations and to derive
and prove statements involving states and operators, in particular they
prove useful in the context of detecting entanglement with entanglement
witnesses. We provide decompositions of standard operators into three
different suitable operator bases, and therewith a method to decompose
operators of arbitrary dimension into these operator bases. We show that
particular operator bases are apt for particular intentions, such as the gen-
eralized Gell-Mann operator basis is useful with regard to experimental
observations, and the Weyl operator basis for states involving generalized
Bell states for arbitrary dimensions. The inequalities defining entangle-
ment witnesses are simplified by using Bloch decompositions, where we can
make analytical statements if operators of a particular kind satisfy these
inequalities.

• Geometric entanglement witnesses are useful tools for detecting entangle-
ment, in particular for detecting bound entanglement. In this respect we
develop a shifting method that shifts geometric operators along parameter-
ized lines of states. In this way we can also identify regions of separable
states, where we enclose the convex region of separable states for families of
states with geometric entanglement witnesses by shifting them from inside
the set of separable states to the boundary. To identify the geometric op-
erators as entanglement witnesses, we use inequalities derived with Bloch
decompositions.

• Geometric entanglement witnesses are also appropriate to geometrically
quantify entanglement. We show that they can be used to find the nearest
separable states to entangled states in the Hilbert-Schmidt metric by giving
examples for two-qubit, two-qutrit and two-qudit families of states.

• Structural entanglement witnesses are suitable operators to detect gen-
uine multipartite entanglement, for symmetric as well as for non-symmetric
states. To identify the constructed operators as entanglement witnesses,
again Bloch decompositions turn out to be helpful. We claim that struc-
tural witnesses have a connection to the diffractive properties of solids, and
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are thus able to detect entanglement for various physical realizations of
many-body quantum systems.

What is left for future research? The main part of the thesis investigates en-
tanglement properties of bipartite systems. Therefore it seems natural to look for
multipartite extensions. In particular it would be of high interest to extend the
methods developed with geometric entanglement witnesses to the case of more
parties, and thus be able to characterize entanglement according to different
multipartite entanglement classes. The notion of Bloch decompositions, however,
does not seem to be as useful as in the bipartite case when the aim is to differen-
tiate not only between fully separable and entangled multipartite states, but also
between states that are separable with respect to a certain number of subsystems
only. It seems likely that one should be able to obtain bounds by using Bloch
decompositions of only partly separable states, such that entanglement can be
classified at least above certain thresholds. The shift method can be generalized
to the multipartite case in a straightforward way, since it is independent of the
number of subsystems.

The structural entanglement witnesses open new possibilities of research in
different physical realizations, such as spin chains and solids. As mentioned, the
problem evidently lies in the limit of infinitely many particles, as the structural
witnesses and the quantities of condensed matter physics scale differently with
respect to the particle number. It has to be investigated if this discrepancy can
be avoided, either by constructing the witness in a modified way, or by looking
at appropriate data that does not necessarily include the thermodynamical limit,
but also allows to make statements for a definite number of particles.
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A.1. Proof of the GGB orthogonality conditions

We want to proof the orthogonality condition (2.16) for the generalized Gell-
Mann operator basis. Since all generalized Gell-Mann operators are Hermitian
(thus TrA†

iAj = TrAiAj = TrAjAi) it suffices to proof the following conditions:

TrΛjk
s Λmn

s = 2 δjmδkn , (A.1)
TrΛjk

a Λmn
a = 2 δjmδkn , (A.2)

TrΛlΛm = 2 δlm , (A.3)
TrΛjk

a Λmn
s = 0 , (A.4)

TrΛjk
s Λm = 0 , (A.5)

TrΛjk
a Λm = 0 . (A.6)

Proof. (Proof of condition (A.1).) Inserting definition (2.13) we have

TrΛjk
s Λmn

s =
d∑

l=1

〈l| (|j〉〈k|+ |k〉〈j|) (|m〉〈n|+ |n〉〈m|) |l〉

=
∑

l

(
〈l|j〉〈k|m〉〈n|l〉+ 〈l|j〉〈k|n〉〈m|l〉

+ 〈l|k〉〈j|m〉〈n|l〉+ 〈l|k〉〈j|n〉〈m|l〉
)

= δjnδkm + δjmδkn + δknδjm + δkmδjn

= 2 δjmδkn , (A.7)

where we used δjnδkm = 0 since we have j < k and m < n.

