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1. Introduction and aim 
 

 

Destruxins are mainly known for their insecticidal and phytotoxic activities. But as 

Nakagawa et al. have already shown, these cyclodepsipeptides have potential for being 

used as antiresorptive drugs. So the aim of my thesis was to get a deeper insight into the 

inhibtory mechanism of destruxin E on osteoclast bone resorption and on the 

osteoclasts-osteoblast interface in vitro. 

 

 

 

In a first step a resorption assay was performed to observe the inhibitory effect of 

destruxin E on the activity of osteoclasts. The determined osteoclasts were derived from 

osteoclast precursors (bone marrow cells) in coculture with osteoblasts. The effect of 

destruxin E on the activity as well as on the differentiation of osteoclasts could be 

examined. 

 

In parallel, the osteoclast marker enzyme tartrate resistant acid phosphatise (TRAP) was 

stained to get an idea about the osteoclast cell number in the different cultures. 

 

Additionally, the cell viability of osteoblasts and osteoclast precursor cells in presence 

of destruxin E was tested.  

 

Finally, the morphological structure of osteoclasts (and osteoblasts) and the induction of 

apoptosis by the test substance were investigated. For this reason the nuclei and the 

cytoskeleton of the cells were stained. 

 

 



Literature review 

 

2 

2. Literature review 
 

 

2.1 Bone Organization 
 

 

Bone is a highly specialized form of dense connective tissue. Together with cartilage, it 

makes up the skeletal system. This system serves three functions: mechanical (muscle 

attachment for locomotion), protective (for organs and bone marrow) and metabolic 

(reserve of ions, primarily calcium and phosphate, for maintaining the serum 

homeostasis). The fundamental constituents of bone are the cells and the extracellular 

matrix. The latter is abundant in this connective tissue. It is composed of collagen fibers 

and noncollagenous proteins (Baron, 2003). 

 

 

2.1.1 Bone matrix 
 

The majority of bone is made of the bone matrix, which has inorganic and organic parts. 

Type I collagen constitutes about 95 % of organic matrix. The remaining 5 % is 

composed of proteoglycans and numerous noncollagenous proteins (Marks and Odgren, 

2002). The major non-collagenous protein that is produced is osteocalcin. It plays an 

important role in calcium binding, stabilization of hydoroxyapatite in the matrix and in 

regulation of bone formation (Hadjidakis and Androulakis, 2006). Crystalline salts 

deposited in the organic matrix of bone are mainly calcium and phosphate in the form of 

hydroxyapatite (Marks and Odgren, 2002). 

 

 

2.1.2 Bone types 
 

Two different bone types are observed in the normal mature human skeleton: cortical 

and trabecular (Hadjidakis and Androulakis, 2006). 
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2.1.2.1 Cortical bone 
 

Cortical bone comprises 80 % of the skeleton. It is dense and compact, has a slow 

turnover rate and a high resistance to bending and torsion and forms the outer part of all 

skeletal structures (Hadjidakis and Androulakis, 2006). Cortical bone is present in the 

shafts (diaphyses) of long bones and is surrounding cancellous bone (Khosla et al., 

2008). The main part of the cortical bone is calcified, what explains its function to 

provide mechanical strength and protection (Hadjidakis and Androulakis, 2006). 

 

 

2.1.2.2 Trabecular bone or cancellous bone 
 

Trabecular bone comprises 20 % of the skeleton. It is less dense, more elastic and has a 

higher turnover rate than cortical bone. It achieves mainly metabolic functions 

(Hadjidakis and Androulakis, 2006). Cancellous bone, the “spongy” bone, is present in 

the vertebrae, pelvis and ends (metaphyses) of long bones (Khosla et al., 2008). 

