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Preface

This thesis is the outgrowth of a long struggle trying to combine evolutionary
game theory with the fascinating science of networks. Reading all the papers
and books from the various disciplines, encompassing such completely dis-
perse �elds such as mathematical sociology, evolutionary biology, statistical
physics, mathematics, and economics, often made me more confused than
clari�ed how I should think about network theory. My pragmatic conclu-
sion, at least from my point of view today, is that there is no other way to
think about networks than as abstract modeling devices, with which large
and complex systems can be translated into a mathematical language. And
there we have the connection! Just as game theory is simply a language to
model strategic interactions among agents with interdependent utility func-
tions, so is network theory a language to model dependency structures among
interacting entities. Note the words: Interaction, Interdependency. Now it is
clear that these two disciplines must have something in common. My objec-
tive in this dissertation is to elaborate more on this close relationship between
ideas coming from evolutionary game theory and models from random graph
theory. Indeed, one of the central �ndings of this dissertation is that evolu-
tionary game theory can be used to give a behavioral micro-foundation to a
fairly large class of random graph models, known as inhomogeneous random
graphs. This interesting connection makes it possible to endogenize interac-
tion structure into a local interaction system in a transparent way. While
random graph theory is more in the domain of statistical physics and math-
ematics, local interaction systems have received much interest in economic
theory. Combining these two �elds is an exciting challenge, and this thesis
is just a possible �rst step to fully explore the scope of the interrelations.
We are still very far from a completely satisfying understanding of the co-
evolution of networks and play and I hope that future research will �nd one
or the other result presented in this thesis to be valuable.
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1.1 Co-evolution of networks and play

Traditionally, evolutionary game theory focused on settings involving large
populations of anonymous and (strategically) interacting agents (Sandholm,
2009b). The simplest setting considers a single population of individuals
who are recurrently and randomly matched with other agents to play some
given normal form game (for a critical account of this random matching
hypothesis see Boylan, 1992, Alós-Ferrer, 1999). After the matching took
place, the agents observe an outcome, which is, in most cases, the utility
generated from the interaction. An evolutionary process describes how agents
respond to this outcome by adapting their behavior. The typical story is that
agents have some cognitive ability to evaluate the outcome of the matching,
and they employ behavioral rules which prescribe their behavior in the next
round of matching. Such behavioral rules can be very sophisticated, such
as always best responding to the previous outcome of the matching, or can
be rather simple such as variants of reinforcement learning (see Weibull,
1995, Hofbauer and Sigmund, 1998, Sandholm, 2009b, and the references
therein). Whatever the speci�c assumption is, one can model this strategy
adjustment process as a random process, which may be approximated by a
deterministic dynamical system when the number of interacting and updating
agents is su�ciently large. The technically most convenient situation arises
if one assumes a continuum population at the outset. In such a case, the
description of the long-run evolution of the society boils e�ectively down to
an aggregate population dynamics, capturing the most essential statistical
regularities of the underlying process, e.g. the frequency distribution over
pure actions used by the agents. These �mean-�eld dynamics� capture the
expected law of motion of the aggregate frequency of actions, and its rest
points re�ect situations where almost all agents in the population have no
interest to change their behavior (see Benaïm and Weibull, 2003, Sandholm,
2009b, for a formal justi�cation of the use of mean-�eld methods). Of course,
real populations are �nite, and the main theme of this dissertation will be
that the pattern of interaction, i.e. the design of the matching technology, is
of high importance in these models. To give an illustration on this point, let
us consider the following simple 2× 2 game:

a1 a2

a1 (e, e) (f, g)
a2 (g, f) (h, h)

(1.1.1)

The exact values of the entries in this table are not of importance. We
require however that e > g and h > f , so that we have a coordination
game with strict Nash equilibria (a1, a1), (a2, a2). Applying any reasonable
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evolutionary dynamic on this game produces the vector �eld depicted in
Figure 1.1. Calling x the global frequency of a1-players in the population,

0 1x*

Figure 1.1: Vector Field of any reasonable deterministic evolutionary dy-
namic generated by the game (1.1.1).

we see that the heterogeneity equilibrium, where a fraction x∗ = h−f
e−g+h−f of

individuals play a1 and the remaining fraction plays a2, is an unstable �xed
point of the dynamic. The two strict Nash equilibria are asymptotically
stable �xed points, with basins of attraction separated exactly at x∗. Hence,
from a dynamic point of view, the society will �nd itself in a situation where
every player chooses the same action. This global conformity prediction
is one the one hand con�rming and on the other hand disappointing. It
is con�rming, since we want that the agents can agree in a decentralized
way to play a reasonable equilibrium, which is in (1.1.1) certainly only a
pure strategy equilibrium. On the other hand, it is disappointing since a
prediction in which all agents behave in the very same way misses some
fundamental observations made in the real world: persistent heterogeneity
in the modes of behavior of the agents at the aggregate level of society. Once
we recognize that the way how people interact shapes the way how they
behave (and vice versa), we can easily model a situation where players who
interact more frequently (i.e. they are matched on a regular basis) with each
other will coordinate on the same action, but agents who never meet my
play di�erent strategies. To illustrate the point, let me present a very simple
�model� which is already capable to produce a picture of local conformity,
but global heterogeneity. The population we consider is a �nite one, but is
best thought to be fairly large, say N . These N individuals play the game
(1.1.1) on a regular basis with a subset of players, which we call, in a rather
informal way, their neighbors. The agents do not need to know much about
the speci�c attributes of their neighbors; They just know that the common
game in question is (1.1.1). Each player starts with some action in the game,
and only at some random points in time a randomly chosen individual gets
the chance to revise his decision what to play in subsequent periods. Suppose
that player i received such an opportunity. Conditional on this event, she
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employs a very simple (imitative) behavioral rule, namely the following:

�Pick the most prominent action in the neighborhood. In case of
a tie, stick to your action.�

Over time, the neighborhoods change, as do social relationships in the real
world. To capture this phenomenon, we introduce two further adjustment
rules, which directly act on the social network of neighborhood relations.
At some random moments of time, let one randomly chosen individual get
the opportunity to search for a new agent, who is not currently a neighbor.
Conditional on this event, she does this in the following way:

�Take the �rst best individual you meet on your search. If he
plays the same action as you do, become a neighbor of him
with probability 1− ε. Otherwise, become a neighbor of him
only with probability ε.�

Such simple global search protocols are frequently used in recent models on
the evolution of social networks (see Vega-Redondo, 2007, and the reference
therein). The probability ε can be interpreted as the rate of experimentation
of an agent.
To complete the description of the network evolution process, we need some
force counteracting the repeated creation of new connections. The simplest
way to introduce such a �death-element� is by assuming that every existing
connection can be destroyed with equal probability. Such assumptions have
been made in �phenomenological� models (Ehrhardt et al., 2006b) of network
evolution, and there this e�ect is often traced back to some exogenous force
of network volatility. Volatility is a crucial element in the models of the sub-
sequent chapters. While many papers in the network formation literature
model volatility as an unguided drift term destroying any currently existing
edge in the network at a constant rate, it may also be used as a modeling
device of the network formation mechanism. A very general model, allowing
for all these interpretations of volatility is presented in chapter 2.1

These simple rules of adjustment give rise to a well de�ned Markov chain
acting on the tuple of action pro�les and neighborhood relationships, which
models a stochastic co-evolutionary process of networks and play. To get a
rough idea on the possible scenarios generated by such a process we may em-
ploy computer simulations. The results of a simulation of such a process are

1It is interesting to see that a sort of volatility has also been used by Blume (1995). In
his continuous �ow model players are randomly matched and the relationship holds for a
random amount of time until it is dissolved again. This is a formulation of volatility in
form of unguided drift.
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Figure 1.2: Results from a computer simulation of a simple co-evolutionary
process with payo�s [e, f, g, h] = [5, 2, 1, 4] in game (1.1.1). The plots are
summary statistics from 40 independent computer simulations performed
with the program NetLogo 4.0.4 (Wilensky, 1999). With rate ν = 4 a ran-
domly chosen player receives an action adjustment opportunity, with rate
λ = 1 an agent, who is not completely connected yet, may form a new link,
and with the variable rate ξ ∈ {0.2, 0.4, 0.6, 0.8, 1} a randomly chosen link be-
comes destroyed. The rate of experimentation is ε = 0.05. Each simulation
run was given 40.000 rounds for relaxation, and the periods 40.001-40.201
were used for data taking. Dots are the averages over this time span for each
run. The closed curve connects averages over all simulations time average.
Population size is 250. The initial network is a degree-regular graph with
mean degree of 5. The initial number of a1 players is chosen at random.

depicted in Figure 1.2. We see there the outcome of a series of independent
computer experiments where a society of 250 individuals is involved in the
co-evolutionary process sketched above. We evaluate these numerical experi-
ments in terms of 4 aggregate statistics: the average utility of the agents (Ū),
the number of a1-players (n1), the average number of neighbors an agent has
(κ̄, called the average degree of an individual), and the clustering coe�cient
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of the network (C).2 The following general picture emerges. The larger in
magnitude the e�ect of volatility, the more di�cult it is for the players to
achieve coordination. We may see this from the inverse relationship observed
in all four plots. In terms of network characteristics this is rather obvious,
since a higher rate of volatility implies that more links will be destroyed on
average, and in equilibrium this must result in a sparser graph. However,
the interesting thing is that higher volatility leads also to a drastic drop
in the mean utility the agents obtain in the long run. From the frequency
statistic on the number of a1-players we also see, that the society consists,
notably in the long-run, of a1 as well as a2-players. This is the co-existence
result we wanted. The fall in utility might have two sources: Persistent mis-
coordination among the agents, or �under-connectedness� for too high levels
of volatility. The �movie� displayed in Figures 1.3 and 1.4 illustrates that it
is the second e�ect which causes the loss in welfare.
Taking di�erent snapshots of the social network for di�erent environmental
scenarios reveals the full working of volatility in the model. The upper row
of plots in Figure 1.3 depict a scenario of low environmental volatility. We
see an emerging pattern of two large blocks in the society, corresponding to
the two di�erent types of behavior in the game. The degree of separation
becomes more accentuated as time proceeds, and in the case of no exper-
imentation, i.e. ε = 0, we would observe two disjoints components in the
network. For higher levels of volatility a di�erent picture emerges. The net-
works will be fairly sparse, meaning that every individual will interact only
with few neighbors, and we observe a tree-like architecture at the aggregate
level. This pattern holds for a large range of intermediate values of volatility,
as can be seen form the lower row of Figure 1.3 and the upper row of Figure
1.4. For very high levels of volatility, most agents will be loners, making the
model not so interesting. We also see from Figures 1.3, 1.4 that it is not the
agents' inability to coordinate successfully. Much more the contrary is the
case. Almost all connected pairs of agents displays the same type of behav-
ior. We will see that this remains to be true in coordination games, even if
we assume more general (and sophisticated) behavioral rules. We learn from
this �toy model�, that already simple rules of behavior may lead to interesting
phenomena, such as local homogeneity but global diversity, and complicated
patterns of interactions. In view of this, we might hope to build more so-
phisticated models, driven by behaviorally sensible assumptions on the way
the players react to the behavior of their neighbors, which yield interesting

2Clustering is a standard measure in network analysis, and heuristically measures the
number of closed triangles in a graph. Equivalently, one can think of it as the fraction of
neighbors of neighbors of an agent who are again his neighbors. We use for C the average
over all individual node clustering coe�cients, as proposed by Watts and Strogatz (1998).
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t=10.200 t=30.200 t=40.200
ξ=0.2:

t=10.200 t=30.200 t=40.200

ξ=0.4:

Figure 1.3: Time evolution of the network for di�erent values of volatility
ξ. Initially there are 75 a1-players. Other parameter values are λ = 1, ν =
4, ε = 0.05. Red dots symbolize a1-players.

outcomes at the macroscopic level of society. The results generated by these
models will, in general, be distributions over action pro�les and networks,
inducing a statistical ensemble of random graphs. The characterization of
the probability measures of such random graph ensembles is the new element
of such models, giving us a more re�ned picture of aggregate population
dynamics.

1.2 Inhomogeneous random graphs

This section should give a rough idea what we actually mean when we speak
of a random graph. A rigorous account of this fascinating topic would require
the writing of at least one book, and so we will only convey basic ideas. The
classical reference on random graphs is Bollobás (2001), which exclusively
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t=40.200t=10.200
ξ=0.8:

t=30.200

t=40.200t=10.200

ξ=1:

t=30.200

Figure 1.4: Time evolution of the network for di�erent values of volatility
ξ. Initially there are 75 a1-players. Other parameter values are λ = 1, ν =
4, ε = 0.05. Red dots symbolize a1-players.

studies the Erdös-Rényi model (Erdös and Rényi, 1960). Recent, mathemat-
ically rigorous, accounts are the books by Durrett (2007) and Chung and Lu
(2006), which go beyond the Erdös-Rényi model. To introduce the necessary
ideas needed for the subsequent chapters of this thesis, we follow the inge-
nious approach of Park and Newman (2004), giving an integrated derivation
of generalized, or inhomogeneous, random graphs, in a statistical mechanics
fashion.
In this thesis we will speak of networks and undirected graphs synonymously.
An undirected graph is a pair of sets G = (I, E), where I is a countable set
of vertices and E the set of unordered pairs of connected vertices, called the
edge set of the graph G. The set of unordered pairs of members of I is
denoted as I(2). Elements of this set are pairs (i, j) ≡ (j, i) with i, j ∈ I.
Most of the time we will work with �nite graphs, meaning the there is only
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a �nite number of vertices. The vertex set is then {1, 2, . . . , N}. Moreover,
the set I is in this thesis assumed to be time-invariant, so that the only way
how to discriminate between di�erent graphs on the vertex set I is via its
edge set. To indicate this, we write the edge set for a graph G as E(G).
The complete graph on I is the network where all nodes are interconnected,
i.e. if |I| = N and Gc is the complete graph3, then |E(G)| = N(N − 1)/2.
Given a graph G = (I, E), we call G′ = (V , E ′) a subgraph of G, if V ⊆ I
and E ′ ⊂ E . All networks in our models are in this sense subgraphs (with
V = I) of the complete graph Gc, and we call G[I] the set of all such graphs.
A more algebraic approach to graph theory is provided by working with the
edge indicator function g : I(2) × G[I]→ {0, 1}, de�ned as

g((i, j), G) =

{
1 if (i, j) ∈ E(G),
0 otherwise.

(1.2.1)

For a graph G ∈ G[I] we may abbreviate g((i, j), G) as gij(G). The edge indi-
cators establish a one-to-one correspondence4 between the ensemble of graphs
G[I] and the set {0, 1}I(2) , members of which are vectors g = (gij)1≤i<j≤N .
Therefore, we will be safe by identifying G[I] with the set of edge-indicators.
In this sense, we call the vector g a network, or a graph. In the following
de�nition we �x the meaning of an ensemble of random graphs (see also the
de�nitions in Vega-Redondo, 2007, Dorogovtsev and Mendes, 2003).

De�nition 1.2.1. A random graph ensemble is a discrete probability space
(G[I], µ), where every graph g ∈ G[I] is assigned a statistical weight µ({g}) =
µ(g). An ensemble of random graphs is called uncorrelated, if all edges appear
with independent probability. The edge-success probability of vertices i and j
in the uncorrelated random graph ensemble (G[I], µ) is the probability of the
event {gij = 1}. It is determined by

pij =
∑

g∈G[I]:gij=1

µ(g) =
∑
g∈G[I]

gijµ(g) = Eµ[gij]. (1.2.2)

If pij = p for all i, j ∈ I, we call the uncorrelated ensemble (G[I], µ) the
Erdös-Rényi model. Otherwise, we call the ensemble an inhomogeneous ran-
dom graph.

3In graph theory a complete graph on N vertices is normally denoted by KN . By
choosing the above notation, we follow the literature in economics.

4This equivalence holds only up to a bijective relabeling of the vertices, since graphs
that preserve adjacency under a permutation of the labels of the vertices are regarded as
equivalent in graph theory. See Bollobás (1998).
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The de�nition makes it clear that in the Erdös-Rényi model all vertices are
statistically equivalent objects, and the graph measure µ is the Bernoulli
distribution µ(g) = pe(g)(1 − p)N(N−1)/2−e(g), where e(g) :=

∑
i,j>i gij is the

number of active edges in the graph g. Hence, the Erdös-Rényi-model uses
only information on the number of edges in a graph, and all graphs with the
same number of edges appear with the same probability. It is therefore the
most basic random graph model and serves as a useful benchmark.
For inhomogeneous random graphs, it follows from the independence assump-
tion that the graph measure must be of the form

µ(g) =
∏
i,j>i

p
gij
ij (1− pij)1−gij . (1.2.3)

We see that in such uncorrelated models the edge-success probabilities pro-
vide all information on the random graph ensemble.
The following procedure, outlined in Park and Newman (2004), is a simple
way to estimate a general random graph model (G[I], µ) from empirical ob-
servations, and to determine the edge-success probabilities. Let G[I] be the
set of feasible networks in the sequel of our experiments. For every graph
g ∈ G[I] we may have di�erent kinds of observations which depend on g. Let
~x := (xk)k=1,...,r denote a set of observable attributes (i.e. the level of invest-
ments and pro�ts of a set of �rms in a trade network), and xk(g) the value
of the observable k given the graph g. Let x̄k denote the empirical average
of the observations of characteristic k = 1, 2, . . . , r. We want to determine a
probability measure µ on G[I], that �ts the empirical averages of the graph
observables as best as possible. One approach to solve this problem is by
writing down the negated entropy function

h :=
∑
g∈G[I]

µ(g) log µ(g),

and formulating the convex minimization problem

minh,

s.t.
∑
g∈G[I]

µ(g)xk(g) = x̄k 1 ≤ k ≤ r,

∑
g∈G[I]

µ(g) = 1.

Remember that the argument with respect to which we want to minimize
h is the probability distribution µ. We can solve this optimization problem
by standard methods, by assigning to each graph observable the Lagrangian
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multiplier θk. Let ~θ := (θ1, . . . , θr), and denote by 〈~θ, ~x〉 :=
∑r

k=1 θkxk the
standard inner product on Rr. The �rst-order conditions read as

1 + log µ(g) + 〈~θ, ~x(g)〉 = 0

for all g ∈ G[I]. Let us de�ne the graph Hamiltonian H : G[I]→ R, as

H(g) := 〈~θ, ~x(g)〉.

Then we can reformulate the �rst-order conditions as

(∀g ∈ G[I]) : 1 + log µ(g) = H(g),

and consequently, for any pair of graphs g, g′ ∈ G[I],

µ(g′)

µ(g)
= exp[H(g′)−H(g)].

Summing over all g′ ∈ G[I], and using the normalization condition
∑

g′∈G[I] µ(g′) =
1, we get

(∀g ∈ G[I]) : µ(g) =
exp(H(g))∑

g′∈G[I] exp(H(g′))
. (1.2.4)

Such a probability measure is known in statistical mechanics as a Gibbs mea-
sure, and will appear frequently in the papers presented in chapters 4 and
5. In the statistical analysis of social networks, such a probability measure
is also a prominent choice. In this literature it is known as the exponential
random graph model (ERGM), or p∗-model (Wasserman and Pattison, 1996,
Anderson et al., 1999, Snijders et al., 2006). These models have their roots
in the Markov graphs of Strauss and Frank (1986) and Strauss (1986).
To demonstrate the generality of this approach, we will show that the Erdös-
Rényi model and inhomogeneous random graphs can be obtained by suit-
ably specifying the graph Hamiltonian. For the Erdös-Rényi model, we put
H(g) := θe(g) (emphasizing again that the only variable of this ensemble is
the edge-count). Plugging this into the probability measure (1.2.4) gives

µ(g) = pe(g)(1− p)N(N−1)/2−e(g).

To see this, we need to compute the normalizing factor (called the partition
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function in statistical physics)

∑
g∈G[I]

exp(H(g)) =
∑
g∈G[I]

exp(θ
N∑
i=1

∑
j>i

gij)

=
N∏
i=1

∏
j>i

∑
gij∈{0,1}

exp(θgij)

=
n∏
i=1

∏
j>i

(1 + exp(θ))

= (1 + exp(θ))N(N−1)/2

Let p := (1+exp(−θ))−1 = exp(θ)
1+exp(θ)

, so that 1−p = 1
1+exp(θ)

and p
1−p = exp(θ),

to get

µ(g) = exp(θ)e(g)(1 + exp(θ))−N(N−1)/2

= pe(G)(1− p)N(N−1)/2−e(g).

For the inhomogeneous random graph, we assign to each element in I(2) an
edge weight θij, and set H(g) :=

∑N
i=1

∑
j>i θijgij. The partition function for

this model is ∑
g′∈G[I]

exp(H(g′)) =
N∏
i=1

∏
j>i

(1 + exp(θij)).

De�ning pij :=
exp(θij)

1+exp(θij)
, we obtain for all g ∈ G[I]

µ(g) =
N∏
i=1

∏
j>i

p
gij
ij (1− pij)1−gij .

In a co-evolutionary model, the state variable is the complete pro�le of actions
together with the network. Hence, as one of the long-run characteristics of
such a process we will observe an induced ensemble of networks. The purpose
of this thesis is to present models were these ensembles can be characterized to
a large extent. It will turn out that the statistical mechanics approach of Park
and Newman (2004) is quite fruitful for these purposes, and we will further
show that co-evolutionary models, as de�ned in this thesis, have a strong
relation with inhomogeneous random graphs. To give a �rst impression of
this, we will compare the statistical outcome of the experiment performed
in Section 1.1 with the Erdös-Rényi graph. The only two graph statistics,
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ξ 0.2 0.4 0.6 0.8 1
κ̄ 6.32 3.28 2.10 1.75 1.26
C 0.0372 0.0170 0.0113 0.0094 0.0078
CER 0.0253 0.013 0.009 0.007 0.005

Table 1.1: Numerical values of plot 1.2. For a given graph g ∈ G[I], the

average degree is de�ned by κ̄(g) := 1
N

∑
i∈I κ

i(g) = 1
N

∑
i,j∈I gij = 2e(g)

N
.

The clustering-coe�cient for a single vertex is calculated as Ci(g) :=P
j∈I

P
k>j gijgjkgkiP

j∈I
P
k>j gijgik

, and C(g) := 1
N

∑
i∈I C

i(g).

visualized in Figure 1.2, were the clustering coe�cient and the average degree.
Its precise values are given in Table 1.1.

In an Erdös-Rényi graph, an asymptotically sharp upper bound for the clus-
tering coe�cient is κ̄/N (see Newman, 2002). This bound is used for CER in
Table 1.1. We see that clustering produced by the model is only slightly above
clustering predicted by the simple Erdös-Rényi model. This suggests that the
generated ensemble should be close to an uncorrelated random graph. How-
ever, Figures 1.3 and 1.4 showed that the network has a clearly observable
structure (e.g. block building between a1 and a2 players). This distinguishes
it from an Erdös-Rényi graph, as can be seen in Figures 1.5, 1.6 where Erdös-
Rényi graphs with similar average degrees are visualized.5 We see that these
graphs miss the structure found in Figures 1.3, 1.4. This suggests that there
are at least two probabilistic laws governing the interaction structure in the
society (corresponding to the two actions in the game (1.1.1)), making it
unlikely that the network as a whole is an Erdös-Rényi ensemble.

1.3 Structure of the Thesis

This dissertation presents three interrelated models, written in the spirit of
the co-evolutionary �model� sketched in Section 1.1. The purpose of this the-
sis is to convince the reader that studying the interaction structure, jointly
with the behavioral pro�le of a population, gives us a much richer picture on
the long-run outcomes of evolutionary processes. I hope that this goal has
been at least partly accomplished.

5These plots have been generated with Mathematica, using the Spring Electrical Em-
bedding Algorithm for visualization.
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Figure 1.5: Erdös-Rényi graph with
mean degree κ̄ = 6.25 and κ̄ = 3.25.

Figure 1.6: Erdös-Rényi graph with
mean degree κ̄ = 1.75 and κ̄ = 1.25.

Chapter 2 de�nes the general mathematical framework of the models pre-
sented in this thesis. The innovation of the article presented in this chapter
is the de�nition of stochastic co-evolutionary models with noise, which ex-
tends the models of evolution with noise of Kandori et al. (1993), Young
(1993) an Ellison (2000). We do so by imposing a list of �axioms� on the
structure of the behavioral rules the agents may employ. These �axioms�
are of a technical nature; any behavioral assumption should be made on
top of these. We show that, equipped with this set of �axioms� alone, the
process possess already su�cient structure to crystal out some important fea-
tures. Building on a rich literature on stochastic evolutionary game dynamics
(see the textbooks of Samuelson, 1997, Young, 1998, Sandholm, 2009b), and
simulated annealing (in particular the work of Catoni, 1999; 2001), we pro-
vide a tree-characterization of the long-run invariant distribution of such
co-evolutionary models. This allows us to propose a procedure which iden-
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ti�es stochastically stable states in these large models. In�uential literature
therefore have been Beggs (2005) and Alós-Ferrer and Netzer (2007). Be-
yond that, the general framework is su�ciently rich to encompass various
recent models on the co-evolution of networks and play, as will be shown
by means of two examples. We also establish a rather deep and interesting
connection between the just mentioned co-evolutionary literature, and the
mathematical literature on inhomogeneous random graphs (see Section 1.2).
Particular important references are here, beside the ones already mentioned,
Söderberg (2002) and the impressive account by Bollobás et al. (2007). As
de�ned in Section 1.2, in an inhomogeneous random graph the probabilities
with which two randomly chosen individuals become successfully connected
may depend on certain characteristics of the agents (such as their action
chosen in a game, or their idiosyncratic preferences). Söderberg (2002) and
Bollobás et al. (2007) assume some form of exogenously given heterogeneity
in the population. We provide a closed-form expression of the edge-success
probabilities as a corollary of the long-run dynamic equilibrium of the co-
evolutionary process. Hence, the paper provides a micro-foundation, and
therefore a new and independent de�nition, of the class of inhomogeneous
random graphs. This completely new result opens the way to explore many
more connections between the theory of stochastic game dynamics and ran-
dom graph theory.

Chapters 4 and 5 present more speci�c models, but are nevertheless in the
spirit of the general framework of chapter 2. The paper presented in chap-
ter 4, entitled �Potential games played in volatile environments�, is heavily
in�uenced by the path-breaking work of Ehrhardt et al. (2008a). We extend
their setting to more general behavioral rules (both in the action and the
linking dynamics) and study general potential games (Monderer and Shap-
ley, 1996). In this, admittedly simple, framework many properties of the
long-run behavior of the system can be expressed in beautiful closed-form
expressions. Among other things, this paper presents the degree-distribution
of the induced ensemble of random graphs, which is - obviously in view of
chapter 2 - an inhomogeneous random graph. A complete description of the
generated random graph ensemble is provided in Theorem 4.5.1, called the
Erdös-Rényi-decomposition. Further, we present a rather general theorem on
the concentration of the invariant measure on the set of potential maximiz-
ers, thereby generalizing classical results of Blume (1993; 1997) and Young
(1998). The proof of this theorem di�ers from the proofs presented in these
references, by relying on Markov's inequality and the structure of the in-
variant measure alone. Inspiration for the argument came from the study
of simulated annealing (Brémaud, 1998, Catoni, 1999), and gives a clearer
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picture on the mechanics of the process. An application to pure-coordination
games illustrates the introduced concepts.

Chapter 5 is an extension of the model of chapter 4, but still considers poten-
tial games. In this paper, entitled �Co-evolutionary dynamics and Bayesian
interaction games�, we introduce a new class of games, called structured
Bayesian interaction games. This class of games merges the interaction
games of Morris (1997; 2000) and the Bayesian population games of Ely and
Sandholm (2005) and Sandholm (2007a). An interaction game is an N -player
game, where interaction is modeled by an arbitrary graph, or network. In our
model, we always assume interaction to be binary, i.e. two agents play per in-
teraction. The term �structured� highlights that the matching will in general
be distinct from the global random matching framework brie�y mentioned
in Section 1.1. A Bayesian population game is a population game where
the agents' preferences are diverse. The seminal paper of Ely and Sandholm
(2005) introduced this class of games in an unstructured continuum popu-
lation. Sandholm (2007a) uses this framework to give a new (evolutionary)
proof of the classical Harsanyi puri�cation theorem (Harsanyi, 1973). In
this beautiful paper, the type of a player is his preference bias. We adapt
this setup to structured Bayesian interaction games. The model is there-
fore capable to describe the long-run evolution of a society with signi�cant
heterogeneity, and we are still able to analytically pin down the invariant dis-
tribution of this process, and to demonstrate the connection with the class
of inhomogeneous random graphs. The latter is derived in form of another
Erdös-Rényi decomposition, as in the paper presented in chapter 4.

The models of chapter 4 and 5 are continuous-time Markov processes, while
the general framework is formulated for discrete-time Markov chains. This
poses no technical problems, once one realizes that every �nite-state continuous-
time Markov process can be fully studied by its so-called embedded jump
chain. Chapter 3 establishes the connection with these models in a self-
contained way, and provides a full description on the construction of the gen-
erator and the stochastic semi-group modeling evolution in the continuous-
time models.

Chapter 6 summarizes our results and discusses some ideas for future re-
�nements and extensions of the models. Although the chapters are related,
starting from being very general, and then becoming more speci�c, each
paper stands for its own. Thus, every chapter of this thesis can be read
separately without having looked at previous ones.
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Chapter 2
On a general class of stochastic

co-evolutionary dynamics
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2.1 Introduction

Recently there has been an attempt to apply stochastic evolutionary game dy-
namics to models on the co-evolution of networks and play. Broadly speaking,
one may divide these models in two classes. There is one branch of literature
which extends the mistakes model of Kandori et al. (1993) and Young (1993)
to a random process of action adjustment and link creation/destruction.
Jackson and Watts (2002), Goyal and Vega-Redondo (2005), Hojman and
Szeidl (2006) are models in this direction, and we call them, due to their
ancestry, �classical� models. Another type of models assume that the net-
work is under a recurrent attack of unguided drift, which is interpreted as
environmental volatility. Marsili et al. (2004), Ehrhardt et al. (2006a; 2008a)
are models in this direction, which we will call �volatility� models. The aim
of this paper is to present an uni�ed framework, that is rich enough to in-
corporate classical, as well as volatility models. We do so by presenting a
rather general class of co-evolutionary models, calledMβ. In essenceMβ is
a family of perturbed Markov chains taking values on some �nite state space
Ω, which consists of all pairs of action pro�les (α) and networks (g). We give
an �axiomatic� de�nition of processesMβ which models the co-evolution of
networks and play in an integrated way. At a heuristic level, the algorithm
works as follows:
Suppose the system starts from some point ω = (α, g). Departing from this
state, the system may evolve via three possible routes. With some probabil-
ity a randomly chosen individual gets the opportunity to change his action.
This causes a change in the action pro�le α. With complementary proba-
bility the network changes, resulting in the creation of a new edge, or the
destruction of an existing edge. The characterizing feature of the process is
that the behavioral rules, describing how agents change their action, or how
they create or delete links depend, in general, on the bene�ts of the bilat-
eral interaction, which, in turn, is modeled by a game in normal form. This
produces an interesting coupling between the evolution of the action pro�le
α and the evolution of the network g. After one of these events, the process
arrives at a new state, and the algorithm repeats these steps in�nitely often.

The objective of this paper is to investigate the asymptotic properties of
this stochastic algorithm. We assume that the rules de�ning the transition
probabilities of Mβ are governed by a noise parameter β ∈ R+, as is by
now standard in stochastic evolutionary models.1 For β > 0 the process will

1On the importance of noise in game theory see Binmore and Samuelson (1999) and
Blume (2003).
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be ergodic, and the long-run predictions are given by its unique invariant
distribution µβ ∈ ∆(Ω). In principle, the invariant distribution contains all
information one needs to deduce more speci�c information about the long-run
behavior of the system, such as the marginal probability distribution over ac-
tion con�gurations (the object studied in �classical� evolutionary game theory
with �xed interaction structure) and the conditional probability distribution
over networks.2 Particularly interesting is the behavior of the invariant dis-
tribution as noise vanishes. This leads to the study of stochastically stable
states, which is one of the most prominent selection criteria of evolutionary
game theory. The traditional way to perform stochastic stability analysis is
by viewing the Markov process as a weighted and directed graph and looking
for paths with least resistance. Kandori et al. (1993) and Young (1993) pio-
neered this approach, by adapting tools developed by Freidlin and Wentzell
(1998). The �rst contribution of this paper is the presentation of a tree-
characterization algorithm to compute stochastically stable states in general
co-evolutionary models. Thereby we obtain a selection criterion of recurrent
classes of states consisting of pro�les of actions and architectures of interac-
tion, extending traditional models of evolutionary game theory where only
the action pro�les are considered as state variable. The �classical� models
of Jackson and Watts (2002) and Goyal and Vega-Redondo (2005) are also
concerned with this task. Our general model provides a systematic tool kit to
�nd stochastically stable states in a transparent way. We show by means of
two examples, a �volatility� model and a �classical� model based on Jackson
and Watts (2002), that such a stochastic stability analysis is still tractable
in co-evolutionary models.
The second, and truly original, contribution of this paper is the characteriza-
tion of the generated random graph ensemble, conditional on a �xed pro�le of
actions. For this characterization we impose 3 additional �axioms�. We show
that any stochastic process, satisfying the stated assumptions, will converge
in the long run to the probability ensemble of so-called inhomogeneous ran-
dom graphs (Söderberg, 2002, Bollobás et al., 2007). Inhomogeneous random
graphs are a straightforward extension of the classical Erdös-Rényi model
(Erdös and Rényi, 1960), by allowing edge success probabilities to be vertex
speci�c. These models are very popular in the literature on random graphs,
and to the best of our knowledge, this interesting connection between evolu-
tionary game dynamics and random graph theory is novel. A co-evolutionary
model with noise provides therefore a new and independent derivation of in-

2Due to the coupling of the behavior dimension with the network dimension it would
make no sense to study a marginal distribution over networks. Only a conditional dis-
tribution, i.e. the probability distribution over networks for a �xed action pro�le, makes
sense in these models.
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homogeneous random graphs.

The class of Markov chains we study is known in the literature on stochas-
tic optimization as a �generalized Metropolis algorithm�, and is rigorously
surveyed by Catoni (1999; 2001). Beggs (2005) was among the �rst to rec-
ognize the close relationship between this class of random processes, and the
stochastic dynamics used in evolutionary game theory. We also exploit this
analogy and show that it provides a �exible language to study many models
on the co-evolution of networks and play. To underline this, we devote a
whole section to show that the models presented in Ehrhardt et al. (2008a;b)
and chapters 4, 5 �t perfectly into our framework. A minor modi�cation of
the process also allows us to study the model of Jackson and Watts (2002).
Related to our work is also the recent paper by Alós-Ferrer and Netzer (2007).
However, these authors �x the behavioral rules of the agents at the outset,
by assuming that strategy revisions are governed by the logit dynamics, in-
troduced by Blume (1993) into game theory. Moreover, their paper assumes
an exogenously �xed interaction structure.
The rest of the paper is organized as follows. Section 2.2 introduces our the-
oretical framework. In Section 2.2.2 we derive a general form of the invariant
distribution, and an algorithm to detect stochastically stable states. Section
2.3 presents a �classical model� and a �volatility� model. The characteriza-
tion of the generated random graph ensemble is presented in Section 2.4.
Section 2.5 concludes. Sections 2.6 and 2.7 collect some well-known facts on
stochastic stability analysis in a self-contained way.

2.2 A class of Markov processes

We consider a �nite population of individuals I = {1, 2, . . . , N}. The set of
all unordered pairs of individuals will be denoted by I(2). The set of ordered
pairs of a �nite set Ω is denoted as Ω × Ω = Ω2. In this paper we identify
networks with simple and undirected graphs on the vertex set I. Call G[I]
the set of all such graphs, members of which are pairs G = (I, E), where
E = E [G] ⊆ I(2) is the set of edges (links). Another convenient representa-

tion of a network is via a tuple g = (gij)1≤i<j≤N ∈ {0, 1}I
(2) ≡ G[I]. If gij = 1

we say that individual i is connected to individual j, or j is a neighbor of
i (and vice versa). Another terminology for connectedness will be that the
edge (i, j) is active. If gij = 0 then i and j are not connected, or edge (i, j)
is neutral. The neighbors of player i in the network g are contained in the
set N i(g) := {j ∈ I|gij = 1}. Call N̄ i(g) := N i(g) ∪ {i}. The number of
neighbors of player i de�nes his degree κi(g) := |N i(g)|. Given a network g
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and a subset of players V ⊆ I denote the restriction of g on V as g[V ], which
is an element of G[V ]. The complete network on the subset V is denoted by
gc[V ]. Hence, for every g ∈ G[I] and a partition of I into sets V1,V2, we can
write g = g[V1] ⊕ g[V2], where ⊕ is interpreted as the concatenation of two
lists of binary valued functions (after possibly relabeling the players). In this
notation g′ = g ⊕ gc[{(i, j)}] ≡ g ⊕ (i, j) is the network obtained by adding
the edge (i, j) to g. Analogously, g′ = g	 (i, j) is the network obtained from
g by deleting edge (i, j). Denote by e(g) =

∑
i,j>i gij the number of edges in

the network g.
Each individual possesses a utility function ui, describing her preferences
over some �nite set of common actions A = {a1, . . . , aq}.3 This de�nes a
base game Γ = (I,A, (ui)i∈I).
The utility player i gets from choosing one of these actions depends on the be-
havior of his neighboring players. Let α = (αi)i∈I ∈ AI denote an action pro-
�le of the population. A population state is a pair ω = (α, g) ∈ AI×G[I] ≡ Ω.
Given an action pro�le α let αai = (a, α−i) = (α1, . . . , αi−1, a, αi+1, . . . , αN).
Utility of player i at state ω is de�ned as

πi(α, g) ≡ πi(ω) :=
∑

j∈N i(g)

ui(αi, αj). (2.2.1)

2.2.1 Co-evolution with noise

In the spirit of Young (1993) and Ellison (2000), we call a co-evolutionary
model with noise a family of perturbed time-homogeneous Markov chains

Mβ =
(
Ω,F ,P, (Xβ

n )n∈N0

)
β∈R+

,

where Xβ = (Xβ
n )n∈N0 is a family of Ω-valued random variables, indexed by

a discrete time parameter n and a noise parameter β; F is a σ-algebra, and
P : F → [0, 1] a probability measure. A realization {Xβ

n = ω} de�nes an
action pro�le α and a network g. The Markov property states that for any
history An−1 = {Xβ

0 , . . . , X
β
n−1} on which {Xβ

n−1 = ω} holds, the probability
that the process visits state ω′ in the next period depends only on ω, i.e.

