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1. Aims of research: 

The endoplasmic reticulum (ER) is a key organelle in the secretion pathway involved in the 

synthesis of both proteins and lipids destined for multiple sites within and outside the cell 

(Lavoie and Paiement, 2006). It is responsible for correct folding and delivery of proteins of 

the secretory pathway. Thus, it contains sophisticated protein proof reading and elimination 

mechanisms (Kostova and Wolf, 2003). The mechanisms guaranteeing the integrity and 

fidelity of secretory proteins in the ER are termed ER quality control (QC). If a protein fails to 

reach its correctly folded native conformation it does not pass the final QC checkpoints. Then 

the protein is not transported to its final destination in the cell and instead is eventually 

degraded by a process termed ER-associated degradation (ERAD). During ERAD, non-

native proteins are retro-translocated from the ER into the cytosol where they are 

ubiquitylated and thereafter degraded by proteasomes (Ellgaard and Helenius, 2003).  

The aim of this study was to investigate the degradation of a specific glycoprotein by the 

ERAD pathway in wild type and glycosylation-deficient cells. The N-glycosylated model 

glycoproteins used in this study were RI332, a truncated version of ribophorin I (RI) and RI332-

6HA, an HA-tagged version of RI332 (Kitzmueller et al., 2003). Ribophorin I is a 

transmembrane glycoprotein found abundantly in the ER. It is part of the 

oligosaccharyltransferase (OST), a multisubunit protein complex carrying out a critical step in 

asparagine-linked glycosylation (ALG) of proteins (Kelleher and Gilmore, 2006). The 

shortened, soluble versions of RI, RI332 and the tagged RI332-6HA, substrates for the ERAD-

ubiquitin-proteasome pathway, have been used in previous studies of ERAD (Ermonval et 

al., 2001; Kitzmueller et al., 2003) and thus represent ideal model substrates for investigation 

of protein degradation. The experimental model cells used in this study were G3 and QC 

hamster fibroblasts permanently expressing RI332 or RI332-6HA. G3 fibroblasts represent the 

wild type and thus the control cells, whereas QC fibroblasts are glycosylation deficient 

mutants that produce N-glycosylated proteins lacking glucosylation (Flores-Diaz et al.,1998; 

2004). As glucosylation is critical for the interaction of glycoproteins with the 

calnexin/calreticulin cycle, this cell model should allow a better understanding of the role of 

this pathway in ERAD.   

Furthermore, experiments using inhibitors of proteasomal degradation such as ZLLL and 

inhibitors of N-glycan processing such as castanospermine, dMM and kifunensine were 

performed. The aim was to study their influence on glycoprotein processing and degradation 

in the ER based on observations in preceding studies in HeLa cells (Kitzmueller et al., 2003). 
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2. Introduction: 

2.1. Quality control (QC): 

In order to maintain the integrity of a cell an important feature is quality control (QC). Quality 

control mechanisms exist for synthesis of DNA, RNA and proteins so as to keep 

accumulations of errors in macromolecules in the cell low. Concerning proteins, QC occurs at 

the level of translation, folding and assembly.  If a protein fails to reach its correctly folded 

native conformation it does not pass the final QC checkpoints. Then the protein is not 

transported to its final destination in the cell and is eventually degraded. Discrimination of 

native and non-native protein conformations is carried out by various sensor molecules 

including molecular chaperones and enzymes that covalently tag misfolded proteins which 

lead to recognition by the folding and degradation machinery (Ellgaard and Helenius, 2003). 

Proteins destined for secretion, the plasma membrane or the cell surface are translocated 

from the cytosol into the endoplasmic reticulum. The ER is the organelle responsible for 

proper folding and delivery of these proteins and contains sophisticated proofreading and 

degradation mechanisms. Failure of protein quality control leads to disease and cell death 

(Kostova and Wolf, 2003). 

2.1.1. Primary and secondary quality control in the ER: 

On the one hand, protein QC works at a general level termed primary QC that is applied to 

all proteins based on common structural and biophysical structures. On the other hand, 

secondary QC acts at a specific level for selected proteins.  

Primary QC is dependent on the recognition of features such as exposure of hydrophobic 

regions, unpaired cysteine residues and the tendency to aggregate. The molecular 

chaperons and folding sensors carrying out this mechanism are found abundantely in the ER 

(Ellgaard and Helenius, 2003). Binding Protein (BiP), glucose-regulated protein (GRP) 94, 

protein disulphide isomerase (PDI), the lectins calnexin (CNX), calreticulin (CRT) and ER 

degradation enhancing 1, 2-mannosidase-like protein (EDEM) as well as UDP-

glucose:glycoprotein glycosyltransferase (UGGT) and ERp57 are among the most important 

workers in the secretory protein factory (Ellgaard and Helenius, 2003; Anelli and Sitia, 2008).  

Specific proteins and protein families have to undergo further proofreading mechanisms in 

order to be secreted (Ellgaard and Helenius, 2003). Once the proteins are folded they are no 

longer substrate to primary QC and thus they can leave the ER through ER exit sites and for 

the Golgi complex. The factors of secondary QC act on folded proteins and late folding 

intermediates and effect maturation, assembly, folding and transport (Ellgaard et al., 1999). 

They can be assigned to three different groups.  The “outfitters” establish or maintain a 



8 
 

secretion-competent conformation of the travelling protein, the “escorts” have a similar 

function but accompany their substrates to the Golgi and the “guides” provide signals for 

intracellular transport (Herrmann et al., 1999). Accessory proteins include ERGIC-53, p24 

family, receptor-associated protein (RAP) as well as egasyn and carboxyl esterase (Ellgaard 

et al., 1999). Secondary QC is often cell-type dependent and frequently involved in the 

regulation of ER retention and export (Ellgaard and Helenius, 2003). 

 

2.2. The endoplasmic reticulum: 

The endoplasmic reticulum is an organelle that forms a network of tubules, vesicles and 

cisternae within eukaryotic cells. It is surrounded by a single membrane that separates the 

ER lumen from the cytosol. The ER lumen is extracytosolic and thus equivalent to the 

extracellular space. Therefore, the ER provides an environment optimized for protein folding 

and maturation and several cotranslational and post-translational modifications of proteins 

can take place that do not occur in the cytosol. These modifications include disulphide-bond 

formation, signal-peptide cleavage, N-linked glycosylation and glycophosphatidylinositol 

(GPI)-anchor addition (Ellgaard and Helenius, 2003). 

There are two forms of the ER. The smooth ER is the site of lipid and membrane synthesis 

and completely lacks bound ribosomes. The cytoplasmic surface of the rough ER is studded 

with ribosomes and represents the site of protein synthesis. 

Approximately one-third of all proteins in eukaryotes are targeted to the secretory pathway. 

The first compartment encountered by this diverse substrate ensemble is the ER 

(Ghaemmaghami et al., 2003; Kanapin et al., 2003). Secretory proteins are translocated into 

the ER in an unfolded state via an aqueous channel, the Sec61 translocon complex 

(Ruddock and Molinary, 2006). Once in the ER lumen the proteins are properly folded, 

assembled and modified by a large array of ER chaperones and enzymes (Kostova and 

Wolf, 2003). One major modification of many secretory proteins is called N-glycosylation and 

involves binding of a preformed oligosaccharide to the substrate protein carried out by the 

oligosaccharyltransferase (OST) complex (Kelleher and Gilmore, 2005). Proteins are allowed 

to exit the ER and enter the secretory pathway only when they are properly folded and 

modified (Ellgaard et al., 1999). To ensure correct folding several QC as well as degradation 

mechanisms take place in the ER such as unfolded protein response (UPR), 

calnexin/calreticulin cycle and ER-associated degradation (ERAD) (Kostova and Wolf, 2003). 

Native proteins enter vesicles at the ER exit sites and traffic through the ER-Golgi 

intermediate compartment (ERGIC) to the Golgi complex (Ellgaard and Helenius, 2003). 
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2.2.1. N-glycosylation and glycoprotein processing: 

Asparagine-linked glycosylation is one of the most common protein modification reactions in 

eukaryotic cells (Kelleher and Gilmore, 2005) and represents a highly conserved mechanism 

in evolution (Yuki et al., 2005). N-glycosylation is unique to proteins targeted for the secretory 

pathway (Anelli and Sitia, 2008) and involves binding of a preformed oligosaccharide to 

asparagine side chains in the sequence Asn-X-Ser/Thr, where X is any amino acid other 

than proline (Khalkhall and Marshall, 1975). The luminal enzyme oligosaccharyltransferase 

(OST) scans the nascent protein entering the ER lumen for the required consensus 

sequences and mediates the attachment of pre-assembled, triantennary core glycan 

composed of two N-acetylglucosamine, nine mannose and three glucose residues (see 

figure 1, Ruddock and Molinary, 2006).  

 

 

 

Figure 1 Core glycans added on protein nascent chains. (A) The complete oligosaccharide is 

composed of two N-acetylglucosamine residues (black squares), nine mannose residues 

(green circles), and three glucose residues (red triangles). Linkages are shown and the three 

N-glycan branches are labeled A, B and C (Ruddock and Molinary, 2006).  

 

N-glycans contribute to the hydrophilicity of the unfolded, nascent proteins (Ruddock and 

Molinary, 2006) and are progressively trimmed by resident enzymes of the secretory 

pathway (Anelli and Sitia, 2008). In the ER and in the early secretory pathway, the repertoire 

of oligosaccharide structures is still small and the glycans play an important role in protein 

folding, oligomerization, quality control, sorting, and transport. In the Golgi complex, the 
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glycans acquire more complex structures and a new set of functions that the sugars display 

in the mature proteins (Helenius and Aebi, 2001).  

 

In mammalian cells, the pre-formed oligosaccharide starts to be synthesized on the cytosolic 

surface of the ER. Sugars are added, one by one, to dolicholphosphate. When two N-

acetylglucosamines and five mannoses have been added the oligosaccharide precursor is 

flipped to the luminal side of the ER where four more mannoses and three glucoses are 

added. The resulting core oligosaccharide is ready to be attached to the asparagine residues 

of a nascent protein by oligosaccharyltransferase (see figure 2, Helenius and Aebi, 2001).  

 

 

 

 

 

Figure 2 Synthesis of the lipid-linked precursor followed by transfer of the glycan to a 

nascent growing polypeptide chain (catalyzed by OST, green). Trimming and processing of 

the glycan by ER resident enzymes. When the protein has folded (gray oval) it is transported 

to the Golgi complex where further modification of the glycan takes place (Helenius and Aebi, 

2001). 

 

 

2.3. The calnexin/calreticulin cycle: 

The calnexin/calreticulin (CNX/CRT) cycle (see figure 3) represents a well-characterized 

primary QC system in the ER. It is responsible for supporting folding of glycoproteins, 

retaining non-native glycoproteins in the ER until they have reached their folded 

conformation, and targeting terminally misfolded glycoproteins for degradation (Ellgaard and 

Helenius, 2003). 

After transfer of the preformed glycan (Glc3Man9GlcNAc2) to asparagines residues of a 

nascent protein by OST the enzymes glucosidase I and II sequentially remove the three 

glucose residues attached to the A branch. Then the folding sensor UDP-
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glucose:glycoprotein glucosyltransferase (UGGT) refits a glucose residue to N-glycans close 

to misfolded regions (Anelli and Sitia, 2008; Taylor et al., 2004). Calnexin and calreticulin 

specifically bind monoglycosylated glycoproteins and retain misfolded substrates in the ER, 

preventing their aggregation and promoting oxidative folding via association with the protein 

disulphide isomerase-like protein ERp57 (Anelli and Sitia, 2008; Ellgaard et al, 2001; Frickel 

et al., 2002; Russell et al., 2004; Taylor et al., 2004).  

Glucosidase II removes the terminal glucose and dissociates the substrate from 

calnexin/calreticulin. Subsequently, the substrate undergoes novel inspection by UGGT and 

is exposed to, dependent on its folding state, either a novel round in the calnexin/calreticulin 

cycle, further transported along the secretory pathway or degraded. 

Terminally misfolded proteins are substrates of ER-associated degradation (ERAD). 

Trimming of the terminal B branch mannoses inhibits glucose re-addition and thus the 

substrate is no longer able to associate with calreticulin/calnexin (Anelli and Sitia, 2008). 