 

 

2.1.3 Bone remodeling 
 

Bone is continuously remodeled by osteoblasts and osteoclasts, which synthesize bone 

matrix and resorb bone, respectively. These two cell types cooperate with each other to 

maintain homeostasis of bony tissue (Miyamoto and Suda, 2003). Bone remodeling is 

needed to remove old bone and stress-induced microcracks. So it is possible to insure 

biomechanical stability and to regulate mineral homeostasis of the whole organism 

(Vaananen and Laitala-Leinonen, 2008). The balance between the activities of 

osteoblasts and osteoclasts is essential for normal bone functioning. Several bone 

diseases, for instance osteoporosis and osteopetrosis, are related to a pathological 

imbalance between their activities (Roodman, 1996). An important role of osteoclasts in 

various skeletal diseases has become evident. Specific inhibition of osteoclast function 

has become a major strategy to treat osteoporosis and many other metabolic bone 

diseases (Vaananen and Laitala-Leinonen, 2008). See more below. 
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2.1.3.1 Basic multicellular unit (BMU) 
 

In the basic multicellular unit osteoclasts and osteoblasts closely collaborate in the 

remodeling process. The organization of the BMUs in the two bone typs differs, but 

these differences are mainly morphological rather than biological (Hadjidakis and 

Androulakis, 2006). 

 

The BMU is approximately 1-2 mm long and 0.2-0.4 mm wide. It comprises a cutting 

cone of osteoclasts in front, a closing cone lined by osteoblasts following behind, a 

central vascular capillary, a nerve supply and an associated connective tissue. In healthy 

human adults, 3-4 million BMUs are initiated each year and about 1 million BMUs are 

operating at any moment (Parfitt, 1994). 

 

The BMU maintains its size, shape and internal organization for many months while it 

travels through the bone in a controlled direction (Parfitt, 1994). In cortical bones, the 

BMU travels through the bone, creating and replacing a tunnel. In cancellous bones, the 

BMU moves across the trabecular surface, creating and replacing a trench. As the BMU 

advances, cells are recruited at each new cross-sectional location. New osteoblasts do 

not arrive until the osteoclasts have already moved on (Manolagas, 2000). 
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Figure 2.1: The basic multicellular unit (BMU) in cortical and concellous 

bone. 

In cortical bone (a) remodeling takes place in Haversian canals; in 

concellous bone (b) remodeling takes place on the surface of the 

trabecula (Hernandez et al., 2000). 

 

 

 

The lifespan of the BMU is 6-9 months what is much longer than the lifespan of the 

executive cells. Therefore, continuous supply of new osteoclasts and osteoblasts from 

their respective progenitors is essential (Manolagas, 2000). 

 

 

2.1.3.2 The three phases of bone remodeling 
 

Bone remodeling is occuring in three consecutive phases: initiation, transition and 

termination of remodeling (figure 1.1). The initiation phase includes recruitment of 

osteoclast precursors, differentiation and activation of osteoclasts as well as the 
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maintenance of bone resorption. Osteoclast differentiation is induced by osteoblast 

linage cells that express osteoclastogenic ligands such as RANKL (receptor activator of 

nuclear factor kappaB ligand). Bone resorption lasts about three weeks in human bone. 

In the transition phase osteoclastic bone resorption is inhibited, osteoclasts undergo 

apoptosis, and osteoblasts are recruited and differentiate. In the termination phase new 

bone (osteoid) is formed and mineralized. The termination phase lasts much longer than 

the initiation phase. Osteoblastic bone formation, which lasts about three months, is a 

much slower process. During the termination phase, osteoclastic differentiation appears 

to be inhibited (Matsuo and Irie, 2008). A detailed illustration of the occuring processes 

included would exceed the extent of this work and can be found in the mentioned 

references. 

 

 

 

 
 

 

Figure 2.2: The three-phase model of bone remodeling. 

Osteoclasts (red) and osteoblasts (blue) are shown. Osteocytes (star-

shaped) and canaliculi (blue lines) are shown in bone (gray) (Matsuo and 

Irie, 2008). 
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2.1.3.3 Regulation of bone remodeling 
 

The balance of bone seems to be controlled by hormones and other proteins secreted by 

hemopoietic bone marrow cells and bone cells. There are systemic and local regulations 

of bone cell function (Hadjidakis and Androulakis, 2006). 