P(Xβ
n = ω′|An−1) = P(Xβ

n = ω′|Xβ
n−1 = ω) ≡ Kβ(ω, ω′), (2.2.2)

where Kβ : Ω2 → [0, 1] is the transition probability function of the stochastic
process Xβ. Denote by Kβ := [Kβ(ω, ω′)](ω,ω′)∈Ω2 the transition matrix of
the process Xβ. Assume that these probabilities vary continuously with the

3In principle every individual could have his own action set. This would require more
notation, and does not contribute anything to this paper.
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noise parameter β. For β → 0 we obtain the unperturbed Markov chainM =
(Ω,F ,P, (Xn)n∈N0), with corresponding transition matrix K. Denote by <
the collection of recurrent classes of the unperturbed chain, and L1, . . . ,Lk
the k-recurrent classes of M. By the decomposition theorem Ω = Q ∪ <,
where Q is the class of transient states in the unperturbed process.
Given the current state {Xβ

n = ω}, the following 3 events may take place:

Action adjustment: With probability q1(ω) ∈ [0, 1] the action con�gura-
tion α changes. Let ν ≥ 0 denote the rate with which player i receives
an action revision opportunity.4 De�ne the volume of the action ad-
justment process as Nν. The probability that player i gets a revision
opportunity is de�ned as 1/N . Denote by bi,β(·|ω) a probabilistic behav-
ioral rule describing how player i selects an action, given the population
state ω. Speci�cally, assume that this behavioral rule satis�es the two
�axioms�:

(A1) For all i ∈ I and β > 0, bi,β(·|ω) is a full support distribution on
A.

(A2) For all i ∈ I there exists a cost function ci1 : Ω2 → R+ satisfying

− lim
β→0

β log bi,β(a|ω) = ci1(ω, (αai , g)). (2.2.3)

This can be alternatively written as

bi,β(a|ω) = exp

[
− 1

β
(ci1(ω, (αai , g) + o(1))

]
where o(1) represents terms that go to 0 as β → 0.

As β → 0 the probability that player imakes a costly decision converges
to 0 at exponential rate. A costless transition will be made even in the
zero noise limit. Observe that the revision processes of Kandori et al.
(1993) and Blume (1993), or adaptive learning of Young (1993) satisfy
all these assumptions.5

4Assuming that this rate is heterogeneous is possible, but this is the basic assumption
made in the literature.

5(A1) and (A2) are the most basic assumptions. An appealing additional requirement
would be

(A3) (∀i ∈ I) : ci1(ω, (αai , g)) > 0 i� a /∈ arg max
a′∈A

πi(αa
′

i , g).

which says that only suboptimal choices have positive transition costs. In this sense,
players use noisy best response rules (see Sandholm, 2009b). However, for the general
discussion such an assumption is not necessary.
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Link creation: With unconditional probability q2(ω) the process allows the
network to expand. For all i ∈ I de�ne a rate function λi : Ω → R+,
satisfying κi(ω) = N − 1⇒ λi(ω) = 0. The volume of the link creation
process is de�ned as the sum of all rate functions λ̄(ω) :=

∑
i∈I λ

i(ω).
The conditional probability that player i receives the chance to form
a link is λi(ω)/λ̄(ω). Conditional on this event, player i computes a
tuple wi,β(ω) := (wi,βj (ω))j∈I , satisfying:

(L1) If gij = 0 and β > 0, then min{wi,βj (ω), wj,βi (ω)} > 0. If gij = 1 or

i = j, then wi,βj (ω) = wj,βi (ω) = 0 for all β,

(L2) (∀i ∈ I)(∀ω ∈ Ω) :
∑

j∈I w
i,β
j (ω) = 1

(L3) (∀i, j ∈ I)(∀ω ∈ Ω) : − lim
β→0

β logwi,βj (ω) = ci2(ω, (α, g ⊕ (i, j))).

ci2 : Ω2 → R+ is again a cost function for player i. Condition (L1) says
that all neutral edges have a positive probability of becoming created
for β > 0. This is an irreducibility assumption. (L3) is a large devia-
tion assumption on the link creation probability.
Let Wβ(ω) = λ̄(ω)−1 diag[λ1(ω), . . . , λN(ω)][wi,βj ]i,j∈I denote the ma-
trix of link creation probabilities at state ω.6 The i-th row of this
matrix is

(
λi(ω)/λ̄(ω)

)
wi,β(ω).7 Next, de�ne the symmetric matrix

W̄β(ω) := [w̄βij(ω)]i,j∈I = Wβ(ω) + Wβ(ω)>.8 The scalar w̄βij(ω) is the
conditional probability that the passive edge (i, j) is formed, starting
from ω.

Link destruction: With unconditional probability q3(ω) a link becomes de-
stroyed. Let ξ ≥ 0 denote the constant rate of link destruction.9 A
positive level of volatility will imply that, independent of β, there is
always a chance that a link becomes destroyed. Additionally to this
drift term, let us assign to each edge (i, j) a weight vβij(ω). The higher
the weight of an active edge, the larger will be the conditional probabil-
ity that it becomes destroyed. Let Vβ(ω) = [vβij(ω)]1≤i,j≤N the N ×N
matrix of edge weights, satisfying:

6diag[x1, . . . , xn] is the n × n diagonal matrix having xi as entry in its i-th principal
diagonal and 0 o� the principal diagonal.

7Note that the above conditions on the distribution wi,β requires that a completely
connected individual puts weight 1 one himself. This causes no trouble because such
players do not get a link creation opportunity by default. Hence the algorithm produces
simple graphs, i.e. graphs that have no multiple connections and self-loops, as desired.

8W> is the transposition of W.
9This is exactly the volatility parameter of Marsili et al. (2004), Ehrhardt et al. (2006a;

2008a;b).
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(D1) Vβ(ω) is a symmetric matrix, and, for β > 0, vβij(ω) > 0 if gij = 1,

and vβij(ω) = 0 for gij = 0,

(D2)
∑

i,j>i v
β
ij(ω) = 1,

(D3) (∀i ∈ I)(∀ω ∈ Ω) : − lim
β→0

β log vβij(ω) = c
(i,j)
3 (ω, (α, g 	 (i, j))).

(D1) says that edges (i, j) and (j, i) are treated symmetrically. This
is a natural assumption for undirected graphs. Moreover, it requires
that all currently active edges are destroyed with positive probability if
β > 0. (D2) requires that, conditional on the event of link destruction,
the expected number of destroyed edges is 1. (D3) is our large deviation
assumption. The volume of the link destruction process is de�ned as
ξ̄(ω) := ξf(ω,Vβ), where f(·, ·) is a bounded non-negative function,
normalized by the condition f(ω,Vβ) = 0 if the network is the empty
graph at ω.10

Let ω = (α, g) be the current population state. De�ne

Λ(ω) = Nν + λ̄(ω) + ξ̄(ω). (2.2.4)

By the frequency interpretation of probabilities, one can interpret the number
Nν =: τa as the time scale of action adjustment events, and λ̄(ω)+ ξ̄(ω) =: τg
as the time scale of network evolution. The ratio τ = τg/τa measures how fast
network evolution is, relative to action adjustment. If τ is much larger than 1,
network evolution will proceed at a faster time scale than action adjustment.
If τ is much smaller than 1, then action adjustment opportunities arrive
much more frequently to the population. The probabilities qσ(ω), σ = 1, 2, 3,
specifying the timing of evolution, are de�ned as

q1(ω) =
Nν

Λ(ω)
, q2(ω) =

λ̄(ω)

Λ(ω)
, q3(ω) = 1− q1(ω)− q2(ω). (2.2.5)

The elements of the transition matrix Kβ are then given by

Kβ(ω, ω′) =


q1(ω) 1

N
bi,β(a|ω) if ω′ = (αai , g),

q2(ω)w̄βi,j(ω) if ω′ = (α, g ⊕ (i, j)),

q3(ω)vβij(ω) if ω′ = (α, g 	 (i, j)),
0 otherwise.

(2.2.6)

10The reason why a positive rate of link destruction is needed is to exclude trivial
stationary states where all players are completely connected, simply because all edges are
formed with positive probability. Of course, assuming ξ > 0 does not exclude the complete
graph of being a stationary state. Henceforth assume that ξ > 0 and �xed, so that β is
the only varying parameter.
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It is easy to verify that
∑

ω′∈Ω K
β(ω, ω′) = q1(ω) + q2(ω) + q3(ω) = 1 for all

ω ∈ Ω. By the irreducibility assumptions (A1), (L1) and (D1), the matrix
Kβ is irreducible for (β, ξ)� (0, 0). Further, it is easy to see that the chain is
aperiodic. Since Ω is a �nite set, ergodicity of the process Xβ is guaranteed.
Hence, provided β > 0, there exists a unique invariant distribution µβ ∈
∆(Ω). It is well known that for β → 0 the process concentrates on a subset
of <. To classify such states, we use the following de�nition of stochastic
stability.11

De�nition 2.2.1 (Sandholm (2009b)). Given a co-evolutionary model with
noiseMβ, we call a state ω ∈ Ω stochastically stable if

lim
β→0

β log µβ(ω) = 0. (2.2.7)

Let Ω∗ denote the set of stochastically stable states.

2.2.2 On trees, graphs and stochastic stability

At every point of time the process may undertake one of three di�erent
transitions. The most appealing way to think about the stochastic dynamic
is in terms of directed graphs, as done by Kandori et al. (1993), Young
(1993), building on the work of Freidlin and Wentzell (1998). Every co-
evolutionary model with noise Mβ can be analyzed via directed graphs of
the form T = (Ω, ~E). The vertex set of such graphs is the state space and
the edge set is a subset of Ω2. A graph T will be called a revision graph, and
we will henceforth identify every revision graph with its edge set ~E(T ).

De�nition 2.2.2. Given a co-evolutionary model with noise Mβ and a re-
vision graph T , de�ne the reach of state ω ∈ Ω under T as the set

RT (ω) := {ω′ ∈ Ω|(∃~e ∈ ~E(T )) : ~e = (ω, ω′)}.

The reach of a state is the collection of states that the process may visit
after one step under the revision graph T , starting from ω. The reach of a
state ω can be subdivided as follows; Call RT,1(ω) the set of states in the
reach of ω that di�er in the action con�guration, RT,2(ω) the set of states
that are reachable from ω by creation of a single link, and �nally RT,3(ω) the

11Most models using stochastic evolutionary dynamics call a state stochastically stable
if it receives positive weight in the limit distribution. De�nition 2.2.1 says that ω is
stochastically stable if logµβ(ω)→ a ≤ 0 as β ↓ 0. This is a weaker requirement than the
conventional stochastic stability criterion, since it may well be that the mass converges to
0 at a sub-exponential rate. See Sandholm (2009b, ch. 12), for a detailed discussion.
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set of states reachable from ω by deleting a single link.12 We will work with
the following special class of graphs. Their role has also been emphasized by
Samuelson (1997), Catoni (1999), Beggs (2005) and Alós-Ferrer and Netzer
(2007).

De�nition 2.2.3. Consider a non-empty set X ⊂ Ω. A revision graph T
is called a X -revision graph if it is an element of the class of graphs T (X ),
satisfying

(i) (∀ω ∈ Ω) : |RT (ω)| = 1{ω/∈X},

(ii) T does not contain a cycle.

A labeled ω-revision tree (Tω, `) is a {ω}-revision graph Tω ∈ T ({ω}) ≡ Tω
and a function ` : ~E(Tω)→ I(2) with the property that

(iii) for all edges ~e the labeling function `(~e) returns the pair of players (i, j)

involved in the transition modeled by the edge ~e ∈ ~E(Tω). If j = i then
we interpret the pair (i, i) as i.

A X -revision graph T ∈ T (X ) joins every point in Ω\X to X , without loops.
In the main text of the paper we will only need the concept of labeled revision
trees. More general X -revision graphs will be of importance in Section 2.7.
For this class of revision graphs conditions (i) and (ii) are a version of the
standard graph-constructs of Freidlin and Wentzell (1998). They merely
assert that Tω is a tree with root ω.13 All paths from the branches of the
tree lead in a unique way to ω. The distinguishing point in the de�nition
of a labeled revision tree is exactly the labeling function, whose purpose will
become clear later on.14 For a given revision tree Tω ∈ Tω, de�ne the set

STω ,σ := {~e = (ω′, ω′′) ∈ ~E(Tω)|ω′′ ∈ RTω ,σ(ω′)}, σ ∈ {1, 2, 3},

which is the collection of all edges used on a transition of type σ ∈ {1, 2, 3}.
By de�nition we have ~E(Tω) =

⋃3
σ=1 STω ,σ.

Following Freidlin and Wentzell (1998) we can now completely characterize

12Obviously RT (ω) = RT,1(ω) ∪RT,2(ω) ∪RT,3(ω).
13Contrary to the visual appearance of trees in nature, a root is here a sink instead of

a source.
14Note that for the current type of stochastic process, the labeling function is uniquely

de�ned for a given revision tree Tω. See Alós-Ferrer and Netzer (2007) for a process where
this need not be the case.
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the invariant distribution of the co-evolutionary process. With a slight abuse
of notation de�ne the numbers

Kβ(Tω) : =
∏

~e∈ ~E(Tω)

Kβ(~e) =
3∏

σ=1

∏
~e∈STω,σ

Kβ(~e),

ρβ(ω) : =
∑

(Tω ,`)∈Tω

Kβ(Tω).

Theorem 2.2.1 (The Markov chain tree theorem). For β > 0, the unique
invariant distribution of the co-evolutionary model with noise Mβ is given
by

(∀ω ∈ Ω) : µβ(ω) =
ρβ(ω)∑

ω′∈Ω ρ
β(ω′)

. (2.2.8)

Proof. See section 2.7. This is Lemma 3.1 of Freidlin and Wentzell (1998).
This representation holds for every irreducible Markov chain, and is not
restricted to the current model. See Young (1998) or Sandholm (2009b) for
alternative elegant proofs of this fact.

Consider a state ω ∈ Ω with revision tree (Tω, `). By construction of the
transition probabilities, for every edge ~e ∈ STω ,σ, σ = 1, 2, 3 there exists a
derived cost function ĉσ : Ω2 → R+ ∪ {+∞}, such that

Kβ(~e) = exp

[
− 1

β
(ĉσ(~e) + o(1))

]
, σ ∈ {1, 2, 3},

depending on the type of transition under the edge ~e.15 If the transition
~e ∈ STω ,σ is not possible for β > 0, then set ĉσ(~e) = ∞. De�ne the derived
costs of a revision tree (Tω, `) as

Ĉ(Tω) =
3∑

σ=1

∑
~e∈STω,σ

ĉσ(~e), (2.2.9)

so that Kβ(Tω) = exp
[

1
β
(Ĉ(Tω) + o(1))

]
. The stochastic potential of state

ω is the lowest cost of reaching it, i.e.

γ(ω) := min
(Tω ,`)∈Tω

Ĉ(Tω). (2.2.10)

15Derived cost functions will be used in this paper only for the link creation process. In
the action revision process one would also need a derived cost function to account for the
unlikelihood of a transition when one would apply the learning model of Alós-Ferrer and
Netzer (2007) (see their concept of the waste of a labeled revision tree).
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We are now ready to present a fairly general result characterizing the low-
noise behavior of the invariant distribution (see also Catoni, 1999, Beggs,
2005).

Proposition 2.2.1. Consider a co-evolutionary model with noise Mβ with
derived cost functions ĉ = (ĉ1, ĉ2, ĉ3) and invariant distribution µβ. Let γ :
Ω → R+ be the potential function de�ned in eq. (2.2.10). For all ω ∈ Ω we
have

− lim
β→0

β log µβ(ω) = γ(ω)−min
ω′∈Ω

γ(ω′). (2.2.11)

Before proving this proposition we need some additional facts. Order the
factors in the invariant measure ρβ according to their leading terms as β → 0.
This leads to the low-noise expression

ρβ(ω) =
∑

(Tω ,`)∈Tω

exp

[
1

β

(
Ĉ(Tω) + o(1)

)]
= Bω exp(−γ(ω)/β)(1 + o(1))

For su�ciently small β, the invariant distribution can therefore be written
as

µβ(ω) =
Bω exp(−γ(ω)/β)(1 + o(1))∑

ω′∈Ω

Bω′ exp(−γ(ω′)/β)(1 + o(1))
. (2.2.12)

The following simple fact is a useful intermediate result.

Lemma 2.2.1. Given two �nite sequences (f(1), . . . , f(n)), (B1, . . . , Bn) of
non-negative real numbers, then

lim
β→0

log

(
n∑
i=1

Bi exp(−f(i)/β)

)
n

max
i=1

log(Bi exp(−f(i)/β))
= 1.

Proof. Without loss of generality, let f(n) =
n

min
i=1

f(i). By absorbing states

with equal values of f(i) in the constant Bi we can, without loss of generality,
assume that all values are di�erent. The denominator is thus log(Bn exp(−f(n)/β)).
Write the polynomial inside log(·) in the numerator by collecting the terms
of highest order, i.e.

n∑
i=1

Bi exp(−f(i)/β) = Bn exp(−f(n)/β)

(
1 +

n−1∑
i=1

Bi

Bn

exp(−(f(i)− f(n))/β)

)
= Bn exp(−f(n)/β)r(β)
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and β log r(β)→ 0 as β → 0. Hence, the ratio can be written as

β logBn + β log r(β)− f(n)

β logBn − f(n)
→ 1, as β → 0.

Proof of Proposition 2.2.1. Start from eq. (2.2.12). Take logarithms and
multiply both sides by −β to arrive at

−β log µβ(ω) = −β log(Bω exp(−γ(ω)/β))

+ β log

(∑
ω′∈Ω

Bω′ exp(−γ(ω′)/β)

)
+O(β).

The claim now follows from Lemma 2.2.1.

This shows that a state is stochastically stable according to De�nition 2.2.1
i� it is a state with minimal stochastic potential.

Corollary 2.2.1. Ω∗ = {ω ∈ Ω|γ(ω) = minω′∈Ω γ(ω′)}.

We see that the main di�erence between a co-evolutionary model with noise
and a classical evolutionary model is the addition of two further cost func-
tions, corresponding to the two added processes modeling the evolution of
the network. Departing from here it is easy to see that all well-known results
on stochastic stability are applicable. Referring to section 2.7 for proofs of
these facts, we just introduce some concepts in order to �x the notation.16

Let X ,X ′ be non-empty subsets of Ω. A path from X to X ′ is a directed
graph whose vertex set is a non-repeating sequence of states {ω1, . . . , ωl} such
that ω1 ∈ X , ωl ∈ X ′ and ωt /∈ X ′ for all t = 2, . . . , l− 1. The set of all X ,X ′
paths is denoted as P(X ,X ′). For two states ω ∈ X , ω′ ∈ X ′ call a path
P ∈ P(X ,X ′) a (ω, ω′)-revision path if ω1 = ω and ωl = ω′, and whose edges
are the transitions (ωi, ωi+1), 1 ≤ i ≤ l − 1. Denote by Pω,ω′(X ,X ′) the set
of (ω, ω′)-revision paths and P one particular path. To each ω, ω′-path there
corresponds a labeling function `, as in De�nition 2.2.3. For P ∈ Pω,ω′(X ,X ′)
let (P, `) denote a (ω, ω′)-revision path. Let L,L′ ∈ <, and denote the cost of
transition from recurrent class L to L′ by C(L,L′). The cost of a transition
from recurrent class L to L′ is

C(L,L′) = min
ω∈L

min
ω′∈L′

min
(P,`):P∈Pω,ω′ (L,L′)

Ĉ(P ), (2.2.13)

16See also Samuelson (1997), Young (1998) or Sandholm (2009b) for textbook treatments
of this, or the papers by Young (1993) and Ellison (2000).
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where Ĉ(P ) is de�ned as in (2.2.9), applied to a (ω, ω′)-revision path. In
section 2.7 we argue that all states within one recurrent class are connected
by a null cost path. This allows one to study revision graphs between re-
current classes. Therefore, we introduce the class of revision graphs T̂ =
({L1, . . . ,Lk}, ~E), where ~E(T̂ ) ⊆ {L1, . . . ,Lk}2. A L-revision tree T̂ ∈ T̂ (L)
is a revision graph in the sense of De�nition 2.2.3. The costs of such a re-
vision tree are de�ned as C(T̂ ) =

∑
~e∈ ~E(T̂ ) C(~e), with ~e = (L′,L′′). Letting

γ̂ : < → R+ be a potential function on the set of recurrent classes, one can
show (see section 2.7) that for all ω ∈ L

γ(ω) = γ̂(L) = min
T̂∈T̂ (L)

C(T̂ ). (2.2.14)

2.3 Applications

In this section we apply the above general framework to some recent models.
In both models we consider the base game Γ = (I, {a1, a2}, u), with normal
form

a1 a2

a1 (e− φ, e− φ) (f − φ, g − φ)
a2 (g − φ, f − φ) (h− φ, h− φ)

(2.3.1)

Assume that h > e > f > g but e+ f > h+ g. This means that (a1, a1) is a
(strictly) risk-dominant Nash equilibrium, while (a2, a2) is a Pareto e�cient
strict Nash equilibrium. The number φ ≥ 0 is a fee two incident players
have to pay in order to play the game. It does not alter the nature of
the game, but possibly a�ects the way how players form their social network.
There is also a mixed strategy equilibrium where a1 is played with probability
x = h−f

e−g+h−f < 1/2.

2.3.1 A volatility model

In chapter 4 a volatility model for general potential games is presented. Here
we study a version of this model in the context of the symmetric coordination
game (2.3.1) with φ = 0. The co-evolutionary model with noiseMβ, which
is essentially a version of the model presented in chapter 4, is the following;

Action adjustment: Assume that

bi,β(aσ|ω) =
exp(πi(αaσi , g)/β)∑2
r=1 exp(πi(αari , g)/β)

, σ = 1, 2. (2.3.2)
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This behavioral rule satis�es (A2) with cost function

ĉ1(ω, (αai , g)) = ci1(ω, (αa1, g)) = max
a′∈A

πi(αa
′

i , g)− πi(αai , g). (2.3.3)

Link creation: Assume that λi(ω) = λ1{κi(ω)<N−1}, so that every incom-
pletely connected player receives a link creation opportunity with rate
λ ≥ 0. Conditional on this event player i samples player j with proba-
bility

wi,βj (ω) =
exp(u(αi, αj)/β)∑

k/∈N̄ i(ω) exp(u(αi, αk)/β)
.

(L4) is satis�ed with cost function

ci2(ω, (α, g ⊕ (i, j)) = max
k/∈N̄ i(ω)

u(αi, αk)− u(αi, αj).

Link destruction: Once a link is selected by the process (an event with
rate ξ) it becomes destroyed at rate 1. Hence vβij(ω) =

gij
e(ω)

. (D3) is
satis�ed with

ĉ3(ω, (α, g 	 (i, j))) = c
(i,j)
3 (ω, (α, g 	 (i, j))) ≡ 0.

The volume of this subprocess is given by ξ̄ = ξe(ω), so that f(ω,Vβ) =
e(ω).17

It remains to determine the derived cost function ĉ2. When a link becomes
created, a pair of players (i, j) is involved with j > i. Suppose this event is
on the ω-revision tree (Tω, `), and call the edge of transition corresponding
to this event ~e. The labeling function returns the pair of players `(~e) = (i, j).
Let `(~e)− be the player with the lower index involved in the transition ~e, i.e.
i, and `(~e)+ the player with the higher index, i.e. j.18

Lemma 2.3.1. For every ω ∈ Ω and (Tω, `) ∈ Tω, the derived cost of a
transition ~e ∈ STω ,2 is

ĉ2(~e) = min{c`(~e)
−

2 (~e), c
`(~e) +

2 (~e)}. (2.3.4)

17The paper to be presented in chapter 5 models a situation where the agents may
have idiosyncratic preferences over the actions, which is interpreted as the �type� of the
agent. Link decay probabilities are then functions of the types of the involved players.
Particularly, it is assumed that vβij(ω) = ξ̂βij/

∑
k>l ξ̂

β
klgkl, for given functions {ξ̂βij}, which

depend on the realized types of the agents and on β > 0. The corresponding volume is
now ξ̄(ω) =

∑
j>i ξ̂

β
ijgij .

18I thank Stefano DeMichelis for giving me the right hint for the proof of the following
Lemma.
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Proof. The probability that edge (i, j) becomes created is

w̄βij =
λ

λ̄(ω)
(wi,βj (ω) + wj,βi (ω)).

By the large deviation principle (L4), for small β we have

wi,βj (ω) + wj,βi (ω) = exp

[
− 1

β
(ci2(ω, (α, g ⊕ (i, j))) + o(1))

]
+ exp

[
− 1

β
(cj2(ω, (α, g ⊕ (i, j))) + o(1))

]
,

and so we can apply Lemma 2.2.1, which gives us the desired result.

Thus, for every ω ∈ Ω the cost of a revision tree (Tω, `) ∈ Tω is Ĉ(Tω) =∑2
σ=1

∑
~e∈STω,σ

ĉσ(~e).

Recurrent classes and stochastic stability

De�ne the set
Ω̃ = {ω ∈ Ω|gij = 1⇒ αi = αj}.

A network in this set has only edges between two coordinated players. It
may have several connected components and, in particular, it may not be
completely connected. Distinguished classes of states in Ω̃ are the global
conformity sets

Lσ = {ω ∈ Ω̃|(∀i ∈ I) : αi = aσ}, σ = 1, 2.

Let L1,2 = Ω̃ \ (L1 ∪L2), the co-existence set. The following Lemma charac-
terizes the recurrent classes < of the unperturbed process.

Lemma 2.3.2. Consider the unperturbed co-evolutionary modelM of chap-
ter 4. We have < = Ω̃.

Proof. The proof proceeds by a fairly general constructive argument, which
is presented in section 2.6.

We see that the process allows for global heterogeneity, since there may be
multiple connected components displaying di�erent types of conventions.
However, within every connected component we must have local conformity.
Due to this large number of equilibria, we hope that the concept of stochastic
stability gives us some hint which states are more likely to be observed in
the long-run. The following proposition shows that this is not the case.
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Proposition 2.3.1. Consider the coordination game (2.3.1) with φ = 0, and
the co-evolutionary model with noiseMβ of chapter 4. We have Ω∗ = <.

Proof. Fix ω ∈ L1, ω
′ ∈ L2. We will construct a zero cost path P ∈

Pω,ω′(L1,L2), which implies C(L1,L2) = 0. A symmetric argument shows
that C(L2,L1) = 0, so that γ(ω) = γ(ω′) = 0. From this it follows that
γ(ω′′) = 0 for all ω′′ ∈ L1,2, since all paths from ω to ω′ must pass through
some state ω′′ ∈ L1,2.

Step 1: From ω apply a sequence of link destruction events. All this has
zero costs and in �nitely many steps we arrive at state ω̂ ∈ L1 with the
empty network.

Step 2: Give two randomly chosen players sequentially an action adjustment
opportunity where they switch to a2. This has zero costs, since a loner
selects both actions with equal probability.

Step 3: Give one of the two players a link creation opportunity. Under K a
link between them will be established. We are now at a state in L1,2.

Step 4: Give the remaining players action adjustment opportunities where
they switch to a2, and then a link creation opportunity. Iterate this
until the process arrives at the desired state ω′ ∈ L2.

Steps 1-4 de�nes a path from ω to ω′ having zero costs. Clearly all steps are
reversible, i.e. steps 4-1 de�ne a path from ω′ to ω having zero costs. This
demonstrates γ(ω) = γ(ω′) = 0.

2.3.2 A classical model

We discuss a slight variation of Jackson and Watts (2002). To get the most
interesting scenario, we reduce the set of admissible parameters in requiring
that x > 1

N−1
and φ ∈ (g, e). Jackson and Watts (2002) take the mistakes

model of Kandori et al. (1993) and Young (1993) as universal behavioral
rule. Parameterizing noise as ε = exp(−1/β), and henceforth calling ε the
noise parameter, allows us to study this behavioral rule. The co-evolutionary
model with noiseMε is as follows;

Action adjustment: Assume that each player receives with uniform prob-
ability 1/N the opportunity to change his action. Conditional on this
event he selects action a ∈ A with probability

bi,ε(a|ω) =


1− ε

2
if αi 6= a and {a} = arg maxa′∈A π

i(αa
′
i , g),

1− ε
2

if αi = a and {αi} = arg maxa′∈A π
i(αa

′
i , g),

ε
2

otherwise.
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This behavioral rule says that a player abandons his currently used
action with relatively high probability, if there exists a strictly better
action. Otherwise he sticks to his action and switches only with the
relatively small probability ε. This behavioral rules satis�es condition
(A2) with cost function

ĉ1(ω, (αai , g)) = ci1(ω, (αai , g)) =


0 if αi 6= a and {a} = arg maxa′∈A π

i(αa
′
i , g),

0 if αi = a and {αi} = arg maxa′∈A π
i(αa

′
i , g),

1 otherwise.

Link creation: Jackson and Watts (2002) introduce a cooperative element
into the link creation process. To capture this, we have to make a
slight modi�cation in the construction of our co-evolutionary model
with noise. Let D(ω) denote the set of neutral links at ω and d(ω) its
cardinality. Instead of the individual players' rate functions, assume
that the event of link creation arrives to the society at the constant
rate λ̄(ω) := λd(ω), where λ is a positive constant. De�ne the events

(1 ≤ i, j ≤ N) : Aij(φ) := {ω ∈ Ω|u(αi, αj) ≥ φ}.

If ω ∈ Aij(φ) then the edge (i, j) is pro�table from the point of view of
player i at ω. The number of mutually pro�table neutral links is

m(ω) =
∑

(i,j)∈D(ω)

1Aij(φ)∩Aji (φ)(ω).

Following the spirit of pairwise stability (Jackson and Wolinsky, 1996),
assume that a neutral link is set to be active with probability 1 − ε if
both players mutually agree. With the small probability ε assume that
all links have a chance to be formed. The (conditional) probability that
a neutral edge (i, j) will be added is

(∀(i, j) ∈ D(ω)) : w̄εi,j(ω) :=

{
1−ε
m(ω)

+ ε
d(ω)

if 1Aij(φ)∩Aji (φ)(ω) = 1,
ε

d(ω)
otherwise.

(2.3.5)
The term ε /d(ω) is the �background noise� of the system, and gives
the uniform probability that a link will be formed. If edge (i, j) is
neutral at ω, but both players are not hurt by the creation of the link,
then they will independently agree to form it with the high probability
1−ε, which increases their chance of being formed.19 Let Ā denote the
complementary set of A. The cost function of this sub-process is

ĉ2(ω, (α, g ⊕ (i, j))) = 1Āij(φ)∪Āji (φ)(ω).

19Jackson and Watts (2002) assume that a link is created with probability 1−ε i� it is a
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Link destruction: With rate ξ > 0 links become destroyed. Conditional
on this event, pick one edge (i, j) ∈ E(ω) with uniform probability, and
allow the incident players to re-evaluate the bene�ts arising from this
connection. This leads to ξ̄(ω) := ξe(ω). Denote by

m̄(ω) =
∑

(i,j)∈E(ω)

1Āij(φ)∪Āji (φ)(ω)

the number of active links where at least one player bene�ts from the
deletion of the link. If (i, j) is a link where at least one player is better
o� after its destruction, suppose that with large probability 1−ε it will
be destroyed. With the small probability ε every link can be destroyed
once it has been selected. This leads to the following version of link
destruction probabilities

(∀(i, j) ∈ E(ω)) : vεi,j(ω) =

{
1−ε
m̄(ω)

+ ε
e(ω)

if 1Āij(φ)∪Āji (φ)(ω) = 1,
ε

e(ω)
otherwise.

The cost function of this process is given by

ĉ3(ω, (α, g 	 (i, j))) = 1Aij(φ)∩Aji (φ)(ω).

Recurrent classes and stochastically stable states

De�ne I1(ω) = {i ∈ I|αi = a1 on ω}, and for every 2 ≤ n ≤ N − 2,

Ln1,2 = {ω ∈ Ω|g = gc[I1(ω)]⊕ gc[I2(ω)] & |I1(ω)| = n},

L1,2 =
N−2⋃
n=2

Ln1,2.

Let
Lσ = {ω ∈ Ω|(∀i ∈ I) : αi = aσ & g = gc[I]}, σ = 1, 2.

Lemma 2.3.3. LetM be the unperturbed co-evolutionary process of Jackson
and Watts (2002) with φ ∈ (g, e). Then

< = L1 ∪ L2 ∪ L1,2.

strict Pareto improvement, i.e. at least one player is strictly better o� after the connection
has been established and no party is hurt by the creation of the link. We assume that
a link is already formed if it is a weak Pareto improvement, i.e. no party is hurt by
the formation of the link. Additionally, Jackson and Watts (2002) assume that the error
probability ε is not the same in the action evolution process as it is in the graph evolution
process. However, it is required that the error probabilities go to zero at the same rate so
not to get �twisted� equilibrium selection results, as argued by Bergin and Lipman (1996).
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Proof. The algorithm in section 2.6 shows that in �nite time there are no
links between agents playing di�erent actions. Call ωm the state at which
the algorithm stops. In the unperturbed model, with probability 1, only
links which are mutually pro�table are formed and links which harm at least
one player are destroyed. At ωm no player has an incentive to change his
action. If a link creation event takes place, with conditional probability
1 only an edge is formed if the selected pair is in the same action class
Iσ(ωm), σ = 1, 2. Moreover, these links never become destroyed. A link
destruction event at ωm leaves the state invariant with probability 1, since
at this state no edges between players from di�erent action classes exist.
For the same reason, an action adjustment event leaves ωm invariant, with
probability 1. If Iσ(ωm) = ∅ for a σ = 1, 2, then the process arrives at a state
where global conformity prevails. Otherwise the process leads to a state in
the co-existence set L1,2.

To select among the recurrent sets, we now perform an analysis via stochastic
stability.

Proposition 2.3.2. LetMε be the co-evolutionary model with noise of Jack-
son and Watts (2002). Then for φ ∈ (g, e) and x ≥ 1

N−1

Ω∗ = L1 ∪ L2.

Proof. We will explicitly calculate the potentials of the three recurrent classes
and show that, under the stated parameter assumptions, γ̂(L1) = γ̂(L2) <
γ̂(Ln1,2) for all 2 ≤ n ≤ N − 2.
Let ω ∈ L1, ω

′ ∈ L2. Observe that, under the assumption x ≥ 1
N−1

, at
least two agents must change their action to enter L1,2 via an unperturbed
move, i.e. C(Lσ,L1,2) = 2, σ = 1, 2.20 Further observe that for 3 ≤ j ≤
N − 3, C(Lj1,2,L

j±1
1,2 ) = 1, since a single deviator reduces/increases the set of

a1 players, and applying then link creation/destruction leads to some state
in the desired recurrent class. Moreover, the sets L1

1,2 and LN−1
1,2 where one

loner plays a1, respectively a2, are transient since the loner can switch to the
di�erent action at zero cost and then we apply the link formation process

20To see this, note that C(L1,L2
1,2) = 2 by de�nition of risk dominance. To get

C(L2,LN−2
1,2 ) = 2 suppose that one player deviates from ω′ ∈ L2 and plays a1. The network

remains unchanged. Apply the action adjustment process in the next period to a current
a2 player. This player will switch to a1 i� e+(N−2)f−φ(N−1) > g+(N−2)h+φ(N−1),
or i� x < 1/(N − 1). Since we assume that x ≥ 1/(N − 1) another tremble is needed to
make a1 a best response.
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which leads directly to a state in L1, respectively L2. It follows that

γ̂(L1) = C(L2,L2
1,2) +

N−3∑
j=2

C(Lj1,2,L
j+1
1,2 ) + C(LN−2

1,2 ,L1)

= 2 +N − 4 + 1 = N − 1

γ̂(L2) = C(L1,LN−2
1,2 ) +

N−3∑
j=2

C(Lj+1
1,2 ,L

j
1,2) + C(L2

1,2,L2)

= N − 1

γ̂(Ln1,2) = C(L1,L2
1,2) + C(L2,LN−2

1,2 )

+
n−1∑
j=2

C(Lj1,2,L
j+1
1,2 ) +

N−n−1∑
j=2

C(LN−j1,2 ,LN−j−1
1,2 )

= 2 + 2 + (n− 1− 2 + 1) + (N − n− 1− 2 + 1) = N

This is Case (iii) of Proposition 1 of Jackson and Watts (2002), which they
point out to be the most interesting scenario. It emphasizes the role of the
network in the equilibrium selection procedure. In a model with �xed in-
teraction structure one of the robust results of stochastic evolutionary game
dynamics is the selection of the risk dominant equilibrium at every connected
component. In calculating the transition costs above we have implicitly made
use of the �exibility of the interaction structure. Since a change in the action
of a player may also cause a change in the network structure, transitions
between the strict Nash equilibria of the coordination game become possible.
However, we also observe that the �classical� model of Jackson and Watts
(2002) is sensitive to a re�nement made by stochastic stability, whereas in
the �volatility� model we were not able to discriminate among the recurrent
classes by applying the stochastic stability criterion. Whether this is a draw-
back of the volatility model or not must be judged by the application at
hand.

2.4 A micro-founded model for inhomogeneous

random graphs.

The theory of random graphs provides in essence 2 classes of models; the
�randomly grown graphs�, mostly using a version of preferential attachment
(Barabási and Albert, 1999), and generalized random graphs (Newman, 2003).
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Under some additional assumptions on the structure of the Markov chain
(2.2.6), we are able to characterize the induced ensemble of random graphs
for general behavioral rules.
Let us add the following two assumptions on the structure of the transition
probabilities:

(L4) (∀i ∈ I) : λi(ω) = λ1{κi(ω)<N−1};

(L5) (∀i.j ∈ I) : wi,βj (ω) = ŵi,βj (α)(1− gij), where ŵi,βj (·) satis�es (L1)-(L3).

(L4) de�nes the volume of the link creation subprocess as λ̄(ω) = λ
∑

i∈I 1{κi(ω)<N−1}.
In the link destruction process we demand additionally

(D4) (∀i, j ∈ I) : vβij(ω) =
v̂βij(α)gij

f(ω,Vβ)
.

(D2) tells us that f(ω,Vβ) =
∑

j>i v̂
β
ij(α)gij.

Using these additional assumptions we will derive a random graph process,
modeling the evolution of the network for a �xed action pro�le α.21 Let
(G̃β

n)∞n=0 denote the random graph process with transition probabilities Kβ
2,3 :

G[I]× G[I]→ [0, 1], de�ned as

Kβ
2,3(g, g′) = P(G̃β

n+1 = g′|G̃β
n = g)

= P(Xβ
n+1 = (α, g′)|Xβ

n = (α, g),Network evolution)

=
1

P(Network evolution|Xβ
n = (α, g))

P(Xβ
n+1 = (α, g′)|Xβ

n = (α, g))

=
1

q2(α, g) + q3(α, g)
Kβ((α, g), (α, g′))

Using (2.2.5), (2.2.6) and (L4), (L5), (D4), the transition probabilities are
given by

Kβ
2,3(g, g′) =

1

q2(α, g) + q3(α, g)


λ(ŵi,βj (α) + ŵj,βi (α)) if g′ = g ⊕ (i, j),

ξv̂βij(α) if g′ = g 	 (i, j),
0 otherwise.