Several enzymes are involved in targeting non-native proteins to ERAD including ER α1, 2- 

mannosidases and ER degradation-enhancing 1, 2-mannosidase-like proteins, namely the 

EDEMs 1-3.  It has been shown that α1, 2- mannosidase I plays a crucial role in removing 

terminal mannoses but recent findings suggest that EDEMs which have been thought to 

serve as receptors for mannose trimmed glycoproteins may participate as well in the 

trimming process. Initially it was suggested that removal of a single mannose residue was 

sufficient for a glycoprotein to enter ERAD (Lederkremer, 2009). Indeed it was found that 

ERAD substrates are processed to M6 and M5, which means that most or all α1, 2 linked 

mannose residues are removed (Avezov et al., 2007).  
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Figure 3 The CNX/CRT cycle (Anelli and Sitia, 2008) 

 

 

2.4. Enzymes involved in processing of secretory proteins: 

2.4.1. Oligosaccharyltransferase: 

Asparagine-linked glycosylation (ALG) in eukaryotic cells is carried out by the 

oligosaccharyltranferase (OST) complex. OST catalyses the en bloc transfer of a preformed 

oligosaccharide onto asparagines residues of nascent proteins entering the lumen of the ER 

(see 2.2.1.). OST is a hetero-oligomeric protein complex consisting of seven subunits in 

mammals: ribophorin I, DAD1, N33/IAP, OST4, STT3A/STT3B, Ost48, and ribophorin II.  

 

N-Linked glycosylation is temporally coupled to the protein translocation reaction and occurs 

as, or immediately after, the polypeptide is synthesized. In order to coordinate protein 

translocation and glycosylation, OST is localized adjacent to the protein translocation 

channel (Kelleher and Gilmore, 2006).  
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Diseases that affect glycoprotein biogenesis are called congenital disorders of glycosylation 

(CDG). They have a broad range of clinical phenotypes and affect nearly every organ 

system. Eighteen different types of CDGs have been defined genetically (Freeze and Aebi, 

2005). 

 

2.4.2. Trimming enzymes glucosidase I and II, ER α1, 2- mannosidase I: 

Subsequently to ALG, glucosidase I, a type II membrane protein with a lumenal hydrolytic 

domain, rapidly removes the outermost of the three glucose moieties (Stigliano et al., 2009; 

Helenius et al., 2005).  Glucosidase II is responsible for removing the middle glucose 

(cleavage I) and represents a soluble ER-resident heterodimer composed of two tightly but 

noncovalently bound α and β chains (GIIα and GIIβ) (Trombetta et al., 1996, 2001).The 

resulting monoglycosylated glycan allows the entry of the nascent protein into the 

calnexin/calreticulin cycle. Release of the substrate from the chaperones calnexin/ 

calreticulin is enabled by a second cleavage of glucosidase II which removes the remaining 

glucose. Properly folded proteins are able to leave the ER, whereas insufficiently folded 

proteins are re-glucosylated by UGGT and thus re-enter the calnexin/calreticulin cycle.  

In recent studies it has been suggested that GII plays a regulatory role controlling the 

entrance of glycoproteins into CNX/CRT cycles. However, this putative function has to 

undergo extensive studies (Parodi and Caramelo, 2008). 

ER α1, 2- mannosidase I plays a crucial role in targeting terminally misfolded proteins for 

ERAD cleaving the terminal mannose of the B branch (Helenius et al., 2005). Recently, it has 

been proposed that ERAD substrates are further processed to Man6 or Man5 (Avezov et al., 

2007) and additional ER α1, 2- mannosidases as well as EDEMs participate in this process 

too (Lederkremer, 2009). 

It has been shown that removal of mannose is slower than that of glucose by GI and GII. 

Thus, “mannose removal time clock” regulated disposal has been suggested. Irreparably 

misfolded glycoproteins staying in the ER for a relatively long period are demannosylated 

and targeted to degradation (Parodi and Caramelo, 2008). 

 

2.4.3. UDP-glucose:glycoprotein glucosyltransferase: 

UDP-glucose: glycoprotein glucosyltransferase (UGGT) is a soluble protein of the ER that 

consists of a large (80%) N-terminal folding sensor domain and a smaller (20%) catalytic C-

terminal domain (Arnold et al., 2000). After trimming of the innermost glucose residue by 

glucosidase II, UGGT adds back a glucose moiety to N-glycans positioned near misfolded 

regions of the protein. Thus, UGGT acts as a folding sensor and produces monoglucosylated 

glycans that interact with calnexin or calreticulin (Taylor et al., 2004; Anelli and Sitia, 2008). 
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UGGT senses protein conformations as it recognizes hydrophobic amino acid patches 

exposed in molten globule-like conformers. Furthermore, UGGT glucosylates glycoproteins 

of not fully assembled oligomeric complexes because it recognizes hydrophobic surfaces 

exposed as a consequence of the absence of subunit components (Sousa and Parodi, 1995; 

Caramelo et al., 2003). 

 

2.4.4. Calnexin and Calreticulin: 

Nascent glycoproteins after trimming by GI and GII or re-addition of a glucose moiety by 

UGGT are substrates of the calnexin/ calreticulin cycle. Calnexin (CNX) and calreticulin 

(CRT) are related proteins that comprise an ER chaperone system that ensures the proper 

folding and quality control of newly synthesized glycoproteins. Their specificity for 

glycoproteins is determined by a lectin site that recognizes the oligosaccharide structure 

Glc1Man9GlcNAc2.  In addition, calnexin and calreticulin possess binding sites for ATP, Ca2+, 

non-native polypeptides and ERp57, an enzyme that catalyzes disulfide bond formation, 

reduction and isomerization.  Calnexin is a 90 kDa type I ER membrane protein, calreticulin 

represents its soluble homologue of 60kDa that is localized in the ER lumen by a C-terminal 

KDEL sequence (Williams, 2006). Of the glycoproteins associating with the chaperones 

some interact with only one of them whereas others bind both either simultaneously or 

sequentially (Helenius et al., 1997). The decision whether to bind CNX or CRT has been 

shown to be related to the number and location of the glycosylation sites of the substrate 

(Harris et al., 1998; Hebert et al., 1997), as well as the different topologies of CNX and CRT 

(Danilczyk et al., 2000; Wada et al., 1995). 

 

Since GI and GII play important roles in targeting nascent proteins into the CNX/CRT cycle, 

experiments with glucosidase-deficient cell lines, cells with CNX or CRT deficiency as well as 

studies with inhibitors such as castanospermine (CST) of these enzymes have been 

performed to find out more about this pathway.  

The more rapid folding observed in models of CRT or CRT deficiency, as well as the 

appearance of misfolded, aggregated, or disulfide cross-linked species, suggest that these 

chaperones normally delay folding, help suppress the formation of aggregates and promote 

correct disulfide-bond formation. Additional phenotypes frequently associated with CNX/CRT 

deficiency or CST treatment include more rapid export of non-native glycoproteins from the 

ER as well as their increased degradation (Williams, 2006). 
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2.4.5. ERp57: 

Cysteine (Cys) represents an amino acid that is found more often than other residues in 

functionally important regions of proteins. Some of the functions include formation of 

structural disulfide bonds, metal binding, targeting proteins to the membranes, and various 

catalytic functions (Marino and Gladishev, 2008). Enzymes catalyzing the reduction, 

oxidation and isomerization of disulfide bonds are known as protein disulfide isomerases 

(PDI). ERp57 is one of the members of this protein family.  

It contains four thioredoxin-like motifs, abb’a’, where the a and a’ domains contain catalytic 

CGHC motifs and the b and b’ domains are non-catalytic (Maattanen, 2006). ERp57 interacts 

with the ER lectins calreticulin and calnexin primarily through its b' domain and to some 

extent through its positively charged C-terminus and thereby promotes the oxidative folding 

of newly synthesized glycoproteins (Ellgaard et al., 2004). The N-terminal cysteine residue of 

the CGHC motif forms mixed disulfides with substrate proteins during oxidation and 

isomerization reactions (Williams, 2006). 

 

 

 

 

Figure 4 Model for the interaction of a folding glycoprotein with ERp57and calnexin.  

Calnexin (green) is shown associated with a hypothetical model of ERp57 (blue) drawn on 

the basis of the NMR structure of the PDI `a' domain (Kemmink et al., 1996). The four 

domains of ERp57 are indicated: a, b, b', a'. A folding glycoprotein (thin blue line) may enter 

the cavity between the arm and globular domains interacting both with the lectin site as well 

as a polypeptide-binding site. The two CGHC active sites of ERp57 (red) are well-placed to 

catalyze disulfide-bond formation, reduction or isomerization (Williams, 2006). 
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2.5. ERAD: 

Most proteins that misfold or fail to assemble properly leave the calnexin/calreticulin cycle 

and are targeted for degradation by ER-associated degradation (ERAD). This mechanism 

can be divided into several steps (see figure 5):  protein recognition, protein targeting, 

retrotranslocation to the cytosol and ubiquitylation followed by degradation by the 26S 

proteasome (Williams, 2006; Vembar and Brodsky, 2008). 

 

 

 

 

Figure 5 A step-by-step illustration of endoplasmic reticulum-associated degradation 

(Vembar and Brodsky, 2008) 

 

 

Protein recognition: 

Only correctly folded and processed glycoproteins can leave the ER and proceed along the 

secretory pathway. If an error is found proteins are degraded via the ERAD pathway. It still 

remains elusive for most ERAD substrates how the discrimination between native and non-

native glycoproteins is made.  As mentioned before, UGGT plays an important role as a 

folding sensor re-glucosylating glycoproteins and therefore targeting them to the 

calnexin/calreticulin cycle. Furthermore, it is not sure whether ERAD requires trimming of a 

specific number of mannoses and it still has to be investigated how factors such as calnexin / 

calreticulin, BiP, PDI and UGGT inteact with the ERAD pathway.  However, it has been 

suggested that a large percentage of native proteins undergo ERAD as well (Varga et al., 

2004, Vembar and Brodsky, 2008).  
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Protein targeting: 

Since proteins targeted for ERAD might not be passed between different recognition and 

targeting complexes, protein recognition and targeting can become indistinguishable 

(Vembar and Brodsky, 2008). Two types of factors involved in recognition and targeting of 

aberrant proteins for the ERAD pathway have been identified. In mammals, EDEM1 and its 

homologues EDEM2 and EDEM3 and Htm1p/Mnl1p in yeast have been detected. However, 

it remains unclear whether the EDEMs exhibit substrate specifity, whether all three 

homologues possess mannosidase activity and whether binding to a distinct mannose-

trimmed protein species is essential for substrate selection (Vembar and Brodsky, 2008). 

 

The second type of lectin-like molecule discovered is Yos9p in yeast and OS-9 and XTP3-

B/ERlectin in mammals. These molecules are believed to participate in glycan trimming and 

further in degradation of misfolded proteins, whereas the exact mechanism and nature of the 

glycan degradation signals that they recognize remains unclear (Yoshida and Tanaka, 2009). 

 

Yeast Yos9 was suggested to exhibit chaperone-like activity involved in ERAD by binding to 

misfolded substrates. It was also discovered that Yos9 forms stable complexes with BiP and 

binds to Hrd1, possibly regulating the selectivity of the ubiquitin ligase for misfolded 

substrates (Vembar and Brodsky, 2008; Buschhorn et al., 2004; Gauss et al., 2006). 

 

For OS9, interaction with GRP94 and the mammalian HRD1complex has been shown 

(Christianson et al., 2008). Concerning XTP3-B, different suggestions for its role have been 

made. Altogether, it will be important to determine whether members of the Yos9 family 

exhibit diverse substrate specificities, and what the relative contributions are between lectin-

mediated binding and the observed chaperone-like activity (Vembar and Brodsky, 2008). 

 

Retrotranslocation and ubiquitylation: 

Prior to their degradation, nearly all ERAD substrates have to be ubiquitylated by a 

machinery that requires the action of an E1 ubiquitin-activating enzyme, E2 ubiquitin-

conjugating enzymes and E3 ubiquitin ligases. Given that the catalytic sites of these factors 

are located in the cytoplasm substrates targeted for ERAD have to be retrotranslocated to 

the cytosol. The exact mechanism of this step remains unknown.  However, it was shown 

that ubiquitylation is mandatory for most ERAD substrates (Nakatsukasa and Brodsky, 

2008). 