Proof. (Proof of condition (A.2).) This case is equivalent to the one before apart
from changed signs that do not matter,

TrΛjk
a Λmn

a = − δjnδkm + δjmδkn + δknδjm − δkmδjn

= 2 δjmδkn . (A.8)
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Proof. (Proof of condition (A.3).) Without loss of generality we assume l ≤ m.
Using definition (2.15) and defining

Cl :=

√
2

l(l + 1)
, (A.9)

we get

TrΛlΛm = ClCm

d∑
p=1

( l∑

k=1

m∑
n=1

〈p|k〉〈k|n〉〈n|p〉

+ lm〈p|l + 1〉〈l + 1|m + 1〉〈m + 1|p〉

− m

l∑

k=1

〈p|k〉〈k|m + 1〉〈m + 1|p〉 − l

m∑
n=1

〈p|l + 1〉〈l + 1|n〉〈n|p〉
)

= ClCm

(
l + lm δlm − m

l∑

k=1

δk(m+1) − l

m∑
n=1

δn(l+1)

)
. (A.10)

Using the relation δk(m+1) = 0 for m ≥ k and

l

m∑
n=1

δn(l+1) =

{
0 if l = m

l if l < m
(A.11)

we obtain
TrΛlΛm = (Cl)

2 l(l + 1) δlm = 2 δlm . (A.12)

Proof. (Proof of condition (A.4).) Analogously to the proofs (A.7) and (A.8) we
find

TrΛjk
a Λmn

s = i
(− δjnδkm + δjmδkn − δjmδkn + δjnδkm

)
= 0 . (A.13)

Proof. (Proof of condition (A.5).) Inserting definitions (2.13) and (2.15) gives

TrΛjk
s Λm = Cm

d∑
p=1

(
−m〈p|k〉〈j|m + 1〉〈m + 1|p〉

−m〈p|j〉〈k|m + 1〉〈m + 1|p〉

+
m∑

n=1

〈p|j〉〈k|n〉〈n|p〉 +
m∑

n=1

〈p|k〉〈j|n〉〈n|p〉
)

= − 2mδj(m+1)δk(m+1) + 2
m∑

l=1

δklδjl

= 0 , (A.14)

since per definition we have j < k.
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Proof. (Proof of condition (A.6).) This proof is equivalent to the previous one
since constant factors in front of the terms do not matter.

A.2. Derivation of term B in the GGB
decomposition of the maximally entangled
two-qudit state

To obtain the Bloch vector notation of the term B in the generalized Gell-Mann
operator basis (2.65) we insert the standard operator decomposition (2.27) for
the case j = k. We split the tensor products in the following way:

B =
1

d

(
B1 + B2 + B3 + B4 +

1

d
1⊗ 1

)
, (A.15)

where the terms B1, . . . , B4 are introduced by (note that Λ0 = 0)

B1 =
d∑

j=1


j − 1

2j
Λj−1 ⊗ Λj−1 +

d−j−1∑

n(=l)=0

1

2(j + n)(j + n + 1)
Λj+n ⊗ Λj+n


 ,

(A.16)

B2 =
d∑

j=1

(
−

d−j−1∑

l=0

√
j − 1

4j(j + l)(j + l + 1)
Λj−1 ⊗ Λj+l

−
d−j−1∑
n=0

√
j − 1

4j(j + n)(j + n + 1)
Λj+n ⊗ Λj−1

+

d−j−1∑

n 6=l, n,l=0

1

2
√

(j + n)(j + n + 1)(j + l)(j + l + 1)
Λj+n ⊗ Λj+l

)
,

(A.17)

B3 =
1

d

d∑
j=1

(
−

√
j − 1

2j
Λj−1 ⊗ 1+

d−j−1∑
n=0

1√
2(j + n)(j + n + 1)

Λj+n ⊗ 1
)

,

(A.18)

B4 =
1

d

d∑
j=1

(
−

√
j − 1

2j
1⊗ Λj−1 +

d−j−1∑

l=0

1√
2(j + l)(j + l + 1)

1⊗ Λj+l

)
.