This chain is irreducible but no longer aperiodic. It serves as a jump chain
of the continuous-time random graph process22 (G̃β(t))t≥0 with generator

ηβ2,3(g → g′) = (q2(α, g) + q3(α, g))(Kβ
2,3(g, g′)− δg,g′) (2.4.1)

21An interpretation of such a process can be given by assuming that action adjustment
is a relatively fast process compared to network evolution. In this case, it makes sense to
assume that the pro�le α reaches a temporary stationary state for a given network g, and
when evolution shapes the network the pro�le α is �xed.

22See chapter 3 for a thorough explanation of these terms.
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where δg,g′ = 1 i� g = g′, and 0 otherwise. This continuous time process
allows us to identify the invariant distribution of the original Markov chain
in a simple way. Let Id denote the identity matrix on G[I], and de�ne the

matrix ηβ2,3 :=
[
ηβ2,3(g → g′)

]
g,g′∈G[I]

. Additionally, call q̂(g) := q2(α, g) +

q3(α, g), and q̂ := [q̂(g)]g∈G[I]. The generator of the continuous-time process

(G̃β(t))t≥0 is de�ned by ηβ2,3 = q̂(Kβ
2,3 − Id). A measure ν on G[I] is said to

be invariant with respect to the generator ηβ2,3 if νηβ2,3 = 0.

Lemma 2.4.1. The following are equivalent:

(a) ν is invariant under ηβ2,3,

(b) µKβ
2,3 = µ where µ(g) = ν(g)q̂(g).

Proof. De�ne the measure µ(g) := ν(g)q̂(g) for all g ∈ G[I]. For all g, g′ we
have ηβ2,3(g → g′) = q̂(g)(Kβ

2,3(g, g′)− δg,g′). Thus,∑
g∈G[I]

µ(g)(Kβ
2,3(g, g′)− δg,g′) =

∑
g∈G[I]

ν(g)q̂(g)(Kβ
2,3(g, g′)− δg,g′)

=
∑
g∈G[I]

ν(g)ηβ2,3(g → g′).

The next proposition characterizes the invariant distribution of the continuous-
time random graph process. Its proof is a surprisingly simple calculation,
which uses many ideas spelled out in Section 1.2.

Proposition 2.4.1. Consider the random graph process (G̃β(t))t≥0 with gen-
erator (2.4.1). Its unique invariant distribution is the product measure

µ̂β2,3(g|α) =
N∏
i=1

∏
j>i

pβij(α)gij(1− pβij(α))1−gij , (2.4.2)

with the edge-success probability

(∀i, j ∈ I) : pβij(α) =
λ(ŵi,βj (α) + ŵj,βi (α))

λ(ŵi,βj (α) + ŵj,βi (α)) + ξv̂βij(α)
. (2.4.3)

Proof. The Markov process (G̃β(t))t≥0 is irreducible for β > 0 and reversible
by the symmetry assumption (D1). Solving the detailed balance conditions

µ̂β2 (g|α)ηβ2,3(g → g ⊕ (i, j)) = µ̂β2,3(g ⊕ (i, j)|α)ηβ2,3(g ⊕ (i, j)→ g)
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for all g ∈ G[I] gives us

µ̂β2,3(g|α) =
1

Zβ
2,3(α)

N∏
i=1

∏
j>i

(
λ

ξ

ŵi,βj (α) + ŵj,βi (α)

v̂βij(α)

)gij

.

Let ¯̂wβij(α) := ŵi,βj (α) + ŵj,βi (α) and de�ne θβij(α) := log

(
λ
ξ

¯̂wβij(α)

v̂βij(α)

)
. Fur-

ther, de�ne the Hamiltonian Hβ(g|α) :=
∑

i,j>i θ
β
ij(α)gij, so that µ̂β2,3(g|α) =

exp(Hβ(g|α))P
g′∈G[I] exp(Hβ(g′|α))

. The constant of normalization can then be written as

Zβ
2,3(α) =

∑
g′∈G[I]

exp(Hβ(g′|α)) =
∑
i,j>i

1∑
gij=0

(∏
i,j>i

exp(θβij(α)gij)

)
=
∏
i,j>i

(1 + exp(θβij)).

The probability that edge (i, j) is active in the long run is

pβij(α) =
∑

g′∈G[I]:g′ij=1

µ̂β2,3(g′|α) =
∑
g′∈G[I]

g′ijµ̂
β
2 (g′|α) =

∂ logZβ
2,3(α)

∂θβij(α)
=

exp(θβij(α))

1 + exp(θβij(α))

=
λ ¯̂wβij(α)

λ ¯̂wβij(α) + ξv̂βij(α)
.

Collecting terms and doing some simple manipulations gives the desired re-
sult.

This strong result gives a full characterization of the induced ensemble of
random graphs for volatility models such as Marsili et al. (2004), Ehrhardt
et al. (2008a;b), and establishes an interesting connection with the random
graph processes proposed by Söderberg (2002), Park and Newman (2004)
or Bollobás et al. (2007). Any co-evolutionary model with noise, satisfying
the set of assumptions (A1)-(A2), (L1)-(L5) and (D1-D4) will generate an
inhomogeneous random graph, with edge-success probabilities (2.4.3)

Corollary 2.4.1. The unique invariant distribution of the discrete-time ran-
dom graph process (Gβ

n)n≥0 is

q̂(g)νβ(g|α)∑
g′∈G[I] q̂(g

′)νβ(g′|α)

with

νβ(g|α) :=
N∏
i=1

∏
j>i

(
λ

ξ

ŵi,βj (α) + ŵj,βi (α)

v̂βij(α)

)gij

.

Proof. This follows form Lemma 2.4.1.
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2.5 Conclusion

This paper presented a general framework for studying co-evolutionary mod-
els with noise. We gave a complete characterization of the invariant distri-
bution of such a model, which is a joint probability distribution on the set
of action pro�les and the set of networks. By means of two examples, a
volatility model akin to Ehrhardt et al. (2008b) and a classical model based
on Jackson and Watts (2002), we have shown how the uni�ed approach is
useful to make a systematic investigation of co-evolutionary models. Beside
presenting a uni�ed formalism to perform the by now important equilibrium
selection technique of stochastic stability, we have demonstrated that a co-
evolutionary model with noise generates an inhomogeneous random graph
ensemble for the long run interaction structure of the population. The main
result in this direction provides a closed form solution for the probability mea-
sure of this graph ensemble, and presents the general form for edge-success
probabilities. Based on this novel insight, many new questions arise.
First, the edge success probabilities depend only on the behavioral rules the
agents are assumed to use. It would be interesting to see what di�erences be-
tween networks arise by assuming di�erent behavioral rules. For instance, do
best-responding agents tempt to self-organize in more structured and/or e�-
cient network topologies as imitative agents? What role plays the underlying
noise structure of the model (meant here as the interplay between behavioral
noise β and overall network volatility ξ)? Second, the literature on social
and epidemic di�usion (see e.g. Morris, 2000, Alós-Ferrer and Weidenholzer,
2008, Pastor-Satorras and Vespignani, 2001) have emphasized the impor-
tance of the network architecture in order to understand the phenomenon of
contagion. In particular, notions of network clustering and cohesiveness have
turned out to be important. We do not yet know the statistics produced by
a co-evolutionary model. Third, in the context of volatility models Ehrhardt
et al. (2008a) �nd three interesting dynamic e�ects; Resilience, Equilibrium
co-existence and phase transitions (i.e. a discontinuous switch in the con-
nectivity of the network by a slight change of the parameters a�ecting the
edge success probability). Under what parameter con�gurations are these
phenomena reproduced in the framework of a co-evolutionary model? The
recent work by Bollobás et al. (2007) studies inhomogeneous random graphs
and detects also a phase transition in network connectivity by exploring the
size of components with a branching process approximation. Future work
should continue in this direction in order to explore the �ne details of the
random graph ensemble.
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2.6 Proof of Lemma 2.3.2

We �rst show that if ω ∈ <, then there is no positive probability path under
K that leads out of this set. Under ω every connected pair of players is
coordinated. Let i be a current a1 player. Every player in the component to
which i belongs must then also play a1.

23 Hence, every graph corresponding
to ω ∈ Ω∗ must consist of �nitely many components, each characterized by
behavioral conformity. By de�nition, applying K to such a state will not
lead to a state outside Ω∗.
Now consider a state ω /∈ <. To show that such a state is transient under K,
we have to �nd a positive probability path under K that leads to some state
ω′ ∈ <. The following algorithm constructs such a path;
Let ω0 = ω be our initial state. The set of uncoordinated edges E(I1(ω0), I2(ω0)) 6=
∅, by hypothesis.24 Let t = 0, 1, 2, . . . ,m measure the number of iterations
of the algorithm. Start from t = 0. The algorithm generates a sequence
{ωt}mt=0, where the transition from ωt to ωt+1 proceeds as follows:

Step 1: Pick the �rst edge from this set. Let one of the two involved players
receive an action adjustment opportunity where he switches only to an
action that gives him a strictly larger payo� compared to ωt.

25 If this
player changes his action, delete the edge from the list of uncoordinated
edges, and call the resulting state ωt+1. Then repeat Step 1. If the
player does not change his action, go to Step 2.

Step 2: Give the other player an action adjustment opportunity as in Step 1.
If he changes his action, delete the edge from the list of uncoordinated
edges and call the resulting state ωt+1. Then repeat Step 1. If the
player does not change his action, go to Step 3.

Step 3: Delete the edge by a targeted link destruction event.26 Call the
resulting state ωt+1 and note that the set of uncoordinated edges de-
creased by 1. Go to Step 4.27

23If j would be a player in the component who plays a2 he cannot be linked with a
player who is path connected with i.

24 This is the set of links that connect players from I1(ω) to players in I2(ω). Iσ(ω) is
the set of aσ-players at ω.

25In 2 × 2 games with �nite populations this choice rule is generically equivalent to
demanding that a play switches to a best-response.

26Note that this is always a zero-cost step.
27An intermediate stage could be added to the algorithm, where we apply K to ωt+1

by letting the involved players create a link. This will lead to the creation of maximally 2
coordinated links.
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Step 4: Order the edges in E(I1(ωt+1), I2(ωt+1)) in some way. If this set is
empty, exit the algorithm. Otherwise, go to Step 1.

2.7 The Markov chain tree theorem and set-

valued cost functions

To proof (2.2.8) we will make use of some general results from the theory
of Markov chains and simulated annealing. Norris (1997) and Grimmett
and Stirzaker (2001) are good references for the theory of �nite Markov
chains, and Catoni (1999; 2001) collects the relevant results from simulated
annealing. Let ω ∈ Ω, x, y, z ∈ Ω \ {ω} and X ⊂ Ω a nonempty set. Denote
by Kβ,n the n-fold Matrix product of Kβ. The interpretation of this operation
is that Kβ,n(x, y) = P(Xβ

n = y|Xβ
0 = x). Let ω ∈ Ω be an arbitrary �xed

state and de�ne its �rst passage time as the random variable

τ(ω) := inf{n ≥ 1|Xβ
n = ω}.

Since ω is recurrent we have P(τ(ω) <∞|Xβ
0 = z) = 1 for all z. Hence, the

process returns to state ω almost surely, independent from where it takes o�.
Suppose we start the process from y and want to keep track of the number
of times the chain visits x before it returns to ω. Phrased in probabilistic
terms this amounts to calculate

E

(
∞∑
n=0

1{Xβ
n=x}∩{τ(ω)>n}|X

β
0 = y

)
(2.7.1)

The graph description of �nite Markov chains is useful to calculate this seem-
ingly complicated expression. Recall that a X -graph is an element of the set
of graphs T (X ), connecting every point in Ω \ X to a point in X , without
loops. If X = {ω, x} then T ({ω, x}) contains all graphs which connect points
from Ω \ {ω, x} in a unique way either to ω or x. Denote by Ty,x(X ) the set
of X -graphs which contain a path {ω1, . . . , ωl} such that ω1 = y, ωl = x and
ωt /∈ X , for all 2 ≤ t ≤ l − 1. If y = x set Tx,x(X ) = T (X ). If y ∈ X set
Ty,x(X ) = ∅. It is intuitive that (2.7.1) should be proportional to the proba-
bility of graphs T ∈ Ty,x({ω, x}). However, we also require to return to ω, so
not all possible paths are allowed. We have to condition on the ω-trees, since
these are the paths that lead in a unique way to ω. This heuristic argument
suggests that (2.7.1) can be calculated as∑

T∈Ty,x({ω,x}) K
β(T )∑

Tω∈Tω K
β(Tω)

=
1

ρβ(ω)

∑
T∈Ty,x({ω,x})

Kβ(T ). (2.7.2)
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Lemma 3.1 of Catoni (1999) gives a rigorous proof of this heuristic.28

Lemma 2.7.1 (Lemma 3.1, Catoni (1999)). Let K̄β denote the matrix Kβ

restricted to the set Ω \ {ω}. Then

∞∑
n=0

K̄β,n(y, x) = E

[
∞∑
n=0

1{Xβ
n=x}∧{τ(ω)>n}|X

β
0 = y

]

=

∑
T∈Ty,x({ω,x}) K

β(T )

ρβ(ω)
.

Before proving this result, we need the following simple observation.

Lemma 2.7.2. For all y, x 6= ω, we have lim
n→∞

K̄β,n(y, x) = 0.

Proof.
lim
n→∞

K̄β,n(y, x) ≤ P(τ(ω) =∞|Xβ
0 = y) = 0

since ω is a recurrent state.

This simple fact has the consequence that (Id−K̄β) is invertible. This is
interesting, because for all y, x 6= ω

(Id−K̄β)−1(y, x) =
∞∑
n=0

K̄β,n(y, x)

=
∞∑
n=0

E
(
1{Xβ

n=x}∧{τ(ω)>n}|X
β
0 = y

)
.

Hence, this gives us the expected number of times the process visits x before
hitting ω, which is the quantity we want to compute in Lemma 2.7.1.

Proof of Lemma 2.7.1. For all y, x 6= ω, let us de�ne

M(y, x) :=
1

ρβ(ω)

∑
T∈Ty,x({ω,x})

Kβ(T ).

De�ne the Kronecker-delta function as δy,x = 1 if y = x and 0 otherwise. We
have to show that for all y, x 6= ω∑

z 6=ω

(δy,z − K̄β(y, z))M(z, x) = δy,x.

28The proof, which is taken from Catoni (1999), extends literally to the case where the
singleton is replaced by a non-empty subset X .
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This can be written as∑
z 6=y

Kβ(y, z)M(y, x) = δy,x +
∑

z∈Ω\{ω,y}

Kβ(y, z)M(z, x)

⇔
∑
z 6=y

Kβ(y, z)
∑

T∈Ty,x({ω,x})

Kβ(T ) = δy,xρ
β(ω) +

∑
z∈Ω\{ω,y}

Kβ(y, z)
∑

T∈Tz,x({ω,x})

Kβ(T )

De�ne the sets C1 := {(z, T )|z 6= y, T ∈ Ty,x({ω, x})} and C2 := {(z, T )|z ∈
Ω \ {ω, y}, T ∈ Tz,x({ω, x})}, so that we can equivalently write∑

(z,T )∈C1

Kβ(x, z)Kβ(T ) = δy,xρ
β(ω) +

∑
(z,T )∈C2

Kβ(y, z)Kβ(T ) (2.7.3)

Let us consider the case y = x �rst, so that C1 is de�ned by the revision
graphs in T ({ω, x}). Then C2 ⊂ C1, since every {ω, x}-revision tree that
contains an (z, x)-path is a {ω, x}-revision graph. The converse, of course,
need not apply. De�ne the map

ϕ : C1 \ C2 → Tω, (z, T ) 7→ ϕ(z, T ) = (Ω, ~E(T ) ∪ {(x, z)}).

This operation takes a {ω, x}-revision tree, not containing a (z, x)-path, and
adds the edge (x, z). Thus, from the point z we have to arrive at ω in a unique
way. By adding the edge (x, z) we create a ω-revision tree. This is illustrated
in Figure 2.1. If we can show that ϕ is bijective, then we can move between
C1 \ C2 and Tω without losing any information. For T ′ = ϕ(z, T ) ∈ Tω, the
inverse mapping is

ϕ−1(T ′) = (ϕ−1
1 (T ′), ϕ−1

2 (T ′)) = (RT ′(x), ~E(T ′)\{(x,RT ′(x))}) = (z, ~E(T ′)\{(x, z)}).

The left-hand side of eq. (2.7.3) turns then to29∑
(z,T )∈C1

Kβ(x, z)Kβ(T ) =
∑

(z,T )∈C1\C2

Kβ(x, z)Kβ(T ) +
∑

(z,T )∈C2

Kβ(x, z)Kβ(T )

=
∑
T ′∈Tω

Kβ(x, ϕ−1
1 (T ′))Kβ(ϕ−1

2 (T ′)) +
∑

(z,T )∈C2

Kβ(x, z)Kβ(T )

=
∑
T ′∈Tω

Kβ(x,RT ′(x))
Kβ(T ′)

Kβ(x,RT ′(x))
+

∑
(z,T )∈C2

Kβ(x, z)Kβ(T )

= ρβ(ω) +
∑

(z,T )∈C2

Kβ(x, z)Kβ(T )

what coincides with the right-hand side of this equation. Now, consider the

29De�ne 0 · ∞ = 0.

45



d

Ω

e

f

x

z

b

h

i

Hz,TL

d

Ω

e
f

x

z

b
h

i

jHz,TL=T'

Figure 2.1: Starting from a pair (z, T ) ∈ C1 \ C2 in the left panel, applying ϕ
creates a graph Tω shown in the right panel.

case y 6= x. De�ne the map ϕ : C1 → C2 by

ϕ(z, T ) =

{
(z, T ) if T ∈ Tz,x({ω, x}),
(RT (y), ( ~E(T ) ∪ {(y, z)}) \ {(y,RT (y))}) if T /∈ Tz,x({ω, x}).

ϕ maps the pair (z, T ) onto itself if T contains a (z, x)-path. If such a
path does not exist, then it connects y with z, deletes the (unique) outgoing
edge from y, and shifts the initial vertex of the path from y to its unique
neighbor under T , RT (y). Since there exists a path connecting y with x
(because (z, T ) ∈ C1), the (unique) neighbor of y on T is also connected with
x. Hence, we have constructed a revision tree T ′ ∈ TRT (y),x({ω, x}), with
RT (y) ∈ Ω\{ω, y}.30 If we can show that ϕ is bijective, then C1 = C2 follows
and we are done. We claim

ϕ−1(z, T ) =

{
(z, T ) if T ∈ Ty,x({ω, x}),
(RT (y), ( ~E(T ) ∪ {(y, z)}) \ {(y,RT (y))}) if T /∈ Ty,x({ω, x}).

Then ϕ−1(ϕ(z, T )) = (z, T ) for all (z, T ) ∈ C1. To see this, start with
(z, T ) ∈ Tz,x({ω, x}). Then ϕ(z, T ) = (z, T ) ∈ C2 and T ∈ Ty,x({ω, x}),
hence ϕ−1(ϕ(z, T )) = (z, T ). In the case where T /∈ Tz,x({ω, x}), let us call
ϕ(z, T ) = (z′, T ′) ∈ C2. Then T

′ /∈ Ty,x({ω, x}), and consequently

ϕ(z′, T ′) = (RT ′(y), ( ~E(T ′) ∪ {(y, z′)}) \ {(y,RT ′(y))})
= (z, ( ~E(T ′) ∪ {(y,RT (y))}) \ {(y, z)})
= (z, T )

30If RT (y) = x then we get the pair (x, T ) with T ∈ T ({ω, x}) which lies in C2 for z = x.
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The expected time spent in some state x before the system returns to ω is
given by

vx(ω) = E

(
∞∑
n=0

1{Xβ
n=x}∧{τ(ω)>n}|X

β
0 = ω

)
. (2.7.4)

Intuitively, this is the average length of ω-cycles in the revision graph T , on
which x is visited.

Lemma 2.7.3. Let v(ω) denote the vector whose elements are de�ned by
(2.7.4). Then

(i) vω(ω) = 1;

(ii) v(ω)Kβ = v(ω);

(iii) v(ω) is bounded and positive.

Proof. (i) By de�nition.

(ii) By the Markov property and time-homogeneity we have

vx(ω) =
∞∑
n=1

P(Xβ
n = x, τ(ω) ≥ n|Xβ

0 = ω)

=
∞∑
n=1

∑
ω′∈Ω

P(Xβ
n−1 = ω′, Xβ

n = x, τ(ω) ≥ n|Xβ
0 = ω)

=
∞∑
n=1

∑
ω′∈Ω

P(Xβ
n−1 = ω′, τ(ω) ≥ n|Xβ

0 = ω)Kβ(ω′, x)

=
∞∑
n=0

∑
ω′∈Ω

P(Xβ
n = ω′, τ(ω)− 1 ≥ n|Xβ

0 = ω)Kβ(ω′, x)

=
∑
ω′∈Ω

vω′(ω)Kβ(ω′, x)

(iii) Suppose there exists a state x such that vx(ω) = 0. Then, for all n ≥ 1,

0 =
∑
ω′∈Ω

vω′(ω)Kβ,n(ω′, x) = Kβ,n(ω, x) +
∑
y 6=ω

vy(ω)Kβ,n(y, x),

and so Kβ,n(ω, x) = 0, contradicting irreducibility. Essentially the
same argument can be used to see that vx(ω) <∞ for all x.
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The expected return time to ω is v̄(ω) =
∑

ω′∈Ω vω′(ω). This is a measure
of the average length of ω-cycles. A state ω is called positive recurrent if
v̄(ω) <∞.

Lemma 2.7.4. Let Kβ be irreducible and recurrent. Then Kβ has an in-
variant distribution µβ such that µβ({ω}) = µβ(ω) = 1

v̄(ω)
.

Proof. Since Ω is �nite, there exists a positive recurrent state ω ∈ Ω. From
irreducibility, it follows that all states are positive recurrent. Then v̄(ω) =∑

ω′∈Ω vω′(ω) < ∞. Since v(ω) de�nes an invariant measure for Kβ, µβ =
1

v̄(ω)
v(ω) is an invariant distribution for Kβ, satisfying µβ(ω) = 1/v̄(ω).

Using this Lemma, observe that

µβ(ω) =

(∑
ω′∈Ω

vω′(ω)

)−1

=

(
1 +

∑
x 6=ω

vx(ω)

)−1

=

[
1 +

∞∑
n=1

P(Xβ
n 6= ω, τ(ω) ≥ n+ 1|Xβ

0 = ω)

]−1

=

[
1 +

∞∑
n=1

∑
y 6=ω

P(Xβ
1 = y, τ(ω) ≥ n+ 1|Xβ

0 = ω)

]−1

=

[
1 +

∑
y 6=ω

Kβ(ω, y)
∞∑
n=1

P(τ(ω) ≥ n|Xβ
0 = y)

]−1

=

[
1 +

∑
y 6=ω

Kβ(ω, y)E(τ(ω)|Xβ
0 = y)

]−1

.

We have for all y 6= ω the identity

E(τ(ω)|Xβ
0 = y) = E

(
∞∑
n=0

1{Xβ
n 6=ω}∩{τ(ω)>n}|X

β
0 = y

)

= E

(∑
x 6=ω

∞∑
n=0

1{Xβ
n=x}∩{τ(ω)>n}|X

β
0 = y

)
=
∑
x 6=ω

K̄β,x(y, x).
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The last equality follows from Lemma 2.7.1. Using this identity gives

µβ(ω) =

1 +
1

ρβ(ω)

∑
y,x6=ω

Kβ(ω, y)
∑

T∈Ty,x({ω,x})

Kβ(T )

−1

.

=
ρβ(ω)

ρβ(ω) +
∑

x 6=ω
∑

y 6=ωK
β(ω, y)

∑
T∈Ty,x({ω,x}) K

β(T )

=
ρβ(ω)

ρβ(ω) +
∑

x 6=ω
∑

Tx∈Tx K
β(Tx)

which is eq. (2.2.8).
We now provide some justi�cations for the cost functions (2.2.13). The results
presented here are due to Beggs (2005), who in turn builds on the work of
Catoni (1999). The clue is to consider a modi�ed Markov chain, which
monitors only transitions in a suitably chosen subset X ⊂ Ω. Therefore, for
m ∈ N0, de�ne the stopping times of successive visitations of the set X as
τ−1(X ) ≡ 0, τm(X ) := inf{n ≥ τm−1(X ) + 1|Xβ

n ∈ X}. The Markov chain
Zβ
m := Xβ

τm(X ) records all visitations of X
β to the set X .

Lemma 2.7.5. Let X ⊂ Ω be a non-empty set. (Zβ
m)m≥0 is an irreducible,

recurrent and time-homogeneous Markov chain on X . Its unique invariant
distribution is given by µβ(·|X ) and its transition probabilities are for all
y, x ∈ X

P(Zβ
m+1 = x|Zβ

m = y) = Kβ(y, x) +
∑
z∈Ω\X

Kβ(y, z)QΩ\X (z → x) (2.7.5)

where

Qβ
Ω\X (z → x) :=

∑
T∈Tz,x(X ) K

β(T )∑
T∈T (X ) K

β(T )
.

Proof. That the restricted process is a Markov chain with these properties
can be proved quite easily. See Proposition 7.2.1 in Catoni (2001). For
the second claim, note that the strong Markov property (see Norris, 1997),
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applied to the stopping times τm(X ), implies that

P(Zβ
m+1 = x|Zβ

m = y) = P(Xβ
τm+1(X ) = x|Xβ

τm(X ) = y) = P(Xβ
τ1(X ) = x|Xβ

0 = y)

= Kβ(y, x) +
∞∑
n=2

∑
z /∈X

P(Xβ
s /∈ X ∀s ∈ [1, n− 1], Xβ

n = x|Xβ
0 = y)

= Kβ(y, x) +
∞∑
n=1

∑
z,ω/∈X

Kβ(y, z)P(Xβ
n = ω, τ(X ) ≥ n|Xβ

0 = z)Kβ(ω, x)

= Kβ(y, x) +
∞∑
n=1

∑
z,ω/∈X

Kβ(y, z)

∑
T∈Tz,ω(X∪{ω}) K

β(T )∑
T∈T (X ) K

β(T )
Kβ(ω, x)

= Kβ(y, x) +
∞∑
n=1

∑
z /∈X

Kβ(y, z)

∑
T∈Tz,x(X ) K

β(T )∑
T∈T (X ) K

β(T )

= Kβ(y, x) +
∑
z∈Ω\X

Kβ(y, z)Qβ
Ω\X (z → x)

where we have used in the fourth line Lemma 2.7.1.

We will apply this result to derive the set-wise cost functions (2.2.13). Let
L1, . . . ,Lk denote the recurrent classes of the unperturbed model M and
< =

⋃k
i=1 Li the union of recurrent classes. The literature often refers to

the sets Li as limit sets. From each limit set we make an arbitrary selection
xi ∈ Li, 1 ≤ i ≤ k, and de�ne X := {x1, . . . , xk}. Note that X contains the
absorbing states (i.e. the singleton recurrent sets). For y, x ∈ X , let

cX (y, x) := − lim
β→0

β log P(Zβ
m+1 = x|Zβ

m = y)

be the cost function of the restricted process (Zβ
m)m≥0. Further, de�ne

ĉ∗(ω) := miny∈Ω\{ω} ĉ(ω, y) the least cost transition from some state ω ∈ Ω
(omitting the type of transition).

Lemma 2.7.6. Let X = {x1, . . . , xk}, xi ∈ Li, 1 ≤ i ≤ k. Then, for all
y, x ∈ X , the costs of transiting from y to x are given by

cX (y, x) = min
P∈Py,x(X̄∪{y},X )

Ĉ(P ), (2.7.6)

where for any path P , Ĉ(P ) :=
∑

~e∈ ~E(P ) ĉ(~e), and X̄ = Ω \ X .

Proof. The proof is based on Lemma 2.2.1 and the transition probability of
the restricted process (Zβ

m) found in Lemma 2.7.5. We know that Kβ(y, x) =
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exp
[
− 1
β
(ĉ(y, x) + o(1))

]
. For a given point z ∈ Ω \ X , we have to �nd an

asymptotic bound for Kβ(y, z)Qβ
Ω\X (z → x). For su�ciently small β this

probability can be written as

exp

[
− 1

β
(ĉ(y, z) + o(1))

] ∑
T∈Tz,x(X ) exp

[
− 1
β
(Ĉ(T ) + o(1))

]
∑

T∈T (X ) exp
[
− 1
β
(Ĉ(T ) + o(1))

] .
Taking logarithms, and multiplying by −β gives us the leading order term

ĉ(y, z)− β log[Qβ
Ω\X (z → x)]. (2.7.7)

The second terms is governed by

log

 ∑
T∈Tz,x(X )

exp

(
− 1

β
(Ĉ(T ) + o(1))

)−log

 ∑
T∈T (X )

exp

(
− 1

β
(Ĉ(T ) + o(1))

) .
Lemma 2.2.1 tells us that for β ↓ 0 this number is asymptotically equivalent
to

max
T∈Tz,x(X )

exp(−Ĉ(T )/β)− max
T∈T (X )

exp(−Ĉ(T )/β).

(2.7.7) boils then down to

ĉ(y, z) + min
T∈Tz,x(X )

Ĉ(T )− min
T∈T (X )

Ĉ(T ). (2.7.8)

Call T ∗z,x ∈ Tz,x(X ) a least cost X -graph containing a (z, x)-path, and T ∗X ∈
T (X ) a least cost X -graph. Call P ∗ the (z, x)-path used on T ∗z,x. We claim
that all edges in T ∗z,x, which are not on the path P ∗, are also used under T ∗X .
This follows from the fact that Tz,x(X ) ⊂ T (X ). The only di�erence between
the graphs T ∗z,x and T ∗X are the edges on the path P ∗ = {ω1, . . . , ωl}, ω1 =
z, ωl = x, ωt /∈ X ,∀t = 2, . . . , l − 1. The edge (ωt−1, ωt) in P ∗ need not be
globally optimal, so that this edge causes supplementary costs ĉ(ωt−1, ωt) −
ĉ∗(ωt−1). The term ĉ∗(ωt−1) is the cost of the edge leaving ωt−1 under T ∗X .
Hence, for any z /∈ X we can pin down the costs of a transition from y to x,
via z, as

ĉ(y, z) + min
P

{
l∑

t=2

[ĉ(ωt−1, ωt)− ĉ∗(ωt−1)] : P = {ω1, . . . , ωl} ∈ Pz,x(X̄ ,X )

}
.

Call this ĈX (y → x|z). It follows that

cX (y, x) = min

{
ĉ(y, x), min

z∈Ω\X
ĈX (y → x|z)

}
.
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Next, we claim that if ω is used on the optimal path P ∗, then ĉ∗(ω) = 0.
To see this, observe that by de�nition of such paths, ω is either a transient
state, or it is a recurrent state, not contained in the selection X . In the �rst
case, ĉ∗(ω) = 0, since any transient state can be appended to a zero-cost path
leading to some recurrent state. In the second case we also have ĉ∗(ω) = 0,
since ω cannot be absorbing, hence communicates with another state in the
same recurrent class. Hence, if ω1 is the �rst state on the optimal path P ∗

then ĉ∗(ω1) = 0, and iteration gives ĉ∗(ωt−1) = 0 for all 2 ≤ t ≤ l − 1.
Consequently, calling Ĉ(P ) =

∑l−1
t=1 ĉ(ωt, ωt+1) for a path P ∈ Pz,x(X̄ ,X ),

we have

cX (y, x) = min

{
ĉ(y, x), min

z∈Ω\X
min

P∈Pz,x(Ω\X ,X )

(
ĉ(y, z) + Ĉ(P )

)}
= min

P∈Py,x(X̄∪{y},X )
Ĉ(P ).

This Lemma gives us the costs of a transition between two recurrent states
y, x. If y ∈ L and x ∈ L′, then we can extend the above argument to a set-
wise cost functions, measuring the di�culty of a transition from recurrent
class L to recurrent class L′. Let ω ∈ L, ω′ ∈ L′. There is a zero-cost path
connecting y with ω, and a zero-cost path connecting x with ω′. Hence, the
least cost of moving from L to L′ is exactly (2.2.13). This in turn shows
that the least cost of reaching a state ω ∈ L coincides with the minimal
cost needed to reach the limit set L from all other limit sets, justifying eq.
(2.2.14). Hence, if ω is stochastically stable, so must all states in the same
recurrent class. This gives us the following result.

Corollary 2.7.1.

Ω∗ =
⋃
{L|(∃ω ∈ L) : γ(ω) = min

ω′∈Ω
γ(ω′)}. (2.7.9)

One can also use the argument in Lemma 2.7.6 to establish a connection with
the radius/co-radius formulas of Ellison (2000). I refer to Beggs (2005) for
further discussions.
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Chapter 3
Continuous-time co-evolutionary

models
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3.1 Introduction

Almost all papers on the co-evolution of networks and play study �nite-state
time-homogeneous Markov processes which have a �birth-death� structure.
A good summary of this work can be found in Vega-Redondo (2007). Such
processes are very well studied, and the distinction between continuous time
and discrete time theory is, more or less, a matter of taste. For some purposes
the continuous-time theory o�ers a more intuitive way to describe the process
and some results are more straightforward to derive. This note will discuss
a class of continuous-time Markov processes which are going to be used in
chapters 4 and 5. In this chapter we will not present any new results. It is
much more intended to serve as a sort of reference for constructing new co-
evolutionary models. I have tried to develop the theory in a self-contained
way, and attempted to be as precise and concise as possible. Section 3.2
presents a class of co-evolutionary models with noise, Mβ, in continuous
time. The connection to the family Mβ evolving in discrete time, as set
forth in the previous chapter, is presented in 3.3.

3.2 Construction of the family Mβ in continu-

ous time

We will use the notation already introduced in the previous two chapters.
Chapters 4 and 5 deal with continuous time co-evolutionary models with
noise

Mβ = (Ω,F ,P, (Y β(t))t≥0)β∈R+ ,

where Ω = AI×G[I] is the �nite state space containing pairs of action pro�les
α, and networks g. An element of this set is denoted as ω := (α, g). F is a σ-
algebra, which can be chosen to be the set of all subsets 2Ω. P : F → [0, 1] is a
probability measure, and (Y β(t))t≥0 is a family of Ω-valued random variables,
indexed by a continuous-time parameter t ≥ 0 and a noise parameter β ≥ 0.
If desired one could add the population size as additional parameter (as will
be done in chapter 5). Hence, the only technical di�erence betweenMβ, as
de�ned in chapter 2 and the family of random processes discussed here, is
that time is continuous. The process satis�es the Markov property, meaning
that for any sequence 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ t, we have

P(Y β(t) = ω|Y β(tj), 1 ≤ j ≤ k) = P(Y β(t) = ω|Y β(tk)).

A sample path is characterized by its jump times (Jn)n∈N0 , and its holding
times Sn+1 := Jn+1 − Jn (Norris, 1997). We de�ne these random variables
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inductively as J0 = 0, and for every n ≥ 1, Jn := inf{t ≥ Jn−1 : Y β(t) 6=
Y β(Jn−1)}. A technical di�culty would arise if Jn = ∞ for some n. This
will not play any role for the process described in this chapter, and so we do
not need to discuss this possibility.
The Markov process (Y β(t))t≥0 builds on the following ideas:

• Players adapt their action to their interaction neighborhood N i, which
in turn is partially under control of the agents. Partial refers to the
process of link creation where a link between two players can be formed
following the initiative of a single player.

• The decisions once made should last for some time, so that their con-
sequences can be realized by the player. This phenomenon of inertia
is admittedly formulated in a rather extreme way, since most of the
time a single player will not do anything. Further, when a player is
allowed to change some of his/her characteristics, it is assumed that
only a single attribute may be changed at one update event. Moreover,
the arrival of updating events is random, hence there is no strategic
delay. It is like the players walk through a labyrinth with closed doors.
At some moments of time a door suddenly opens and the player closest
to this door goes through it.

• The process can be studied on two �layers�. There is a macro level of
the process and a micro level. On the macro level there are only 3
elementary events which may be observed, changing the state variable
ω = (α, g): A change in the action pro�le α might appear, but we do
not know at which position of this list the change took place. A change
in the network g may take place, so that one existing edge disappears
from the network, or a previously non-existing edge is added to the
network. Again, from the macro-perspective we don't know the pair of
vertices involved in this change. The Micro-level gives us the missing
information. Here the probabilities are determined which govern the
pattern of the process (Y β(t))t≥0.

On the macro level 3 elementary events may be observed changing the state
variable ω. These events de�ne how evolution forms the system over time.
One possible event is that the action pro�le α changes at some point of time.
This de�nes a sub-process called �action update�, or �action adjustment�.
Other possible routes for evolution to come in is via changes in the current
network g. There we have two possibilities; Either the network expands, in
the sense that a link becomes added, or the network shrinks, in the sense
that a link becomes destroyed. In the �rst case we will speak of the event

55



of �link creation�, while in the latter case we will observe an event of �link
destruction�. Each of these events appear with an independent probability
which is calculated from an aggregation procedure of the micro-level; See
Figure 3.1 for an illustration on the workings of the dynamic. Hence, the

q1HΩmL

q2HΩmL

1-q1HΩmL-q2HΩmL

Y ΒHJmL=Ωm

Change action

Add link

Delete link

Y ΒHJm+1L=Ωm+1

Figure 3.1: A diagrammatic sketch of the functioning of the Markov process
(Y β(t))t≥0.

process (Y β(t))t≥0 combines an evolutionary dynamic acting on the action
pro�le α with a graph dynamic which shapes the interaction structure of the
population. The two processes proceed at characteristic time scales τa, τg,
respectively. The ratio τ := τg/τa determines the relative speed of the two
processes. If τ is much larger than 1, network evolution will proceed at a
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faster time scale than action adjustment. If τ is much smaller than 1, then
action adjustment opportunities arrive with a higher frequency to the pop-
ulation. Both cases correspond to a situation were the population dynamics
is a two-tiered process. If we want to have a truly co-evolutionary model, we
must time the two processes so that τ ≈ 1. One can interpret the macro-level
of the process as the regulation of the two time-scales. It tells us when which
type of event will cause the system to move. At the micro-level (see Section
3.2.2) we analyze the relevant processes within their characteristic time scale.
In essence, all these processes are modeled as simple Poisson processes, which
we will call �counting processes�.