Several studies suggest that Sec61, the major component of the translocation channel 

importing polypeptides into the ER might serve as the retrotranslocon in ERAD as well. 

Nevertheless, other factors involved in retrotranslocation have been identified including Hrd1 
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and Doa10 in yeast and gp78 in mammals that are believed to function as both 

retrotranslocon channels and E3 ligases.  Furthermore, Der1 in yeast and one of its 

homologues in mammals, Derlin1 have been proposed to be involved in degradation and /or 

retrotranslocation (Nakatsukasa and Brodsky, 2008; Vembar and Brodsky, 2008).  

 

Proteasome degradation: 

After ERAD substrates have been polyubiquitylated and retrotranslocated a series of 

ubiquitin-binding proteins escort the modified substrates from the ER to the proteasome. One 

of these factors is the cell-division-cycle 48 (cdc 48) complex (p97 in mammals), a AAA 

ATPase that contributes together with two cofactors to extraction of the substrate from the 

ER membrane prior to proteasome targeting. Following extraction cdc48 might deliver 

substrates to the proteasome. The 26S proteasome involved in degradation of ubiquitylated 

substrates consists of two subunits. In the 19S proteasome subunit ubiquitin receptors 

including regulatory particle non-ATPase-13 (Rpn13), Rpn10 and regulatory particle ATPase-

5 have been found with Rpn13 probably mediating the highest affinity binding and playing a 

pivotal role in degradation. Rpn10 is thought to bind to and then drive substrates into the 20S 

proteasome core for degradation 

In addition, it has been proposed that CDC48- and proteasome-interacting factors might 

ensure that a polypeptide is not sterically hindered from entering the catalytic chamber of the 

proteasome. Furthermore, proteasome-associated enzymes and integral proteasome 

subunits have been shown to mediate substrate de-ubiquitylation which could give 

substrates a second chance to escape degradation (Nakatsukasa and Brodsky, 2008; 

Vembar and Brodsky, 2008) 

 

2.6. Unfolded Protein Response: 

The accumulation of unfolded proteins can lead to the induction of the unfolded protein 

response (UPR) in order to reduce protein accumulation in the ER. In yeast the monitor of 

protein folding is inositol-requiring protein-1 (Ire1), an ER-localized transmembrane Ser/Thr 

kinase and site-specific endoribonuclease. Under normal conditions, immunoglobulin binding 

protein (BiP) binds to Ire1 in the ER lumen and maintains the enzyme inactive. When 

misfolded proteins accumulate in the lumen of the ER BiP binds to the misfolded substrates 

and therefore Ire1 is activated. Possibly Ire1 might also be activated by dimerization and 

direct binding to misfolded proteins owing to the formation of a peptide-binding pocket in the 

ER-luminal domain. Activation of Ire1 results in the transphosphorylation of its cytoplasmic 

domain which triggers endoribonuclease activity and thus an intron in the mRNA that 

encodes Hac1p, a UPR transcriptional activator is spliced. The resulting processed mRNA is 
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re-ligated by tRNA ligase, Rlg1 and translated. Hac1p translocates into the nucleus and 

binds to UPR elements (UPREs) and possibly other sequences in the promoter region of 

target genes to upregulate their expression. 

In mammals, the UPR involves three transducers, IRE1, PERK and activating transcription 

factor-6 (ATF6). IRE1 acts identically to its yeast homologue, ER-stress-activated PERK is a 

transmembrane kinase that phosphorylates the α-subunit of the eukaryotic translation 

initiation factor-2 (eIF2α), and thus inhibits protein translation. ATF6 traffics to the Golgi 

under conditions of ER stress where it is proteolytically processed by the S1P and S2P 

intramembrane proteases to release the ATF6-fragment transcription factor. The resulting 

fragment translocates into the nucleus where it upregulates target genes. In each case, BiP 

is also required for transducer activation. It is believed that the IRE1 branch of the UPR 

seems to be anti-apoptotic, whereas persistent PERK signaling might trigger apoptosis 

(Vembar and Brodsky, 2008; Lin et al., 2007). 

 

 

Figure 6 Depiction of the unfolded protein response in yeast (Vembar and Brodsky, 2008) 
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2.7. Interplay between ERAD and other pathways: 

The ERAD pathway is tightly linked to other cellular pathways, although the mechanisms 

underlying these cross-pathway communications remain to be investigated. The 

accumulation of misfolded proteins in the ER puts ER and cellular homeostasis at risk 

(Vembar and Brodsky, 2008). An intimate coordination between ERAD and UPR has been 

shown in several studies suggesting that an efficient ERAD requires an intact UPR, and UPR 

induction increases ERAD capacity (Walter et al., 2000; Casagrande et al., 2000; Spear and 

Walter, 2000; Friedlander et al., 2000). A subset of factors required for ERAD is induced by 

UPR which is activated by accumulation of misfolded proteins (Kimata et al., 2007; UPR see 

figure 6). Reduction of stress within the ER is also mediated by other mechanisms such as 

expansion of the ER volume trough elevated lipid synthesis, augmentation of molecular 

chaperones and enzymes, decrease of protein translation and translocation into the ER and 

increase of the secretory pathway (Vembar and Brodsky, 2008). ER-stress-induced 

autophagy represents another backup mechanism for ERAD in which portions of the ER 

together with proteins and protein aggregates are engulfed by autophagosomes and further 

delivered to the lysosome or vacuole for degradation (Nair and Klionsky, 2005). In case that 

ER stress cannot be overcome, apoptosis can be induced. Several models have been 

suggested how ER-stress is linked to the apoptotic pathway, however, the ER-stress signal 

seems to be transmitted by the mitochondria leading to the induction of the the mitochondrial 

intrinsic apoptotic pathway (Rao et al., 2004). 

 

2.8. The secretory pathway: 

Successfully assembled and modified proteins leave the ER and are further transported 

along the secretory pathway to their final destination. Exit of proteins from the ER occurs at 

the so-called ER exit sites (ERES), where buds or small membrane clusters contiguous with 

the ER membrane are formed and coated with the COPII (coat protein complex II) coat 

resulting in transport vesicles destined for the golgi apparatus (Ellgaard and Helenius, 2003; 

Barlowe, 2002). Many proteins destined for the secretory pathway exhibit ER export signals 

which interact with either COPII components or with ER export cargo receptors. However, 

others do not possess these signals and might depart in a bulk-flow manner (Barlowe, 2003). 

Although an active mechanism for retaining misfolded proteins in the ER has been proposed, 

it was shown that a number of misfolded proteins exit the ER and are transported to the 

Golgi (Kincaid and Cooper, 2007). The forward transport of secretory proteins from the ER is 

balanced by a retrograde transport performed by COPI-coated vesicles. The COPI coat is 

molecularly different from the COPII coat and is believed to serve to recycle components 

needed for ER-vesicle formation and to retrieve escaped ER-resident proteins (Schekman 
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and Orci, 1996; Barlowe, 2003). Exit from the ER of certain glycoproteins is mediated by 

specific transporter molecules which concentrate their substrates into forward transport 

vesicles. One of the best characterized transporter molecules in mammals is ERGIC 

(Endoplasmic Reticulum-Golgi Intermediate Compartment) -53, a hexameric transmembrane 

lectin found mainly and in high amounts in the ERGIC (Anelli and Sitia, 2008).  

 After leaving the ER, secretory proteins are transported via the ERGIC to the Golgi, where 

they are further modified to be transported to the extracellular space or the lysosomes. Some 

of the misfolded proteins are transported to the ERGIC or Golgi before retrotranslocation and 

degradation. Accumulation of non-native proteins can lead to ER-stress responses such as 

UPR, autophagy and ERAD (Anelli and Sitia, 2008; see figure 7). 

 

 

 

 

Figure 7 The early secretory pathway. Gray arrows indicate the direction of vesicles moving 

among different compartments; dark arrows indicate the pathways followed by cargoes in the 

early secretory pathway; red lines show homeostatic control pathways (+ stimulatory, − 

inhibitory)( Anelli and Sitia, 2008) 

 

2.9. Diseases: 

Defects in protein folding, degradation of misfolded proteins, transport of proteins along the 

secretory pathway and stress sensing and signaling lead to a multitude of different diseases 

including cystic fibrosis, antitrypsin deficiency and protein aggregation diseases such as 

certain forms of Parkinson's, Alzheimer's and prion-associated diseases (Vembar and 

Brodsky, 2008).  

Improvement in understanding of these pathways will increase the possibilities of treatment 

of many severe chronic diseases (Anelli and Sitia, 2008). 

 

https://univpn.univie.ac.at/+CSCO+ch756767633A2F2F6A6A6A2E61706F762E61797A2E6176752E746269++/entrez/dispomim.cgi?id=168600
https://univpn.univie.ac.at/+CSCO+ch756767633A2F2F6A6A6A2E61706F762E61797A2E6176752E746269++/entrez/dispomim.cgi?id=104300
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2.10. Introduction to particular topics of this work: 

2.10.1. Ribophorin I and variants of Ribophorin I: 

The transfer of the oligosaccharide onto asparagines side chains of nascent polypeptides 

during asparagine-linked glycosylation (ALG) in eukaryotic cells is catalyzed by the 

oligosaccharyltransferase (OST, see 2.4.1.). One of the subunits of this hetero-oligomeric 

protein complex is ribophorin I (RI) (Kelleher and Gilmore, 2006), a rough ER 

transmembrane glycoprotein with the relative molecular mass of 65kDa. After scission of the 

signal sequence the type I membrane protein RI is 583 amino acids long and consists a 

cytosolic, a luminal and hydrophobic transmembrane domain. The luminal domain of RI 

contains at position 275 an asparagine residue representing the N-glycosylation site (Harnik-

Ort et al., 1987).  

The ERAD substrate and truncated version (relative molecular mass of 38kDa) of RI, RI332, 

containing only the N-terminal 332 amino acids of the luminal domain of ribophorin I has been 

constructed as a model for aberrant proteins being substrates to the ERAD pathway. 

Furthermore the HA-tagged version, RI332-6HA, has been employed as well. RI332-6HA 

represents the HA-epitope-tagged variant of RI332 with six hemagglutinin tags on the C-

terminus. In contrast to the stable full length ribophorin I (t1/2 = 25 h), the truncated versions 

RI332 and RI332-6HA are rapidly degraded (t1/2 less than 50 min) via the ERAD pathway and 

have been demonstrated to interact with calnexin (de Virgilio, 1998; Ermonval et al., 2001; 

Tsao et al., 1992).  

 

 

Figure 8 RI variants, SP: signal peptide, -CHO: N-glycosylation site, 6HA: six repeats of the 

HA epitope 
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2.10.2. Cell lines used: 

The cell lines used for this work were G3 (wild type) and QC (mutant, UDPG:PP-deficient) 

Chinese hamster lung fibroblasts. G3 cells, also known as Don cells, and QC cells, as well 

known as DonQ cells have been previously isolated in former studies. QC cells possess a 

mutation in the UDP-glucose pyrophosphorylase (UDPG:PP) gene leading to low levels of  

UDP-glucose (Flores-Diaz et al., 1997; 1998, 2004).  

Both cell lines were transfected with pZeoSV plasmids containing the cDNAs encoding either 

the truncated RI332 or its tagged variant RI-332-6HA model protein resulting in 4 different 

cell lines: 

G3 (wild type) cells expressing RI332: G3RI332 Cl.4 

G3 (wild type) cells expressing RI332-6HA: G3RI332-6HA Cl.20 

QC (mutant) cells expressing RI332: QCRI332 Cl.GG 

QC (mutant) cells expressing RI332-6HA: QCRI332-6HA Cl.5 

Given that QC cells lack glucosylation of the N-glycan of the shortened variants of ribophorin 

I, RI332 and its tagged variant RI332-6HA are expected to possess a GlcNAc2-Man9 N-glycan 

structure lacking the Glc3 moiety added in wild type cells (G3) (Flores-Diaz et al., 1997; 

1998, 2004). Thus, the proteins lacking the glucose-residues might not enter the 

calnexin/calreticulin cycle and therefore be degraded similar to non-glycosylated proteins, i.e. 

faster. 

 

2.10.3. Inhibitors: 

In this work experiments using inhibitors of proteasomal degradation and N-glycan 

processing were performed to analyse their influence on processing and degradation of 

glycoproteins. 