(A.19)

Only the first term B1 (A.16) gives a contribution,

B1 =
d−1∑
m=1

(
m

2(m + 1)
+

m

2m(m + 1)

)
Λm ⊗ Λm =

1

2

d−1∑
m=1

Λm ⊗ Λm , (A.20)
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whereas the remaining terms vanish:

B2 =
d−1∑

m<p, m,p=1

(
−

√
m

4(m + 1)p(p + 1)
+

m√
4m(m + 1)p(p + 1)

)
Λm ⊗ Λp

+
d−1∑

m>p, m,p=1

(
−

√
p

4(p + 1)m(m + 1)
+

p√
4p(p + 1)m(m + 1)

)
Λm ⊗ Λp

=

(∑
m<p

−m + m

2
√

m(m + 1)p(p + 1)
+

∑
m>p

−p + p

2
√

m(m + 1)p(p + 1)

)
Λm ⊗ Λp

= 0 , (A.21)

and in quite the same manner

B3 =
1

d

d−1∑
m=1

−m + m√
2m(m + 1)

Λm ⊗ 1 = 0 ,

B4 =
1

d

d−1∑
p=1

−p + p√
2p(p + 1)

1⊗ Λp = 0 . (A.22)

Thus we find the Bloch decomposition

B =
1

2d

d−1∑
m=1

Λm ⊗ Λm +
1

d2
1⊗ 1 . (A.23)

A.3. Proof of orthonormality of the WOB
We use Eq. (2.50) to proof the orthogonality (2.45) of the Weyl operators (2.44):

TrU †
nmUlj =

d−1∑
p=0

d−1∑

k,k̃=0

e
2πi
d

(k̃l−kn) 〈p|(k + m)mod d〉〈k|k̃〉〈(k̃ + j)mod d|p〉

=
d−1∑
p=0

d−1∑

k,k̃=0

e
2πi
d

(k̃l−kn) 〈p|(k + m)mod d〉〈(k̃ + j)mod d|p〉 δkk̃

=
d−1∑

k=0

e
2πi
d

k(l−n) δmj

= d δnl δmj . (A.24)
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Abstract

Entanglement is a fascinating curiosity of quantum physics that distinguishes it
considerably from classical concepts. On the one hand it implicates surprising
philosophical aspects such as the incompatibility of local realistic theories with
quantum physics, on the other hand it can be successfully implied in quantum
information and quantum communication tasks to improve protocols with respect
to classical procedures.

It is still an open mathematical problem to determine whether a quantum
state is entangled or not; there is no operational procedure for a general state on
an arbitrary dimensional Hilbert space. For pure states and lower dimensional
bipartite systems, e.g., for two qubits, the problem is solved, since computable
necessary and sufficient conditions for separability (i.e. for being not entangled)
were found. Moreover, if one seeks to quantify the entanglement of a quantum
state, this can be conveniently done for a system of two qubits. For higher
dimensional and/or multipartite systems much has been accomplished in the
context of entanglement detection and quantification, but the problem cannot
be seen as solved at all, and much has still to be investigated.