3.2.1 On the use of the term �counting process�

The words �arrival process� and �counting process� are used for any time
homogeneous continuous-time random process X = (X(t))t≥0, with the fol-
lowing properties1:

(i) t 7→ X(t) is right-continuous, non-negative, non-decreasing and integer-
valued;

(ii) at the points of discontinuity a jump of magnitude 1 is observed;

(iii) the increments at points of time 0 < t1 < t2 < . . . < tk : X(t1), X(t2)−
X(t1), . . . , X(tk−1)−X(tk) are independent.

(iv) The distribution of X(t)−X(s) depends only on t− s.

Starting with this de�nition, let us de�ne random variables

(∀n ∈ N) : Jn := inf{t : X(t) ≥ n}, Tn := Jn − Jn−1. (3.2.1)

(Jn)n∈N are called the jump times of the random process X. These are
distinguished points of time - the only points at which a change in the system
X is observed. If Jn = t then the process X makes its n-th jump at time
t. For any ε > 0 we have X(Jn − ε) < n. The numbers (Tn)n∈N are the
holding times of the process X, measuring the length of time between two
consecutive jumps.
By right-continuity it follows that for every t > 0, there exists a ε > 0
such that X(t) = X(t + ε). So for every n we get Tn > 0. By de�nition
Jn = T0 +

∑n
j=1 Tj, and T0 is interpreted as the starting time of the process

which will be thought of as �time 0�. Now consider the comparison process

N(t) := sup{n ∈ N : Jn ≤ t}. (3.2.2)

1See also Grimmett and Stirzaker (2001), p.247 or Norris (1997), chapter 2.
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Its interpretation is that it counts the largest number of jumps the process
can make in the given time interval [0, t]. We will show that N(t) = X(t)
for all t ≥ 0, and so the above de�nition of an arrival process is equivalent
to the construction of a random process having positive inter-arrival times.

Proposition 3.2.1. For all t ≥ 0 we have N(t) = X(t).

Proof. The sequences (Jn)n∈N, (N(t))t≥0 are non-decreasing by de�nition. If
N(t) = n then Jn ≤ t < Jn+1. Since (X(t))t≥0 is non-decreasing, it follows
n ≤ X(t) < n+ 1. Hence, X(t) = n, since X is integer-valued.
Suppose now that X(t) = n. Then N(t) = n, because N(t) > n leads to
the contradiction that Jn < t and N(t) < n generates the counter-factual
Jn > t.

This line of reasoning shows that our de�nition of an arrival process means
that we think of a random process having positive inter-arrival times, and
discrete points of time at which its value increases by one unit. Drawing
a realization of the sequences (Jn)n∈N0 and (N(t))t≥0 in the (R,N0)- plane
shows that (Jn)∞n=0 is the inverse of N(t) in the sense that if Jn ≤ t then
N(t) ≤ n.
Points (iii) and (iv) in the de�nition of X are needed to determine the dis-
tribution of the holding times. The event {Tn > t + h} is probabilistically
equivalent to the event {Jn > t+h+Jn−1& Jn > t+Jn−1} for every t, h > 0.
Hence, on {Jn−1 ≤ s < Jn} and point (iv) in the de�nition, this event de-
pends only on the behavior of the process in the interval [s, s + t + h]. The
probability that the process performs its n-th jump after t + h is equiva-
lent to saying that it does not make a jump in the interval [s, s + t] and
(s+ t, s+ t+ h]. It follows that

P(Tn > t+ h|X(τ); τ ≤ s) = P(X(s+ t+ h)−X(s) = 0|X(τ); τ ≤ s)

= P(Jn > s+ t+ h & Jn > t+ s|X(τ); τ ≤ s)

= P(X(s+ t)−X(s) = 0 & X(s+ t+ h)−X(s+ t) = 0|X(τ); τ ≤ s)

= P(X(s+ t+ h)−X(s+ t) = 0|X(τ); τ ≤ s & X(s+ t)−X(s) = 0)

× P(X(s+ t)−X(s) = 0|X(τ); τ ≤ s)

= P(Tn > h|X(τ); τ ≤ s+ t)P(Tn > t|X(τ); τ ≤ s & Tn > t) |(iii) and (iv)

= ψ(t)ψ(h)

Hence, we obtain ψ(t+h) = ψ(t)ψ(h), ψ(0) = 1. We can solve this functional
equation with the help of the following well-known Lemma, whose proof is
presented just for sake of completeness.
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Lemma 3.2.1. For all a ∈ R there is a unique solution ψ : R → R to
the functional equation ψ(t + h) = ψ(t)ψ(h) for t, h ∈ R, satisfying ψ(1) =
exp(−a). This solution is ψ(t) = exp(−at).

Proof. The proof proceeds by �nding a function restricted to the rationales Q
satisfying the functional equation, and then, by a suitable limiting argument,
showing that we can extend the domain to R. Let φ : Q→ R be a function
satisfying φ(p + q) = φ(p)φ(q) for all p, q ∈ Q and φ(1) = exp(−a). For
p = 1, q = 0 we get φ(1) = φ(1)φ(0), hence φ(0) = 1. For p = −q we have
φ(0) = 1 = φ(p)φ(−p), and so φ(p) 6= 0 and φ(−p) = 1/φ(p). For p = q
φ(2p) = φ(p)2 > 0, and so φ(p) > 0 for all rational p. Starting from this
identity, we have, by induction on n, that φ(np) = φ(p)n for all n ∈ N. In
particular, we observe that

exp(−ap) = φ(1)p = φ(p).

To check uniqueness, assume that φ1, φ2 are two solutions of the functional
equation satisfying φ2(1) = φ1(1) = exp(−a). Then for all p ∈ Q

φ1(p) = φ1(1)p = exp(−ap)
= φ2(1)p = φ2(p)⇒ φ1(p) = φ2(p).

Now we extend the domain of φ to R. If t ∈ R is rational de�ne ψ(t) := φ(t).
If t is irrational, let (tn)∞n=0 denote a sequence of rational numbers converging
to t. If a = 0 then φ(1) = 1 and so φ(tn) = 1 for all n, independently of how
we choose the sequence. Thus, if tn → t, it follows φ(tn)→ φ(t) = 1 =: ψ(t)
for n→∞. Now suppose a > 0. Then (φ(tn))∞n=0 is a monotonically falling
sequence in [0, 1] ∩Q if we choose tn ↗ t. Similarly, if a < 0, we can choose
tn ↗ t to make (φ(tn))∞n=0 a monotonically increasing sequence in [1,∞)∩Q,
bounded from above. Hence, in both cases the limit ψ(t) := limn→∞ φ(tn)
exists. Now we show that ψ(t) is independent of the choice of the sequence
(tn). Let (tn), (sn) denote two sequences such that tn, sn ↗ t. If a > 0, then
supn φ(tn) = φ(t0) =: L, and if a < 0 then supn φ(tn) = ψ(t) =: L. Further
|tn − sn| → 0 as n→∞. Hence

|φ(tn)− φ(sn)| = exp(−atn)|1− exp(−a(tn − sn))|
≤ L|a||tn − sn|+ o(1)

where o(1) represents non-negative terms which go to zero as n → ∞ at a
higher order than |tn− sn|. This shows that φ satis�es a Lipschitz condition,
and as n→∞ we observe |φ(tn)− φ(sn)| → 0.

This shows that ψ(t) = exp(−ct) for c := − logψ(1) ≥ 0.
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3.2.2 The Micro Level

Figure 3.1 describes the phenomenaMβ captures at the macro-level of the
society: Action adjustment, link creation and link destruction. In this section
we describe the working of the process on these sub-processes. The presen-
tation is tailored to the models of chapters 4 and 5, so that some speci�c
assumptions on functional forms are discussed. This is done only to estab-
lish a clear connection between the general framework of chapter 2, and the
more speci�c forthcoming models.

Action adjustment

This sub-process is the easiest to understand, so we should start with it. The
general idea carries over to the other 2 processes. Every player possesses a
Poisson alarm clock running with constant intensity ν > 0, which is common
to all players. I denote this process as (Ri(t))t≥0 for every player i ∈ I.
This is a counting process as de�ned in Section 3.2.1. For an integer m,
the event {Ri(t) = m} means that player i had at time t already m action
update opportunities. The in�nitesimal description of Poisson processes is
very convenient to work with. It states that for a very small time interval
[t, t+ h), h→ 0, the clock of player i rings with probability2

P(Ri(t+ h)−Ri(t) = m|Ri(s); 0 ≤ s ≤ t) =

{
νh+ o(h) if m = 1,
1− νh+ o(h) if m = 0.

(3.2.3)
uniformly in t. This assumption, combined with our de�nition of a counting
process, gives us the following Proposition.

Proposition 3.2.2. Ri(t) ∼ POI(νt) for all t ≥ 0 and i ∈ I.

Proof. Write p
(i)
m (t) := P(Ri(t) = m). Then, by rules of conditional proba-

bility, for t > 0 and m ∈ N we get

p(i)
m (t+ h) = p(i)

m (t)P(Ri(t+ h)−Ri(t) = 0|Ri(t) = m)

+ p
(i)
m−1(t)P(Ri(t+ h)−Ri(t) = 1|Ri(t) = m− 1)

+
m∑
k=2

p
(i)
m−k(t)P(Ri(t+ h)−Ri(t) = k|Ri(t) = m− k).

The last sum is o(h) for m > 2 and absent for m ≤ 1. For m = 0 only
the �rst sum appears. Inserting the relevant expressions, and doing some

2With the symbol o(h) we collect remainder terms that go to zero as h→ 0.
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elementary manipulations, gives us

p
(i)
m (t+ h)− p(i)

m (t)

h
= −ν[p(i)

m (t)− p(i)
m−1(t)] + o(h). (3.2.4)

If (3.2.3) holds uniformly in t, we can replace t = s− h and get

p
(i)
m (s)− p(i)

m (s− h)

h
= −ν[p(i)

m (s− h)− p(i)
m−1(s− h)] + o(h). (3.2.5)

Now we see that |p(i)
m (t + h) − p

(i)
m (t)| ≤ o(h) → 0 as h ↓ 0. So pim(·) is

continuous. Then we see that

lim
h↗0

∣∣∣∣∣p(i)
m (s)− p(i)

m (s− h)

h

∣∣∣∣∣ = lim
h↘0

∣∣∣∣∣p(i)
m (t+ h)− p(i)

m (t)

h

∣∣∣∣∣ ,
showing di�erentiability for t > 0. At t = 0 only the right-derivative exists.
Hence, for all m ∈ N, t ≥ 0, i ∈ I we have to solve the dynamical system

ṗ(i)
m (t) = −ν[p(i)

m (t)− p(i)
m−1(t)], p

(i)
m (0) = δm,0 (3.2.6)

ṗ
(i)
0 (t) = −νp(i)

0 (t) (3.2.7)

The most elegant approach to solve this countable in�nite system of Kol-
mogorov forward equations is by using generating function techniques (see e.g.

Grimmett and Stirzaker, 2001, ch. 5). Let G(i)(t, x) :=
∑∞

k=0 x
kp

(i)
k (t) be the

generating function of the probability mass function {p(i)
m (t)}∞m=0, x ∈ (0, 1].

Then

∂G(i)(t, x)

∂t
=
∞∑
k=0

xkṗ
(i)
k (t)

=
∞∑
k=0

xkν[−p(i)
k (t) + p

(i)
k−1(t)1k≥1]

= −ν
∞∑
k=0

xkp
(i)
k (t) + ν

∞∑
k=1

xkp
(i)
k−1(t)

= −νG(i)(t, x) + νxG(i)(t, x) = ν(x− 1)G(i)(t, x)

with boundary condition (for proper normalization) G(i)(t, 1) = 1 for all
t ≥ 0. Solving for G(i)(t, x), we get

∂

∂t

[
G(i)(t, x) exp(−ν(x− 1)t)

]
= 0 |integrate over [0, T ]

⇒ G(i)(T, x) exp(−ν(x− 1)T )−G(i)(0, x) = A

⇔ G(i)(t, x) = exp(ν(x− 1)t)
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Suppose Ri(t) is Poisson distributed with parameter νt. Then the generating
function is

Poiss(t, x) =
∞∑
k=0

xk exp(−νt)(νt)k

k!
= exp(−νt)

∞∑
k=0

(νxt)k

k!
= exp(νt(x− 1)).

showing that Poiss(t, x) = G(i)(t, x) for all t ≥ 0 and so (Ri(t))t≥0 is a Poisson
process.

To establish a connection with the macro level, de�ne the compound process
R(t) :=

∑N
i=1 R

i(t). The distribution of this process can be easily derived
from the in�nitesimal descriptions of all individual processes, and is in fact
a simple consequence of the superposition principle of independent Poisson
processes (again see Grimmett and Stirzaker (2001) for background informa-
tion).

P(R(t+ h)−R(t) = 0|R(s); 0 ≤ s ≤ t) = P

(
N⋂
i=1

{Ri(t+ h)−Ri(t) = 0}|R(s); 0 ≤ s ≤ t

)

=
N∏
i=1

P(Ri(t+ h)−Ri(t) = 0|R(s); 0 ≤ s ≤ t) |by independence

= (1− νh+ o(h))N |by (3.2.3)

= (1− νh)N + o(h)

= 1−Nνh+ o(h).

P(R(t+ h)−R(t) = 1|R(s); 0 ≤ s ≤ t)

= P

(
N⋃
i=1

⋂
j 6=i

{Ri(t+ h)−Ri(t) = 1} ∩ {Rj(t+ h)−Rj(t) = 0}|R(s); 0 ≤ s ≤ t

)

=
N∑
i=1

P(Ri(t+ h)−Ri(t) = 1|R(s); 0 ≤ s ≤ t)

× P

(⋂
j 6=i

{Rj(t+ h)−Rj(t) = 0}|R(s); 0 ≤ s ≤ t

)

=
N∑
i=1

P(Ri(t+ h)−Ri(t) = 1|R(s); 0 ≤ s ≤ t)

×
∏
j 6=i

P(Rj(t+ h)−Rj(t) = 0|R(s); 0 ≤ s ≤ t)

= N(νh+ o(h))(1− νh+ o(h))N−1

= Nνh(1− (N − 1)νh) + o(h) = Nνh+ o(h)
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From the construction of the aggregate counting process R(t), it is clear that,
with probability 1, the following statement holds:

�R(t) jumps by 1⇔ (∃!i ∈ I) : Ri(t) jumps by 1�

Further, we have just shown that the aggregate process R(t) is Poisson with
parameter Nν. The same computations we have employed to determine
the distribution of the individual counting process (Ri(t)) go through for the
process (R(t+s)−R(t))s≥0. To see this, let Ft = σ({R(τ) : τ ∈ [0, t]}) be the
σ-algebra generated by sets {R(τ) = mτ}, τ ∈ Q and mτ ∈ N0, set µ := Nν
and de�ne ∆h := R(t+h)−R(t) the increment of the process at t. Note that,
by right-continuity of the process R(t) the consideration of such a σ-algebra
makes sense, because any sample trajectory {R(τ), τ ≤ t} can be represented
as a countable union of sets of the form {R(τ1) = mτ1 , R(τ2) = mτ2 , . . .}
for some sequence of rational numbers (τq)

∞
q=1 lying in [0, t], and a non-

decreasing (and bounded) sequence of integers (mτq)
∞
q=1. Further, call now

pm(s) = P(R(t+ s)−R(t) = m|Ft). We deduce that

pn(s+ h) =
n∑
k=0

pn−k(s)P(∆s+h −∆s = k|Ft,∆s = n− k).

Given the in�nitesimal description of our process as above, we can derive a
system of di�erential equations

ṗn(s) = −µ[pn−1(s)− pn(s)]

whose unique solution we already know. Hence, we have shown that the
process (R̃(s))s≥0 := (R(t+s)−R(t))s≥0 is a Poisson process with parameter
µ.3

Conditional on the event that the counter R(t) moved by 1 unit at time t, we
can determine the probability with which player i has caused this increase in
the counter. To do so, we introduce two other families of random variables
which highlight the structure of a counting process. Let JAm := inf{t ≥ 0 :
R(t) = m} be the time at which m action update opportunities arrived to
the society. From this de�ne TAm := JAm − JAm−1 as the time the population
has to wait between the (m− 1)-th and the m-th action update opportunity.
We derive now the distribution of these holding times, using some properties
established in Section 3.2.1. Note that the event {R(t + s) − R(t) = 1} is
equivalent to the event {TAm+1 < s} on {R(t) = m}, for some m ∈ N0. It
follows that

P(TA1 > t) = P(R(t) = 0) = exp(−µt).
3In fact, what we have just shown is the Markov property of the Poisson process.
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Hence, in the notation of Section 3.2.1, ψA(t + h) = ψA(t)ψA(h), and so
(TAn )∞n=0 is a sequence of i.i.d exponentially distributed random variables
with mean 1/µ.
Since the aggregate process (R(t))t≥0 and the individual processes (Ri(t))t≥0, i ∈
I are fundamentally linked (the �rst increases by one i� exactly one individ-
ual counter increased by 1), we can also determine the probability with which
the counter of player i increased by 1, conditional that R jumped by 1. Let
(TA,jm )m≥1 be the family of waiting times of player j. Then the event {TAm >
t} =

⋂N
i=1{T

A,i
mi

> t} where the integers m1, . . . ,mN satisfy
∑N

i=1m
i = m.

By de�nition of the aggregate process
∑N

i=1 sups<JAm R
i(s) = m−1. Thus, we

can alternatively de�ne TAm = min{TA,1m1 , . . . , T
A,N
mN
}. Still di�erently, one can

de�ne the random variable so that TA(t) = mini∈I{TA,iRi(t)
}. Take a sequence

0 < t1 < t2 < . . . < tn and let Ftn = {R(t1) = m1, . . . , R(tn) = mn}. The
event B = {Ri(tn+s)−Ri(tn) = 1}∩{R(tn+s)−R(tn) = 1} gives the event
that player i is the one who caused the process R to move. By construction
we have B = {TA,i

Ri(tn)
= TA(tn)} ∩ {TA(tn) ≤ s} on Ftn . Hence

P(B|Ftn) = P
(
TA,i
Ri(tn)

= TA(tn) & TA(tn) ≤ s|Ftn
)

= P

(⋂
j 6=i

{TA,j
Rj(tn)

> TA,i
Ri(tn)

} ∩ {TA,i
Ri(tn)

≤ s}|Ftn

)

=

∫ s

0

[
P

(⋂
j 6=i

{TA,j
Rj(tn)

> τ}|Ftn

)]
ν exp(−ντ) d τ

=

∫ s

0

[∏
j 6=i

P(TA,j
Rj(tn)

≥ τ |Ftn)

]
ν exp(−ντ) d τ

=

∫ s

0

[exp(−(N − 1)ντ)] ν exp(−ντ) d τ

=
1

N
(1− exp(−µs))

for all s ≥ 0. For s → ∞ the probability goes to 1/N . We see that the
event indicating that player i is the one who made the action update, and
the actual waiting time before he does so, are independent on Ftn . Every
player is equally likely to be the one to update, and the aggregate waiting
time TAm ∼Exp(Nν). The rate of this distribution de�nes the time scale of
the process of action adjustment, τa := Nν. Observe that in chapter 2 we
have called this the volume of the action adjustment subprocess.
Conditional on the event of an action revision opportunity, player i employs
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a behavioral rule bi(·|ω), which is a probability distribution on the com-
mon action set A. The models of chapters 4 and 5 will assume that this
choice function is a smoothed best response, where the smoothing is done
by a logistic function. The derivation of this behavioral rule, known as the
logit choice-function, is well-known from the literature on discrete choice
(see Anderson et al. (1992), or Hofbauer and Sandholm (2002) for a recent
discussion).

Link creation

The process of link creation proposed in chapters 4 and 5 follows essentially
the �stochastic-actor model�, developed by Snijders (2001), which provides a
micro-foundation for the p∗-models of social network analysis.4 We will see
that the rate function of the individuals of chapter 2 corresponds now to the
intensity of the players' Poisson processes. The random vectors (wi,βj )∈I are
derived from a random utility model.
When asked to create a fresh link, player i will maximize the random utility

u(αi, αj) + εij

for all other players j, which are currently not in his neighborhood. Condi-
tional on the event that player i has the chance to form a link, she will do
so with probability 1 (no chance is wasted). The probability that the edge
(i, j) is added to the network is given by

wij(ω) := P
(
∀k 6∈ N̄ i(ω) : u(αi, αj) + εij ≥ u(αi, αk) + εik|ω

)
, (3.2.8)

where ω = (α, g) is the population state at the time where player i gets the
chance to create a link.5 The models presented in chapters 4 and 5 propose a
very speci�c form for the choice probabilities (3.2.8). There we assume that

wi,βj (ω) =
exp(u(αi, αj)/β)∑

k 6∈N̄ i(ω) exp(u(αi, αk)/β)
.

This functional form assumes that a player samples another agent from
the society with a probability that is monotonically increasing in the per-
interaction payo�. The scale parameter β controls the in�uence of interaction

4See the discussion in section 1.2 of chapter 1.
5Note that for a player who is completely connected to the rest of the society (i.e.

|N̄ i(ω)| = N − 1) the set determining the probability above is the empty set. Anyway, we
will time the stochastic process (Y β(t))t≥0 in such a way that no completely connected
player will receive the opportunity to create a link, and so this situation must not be
treated separately.
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payo�s on the probability. Very high levels of β mean that all players have
more or less the same probability of being selected. Very low levels of β imply
that the probability puts more mass to players which produce relatively high
per-interaction utility. To arrive at this logit formula one assumes that the
noise terms εij are i.i.d. double exponential distributed, hence have a density

f(x) =
1

β
exp(−x/β − γ) exp [− exp(−x/β − γ)]

where γ ≈ 0.5772 is the Euler-Mascheroni constant, and cumulative distri-
bution function F (x) = exp [− exp (−x/β − γ)] .6 One can show that this

distribution has mean 0 and variance β2π2

6
. It is helpful to remember the

formula of the variance, especially in view of stochastic stability, i.e. when
β ↓ 0. In case of this special class of perturbation, we can compute the
probability wij explicitly as follows;

P
(
εik ≤ u(αi, αj)− u(αi, αk) + εij ∀k 6∈ N̄ i(ω)|ω

)
=

∫ +∞

−∞
P(

⋂
k 6=j;k 6∈N̄ i(ω)

{εik ≤ u(αi, αj)− u(αi, αk) + x}|ω)f(x) dx

=

∫ +∞

−∞

 ∏
k 6=j;k 6∈N̄ i(ω)

P(εik ≤ u(αi, αj)− u(αi, αk) + x|ω)

 f(x) dx

Now make a substitution of variables:

t(x) := exp(−x/β − γ), (∀j 6∈ N̄ i(ω)) : yij := exp(u(αi, αj)/β)

Then we see that d t = (−1/β) exp(−x/β − γ) dx and t(+∞) = 0, t(−∞) =
+∞. Hence, plugging this into the integral gives∫ +∞

0

 ∏
k 6=j;k 6∈N̄ i(ω)

exp

(
−tyik
yij

) exp(−t) d t

=

∫ ∞
0

∏
k 6∈N̄ i(ω)

exp

(
−tyik
yij

)
d t

=
yij∑

k 6∈N̄ i(ω) yik
=

exp(u(αi, αj)/β)∑
k 6∈N̄ i(ω) exp(u(αi, αk)/β)

By pre-multiplying this expression with the indicator (1−gij), we can extend
the choice probability wij(ω) to hold for all N − 1 potential linking partners.

6It is also known as the Gumbel distribution or type 1 extreme-value distribution.
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The second ingredient of the stochastic-actor model is a so-called rate func-
tion, as has been introduced in chapter 2. The rate function is an agent-
speci�c mapping λi : Ω → R+. The value of this rate function is coupled
with the sample path t 7→ Y β(t). For a random vector (J1, . . . , Jm) ∈ Rm

+ of
jump times, let (t1, t2, . . . , tm) be one particular realization with correspond-
ing states (ω1, . . . , ωm) ∈ Ωm visited by the process at these points of time.
Then the rate function of any player i ∈ I has the following �sample path�:

[0, t1) : λi(ω0) ω0 = Y β(0) the given initial state

[t1, t2) : λi(ω1)

...

[tm−1, tm) : λi(ωm−1)

Hence, there is a coupling between the process (Y β(t))t≥0 and a processes
(Li(t))t≥0, where the integer L

i(t) measures the number of link creation op-
portunities player i had up to time t. Let (TL,i

Y β(t)
)t≥0 denote the waiting times

of player i, in dependence of the state Y β(t). The functioning of the link cre-
ation process of the individual players is analogous to the action update
process, though calculations cannot be done in such an explicit way. On the
event {Jm ≤ t < Jm+1} and given the information Ft = σ({Y β(s); s ∈ [0, t]}),
a randomly selected individual gives �birth� to a new link at an independent
rate λi(Y β(t)), meaning that the conditional probability with which player
i creates a link in a small time interval [t, t + h], h ↓ 0 is λi(Y β(t))h + o(h).
Formally, on the set {Y β(t) = ωm}, we have

P(Li(t+ h)− Li(t) = 1|Y β(s); 0 ≤ s ≤ t & Jm ≤ t < Jm+1) = λi(ωm)h+ o(h)

P(Li(t+ h)− Li(t) > 1|Y β(s); 0 ≤ s ≤ t & Jm ≤ t < Jm+1) = o(h)

for all i ∈ I. For general h ≥ 0, this implies that the distribution of waiting
times TL,i has to be de�ned for the several intervals [Jm, Jm+1). For a given
t ∈ [Jm, Jm+1), or equivalently Sm+1 > t−Jm, the probability that any player
i ∈ I has to wait for additional h ≥ 0 time units, is consequently

P(Li(t+ h)− Li(t) = 0|Y β(s), 0 ≤ s ≤ t & Jm ≤ t < Jm+1) =

= exp(−λi(ωm)h)1{Sm+1>t+h−Jm}.

Would h be so large that Sm+1 ≤ t + h − Jm, or equivalently, Jm+1 ≤ t + h
then the state ω must have changed in the meanwhile and consequently the
distribution of the waiting times must be adjusted accordingly.
On Ft the waiting times of the players are independent of each other. Hence,
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we can again consider a compound arrival process L(t) :=
∑N

i=1 L
i(t), in-

dicating the total number of link creation opportunities the society had up
to time t. To determine the distribution of this process, one can proceed as
in the action update process, but more information is needed. One has to
condition on Ft and {t ≥ Jm} ∩ {Sm+1 > t + h − Jm}, so to be sure that
the process did not perform its m-th jump yet. On this event, the processes
(Li(t))t≥0 run independently of each other, and the superposition principle
of independent Poisson processes applies to tell us that (L(t))t∈[Jm,Jm+1) is a
Poisson process with rate λ̄(ωm) :=

∑
i∈I λ

i(ωm). This relation holds for all
m ∈ N. This is exactly the volume of the link creation process, as de�ned in
chapter 2. By the in�nitesimal characterization of Poisson processes we see,
for h ↓ 0, that

P(L(t+ h)− L(t) = 1|Y β(s); 0 ≤ s ≤ t & Jm ≤ t < Jm+1) = λ̄(ωm)h+ o(h),

P(L(t+ h)− L(t) > 1|Y β(s); 0 ≤ s ≤ t & Jm ≤ t < Jm+1) = o(h).

By construction of the compound process, if a link creation opportunity
comes to the society, almost surely only a single player will get the chance
to exhibit it. Thus, analogous to action updating, the micro and the macro
level are fundamentally linked by the statement:

�If L(t)− sups<t L(s) = 1⇔ (∃! i ∈ I) : Li(t)− sups<t L
i(s) = 1

with probability 1.�

Given this relationship, the waiting times of the process L, denoted by TL,
can be de�ned by TL(t) = min{TL,1(t) , . . . , T

L,N
(t) }, where the notation TL(t) ≡

TL
Y β(t)

is chosen for convenience. Let Gt = {t ≥ Jm} ∩ {Sm+1 > t + h− Jm}
and B = {Li(t+h)−Li(t) = 1}∩{L(t+h)−L(t) = 1}, i.e. the event that a
link creation opportunity arrived at the population at time t+ h, and player
i is the one who went for it. Since {L(t + h) − L(t) ≥ 1} = {TL(t) ≤ h}, we
get the following result

P(B|Ft, Gt) = P({TL(t) = TL,i(t) } ∩ {T
L
(t) ≤ h}|Ft, Gt)

= P({TL,i(t) ≤ h} ∩
⋂
j 6=i

{TL,j(t) > TL,i(t) })|Ft, Gt)

=

∫ h

0

∏
j 6=i

P(TL,j(t) > s|Ft, Gt)λ
i(ωm) exp(−λi(ωm)s) d s

=
λi(ωm)

λ̄(ωm)
(1− exp(−λ̄(ωm)h))
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where one uses (i) rules of conditional probability, (ii) conditional indepen-
dence of the waiting times and (iii) conditional on Ft and Gt each waiting
time is TA,j(t) ∼Exp(λj(ωm)), in this ordering. This tells us that the probabil-
ity with which player i receives the link creation opportunity is proportional
to her rate function, and the distribution of link creation opportunities is
conditionally independent of this event.

Link destruction

A network is a list of edges g = (gij)1≤i≤j≤N . The degree of individual i is

de�ned as κi(g) :=
∑N

j=1 g
i
j. The total degree of a network is de�ned as the

sum of all degrees,
∑N

i=1 κ
i(g) = 2

∑N
i=1

∑
j>i g

i
j. Hence, the total degree

of a network is a statistic where edges are counted twice in an undirected
graph. To avoid this double counting, de�ne the �e�ective degree� of the
network prevailing at population state ω as e(ω) :=

∑N
i=1

∑
j>i g

i
j. The set

E(ω) collects all the unordered pairs of links in the network g at ω. For

every such edge, de�ne the survival time T
D,(i,j)
(t) on Ft and Gt. In chapter

4 we will assume that the survival times are i.i.d Exp(ξ) distributed. The
model in chapter 5 extends this, by allowing the survival times to be edge-
speci�c, i.e. the expected life-time of a currently active edge is ξij (and this
function may also depend on the noise level β). We derive the distribution
of the survival terms for the more general case, since it comes without any
additional costs. Let (D(t))t≥0 denote the random �death� process acting on
the set of edges E , with the interpretation that {D(t) = (i, j)} is the event
that the edge (i, j) ∈ E is destroyed at time t. Destructive events depend
on survival times. Therefore, the smallest survival time, measured at some
time t > 0, determines the distribution of (D(t))t≥0. This random variable

is de�ned as TD(t) := infi∈I

{
infj∈{i,...,N} T

D,(i,j)
(t)

}
where we choose inf ∅ =∞.7

On {Y β(t) = ω} de�ne E∗(ω) := E(ω) \ {(i, j)}, so that |E∗(ω)| = e(ω) − 1.

7This simply states that a loner does not lose any (non-existing) links.
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Then, we can calculate

P({TD(t) ≤ h} ∩ {TD(t) = T
D,(i,j)
(t) }|Ft, Gt) =

= P[{TD,(i,j)(t) ≤ h} ∩
⋂

(k,l)∈E∗(Y β(t))

{TD,(k,l)(t) > T
D,(i,j)
(t) }|Ft, Gt]

=

∫ h

0

P[
⋂

(k,l)∈E∗(Y β(t))

{TD,(k,l)(t) > s}|Ft, Gt]ξij exp(−ξijs) d s

=

∫ h

0

∏
(k,l)∈E∗(Y β(t))

P[T
D,(k,l)
(t) > s|Ft, Gt]ξij exp(−ξijs) d s

=

∫ h

0

exp

− ∑
(k,l)∈E∗(Y β(t))

ξkls

 ξij exp(−ξijs) d s

=
ξijgij∑

(k,l)∈E(Y β(t)) ξkl

1− exp

− ∑
(k,l)∈E(Y β(t))

ξklh


It follows that the conditional probability that edge (i, j) becomes destroyed
is exactly

ξijgij∑
(k,l)∈E(Y β(t)) ξkl

.

3.3 Construction of the family Mβ in discrete

time

In this section we introduce a discrete-time version of a co-evolutionary model
with noise, based on the general discussion of chapter 2. There are two good
reasons why a discrete-time dynamics is interesting. First, one might be
skeptical against the use of continuous-time models per se, if they are not
derived from suitable limiting operations (see Binmore et al. (1995), Binmore
and Samuelson (1997) for a discussion on this point). Second, to implement
numerical simulations one needs a more algorithmic discrete-time dynamic
than the continuous-time dynamic. A general way to couple discrete-time
Markov chains to continuous-time Markov processes is via its so-called em-
bedded jump chain. Section 3.4 is a self-contained discussion on this topic,
and I refer to the books by Stroock (2005) and Norris (1997) for more details.
In chapter 2 a Markov chain Xβ = (Xβ

n )n∈N has been de�ned whose transi-
tion matrix was denoted by Kβ = [Kβ(ω, ω′)]ω,ω′∈Ω. Elements of this matrix
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are the one-step transition probabilities of Xβ, i.e. for all ω, ω′ ∈ Ω

P(Xβ
n+1 = ω′|Xβ

n = ω) = Kβ(ω, ω′). (3.3.1)

Like the continuous-time co-evolutionary model of Section 3.2, this discrete-
time process can be viewed from a micro-perspective and a macro-perspective.
At the micro level we specify what happens when a player receives an action
adjustment/link creation opportunity, or when a link destruction event takes
place. At the macro-level the probabilities of these events is speci�ed. Hence,
at the macro-level we specify a distribution q(ω) = (q1(ω), q2(ω), q3(ω)),
where q1(ω) is the probability that some player receives an action adjust-
ment opportunity when the current population state is ω, and q2(ω)+q3(ω) =
1− q1(ω) is the probability that the network changes. The micro-level is, as
in the continuous-time theory, separated into the following three categories.

Action adjustment: Conditional on an action adjustment event, every player
receives a switching opportunity with equal probability 1/N . The vol-
ume of the action revision process is de�ned as Nν. Conditional on
receiving a revision opportunity, player i selects action av with proba-
bility bi(av|ω).

Link creation: As in the continuous-time theory of Section 3.2 assume that
each player possesses a rate function λi. De�ne the volume of the link
creation process λ̄. The conditional probability that player i receives a
link creation opportunity, starting from ω, is λi(ω)/λ̄(ω). The condi-
tional probability that the edge (i, j) is formed is then

w̄βij(ω) :=
1

λ̄(ω)

(
λi(ω)wi,βj (ω) + λj(ω)wj,βi (ω)

)
. (3.3.2)

Link destruction: The probability that link (i, j) becomes destroyed is
given by a conditional probability vβij(ω), satisfying certain conditions
stated in chapter 2. These functions are a weighting system on the set
of existing edges. The higher the weight of an edge, the more likely
it is that the edge will be destroyed. All edge weights are collected
in a matrix Vβ, and I assume that the total volume of the link de-
struction process is of the form ξ̄(ω) := ξf(ω,Vβ), for some bounded
function f which is only required to take the value 0 at the empty
graph. Certainly, more structural properties would make the model
more meaningful, but for the general discussion this is all we need. In
chapter 4 we will assume that a selected link is destroyed at rate 1, i.e.
vβij(ω) ≡ gij

e(ω)
and f(ω,Vβ) = e(ω).
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To summarize, the transition Matrix of Xβ is given by

Kβ(ω, ω̂) =


q1(ω) 1

N
bβ(a|ω) if ω̂ = (αai , g),

q2(ω)w̄βi,j(ω) if ω̂ = (α, g ⊕ (i, j)),

q3(ω)vβij(ω) if ω̂ = (α, g 	 (i, j)),
0 otherwise.

(3.3.3)

See chapter 2 for more details.

3.4 The law ofMβ in continuous time

Coming back to the continuous-time Markov process (Y β(t))t≥0 we have de-
termined the several conditional probabilities that a player receives an action
adjustment opportunity, a link gets activated, or a link becomes destroyed.
Now we turn to the macro level of the process. Section 3.4.1 uses the dis-
tribution of the waiting times TR, TL, TD to derive the distribution of the
holding times (Sn)n∈N of the continuous-time process (Y β(t))t≥0. This will
then be combined with the discrete-time process Xβ of Section 3.3 in order
to derive the stochastic-semi group of the continuous-time modelMβ.

3.4.1 The distribution of holding times

We have just derived the distribution of the waiting times TR, TL, TD. Now
we put these 3 sub-processes together in order to deduce some information on
the shape of sample paths of the process (Y β(t))t≥0. Proposition 3.4.1 shows
that the holding times of the process are exponentially distributed random
variables, with state-dependent means. For simplicity, we do this for the case
of constant volatility rates ξ, such as is also done in many other models on
the evolution of networks and play (see e.g. Marsili et al., 2004, Ehrhardt
et al., 2006a; 2008b). In chapter 2 we have called such models �volatility�
models and referred to ξ as the rate of volatility.

Proposition 3.4.1. Consider a volatility model with rate ξ. Conditional on
the events Ft = σ

(
{Y β(s); 0 ≤ s ≤ t}

)
, {Jm ≤ t < Jm+1}, and {Y β(Jm) =

ω}, we have Sm ∼ Exp(Λ(ω)), where Λ(ω) = λ̄(ω) +Nν + e(ω)ξ.

Proof. Conditional on Ft = σ
(
{Y β(s); 0 ≤ s ≤ t}

)
and {Jm ≤ t < Jm+1}

the event {Sm+1 > h} = {Y β(t+h) = Y β(Jm)} has the following probability
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distribution:

P(Sm+1 > h|Ft & Jm ≤ t < Jm+1) = P(min{TA(t), TL(t), TD(t)} > h|Ft & Jm ≤ t < Jm+1)

= P({Sm+1 = TA(t)} ∩ {TA(t) > h}|Ft & Jm ≤ t < Jm+1) |(a)

+ P({Sm+1 = TL(t)} ∩ {TL(t) > h}|Ft & Jm ≤ t < Jm+1) |(b)
+ P({Sm+1 = TD(t)} ∩ {TD(t) > h}|Ft & Jm ≤ t < Jm+1) |(c)

Start with calculating (a):

P({Sm+1 = TA(t)} ∩ {TA(t) > h}|Ft & Jm ≤ t < Jm+1)

= P({TD(t) > TA(t) & TL(t) > TA(t)} ∩ {TA(t) > h}|Ft & Jm ≤ t < Jm+1)

=

∫ ∞
h

Nν exp(−Λ(Y β(t))s) d s

=
Nν

Λ(Y β(t))
exp(−Λ(Y β(t))h)

By essentially the same technique, we can calculate (b) and (c) to get

(b)⇒ λ̄(Y β(t))

Λ(Y β(t))
exp(−Λ(Y β(t))h)

(c)⇒ e(Y β(t))ξ

Λ(Y β(t))
exp(−Λ(Y β(t))h)

and Λ(Y β(t)) := Nν + e(Y β(t))ξ + λ̄(Y β(t)). Hence

P(Sm+1 > h|Ft & Jm ≤ t < Jm+1) = exp(−Λ(Y β(t))h) (3.4.1)

3.4.2 The stochastic semi-group and its generator

Consider the co-evolutionary model with noise Mβ, whose sample path is
recorded by functions t 7→ Y β(t). From the construction presented in Section
3.2, we can deduce that Y β(·) is right-continuous in t, and a sample path
makes discrete jumps at random points of time, measured by the countable
sequence of jump times (Jn)∞n=0. The discrete-time process Xβ = (Xβ

n )∞n=0,
de�ned as Xβ

n = Y β(Jn) for all n ≥ 0, is called the jump chain of the process
(Y β(t))t≥0. The distributional law of (Y β(t))t≥0 is closely related to the law
of Xβ and the distribution of the holding times (Sn)n∈N, which has been
determined in Proposition 3.4.1. To be speci�c, the distribution of the class
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of Markov processes of Section 3.2 can be derived from the joint distribution
of a Markov chain Xβ and the holding times (Sn), by the identity

P(Y β(t) = ω) =
∞∑
n=0

P(Xβ
n = ω & Jn ≤ t < Jn+1)

= P(Xβ
n = ω & Jn ≤ t < Jn+1 for some n ≥ 0).