The inhibitors used include the proteasome inhibitor ZLLL (carbobenzoxy-L-leucyl-L-leucyl-L-

leucinal), as well as dMM (1-deoxymannojirimycin) and kifunensine, the latter two inhibitors 

of the ER α1, 2- mannosidase I. Furthermore, experiments using castanospermine inhibiting 

glucosidase I and II were performed. 
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3. Materials: 

3.1. Chemicals and Reagents: 

Autoradiography enhancer EN3HANCE Perkin Elmer 

Ethanol 70% Brenntag 

Isobutanol Merck 

Methanol 100% Fluka 

NEC-811 Protein Molecular Weight Marker 

[Methyl-14C]  methylated (973,1 KBq/mg) 

Perkin Elmer 

NEG-072 EXPRE35S35S [35S]-Protein 

Labelling Mix (43,5 TBq/mmol) 

Perkin Elmer 

Neomycin G-418 Sulfate PAA 

Penicillin (10.000 units/ml) and Strepromycin 

(10.000 units/ml), (Pen/Strep)  

Gibco 

Protein A Sepharose Beads TM CL4B GE Healthcare 

Sodium Dodecyl Sulfate (SDS)  AppliChem 

Tetramethylethylendiamin (TEMED)  Merck 

Trypsin-EDTA 5% (10x)  Gibco 

Triton X 100 Amresco 

2-Mercaptoethanol for electrophoresis,>98% Sigma 

 

3.2. Inhibitors: 

Inhibitor Final 

Concentration 

Solvent Inhibits… Company 

dMM * 2mM ddH2O ER α1, 2- 

mannosidase 

TRC 

ZLLL* 50µM DMSO Proteasome Peptides 

Kifunensine 2µg/ml ddH2O ER α1, 2- 

mannosidase 

TRC 

Castanospermine 1mM ddH2O Glucosidase I 

and II 

TRC 

*dMM: deoxy-mannojirimycin; ZLLL: carbobenzoxy-l-leucyl-l-leucyl-l-leucinal 
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3.3. Equipment: 

Cell culture dishes Ø 100 x 20 mm [93100] 

(10cm dishes) 

TPP 

Cell culture test plate 6 [92006] (6 well plate)  TPP 

Cell Incubator  Binder 

Centrifuge 5415C  Eppendorf 

Cooling Centrifuge 1K15 Sigma 

Film Cassette Sigma 

Film Developer Curix60 AGFA 

Flow Hood Laminair HB 2448 Holten 

Gel Dryer SGD 4050 Savant 

Gel Electrophoresis Power Supply Biorad 

Gel Electrophoresis Apparatus Biorad 

Heating Block Thermomixer 5436 Eppendorf 

Inverted Microscope ID03 Binocular Zeiss 

Vacuum Pump DIVAC 2,4L Leybold 

Waterbath TWB 14 Julabo 

Whatman Paper Whatman 

X-ray Film Omat Blue XB-1 Kodak 

 

3.4. Buffers and Solutions: 

Fixing Solution 

5% (v/v) Methanol  Merck 

15% (v/v) Acetic Acid  Merck 

 

PBS (pH 7,4) 

27,4mM NaCl Sigma Aldrich 

54µM KCl  AppliChem 

2mM Na2HPO4 Merck 

340µM KH2PO4 Merck 
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Reducing Sample Buffer 

Sample Buffer:  

50mM Tris Amresco 

0,1% Bromophenol Blue AppliChem 

2% SDS Amresco 

10% Glycerol Sigma 

+ 3% β -Mercaptoethanol  Sigma 

 

Running Buffer (10x) 

25mM Tris  Amresco 

192mM Glycine AppliChem 

1% SDS Amresco 

 

SDS Lysis Buffer (pH 7,4) 

95mM NaCl Sigma Aldrich 

25mM Tris/HCl Amresco 

3mM EDTA Amresco 

1% SDS AppliChem 

4% Complete Protease Inhibitor Stock (25x) Roche 

 

SDS Wash Buffer (pH 7,4) 

95mM NaCl Sigma Aldrich 

25mM Tris/HCl Amresco 

3mM EDTA Amresco 

1, 25% Triton X 100 Amresco 

0, 2% SDS AppliChem 

1% Complete Protease Inhibitor Stock (25x) Roche 

 

Solution I for Polyacrylamide Gels 

30%(w/v) Acrylamide USB 

0,6%( w/v) Bis-Acrylamide USB 
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Solution IIA for Polyacrylamide Gels 

3M TrisHCl pH 8,9 Merck 

 

Solution IIB for Polyacrylamide Gels 

1M TrisHCl pH 6,7 Merck 

 

10% SDS- Polyacrylamide Gels- Separation Gel  

3,33ml Solution I  USB 

1,26ml Solution IIA  Merck 

5,34ml dH2O  

54µl 20% SDS Amresco 

5µl TEMED Merck 

50µl 10% APS  Biorad 

 

10% SDS- Polyacrylamide Gels - Stacking Gel 

0,75ml Solution I USB 

0,63ml Solution IIB  Merck 

3,6ml dH2O  

25µl 20% SDS Amresco 

5µl TEMED Merck 

25µl 10% APS  Biorad 

 

3.5. Cell Culture Media: 

Growth Medium 

RPMI – 1640  

-L-Glutamine 

+D-Glucose 

Gibco 

+ 1% L-Glutamine Gibco 

+ 1% Pen/Strep Gibco 

+ 10% Fetal Calf Serum (FCS) Gibco 

400µg/ml G-418 Sulfate PAA 

400µg/ml Zeocine Invitrogen 
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Trypsin-EDTA Solution 

PBS (pH 7,4)  

+ 10% Trypsin-EDTA (10x) Gibco 

 

Freezing medium  

10% DMSO Sigma 

90% FCS Gibco 

 

Starvation Medium 

RPMI – 1640  

- L-Glutamine 

- L-methionine 

- L-Cysteine 

- L-Cystine 

Gibco 

+ 1% L-Glutamine Gibco 

 

Pulse Medium 

Starvation Media Gibco 

+ 2,5% L- [35S] Methionine (11mCi/ml) Perkin Elmer 

 

Chase Medium 

Growth Media Gibco 

+ 5mM Methionine (unlabeled)  

 

 

3.6. Cell lines: 

The cell models used in this study were G3 cells representing the wild type, and QC cells 

representing the mutant cell line. The pre-existing cell model, DonQ cells, was obtained 

through mutagenesis with ethyl methanesulfonate and selection for resistance to Clostridium 

difficile toxins A and B (Florin, 1991). Since they are UDPG:PP (uridine diphosphate 

glucose:pyrophosphorylase ) – deficient, they persistently display low levels of UDP-glucose 
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as well as UDP-galactose. DonQ cells were stably transfected with a plasmid carrying the 

cDNA of the human wild type UDPG-PP gene. This resulted in the generation of G3 cells, 

revertants of the mutant DonQ cell line depicting the wild type phenotype. Stable transfection 

of DonQ cells with an empty vector generated the QC cell line, displaying the UDPG-PP-

deficient, mutant phenotype (Florin, 1991; Flores-Díaz et al., 1997). Both, G3 and QC cells, 

were obtained from Dr. Stuart Moore (INSERM, U773, Paris, France). 

Both cell lines were transfected with pZeoSV plasmids carrying either the cDNA of the model 

protein RI332 or its tagged version RI332-6HA.  Afterwards, cell clones were isolated and 

tested for expression of RI332 or RI332-6HA. Only cells expressing the constructs were 

cultivated further and stored in liquid nitrogen tanks. 

 

Cell line Transfected with Clone name 

G3 (wild type) RI332 G3 RI332 Cl. 4 

G3 (wild type) RI332-6HA G3 RI332 6HA Cl. 20 

QC (UDPG:PP-deficient) RI332 QC RI332 Cl. GG 

QC (UDPG:PP-deficient) RI332-6HA QC RI332 6HA Cl. 5 

 

 

3.7. Antibody: 

Anti-RI-lum polyclonal antibody:  

Recognizes the luminal domain of Ribophorin I 

Abbreviation: α-RI-lum and α-RI 

Host animal: rabbit 

Immunoprecipitation: 2µl/ IP 

Reference: de Virgilio et al., 1998; 1999; Ermonval et al., 2001; Kitzmueller et al., 2003 
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4. Methods: 

4.1. Cell Culture: 

4.1.1. Seeding of cells: 

Cryogenic tubes, each one containing one of the four cells lines used in this work, were 

taken from liquid nitrogen storage tanks and cells were thawed quickly in a 37°C waterbath. 

Subsequently, the cells were added to 10ml growth medium (37°C) in a falcon tube. To 

remove the cryoprotectant DMSO, the cells were then centrifuged at 1300rpm for seven 

minutes. After taking off the supernatant the cell pellet was suspended in 15ml growth 

medium and added to 10cm dishes. The dishes were placed into cell incubators and stored 

at 37°C and 5% CO2. The following day, growth medium was aspirated and replaced by 10ml 

new growth medium. 

4.1.2. Cultivation of cells: 

For growth, the cells were incubated at 37°C and 5% CO2. Their density and condition were 

controlled by light microscopy. Confluent 10cm dishes corresponded to about 10 million cells. 

If about 80% density was reached, cells were split into new 10cm dishes. Therefore, the 

growth medium was taken off and cells were rinsed with 10ml PBS (37°C) to remove dead 

cells and cell debris. Thereafter, 1,5ml trypsin-EDTA-solution was added, and cells were 

incubated for two to five minutes in the cell incubator in order to detach the cells from the 

dishes. To stop the tryptic digest 8ml of growth medium was added to the dishes. Gentle 

pipetting resulted in a homogenous suspension of cells that was split onto new 10cm dishes. 

Additional growth medium was added to reach a total volume of 10ml. The volume of the cell 

suspension added to the new dishes was dependent on the required split ratio. Cells were 

incubated as mentioned above. In case cells had not to be split, medium was changed at 

least every three days. 

4.1.3. Storage of cells: 

As a first step to freeze cells, growth media were removed and dishes were rinsed twice with 

5ml PBS at 37°C. Subsequently, 1,5ml trypsin-EDTA solution was added and cells were 

incubated for two to five minutes. Then, growth medium was added to stop the tryptic digest. 

The resulting cell suspension was added to falcon tubes and centrifuged at 1300rpm for 

seven minutes. Afterwards, the supernatant was taken off and the pellet was resuspended in 

ice-cold freezing medium containing 10% DMSO. The suspension was added to cryotubes 

and frozen at -80°C (-1°C/minute). For long-time storage cells were kept in liquid nitrogen. 
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4.2. Pulse-Chase Experiments: 

4.2.1. Splitting of cells onto 6-well plates: 

In preparation for radioactive labeling experiments cells were split onto 6-well plates and 

incubated at 37°C and 5% CO2 over night. Each 6-well plate used corresponded to timepoint 

during the chase phase of the experiment. Usually, each pulse-chase experiment was 

performed for two clones at once, cultivating both clones in two wells, one for the experiment 

with an inhibitor, one as a control without inhibitor. The next day the cell density was 

controlled by light microscopy. If confluence reached between 70% and 90% the experiment 

was performed.  

4.2.2. Pre-incubation of cells: 

In case of application of inhibitors, cells were pre-incubated at 37°C, 5%CO2 in 1ml growth 

medium containing the inhibitor in the required concentration for 1.5 hours. Control cells were 

incubated using 1ml growth medium without inhibitor for the same time. 

4.2.3. Starvation of cells: 

Prior to addition of the starvation medium, cells were rinsed twice with 1ml PBS/ well. Then 

1ml of starvation medium with or without inhibitor (control) was added to each well and cells 

were incubated at 37°C and 5% CO2 for 30 minutes.  

4.2.4. Pulse Phase: 

In order to label cells radioactively, starvation medium was aspirated and 700µl pulse 

medium with or without inhibitor was added to the 6-well plates and incubated for 15 minutes. 

From this moment on all the following steps were performed in rooms and with equipment 

designed for radioactive experiments. 

4.2.5. Chase Phase: 

Following removal of pulse medium, 1ml per well of chase medium was added and cells 

were incubated for different periods of time, ranging from five to 135 minutes of incubation. 