 

 

2.1.3.3.1 Systemic hormones 
 

 

Parathyroid hormone 

Parathyroid hormone (PTH) is the most important regulator of the calcium homeostasis. 

It is able to maintain serum calcium concentrations by stimulating bone resorption, 

increasing renal tubular calcium re-absorption and renal calcitriol production. PTH can 

lead to catabolic or anabolic effects on bone. It is interesting that PTH stimulates bone 

formation when given intermittently (in low doses) (Mosekilde et al., 1991; Neer et al., 

2001), but stimulates bone resorption when secreted continuously (Parfitt, 1976; 

Eriksen et al., 1986). 

 

The primary target cell for PTH seems to be the osteoblast (Rodan and Martin, 1981). 

Isolated osteoclasts do not resorb bone in response to PTH, but they do so when 

osteoblasts or osteoblastic cell lines are added to the cultures (McSheehy and Chambers, 

1986). Furthermore, parathyroid hormone induces RANKL expression by marrow 

stromal cells (Yasuda et al., 1998). 

 

 

Calcitriol: 1α,25(OH)2-cholecalciferol 

1α,25(OH)2-cholecalciferol is the active form of the prohormone vitamin D3. 

Metabolites of vitamin D3 are potent stimulators of osteoclastic bone resorption. The 

most active metabolite is 1α,25(OH)2-cholecalciferol (Roodman, 1999). 
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Intestinal calcium and phosphorus absorption is enhanced by calcitriol. In this way it 

promotes bone mineralization (Hadjidakis and Androulakis, 2006). 

 

It is generally recognized that 1α,25(OH)2-cholecalciferol stimulates bone resorption. 

This is based on the fact that it was found to be a bone-resorbing hormone in a classic 

experiment using bone organ cultures (Raisz et al., 1972). 1α,25(OH)2-cholecalciferol 

also induces the expression of the receptor activator of NF-κB ligand (RANKL), which 

is an essential cytokine for osteoclast differentiation (Yasuda et al., 1998). 

 

 

Calcitonin 

Calcitonin is a peptide hormone and is secreted by the parafollicular cells of the thyroid 

gland. It is a potent inhibitor of osteoclastic bone resorption (Roodman, 1999). 

Calcitonin receptors (CTRs) are expressed on both osteoclast precursors as well as 

mature osteoclasts (Lee et al., 1995). 

  

Calcitonin, in pharmacologic doses, causes loss of the ruffled border, ending of 

osteoclast motility and inhibition of the secretion of proteolytic enzymes. This effect is 

mediated through its receptor on osteoclast. However, this effect is limited and its 

physiologic role is minimal in the adult skeleton (Hadjidakis and Androulakis, 2006). 

 

 

Glucocorticoids 

Glucocorticoids exert stimulatory as well as inhibitory effects on bone cells. They are 

essential for osteoblast maturation and they also decrease osteoblast activity. 

Furthermore, glucocorticoids sensitize bone cells to regulators of bone remodeling and 

they enhance osteoclast recuitment (Weinstein et al., 1998). 

 

 

Estrogens 

Estrogen is considered to be an important steroid hormone. It regulates bone 

metabolism not only in females but also in males (Smith et al., 1994). A deficiency of 
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this sex steroid caused by either menopause or removal of the ovaries results in bone 

loss by increasing osteoclastic bone resorption (Jilka et al., 1992). 

 

Estrogens decrease the responsiveness of the osteoclast progenitor cells to RANKL and 

so they prevent osteoclast formation (Srivastava et al., 2001). Furthermore, they reduce 

osteoclast life span (Kameda et al., 1997), stimulating osteoblast proliferation and 

decreasing their apoptosis (Manolagas, 2000). 

 

 

Prostaglandins 

Prostaglandins can be stimulators of osteoclastic bone resorption in bone organ culture 

systems as well as stimulators of osteoclast formation in murine marrow cultures 

(Takahashi et al., 1988). However, prostaglandins (PGE2) inhibit osteoclastic bone 

resorption and formation in long-term human marrow sytems (Chenu et al., 1990). But 

it appears that the effect of prostaglandins on osteoclast formation and osteoclastic bone 

resorption may be dependent on the dose administered and the assay system used 

(Hadjidakis and Androulakis, 2006). 