From Proposition 3.4.1 one sees that the distribution of the n-th holding time
depends only on the state of the process after its (n−1)-st jump. Let FJm :=
{A ∈ Ft : A ∩ {Jm ≤ t} ∈ Ft for all t ≥ 0} the σ-algebra generated by all
sets {Y β(s) = ω} for ω ∈ Ω and s ≤ t, and where the process makes exactly
m-jumps.8 The strong Markov property states that, conditional on FJm , the
Markov chain (Xβ

m+n)n≥1 and the holding times (Sm+n)n≥1 are independent
of each other. From this conditional independence, it follows that

P(Y β(t) = ω|FJm) = P(Xβ
m+1 = ω & Jm+1 − Jm ≤ t|FJm)

= P(Sm+1 ≤ t|FJm)P(Xβ
m+1 = ω|FJm).

Let Kβ =
[
Kβ(ω, ω̂)

]
ω,ω̂∈Ω

be the transition matrix of the Markov chain Xβ.

Then, using Proposition 3.4.1, we can rewrite the above equation in the more
concise version

P(Y β(t) = ω|FJm) =
[
1− exp(−Λ(Y β(Jm))(t− Jm))

]
Kβ(Y β(Jm), ω).

(3.4.2)
This shows that the distribution of the continuous-time Markov process
(Y β(t))t≥0 is time-homogeneous, in the sense that only the time di�erence
(t − Jm) plays a role. Thus, let us de�ne the transition probability of
(Y β(t))t≥0 as

pω,ω′(t) := P(Y β(t) = ω′|Y β(0) = ω). (3.4.3)

On {Y β(Jm) = ω}, eq. (3.4.2) de�nes completely the stochastic semi-group
(P(t))t≥0, with P(t) := [pω,ω′(t)]ω,ω′∈Ω, as

pω,ω′(h) := [1− exp(−Λ(ω)h)]Kβ(ω, ω′) (3.4.4)

for all ω 6= ω′ ∈ Ω and h := t − Jm ≥ 0. Eq. (3.4.4) gives the probability
that the process makes a jump in the time interval [Jm, t], which, by time-
homogeneity, can be translated to the interval [0, h]. Since the Markov matrix
Kβ has been explained in Section 3.3, the distribution of the continuous-time

8That this set is a meaningful objects relies on the deep result that jump times (and
thus holding times) are stopping times of (Y β(t))t≥0. See Norris (1997) for a very accessible
measure-theoretic introduction to stopping times.
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co-evolutionary model with noise is completely speci�ed.
A particular elegant formulation of the stochastic semi-group is obtained
when one considers transitions in a very small time interval [t, t + h]. In
this case, eq. (3.4.4) allows us to derive an illuminating connection between
the transition probabilities and the in�nitesimal generator of the process
(Y β(t))t≥0. Consider a mapping ηβ : Ω2 → R, with the properties

(G1) −∞ < ηβ(ω → ω) ≤ 0, and

(G2) for all ω′ 6= ω, ηβ(ω → ω′) ≥ 0, and

(G3)
∑
ω′∈Ω

ηβ(ω → ω′) = 0.

Proposition 3.4.2 (In�nitesimal de�nition of Markov processes). Consider
the continuous-time co-evolutionary model with noise Mβ, with stochastic
semi-group (P(t))t≥0 de�ned by (3.4.4). For all t, h ≥ 0, conditional on
{Y β(t) = ω}, Y β(t+ h) is independent of Ft, and as h ↓ 0

pω,ω′(h) = δω,ω′ + ηβ(ω → ω′)h+ o(h) (3.4.5)

for all ω, ω′. The operator ηβ := [ηβ(ω → ω′)](ω,ω′)∈Ω2 is called the in�nites-
imal generator of the Markov processMβ.

Proof. Conditional independence follows from the de�nition of the stochastic
semi-group. To see eq. (3.4.5), consider eq. (3.4.4) for ω 6= ω′, and let h ↓ 0.
This gives

pω,ω′(h) = Λ(ω)Kβ(ω, ω′)h+ o(h)

= ηβ(ω → ω′)h+ o(h)

with ηβ(ω → ω′) := Λ(ω)Kβ(ω, ω′). Now consider ω = ω′. The probability
that the process stays constant in the interval [t, t+ h] is determined by two
disjoint events. First, the process will stay constant if the subsequent jump
occurs at some time after t+ h. On {Jm ≤ t < Jm+1}, for some m ∈ N, this
event is equivalent to the event {Jm+1−Jm > t+h} = {Sm+1 > t+h}. Con-
ditional on {Y β(t) = ω}, we know that Sm+1 ∼ Exp(Λ(ω)), and so the event
{Sm+1 > t+ h} appears with probability exp (−Λ(ω)h). Second, the process
will stay constant if the event {Jm+1−Jm ≤ t+h & Xβ

m+1 = ω} takes place.
On {Y β(t) = ω} this event has probability [1− exp(−Λ(ω)h)]Kβ(ω, ω).
Summarizing, we have

pω,ω(h) = exp (−Λ(ω)h) + [1− exp(−Λ(ω)h)]Kβ(ω, ω)

= 1− Λ(ω)
(
1−Kβ(ω, ω)

)
h+ o(h) |for h ↓ 0

= 1 + ηβ(ω → ω)h+ o(h)
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with ηβ(ω → ω) := −Λ(ω)
(
1−Kβ(ω, ω)

)
. It is easy to verify that the

generator satis�es the conditions (G1)-(G3).

Normally, the connection between the stochastic semi-group of a continuous-
time process and its embedded jump chain is established by de�ning the
latter with zero in its main diagonal, i.e. Kβ(ω, ω) = 0. The resulting
Markov chain would then not be aperiodic, making it a bad model for sep-
arate studies.9 To avoid this, we have assumed that Kβ(ω, ω) > 0. This
might appear as a redundant condition, since a chain with Kβ(ω, ω) > 0 can
always be transformed into a chain withKβ(ω, ω) = 0.10 However, we do this
step in order to provide an alternative discrete-time model, having in mind
this redundancy argument. In the subsequent chapters we will work with
continuous-time Markov processes whose generators will have the structure
as depicted above. A co-evolutionary model with noise as de�ned in chapter
2 was a discrete-time Markov chain with transition matrix Kβ. The genera-
tor of a continuous-time co-evolutionary model with noise is connected with
this transition matrix by the general formula diag[Λ(ω) : ω ∈ Ω](Kβ − Id).

9Aperiodicity ensures convergence of the Markov chain. The uniqueness of the invariant
distribution is guaranteed by irreducibility alone.

10Simply de�ne the transition probabilities of the new chain as K̃β(ω, ω) = 0, and
K̃β(ω, ω′) = Kβ(ω, ω′)/(1−Kβ(ω, ω)) for all ω 6= ω′.
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Chapter 4
Potential games played in volatile

environments
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4.1 Introduction

The analysis of social networks has recently gained interest in various �elds
in the sciences and social sciences. By now there is a rich literature on social
networks in economics; the textbooks by Jackson (2008) and Vega-Redondo
(2007) give a concise overview on this emerging �eld. Recently, tools from
evolutionary game theory have been used to study the co-evolution of net-
works and play. Models in this vein are Jackson and Watts (2002), Goyal
and Vega-Redondo (2005), and Hojman and Szeidl (2006). Another type of
model, which is more in the tradition of statistical physics, puts more weight
on modeling the evolution of the network, without paying too much attention
to the role of strategic interactions. Prominent examples are Ehrhardt et al.
(2006b; 2008a;b). This paper aims to combine these two streams of litera-
ture in a very simplistic model. I present a stochastic co-evolutionary model
which includes three sub-processes: action adjustment, link creation, or link
destruction. These three sub-processes are combined into one continuous-
time Markov process called a co-evolutionary model with noise. For positive
noise levels the process is ergodic. For the class of potential games (Monderer
and Shapley, 1996) many fundamental characteristics of the system are ex-
plicitly computable. Key to all the results in this paper is the closed-form ex-
pression of the invariant distribution. This probability distribution describes
the long-run behavior of the system in two complementary ways. First, it
gives us complete information on the joint probability distribution over ac-
tion pro�les and networks which governs the �equilibrium� of the stochastic
dynamics. Second, by virtue of ergodicity, it gives us complete information
on which states are more frequently observed over time compared to others.
From the invariant distribution one can deduce the conditional probability
distribution over networks for a �xed pro�le of actions. In the parlance of
random graph theory this gives us the ensemble of random graphs. The in-
teresting result is that the model generates so-called inhomogeneous random
graphs. Inhomogeneous random graphs are a straightforward extension of the
classical random graph model proposed by Erdös and Rényi (1960), where
the probability with which two vertices are linked depend in some way on the
characteristics of the vertices. Söderberg (2002) and Bollobás et al. (2007)
are models in this direction. These papers �x the edge success probability
at the outset. In this paper the edge success probability are a product of
the long-run equilibrium of the system, hence we obtain them endogenously.
Next, I provide an expression for the marginal distribution over action pro-
�les in the population. This measure is interesting if one is not interested in
the e�ects of the interaction structure. Finally, we explore the well-known
relationship between potential maximizers and stochastic stability (for early
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work in this direction see for instance Blume, 1993, Young, 1998, ch.6). A
fairly general argument is provided, showing that as noise vanishes the in-
variant distribution concentrates on the set of potential maximizers. At �rst
sight, this might not be a too surprising result. However, former models
were only concerned with �xed interaction structures, so the conclusion of
our theorem extends the previous ones. Moreover, the argument presented
in this paper is much more general than the proofs in the just mentioned
literature. This technique allows to study the low-noise behavior of the in-
variant distribution also in more complicated models, as, for instance, the
one which is going to be presented in chapter 5 of this thesis. Since the
class of potential games is rather narrow, I also sketch brie�y how the results
obtained extend if the potential game assumption is dropped. In chapter 2
a rather general class of co-evolutionary dynamics has been presented, and
I refer to this article for further details. However, many games arising in
economic applications have this special structure. The most prominent class
of potential games are congestion games (Rosenthal, 1973). They also arise
in Cournot oligopoly models with linear inverse demand functions (Monderer
and Shapley, 1996). Recently, Sandholm (2007b) studied a mechanism de-
sign problem where the planner can construct a pricing scheme, so that the
transformed game is a potential game, which leads, in his model, to the long-
run selection of socially e�cient outcomes. Ui (2000) has shown interesting
connections between the Shapley value and potential functions, and Morris
and Ui (2005) use potential methods to study equilibria which are robust to
incomplete information.
Closest to the present work is a recent paper by Ehrhardt et al. (2008b),
who study a similar dynamic process. Their link formation mechanism is
designed in such a way that only players who play the same action form a
link. This is interpreted as a pure homophily based linking process. They
also characterize the induced ensemble of random graphs, and �nd that the
network consists of disjoint components, each following the distribution of
an Erdös-Rényi ensemble. This paper extends their result by allowing for
much more general behavioral rules, both in the action adjustment and the
link creation process, which results in a richer interaction structure.
The rest of the paper is organized as follows. In Section 4.2, the model frame-
work is explained in detail. In sections 4.3 and 4.4, I derive the asymptotic
characteristics of the model. Sections 4.5 and 4.6 present an analysis of the
joint distribution of action pro�les and social networks as well as the induced
marginal distributions. Section 4.7 characterizes stochastically stable states.
Section 4.8 sketches a general class of stochastic processes on the co-evolution
of networks and play. 4.10 collects lengthy and technical proofs.
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4.2 The model

Consider a �nite population of individuals i, j, k ∈ I = {1, 2, . . . , N}, mem-
bers of which are called players or agents. Each player can choose one out
of q di�erent pure actions from the set A = {a1, a2, . . . , aq}. I will also say
�playing action r� with the understanding that this is action ar. An action
pro�le (con�guration) is a tuple α = (αi)i∈I ∈ AI . When individual i meets
individual j, they engage in a 2-player game de�ned by the payo� function
u : A2 → R. We assume that this function is symmetric in the following
sense:

Assumption 4.2.1.

(∀a, a′ ∈ A) : u(a, a′) = u(a′, a) (4.2.1)

Games with this special property are known as (exact) potential games (Mon-
derer and Shapley, 1996). This de�nes the base game Γb := (A, u).
The interaction structure is modeled as an undirected graph (network). Let
I(2) denote the set of unordered pairs of players. There are N(N − 1)/2
such pairs. A graph is a pair G = (I, E), where we interpret I as the set
of vertices (nodes) and E = E(G) ⊆ I(2) the set of edges (links). An edge
is an unordered pair of players (i, j) ≡ (j, i) with the interpretation that if
(i, j) ∈ E , then players i and j play against each other. If E = I(2) we obtain
the complete graph on I, denoted by Gc. In this graph each individual is
connected to everybody else and we obtain the standard global matching
model. If E = ∅ then we speak of the empty graph Ge. A graph G′ = (I ′, E ′)
is a subgraph of G = (I, E) if I ′ ⊆ I and E ′ ⊆ E . For two disjoint subsets
of players V ,V ′ ⊂ I denote the set of edges that join players from V with
players belonging to V ′ (and vice-versa) as E(V ,V ′).
All graphs on I di�er only in terms of their edge set E . Let G[I] denote the set
of graphs that can be formed on the vertex set I. It is often more convenient
to work with networks via the function g : I(2) ×G[I]→ {0, 1}, assigning to
each pair (i, j) ∈ I(2) the value g((i, j), G) ≡ g((j, i), G) ≡ gij(G) ∈ {0, 1}. If
gij(G) = 1 then players i and j are linked under the graph G and play against

each other. Thus, we have the identity E(G) = {(i, j) ∈ I(2)|gij(G) = 1} for
all graphs G ∈ G[I]. It follows that every graph G ∈ G[I] can be identi�ed

through the realization of links g(G) = (gij(G))1≤i<j≤N ∈ {0, 1}I
(2)
. In view

of this equivalence, we will identify the space G[I] ≡ G as the set of all possi-

ble edge realizations {0, 1}I(2) , members of which are vectors g = (gij)1≤i≤j≤N .

The number of edges of the graph g is e(g) :=
∑N

i=1

∑
j>i g

i
j.

A population state is the pair ω = (α, g) ∈ Ω ≡ AI×G. It contains an action
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pro�le and a network. Let αavi := (α1, . . . , αi−1, av, α
i, . . . , αN). Let g⊕ (i, j)

denote the network that we obtain if the (previously non-existing) edge con-
necting players i and j is created, and g	(i, j) be the network resulting from
the deletion of the edge connecting players i and j.
Given a population state ω, de�ne for every player i ∈ I the (open) interac-
tion neighborhood

N i(ω) =

q⋃
r=1

{j ∈ I|gij = 1 & αj = ar}.

The setN i∪{i} ≡ N̄ i de�nes the closed interaction neighborhood of a player.
There are κir(ω) := |{j ∈ I|gij = 1 & αj = ar}| r-players against which player
i has to play. The total number of games in which player i is involved is
given by his degree κi(ω) =

∑q
r=1 κ

i
r(ω). From all these interactions, player

i receives the total payo�

πi(α, g) ≡ πi(ω) :=
∑

j∈N i(ω)

u(αi, αj) =

q∑
r=1

u(αi, ar)κ
i
r(ω). (4.2.2)

In analogy with standard population games, I will call the collection of payo�
functions π = (πi)i∈I the structured population game.

4.3 Co-evolution with noise

Consider the family of perturbed Markov processes

Mβ = (Ω,F ,P, (Y β(t))t≥0)β∈R+ ,

where Ω is the �nite states space of pairs ω = (α, g), F a suitably chosen
σ-algebra (e.g. 2Ω), P : F → [0, 1] a probability measure, and (Y β(t))t≥0 a
family of Ω-valued random variables indexed by a noise parameter β ≥ 0 and
a continuous time parameter t. Mβ will de�ne a co-evolutionary model with
noise. The time evolution of this process can be studied by its in�nitesimal
generator. De�ne the operator ηβ :=

[
ηβ(ω → ω′)

]
ω,ω′∈Ω

whose components

are mappings ηβ : Ω× Ω→ R satisfying 0 ≤ ηβ(ω → ω̂) <∞ for all ω̂ 6= ω,
and

∑
ω̂ η

β(ω → ω̂) = 0 for all ω ∈ Ω. The value ηβ(ω → ω̂) is interpreted
as the rate with which the process moves from state ω to some other state
ω̂.1 The generator is de�ned by the following sub-processes.

1In a very small time interval [t, t+ h), the probability that the process moves from ω
to ω̂ is then approximately ηβ(ω → ω̂)h.
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Action update: The way how players update their actions is modeled as in
Blume (2003) or Hofbauer and Sandholm (2007). Players are endowed
with independent Poisson alarm clocks, ringing at the common rate
ν > 0. The total rate of this subprocess is thus Nν. Conditional
on the event of a revision opportunity, player i receives the chance to
adjust his action with probability 1/N . When player i gets a revision
opportunity he calculates the current expected payo� of all of his pure
actions, given the set of neighbors, but his computations are perturbed
by some random shock εi = (εia)a∈A. Assume that these perturbations
are i.i.d. type 1 extreme value distributed,2 and that i selects action
ar ∈ A with probability

bi(ar|ω) := P
(
ar ∈ arg max

av∈A
(πi(αavi , g) + εiav)|ω

)
. (4.3.1)

Computing this probability explicitly leads to

bi,β(ar|ω) =
exp(πi(αari , g)/β)∑q
v=1 exp(πi(αavi , g)/β)

. (4.3.2)

The transition ω = (α, g) → ω̂ = (αari , g) 6= ω proceeds therefore at a
rate

ηβ(ω → ω̂) = νbi(ar|ω). (4.3.3)

Link creation: Here ideas of the stochastic-actor model, developed in Sni-
jders (2001), are used. The key-ingredients of this model are a rate
function, governing the pace at which individuals update their con-
nections, and an objective function, capturing the preferences of the
individuals concerning link creation. For the rate function, I make the
following assumption:

Assumption 4.3.1. The rate functions of individuals take the form

(∀i ∈ I)(∀ω ∈ Ω) : λi,β(ω) =
∑

k/∈N̄ i(ω)

exp(u(αi, αk)/β). (4.3.4)

2This formulation of stochastically perturbed payo�s has a very long tradition in the
theory of discrete choice, see e.g. Anderson et al. (1992). For a more recent treatise and
alternative interpretation see van Damme andWeibull (2002). The cumulative distribution
function of a doubly exponential distributed random variable with mean 0 and variance
β2π2

6 is F (x) = exp [− exp(−x/β − γ)]. Beside its importance in theoretical economics, it
has also been used in experimental studies, see for instance McKelvey and Palfrey (1995),
where it is known as the �quantal response function�.
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This formulation re�ects the intuitive idea that players, who expect a
large pro�t from interactions with currently unknown players, should
be relatively fast in creating their network. Let

λ̄β(ω) :=
∑
i∈I

λi,β(ω) = 2
∑
i,j>i

exp(u(αi, αj)/β)(1− gij),

so that the conditional probability that player i receives a link creation
opportunity is simply λi,β(ω)/λ̄β(ω). Conditional on this event, player
i screens the set of unknown players (i.e. those player who are not
neighbors yet) and picks one player from this set who yields the highest
per-interaction payo�, perturbed by a noisy signal ζ i = (ζ ik)k/∈N̄ i(ω).
Hence, the conditional probability that i selects j for a linking partner
is

wij(ω) := P
(
u(αi, αj) + ζ ij ≥ u(αi, αk) + ζ ik ∀k /∈ N̄ i|ω

)
. (4.3.5)

If we assume that the random perturbation follows the same distribu-
tional law as in the action adjustment process one obtains the logit
formula

(∀i ∈ I)(∀j /∈ N̄ i(ω)) : wi,βj (ω) =
exp(u(αi, αj)/β)∑

k/∈N̄ i(ω) exp(u(αi, αk)/β)
. (4.3.6)

For general link creation probabilities (4.3.5), the rate of transiting
from state ω = (α, g) to state ω̂ = (α, g ⊕ (i, j)) is

ηβ(ω → ω̂) = λi(ω)wij(ω) + λj(ω)wji (ω). (4.3.7)

Using Assumption 4.3.1 and (4.3.6) gives us

ηβ(ω → ω̂) = 2 exp(u(αi, αj)/β). (4.3.8)

Link destruction: To make the dynamic interesting, we need a process that
counteracts the creation of links. Following recent papers by Ehrhardt
et al. (2006b; 2008b), I assume that there exists an exogenous random
shock removing any of these links. This unguided drift term models
the phenomenon of environmental volatility, and is a key ingredient of
the model. It captures the idea that connections are not everlasting,
but as time goes by and players change their behavior, the pro�tability
of links will also change, making some connections obsolete. The rate
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at which the link (i, j) disappears is given by ξ > 0.3 Hence, in a very
small time interval [t, t + h) the probability of survival of a currently
existing edge (i, j) is ξh+o(h). The expected life time of an edge is 1/ξ.
Hence, starting from ω = (α, g), the transition rate to ω̂ = (α, g	(i, j))
is

ηβ(ω → ω̂) = ξ. (4.3.9)

The last case we have to consider is a �phantom switch�, i.e. the transition
rate ηβ(ω → ω). De�ne the rate of such an event as

ηβ(ω → ω) = −Λ(β,ξ)(ω), (4.3.10)

where

Λ(β,ξ)(ω) := ν
N∑
i=1

∑
a∈A\{αi}

bi,β(a|ω) + ξe(g) + λ̄β(ω). (4.3.11)

To summarize, the in�nitesimal generator of the co-evolutionary model with
noiseMβ is de�ned as

ηβ(ω → ω̂) =


νbi,β(a|ω) if ω̂ = (αai , g) 6= ω,
2 exp(u(αi, αj)/β) if ω̂ = (α, g ⊕ (i, j)),
ξ if ω̂ = (α, g ⊕ (i, j)),
−Λ(β,ξ)(ω) if ω̂ = ω,
0 otherwise.

(4.3.12)

It is easily veri�ed that
∑

ω̂∈Ω η
β(ω → ω̂) = 0 for all ω ∈ Ω. For β > 0

we observe that ηβ(ω → ω′) > 0 for ω 6= ω′, meaning that there can be no
single state that is absorbing. Irreducibility of the generator follows from
this easily. Furthermore, in view of the �niteness of the state space, positive
recurrence of the process follows. Hence, the Markov process is ergodic.

4.4 The invariant distribution

By ergodicity, the co-evolutionary model with noise admits a unique invari-
ant distribution µ(β,ξ) = (µ(β,ξ)(ω))ω∈Ω. In terms of the generator ηβ, this

3The assumption of constant link decay rates is less restrictive as it may seem. Since
link creation probabilities are payo� driven, players will be more likely to establish links
which are associated with higher per-interaction payo�. Hence, if a highly valuable link dis-
appears, ceteris paribus, there is a relatively high probability that it will be re-established
in future periods. Extending to heterogeneous link destruction rates is straightforward
and will be done in chapter 5.
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probability distribution satis�es the global balance equation µ(β,ξ)ηβ = 0.
Determining this probability vector is facilitated in the special class of re-
versible Markov processes. Given the modelMβ with generator ηβ, we can
de�ne for a given T > 0 its time reversal as the process (Ŷ β(t))0≤t≤T , with

Ŷ β(t) = Y β(T − t). A Markov process (Y β(t))t≥0 is said to be reversible,
if its time reversal has the same distribution as the original process (see
Stroock, 2005, ch. 5). In our case, reversibility will appear as an equilibrium
phenomenon (i.e. (Y β(t))t≥0 is reversible in equilibrium). The detailed bal-
ance condition, relative to the in�nitesimal generator ηβ, gives a su�cient
condition for µ(β,ξ) being an invariant distribution. The measure µ(β,ξ) is in
detailed balance with the generator ηβ if

(∀ω, ω̂ ∈ Ω) : µ(β,ξ)(ω)ηβ(ω → ω̂) = µ(β,ξ)(ω̂)ηβ(ω̂ → ω). (4.4.1)

A probability distribution satisfying the detailed balance condition (4.4.1)
must be an invariant distribution. Conversely, a probability distribution
satisfying (4.4.1) implies reversibility of the corresponding Markov process.

Theorem 4.4.1. Given (β, ξ)� (0, 0), the unique invariant distribution of
the co-evolutionary model with noiseMβ equals

(∀ω ∈ Ω) : µ(β,ξ)(ω) =
1

Z(β,ξ)

N∏
i=1

∏
j>i

[
2

ξ
exp

(
u(αi, αj)

β

)]gij
, (4.4.2)

where Z(β,ξ) ≡
∑

ω∈Ω

∏N
i=1

∏
j>i

[
2
ξ

exp
(
u(αi,αj)

β

)]gij
is the the partition func-

tion.

Proof. See Section 4.10.

A consequence of ergodicity is the convergence of long-run averages of sample
paths to the invariant distribution. Formally, this means

P
(

lim
t→∞

1

t

∫ t

0

1{Y β(s)=ω} d s = µ(β,ξ)(ω)

)
= 1,

where 1A is the indicator function of a measurable set A ⊆ Ω, and for any
integrable function f : Ω→ R

P
(

lim
t→∞

1

t

∫ t

0

f(Y β(s)) d s = Eµ(β,ξ) [f ]

)
= 1,

where Eµ(β,ξ) [f ] =
∑
ω∈Ω

f(ω)µ(β,ξ)(ω) is the expected value of the function f

under the invariant distribution µ(β,ξ).
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Observe that for β > 0 µ(β,ξ) is a full support distribution on Ω. Thus, the
only thing one may be able to deduce from it is to classify a subset of states
which receive more mass than others. The subsequent chapters are devoted
to this exercise.
De�ne an aggregate utility index as the sum of individual utilities,

(∀ω ∈ Ω) : U(ω) =
N∑
i=1

πi(ω) = 2
N∑
i=1

∑
j>i

u(αi, αj)gij (4.4.3)

E�ciency, in terms of this index, is a state in the argmax set of (4.4.3).
Lemma 4.4.1 shows that one can construct from eq. (4.4.3) a real-valued
function, which captures the e�ects of individual utilities due to a single
change in the state variable ω. In game theory such a function is known as
an exact potential (Monderer and Shapley, 1996). Since the state variable
encompasses the connections among the players, but these are not part of
the strategy of a single player, a potential function for π = (πi)i∈I is not a
potential function in its game-theoretic sense. However, it ful�lls the same
role in the dynamic analysis to come as a conventional potential function in
the sense of Monderer and Shapley (1996), and so we will still call such a
function a potential function for the structured population game, having in
mind that this does not conform with its established use in game theory.

Lemma 4.4.1. The structured population game (πi)i∈I is a potential game
with exact potential function

(∀ω ∈ Ω) : P (ω) =
1

2

N∑
i=1

πi(ω) =
N∑
i=1

∑
j>i

u(αi, αj)gij. (4.4.4)

Proof. We have to show that

P (αavi , g)− P (α, g) = πi(αavi , g)− πi(α, g), and

P (α, g ⊕ (i, j))− P (α, g) = u(αi, αj)

Let us start with the event of a link creation between players i and j. The
destruction of such a link has the same consequences. A direct computation
shows that

P (α, g ⊕ (i, j))− P (α, g) =
1

2
(u(αi, αj) + u(αj, αi)) = u(αi, αj),

by symmetry of the payo� function u. Now, concerning a change in action
of player i, we now have to take care of the environment of this player. All
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players in the set I \N̄ i(ω) are not a�ected by the change in player i's action.
Fix the state ω and suppose player i switches to action av. The new state is
therefore (αavi , g), and we can write

U(αavi , g) =
N∑
k=1

∑
j:gkj=1

u(αk, αj)

= U(α, g) +
∑
j:gij=1

[u(av, α
j)− u(αi, αj)] +

∑
`:g`i=1

[u(α`, av)− u(α`, αi)]

= U(α, g) + 2
∑
j:gij=1

[u(av, α
j)− u(αi, αj)]

Now consider the function H : Ω× R+ × R++ → R, de�ned as

H(ω, β, ξ) := P (ω) + βe(ω) log

(
2

ξ

)
(4.4.5)

This function acts as a a graph Hamiltonian for the invariant distribution.4

One sees that there are two components combined in the graph Hamiltonian.
The �rst component is the potential function of the game, which measures
(up to a linear scaling) the aggregate utility of the population. The second
part is a size measure of the interaction graph, weighted by the volatility
parameter ξ. If ξ > 2 then too large graphs (measured by the number of
edges) lead to a reduction in the value of the Hamiltonian. This e�ect is in
turn weighted by the noise level β. Proposition 4.4.1 shows that it contains
all the information one needs to determine the invariant distribution of the
processMβ. Its proof is straightforward and therefore omitted.

Proposition 4.4.1. The stationary distribution of the co-evolutionary model
with noiseMβ is the Gibbs measure

µ(β,ξ)(ω) =
e

1
β
H(ω,β,ξ)∑

ω̂∈Ω e
1
β
H(ω̂,β,ξ)

. (4.4.6)

From the de�nition of the Hamiltonian (4.4.5), one can see that a large value
of β, combined with ξ > 2, implies that too large graphs will not receive

4For a general discussion of this concept see Park and Newman (2004). In statistical
mechanics a Hamiltonian is, roughly, a measure of the energy of a system. In the simplest
case it is the sum of the potential energy and kinetic energy. This description �ts also
perfectly to the form of the Hamiltonian (4.4.5).
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too much weight in the long run. A small value of β means in turn that,
for any given volatility level ξ, the penalty of densely connected societies
has a small in�uence on the invariant distribution. It is exactly this trade-o�
between β and volatility ξ which makes the form of the invariant distribution
interesting. High environmental volatility, accompanied with moderate noise
will lead to a sparsely connected society. On the other side, a small value
of β will dominate any value of volatility ξ, and the value of the potential
function will dominate the shape of the invariant distribution.

4.5 The ensemble of random graphs

Given ω = (α, g) ∈ Ω, de�ne the set of r-players as Ir(ω) := {i ∈ I|αi = ar}.
Sets of this form will be called action classes. Every state assigns each player
to a single action class. Hence, the family {Ir}1≤r≤q de�nes a partition on
the set I. Fix a partition I ≡ {Ir}1≤r≤q and de�ne the subspace

Ω(I) := {ω ∈ Ω|Ir(ω) = Ir, 1 ≤ r ≤ q}.

We say that state ω agrees with the action partition I, if it is contained
in Ω(I). Note that the de�nition of the set Ω(I) does not say anything
about network structures. Once we condition on an action partition, we �x a
strategy con�guration α ∈ AI , but allow for all potential networks. In other
words, µ(β,ξ)(ω|I) ≡ µ(β,ξ)(g|α).
Given a partition I, the product operator

∏N
i=1

∏
j>i has the same meaning

as the product operator
∏q

r=1

∏
i∈Ir(ω)

∏
v≥r
∏

j∈Iv(ω);j>i. This implies that
we are able to re-formulate the stationary distribution in terms of action
classes, so that for all ω ∈ Ω

µ(β,ξ)(ω|I) ∝
q∏
r=1

∏
i∈Ir

{∏
v≥r

∏
j∈Iv ;j>i

[
2

ξ
exp

(
u(ar, av)

β

)]gij}
1{ω∈Ω(I)}.

(4.5.1)
For proper normalization of this measure, one has to compute the total mass
received by the set Ω(I), which is

µ(β,ξ)(Ω(I)) =
∑
g∈G

µ(β,ξ)(α, g).

Let er|v(ω) :=
∑

i∈Ir(ω)

∑
j∈Iv(ω),j>i g

i
j, denote the number of edges connecting

r-players with v-players at state ω, and de�ne for all (i, j) ∈ I(2)

p
(β,ξ)
ij (ω) :=

2 exp(u(αi, αj)/β)

2 exp(u(αi, αj)/β) + ξ
, θ

(β,ξ)
ij (ω) := log

(
p

(β,ξ)
i,j (ω)

1− p(β,ξ)
i,j (ω)

)
.
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Setting θ(β,ξ)(ω) := (θ
(β,ξ)
ij (ω))(i,j)∈I(2) , we get

1

β
H(ω; β, ξ) =

1

β

N∑
i=1,j>i

u(αi, αj)gij + log(2/ξ)
N∑

i=1,j>i

gij

=
N∑

i=1,j>i

[
log(exp(u(αi, αj)/β) + log(2/ξ)

]
gij

=
N∑

i=1,j>i

θ
(β,ξ)
ij gij =: h

(
ω, θ(β,ξ)

)
Given an action partition I, consider the subgraph Gr|v := (Ir ∪ Iv, Er|v),
where Er|v = E(Ir, Iv). For all (i, j) ∈ [Ir ∪ Iv](2), the numbers p

(β,ξ)
ij , θ

(β,ξ)
ij

are constant, so that we may write p
(β,ξ)
r|v and θ

(β,ξ)
r|v . Lemma 4.10.1 of Section

4.10 shows that

µ(β,ξ)(Ω(I)) ∝
q∏
r=1

∏
v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)

1+δr,v
(4.5.2)

where δx,y = 1 if, and only if, x = y, and 0 otherwise. The main result of
this section is then the following.

Theorem 4.5.1 (The Erdös-Rényi Decomposition). Fix an action partition
I and (β, ξ)� (0, 0).

(a) The measure (4.5.1) is the conditional distribution over graphs g ∈ G
and factorizes to

µ(β,ξ)(ω|I) =
∏

r=1,v≥r

[
p

(β,ξ)
r|v

]er|v(ω) [
1− p(β,ξ)

r|v

] |Ir |(|Iv |−δr,v)

1+δr,v
−er|v(ω)

.

(4.5.3)

(b) There exists a continuously di�erentiable function FI(θ(β,ξ)) such that
for all 1 ≤ r ≤ l ≤ q

∂FI(θ(β,ξ))

∂θ
(β,ξ)
r|v

= Eµ(β,ξ) [er|v|I],
∂2FI(θ(β,ξ))

∂θ
(β,ξ)
r|v ∂θ

(β,ξ)
r|l

= Covµ(β,ξ) [er|v, er|l|I]

2
∂FI(θ(β,ξ))

∂(1/β)
= Eµ(β,ξ) [U |I]
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(c) The statistical ensemble of subgraphs G[Ir∪Iv] is an Erdös-Rényi graph
with edge success probability

p
(β,ξ)
r|v =

2 exp(u(ar, av)/β)

2 exp(u(ar, av)/β) + ξ
.

Proof. See Section 4.10.

Part (a) of the Theorem shows that the equilibrium ensemble of graphs boils
down to an inhomogeneous random graph (Söderberg, 2002, Bollobás et al.,
2007). For an arbitrary action pro�le α, eq. (4.5.3) gives us complete in-
formation about the probability with which an r-strategist interacts with
players from other action classes. Thus, if one wants to make a probabilistic
prediction about the interaction pattern between r-players and v-players, all
one has to do is to look at the factor

[p
(β,ξ)
r|v ]er|v(ω)

[
1− p(β,ξ)

r|v

] |Ir |(|Iv |−δr,v)

1+δr,v
−er|v(ω)

what is exactly the probability measure of the random graph model of Erdös
and Rényi (1960) (see also Section 1.2 of this thesis). Part (b) is a standard
result for Gibbs measures (see e.g. Stroock, 2005). Using the explicit from
for the marginal distribution µ(β,ξ)(Ω(I)), a simple computation shows that
for all 1 ≤ r ≤ v ≤ q

Eµ(β,ξ) [er|v|I] =
|Ir|(|Iv| − δr,v)

1 + δr,v
p

(β,ξ)
r|v .

For the covariances we see that

Covµ(β,ξ) [er|v, er|l|I] =

{
0 if v 6= l,

|Ir|(|Iv |−δr,v)

1+δr,v
p

(β,ξ)
r|v (1− p(β,ξ)

r|v ) if v = l.

The fact that the total graph can be regarded as a collection of indepen-
dent Erdös-Rényi graphs (with di�erent edge success probabilities) makes it
possible to derive a probability distribution for the degree of a randomly se-
lected individual i ∈ Ir. Since κi =

∑q
v=1 κ

i
v, we �rst have to determine the

distribution of the random variables κiv, 1 ≤ v ≤ q. Theorem 4.5.1 tells us

that κiv has a Binomial distribution with parameters (|Iv| − δr,v, p(β,ξ)
r|v ) (see

e.g. Bollobás, 1998).
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Proposition 4.5.1. Given an action partition I pick a player i ∈ Ir and
let nv := |Iv|, 1 ≤ v ≤ q. The degree of player i is distributed according to
the mass function

fr,κ(k|I) :=
1

R(β,ξ)(I)

∑
k1+...+kq=k

k!

k1! · · · kq!

q∏
v=1

[
f

(β,ξ)
r|v (kv)

]kv
, (4.5.4)

f
(β,ξ)
r|v (kv) :=

(
nv − δr,v

kv

)1/kv
(

p
(β,ξ)
r|v

1− p(β,ξ)
r|v

)
. (4.5.5)

where R(β,ξ)(I) is the normalizing factor.

Proof. See Section 4.10.

Observe that for the degree distribution it su�ces to know the number of
players in the various action classes, not their identity. Hence, all action
partitions I that put the same number of players into the various classes
are equivalent in terms of the connectivity structure of the network. Thus,
instead of looking at a speci�c action partition I, it is su�cient to work with
less information contained in a tuple n = (n1, . . . , nq) such that nv = |Iv| for
all v and

∑q
v=1 nv = N .