For experiments determining degradation times of RI, RI332 and RI332-6HA, chase phases 

were between 5 and 120 minutes long. For experiments with inhibitors chase phases lasted 

five, 45, 90 and 135 minutes. After each timepoint, 6-well plates were kept on ice, chase 

medium was taken off and cells were rinsed with 1ml of PBS. From now on, all steps were 

performed on ice. 
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4.3. Protein Extraction: 

For extraction of proteins, 150µl of SDS lysis buffer pH7,4 were added and cells were 

scraped from 6-well plates and collected in 1,5ml eppendorf tubes kept on ice. Subsequently, 

another 150µl of SDS lysis buffer pH 7,4 was added and the procedure was repeated in 

order to collect as much cell lysate as possible.  

After this step had been repeated for each timepoint, the cell lysates were sonicated for ten 

seconds, put on a heating block and incubated at 95°C for two minutes. Thereafter, 1ml of 

ice-cold SDS wash buffer pH7,4 was added and the cell lysate was centrifuged at 4°C and 

13.000rpm for 15 minutes to remove cell debris. 

 

4.4. Immunoprecipitation (IP): 

Following centrifugation, the supernatant was recovered and transferred to a new 1,5ml 

eppendorf tube on ice. 40µl of protein A sepharose beads (preparation see 4.4.1.) and 20µl 

of anti-RI-lum antibody dilution (preparation see 4.4.2.) were added and the lysate was 

immunoprecipitated by turntabling in the cold room at 4°C over night. 

4.4.1. Preparation of protein A sepharose beads: 

70mg of protein A sepharose beads were swollen in 1,5ml eppendorf tubes with 1ml of SDS 

wash buffer at 4°C on the turntable for 30 minutes. Then, the beads were washed three 

times. Therefore the beads were centrifuged at 8.000rpm for three minutes. The supernatant 

was removed and the beads were turntabled with 1ml SDS wash buffer for 10 minutes. 

Finally, the beads were resuspended in 700µl of SDS wash buffer leading to a concentration 

of 100mg beads/ml.  

4.4.2. Preparation of anti-RI-lum antibody: 

A 1/10 dilution of the anti-RI-lum antibody was achieved by adding 315µl SDS wash buffer to 

35µl of anti-RI-lum antibody.  

 

4.5. Washing of IP: 

The following day, the IPs were washed three times with SDS wash buffer. Therefore, the 

eppendorf tubes containing the IPs were centrifuged at 8.000rpm for three minutes, 

supernatant was discarded and 1ml of SDS wash buffer was added. Then, the IPs were 
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turntabled at 4°C for 10 minutes. After washing with SDS wash buffer was completed, the IPs 

were washed twice with PBS in the same manner.  

 

4.6. SDS- Polyacrylamide Gel Electrophoresis: 

4.6.1. Preparation of 10% SDS PAGE Gels: 

First, the compounds of the separation gel were mixed, then poured into the gel caster and 

overlaid with isobutanol. Following polymerization, the stacking gel was mixed and added on 

top of the separation gel after isobutanol had been completely removed. Then the combs 

were placed to create the wells and the stacking gel was left to polymerize. Subsequently, 

the combs could be removed and the gel was placed into the gel apparatus. 1x running 

buffer was filled into the buffer chambers and thus the gel was ready to be loaded. 

4.6.2. Preparation of samples for SDS-PAGE: 

After all the washing steps of the IP had been performed, 20µl of sample buffer were added 

to the beads and the IPs were incubated at 95°C for five minutes in order to dissolve the 

preticipated proteins from the beads. Then the samples were spun down and the supernatant 

(20µl) was loaded on 10% SDS-PAGE gels. 5µl of the 14C-marker (1/1 dilution with sample 

buffer) were loaded on one of the side lanes of each gel. 

4.6.3. SDS-PAGE: 

The SDS-PAGE was performed at 180V for about 45 minutes. Then, the gels were fixed in 

fixing solution, enhanced in autoradiography enhancer EN3HANCE and washed in water, 

each step lasting 30 minutes. The gels were then put on whatman paper soaked in water and 

dried at 80°C in the gel dryer for 30 to 45 minutes. 

 

4.7. Fluorography: 

In the dark room, the dried gels were attached to the film cassette and an X-ray film was 

placed onto the top. The cassettes were closed and stored at -80°C for several days to two 

weeks before film development. For development the film cassettes were thawed for about 1 

hour at room temperature before they were opened in the dark room to develop the films 

using the film developer. 
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4.8. Analysis of the films: 

Following the development of the films, band intensities were analyzed to determine the half 

lives of RI332 or RI332-6HA using the software ImageJ (http://rsbweb.nih.gov/ij/), an image 

processing program. Films were scanned, background was corrected, and the bands 

corresponding to RI332 or RI332-6HA in the different lanes were compared in proportion to 

each other as well as to endogenous ribophorin I, which is a long-lived protein with t1/2 > 24 h, 

used as a loading control. The relative strengths of the bands representing RI332 or RI332-6HA 

were determined by calculation as follows. The band of RI332 (or RI332-6HA) in the lane 

corresponding to 5 minutes of chase was set to be 100 per cent and the band strengths 

corresponding to the other chase times were calculated in per cent relative to this band. The 

values obtained were corrected for the intensities of the bands representing the endogenous 

ribophorin I in the same lanes, respectively. The results were depicted in percental values in 

charts. Assuming that RI332 or RI332-6HA  decrease is following a function of first order, the 

natural logarithm of the percental values of RI332 or RI332-6HA was calculated and depicted in 

charts, with the x-axis displaying the time and the y-axis displaying the logarithmic values. A 

best-fit linear line was drawn, and its slope was used to determine the half lives of RI332 or 

RI332-6HA applying the formula t1/2= ln(2)/slope.  All calculations and depictions were done 

using Microsoft Excel software. In cases where degradation intermediates of RI332 occur, 

such as in the presence of ZLLL (see 5.2.1.), these intermediates were included in the 

determination of RI332 band intensities. 
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5. Results: 

5.1. Determination of the degradation kinetics of the model substrates RI332 and 

RI332-6HA in wild type and UDPG:PP-deficient cells: 

In order to determine the stability of RI332 and RI332-6HA, models for aberrant proteins being 

substrates to the calnexin/calreticulin cycle and further the ERAD pathway, pulse-chase 

experiments were performed in wild type (G3) and mutant (QC) cell lines using 35S-labeled 

methionine, followed by protein extraction and immunoprecipitation with an α-RI-lum 

antibody, SDS-PAGE, fluorography and computational analysis. Both cell lines are Chinese 

hamster lung fibroblasts. While G3 cells represented the wild type cell model in this study, 

QC cells were used as the mutant cell model since they are glycosylation-deficient. Both cell 

lines stably express the model proteins RI332 or RI332-6HA. 

Since the endogenous ribophorin I was shown to remain stable (t1/2=25h) in preceding 

experiments (de Virgilio, 1998; Ermonval et al., 2001; Tsao et al., 1992) as well as in the 

experiments performed in this study, it was used as a loading control to calculate the 

percental degradation of the model substrates and their half lives. 

  

5.1.1. Degradation kinetics of RI332 in wild type and mutant cells: 

To compare the degradation of the model substrate RI332 in G3 and QC cells, radioactive 

labeling experiments were performed with a pulse phase of 15 minutes and chase phases of 

5, 15, 30, 45, 60, 75, 90 and 120 minutes.  

G3-RI332 Cl.4: 

 

Figure 9 Fluorography of G3-RI332 Cl.4 
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Figure 10 Degradation of RI332 in G3 cells, %RI332 during 5 to 120 minutes 

While the endogenous ribophorin I remains stable throughout all timepoints and is detected 

as a band with an apparent mass of 65kDa, RI332, which is seen as a band at about 45kDa, is 

rapidly degraded (see figure 9). The degradation of RI332 is depicted in percentage values in 

figure 10 (for the calculation see 4.8.). The half life of the substrate was determined to be 13 

minutes (see figure 13). 

 

 

QC-RI332 Cl.GG: 

 

Figure 11 Fluorography of QC-RI332 Cl.GG 
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Figure 12 Degradation of RI332 in QC cells, %RI332 during 5 to 120 minutes 

Concerning QC cells, for endogenous ribophorin I a band can be detected at about 65kDa 

that remains stable during the chase. RI332, corresponding to the lower band in figure 11, is 

rapidly degraded. In figure 12, percental degradation of the model protein is illustrated. The 

determined half life is 17 minutes, that means slightly higher than in wild type cells (see 

figure 13). 

 

 

Figure 13 Determination of the half life of RI332 in both G3 (wild type, squares, constant line) 

and QC cells (mutant, rhombs, dashed line) 

The half lives of RI332 were determined to be 13 minutes for G3 and 17 minutes for QC cells, 

thus the mutant showed slightly slower degradation of the substrate protein.  

This is consistent with the results obtained from a further degradation assay including the 

same cell lines. The half live was determined to be 22 minutes for G3 cells and 25 minutes 

for QC cells (data not shown). 
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5.1.2. Degradation kinetics of RI332-6HA in wild type and mutant cells: 

For the model substrate RI332-6HA radioactive labeling experiments were done as well in wild 

type and mutant cell lines to gain insight into the degradation differences of aberrant proteins 

in these cells. Again, the pulse phase lasted for 15 minutes, chase phases were 5, 15, 30, 

45, 60, 75, 90, and 120 minutes. 

G3-RI332-6HA Cl.20: 

 

Figure 14 Fluorography of G3-RI332-6HA Cl.20 

 

 

Figure 15 Degradation in G3 cells, %RI332-6HA during 5 to 120 minutes 
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figure 14). Figure 15 shows the degradation of RI332-6HA in percentage values. The half life 

of RI332-6HA was calculated to be 20 minutes (see figure 17). 

 

 

QC-RI332-6HA Cl.5: 

 

Figure 16 Fluorography of QC-RI332-6HA Cl.5 

 

 

Figure 16 Degradation in QC cells, %RI332-6HA during 5 to 120 minutes (t1/2= 51min) 

In UDPG:PP-deficient QC cells, RI332-6HA shows rapid degradation as well. However, 

degradation appears to be slower in mutant than in wild type cells with a half life for RI332-

6HA of 54 minutes (see figure 17). 
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Figure 17 Determination of the half life times for RI332-6HA in both G3 (wild type, squares, 

constant line) and QC cells (mutant, rhombs, dashed line) 

Degradation of RI332-6HA was found to be faster in G3 cells with a half life of 20 minutes 

compared to QC cells, where the half life was determined to be 54 minutes.  

This is consistent with the results obtained from another degradation assay including the 

same cell lines with calculated half lives of 35 minutes for G3 cells and 64 minutes for QC 

cells (data not shown).  

 

Calculation of the mean value and standard deviation: 

In order to calculate the mean values of the half lives concerning the kinetics of all four 

clones, half life values gained from the experiments determining the degradation kinetics as 

well as the half live values of the controls in the experiments performed with inhibitors (see 

5.2.) were used. For QC-RI332-6HA Cl.5 the values calculated in the experiment with dMM 

was not included. 
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5.2. Analysis of the influence of inhibitors on glycoprotein processing and 

degradation: 

Based on observations in preceding studies with HeLa cells (Kitzmueller et al., 2003) 

experiments using inhibitors of proteasomal degradation such as ZLLL and inhibitors of N-

glycan processing such as castanospermine, dMM and kifunensine were performed to gain 

insight into their influence on glycoprotein processing and degradation in the ER.  

For that purpose, pulse-chase experiments were done with either ZLLL, castanospermine, 

dMM or kifunensine. First, cells were pre-incubated for 90 minutes with the inhibitor in growth 

medium. Then, the experiment was carried out in the same way as the degradation kinetics 

experiments with all media used containing the inhibitor. As a control, the experiments were 

done without inhibitors in parallel. 

 

5.2.1. Analysis of the influence of ZLLL: 

To study the influence of the proteasomal inhibitor ZLLL on the degradation of the model 

substrates RI332 and RI332-6HA, 50µM ZLLL were applied and pulse-chase experiments were 

performed.  