The aim of this thesis is to present new methods to detect and quantify en-
tanglement for systems beyond two qubits. States of these systems are, as usual,
described by density operators that are usually put into matrix notation. For
high dimensional and/or multipartite systems, these density matrices can be-
come, however, quite unhandy. A mathematical tool to express density operators
in a compact and simpler way is provided by the Bloch vector decomposition. In
this notation we decompose the density operator into a complete and orthogonal
basis of operators of the operator space. For qubits this notation is well known
and usually one uses the Pauli spin-1/2 operators as the operator basis. For
qudits, i.e. states of arbitrary dimensional systems, however, there is no unique
generalization of the Pauli operator basis. We therefore present three possible
choices of operator bases: the generalized Gell-Mann operator basis, the polar-
ization operator basis, and the Weyl operator basis. We furthermore provide a
method to find the decomposition of any operator (not necessarily density op-
erators) into one of the three operator bases via the decomposition of so-called
standard operators. As an application example of the method we consider the
maximally entangled two-qudit state and decompose it according to each basis.

In the context of entanglement detection, entanglement witnesses are an impor-
tant and frequently used tool. They are observables and detect the entanglement
of a state if they reveal a negative expectation value for it, and if at the same time
it is known that the expectation value has to be non-negative for all separable



states. This latter condition is, however, in general not straightforward to show.
A simplification in this connection is the usage of Bloch decompositions, which
offer new relations and help to prove the condition in many cases. A particular
class of entanglement witnesses are geometric entanglement witnesses. These al-
low a direct Euclidean geometrical representation of operator space. We show the
importance of these witnesses by giving shift methods that can detect entangled
and in particular bound entangled states, and help to determine the set of sepa-
rable states for convex subsets of states. Examples for a three-parameter family
of two-qutrit states are given.

Geometric entanglement witnesses can also be applied for geometrical quantifi-
cation of entanglement, in particular for determining the Hilbert-Schmidt mea-
sure of entanglement. We give examples for the isotropic two-qudit state and
two-parameter families of two-qubit and two-qutrit states.

Finally, we address the problem of entanglement detection in multi-qubit sys-
tems. In this context we provide a general construction of entanglement witnesses
using static structure factors. In solid state physics, structure factors describe
dynamical properties of solids in scattering experiments. The structural witnesses
can detect many genuinely multipartite entangled states, such as Dicke states and
Dicke-like states with changed phases of the constituting terms. Moreover, they
contain two-point correlations only and are apt for experimental application for
various physical systems.



Zusammenfassung

Verschränkung ist eine faszinierende Eigenart der Quantenphysik, die diese be-
trächtlich von klassischen Konzepten unterscheidet. Einerseits impliziert Ver-
schränkung überraschende philosophische Aspekte, wie die Unvereinbarkeit von
lokal-realistischen Theorien mit der Quantenphysik, andererseits kann sie erfolgre-
ich für Aufgaben der Quanteninformation und Quantenkommunikation verwendet
werden, um Protokolle im Hinblick auf klassische Prozeduren zu verbessern.

Es ist noch immer ein offenes mathematisches Problem, herauszufinden, ob
ein Quantenzustand verschränkt ist oder nicht; für einen allgemeinen Zustand
auf einem beliebig dimensionalen Hilbertraum gibt es keine operationelle Vor-
gangsweise. Für reine Zustände und niedrig dimensionale Zweiteilchen-Systeme,
z.B. für zwei Qubits, ist dieses Problem gelöst, da berechenbare notwendige und
hinreichende Bedingungen für Separabilität (d.h. für Nicht-Verschränktheit) ge-
funden wurden. Außerdem kann die Verschränkung für ein Zwei-Qubit-System le-
icht quantifiziert werden. Für höher dimensionale und/oder Mehrteilchen-Systeme
wurde in Bezug auf die Bestimmung und Quantifizierung von Verschränkung
schon einiges erreicht, allerdings kann das Problem noch nicht als gelöst angese-
hen werden, vieles ist noch zu erforschen.