Example 4.5.1. Consider the coordination game

a1 a2

a1 (3, 3) (0, 0)
a2 (0, 0) (1, 1)

We will examine the degree distribution for 1-players under various parameter
constellations (β, ξ) for the frequency vector n = (80, 20). Figure 4.1 shows
the degree distribution for a typical 1-player when (β, ξ) = (0.5, 70). The
mean degree of 1-players is seen to be 78. However, we cannot say to which
action class most of this links lead to since we only look at the distribution
of the total degree κ. Applying Theorem 4.5.1, we get complete information
about the inter-group connectivity pattern by inspecting the two numbers

p1|1 =
2 exp(3/β)

2 exp(3/β) + ξ
, p1|2 =

2

2 + ξ

Note that p1|1 → 1 as β → 0, implying that in this limit only links within the
same action class exist with probability 1. Consequently, for small noise levels
the majority of the 78 neighbors will be 1-players as well. For larger levels of
noise (the right �gure with β = 1.5) we observe a drastically smaller average
degree. This implies that the e�ect of the parameter values β and ξ goes into
the same direction. Increasing β with constant ξ will have qualitatively the
same e�ect as increasing ξ with constant β.
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Figure 4.1: Degree distributions for 1-players under various parameter con-
stellations. The triple at the top of each plot is (β, ξ, k̄), i.e. the noise and
volatility rate and the resulting average degree for this action class. The
point marks the position of the mean of this distribution.

4.6 An invariant distribution over action pro-

�les

Having derived a probability distribution on the set of networks, we will now
derive a probability distribution on the set of action frequency vectors n =
(n1, . . . , nq). Let D := {n ∈ Nq|

∑q
r=1 nr = N} denote the set of admissible

action frequency vectors and de�ne the correspondence Ψ : D → 2Ω as
Ψ(n) = {ω ∈ Ω|(∀r = 1, 2, . . . , q) : |Ir(ω)| = nr}.

Proposition 4.6.1. The invariant distribution over action frequency vectors
n ∈ D is given by the mapping ρ(β,ξ) = µ(β,ξ) ◦Ψ : D → [0, 1], de�ned as

ρ(β,ξ)(n) := Υ−1 N !∏q
r=1 nr!

q∏
r=1

[
z(β,ξ)
r (n)

]nr
, (4.6.1)

where

z(β,ξ)
r (n) :=

∏
v≥r

[
1 +

2

ξ
exp

(
u(ar, av)

β

)]nv−δr,v
1+δr,v

, 1 ≤ r ≤ q (4.6.2)

Υ =
∑
n∈D

N !∏q
r=1 nr!

q∏
r=1

∏
v≥r

[
1 +

2

ξ
exp

(
u(ar, av)

β

)]nr(nv−δr,v)

1+δr,v

. (4.6.3)

Proof. The proof starts from the distribution over action classes I (4.5.2).
The rest is a simple combinatorial exercise. The population consists of N
distinct elements. There are q di�erent boxes over which we want to dis-
tribute the N elements, and in each box r = 1, . . . , q there should be nr
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elements at the end of the day, and all N elements must be in one box, so
that

∑q
r=1 nr = N holds. There are N !

n1!...nq !
di�erent ways of solving this al-

location problem. Counting all states ω that agree with a given action class
size pro�le n leads to a probability distribution having the form

µ(β,ξ)(Ψ(n)) ∝ N !∏q
r=1 nr!

q∏
r=1

∏
v≥r

[
1 +

2

ξ
exp

(
u(ar, av)

β

)]nr(nv−δr,v)

1+δr,v

. (4.6.4)

Using the respective de�nitions of the maps ρ(β,ξ) and z
(β,ξ)
r (n) yields the

desired result.

4.7 Stochastic stability

Stochastic game dynamics have become important due to their power con-
cerning equilibrium selection. The concept of stochastic stability, introduced
by Foster and Young (1990), Young (1993) and Kandori et al. (1993) into
game theory, gives a selection criterion based on the underlying dynamic
process.

De�nition 4.7.1. A state ω ∈ Ω is a stochastically stable state if lim
β→0

µ(β,ξ)(ω) >

0. The set of stochastically stable states is

Ω∗ := {ω ∈ Ω| lim
β→0

µ(β,ξ)(ω) > 0}.

It has been shown by Blume (1993; 1997) and Young (1998) that the logit
dynamics concentrates on the set of potential maximizers as the noise level
goes to zero. However, their results are not directly applicable in the current
context, since the graph is itself part of the state variable.

4.7.1 Selection of Potential maximizers

The following Theorem, the proof of which is based on the general discussion
in Catoni (1999), is the main result of this section.

Theorem 4.7.1. The Gibbs distribution (4.4.6) concentrates on the set P :=
arg maxω∈Ω P (ω) as β → 0.

Proof. See Section 4.10.
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This shows that in the limit of vanishingly small noise the process will spend
almost all of its time in the vicinity of potential maximizers. In view of the
relation between the potential function and aggregate utility, this gives an
e�ciency result for long run behavior. Furthermore, in view of the ergodic
theorem, which has been mentioned brie�y in Section 4.4, we know that
long run averages of the potential function converge to the expected value
under the invariant distribution µ(β,ξ). Since this expected value converges
to maxω∈Ω P (ω) as β → 0, we get the following corollary.

Corollary 4.7.1. Let U := arg max
ω∈Ω

U(ω) = P. Then

lim
β→0

µ(β,ξ)(U) = 1. (4.7.1)

Almost surely therefore the process arrives at states where social welfare is
maximized.

4.7.2 E�ciency in pure coordination games

Consider the class of games with payo� function u(a, a′) := φ(a, a′)− c, that
satis�es condition (4.2.1), as well as

(∀r = 1, 2, . . . , q) : max
1≤v≤q

φ(av, ar) = φ(ar, ar),

φ(a1, a1) ≤ φ(a2, a2) ≤ . . . ≤ φ(aq, aq).
(4.7.2)

The �rst condition states that matching the action chosen by the opponent
is always a best reply. The second condition imposes an ordering on the
payo�s of actions, where aq denotes the payo� dominant action. From the
symmetry of the payo� function, eq. (4.2.1), it follows that there are q strict
Nash equilibria in the base game where the two players choose the same
action. The constant c ≥ 0 has no strategic e�ect, and can be interpreted
as the costs of a link.5 To keep notation simple, suppose that all strict Nash
equilibria have di�erent payo�s. Let ge = g(Ge), gc = g(Gc) denote the
empty and the complete graph, respectively.

Proposition 4.7.1. Let P : Ω → R be the potential function (4.4.4), and
suppose that the payo� function of the base game Gb satis�es (4.7.2). Then

P =


{(aq, . . . , aq)} × {gc} , if u(aq, aq) > 0

(AI × {ge}) ∪ {ω ∈ Ω|α = (aq, . . . , aq)} , if u(aq, aq) = 0
AI × {ge} , if u(aq, aq) < 0

5Jackson and Watts (2002), Goyal and Vega-Redondo (2005) consider symmetric 2× 2
coordination games, which are potential games, having this payo� structure.
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Proof. It is straightforward to see that the potential function (4.4.4) can be
written as

P (ω) =

q∑
r=1

∑
v≥r

u(ar, av)

 ∑
i∈Ir(ω)

∑
j∈Iv(ω);j>i

gij

 .

From this one can immediately see the validity of the claim for the high-cost
scenario u(aq, aq) < 0.
Now consider the case where u(aq, aq) = 0. Clearly P (ω) ≤ 0 for all ω ∈ Ω,
with equality only at the states that are in the set described in the text of
the Proposition.
Finally, consider the case u(aq, aq) > 0. Since this is the largest payo�
obtainable from the base game, and the potential function is linear in the
links, the claim follows. This is also the unique maximizer of the potential
function.

Corollary 4.7.2. Consider the co-evolutionary model Mβ, with base game
from the class of pure-coordination games (4.7.2). Then Ω∗ = P.

4.8 A general class of stochastic co-evolutionary

dynamics

The model presented so far relied on the assumptions that the base game has
an exact potential, and the rate functions of the individual players have the
particular form (4.3.4). These assumptions make the model very tractable,
and we were able to deduce many fundamental characteristics of the long-
run behavior of the system. On the other hand, one may say that these
assumptions are too strict. Let me shortly discuss how the model can be
extended to a rather general class of co-evolutionary models with noise. For
a detailed discussion let me refer to chapter 2. For sake of completeness,
let me just sketch what the long run behavior of this model would be, if
one drops Assumptions 1 and 2. Instead of (4.3.4), assume that the players'
rate function equals λi(ω) = λ1{κi(ω)<N−1}, and λ is a positive constant. For
sake of illustration, suppose the base game is a symmetric 2×2 coordination
game with one Pareto e�cient equilibrium (a1, a1), and one risk-dominant
equilibrium (a2, a2). The speci�c payo�s are not important.6 I claim that
these small alterations of the model lead to a non-selection result. Any pair
of players, which use the same action, may be connected in the long-run

6Of course, this is still a potential game.
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equilibrium; putting it di�erently, as β goes to zero we do not obtain a point
prediction as in Section 4.7, but the limit distribution will (in general) put
positive weight on a proper subset of Ω. The heuristic explanation of this
�negative� result is the following.

• Since the rate function of players is uncoupled with the noise parameter,
the speed of the link creation process is una�ected by the level of noise.
Looking back at (4.3.4), we see that as β goes to 0 the link creation
process becomes arbitrary fast.

• The link destruction process deletes any edge with the constant rate ξ.
This process is pure drift, i.e. it is independent of the base game, and
in particular of the noise level β. In the terminology of stochastic sta-
bility calculus, this implies that link destructions are zero cost events.
However, it turns out that the rate-ratio λ/ξ determines the number of
links the system can carry in the long run.

• The logit choice function of the action adjustment process (4.3.2) puts
equal probability on all actions a loner may choose. However, if a
player has at least one neighbor and if β goes to zero, this player will
play a best response against the neighbors' behavior with probability
arbitrary close to 1.

• Suppose the system is currently in a full coordination state, say the
population coordinates on the e�cient equilibrium (a1, . . . , a1). The
network will not be complete in general, but one can derive a distribu-
tion over networks, given this action con�guration. If there are some
loners in the current state, let them switch to a2, and give them a link
creation opportunity. These steps can be made with zero costs. Now,
by de�nition of the coordination game, an optimal decision in the link
creation process is to connect the a2 players. We are then already in a
state where a1 and a2 co-exist. At this state no player has an incentive
to change his action, so we will not return to the state we were com-
ing from. If there are no loners, we can construct a sequence of link
destruction, action adjustment and link creation events, all causing no
costs, which leads to a state where two coordination equilibria co-exist,
as follows: Destroy the links of player i. Give him an action adjustment
opportunity where he chooses a2. Since a loner may choose any action
with equal probability without making an error, this causes no costs.
Do the same thing with player j 6= i. Then give them a link creation
opportunity. Since i and j are the only agents playing a2, an optimal
decision in the link creation process is to create the link (i, j). Now we
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are in a co-existence state and no player has an incentive to change his
action.

• In the same vein we can walk through the set

Ω∗ = {ω ∈ Ω|gij = 1⇒ αi = αj}

without any costs, in the sense of stochastic stability analysis. As a
result, all states contained in this set are stochastically stable.

A similar result, but with admittedly sharper limit predictions, is obtained by
Jackson and Watts (2002). These authors add to the drift term ξ a direction,
by assuming that only links where at least one player is better o� after the
destruction of the link, are very likely to become destroyed. For a fairly large
set of parameters (such as linking costs as in Section 4.7) they also get a co-
existence result. However, due to this directionality in the link destruction
process, they get sharper limit results in the network dimension under the
assumptions that the costs per link are constant.

4.9 Conclusion

This paper presented a stylized model on the co-evolution of networks and
play in the class of potential games. Assumption 4.3.1 was crucial to derive a
closed-form solution of the unique invariant distribution and to obtain sharp
predictions as the noise in the players' decision rules goes to zero. A gen-
eral selection theorem of potential maximizers applies in this case. Without
Assumption 4.3.1 the invariant distribution can still be completely character-
ized, but the model loses its predictive power in the low-noise limit. It seems
therefore that some assumptions in this direction are needed if one wants to
obtain sharp limiting predictions.
There are many possible routes for extensions. In the next chapter I analyze
the current model with Assumption 4.3.1, but assuming an inverse relation-
ship in the rate function with the size of the population. The intuition is
that a larger population should make it less likely that a single agent receives
the chance to create a link. In the in�nitely large population limit and small
positive noise the generated networks do not converge to complete graphs
anymore. Hence, nicer asymptotic results are obtained without losing much
in analytical power.
A more fundamental question is, however, which class of networks (in the
sense of random graph theory) such co-evolutionary models are capable to
create. The general framework of chapter 2 is a �rst step in this direction.
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There we have seen that such models seem to generate, under fairly mild as-
sumptions on the structure of the random process, so-called inhomogeneous
random graphs (see e.g. the nice survey by Newman, 2003). These models
are straightforward extensions of the classical Erdös-Rényi model, where the
edge-success probabilities depend on the attributes of the individual vertices.
It would be interesting to see how deep this connection indeed is.

4.10 Proofs of selected Theorems and Proposi-

tions

Proof of Theorem 4.4.1. Uniqueness follows from irreducibility and recur-
rence of ηβ.
By construction of the dynamics, we know that changes occur in the process
only in one �coordinate�: either a single change in the links of the network
takes place, or one, and almost surely only one, player switches to another
action. By statistical independence of these two processes we can treat them
separately. Start with a change in the network structure. It su�ces to con-
sider the creation of a fresh link. Let ω = (α, g), ω̂ = (α, g⊕ (i, j)) ∈ Ω. The
rate of link creation between players i and j is given by eq. (4.3.8). The rate
with which one returns to the state ω is eq. (4.3.9). Detailed balance (4.4.1)
demands that

µ(β,ξ)(ω̂)

µ(β,ξ)(ω)
=

2

ξ
exp(u(αi, αj)/β). (4.10.1)

It is easy to see that the measure (4.4.2) satis�es this condition.
Now consider the event of action adjustment. Let player k be the one who
receives such an opportunity and suppose she switches to action av ∈ A. Let
ω, ω̂ = (αavk , g) ∈ Ω be the states involved in this transition. The associated
rate ratio is

ηβ(ω → ω̂)

ηβ(ω̂ → ω)
=

νbk,β(av|ω)

νbk,β(αk|ω)

= exp

 1

β

 ∑
j:gkj=1

[u(av, α
j)− u(αk, αj)]

 . (4.10.2)

Rewrite the invariant distribution as

µ(β,ξ)(ω) ∝
k∏
i=1

∏
j>i

[
2

ξ
exp(u(αi, αj)/β)

]gij
×

N∏
i=k+1

∏
j>i

[
2

ξ
exp(u(αi, αj)/β)

]gij
.
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Note that the second term on the right-hand side does not depend on player
k, and thus the change in the action of this player does have no e�ect on this
term. Hence, we see that the probability ratio boils down to

µ(β,ξ)(ω̂)

µ(β,ξ)(ω)
=

k∏
i=1

∏
j>i

[
exp

(
u(α̂i, α̂j)− u(αi, αj)

β

)]gij
.

Since α̂i = αi for all i 6= k, α̂k = av, and payo�s as well as the indicators gij
are symmetric, we see that

µ(β,ξ)(ω̂)

µ(β,ξ)(ω)
=

N∏
j=1

[
exp

(
u(av, α

j)− u(αk, αj)

β

)]gkj

= exp

 1

β

 ∑
j:gkj=1

[u(av, α
j)− u(αk, αj)]

 .
This is the rate ratio (4.10.2).

Lemma 4.10.1. Fix an action partition I and let ω ∈ Ω(I). De�ne

m(β,ξ)(ω|I) =

q∏
r=1

∏
i∈Ir

{∏
v≥r

∏
j∈Iv ;j>i

[
2

ξ
exp

(
u(ar, av)

β

)]gij}
1{ω∈Ω(I)}

(4.10.3)
the mass of state ω, conditional on the event that the action partition I is
realized. Then the mass received by the set Ω(I) in the long run is given by

m(β,ξ)(Ω(I)) =

q∏
r=1,v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)

1+δr,v
. (4.10.4)

Proof. We have to compute
∑

ω∈Ω m
(β,ξ)(ω|I). On Ω(I) the action pro�le is

�xed, and all states di�er only in the number of edges. We can write

m(β,ξ)(ω|I) =

q∏
r=1,v≥r

(
p

(β,ξ)
r|v

1− p(β,ξ)
r|v

)er|v(ω)

.
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Hence

m(β,ξ)(Ω(I)) =
∑

ω∈Ω(I)

m(β,ξ)(ω|I)

=

q∏
r=1,v≥r

|Ir |(|Iv |−δr,v)

1+δr,v∑
k=0

(
|Ir|(|Iv |−δr,v)

1+δr,v

k

)(
p

(β,ξ)
r|v

1− p(β,ξ)
r|v

)k

=

q∏
r=1,v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)

1+δr,v
.

Proof of Theorem 4.5.1. (a) Lemma 4.10.1 shows that (4.5.1) is given by

µ(β,ξ)(ω|I) =
m(β,ξ)(ω|I)

m(β,ξ)(Ω(I))
.

A direct calculation of this ratio gives Eq. (4.5.3).

(b) For ease of notation, I omit the superscripts (β, ξ). De�ne

FI(θ) := log µ(Ω(I)). (4.10.5)

Using the representation via the Gibbs measure (4.4.6), one gets

µ(Ω(I)) =
∑

ω∈Ω(I)

µ(ω|I) =
∑

ω∈Ω(I)

eh(ω,θ).

Taking the partial derivative with respect to θr|v gives

∂FI(θ)

∂θr|v
=

1

µ(Ω(I))

∑
ω∈Ω(I)

∂h(ω, θ)

∂θr|v
eh(ω,θ)

=
∑

ω∈Ω(I)

∂h(ω, θ)

∂θr|v
µ(ω|I)

= Eµ

[
∂h(ω, θ)

∂θr|v
| I
]
.

Since the Hamiltonian h is a linear function in the edge parameter θ,
the �rst equation follows. Moreover, linearity of h in θ implies that all
higher-order derivatives vanish. To obtain the covariance relationship
observe that

∂2FI(θ)

∂θr|v∂θr|l
=
∑

ω∈Ω(I)

∂h(ω, θ)

∂θr|v

∂µ(ω|I)

∂θr|l
. (4.10.6)
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Compute

∂µ(ω|I)

∂θr|l
=
∂h(ω, θ)

∂θr|l
µ(ω|I)− µ(ω|I)

∂FI(θ)

∂θr|l
.

Plugging this into Eq. (4.10.6) one gets

∂2FI(θ)

∂θr|v∂θr|l
=

∑
ω∈Ω(I)

er|v(ω)er|l(ω)µ(ω|I)− E[er|v|I]E[er|l|I]

= Covµ(β,ξ) [er|v, er|l|I].

To obtain the third equation, note that by de�nition of the function h
we have ∂h(ω,θ)

∂(1/β)
= P (ω) = U(ω)/2.

(c) This follows directly from the product measure (4.5.3) and the de�ni-
tion of the Erdös-Rényi-model.

Proof of Proposition 4.5.1. For ease of notation I skip again the parameters
(β, ξ). κi1, . . . κ

i
q are independent Binomially distributed random variables

with respective parameters (nv − δr,v, pr|v), 1 ≤ v ≤ q. Thus

P(κi = k1, . . . , κ
i
q = kq|I, i ∈ Ir) =

q∏
v=1

P(κiv = kv|I, i ∈ Ir),

where for 1 ≤ v ≤ q

P(κiv = kv|I, i ∈ Ir) =

(
nv − δr,v

kv

)
pkvr|v(1− pr|v)

nv−δr,v−kv

=
[
fr|v(kv)

]kv
(1− pr|v)nv−δr,v .

There are k!
k1!···kq ! ways to construct a list (k1, . . . , kq) whose sum equals k.

Hence

P(κi = k|I, i ∈ Ir) ∝
∑

k1+...+kq=k

k!

k1! · · · kq!

q∏
v=1

P(κi = kv|I, i ∈ Ir).

In each of the products on the right hand side, the factor (1− pr|v)nv−δr,v is
a constant and so cancels out after normalization. Hence, de�ne the normal-
ization factor

R(I) =
N−1∑
k=0

P(κi = k|I, i ∈ Ir),

and call fr,κ(k|I) := P(κi = k|I, i ∈ Ir) to get the desired result.
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Proof of Theorem 4.7.1. For any ε > 0 consider the set

Aε := {ω ∈ Ω|P (ω) < max
ω′∈Ω

P (ω′)− ε}.

I will show that limβ→0 µ
(β,ξ)(Aε) = 0. Let P ∗ := maxω′∈Ω P (ω′) the global

maximum value of the potential function, and P := arg maxω∈Ω P (ω). De�ne
the measure µξ0 : G → [0,∞], g 7→ µξ0(g) := (2/ξ)e(g). Since the Hamiltonian
of the Gibbs measure is additive separable in the measure µξ0 and the potential
function P , we get for all ω = (α, g)

µ(β,ξ)(α, g) ∝ e
1
β
H(ω,β,ξ) = e

1
β
P (ω)µξ0(g).

The set Aε can be written as

Aε = {ω ∈ Ω|e−
1
β
P (ω) > e−

1
β

(P ∗−ε)}.

Markov's inequality7 gives us

µ(β,ξ)(Aε) ≤ e
1
β

(P ∗−ε)Eµ(β,ξ)

[
e−

1
β
P
]
,

where

Eµ(β,ξ) [e−
1
β
P ] =

∑
ω=(α,g)∈Ω

µ(β,ξ)(ω)e−
1
β
P (ω) =

1

Z

∑
ω=(α,g)∈Ω

µξ0(g),

with Z =
∑

ω∈Ω e
1
β
H(ω,β,ξ) ≥ |P|e

1
β
H∗ , where H∗ is the minimum value of

the Hamiltonian at states ω ∈ P , i.e. if ω = (α, g) ∈ P then H∗ = P ∗ +
minω∈P β log µξ0(g). LetK := min

ω=(α,g)∈P
µξ0(g) > 0 be the minimum value of the

graph measure on the set of potential maximizers. Thus, H∗ = P ∗+β logK,

and so Z ≥ |P|Ke
1
β
P ∗ > 0. Next, we compute

∑
ω=(α,g)∈Ω

µξ0(g) =
∑
n∈D

N !

n1! · · ·nq!

q∏
r=1

∏
v≥r

∑
i∈Ir,j∈Iv :gij∈{0,1}

(2/ξ)g
i
j

=
∑
n∈D

N !

n1! · · ·nq!

q∏
r=1

∏
v≥r

(1 + 2/ξ)
nr(nv−δr,v)

1+δr,v

= qN(1 + 2/ξ)
N(N−1)

2 .

7See e.g. Grimmett and Stirzaker (2001), p.319.
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where in the last step we have made use of the Multinomial Theorem. It
follows that

µ(β,ξ)(Aε) ≤
1

Z
qN(1 + 2/ξ)

N(N−1)
2 e

1
β

(P ∗−ε) ≤ qN(1 + 2/ξ)
N(N−1)

2

K|P|e
1
β
P ∗

e
1
β

(P ∗−ε)

= K1e
− ε
β .

where K1 := qN (1+2/ξ)
N(N−1)

2

|P|K > 0 a factor independent of β and ε. For β → 0
the upper bound goes to zero, establishing the result.
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Chapter 5
Co-evolutionary dynamics and

Bayesian interaction games

5.1 Introduction

In large populations of interacting agents, the decisions made by the individu-
als are often in�uenced by the decisions made by other individuals, which are
met on a frequent basis. Such situations are most naturally modeled by local
interaction games (Morris, 2000). Much of the early literature on interaction
games (e.g. Ellison, 1993, Blume, 1993) assumed very speci�c forms on the
architecture of the interaction structure of the population, but devoted much
e�ort to study the long-run evolution of the actions chosen by the interacting
individuals. This was mainly done in the class of symmetric 2× 2 coordina-
tion games where a con�ict between Pareto e�ciency and risk considerations
exists. A seemingly robust result of this literature is the selection of states
where all individuals play the risk-dominant strategy. However, a recent lit-
erature has emphasized that also the architecture of the interaction structure
may have an in�uence on the long-run behavior of the population. On the
one hand Hofbauer (1999) and Morris (2000) have shown that in symmetric
2× 2 coordination games a strict Nash equilibrium is spatially dominant, or
contagious, if it is risk-dominant. On the other hand, Young (1998; 2003) and
Morris (2000) show that such contagious dynamics depend on the geometry
of the interaction structure, i.e. the social network on which interaction takes
place. These authors give conditions under which a society is very likely to
become victim of contagious dynamics. In a nutshell, these are low clustering
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and a certain form of cohesiveness of the network.1 Morris (2000) asks then
to go one step further and understand how likely these critical properties are
to emerge. This paper is one small step in this direction. Building on earlier
work by Ehrhardt et al. (2006a; 2008a) - and the model presented in chapter
4 - we present a co-evolutionary model of networks and play where agents'
preferences are diverse. The static framework for these models will be a new
class of games called structured Bayesian interaction games with N players,
for short BGN . Formally, a structured Bayesian interaction game is a pair
(Γ,m), where Γ is an interaction game andm is the distribution of types in
the population. As in standard games of incomplete information we assume
that the types of the players are determined before play actually starts. Once
a type distribution has been realized we assume that the types the players are
�xed and the co-evolutionary model with noise starts to shape the system.
The co-evolutionary process will be ergodic, and so almost surely the process
will reach its unique stationary distribution. Such a stationary distribution
describes the probability distribution over states for an interim version of the
Bayesian interaction game, which we would like to call an structured interim
Bayesian interaction game, for short IBGN . The game IBGN is described
by the interaction game Γ, and a preference decomposition T , consisting of
all sets of players who are of the same type. In the population game, every
structure interim Bayesian interaction game can be seen as a random real-
ization of a structured Bayesian interaction game BGN , given the measure
m. A preference decomposition records the names of the players who are
of a certain type. Dropping the names leads to a less informative version of
an interim Bayesian interaction game, which is still useful for our purposes.

We will consider anonymous structured Bayesian interaction games, ¯IBG
N
,

where the preference decomposition T is replaced by a tupleN counting the
number of players of a certain type.

The co-evolutionary model with noise is essentially the same as the process
introduced in chapter 4. However, we make the transition probabilities de-
pendent on the population size. This seemingly minor modi�cation of the

1Clustering is a standard measure in the literature on networks. Intuitively it measures
the number of triangles in a graph, or di�erently speaking, the probability that a neighbor
of a neighbor of a vertex is again a neighbor of that vertex. Morris (2000) emphasizes
p-cohesiveness. A subset of vertices is called p-cohesive if at least a fraction p of the
neighbors of a vertex in this set are again members of the set. Young (1998), ch. 6,
introduces close-knit graphs. A subset of vertices V is called p-close-knit if each subset
V ′ ⊂ V has at least fraction p of neighbors in V. See also Jackson (2008), Vega-Redondo
(2007). There is also a very recent literature on di�usion on networks with given degree
distributions; See López-Pintado (2008), Jackson and Yariv (2008).
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stochastic process will have huge consequences on the long-run behavior of
the dynamics. On the one hand, it allows us to investigate the model in the
limit of in�nitely large populations, while holding the noise level constant.
On the other hand, it improves the results found in chapter 4 in the sense
that we obtain much nicer results on the network topology, provided we allow
for some positive noise. We show in this paper that the co-evolutionary pro-
cess is analytically solvable, and provide a closed-form solution for its unique
invariant measure. This measure can be studied by introducing interaction
Hamiltonians, a concept taken from Markov random �elds (see Brémaud,
1998). One can think of these functions as the analog to the interaction
potentials of Ui (2000). They allow us to write the distribution as a Gibbs
measure. Starting from this, we are able to characterize the induced ensem-
ble of random graphs, and we state a closed-form solution for the long-run
measure governing the distribution of actions in the population.

5.1.1 Related literature

The de�nition of Bayesian interaction games is closely related to the de�ni-
tion of Bayesian population games, introduced by Ely and Sandholm (2005)
and Sandholm (2007a), and the illuminating presentation of interaction games
in Morris (1997; 2000). Ely and Sandholm (2005) de�ne a Bayesian popu-
lation game as a population version of a game with incomplete information.
They assume a continuum population of mass 1, where nature distributes the
types according to some given measure before play starts. Agents of a certain
type form again a continuum, and the set of agents having a certain type
forms a sub-populations with mass depending on the probability measure
used by nature. Ely and Sandholm (2005) de�ne a Bayesian strategy as a
mapping assigning to each sub-population a mixed strategy, where the term
mixed strategy has again a population interpretation in recording the rela-
tive frequency of agents playing some action. Given a distribution of types,
they introduce a new class of evolutionary dynamics, the aggregate Bayesian
best response dynamic, de�ned on the function space of Bayesian strategies.
In a sense it can be seen as an extension of the well-known best response
dynamic studied by Gilboa and Matsui (1991). Ely and Sandholm (2005)
go on in showing that their Bayesian best response dynamic can be studied
by means of a �nite-dimensional best-response dynamic, which in turn has
some similarities with the perturbed best response dynamics of Fudenberg
and Levine (1998) and Hofbauer and Sandholm (2002). Sandholm (2007a)
uses this dynamic to give a new (evolutionary) version of Harsanyi's puri�-
cation theorem (Harsanyi, 1973). As in Harsanyi (1973), he assumes that all
players share a common payo� function, but each individual may have an id-
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iosyncratic preference over the common set of actions, which is interpreted as
the type of a player. We follow this set-up, but propose a di�erent de�nition
of Bayesian population games, where population structure, embodied by an
undirected graph, is a characterizing feature of the model. Beside this cru-
cial fact, we di�er from Sandholm (2007a) in two other aspects. First, while
Sandholm (2007a) studies a deterministic mean-�eld dynamic, we character-
ize completely the long-run behavior of an ergodic stochastic process.
Second, although we share the interest in perturbed best response dynamics,
the perturbation structure is completely di�erent. Sandholm (2007a) uses
the type distribution as perturbation device, while we �x the type distribu-
tion and assume that the interim payo�s of the players, i.e. after they have
learned their own type, but not the type of any other agent, are perturbed
in a speci�c stochastic way. Hence, we emphasize the appropriate interim

de�nitions of Bayesian games, IBGN and ¯IBG
N
, respectively. In this model

we are able to investigate the behavior of the invariant measure as the pop-
ulation gets large. To make this limiting operation meaningful we consider a
sequence of Bayesian strategy pro�les, generated by a sequence of anonymous
preference decompositions. As in Ely and Sandholm (2005) and Sandholm
(2007a) we call a Bayesian strategy pro�le a strategy distribution describing
the aggregate behavior of the players of each type.
The rest of the paper is organized as follows. Section 5.2 de�nes structured
Bayesian interaction games, and thereby �xes the static framework of the
model. Section 5.3 introduces co-evolutionary dynamics with noise as a col-
lection of perturbed continuous-time Markov processes, inspired by Catoni
(1999). Section 5.4 discusses the asymptotic properties of the process and
section 5.5 studies the small-noise behavior of the invariant distribution for
�nite populations. Section 5.6 shows that the generated random graphs are
so-called inhomogeneous random graphs, as studied by Söderberg (2002) and
Bollobás et al. (2007). Finally, section 5.7 provides an expression for the long-
run measure over action pro�les for all levels of noise and population sizes, as
well the behavior of the measure in the limit of in�nite populations. Section
5.8 concludes. A technical Appendix at the end of the paper collects the
relevant proofs.

5.2 Structured Bayesian interaction games

Following Morris (2000), we de�ne an interaction game as a tuple Γ =
(I,G[I],A, π). The set I = {1, . . . , N} denotes the �nite set of players,
which is interpreted as a single population of interacting agents. Interaction
is modeled by an evolving undirected graph G ∈ G[I]. Denote by I(2) the
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set of unordered pairs of players. In this paper we identify a network as a
graph in the set G[I]. An element of this set is a pair G = (I, E), where
E = E(G) ⊂ I(2) is the set of undirected edges (links). The size of a graph
G is its number of edges |E(G)| =: e(G). For G ∈ G[I], we call G′ ∈ G[I] a
subgraph of G if E(G′) ⊂ E(G). For two disjoint subsets V ,V ′ ⊂ I, denote
the set of edges that connect vertices from V to vertices from V ′ (and vice
versa) as E(V ,V ′). Fixing the vertex set, we can identify every graph on G[I]
through its edge set. Therefore, we can give an alternative representation
of an undirected graph via a tuple g = (gij)1≤i<j≤N ∈ {0, 1}I

(2)
, where the

functions gij are indicator functions on the set of edges E . If gij = 1 then
individual i is connected to individual j, or j is a neighbor of i (and vice
versa). If gij = 0 then i and j are not connected. By de�ning g as

(i, j) ∈ E(G)⇔ gij = 1

we can establish a one-to-one correspondence (up to a permutation of the

players' labels) between G[I] and the set of edge realizations {0, 1}I(2) , mem-
bers of which are vectors g. In view of this equivalence let us identify a
graph by the corresponding tuple g, and call henceforth G[I] the set of all
edge realizations g = (gij)1≤i≤j≤N .
The neighbors of player i are contained in the set N i(g) = {j ∈ I|gij = 1}.
Call N̄ i(g) = N i(g) ∪ {i}. The number of neighbors of player i de�nes his
degree κi(g) := |N i(g)|. Given a graph g and a subset of players V ⊆ I
denote the restriction of g on V as g[V ], which is an element of G[V ]. The
complete graph on the subset V is denoted by gc[V ]. For every g ∈ G[I]
and a partition of I into sets V1,V2 one can write g = g[V1] ⊕ g[V2], where
⊕ is interpreted as the concatenation of two lists of binary valued func-
tions (after possibly relabeling the players). In this notation, the graph
g′ = g ⊕ gc[{(i, j)}] =: g ⊕ (i, j) is the graph we obtain by adding the edge
(i, j) to g. Analogously, g′ = g	 (i, j) is the graph obtained from g by delet-
ing edge (i, j).
A = {a1, . . . , an} is the common set of actions among which players can
choose. The utility player i gets from action av depends on the prevailing
interaction structure g, and the action pro�le α = (αi)i∈I , which speci�es
one action for every player. The pair ω := (α, g) ∈ AI × G[I] ≡ ΩN de�nes
a population state. Call αavi the action pro�le where all players choose the
same action as prescribed in α, but player i plays action av. Utility of player
i at population state ω in the interaction game Γ is de�ned as

ui(α, g) ≡ ui(ω) :=
∑

j∈N i(g)

π(αi, αj). (5.2.1)
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In this paper we assume that the common payo� function π de�nes an exact
potential game (Monderer and Shapley, 1996). A su�cient condition for this
is that it has the partnership structure (Hofbauer and Sigmund, 1998)

(∀a, a′ ∈ A) : π(a, a′) = π(a′, a). (5.2.2)

Example 5.2.1. The model allows for a much richer payo� structure than
the one postulated by eq. (5.2.1). To the function π, one can add terms
that do not depend on the action of a single player without destroying the
structure of a potential game.2 An interesting setting would be the following.

Assume that for every link player i is incident to, a fee c(κi)
κi

has to be paid.3

The function c : {0, 1, 2 . . . , N − 1} → R+ measures the total fee a player
with κ neighbors has to pay. De�ne the utility function of player i in the
interaction game as

ui(α, g) :=
∑

j∈N i(g)

(
π(αi, αj)− c(κi(g))

κi(g)

)
,

where π satis�es (5.2.2). All the following results would go through if we work
with such a per-interaction payo� function. One could go further by assuming
that every player has its own cost function ci which depends exclusively on
his degree κi. Similar functional forms for the per-interaction payo� function
have been used by Bala and Goyal (2000), Jackson and Watts (2002) and
Goyal and Vega-Redondo (2005).

Given an interaction game Γ, each player may have idiosyncratic preferences
over the elements in the common action set A. Beside the interaction struc-
ture g, this introduces a second source of heterogeneity into the population.
Formally, let us assume that if player i chooses action αi in the interaction
game Γ, his subjective utility is given by

U i(α, g) ≡ U i(ω) := ui(ω) + θi(αi). (5.2.3)

The map θi : A → R is the idiosyncratic preference of player i, which we
will interpret as the type of player i. The type space is the set of functions
Θ := {θ : A → [a, b]}. We assume a �nite variety of types, so that Θ consists
of 0 ≤ K ≤ N di�erent functions, and K is exogenously given.4

Following Ely and Sandholm (2005) and Sandholm (2007a), this notion of

2See Sandholm (2009b) and Sandholm (2009a) for characterizations of potential games
in this direction.

3De�ne 0
0 = 0.

4In case of �nite populations this assumption is vacuous.
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types allows us to de�ne a structured Bayesian interaction game with �nite
type space Θ = {θ1, . . . , θK} and population size N as the pair BGN :=
(Γ,m). Γ is an interaction game, and m := (mr)

K
r=1 is a probability distri-

bution, with mr the prior probability that a player is of type θr.
We implicitly assume that agents learn their types before the evolutionary
process starts to shape the system. Thus, we can alternatively represent a
realized type distribution via a preference decomposition T = {Tr}Kr=1. Each
set Tr is the set of players of type r. Once a type distribution is realized a
preference decomposition is �xed. This would indeed correspond to an in-
terim de�nition of a game with incomplete information, where exactly the
players in the set Tr have learned that they are of type r, but do not know
the types of the other players. The resulting interim structured Bayesian in-
teraction game is the tuple IBGN = (Γ, T ). It can be viewed as the empirical
counterpart to BGN . Conditional on IBGN , we will write the interim payo�s
of a player i as U i(ω|T ).5

Example 5.2.2 will be our �role model�, which is used recurrently in order to
illustrate the used concepts more clearly.

Example 5.2.2. The speci�cation of utility functions (5.2.3) is particularly
interesting in situations where the interaction game models a game with
strategic complements. Suppose the players may choose between two alter-
natives A = {a1, a2}. The function π models the externalities individuals
exert on their direct neighbors. For instance, assume that a2 represents Mi-
crosoft Windows and a1 Ubuntu Linux, and we want to model a situation
where an individuals has to decide which operating system to use. Two con-
nected players communicate most e�ciently if both use the same operating
system.6 Windows is said to be more user-friendly than Linux, thus networks
much more e�ciently than the latter. To capture this formally, assume that
the individuals play the following coordination game:

a1 a2

a1 (1, 1) (0, 0)
a2 (0, 0) (4, 4)

If two users of the same operating system meet, they are able to communicate
easily. Windows users have however the advantage that their operating sys-

5The conditioning on the complete preference realization T is redundant, since a player
learns only his own type, not the types of the other agents in the population. This notation
is chosen for convenience, and will hopefully not cause any confusion.