G3-RI332 Cl.4: 

 

Figure 18 Fluorography of G3-RI332 Cl. 4 ± 50µM ZLLL 
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Figure 19 Degradation of RI332 in G3 cells, %RI332 during 5 to 135 minutes ±ZLLL 

 

 

Figure 20 Determination of the half life of RI332 in G3 cells (no ZLLL: squares, constant line; 

50µM ZLLL: rhombs, dashed line) 

No ZLLL: t1/2= 31min 

50µM ZLLL: t1/2= 770min 

In wild type cells, application of the proteasomal inhibitor ZLLL strongly affects the stability of 

the model substrate RI332. The calculated half life rose from 31 minutes without ZLLL to 770 

minutes with ZLLL. In addition to the band representing RI332 at about 45kDa, two additional 

bands (RI332i1 and RI332i2) slightly lower than the first one could be detected as well. This is 

consistent with the results of former studies in HeLa cells (Kitzmueller et al., 2003), where 

the two bands depict degradation intermediates of RI332, one glycosylated (RI332i1), one un-
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glycosylated (RI332i2) (see figure 18).The half life of RI332 in G3 cells was calculated to be 31 

minutes without and 770 minutes with ZLLL (see figure 20). 

 

QC-RI332 Cl.GG: 

 

Figure 21 Fluorography of QC-RI332 Cl. GG ± 50µM ZLLL 

 

 

Figure 22 Degradation of RI332 in QC cells, %RI332 during 5 to 135 minutes ± ZLLL 
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Figure 23 Determination of the half life of RI332 in QC cells (no ZLLL: squares, constant line; 

50µM ZLLL: rhombs, dashed line) 

No ZLLL: t1/2= 55min 

50µM ZLLL: t1/2= 433min 

Concerning the QC cells, addition of ZLLL again resulted in stabilization of the model 

substrate as well as generation of two degradation intermediates, RI332i1 and RI332i2 (see 

figure 21). The impact of ZLLL on the mutant cell line was detected as a shift of the half life 

from 55 minutes without ZLLL to 433 minutes with ZLLL (see figure 23). 

ZLLL strongly inhibits RI332 degradation in both cell lines exhibiting a stronger effect on G3 

cells. 

 

 

 

 

 

 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 20 40 60 80 100 120 140

ln
 R

I3
3
2

time [min]

no ZLLL

50µM ZLLL

Linear (no ZLLL)

Linear (50µM 
ZLLL)



45 
 

G3- RI332-6HA Cl.20: 

 

Figure 24 Fluorography of G3-RI332-6HA Cl. 20 ± 50µM ZLLL 

 

 

Figure 25 Degradation in G3 cells, %RI332-6HA during 5 to 135 minutes ± ZLLL 
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Figure 26 Determination of the half life of RI332-6HA in G3 cells (no ZLLL: squares, constant 

line; 50µM ZLLL: rhombs, dashed line) 

No ZLLL: t1/2= 30min 

50µM ZLLL: t1/2= 231min 

For wild type cells expressing RI332-6HA, ZLLL stabilizes the construct as well, shifting the 

half life of the model protein from 30 minutes to 231 minutes (see figures 24-26). RI332-6HA 

can be seen at about 55kDa, the expected degradation intermediates are difficult to detect, 

although one light band appears to be slightly lower to the RI332 band (see figure 24). 

QC- RI332-6HA Cl.5: 

 

Figure 27 Fluorography of QC-RI332-6HA Cl. 5 ± 50µM ZLLL 
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Figure 28 Degradation in QC cells, %RI332-6HA during 5 to 135 minutes ± ZLLL 

 

 

Figure 29 Determination of the half life of RI332-6HA in QC cells (no ZLLL: squares, constant 

line; 50µM ZLLL: rhombs, dashed line) 

No ZLLL: t1/2= 44min 

50µM ZLLL: t1/2= 630min 

Once more, ZLLL appears to exert a stronger inhibitory effect on mutant cells shifting the half 

life of RI332-6HAfrom 44 minutes without inhibitor to 630 minutes with ZLLL (see figure 29). 

Again, intermediates of degradation of RI332 are difficult to detect (see figure 27).  
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5.2.2. Analysis of the influence of dMM: 

To study the effect of compromised mannose trimming on degradation, further experiments 

were performed applying the ER α1, 2- mannosidase inhibitor dMM. ER α1, 2- mannosidase 

plays a crucial role in targeting terminally misfolded proteins for ERAD by cleaving the 

terminal mannose in the B branch of the N-glycan. Therefore, after inhibition of this enzyme 

the model substrates should not be targeted for degradation, but remain within the CNX/CRT 

cycle. The concentration of dMM used was 2mM. 

G3-RI332 Cl. 4: 

 

Figure 30 Fluorography of G3-RI332 Cl. 4 ± 2mM dMM 

 

  

Figure 31 Degradation in G3 cells, %RI332 during 5 to 135 minutes ± dMM 
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Figure 32 Determination of the half life of RI332 in G3 cells (no dMM: squares, constant line; 

2mM dMM: rhombs, dashed line) 

No dMM: t1/2= 25min 

2mM dMM: t1/2= 68min 

Inhibition with dMM leads to stabilization of the model substrate RI332 in wild type cells. The 

half life of RI332 without dMM was calculated to be 25 minutes, while it increases to 68 

minutes upon inhibition with dMM. 

 

QC- RI332 Cl.GG: 

 

Figure 33 Fluorography of QCRI332 Cl. GG ± 2mM dMM 
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Figure 34 Degradation in QC cells, %RI332 during 5 to 135 minutes ± dMM 

 

 

Figure 35 Determination of the half life of RI332 in QC cells (no dMM: squares, constant line; 

2mM dMM: rhombs, dashed line)

No dMM: t1/2= 33min 

2mM dMM: t1/2= 33min 

In mutant cells expressing RI332 no difference between the degradation of the model 

substrate with and without dMM was detectable. The half life of RI332 without dMM as well as 

with dMM was determined to be 33 minutes. 
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G3-RI332 -6HA Cl.20: 

 

Figure 36 Fluorography of G3-RI332 -6HA Cl. 20 ± 2mM dMM 

 

 

Figure 37 Degradation in G3 cells, %RI332 -6HA during 5 to 135 minutes ± dMM 
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Figure 38 Determination of the half life of RI332-6HA in G3 cells (no dMM: squares, constant 

line; 2mM dMM: rhombs, dashed line)

No dMM: t1/2= 32min 

2mM dMM: t1/2= 1155min 

Wild type cells show stabilization of the RI332-6HA construct upon inhibition with dMM, with a 

half life shift from 32 to 1155 minutes. 

 

QC-RI332 -6HA Cl.5: 

 

Figure 39 Fluorography of QC-RI332 -6HA Cl. 5 ± 2mM dMM 
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Figure 40 Degradation in QC cells, %RI332 -6HA during 5 to 135 minutes ± dMM 

 

 

Figure 41 Determination of the half life of RI332 -6HA in QC cells (no dMM: squares, constant 

line; 2mM dMM: rhombs, dashed line)

No dMM: t1/2= 158min 

2mM dMM: t1/2= 13863min 

RI332-6HA is stabilized if dMM is applied, extending its half life from 158 minutes to 13863 

minutes. Contradictory to the observations in the cell lines expressing RI332, in cells 

expressing RI332-6HA also the mutant is affected by dMM. 
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5.2.3. Analysis of the influence of kifunensine: 

Similarly to dMM, kifunensine inhibits ER α1, 2- mannosidase and thus should lead to 

stabilization of the model substrates if applied. The concentration used in this assay was 

2µg/ml. 

Unfortunately, results were obtained only for experiments with cell lines expressing the 

tagged variant of RI332, RI332-6HA. 

G3-RI332 -6HA Cl.20: 

 

Figure 42 Fluorography of G3-RI332 -6HA Cl. 20 ± 2µg/ml kifunensine 

 

 

Figure 43 Degradation in G3 cells, %RI332 -6HA during 5 to 135 minutes ± kifunensine 
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Figure 44 Determination of the half life for RI332-6HA in G3 cells (no kifunensine: squares, 

constant line; 2µg/ml kifunensine: rhombs, dashed line)

No kifunensine: t1/2= 20min 

2µg/ml kifunensine: t1/2= 770min 

RI332-6HA is stabilized through inhibition with kifunensine with the half life increasing from 20 

to 770 minutes. This is consistent with the observation made with dMM in the same cell line 

(see 5.2.2.). 

 

QC-RI332 -6HA Cl.5: 

 

Figure 45 Fluorography of QC-RI332 -6HA Cl. 5 ± 2µg/ml kifunensine 
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Figure 46 Degradation in QC cells, %RI332 -6HA during 5 to 135 minutes ± kifunensine 

 

 

Figure 47 Determination of the half life of RI332-6HA in G3 cells (no kifunensine: squares, 

constant line; 2µg/ml kifunensine: rhombs, dashed line) 

No kifunensine: t1/2= 78min 

2µg/ml kifunensine: t1/2= 144min 

When kifunensine is applied to mutant cells, RI332-6HA is stabilized, the half life shifts from 78 

to 144 minutes.  
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5.2.4. Analysis of the influence of castanospermine: 

Further, experiments applying 1mM of the inhibitor castanospermine were done. 

Castanospermine inhibits glucosidases I and II, enzymes responsible for targeting 

glycoproteins to the CNX/CRT cycle. If glucosidases I and II are not active, aberrant proteins 

cannot enter the CNX/CRT cycle and thus are expected to be degraded rapidly.  

G3-RI332 Cl.4: 

 

Figure 48 Fluorography of G3-RI332 Cl.4 ± 1mM castanospermine 

 

 

Figure 49 Degradation in G3 cells, %RI332 during 5 to 135 minutes ± castanospermine 
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Figure 50 Determination of the half life of RI332 in G3 cells (no castanospermine: squares, 

constant line; 1mM castanospermine: rhombs, dashed line) 

No castanospermine: t1/2= 27min 

1mM castanospermine: t1/2= 26min 

The influence that castanospermine exerts on G3RI332 cells is insignificant. The half life 

without castanospermine was determined to be 27 minutes, with castanospermine the half 

life is 26 minutes. 

 

QC-RI332  Cl.GG: 

 

Figure 51 Fluorography of QC-RI332 Cl.GG ± 1mM castanospermine 
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Figure 52 Degradation in QC cells, %RI332 during 5 to 135 minutes ± castanospermine 

 

 

Figure 53 Determination of the half life of RI332 in QC cells (no castanospermine: squares, 

constant line; 1mM castanospermine: rhombs, dashed line) 

No castanospermine: t1/2= 24min 

1mM castanospermine: t1/2= 126min 

Concerning mutant cells, RI332 is stabilized upon inhibition with castanospermine. The half life 

changes from 24 minutes to 126 minutes. 
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G3-RI332 -6HACl.20: 

 

Figure 54 Fluorography of G3-RI332 -6HA Cl.20 ± 1mM castanospermine 

 

 

Figure 55 Degradation in G3 cells, %RI332 -6HA during 5 to 135 minutes ± castanospermine 
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Figure 56 Determination of the half life of RI332-6HA in G3 cells (no castanospermine: 

squares, constant line; 1mM castanospermine: rhombs, dashed line) 

No castanospermine: t1/2= 29min 

1mM castanospermine: t1/2= 54min 

For G3RI332-6HA cells, stabilization of the model protein was demonstrated when 

castanospermine was applied. The half life of RI332-6HA rises from 29 to 54 minutes. 

 

QC-RI332 -6HA Cl.5: 

 

Figure 57 Fluorography of QC-RI332 -6HA Cl.5 ± 1mM castanospermine 
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Figure 58 Degradation in QC cells, %RI332 -6HA during 5 to 135 minutes ± castanospermine 

 

 

Figure 59 Determination of the half life of RI332-6HA in QC cells (no castanospermine: 

squares, constant line; 1mM castanospermine: rhombs, dashed line) 

No castanospermine: t1/2= 51min 

1mM castanospermine: t1/2= 98min 

Also in QC cells, application of the inhibitor castanospermine results in stabilization of the 

model substrate extending its half life from 51 to 98 minutes. 
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Overview of calculated half lives for the experiments performed with inhibitors: 

t1/2 [min] 

 G3-RI332 Cl.4 QC-RI332 Cl.GG G3-RI332-6HA 

Cl.20 

QC-RI332-6HA 

Cl.5 

control 24 ± 7 (n=5) 31 ± 15 (n=5) 28 ± 6 (n=6) 58 ± 13 (n=5) 

50µM ZLLL 770 433 231 630 

2mM dMM 68 33 1155 13863 

1mM 

castanospermine 

26 126 54 98 

2µg/ml 

kifunensine 

- - 770 144 
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6. Discussion: 

Proteins targeted for the secretory pathway pass through the endoplasmic reticulum (ER) 

where they undergo quality control (QC) processes. The vast majority of these proteins are 

glycoproteins which possess one or more N-linked glycans (GlcNAc2Man9Glc3), which are 

added cotranslationally. During glycoprotein folding and maturation, the N-linked glycan is 

trimmed by various enzymes in the lumen of the ER. Proteins playing an important role in ER 

quality control (ERQC) include the chaperones calnexin and calreticulin which assist during 

glycoprotein folding. If a protein fails to reach its native conformation, it is degraded by the 

ERAD pathway (Lederkremer, 2009). 