 

 

 

2.1.3.3.2 Local regulation 
 

 

OPG/RANKL/RANK system 

see chapter 2.1.6.2 

 

 

Macrophage colony-stimulating factor (M-CSF) 

One of the factors produced by osteoblastic/bone marrow stromal cells that support 

osteoclast formation is the cytokine M-CSF. The evidence for this observation came 

from the identification of a mutation in the gene for M-CSF in op/op mice 
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(macrophage-deficient osteopetrotic mice), which have osteopetrosis (Yoshida et al., 

1990; Wiktor-Jedrzejczak et al., 1990). 

 

M-CSF binds to its receptor c-Fms (a receptor-type tyrosine kinase) on preosteoclastic 

cells. Since M-CSF is the primary determinant of the pool of these precursor cells it is 

necessary for osteoclasts development (Udagawa et al., 1990). 

 

The main role of M-CSF in osteoclast biology seems to be to enhance the proliferation 

and survival of precursors and also to enhance the survival of mature cells (Chambers, 

2000). 

 

It is suggested that M-CSF plays an important role in osteoclast development as well as 

in osteoclast function (Suda et al., 1997). 
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2.1.4 Bone cells 
 

Bone consists of four different cell types. Osteoblast, osteoclasts and bone lining cells 

are present on bone surface. Osteocytes permeate the mineralized interior. Osteoblasts, 

osteocytes and bone lining cells originate from local osteoprogenitor cells. Osteoclasts 

on the other hand arise from the fusion of mononuclear precursors, which originate in 

hemopoietic tissues (Marks and Odgren, 2002). 

 

 

 

 
 

 

Figure 2.3: Schematic of the BRC (bone remodeling compartment). 

All cells in the network are connected with gap junctions. Especially 

osteoclasts (OCs), osteoblasts (OBs), osteocytes, and bone lining cells 

can be seen (Khosla et al., 2008). 
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2.1.4.1 Bone lining cells 
 

Bone lining cells are flat, elongated, inactive cells. They cover bone surfaces that are 

undergoing neither bone formation nor bone resorption. Since these cells are inactive, 

they exhibit few cytoplasmic organelles (Marks and Odgren, 2002). Bone lining cells 

are thinly extended over bone surface. They have flat or slightly ovoid nuclei and 

connect to other bone lining cells via gap junctions. They send cell processes into 

surface canaliculi. Activation of bone remodeling occurs on inactive bone surface. That 

means that bone lining cells may be involved in the propagation of the activation signal 

that initiates bone resorption and bone remodeling (Miller et al., 1989). Still little is 

known regarding the function of these cells. But it has been speculated that bone lining 

cells can be precursors for osteoblasts (Marks and Odgren, 2002). 

 

 

2.1.4.2 Osteoblasts 
 

The osteoblast produces the bone matrix constituents. Since osteoblasts do not function 

individually, they are found in clusters along the bone surface. They line on the layer of 

bone matrix that they are producing (Hadjidakis and Androulakis, 2006). They originate 

from multipotent mesenchymal stem cells. This mesenchymal stem cells can 

differentiate into osteoblasts, adipocytes, chondrocytes, myoblasts, or fibroblasts 

(Bianco et al., 2001). 

 

Toward the end of the matrix-secreting period, 15 % of mature osteoblasts are 

entrapped in the new produced bone matrix and so they differentiate into osteocytes (as 

mentioned above). There are also some cells that remain on the bone surface and 

become flat lining cells. Bone formation occurs in three successive phases: the 

production of osteoid matrix, the maturation of osteoid matrix and finally the 

mineralization of the matrix. Initially, osteoblasts produce osteoid by rapidly depositing 

collagen. This causes an increase in the mineralization rate to equal that of collagen 

synthesis. Finally, the rate of collagen synthesis decreases, but the mineralization 
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process continues until the osteoid becomes fully mineralized (Hadjidakis and 

Androulakis, 2006). 