In dieser Dissertation werden neue Methoden zur Bestimmung und Quan-
tifizierung von Verschränkung für Systeme, die über Zwei-Qubit-Systeme hinaus-
gehen, präsentiert. Zustände solcher Systeme werden üblicherweise durch Dichte-
operatoren beschrieben und in Matrix-Schreibweise verwendet. Für hochdimen-
sionale und/oder Mehrteilchen-Systeme können diese Dichtematrizen allerdings
sehr unpraktisch werden. Mit Hilfe von Bloch-Zerlegungen können Dichteop-
eratoren kompakter und einfacher dargestellt werden. In dieser Schreibweise
werden Dichteoperatoren in eine vollständige und orthogonale Operatorenbasis
des Operatorenraums zerlegt. Für Qubits ist diese Schreibweise geläufig und
üblicherweise werden die Pauli-Spin-1/2 Operatoren für die Operatorenbasis ver-
wendet. Für Qudits, das sind Zustände allgemein dimensionaler Systeme, gibt es
allerdings keine eindeutige Verallgemeinerung der Pauli-Operatorenbasis. Daher
untersuchen wir drei mögliche Operatorenbasen: Die verallgemeinerte Gell-Mann-
Operatorenbasis, die Polarisationsoperatorenbasis, sowie die Weyloperatorenba-
sis. Weiters wird eine Methode präsentiert, mit welcher die Zerlegung eines be-
liebigen Operators in eine der drei Operatorenbasen mit Hilfe der Zerlegung von
sogenannten Standardoperatoren gefunden werden kann. Als Beispiel zur An-
wendung dieser Methode betrachten wir den maximal verschränkten Zwei-Qudit
Zustand und zerlegen diesen in jede der Operatorenbasen.

Im Zusammenhang mit der Bestimmung von Verschränkung sind “Entangle-



ment Witnesses” ein wichtiges und oft verwendetes Hilfsmittel. Diese sind Ob-
servablen und detektieren die Verschränkung eines Zustandes, sofern sie für diesen
einen negativen Erwartungswert aufweisen, und wenn gleichzeitig bekannt ist,
dass der Erwartungswert für alle separablen Zustände nicht negativ werden kann.
Diese letztere Bedingung ist allerdings im Allgemeinen nicht leicht zu zeigen. In
diesem Zusammenhang bietet sich die Verwendung von Bloch-Zerlegungen für
vereinfachte Relationen an, und somit kann die Bedingung in vielen Fällen be-
wiesen werden. Eine besondere Klasse von Entanglement Witnesses sind ge-
ometrische Entanglement Witnesses, welche eine direkte euklidisch-geometrische
Darstellung des Operatorenraumes erlauben. Die Wichtigkeit dieser Witnesses
wird durch “Shift”-Methoden verdeutlicht, welche verschränkte und im Speziellen
“bound entangled” Zustände detektieren können, und außerdem helfen, die Menge
der separablen Zustände von konvexen Untermengen von Zuständen zu bestim-
men. Als Beispiel betrachten wir eine Drei-Parameter-Familie von Zwei-Qutrit
Zuständen.

Weiters können geometrische Entanglement Witnesses auch zur geometrischen
Quantifizierung von Verschränkung verwendet werden, insbesondere zur Bestim-
mung des Hilbert-Schmidt Verschränkungsmaßes. Dies wird an den Beispielen
der isotropen Zwei-Qudit Zustände und Zwei-Parameter Familien von Zwei-Qubit
und Zwei-Qutrit Zuständen gezeigt.

Zuletzt widmen wir uns dem Problem der Bestimmung von Verschränkung in
Mehr-Qubit Systemen. In diesem Zusammenhang bieten wir eine allgemeine Kon-
struktion von Entanglement Witnesses unter Verwendung von statischen Struk-
turfaktoren an. In der Festkörperphysik beschreiben Strukturfaktoren dynamis-
che Eigenschaften von Festkörpern in Streuexperimenten. Die strukturellen En-
tanglement Witnesses detektieren echte Mehrteilchen-Verschränkung, wie z.B.
Dicke-Zustände und Dicke-ähnliche Zustände mit geänderten Phasen der vork-
ommenden Terme. Sie beinhalten außerdem nur Zwei-Punkt-Korrelationen und
sind für die experimentelle Anwendung in verschieden physikalischen Systemen
geeignet.
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