 It has been shown in previous studies that UDP-glucose plays an essential role in ERQC 

(Hammond and Helenius, 1995). UDP-glucose is used by UGGT, an enzyme that recognizes 

and glucosylates misfolded glycoproteins and thus prevents them from premature 

degradation (Sousa and Parodi, 1995). In this study a glycosylation-deficient cell line (QC) 

was used which had been previously isolated and characterized in former studies (Flores-

Diaz et al., 1997; 1998; 2004).  Due to a mutation in the UDPG:PP gene QC cells display low 

levels of UDP-glucose. The control cell line (G3) used in this study represents a revertant of 

the mutant QC cells with wild type UDP-glucose levels. Both cell lines are stably expressing 

RI332 or RI332-6HA, models for aberrant proteins interacting with the calnexin/calreticulin cycle 

and being substrates of the ERAD pathway. The aim of this study was to investigate the 

degradation of aberrant proteins in glycosylation-deficient cells compared to wild type cells. 

The model proteins RI332 and RI332-6HA were expected to be degraded more rapidly in the 

mutant cell lines since interaction with the calnexin/calreticulin cycle should not take place 

(Flores-Diaz et al., 1997; 1998; 2004). 

After addition of the N-glycan onto nascent polypeptides entering the ER, various enzymes 

participate in trimming of the oligosaccharide. They promote binding of the glycoprotein to 

calnexin/calreticulin, target repeatedly misfolded substrates for ERAD, ensure re-entry as 

well as exit from the CNX/CRT cycle (Lederkremer, 2009). To learn more about these 

mechanisms, experiments applying inhibitors acting on some of the key enzymes in this 

process were performed in G3 and QC cells.  

 

6.1. Degradation kinetics of RI332 and RI332-6HA in wild type and mutant cells: 

In order to determine the degradation kinetics of the model substrate RI332 and its tagged 

variant RI332-6HA in wild type (G3) and mutant (QC) Chinese hamster lung fibroblasts, pulse-

chase experiments were performed using 35S-methionine. Degradation of the model proteins 
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was tracked up to 120 minutes by determining relative protein amounts at different 

timepoints.  

 6.1.1. Degradation of RI332: 

Surprisingly, the degradation kinetics of the model substrate RI332 for the wild type and the 

mutant cell line did not differ significantly (see figure 13). The half life of RI332 was determined 

to be 13 minutes for wild type and 17 minutes for mutant cells, thus the mutant showed 

slightly slower degradation of the substrate protein. The half life values for G3 and QC cells 

determined in subsequent assays (see 6.2., controls) were higher. The mean half life of RI332 

in G3 cells was determined to be 24 ± 7 minutes and in QC cells 31 ± 15 minutes. 

6.1.2. Degradation of RI332-6HA: 

For cells expressing the tagged variant of RI332, RI332-6HA, degradation of the substrate was 

found to be faster in G3 cells with a half life of 20 minutes compared to QC cells where the 

half life was determined to be 54 minutes. The mean half life was determined to be 28 ± 6 

minutes for G3 cells and 58 ± 13 minutes for QC cells. 

One reason for this unexpected behavior might be found in the tight interaction of ERAD with 

other cellular pathways that prevent accumulation of misfolded proteins. So for instance 

ERAD and UPR have been shown to be tightly linked, and an induction of molecular 

chaperones and enzymes might prevent aberrant proteins from preterm degradation 

(Vembar and Brodsky, 2008).  

Studies in UDP-glucose-deficient cells demonstrated that UPR remains functionally intact, 

while the decrease in the cellular UDP-glucose level initiates stress signaling, which leads to 

overexpression of mitochondrial and ER chaperones, independently of UPR. Overexpression 

of six stress-induced chaperones of the ER (GRP170, GRP94, GRP78, ERp72, GRP58, and 

calreticulin), which participate in the maturation of proteins of the secretory pathway, has 

been demonstrated to be triggered in the mutant cells (Flores-Diaz et al., 2004). This 

modification in the expression pattern of chaperones in UDP-glucose-deficient cells could 

possibly lead to stabilization of the model substrates in QC cells.   
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6.2. Influence of inhibitors on the processing and degradation of RI332 and RI332-

6HA in wild type and mutant cells: 

Moreover, pulse-chase experiments with inhibitors of proteasomal degradation, such as 

ZLLL as well as inhibitors of N-glycan processing, such as dMM, kifunensine and 

castanospermine were performed. The purpose of these experiments was to investigate the 

influence of these inhibitors on glycoprotein processing and degradation based on 

observations in preceding studies in HeLa cells (Kitzmueller et al., 2003). 

Wild type (G3) and mutant (QC) cells stably expressing the proteins RI332 or RI332-6HA were 

the cellular model system used in this study. After pre-incubation with an inhibitor, pulse-

chase experiments were done using 35S-methionine and model substrates were chased for 

up to 135 minutes. All media used during the labeling experiment contained inhibitor as well. 

In parallel, control experiments without inhibitors were performed. 

 

6.2.1. Influence of ZLLL: 

Previous studies demonstrated that RI332 as well as its non-glycosylated variant are 

effectively stabilized by inhibitors of proteasomal function, such as ZLLL. Thus, it was 

concluded that the degradation of these model substrates is proteasome dependent (de 

Virgilio et al., 1998, 1999; Kitzmueller et al., 2003).  

In this study we performed pulse-chase experiments applying ZLLL to gain an insight into the 

degradation pathway of the model substrates RI332 and RI332-6HA in G3 and QC cells. As 

expected, ZLLL could effectively stabilize the model substrates in all four clones. The half life 

of RI332 for G3 cells was determined to be 31 minutes without and 770 minutes with ZLLL 

(see figure 20). The half life of the same substrate in QC cells rose from 55 minutes without 

to 433 minutes with the inhibitor (see figure 23). Addition of ZLLL to G3 cells expressing 

RI332-6HA led to an increase in the half life from 30 minutes to 231 minutes (see figure 26). 

For QC cells expressing RI332-6HA, the half life was calculated to rise from 44 minutes 

without to 630 minutes with ZLLL. 

Two additional bands could be detected just underneath the band representing RI332 in ZLLL-

treated G3 and QC cells expressing RI332. Based on former studies (Kitzmueller et al., 2003), 

the bands could represent degradation intermediates of RI332, one glycosylated (RI332i1), one 

un-glycosylated (RI332i2) (see figures 18 and 21). 
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6.2.2. Influence of dMM: 

ER α1, 2- mannosidase plays an essential role in targeting terminally misfolded proteins for 

ERAD. It cleaves the terminal mannose in the B branch of N-glycans and thus promotes the 

exit from the CNX/CRT cycle of glycoproteins (Helenius et al., 2005). Former studies 

revealed the central role of ER α1, 2- mannosidase in the initial steps of protein degradation. 

Experiments performed in murine heptoma cells demonstrated the influence of the 

concentration of ER α1, 2- mannosidase on the degradation of the AAT (alpha-1 antitrypsin) 

protein. Elevated ER α1, 2- mannosidase activity led to enhanced destabilization of the AAT 

protein, whereas application of kifunensine, a general α1, 2- mannosidase inhibitor, resulted 

in stabilization of the protein of interest. Overexpression of ER α1, 2- mannosidase was 

demonstrated to lead to accelerated degradation of ERAD substrates and increased 

trimming of mannose residues (Wu et al., 2003). Further, knockdown of ER α1, 2- 

mannosidase was shown to dramatically stabilize ERAD substrates (Avezov et al., 2008). 

To gain an insight into the targeting of glycoproteins for ERAD in wild type and glycosylation-

deficient cells, the ER α1, 2- mannosidase inhibitor dMM was applied and pulse-chase 

experiments were performed. Since RI332 and RI332-6HA should remain within the CNX/CRT 

cycle upon inhibition with dMM, the model substrates were expected to be stabilized. 

For G3 cells, dMM was able to stabilize the model proteins. The calculated half lives for RI332 

were 25 minutes without and 68 minutes with the inhibitor in wild type cells (see figure 32). 

For RI332-6HA the half life was determined to shift from 32 minutes without dMM to 1155 

minutes with dMM (see figure 38). For QC cells expressing RI332-6HA, the model substrate 

was shown to be stabilized as well with the unusuallly high half life of 158 minutes without 

inhibitor and 13863 minutes with dMM (see figure 41). QC cellls expressing RI332 did not 

show any differences between dMM-treated and control cells. The calculated half life was 33 

minutes for both experiments (see figure 35). 

One explanation why QC cell expressing RI332 were not influenced by dMM could be, that in 

mutant cells, due to the lack of glucosylation, the model proteins do not enter the CNX/CRT 

cycle at all and are therefore rapidly degraded. Still, for QC cells expressing RI332-6HA, the 

model substrate appears to be stabilized. This discrepancy needs to be clarified in further 

work.  
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6.2.3. Influence of kifunensine: 

Just like dMM, kifunensine represents an inhibitor of ER α1, 2- mannosidase (Wu et al., 

2003). Thus, pulse-chase experiments performed with kifunensine were expected to lead to 

stabilization of the model proteins, at least in wild type cells.  

Unfortunately, results were obtained only for experiments with cell lines expressing the 

tagged variant of RI332, i.e. G3 RI332-6HA Cl.20 and QC RI332-6HA Cl.5. 

As expected, degradation of the model substrate RI332-6HA was inhibited by the application 

of kifunensine. The half lives were determined to be 20 minutes for RI332-6HA in wild type 

cells without and 770 minutes with kifunensine (see figure 44). The half lives calculated for 

the model protein in mutant cells were 78 minutes without and 144 minutes with the inhibitor. 

Thus, the effect of inhibition by kifunensine in QC cells was less apparent than in G3 cells. 

  

6.2.4. Influence of castanospermine: 

Experiments using the inhibitor castanospermine were performed, as castanospermine is 

known to inhibit glucosidases I and II, enzymes responsible for removal of the outer two 

glucose moieties of the N-glycan (Palamarczyk and Elbein, 1985). Glycoproteins possessing 

monoglucosylated N-glycans are able to enter the CNX/CRT cycle, which supports correct 

folding. If glucosidases I and II are blocked, aberrant proteins should not be able to enter the 

CNX/CRT cycle and be degraded rapidly instead. By application of castanospermine, 

destabilization, i.e. faster degradation of RI332 and RI332-6HA, was expected. 

Experiments in cell-free systems such as the study performed in a mammalian 

semipermeabilised cell system treated with castanospermine, resulted in faster degradation 

of class I major histocompatibility complex (MHC) heavy chains (Wilson et al., 2000). 

Nevertheless, for G3 cells expressing RI332 the half lives were determined to be 27 minutes 

without and 26 minutes with castanospermine (see figure 50). Generally, it has to be 

mentioned that difficulties were encountered concerning this clone. G3-RI332 Cl.4 cells lost 

expression of the RI332-construct repeatedly. Therefore, this experiment should be repeated 

with another clone of G3 cells expressing RI332. 

 For the mutant cell line expressing RI332 half lives of RI332 were 24 minutes without and 126 

minutes with the inhibitor (see figure 53). Also for the cell lines expressing RI332-6HA half 

lives for the model protein rose if castanospermine was applied. RI332-6HA in wild type cells 

had a half life of 29 minutes without and 54 minutes with castanospermine (see figure 56). 
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For mutant cells, calculated half lives were 51 minutes for control experiments and 98 

minutes for experiments carried out with castanospermine (see figure 59). 