6See Katz and Shapiro (1994) for more on competing technologies and networked mar-
kets. In particular it is mentioned in this work that product choices for a �network good�
(e.g. the choice of an operating system), depend crucially on the expected size of the
network, a feature that is nicely captured in this example.
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tem networks more e�ciently, since it is much easier to use. This advantage
is translated in the game by assuming that Windows is the risk dominant
action.
Agents can also have their own tastes about the operating system they want
to use. For instance, people with profound computer skills may have a strong
preference for using Linux. Hence, let us assume the population consists of
two separate groups T = {T1, T2}, which are characterized through the pref-
erence biases

θ1 θ2

a1 8 1
a2 0 1

Agents from group 1 are the Linux a�cionados; In the absence of any net-
work e�ects they would prefer to use Linux. Agents of group 2 have no real
opinion about the two operating systems. Let i be a representative agent from
group T1, and let ω be the current population state. Denote by κi2(ω) the
number of i's neighbors who use Windows. His payo� from using Linux is
U i(αa1

i , g|T ) = κi(ω)− κi2(ω) + 8, while utility from using Windows is given
by U i(αa2

i , g|T ) = 4κi2(ω). Adopting Windows becomes a best response for

i i�
κi2(ω)

κi(ω)
> 1

5
+ 8

5κi(ω)
. Hence, if player i communicates with many people,

the critical ratio of Windows users in his neighborhood, which induces him to
become a Windows user too, is close to 0.2. Suppose that κi(ω) = 5. Then it
su�ces that 3 neighbors use Windows to make Windows the optimal decision
for i. If the preference for Linux would be absent, a single neighbor is enough
to make Windows optimal for player i.

This example demonstrates a general feature of the e�ect of idiosyncratic
preferences. A player who has only few neighbors will show a choice behav-
ior, which may drift away signi�cantly from the interaction game Γ. This
captures the intuition that a player with few interactions should be less de-
pendent on the behavior of his �peers�. However, a player with large degree
must coordinate his behavior with many people. This interaction e�ect might
dominate the idiosyncratic preferences.
Instead of taking a preference decomposition as the primitive in the de�nition
of a structured interim Bayesian interaction game, we might want to have a
more quantitative description of the model. Therefore, we will alternatively
consider the �anonymous� version of a structured interim Bayesian interac-
tion game, where the realized type distribution T is replaced by the vector
N = (N1, . . . , NK). Each entry of this vector measures the absolute size of
the subpopulation of players with type r, and

∑
rNr = N . An anonymous

structured interim Bayesian interaction game with population size N is the

pair ¯IBG
N

= (Γ,N ).
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Remark 5.2.1. In Fudenberg and Tirole (1991), pp. 227, a discussion on
the interpretation of the notion of types in games with incomplete informa-
tion is provided. The interim approach to Bayesian games is very much in
line with our de�nition of (anonymous) interim Bayesian interaction games.
The anonymous version also allows us to study games with large player sets.
Suppose there is a countable in�nite sampling population, say N, from which
nature independently samples players. A sampled player i ∈ N is indepen-
dently assigned to be of type θr with probability mr. Nature repeats this
sampling/assignment-procedure N times, without replacement.7 The prob-
ability that there are Nr players of type 1 ≤ r ≤ K after N independent
trials, such that

∑K
r=1 Nr = N , is therefore multinomial distributed with

mass function

Pm(N ) =
N !

N1! · · ·Nk!
mN1

1 · · ·m
NK
K . (5.2.4)

A random vector N = (N1, . . . , Nk) de�nes an anonymous preference de-
composition. The empirical frequency m̂N

r := Nr/N is a maximum likelihood
estimator of the true parameter mr, and the strong law of large numbers
implies that m̂N

r → mr almost surely, as N →∞.

Consider the model ¯IBG
N

= (Γ,N ). Given the preference decomposition
N , let ∆ denote the n− 1 dimensional unit simplex, and de�ne

XN
r (N ) := {σ = (σ(s))1≤s≤n ∈ Rn|σ(s) ∈ {0, 1

Nr

, . . . ,
Nr − 1

Nr

, 1} &
n∑
s=1

σ(s) = 1}

for all 1 ≤ r ≤ K with Nr > 0. If Nr = 0, so that type r does not appear
in the population, set XN

r (N ) = ∅. The sets XN
r (N ) are discrete (inner)

approximations of the simplex ∆, with coarseness factor Nr. If Nr → ∞ as
N →∞, we have XN

r (N )→ ∆. We call a n×1 column vector σNr ∈ XN
r (N )

an interim Bayesian strategy. It completely describes the aggregate behavior
of the players of type r, given the preference decomposition N , by recording
the frequencies with which the actions are played in this subpopulation. An
interim Bayesian strategy pro�le is the n×K matrix

σN =

 σN1 (1) σN2 (1) . . . σNK(1)
...

...
. . .

...
σN1 (n) σN2 (n) . . . σNK(n)

 ∈ K∏
r=1

XN
r (N ). (5.2.5)

Note that, since K is �xed, we can de�ne Bayesian strategy pro�les for any
population size N .

7This is not important, since the sample is in�nitely large so that sampling with re-
placement is equivalent to sampling without replacement.
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5.3 Co-evolution with noise

Based on the general discussion in chapter 2, let us de�ne a co-evolutionary
model with noise as a tuple

Mβ,N = (ΩN ,F ,P, (Y β,N(t))t≥0)β∈R+ ,

which consists of a probability measure P : F → [0, 1], a family of ΩN -valued
random variables Y β,N = (Y β,N(t))t≥0 indexed by a noise parameter β ≥ 0,
the population size N , and a continuous-time parameter t ≥ 0. The dynamic
will be active on three levels: action adjustment, link creation and link de-
struction. To regulate the frequency with which the process undertakes one
of these steps, we introduce random variables TA(t), T

L
(t), T

D
(t), which describe

the random amount of time that elapses before any of the mentioned events
take place, conditional on the population state at time t. The workings of
the process is as follows:8

Action adjustment: We adapt the revision dynamics of Blume (1993; 2003)
and Hofbauer and Sandholm (2007). For each player de�ne a constant
intensity Poisson process with parameter ν ≥ 0. By the superposition
principle of the Poisson process (see e.g. Grimmett and Stirzaker, 2001)
the random variable TA(t) has an exponential distribution with rate Nν.
Conditional on the event of an action adjustment, each player faces the
same probability 1/N to be granted a switching opportunity. If player
i is selected for a revision opportunity, assume he switches to action
a ∈ A with probability determined by the logit choice function

bi,β(a|ω) =
exp( 1

β
U i(αai , g))∑

a′∈A exp( 1
β
U i(αa

′
i , g))

. (5.3.1)

The rate of the transition (α, g) = ω → (αai , g) = ω′ is therefore

ηβ,Nω,ω′ = νbi,β(a|ω). (5.3.2)

Link creation: Consider the following version of the stochastic actor-model,
introduced by Snijders (2001). For each player i, let us de�ne a rate
function λi : ΩN → R+. This function regulates the frequency with
which player i will become active in the event of link creation. To be
speci�c, de�ne for every player i a conditionally independent Poisson
process with intensity λi(·), which will depend on the current popula-
tion state Y β,N(t). Hence, conditional on {Y β,N(t) = ω}, the expected

8A full description of the Markov process is given in chapter 3.
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time player i has to wait in the link creation process is 1/λi(ω). The
conditional distribution of the random variable TL(t) is the exponential
with rate

λ̄β(ω) :=
∑
j∈I

λj(ω).

One can calculate that the conditional probability with which player i
receives a link creation opportunity is exactly λi,β(ω)/λ̄β(ω). We make
the following assumption on the functional form of the rate functions
of the players:

Assumption 5.3.1. The players' rate function have the form

(∀i ∈ I) : λi,β(ω) :=
1

N

∑
j /∈N̄ i(ω)

exp

(
1

β
π(αi, αj)

)
. (5.3.3)

The intuition behind this formulation is the following; the larger the
population, the less frequent a single agent should receive a link creation
opportunity. Therefore the inverse relationship with the population
size N . On the other hand, we would like to capture a situation where
those agents who expect a high utility from interactions are relatively
fast in their network formation activities. This is modeled via the sum
of exponentials.9

If player i receives the opportunity to form a link, we assume that he
creates a new link with probability depending on the marginal payo�
he would get from this connection. Given the functional assumption
(5.2.3), this marginal utility is U i(α, g ⊕ (i, j)) − U i(α, g) = π(αi, αj).
We assume that player i selects player j with probability

wi,βj (ω) := P
(
π(αi, αj) + εij ≥ π(αi, αk) + εik ∀k 6∈ N̄ i(ω)|ω

)
.

Assuming that the random variables (εik)k/∈N̄ i(ω) are independent type
1 extreme value distributed, leads to the choice probability function10

wi,βj (ω) =
exp (π(αi, αj)/β)∑

k/∈N̄ i(ω) exp (π(αi, αk)/β)
. (5.3.4)

9Observe that the conditional probability that player i gets a link creation opportunity
is not a�ected by the population size. It is only the overall frequency of link creation
opportunities which is scaled down by the population size.

10Note that this particular function is translation invariant, meaning that adding a
constant term to the functions under the exponential cause no change in the probabilities.
As a consequence, we could add to the interaction game payo� function (5.2.1) a player-
speci�c cost function ci(κ), modeling a fee that player i has to pay in order to support κ
links in the graph. See Example 5.2.1.
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Since the creation of the link (i, j) can be caused by player i or player
j (and almost surely by only one of these players), the rate of the
transition (α, g) = ω → (α, g ⊕ (i, j)) = ω′ is given by

ηβ,Nω,ω′ = λi,β(ω)wi,βj (ω) + λj,β(ω)wj,βi (ω) =
2

N
exp

(
π(αi, αj)/β

)
.

(5.3.5)
As in action adjustments, the likelihood ratio that player i chooses to

link with j and not with k is exp(π(αi,αj)−π(αi,αk)
β

), i.e. an increasing

function in the direct (marginal) bene�t of the link (i, j) compared
to (i, k). In the limit β → 0, again, only links with the highest per-
interaction payo� are going to be formed with probability 1. Hence, if
one interprets the value of the net-payo� function as a distance mea-
sure between two individuals of the society, this choice rule re�ects in
a natural and intuitive way that people who are �closer� (in the sense
of closeness de�ned by the game) are more likely to interact. There are
two potential criticisms of the link formation process. First, we formu-
late the process as purely symmetric in incentives, since only the payo�
function π determines the probability with which a free link becomes
created. The idiosyncratic preferences of the players do not appear
in this formulation. However, in terms of individual rationality, it is
certainly only π which decides how valuable a new link for a player is.
Therefore, it is rational for a player not to look at the idiosyncratic
preference term in this subprocess. A second, and more substantial,
criticism is the huge amount of information agents are assumed to pos-
sess. In large populations it is not likely that individuals have global
information (even subject to noisy data) about the population state.
We implicitly assume this however, since otherwise the agents would
not be able to compute the probability distribution (5.3.4).11

Link destruction: If we would only consider a link creation process, then
the dynamics will almost surely lead to the trivial stationary state
where all agents interact with each other, so that the interaction struc-
ture will be the complete graph. Therefore, to describe an interesting
dynamic, we need to add a process of link removal. Here we build on
recent work by Marsili et al. (2004), Ehrhardt et al. (2006a; 2008a;b)
by introducing a volatility scheme, meeting the following requirements;

11A more natural formulation would be a mixture between global search for partners (a
rare event) and a local, network dependent, process of search (a frequent event). In Vega-
Redondo (2007), ch. 6, one can �nd models in this direction, which are analytically much
more complicated to handle (if at all). See also Vega-Redondo (2006) for an interesting
simulation study of such a process.
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De�nition 5.3.1. A N×N matrix Ξβ := [ξβij]1≤i,j≤N is called a volatil-
ity scheme if

• Ξβ is a symmetric matrix,

• (∀i, j ∈ I) : ξβij ≥ ξ > 0, for some exogenous background volatility
level ξ.

The function ξβij is the rate with which edge (i, j) becomes destroyed.

If Ξβ de�nes a volatility scheme then every currently existing edge
has the expected survival time 1/ξβij.

12 For analytical tractability we
additionally require the following:

De�nition 5.3.2. Consider the structured interim Bayesian interac-
tion game IBGN = (Γ, T ). Given a volatility scheme Ξβ we call the
K ×K matrix Ξ̂β a reduced form volatility scheme if

ξβij = ξβrl if i ∈ Tr and j ∈ Tl. (5.3.6)

Let the volume of the link destruction process be ξ̄(ω) =
∑

j>i ξ
β
ijgij. By

the Poisson structure of the process, the conditional probability that

the link (i, j) becomes selected for destruction is
ξβijgij

ξ̄(ω)
. The random

variable TD(t) follows the exponential distribution with rate ξ̄(ω). The

rate of the transition (α, g) = ω → (α, g 	 (i, j)) = ω′ is therefore

ηβ,Nω,ω′ = ξβijgij. (5.3.7)

This, rather informal, description of the stochastic dynamics, will now be
used to derive the law of the random variables (Y β,N(t))t≥0. The total volume
of the process is measured by the rate function Λβ,N : Ω→ R+ de�ned as

Λβ,N(ω) = ν

N∑
i=1

∑
a∈A\{αi}

bi,β(a|ω) + λ̄β(ω) + ξ̄(ω).

Intuitively, this function aggregates all the rates of possible transitions away
from ω. For positive noise β and �nite N , the volume of the process cannot
explode, and is bounded away from zero.

Observation 5.3.1. For β > 0 and �nite N the volume of the process
(Y β,N(t))t≥0 has the following properties:

12Again see chapter 3 for derivations of this fact.
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(i) supω∈Ω Λβ,N(ω) <∞;

(ii) (∀ω ∈ Ω) : Λβ,N(ω) > 0.

No complications will arise by de�ning the distribution of the process in
terms of its in�nitesimal generator (see Stroock, 2005, for further details).
This is a linear operator ηβ,N : Ω× Ω→ R, with the properties

(G1) −∞ < ηβ,Nω,ω ≤ 0,

(G2) for all ω′ 6= ω, ηβ,Nω,ω′ ≥ 0, and

(G3)
∑
ω′∈Ω

ηβ,Nω,ω′ = 0.

Equations (5.3.2), (5.3.5), (5.3.7) already de�ne the mappings of this opera-
tor. For future reference, let us summarize them as

ηβ,Nω,ω′ =


νbi,β(a|ω) ifω′ = (αai , g) and a 6= αi,
2
N

exp (π(αi, αj)/β) if ω′ = (α, g ⊕ (i, j)),

ξβijgij if ω′ = (α, g 	 (i, j)),
−Λβ,N(ω) if ω′ = ω,
0 otherwise.

(5.3.8)

It is easy to verify that (5.3.8) has the properties (G1)-(G3). Moreover,
for β > 0 and �nite N , the generator is irreducible and recurrent. Hence,
the process is an ergodic continuous-time Markov process. The transition
matrix of the process (Y β,N(t))t≥0, denoted as Kβ,N , is implicitly de�ned as
ηβ,N = Λβ,N(Kβ,N − Id), where Λβ,N := diag[Λβ,N(ω)]ω∈Ω and Id is the
identity on Ω× Ω.

5.4 The invariant distribution

We are able to completely characterize the unique invariant distribution of
the Markov process {Y β,N(t)}t≥0. This is a consequence of the fact that the
constructed dynamic is reversible in equilibrium, and so we can try as an
Ansatz for the characterization of the equilibrium distribution the detailed
balanced equations (Stroock, 2005, ch.5). Let µβ,N be a probability distribu-
tion with support ΩN . This measure is said to be in detailed balance with
the generator ηβ,N if

(∀ω, ω̂ ∈ ΩN) : µβ,N(ω)ηβ,Nω,ω̂ = µβ,N(ω̂)ηβ,Nω̂,ω . (5.4.1)
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One can show that (5.4.1) is a su�cient condition for determining an invariant
measure (and hence an invariant distribution) for the process (Y β,N(t))t≥0

(again see Stroock, 2005, for more details).

Theorem 5.4.1. For any noise level β > 0 and irrespective of the realiza-
tion of types, the Markov process (Y β,N(t))t≥0 admits the unique invariant
distribution

µβ,N(ω) = Z−1

N∏
j=1

∏
k>j

[
2 exp(π(αj, αk)/β)

Nξβjk

]gjk
exp(θj(αj)/β) (5.4.2)

for every ω ∈ ΩN . The partition function is

Z :=
∑
ω̂∈ΩN

N∏
j=1

∏
k>j

[
2 exp(π(α̂i, α̂j)/β)

Nξβjk

]gjk
exp(θj(α̂j)/β).

Proof. The proof is virtually identical to the proof of Theorem 4.4.1 of chap-
ter 4, and therefore omitted.

In the following derivations, we will �x one arbitrary preference decomposi-
tion T and extract much information from the invariant distribution. By con-
ditioning on one particular preference decomposition, the volatility scheme is
�xed by De�nition 5.3.2. Hence, one part of the Markov process is determin-
istically given, leaving the action pro�le as the only remaining free variable
which will determine the asymptotic connectivity pattern of the population.
Since the normalization of the probability distribution is rather uninteresting,
we focus in the following on the measure

ρβ,N(ω|T ) :=
N∏
j=1

∏
k>j

[
2 exp(π(αj, αk)/β)

Nξβjk

]gjk
exp(θj(αj)/β).

Using the information contained in a preference decomposition, and the
model reduction hypothesis of the link decay rates (5.3.6), the measure fac-
torizes to

ρβ,N(ω|T ) =
K∏

r=1,l≥r

∏
i∈Tr

∏
j∈Tl;j>i

[
2 exp(π(αj, αk)/β)

Nξβrl

]gjk
exp(θr(α

i)/β)

=
K∏

r=1,l≥r

ρβ,Nrl (ω|T ).
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The individual functions ρβ,Nrl (ω) can be interpreted as the mass the process
puts on interactions between players of type r who interact with players of
type l. We will call these measures the (r, l) interaction mass. Formulated
in terms of interaction masses, the invariant distribution admits the repre-
sentation

µβ,N(ω|T ) =
ρβ,N(ω|T )∑

ω′∈ΩN ρ
β,N(ω′|T )

.

5.4.1 Interaction potentials and interaction Hamiltoni-

ans

Corresponding to the interaction masses, we can de�ne group speci�c inter-
action Hamiltonians (Brémaud, 1998, ch.7). These are real-valued functions
capturing the contribution of the factor ρβ,Nrl (·) to the overall mass ρβ,N(·).
Interaction Hamiltonians consist of two elements; interaction potentials and
a �distortion term� coming from the volatility a�ecting the network.13 Given
a preference decomposition T , consider the functions

Prr(ω|T ) :=
∑
i∈Tr

θr(α
i) +

∑
i∈Tr;j>i

π(αi, αj)gij (1 ≤ r ≤ K);

Prl(ω|T ) :=
∑
i∈Tr

∑
j∈Tl

π(αi, αj)gij (l > r);

P (ω|T ) :=
K∑
r=1

[
Prr(ω|T ) +

∑
l>r

Prl(ω|T )

]
.

Lemma 5.4.1. For any preference decomposition T , the function P : ΩN →
R is a potential function in the sense that

(i) If ω = (α, g) and ω̂ = (αavi , g), then

P (ω|T )− P (ω̂|T ) = U i(ω|T )− U i(ω̂|T ).

(ii) If ω = (α, g) and ω̂ = (α, g ⊕ (i, j)) and say player i was the one who
initiated the link, then

P (ω|T )− P (ω̂|T ) = U i(ω)− U i(ω̂|T ).

13This is closely related to Hamiltonian statistical mechanics. Just interpret �volatility�
as kinetic energy, and the potential function as a measure of the potential energy of the
system. Ui (2000) establishes a beautiful connection between interaction potentials and
the Shapley value.
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Proof. For (i), let us consider two states ω, ω̂ as required in the text. Without
loss of generality assume that i ∈ Tr. Then it follows that the symmetric
interaction potentials Pr̃r̃, r̃ 6= r are una�ected by this change. We count

P (ω|T )− P (ω̂|T ) =
∑
j∈Tr

[
θr(α

j)− θr(α̂j)
]

+
∑

j,k∈Tr;k>j

[
π(αj, αk)− π(α̂j, α̂k)

]
gjk

+
r−1∑
l=1

∑
j∈Tl

∑
k∈Tr

[
π(αj, αk)− π(α̂j, α̂k)

]
gjk

+
K∑

l=r+1

∑
j∈Tr

∑
k∈Tl

[
π(αj, αk)− π(α̂j, α̂k)

]
gjk

= θr(α
i)− θr(α̂i) +

∑
j∈Tr

[
π(αi, αj)− π(α̂i, αj)

]
gij

+
r−1∑
l=1

∑
j∈Tl

[
π(αi, αj)− π(av, α

j)
]
gij +

K∑
l=r+1

∑
j∈Tl

[
π(αi, αj)− π(av, α

j)
]
gij

= U i(α, g|T )− U i(αavi , g|T ).

Now for (ii), take ω, ω̂ as required and suppose, without loss of generality,
that j ∈ Tl. It is clear that from the link creation only the (r, l) interaction
potential can be a�ected. Hence

P (ω|T )− P (ω̂|T ) = Prl(ω|T )− Prl(ω̂|T )

= π(αi, αj) = U i(ω|T )− U i(ω̂|T ).

To get from the interaction potential to the interaction Hamiltonian, we have
to take care of the e�ect of network volatility. Therefore we need a measure
for the size of the graph. The total number of edges between players of
preference group r and players of preference group l is given by

erl(ω) :=
∑
i∈Tr

∑
j∈Tl;j>i

gij = |E(Tr, Tl)|.

It turns out that counting the number of edges connecting players of two
preference groups is a too crude measure for our purposes. We need to work
with the graph measure µβ,N0 (·|T ) : G[I]→ [0,∞], de�ned as

µβ,N0 (g|T ) :=
K∏
r=1

∏
l≥r

(
2

Nξβrl

)erl(g)
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for all g ∈ G[I]. Consider now the set of functions

Hrl(ω|T ) := Prl(ω|T ) + β log

(
2

Nξβrl

)
erl(ω) (1 ≤ r ≤ l ≤ K) (5.4.3)

H(ω|T ) :=
K∑
r=1

∑
l≥r

Hrl(ω|T ) = P (ω|T ) + β log µβ,N0 (g|T ) (5.4.4)

We then get the following �statistical mechanics� version of Theorem 5.4.1.

Theorem 5.4.2. Given the game IBGN = (Γ, T ), the unique invariant dis-
tribution µβ,N is the Gibbs measure

µβ,N(ω|T ) =
exp( 1

β
Hβ(ω|T ))∑

ω′∈ΩN exp( 1
β
Hβ(ω′|T ))

(5.4.5)

for all ω ∈ ΩN .

Proof. This follows directly from the de�nition of the Hamiltonian and Lemma
5.4.1.

5.5 When volatility matters and weak stochas-

tic stability

The Hamiltonian of eq. (5.4.4) provides a complete description of the sys-
tem, and eq. (5.4.5) connects it with the invariant distribution of the process.
Volatility enters the Hamiltonian only via the graph measure µβ,N0 . A fun-
damental question is now when this graph measure has an in�uence on the
limiting behavior of the invariant distribution as the noise level β vanishes. If
the e�ect coming from volatility is negligible as β → 0, then the asymptotic
prediction of the model boils down to �nding the maximizers of the potential
function P . The following Proposition provides a su�cient condition when
this is the case.

Proposition 5.5.1. Consider the structured Bayesian interaction game IBGN =
(Γ, T ). If the volatility scheme Ξ̂β is uniformly bounded as β → 0, then

lim
β→0

sup
ω∈ΩN

|Hβ,N(ω|T )− P (ω|T )| = 0.

Proof. The proof is a simple consequence of the fact that the Hamiltonian
is the sum of a potential function and the log-transformed β-weighted graph
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measure. Let Aβ := supg∈G[I] | log µβ,N0 (g|T )|. Eq. (5.4.4) gives us the uni-
form bound

|Hβ,N(ω|T )− P (ω|T )| = β| log µβ,N0 (g|T )| ≤ βAβ,

for all ω = (α, g) ∈ ΩN . By assumption, the volatility rates are uniformly
bounded from below. If they are additionally uniformly bounded from above,
then Aβ → A ∈ (0,∞) as β → 0, and so the claim follows.

This proposition shows that the underlying volatility scheme must show ex-
plosive behavior for β → 0 in order to have some in�uence on the shape of
the limiting invariant distribution, and henceforth on the set of stochastically
stable states. We use the following (weaker) notion of stochastic stability in
our model.

De�nition 5.5.1 (Sandholm (2009b)). A state ω ∈ ΩN is weakly stochasti-
cally stable in the small noise limit if

lim
β→0

β log µβ,N(ω|T ) = 0. (5.5.1)

The following Theorem shows that, under the uniform boundedness assump-
tion, stochastically stable states are determined by global maximizers of the
potential function, as it is also the case in the �xed interaction models of
Young (1998) and Blume (1993). Hence, in an extreme world where play-
ers almost never make mistakes, an extreme version of network volatility
is needed to break the strong connection between stochastic stability and
potential maximization. This �nding is summarized as Theorem 5.5.1.

Theorem 5.5.1. Under the assumptions of Proposition 5.5.1, let ω∗ ∈ arg max
ω∈ΩN

P (ω|T ).

Then for all ω ∈ ΩN we have

lim
β→0

β log µβ,N(ω|T ) = P (ω|T )− P (ω∗|T ).

Proof. This can be shown by adapting the arguments of the proof of The-
orem 12.2.2 in Sandholm (2009b), p. 463. Using the uniform boundedness
assumption of Proposition 5.5.1, we see that for any two states ω, ω′ ∈ ΩN ,
and for β su�ciently small

β log
µβ,N(ω|T )

µβ,N(ω′|T )
= Hβ,N(ω|T )−Hβ,N(ω′|T )

= P (ω|T )− P (ω′|T ) + β

[∑
l≥r

log

(
2

Nξβrl

)
(erl(g)− erl(g′))

]
= P (ω|T )− P (ω′|T ) + o(1).
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o(1) represents terms that go to 0 as β → 0. Hence, for all ω ∈ ΩN

lim
β→0

β log µβ,N(ω|T ) = lim
β→0

[
β log

µβ,N(ω|T )

µβ,N(ω′|T )
− log

µβ,N(ω∗|T )

µβ,N(ω′|T )
+ β log µβ,N(ω∗|T )

]
= P (ω|T )− P (ω∗|T ) + lim

β→0
β log µβ,N(ω∗|T ).

We claim limβ→0 β log µβ,N(ω∗|T ) = 0. Assume that the limit would be a
number c > 0. Then we would be able to �nd null sequences (βk)∞k=0, (ε

k)∞k=0

such that

µβ
k,N(ω∗|T ) = exp

(
1

βk
(c+ εk)

)
→ +∞.

This is a contradiction. Now assume that the limit is a constant c < 0. Then,
for all ω ∈ ΩN , we have

lim
β→0

β log µβ,N(ω|T ) = P (ω|T )− P (ω∗|T ) + c ≤ c < 0.

It follows that∑
ω∈ΩN

µβ,N(ω|T ) =
∑
ω∈ΩN

exp

(
1

βk
βk log µβ

k,N(ω|T )

)
≤ |ΩN | exp

(
c

2βk

)
→ 0

for β → 0, where for the upper bound we have used the fact that c/2 < 0
is a uniform upper bound for the limit lim

β→0
β log µβ,N(ω|T ). This is again a

contradiction, leaving c = 0 as the only remaining possibility. We end up
with the conclusion that

lim
β→0

β log µβ,N(ω|T ) = P (ω|T )− P (ω∗|T )

for all ω ∈ ΩN .

Corollary 5.5.1. Let

Ω∗,N(T ) := {ω ∈ ΩN | lim
β→0

β log µβ,N(ω|T ) = 0}

denote the set of weakly stochastically stable states in the small noise limit for
the realized preference decomposition T . Under the assumptions of Proposi-
tion 5.5.1 we get the equivalence

Ω∗,N(T ) = arg max
ω∈Ω

P (ω|T ).

This observation recovers well-known results from the theory of stochastic
evolutionary game dynamics. See Blume (1993; 1997) and Young (1998), ch.
6.
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5.6 The ensemble of random graphs

As in the previous models, we attempt to characterize the induced random
graph ensemble as much as we can. In this section we demonstrate another
version of the canonical result

�A co-evolutionary model with noise generates an inhomogeneous
random graph ensemble.�

The derivations are however much more intricate as they were in chapter 4.
The main result presented in this section is a version of an Erdös-Rényi
decomposition, such as Theorem 4.5.1. Lemma 5.6.2 (The Factorization
Lemma) and Proposition 5.6.1 are necessary preparatory results. The ba-
sic idea is the following; In order to compute a probability measure over
networks, we need to �x the actions employed by the agents. We will do
this, as in chapter 4, by action class partitions. For each action class par-
tition we can calculate a probability measure over graphs, which will be of
a similar form as the one found by Erdös and Rényi (1960), but the edge-
success probabilities will have to be written for pairs of players belonging
to di�erent preference and action groups. As a result we obtain a random
graph model on the deterministic vertex set I with an array of edge success
probabilities given by (psvrl (β,N))1≤r,s≤K;1≤l,v≤n. This is exactly the inhomo-
geneous random graph model of Söderberg (2002) and a particular version of
the very general model of Bollobás et al. (2007). We now present the formal
derivations.

Consider the Bayesian interaction game IBGN = (Γ, T ). For 1 ≤ r ≤ K and
1 ≤ v ≤ n, de�ne the set of type r-individuals who play action av,

Ir(v) := {i ∈ I|αi = av & θi = θr}.

The collection I := {{Ir(v)}nv=1}Kr=1 induces another partition on the soci-
ety, which subdivides the several preference classes additionally into action
classes. It gives us all the information about the behavior of the players, but
no information about the interaction structure. A player from the set Ir(v)
will be called an (r, v)-player. Every population state ω induces a subdivision
I(ω). Since we have no information about the network when we look at I,
there will be, in general, several states ω which correspond to a subdivision
I. Therefore, for a �xed population subdivision I we can collect all states
that agree with that subdivision, and write them as a set

ΩN(I) = {ω ∈ ΩN |Ir(v, ω) = Ir(v), 1 ≤ r ≤ K , 1 ≤ v ≤ n}
= {ω ∈ ΩN |I(ω) = I}.
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All states in this set share the same action pro�le α, but di�er in the network
g. Let esvrl (g) :=

∑
i∈Ir(s)

∑
j∈Il(v);j≥i gij count the number of edges between

(r, v) and (l, s)-players. If ω ∈ ΩN(I) then the range of evsrl (ω) is the �xed set

{0, 1, . . . , |Ir(s)|(|Il(v)|−δr,lδs,v)

1+δr,lδs,v
}.

Lemma 5.6.1. Let I, I′ denote two subdivisions. If I 6= I′ then ΩN(I) ∩
ΩN(I′) = ∅.

Proof. If ω ∈ ΩN(I) ∩ ΩN(I′), then the action pro�le described by the par-
titions I, I′ must be the same, and so they contain the same population
states.

This simple observation allows us to give still another representation of the
invariant distribution in terms of the sets ΩN(I) generated by subdivisions I.
For all ω ∈ ΩN we can write

µβ,N(ω|T ) =
ρβ,N(ω|T )∑

I ρ
β(ΩN(I)|T )

,

where the sum in the denominator is over all possible subdivisions I.

Lemma 5.6.2 (The Factorization Lemma). Consider the preference decom-
position T , and a state ω ∈ ΩN with corresponding population subdivision
I(ω). For all ω ∈ ΩN , the invariant measure ρβ,N can be represented as

ρβ,N(ω|T ) :=
n∏
s=1

φs1(ω, β,N |T ) · · ·φsK(ω, β,N |T ),

where for all 1 ≤ r ≤ K, l > r and 1 ≤ s ≤ n,

φsr(ω, β,N |T ) := exp

(
θr(as)

β
|Ir(s, ω)|

)∏
l≥r

φsrl(ω, β,N |T ),

φsrr(ω, β,N |T ) :=
∏
v≥s

(
2 exp(π(as, av)/β)

Nξβrr

)esvrr(ω)

,

φsrl(ω, β,N |T ) :=
n∏
v=1

(
2 exp(π(as, av)/β)

Nξβrl

)esvrl (ω)

.

Proof. See Section 5.9.

The trick behind computing the product is illustrated in the multiplication
scheme depicted in Figure 5.1. The population subdivision I induces a block-
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Figure 5.1: Multiplication scheme of the invariant measure ρβ,N .

like structure on the population. Figure 5.1 shows how to calculate all the
combinations between the blocks of the subdivision. To read this graphic,
start with the outer-left block I1(1). Agents belonging to this block can
interact with all other agents from blocks I1(v), v ≥ 1, and also with all
other agents belonging to blocks Il(v), l > 1, 1 ≤ v ≤ n. To get all these
products, simply follow the lines with a ruler, starting from the block I1(1).
Now, turn to the next block I1(2). We have already captured the interactions
with I1(1), so we don't look backward, but forward. Again, follow the drawn
lines with a ruler, starting at block I2(1). After n steps we have �nished the
multiplications beginning from blocks inside preference class 1. Then turn to
the next line, i.e. I2(1). All the incoming lines of this block are terms which
are already included in our product. So, again follow all lines going out of this
block with a ruler, as indicated in the �gure. The multiplication procedure
stops in �nite time. What we can learn from the Factorization Lemma is
that the factor φsrl is increasing in the number of edges with players from
block Il(v) i� the interaction weight

dsvrl (β,N) :=
2 exp(π(as, av)/β)

Nξβrl
(5.6.1)

is larger than 1. Phrased di�erently, the process favors interactions between
player groups for which the �birth rate� (this is 2

N
exp(π(αi, αj)/β)) of links

exceeds their �death rate� (this is ξβij). This observation is very important
to get more information about the role of the noise parameter β on the
probabilistic interaction structure of the society and further shows how the
interaction topology depends on the game the agents play. In particular,
�xing a subdivision I restricts the state space to the subset ΩN(I). On
this set the action pro�le α is constant and only the network g is a free
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variable. Furthermore, the interaction weights between types are �xed on
ΩN(I). Only in this case it makes therefore sense to calculate the likelihood
of certain networks g. In order to do this, we need to evaluate the mass a
subset ΩN(I) receives in the long-run by the process. Proposition 5.6.1 shows
that this measure is a product over functions depending on the interaction
weight dsvrl (β,N) and the size of the sets Ir(s), �xed by the subdivision I.

Proposition 5.6.1. Given a preference decomposition T and a population
subdivision I, the mass received by ΩN(I) in the long-run equals

ρβ,N(ΩN(I)|T ) =
∑

ω:I(ω)=I

ρβ(ω|T ) =
K∏
r=1

n∏
s=1

Φs
r(I, β,N)|Ir(s)| (5.6.2)

where, for all types 1 ≤ r < l ≤ K, and actions 1 ≤ s ≤ n, the functions
Φs
r(·, ·, ·) are de�ned as

Φs
r(I, β,N) :=

∏
l≥r

Φs
rl(I, β,N),

Φs
rr(I, β,N) := exp

(
θr(as)

β

)∏
v≥s

(
1 +

2 exp(π(as, av)/β)

Nξβrr

) |Ir(v)|−δs,v
1+δs,v

,

Φs
rl(I, β,N) :=

n∏
v=1

(
1 +

2 exp(π(as, av)/β)

Nξβrl

)|Il(v)|

.

Proof. See Section 5.9.

The strategy of the proof is the following; Fixing a population subdivision
automatically �xes the number of edges that can be formed between (r, s)
and (l, v) players. Further, we do not put any restriction on the interaction
structure when we calculate the mass that the set ΩN(I) receives in equi-
librium. This implies that we have to sum over all possible edges that can
be formed between block (r, s) and (l, v), by accounting for the number of
possibilities to form these edges.
Proposition 5.6.1 completely speci�es an invariant distribution on the family
of sets {ΩN(I)}. Furthermore, it shows that the invariant measure, deter-
mining such an invariant distribution, is of a particularly nice product form.
Theorem 5.6.1 follows easily from Proposition 5.6.1, showing that the sub-
graphs on ΩN(I)14 are Erdös-Rényi random graphs (Erdös and Rényi, 1960,
Bollobás, 1998).

14See the proof of Proposition 5.6.1 in Section 5.9.
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Theorem 5.6.1 (The Erdös-Rényi decomposition). Given a preference de-
composition T , a population subdivision I and a population size N . On ΩN(I)
the set of subgraphs G[Ir(s) ∪ Il(v)] ⊂ G[I] is an Erdös-Rényi random graph

ensemble, with edge success probability psvrl (β,N) = 2 exp(π(as,av)/β)

2 exp(π(as,av)/β)+Nξβrl
.

Proof. See Section 5.9.

Example 5.6.1. We continue with Example 5.2.2, where the Windows users
and the Linux users interact. Consider an arbitrary population subdivision
I = {I1(1), I1(2), I2(1), I2(2)}. Suppose we have the following estimates on
the underlying volatility scheme

Ξ̂β = ξ

[
e1/β e7/β

e7/β e1/β

]
, ξ > 0.

From the given data, we can compute a 4 × 4 matrix of edge success prob-
abilities, displayed in Table 5.1. For positive β and �nite N , we see that

I1(1) I1(2) I2(1) I2(2)

I1(1) 2 exp(1/β)
2 exp(1/β)+Nξ exp(1/β)

2
2+Nξ exp(1/β)

2 exp(1/β)
2 exp(1/β)+Nξ exp(7/β)

2
2+Nξ exp(7/β)

I1(2) 2
2+Nξ exp(1/β)

2 exp(4/β)
2 exp(4/β)+Nξ exp(1/β)

2
2+Nξ exp(7/β)

2 exp(4/β)
2 exp(4/β)+Nξ exp(7/β)

I2(1) 2 exp(1/β)
2 exp(1/β)+Nξ exp(7/β)

2
2+Nξ exp(7/β)

2 exp(1/β)
2 exp(1/β)+Nξ exp(1/β)

2
2+Nξ exp(1/β)

I2(2) 2
2+Nξ exp(7/β)

exp(4/β)
2 exp(4/β)+Nξ exp(7/β)

2
2+Nξ exp(1/β)

2 exp(4/β)
2 exp(4/β)+Nξ exp(1/β)

Table 5.1: Edge-success probabilities of the subgraphs for β > 0.

all the edge success probabilities are positive, although interactions between
two players of the same type are expected to occur much more frequent, than
interactions across two preference groups. This well-studied phenomenon of
homophily (Powell et al., 2005, Currarini et al., 2008) is frequently observed
in real-world social networks. The noise parameter β controls the strength
of homophily. For very large β, the edge success probabilities approach the
constant 2/(2 + Nξ), independent of the preference group. Hence, in this
extreme scenario, where a lot of noise exists in the economy, the taste dif-
ference of the two population groups play no role.15 Such a scenario is very
likely to be observed in the initial phase of network evolution, where players
don't know anything about each other. For very low β, formally β ↘ 0, a

15Observe that in this extreme case all subgraphs follow the same distribution. Hence,
as β → ∞ we obtain the homogeneous random graph model of Erdös-Rényi as special
case.
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completely di�erent prediction can be made. In this case the above matrix
of edge success probabilities converges to a diagonal matrix as in Table 5.2.
Only �same-type� links can survive in this extreme world.