An inhibitory effect of castanospermine on the degradation of misfolded proteins has been 

demonstrated in former studies. Experiments in cells transfected with the NHK (null Hong 

Kong) protein, a genetic variant of AAT and substrate of the ERAD pathway, indicated a 

modest inhibitory effect on NHK degradation upon inhibition with castanospermine (Oda et 

al., 2003). This is consistent with the results of additional experiments, such as studies 

investigating the degradation of the Ig subunits µ, J, and λ in assembly-deficient myeloma 

transfectants. Although it was demonstrated that µ-chains did not bind to calnexin after 

inhibition with castanospermine, the inhibitor had only little or no effect on the degradation of 

µ- and J-chains (Fagioli and Sitia, 2001). Moreover, experiments in Chinese hamster ovary 

(CHO) cells expressing the cog thyroglobulin (Tg) mutant, a misfolded glycoprotein serving 

as a model for ER storage diseases, demonstrated that suppression of ERAD with inhibitors 

of ER α1, 2- mannosidase was efficient in cells treated with castanospermine (Tokunaga et 

al., 2000). Thus, the authors concluded that chaperones other than calnexin and calreticulin 

might have as well the potential to participate in retaining misfolded proteins within the ER 

and targeting them for ERAD.   

 

6.3. Summary and Outlook: 

Taken together, experiments determining the degradation kinetics of the model substrates 

RI332 and RI332-6HA revealed that, contrary to all expectations, RI332 or RI332-6HA were not 

degraded faster in glucosylation-deficient cells. Instead, determined half lives for cells 

expressing RI332 were almost the same for mutant and wild type cells. Concerning the cells 

expressing RI332-6HA, mutant cells even showed slower degradation of the model protein, 

almost doubling the half life of RI332-6HA. The reasons for this unexpected behavior could lie 

within the interaction of the model proteins with ER chaperones, which have been shown to 

be overexpressed in UDP-glucose-deficient cells in former studies (see above, Flores-Diaz et 

al., 2004). As expected, the endogenous protein ribophorin I remained stable during all 

chase times.  

Regarding experiments performed with inhibitors, inhibition of proteasomal degradation of 

RI332 or RI332-6HA was observed by application of ZLLL. In all cell lines the model proteins 

were strongly stabilized by proteasomal inhibition, demonstrating that RI332 and RI332-6HA are 

substrates of the ERAD pathway. Inhibition of ER α1, 2- mannosidase by dMM or kifunensine 

led to controversial results. For cells expressing RI332, application of dMM stabilized the 

model substrate in G3 cells, but not in QC cells, while half lives for the model substrates of 
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the clones expressing RI332-6HA rose tremendously with QC cells displaying an unusually 

high value. Experiments performed with kifunensine as well showed stabilization of RI332-6HA 

for wild type and mutant cells, although stabilization was stronger for G3 cells. Unfortunately, 

no results were obtained concerning kifunensine inhibition of cells expressing RI332. 

Altogether, inhibition of ER α1, 2- mannosidase was demonstrated to lead to stabilization of 

the model proteins, at least in wild type cells. Concerning mutant cells, glucosylation-

deficiency might prevent the entry of RI332 or RI332-6HA into the CNX/CRT cycle and lead to 

rapid degradation of the model substrates, thus impeding the action of dMM or kifunensine. 

Expecting destabilization of RI332 or RI332-6HA, experiments applying the inhibitor 

castanospermine were performed. Surprisingly, castanospermine showed to exhibit no or 

contrary effect on wild type cells, not influencing the stability of RI332, but stabilizing RI332-6HA 

in G3 cells. Furthermore, RI332 and RI332-6HA were stabilized in mutant cells. Similar 

observations have been made in former studies (see above) leading to the assumption that 

pathways other than the CNX/CRT cycle must be involved in retention of misfolded proteins 

in the ER as well as in targeting these proteins for ERAD. 

To learn more about the effects of the inhibitors dMM, kifunensine and castanospermine on 

the interaction of RI332 and RI332-6HA with the CNX/CRT cycle, and to see if such an 

interaction occurs at all, co-immunoprecipitation experiments using antibodies for the model 

substrates as well as antibodies for calnexin and/or calreticulin will have to be performed. 

Besides inhibition experiments with dMM and kifunensine, knockdown of ER α1, 2- 

mannosidase by RNA interference might help to gain an insight into the role of this enzyme 

in the ERAD pathway in wild type and glucosylation-deficient Chinese hamster fibroblasts. 

 

 

 

 

 

 

 

 

 

 



71 
 

7. Abbreviations: 

ALG Asparagine-linked glycosylation 

ATF6 Activating Transcription Factor-6 

BiP Binding Protein 

CDG Congenital Disorders of Glycosylation 

CNX Calnexin 

COP Coat Protein Complex 

CRT Calreticulin 

dMM Deoxy-mannojirimycin 

EDEM ER degradation enhancing 1, 2-

mannosidase-like protein 

eIF2α Eukaryotic Translation Initiation Factor-2 

ER Endoplasmic Reticulum 

ERAD ER-associated degradation 

ERES ER Exit Site 

ERGIC ER-Golgi Intermediate Compartment 

ERp72 ER protein 72 

Glc Glucose 

GlcNAc N-acetylglucosamine 

GRP Glucose-regulated protein 

GPI Glycophosphatidylinositol 

GRP 94 Glucose-regulated protein 94 

HA Hemagglutinin 

Ig Immunoglobulin 

IRE1 Inositol-requiring Protein-1 

Man Mannose 

OST Oligosaccharyltransferase 

PDI Protein Disulphide Isomerase 

QC Quality Control 

RAP Receptor-associated protein 

RI Ribophorin I 

Tg Thyroglobulin 

UDPG:PP Uridine Diphosphate 

Glucose:Pyrophosphorylase 

UGGT UDP-glucose:glycoprotein 

glycosyltransferase 
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UPR Unfolded Protein Response 

UPRE UPR Element 

ZLLL Carbobenzoxy-l-leucyl-l-leucyl-l-leucinal 
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9. Appendix: 

9.1. Abstract: 

To ensure the integrity and fidelity of newly synthesized proteins, eukaryotic cells possess 

quality control (QC) mechanisms to monitor protein folding and assembly. The endoplasmic 

reticulum (ER) represents a key organelle for proteins destined for the secretory pathway 

and contains sophisticated proof-reading and elimination mechanisms. During maturation, 

many proteins targeted for the secretory pathway undergo N-glycosylation. The N-glycan 

(Glc3Man9GlcNAc2) is further processed by various sensor molecules that are able to 

discriminate between native and non-native protein conformations and covalently tag 

misfolded proteins. These proteins are recognized by the folding and degradation machinery 

including the unfolded protein response (UPR), the calnexin/calreticulin (CNX/CRT) cycle as 

well as ER-associated degradation (ERAD).  

The aim of this study was to gain insight into the role of N-linked glycosylation, especially 

regarding the role of glucose residues in the N-linked glycan, during glycoprotein processing 

and degradation. Therefore, pulse-chase experiments with wild type (G3) and glycosylation-

deficient Chinese hamster lung fibroblasts (QC) expressing either RI332 or its hemagglutinin 

(HA) epitope-tagged version, RI332-6HA, were performed. RI332 and RI332-6HA represent 

model substrates for aberrant proteins that interact with CNX/CRT and are substrates of the 

ERAD pathway. The mutant cells used in this study are glycosylation-deficient, i.e. they lack 

glucosylation of the N-glycan.  Thus, aberrant proteins are not glucosylated in QC cells and 

might not enter the CNX/CRT cycle but be rapidly degraded.  

Experiments performed to determine the degradation kinetics of RI332 or RI332-6HA in G3 and 

QC cells surprisingly revealed that degradation of the model substrates is slowed in mutant 

cells compared to wild type cells, which might be due to their interaction with ER chaperones 

other than CNX or CRT. 

Furthermore, pulse-chase experiments using inhibitors of proteasomal degradation such as 

ZLLL, and inhibitors of N-glycan processing, such as castanospermine, 1-

deoxymannojirimycin (dMM) and kifunensine, were performed to gain insight into their 

influence on glycoprotein processing and degradation. Degradation of RI332 and RI332-6HA 

was demonstrated to be proteasome-dependent, since inhibition with ZLLL led to 

stabilization of the model substrates. For experiments applying dMM and kifunensine, results 

were contradictory, but stabilization of RI332 and RI332-6HA could be shown at least for G3 

cells. Inhibition by castanospermine resulted in an increase of the half life of RI332 and RI332-

6HA in all clones except for G3 cells expressing RI332. Thus, the role of the CNX/CRT cycle 

in the degradation of the ERAD model substrates in the glycosylation-deficient QC cells 

remains to be elucidated in further work. 
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9.2. Zusammenfassung: 

Eukaryotische Zellen besitzen Qualitätskontrollmechanismen, die für die korrekte Faltung 

und den Zusammenbau von neusynthetisierten Proteinen sorgen. Ein wichtiges Zellorganell 

für die Proteine des sekretorischen Weges ist das endoplasmatische Retikulum (ER). Es 

besitzt ausgereifte Kontroll- und –Eliminationsmechanismen. Viele Proteine, die sich auf dem 

sekretorischen Weg befinden, werden N-glykosiliert. Das N-Glykan (Glc3Man9GlcNAc2)  

wird dann von verschiedenen Sensormolekülen, die in der Lage sind, zwischen nativen und 

nicht-nativen Proteinkonformationen zu unterscheiden, weiter prozessiert. Mechanismen wie 

die ungefaltete Proteinantwort (UPR), der Calnexin/Calreticulin (CNX/CRT) Zyklus sowie der 

ER-assoziierte Proteinabbau (ERAD) erkennen und verarbeiten diese Proteine weiter.  

Das Ziel dieser Studie war es, einen Einblick in die Rolle der N-Glykosilierung von 

Glykoproteinen, speziell jener der Glukosilierung des N-Glykans, bei deren Verarbeitung und 

Abbau zu gewinnen. Dafür wurden Wildtyp (G3) und glykosilierungsdefekte 

Hamsterfibroblasten (QC), die entweder RI332 oder dessen Hämagglutinin (HA)-markierte 

Version, RI332-6HA, stabil exprimieren, Pulse-Chase Experimenten unterzogen. RI332 und 

RI332-6HA stellen Modellsubstrate für nicht-native Proteine dar. Sie interagieren mit dem 

CNX/CRT Zyklus und sind auch Substrate des ERAD. Den QC Zellen fehlt auf Grund einer 

Mutation die Glukosilierung der N-Glykane. Das führt dazu, dass nicht-native Proteine wie 

RI332 oder RI332-6HA nicht glukosiliert werden, vermutlich nicht mit CNX/CRT interagieren 

können und daher schneller abgebaut werden. Somit stellten G3 und QC Zellen, die RI332 

und RI332-6HA stabil exprimieren,  die idealen Zellmodelle dar, um die Rolle der 

Glukosilierung bei der Verarbeitung und dem Abbau von Glykoproteinen zu studieren. 

Überraschenderweise zeigten Versuche, die zur Bestimmung der Abbaukinetik von RI332 

oder RI332-6HA in G3 und QC Zellen durchgeführt wurden, eine Stabilisierung der 

Modellproteine in den QC Zellen, die auf einer Interaktion von RI332 und RI332-6HA mit 

anderen ER-Chaperonen basieren könnte. 

Weiters wurden Pulse-Chase Experimente unter Verwendung von Inhibitoren des 

Proteasomabbaus (ZLLL) und Inhibitoren der N-Glykanverarbeitung wie Castanospermin, 

dMM (1-deoxymannojirimycin)  und Kifunensin durchgeführt, um deren Auswirkungen auf die 

Glykoproteinverarbeitung und -abbau zu erforschen. Wie erwartet, wurden die 

Modellproteine durch Inhibierung mit ZLLL  stabilisiert. Die Ergebnisse von den Versuchen 

mit dMM und Kifunensin waren nicht ganz eindeutig, eine Stabilisierung von RI332 und RI332-

6HA konnte aber für G3 Zellen gezeigt werden. Experimente mit Castanospermin führten 

auch zu einer Verlängerung der Halbwertszeit von RI332 oder RI332-6HA, die RI332 -

exprimierenden G3 Zellen ausgenommen. Somit bleibt es weiterführenden Experimenten 

vorbehalten, die Rolle des CNX/CRT Zyklus im Abbau von ERAD Substraten in der 

Glykosilierung-defizienten QC Zelllinie zu klären.  
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