I1(1) I1(2) I2(1) I2(2)

I1(1) 2
2+Nξ 0 0 0

I1(2) 0 1 0 0

I2(1) 0 0 2
2+Nξ 0

I2(2) 0 0 0 1

Table 5.2: Edge-success probabilities of the subgraphs for β → 0.

5.7 Long-run action pro�les

In order to characterize the generated ensemble of random graphs it was
necessary to �x the types attached to all players' labels. This was done by
taking a realized preference decomposition as the primitive of the model.
However, as mentioned in Section 5.2, such a partition might contain more
information than is necessary. Particularly, if one is only interested in an
aggregate description of the population in terms of frequency statistics, the
speci�c realized set of player types does not provide interesting information.
Additionally, if one is only interested in a description of aggregate population
behavior, again the realized set of types is not interesting. Here, the less

demanding notion of anonymous interim Bayesian interaction games ¯IBG
N
,

introduced at the end of Section 5.2, is su�cient to work with. Henceforth,
we take a vector N = (N1, . . . , NK) as information on the distribution of
types in the population. Next, we consider the behavior matrix at state
ω ∈ ΩN

Z(ω) :=


z1(1, ω) z2(1, ω) . . . zK(1, ω)
z1(2, ω) z2(2, ω) . . . zK(2, ω)

...
...

. . .
...

z1(n, ω) z2(n, ω) . . . zK(n, ω)

 ,
where each entry of this matrix is de�ned as zr(s, ω) := |Ir(s, ω)|. Hence, the
r-th column of this matrix gives a frequency description of aggregate play in
the subpopulation of players of type r.16 Conditional on the type distribution
N , it must be true that 1TZ = N , where 1 is a column vector of dimension

16The mapping ω 7→ Z(ω) is in general many-to-one.
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n consisting only of 1. Therefore, conditional on the Bayesian interaction

game ¯IBG
N

= (Γ,N ), de�ne the set of feasible behavior matrices as

Z(N ) := {Z ∈ Nn×K |1TZ = N}.

To get a probability distribution over matrices in this set, we �rst establish
a connection between the set ΩN(I), and the subset

ΩN(Z) : = {ω ∈ ΩN |Z(ω) = Z}
= {ω ∈ ΩN | |Ir(s, ω)| = zr(s), 1 ≤ r ≤ K; 1 ≤ s ≤ n}.

When we were working on the set ΩN(I), we have made use of the fact that
the action pro�le α is constant. Consider the behavior matrix Z and let I
be a subdivision which agrees with this matrix. Then every permutation of
the players' labels still generates the matrix Z. Hence, the mass received by
the set ΩN(Z) equals the mass of ΩN(I), up to a permutation of the players'
labels. This leads to the following result.

Proposition 5.7.1. For a given N , let Z ∈ Z(N ) be a feasible behavior
matrix. The long-run mass on ΩN(Z) is given by

γβ,N(Z|N ) =
K∏
r=1

Nr!

zr(1)! · · · zr(n)!
Φ1
r(Z, β,N)zr(1) · · ·Φn

r (Z, β,N)zr(n) (5.7.1)

where the factors Φ are de�ned in Proposition 5.6.1.

Proof. Let I be a subdivision that agrees with the matrix Z and ω ∈ ΩN(I).
From Proposition 5.6.1, we know that the mass concentrated on ΩN(I) is
given by eq. (5.6.2). All states in this set generate the same action pro�le α.
Since |Ir(s, ω)| = zr(s) for all 1 ≤ r ≤ K, 1 ≤ s ≤ n and ω ∈ ΩN(I) (recall
that I agrees with Z), we see that ΩN(I) ⊆ ΩN(Z). A permutation of the
indices {1, . . . , N} changes the partition I to some other partition I′ which
still must agree with Z. Thus, we see that ΩN(I′) ⊆ ΩN(Z). In general, if
we let P(I) denote the partitions obtained from I by permuting the players'
labels, we see that P(I) = ΩN(Z). Thus,

γβ,N(Z|N ) =
K∏
r=1

Cr,N (Z)
n∏
s=1

Φs
r(Z, β,N)zr(s)

where T is a preference decomposition that agrees with N , and Cr,N (Z) is
a combinatorial term counting the number of permutations of the players'
labels in the various sub-populations. There are Cr,N (Z) = Nr!

zr(1)!···zr(n)!
per-

mutations of the labels in the subpopulation of type r players which all agree
with the r-th column of the matrix Z, and so the claim follows.
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Example 5.7.1. Let us investigate the shape of the measure (5.7.1) in the
case of Examples 5.2.2 and 5.6.1. We have seen in Example 5.2.2 that large
neighborhoods make it more likely that Windows will be adopted, even by in-
dividuals who have a strong bias for Linux. In Example 2 we have shown that
any �nite population size N and positive noise level β, symmetric interactions
will be observed with a higher probability. This pattern of homophily becomes
stronger the smaller β. We will now investigate the dependency of the long
run distribution over strategies on β. Fix the population size N = 100 and
assume that both types appear in equal proportions in the population, i.e.
N1 = N2 = 50. Assume the same data as we did in Example 5.2.2, and put
ξ = 1. Since zr(1) + zr(2) = Nr, 1 ≤ r ≤ 2, there are only 2 independent
variables, allowing us to visualize the invariant distribution in 3-dimensional
space. In Figure 5.2 we present the invariant distribution for rather high β.

Figure 5.2: Invariant distribution over state matrices Z((50, 50)) induced by
the measure (5.7.1).

We see a nice bell shaped distribution, slightly biased in the population group
of the Linux fans towards Linux. The bell shaped distribution is simply a
re�ection of the fact that high β means that individuals decisions are driven
to a large extent by randomness. In Figure 5.3 we reduce β, leading to a
slightly di�erent image. We observe a much higher degree of specialization
in the two population groups. While almost everybody of the 50 Linux fans
indeed use Linux, the individuals without a real preference bias decided to use
Windows as their operating system. For β = 1 the probability distribution
over the possible strategy con�gurations is already heavily concentrated on a
small subset of Z((50, 50)). Finally, we decrease β to the very small value
0.5 (Figure 5.4). Suddenly a completely di�erent behavior emerges in the
population. Windows has emerged as the unique standard in the population.
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Figure 5.3: Invariant distribution over state matrices Z((50, 50)) induced by
the measure (5.7.1).

The reason for this drastic change in the behavioral pattern can be found
in Example 2. There we have seen that as β → 0 with probability 1 only
interactions among Windows users from the same preference group will take
place. Again we see how the formulation of the dynamic process generating
the graph of interaction in�uences the way how players behave in the model.

5.7.1 In�nite Population behavior

By now we have always considered the case N �xed, β variable (and maybe
small). In this section we revert this, by taking N → ∞, and β �xed and
positive. In this large population environment we need to study a sequence
of Bayesian interaction games {IBGN}∞N=N0 , indexed by the size of the popu-
lation. Since in a growing population a behavioral matrix will not be a well-
de�ned object, we will shift our attention to Bayesian strategies, as de�ned
in (5.2.5). Further, instead of an anonymous preference decomposition N ,
we will look at the empirical preference distribution m̂ := N

N
. In a sense, we

consider a sequence of plays in the Bayesian interaction game BGN = (Γ, m̂)
when the population grows gradually over time to in�nity. To make such a
process meaningful, we choose a constructive approach, building on the ideas
mentioned in remark 5.2.1. We will de�ne a population growth process, where
in every �period� one new agent joins the population. An exact de�nition
of a �period� is not important. What is however important is that the time
scale of population growth does not interfere with the time scale at which the
co-evolutionary processMβ,N reaches its stationary distribution. To ensure
this, we will, in a rather informal way, assume thatMβ,N is a relatively fast
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Figure 5.4: Invariant distribution over state matrices Z((50, 50)) induced by
the measure (5.7.1).

process, so that the population process is close to its long run prediction µβ,N

when population growth sets in.

Good population growth processes

Assume there exists a full-support probability measure m = (m1, . . . ,mK)
on the type space Θ, according to which nature assigns each �period� τ
the types to the players independently. The realized anonymous preference
decomposition is N τ = (N τ

1 , . . . , N
τ
k ) and is a random vector following the

multinomial distribution (5.2.4). The realized relative frequency of players of
type r = 1, 2, . . . , K is m̂τ

r := N τ
r /N

τ . In between the time loop τ → τ + 1,

agents play the game ¯IBG
Nτ

= (Γ,N τ ), whereN τ is the realized anonymous
preference decomposition from the independent period τ type-assignment
process. ThenMβ,Nτ

shapes the system for a su�ciently long time so that
all population statistics are distributed according to the stationary measure
µβ,N

τ
. Convergence to the stationary measure is guaranteed for positive

noise levels. In particular, the distribution over behavioral matrices Z ∈
Z(N τ ) is then governed by the temporary equilibrium measure γβ,N

τ
(·|N τ ).

Iterating this process over τ leads to a population growth process, where the
time averages of the realized anonymous preference decompositions converges
to the target distribution m.17 To �x this process, consider the following
de�nition.

17See remark 5.2.1. In fact this is a simple consequence of the strong law of large
numbers, due to the independence in the type assignment mechanism of nature.
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De�nition 5.7.1. Let {Iτ}∞τ=0 be a population growth process with initial
population I0 = {1, 2, . . . , N}. Let m be a full support distribution on Θ.
The population growth process is said to be good, if it satis�es the following
criteria:

Unit Growth: For all τ ≥ 1 : Iτ = Iτ−1 ∪ {N + τ};

Independent assignment: At the τ -th step, nature assigns independently
types to each player in Iτ anew;

Relaxation: Before period τ + 1 the co-evolutionary processMβ,Nτ
is close

to its invariant distribution µβ,N
τ
.

Calling m̂τ
r := N τ

r /N
τ for all τ = 0, 1, . . . , and r = 1, 2, . . . , K, a good

population growth process satis�es a law of large numbers in the sense that
m̂τ
r → mr almost surely as τ →∞.

In the following we will consider some good population growth process {Iτ}∞τ=0.
In order to keep track of the temporal Bayesian strategies within each sub-
population, de�ne the matrices

diag[N−1] =

 1/N1 0 . . . 0
...

...
. . .

...
0 0 . . . 1/NK

 ,
σN(ω) = Z(ω) diag[N−1] =

 σN1 (1, ω) σN2 (1, ω) . . . σNK(1, ω)
...

...
. . .

...
σN1 (n, ω) σN2 (n, ω) . . . σNK(n, ω)


=
[
σN1 (ω)T , . . . ,σNK (ω)T

]
.

For every N and N , σN is a column stochastic matrix, i.e. 1TσN = 1T ,
living in the set Z(N ) diag[N−1] =

∏K
r=1XN

r (N ) ≡ XN(N ). The invariant
measure over behavior matrices (5.7.1) is, by de�nition, in a one-to-one corre-
spondence with an invariant measure over �nite population interim Bayesian
strategy pro�les (5.2.5). To see this, note that for any Z ∈ Z(N ), we have

γβ,N(Z|N ) = γβ,N(σN diag[N ]|N )

=
K∏
r=1

Nr!∏n
s=1(NrσNr (s))!

n∏
s=1

Φs
r(σ

N diag[N ], β,N)Nrσ
N
r (s)

=: γ̂β,N(σN |N )
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with corresponding σN ∈ XN(N ). Before presenting the main result of this
section, we need to make sure that Bayesian strategies in fact converge in
the large population limit. Therefore the following assumption is imposed.18

Assumption 5.7.1. Let {Iτ}∞τ=0 be a good population growth process. The
sequence of interim Bayesian strategy pro�les σN

τ
converges component-wise

to a limit Bayesian strategy σ ∈ Σ as τ → ∞, where Σ is the Cartesian
product of K unit simplices of dimensions n− 1.

Next, let us write the interaction weights as

dsvrl (β,N) =
d̄svrl (β)

N
, d̄svrl (β) :=

2 exp(π(as, av)/β)

ξβrl

and de�ne the n× n symmetric matrix

Dβ
rl :=

[
d̄svrl (β)

]
1≤s,v≤n .

Denote the standard inner product on Rn as 〈a,Db〉 =
∑

i,j aidi,jbj.

Theorem 5.7.1. Let {N τ}∞τ=0 be a sequence of population sizes generated by
a good population growth process. Under Assumption 5.7.1 we have

lim
τ→∞

1

N τ
log γ̂β,N

τ

(σN
τ |N τ ) =

K∑
r=1

mrFr(σ, β), (5.7.2)

where for all 1 ≤ r < l ≤ K

Fr(σ, β) := h(σr) +
n∑
s=1

θr(as)

β
σr(s) +

∑
l≥r

mlfrl(σ, β), (5.7.3)

frr(σ, β) :=
1

2
〈σr,Dβ

rrσr〉, (5.7.4)

frl(σ, β) := 〈σr,Dβ
rlσl〉, (5.7.5)

h(σr) := −
n∑
s=1

σr(s) log σr(s). (5.7.6)

Proof. See Section 5.9.

18We think that this is a mild assumption, and might even be redundant. However, we
were not able to prove that Bayesian strategies do (almost) always converge. This remains
for future research.
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The proof uses the representation (5.7.1), and then we apply Stirling's for-
mula repeatedly. It is a powerful result, telling us that the equilibrium dis-
tribution for strategy pro�les puts almost all mass on the argmax of a single
real-valued function F (σ, β) :=

∑K
r=1 mrFr(σ, β), for N → ∞. The value

of the functions {Fr}Kr=1 depends on the complete Bayesian strategy pro�le
σ, as well as the interaction weights. The entropy function h(·) enters via
the combinatorial terms, counting the number of ways the strategies can be
distributed in the various preference groups, when this is done in a uniform
random way.

5.8 Conclusion

We have presented a co-evolutionary model of networks and play where the
agents' preferences are diverse. The main parameters of the model were the
noise level and the size of the population. We call such class of games struc-
tured Bayesian interaction games, building on earlier work of Morris (1997;
2000) and Ely and Sandholm (2005), Sandholm (2007a). We gave a com-
plete description of the long-run probabilistic law of the two dimensions of
the model; the population pro�le of actions and the network of interaction.
Further, we studied the behavior of the model by performing two di�erent
limit operations. First, we �xed the population size and asked the question
how the invariant distribution behaves in the small noise limit. Such a limit
emphasizes the importance of errors made by the individuals in their deci-
sions. Low noise translates into a situation where agents make few errors, and
the limiting outcome of such a process is conventionally called the stochasti-
cally stable set in the small noise limit. We gave su�cient conditions when
this subset of states can be characterized by knowing the potential function
alone, as if the model were formulated for a �xed interaction structure as in
Blume (1993), Young (1998). Then, we �xed the noise level of the system
at a positive value, and studied the behavior of the invariant measure as the
population grows in magnitude. In this large population framework, individ-
ual errors are averaged out, and so we obtain a di�erent way to formulate an
equilibrium selection criterion.
There are many remaining questions waiting for an answer. In this paper we
have just derived small noise or large population properties for the invariant
measure over action Bayesian strategy pro�les. We have not yet characterized
the limiting behavior of the induced random graph ensemble. In particular,
it would be interesting to explore the evolution of connected components in
the society as one of the model parameters approaches its limit. A branching
process approach would be helpful for this, and the literature on random
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graphs (see e.g. Söderberg, 2002, Durrett, 2007, Bollobás et al., 2007) gives
us a hint how to start. Moreover, the present model is very tractable simply
because we made rather special assumptions. First, the game was assumed
to be a potential game, a quite small class of games indeed. Second, the link
creation process is not fully general due to the assumption on the players'
rate functions (5.3.3). Future work should improve the model in these direc-
tions. The general framework outlined in chapter 2 of this thesis seems to be
a promising �rst step.

5.9 Proofs of selected Lemmas, Propositions and

Theorems

Proof of Lemma 5.6.2. We start with reformulating the interaction Hamilto-
nians as follows: for interactions within the same preference class 1 ≤ r ≤ K,
let us use the identity err(ω) =

∑n
s=1

∑
v≥s e

sv
rr(ω) for all ω ∈ ΩN . Then we

get

Hβ,N
rr (ω|T ) = Prr(ω|T ) + β log

(
2

Nξβrr

)
err(ω)

=
n∑
s=1

∑
i∈Ir(s,ω)

θr(as) + β

n∑
s=1,v≥s

∑
i∈Ir(s,ω)

∑
j∈Ir(v,ω),j>i

π(as, av)gij

+ β log

(
2

Nξβrr

)
err(ω)

=
n∑
s=1

θr(as)|Ir(s, ω)|+ β
n∑
s=1

∑
v≥s

(
π(as, av)

β
+ log

(
2

Nξβrr

))
esvrr(ω)

=
n∑
s=1

θr(as)|Ir(s, ω)|+ β

n∑
s=1

∑
v≥s

esvrr(ω) log (dsvrr(β,N))

where we have de�ned the interaction weight dsvrr(β,N) := 2 exp(π(as,av)/β)

Nξβrr
.

Similarly, for interactions between players of type r and players of type l, we

138



get

Hβ,N
rl (ω|T ) = Prl(ω|T ) + β log

(
2

Nξβrl

)
erl(ω)

= β

n∑
s,v=1

∑
i∈Ir(s,ω)

∑
j∈Il(v,ω)

π(as, av)gij + β log

(
2

Nξβrl

)
erl(ω)

= β

n∑
s,v=1

esvrl (ω) log (dsvrl (β,N)) .

By eq. (5.4.4), the invariant measure takes the form

ρβ,N(ω|T ) = exp

(
Hβ,N(ω|T )

β

)
=

K∏
r=1

∏
l≥r

exp

(
Hβ,N
rl (ω|T )

β

)

=
K∏
r=1

[
n∏
s=1

exp

(
θr(as)|Ir(s, ω)|

β

)∏
v≥s

dsvrr(β,N)e
sv
rr(ω)

]

×

[∏
l>r

n∏
s,v=1

dsvrl (β,N)e
sv
rl (ω)

]
.

Let us de�ne for all 1 ≤ r ≤ K, l > r and ω ∈ ΩN the following functions:

φsrr(ω, β,N |T ) : = exp

(
θr(as)|Ir(s, ω)|

β

)∏
v≥s

dsvrr(β,N)e
sv
rr(ω),

φsrl(ω, β,N |T ) : =
n∏
v=1

dsvrl (β,N)e
sv
rl (ω),

φsr(ω, β,N |T ) : =
∏
l≥r

φsrl(ω, β,N |T ),

to arrive at the factorized representation

ρβ,N(ω|T ) =
K∏
r=1

n∏
s=1

φsr(ω, β,N |T ).
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Proof of Proposition 5.6.1. On ΩN(I) we know that the action pro�le is �xed,
leaving only the network as free variable. Moreover, for a given subdivision
I, we can partition every graph g, corresponding to a population state ω ∈
ΩN(I), into many conditionally independent subgraphs. This high level of
subgraph-decomposability makes the computation rather simple. Let ω ∈
ΩN(I), and de�ne for all 1 ≤ r ≤ l ≤ K and 1 ≤ s, v ≤ n the edge set

Esvrl (ω) := E(Ir(s, ω), Il(v, ω)).

For every ω ∈ ΩN(I), the cardinality of these sets is restricted to the range

esvrl (ω) := |Esvrl (ω)| ∈
{

0, 1, . . . ,
|Ir(s)|(|Il(v)| − δr,lδs,v)

1 + δr,lδs,v

}
.

Since the edge set Esvrl (ω) completely de�nes the subgraph describing the
interactions between (r, s)-players and (l, v)-players, we see that Erl(ω) is
the union over all these disjoint subgraphs. To be precise, we have for all
ω ∈ ΩN(I) and 1 ≤ r < l ≤ K, the following identities:

Err(ω) =
n⋃
s=1

⋃
v≥s

Esvrr (ω),

Erl(ω) =
n⋃
s=1

n⋃
v=1

Esvrl (ω).

In order to aggregate over all states in ΩN(I) we have to sum over all pos-
sible edge counts in these subgraphs. On ΩN(I), the vertex set is I =⋃K
r=1

⋃n
s=1 Ir(s). On ΩN(I) every g ∈ G[I] is the union of its disjoint sub-

graphs

g =
[
⊕Kr=1 ⊕v≥s g[Ir(s) ∪ Ir(v)]

]
⊕ [⊕l>r ⊕s,v g[Ir(s) ∪ Il(v)]] .

It follows that

ρβ,N(ΩN(I)|T ) =
∑

ω∈ΩN (I)

ρβ,N(ω|T ) =
∑
g∈G[I]

ρβ,N((α, g)|T , I).

In order to compute this sum, we can exploit the subgraph-decomposability
of our model, and so sum over each subgraph separately. Start by taking
the sum over edges e11

11 ∈ {0, 1, . . . ,
|I1(1)|(|I1(1)|−1)

2
}. Call E11

11(I) the maximal
element of this set. By the Factorization Lemma 5.6.2, we can partial out
the factors a�ected by this summation as follows

ρβ,N(ω|T , I) = exp

(
θ1(a1)|I1(1)|

β

)
d11

11(β,N)e
11
11(ω)B.
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B is a catch-all term, collecting all factors una�ected when summing over
e11

11. With this representation it is clear that we can now sum over all possible
networks in the set G[I1(1) ∪ I1(1)] without a�ecting the remainder term B.
Further, observe that all graphs is this set with the same number of edges
have the same weight. Hence, we can do the following summation exercise
over the set of subgraphs G[I1(1) ∪ I1(1)]:

∑
g∈G[I1(1)∪I1(1)]

ρβ,N((α, g)|T , I) = exp

(
θ1(a1)|I1(1)|

β

)
B

E11
11(I)∑
k=0

(
E11

11(I)
k

)
d11

11(β,N)k

= exp

(
θ1(a1)|I1(1)|

β

)
(1 + d11

11(β,N))E
11
11B

= ρβ,N(11),(11)(Ω
N(I)|T , I).

Store this expression and continue with aggregating over all graphs in the set
G[I1(1) ∪ I1(2)]. In the same way as before, we arrive at

ρβ,N(11),(12)(Ω
N(I)|T , I) = exp

(
θ1(a1)|I1(1)|

β

)
× (1 + d11

11(β,N))E
11
11 (1 + d12

11(β,N))E
12
11B

where B is again a catch-all term. Continuing in this fashion (n− 2) times,
we arrive at the expression

ρβ,N(11),(1n)(Ω
N(I)|T , I) = exp

(
θ1(a1)|I1(1)|

β

) n∏
s=1

(1 + d1s
11(β,N))E

1s
11(I)B

= Φ1
1(I, β,N)|I1(1)|B.

The next step is to sum over edges e2v
11, v ≥ 2, by following the same pro-

cedure. Iteration yields then the desired result. This summation operation
terminates after n ·K steps.

Proof of Theorem 5.6.1. For every ω ∈ ΩN we have

µβ,N(ω|T ) =
ρβ,N(ω|T )∑

I ρ
β,N(ΩN(I)|T )

,

where the sum extends over all partitions I. From this it follows that

µβ,N(ω|T , I) =
µβ,N(ω|T )1ΩN (I)(ω)

µβ,N(ΩN(I)|T )
=
ρβ,N(ω|T )1ΩN (I)(ω)

ρβ,N(ΩN(I)|T )
,
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and this extends to any subset A ⊆ ΩN(I), by counting elements. Let

A := {ω ∈ ΩN(I)|esvrl (ω) = ēsvrl },

the subset of ΩN(I) on which the number of connections between (r, l) and
(s, v)-players equals the �xed number ēsvrl . By Proposition 5.6.1, we can
compute the mass of this set as

ρβ,N(A|T , I) = dsvrl (β,N)ē
sv
rl

ρβ,N(ΩN(I)|T )

(1 + dsvrl (β,N))E
sv
rl (I)

.

To see this is observe the following. ρβ,N(A|T , I) is the mass received by
states in A. On A all interactions are unrestricted, except those between
(r, l) and (s, v)-players. The mass of the set A is determined by summing
over all possible subgraphs, conditional on I, but holding the edge count of
the subgraph g[Ir(s)∪Il(v)] constant at ēsvrl . To get this mass from eq. (5.6.2)
all one has to do is to replace the factor (1+dsvrl (β,N))E

sv
rl (I) with dsvrl (β,N)ē

sv
rl .

Hence

µβ,N(A|T , I) =
ρβ,N(A|T )

ρβ,N(ΩN(I)|T )

=
dsvrl (β,N)ē

sv
rl

(1 + dsvrl (β,N))E
sv
rl (I)

(�)

Set
psvrl (β,N)

1−psvrl (β,N)
= dsvrl (β,N), and solve this for psvrl (β,N). Substitute this into

equation (�), by noting that Esv
rl (I) = |Ir(s)|(|Il(v)|−δrlδvs)

1+δrlδvs
. We get

µβ,N(A|T , I) = psvrl (β,N)ē
vs
rl (1− pvsrl (β,N))

|Ir(s)|(|Il(v)|−δrlδvs)
1+δrlδvs

−ēvsrl .

It follows form this that if Gsv
rl is a graph in G[Ir(s) ∪ Il(s′)] with 0 ≤ k ≤

Esv
rl (I) edges, then its probability is

P({Gsv
rl }|T , I) = psvrl (β,N)k(1− pvsrl (β,N))

|Ir(s)|(|Il(v)|−δrlδvs)
1+δrlδvs

−k
. (5.9.1)

This is the probability measure found by Erdös and Rényi (1960) to describe
the probability space of a random graph where each edge exists with the
probability psvrl (β,N).

Proof of Proposition 5.7.1. Start by writing

log γ̂β,N
τ

(σN
τ |N τ ) =

K∑
r=1

{
log

(
N τ
r !∏n

s=1(N τ
r σ

Nτ

r (s))!

)
+

n∑
s=1

N τ
r σ

Nτ

r (s) log Φs
r(σ

Nτ

diag[N τ ], β,N τ )
}
.
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We will �rst determine the limit as τ → ∞ for the combinatorial term by
applying Stirling's Formula: n! ∼=

√
2πn(n/e)n meaning limn→∞

n!√
2πn(n/e)n

=

1. Under assumption 5.7.1 we get

log

(
N τ
r !∏n

s=1(N τ
r σ

Nτ

r (s))!

)
= N τ

r

[
h(σN

τ

r ) + o(1)
]

For the second term in the measure, note that

log Φs
r = log Φs

rr +
∑
l>r

log Φs
rl.

We have for all r = 1, 2, . . . , K,

log Φs
rr(σ

Nτ

diag[N τ ], β,N τ ) =
θr(as)

β
+
∑
v≥s

(
N τ
r σ

Nτ

r (v)− δs,v
1 + δs,v

)
log (1 + dsvrr(β,N)) ,

and for all l > r

log Φs
rl(σ

Nτ

diag[N τ ], β,N τ ) =
n∑
v=1

N τ
l σ

Nτ

l (v) log (1 + dsvrl (β,N)) .

For �xed β > 0, we can write

log (1 + dsvrl (β,N)) =
1

N
(d̄svrl (β) + o(1)).

Using this �rst-order approximation, we get for all r = 1, 2, . . . , K and s =
1, 2, . . . , n

N τ
r σ

Nτ

r (s) log Φs
rr(σ

Nτ

diag[N τ ], β,N τ )

= N τ
r

[ 1

β
θr(as)σ

Nτ

r (s) +
σN

τ

r (s)

N

∑
v>s

N τ
r σ

Nτ

r (v)(d̄svrr(β) + o(1))

+
σN

τ

r (s)

N

(
N τ
r σ

Nτ

r (s)− 1

2

)
(d̄ssrr + o(1))

]
= N τ

r

[ 1

β
θr(as)σ

Nτ

r (s) + m̂τ
r

1

2
(σN

τ

r (s))2d̄ssrr(β) + m̂τ
rσ

Nτ

r

∑
v>s

σN
τ

r (v)d̄svrr(β) + o(1)
]

It follows

n∑
s=1

N τ
r σ

Nτ

r (s) log Φs
rr(σ

Nτ

diag[N τ ], β,N τ ) = N τ
r

[
1

β

n∑
s=1

θr(s)σ
Nτ

r (s) + m̂τ
rfrr(σ

Nτ

, β) + o(1)

]
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Now, for l > r we obtain analogously

log Φs
rl(σ

Nτ

diag[N τ ], β,N τ ) =
n∑
v=1

m̂τ
l σ

Nτ

l (v)(d̄svrl (β) + o(1)),

so that

n∑
s=1

N τ
r σ

Nτ

r (s) log Φs
rl(σ

Nτ

diag[N τ ], β,N τ ) = N τ
r m̂

τ
l (frl(σ, β) + o(1)).

Putting the pieces together gives

log γ̂β,N
τ

(σN
τ |N τ ) =

K∑
r=1

N τ
r

[
h(σN

τ

r ) +
1

β

n∑
s=1

θr(as)σ
Nτ

r (s) +
∑
l≥r

m̂τ
l frl(σ

Nτ

, β) + o(1)
]

=
K∑
r=1

N τ
r Fr(σ

Nτ

, β)

Dividing by N τ and letting τ →∞ gives the desired result.
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Chapter 6
Conclusion
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In this dissertation we have discussed three models on the co-evolution of net-
works and play. Chapter 2 characterized the general mathematical framework
for these kind of models, and we have shown that already with a minimal set
of assumptions many interesting long-run characteristics of the system can
be identi�ed. In this article we encountered for �rst time the close connec-
tion between co-evolutionary models and the class of inhomogeneous random
graphs. Subsequent chapters veri�ed this �nding in di�erent scenarios, and it
seems that this relationship is generic (in the sense of transition matrices sat-
isfying the �axioms� of a co-evolutionary model of chapter 2. In general, the
random graphs identi�ed in this thesis are very close to classical Erdös-Rényi
graphs. This results is promising and disappointing at the same time. It is
promising, because it shows us that evolutionary games are a useful frame-
work to study the dynamic evolution of networks and play in an integrated
way. Further, a large class of evolutionary dynamics generates the same prob-
abilistic ensemble of networks, but with di�erent edge-success probabilities
(recall De�nition 1.2.1). It is disappointing, since the inhomogeneous random
graph found here are, from the empirical point of view, only slightly better
than an Erdös-Rényi graph.1 The �problem� with this graph ensemble is that
it misses any local structure, at least for su�ciently large population size. We
see this already from the �toy model� presented in section 1.2. Compare Fig-
ures 1.3, 1.4 with the Erdös-Rényi graphs displayed in Figure 1.5, 1.6. At the
�rst sight, it seems that our model possesses signi�cant more structure than
the Erdös-Rényi graphs, since we clearly observe a tendency to form cliques,
�colored� by the action of the game. However, if we would consider only one
of these components, the zoomed picture will essentially look as the networks
of Figures 1.5 and 1.6, depending on the level of volatility. Empirically, even
large massive networks display signi�cant local structure, meaning signi�cant
clustering, short average distances, and center-periphery structures.2 With
the speci�c behavioral rules and simple games studied in chapters 4 and 5,
we are not able to cope with these stylized facts. It is currently unknown if
there exist behavioral rules which are able to generate �realistic� networks.

So why should one think that the results of this dissertation are useful?
First, all the papers in this thesis are written in a mathematically rigorous
way, standing in contrast to the bulk of (very interesting) results produced
by physicists with the help of computer simulations and mean-�eld tech-
niques. I have tried to convince the reader that a full study of the stochastic

1A nice survey on empirical observations on technological, biological and social networks
can be found in Dorogovtsev and Mendes (2003) and Newman (2003).

2The �rst two properties are taken also as the de�nition of the famous small-world
networks of Watts and Strogatz (1998).
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processes is not completely out of reach, although it may be quite cumber-
some. Second, I regard this thesis as a �rst step into a more general line
of research, where tools of evolutionary game theory provide the mathemat-
ical language to �grow� random networks, evolving at a comparable time
scale to the evolution of actions. This endows random graph theory with its
necessary justi�cation from behavioral principles. Therefore, I regard this
co-evolutionary element as crucial and indispensable.
Second, even if the models presented in this thesis are not able to reproduce
the stylized facts, inhomogeneous random graphs are still mathematically
fascinating objects, and we have not yet studied their properties to a full ex-
tent. This remains to be done for future research. There is a rich literature
which may be useful for this task, and all of them have been mentioned in
the articles.
Third, a co-evolutionary model with noise, as de�ned in chapter 2, still al-
lows for many possible speci�cations of behavioral rules. I �rmly belief that
one should be able to �nd behavioral rules, which may generate more intri-
cate network topologies, having signi�cant local clustering, or even scale-free
degree distributions. The expected-degree model of Chung and Lu (see e.g.
Chung and Lu, 2006), seems to be a promising starting point. It should also
not be too di�cult to introduce into the abstract behavioral rules of the gen-
eral model in chapter 2 �local search protocols�, such as the agents employ
in Marsili et al. (2004). This modi�cation will lead to a process which favors
networks with signi�cant clustering, yielding the desired local structure.
A real extension of the model could also be made by questioning the nature
of connections in a network. The models in this thesis treated interaction
as a 0-1-decision, i.e. a link is either on or o�. Real world social networks
show however di�erent intensities in interactions. This calls for modeling
the evolving networks as weighted graphs, and the weights of interaction are
shaped by evolutionary forces. Weighted networks o�er an even more re�ned
picture of the overall interaction structure of the agents (see Schweitzer et al.,
2009), but also make the mathematical analysis much more intricate. The
problem is that, a weight can in principle be any real number, calling for the
analysis of a Markov process with continuous state-spaces, and this requires
much more mathematical sophistication than the models treated here.
All in all these are just some suggestions and ideas, and certainly many more
avenues are open for future research in this fascinating and young area of
science.
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Abstract

This dissertation presents three interrelated papers on the co-evolution of
networks and play. The general structure of these models combines three
elementary events - action adjustment, link creation and link destruction -
to one stochastic population dynamics, and focuses on the asymptotic prop-
erties of these processes.
Chapter 2 presents the general mathematical framework of a co-evolutionary
model. The players are allowed to have arbitrary utility functions, de�ned
on a common set of actions, and employ probabilistic behavioral rules in
the above mentioned events. The class of admissible rules is characterized
by irreducibility and a large deviations assumption. Beside these technical
assumptions, not many behavioral assumptions are imposed. This generates
a well-de�ned Markov chain, whose long-run properties can be studied ana-
lytically by making use of tree-characterization methods due to Freidlin and
Wentzell (1998). We show how stochastically stable states can be detected in
such co-evolutionary models, by de�ning suitable cost-functions. Then, un-
der some further mild assumptions on the structure of the behavioral rules,
we can prove an interesting connection between the derived ensemble of net-
works and inhomogeneous random graphs.
The models presented in chapters 4 and 5 particularize the general framework
to the class of potential games and behavioral rules of the logit form. Under
these assumptions, chapter 4 gives a full description of the induced ensemble
of networks, and provides closed-form expressions for some statistics of this
ensemble, such as the degree distribution. This article also presents a gen-
eral concentration result of the long-run distribution of the co-evolutionary
process on the set of potential maximizers, thereby generalizing earlier re-
sults from evolutionary game theory. The model presented in chapter 5 is
more general by allowing the players to have idiosyncratic preferences. We
introduce a new class of games, called structured Bayesian interaction games.
This class of games combines ideas from so-called interaction games (Morris,
1997), and a very young evolutionary theory on Bayesian population games
(Ely and Sandholm, 2005, Sandholm, 2007a).
Chapter 3 establishes a connection between the Markov chain constructed
in the general framework of chapter 2 and the continuous-time Markov pro-
cesses considered in the models of chapters 4 and 5. Chapter 6 closes the
thesis with some thoughts and suggestions for future research.
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Zusammenfassung

Diese Dissertation besteht aus drei inhaltlich zusammenhängenden Artikeln
zu ko-evolutionären Dynamiken von Netzwerken und Strategien. Ein ko-
evolutionärer Prozess besteht aus drei elementaren Ereignissen - Revision von
Aktionen, Kreation eines links, Zerstörung eines links- welche zusammenge-
fasst eine aggregierte Populationsdynamik de�nieren. Unser Augenmerk liegt
in der Charakterisierung des langfristigen Verhaltens derartiger Prozesse.
Kapitel 2 beschreibt den abstrakten mathematischen Rahmen eines ko-evolutionären
Modells. Die Spieler sind charakterisiert durch eine Nutzenfunktion auf einem
gemeinsamen Raum von Aktionen und verwenden probabilistische Verhal-
tensregeln in den eingangs genannten elementaren Ereignissen. Zulässige Ver-
haltensregeln erfüllen eine Irreduzibilitätsannahme sowie ein Prinzip groÿer
Abweichungen. Neben diesen technischen Annahmen werden strukturelle An-
nahmen an das Verhalten der Spieler auf ein Minimum reduziert. Dies gener-
iert eine wohl de�nierte Markov-Kette, dessen langfristiges Verhalten durch
Graphen-theoretische Methoden nach Freidlin und Wentzell (1998) studiert
werden kann. Wir beschreiben eine allgemeine Methode mit der stochastisch-
stabile Zustände identi�ziert werden können. Unter weiteren schwachen An-
nahmen ist das induzierte Zufallsgraphenmodell vollständig charakterisier-
bar. Es zeigt sich eine bemerkenswerte Beziehung zwischen ko-evolutionären
Modellen und dem Modell der inhomogenen Zufallsgraphen.
In Kapitel 4 und 5 werden diese Resultate verwendet um partikulre Modelle
zu analysieren. Der Artikel �Potential games played in volatile environments�
diskutiert ein Ko-evolutorisches Modell in der Klasse von Potentialspielen
und Logit-Verhaltensregeln. Die invariante Verteilung und das generierte Zu-
fallsgraphenmodell sind vollständig bestimmbar, und wir präsentieren einige
Statistiken des Zufallsgraphenmodells in geschlossener Form, wie etwa die
�degree distribution�. Des Weiteren beweisen wir ein Konzentrationsresultat
der invarianten Verteilung auf der Menge der Maxima der Potentialfunktion.
Dies ist eine Verallgemeinerung wohl bekannte Resultate der Evolutionren
Spieltheorie. Kapitel 5 erweitert das Modell von Kapitel 4 durch Hetero-
genität in den Präferenzen der Spieler. Wir de�nieren eine neue Klasse von
Spielen, genannt �structured Bayesian interaction games�. Diese Klasse von
Spielen vereint Ideen von �interaction games� (Morris, 1997) und einer jun-
gen evolutionären Literatur über Bayesianische Populationsspiele (Ely und
Sandhom 2005, Sandholm, 2007a).
Kapitel 3 stellt eine Verbindung zwischen den Markov-Ketten von Kapitel
2, und den Markov-Prozessen der Kapitel 4 und 5 her. In Kapitel 6 disku-
tieren wir mögliche Erweiterungen der beschriebenen Modelle und skizzieren
zuknftige Forschungsvorhaben.
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