 

 

2.1.4.3 Osteocytes 
 

Ostoecytes derive from osteoblasts. The bone forming cells (osteoblasts) are of 

mesenchymal origin. Osteoblasts secrete non-mineralized bone matrix (osteoid) and 

finally become incorporated as osteocytes in mineralized bone matrix. Despite the fact 

that osteocytes are the most abundant cellular component of mammalian bone, little is 

known about the process of osteoblast-to-osteocyte transformation (Franz-Odendaal et 

al., 2006). 

 

An osteocyte is a mature osteoblast within the bone matrix and is responsible for its 

maintenance (Buckwalter et al., 1996). 

 

Osteocytes extend enormously and long cell processes connect with each other and with 

lining cells and osteoblasts on the bone surface. Thereby they form a syncytial network 

throughout the skeleton. Osteocytic cell processes travel through small tunnels within 

mineralized bone that are called osteocytic canaliculi. These tunnels are filled with 

extracellular fluid. Thereby they provide an immense surface for the transport and 

exchange of ions and other bioactive substances (Ikeda, 2008). 

 

During differentiation from osteoblasts to mature osteocytes the cells lose a large part of 

the cell organelles (Aarden et al., 1994). Osteocytes are long living cells. They exist 

inside bone for 10-20 years, compared to the extremely short lifespan of osteoclasts, 

which perform bone resorption for less than 2 weeks, and osteoblasts, that are occupied 

with bone formation for a period of several months (Ikeda, 2008). 

 

Osteocyte functional activity and morphology varies according to the age of the cell. A 

young osteocyte exhibits most of the structural characteristics of the osteoblast, but has 

decreased cell volume and capacity of protein synthesis. An older osteocyte is located 
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deeper within the calcified bone, has a further decrease in cell volume and an 

accumulation of glycogen in the cytoplasm (Hadjidakis and Androulakis, 2006). 

Furthermore, the osteocytes are phagocytosed and digested during osteoblastic bone 

resorption (Elmardi et al., 1990). 

 

 

2.1.4.4 Osteoclasts 
 

The definition of osteoclasts is “bone resorbing cells“ (Miyamoto and Suda, 2003). 

Bone resorption involves both dissolution of bone mineral and degradation of organic 

bone matrix. Osteoclasts are highly specialized cells and can perform both of these 

functions. Many of the molecular meachanisms that are needed for the resorption 

process have recently been clarified (Vaananen and Laitala-Leinonen, 2008). 

Tartrate-resistant acid phosphatase (TRAP) activity and the calcitonin receptor (CTR) 

are available markers for osteoclasts, other than their bone resorbing activity (Miyamoto 

and Suda, 2003). 

 

Osteoclasts exhibit abundant Golgi complexes, mitochondria, and transport vesicles 

loaded with lysosomal enyzmes (Hadjidakis and Androulakis, 2006). 

 

 

2.1.4.4.1 Differentiation of Osteoclasts 
 

Osteoclasts are derived from hematopoietic stem cells (HSCs) through monocyte 

lineage progenitor cells (Miyamoto and Suda, 2003). The differentiation pathway of 

osteoclasts is common to that of macrophages and dendritic cells (Vaananen et al., 

2000). Mononuclear osteoclasts tightly adhere to bone and then fuse with each other to 

form multinuclear osteoclasts. The multinucleation is the most characteristic feature of 

osteoclasts (Miyamoto and Suda, 2003). The differentiation of osteoclasts is regulated 

by a number of other cells and their products, especially by RANK and M-CSF 

(Vaananen and Laitala-Leinonen, 2008).  
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Figure 2.4: Development of osteoclasts from hematopoietic stem cells. 

 TRAP, tatrate resistant acid phophatase; CTR, calcitonin receptor; 

MMP9, matrix metalloproteinase 9 (Miyamoto and Suda, 2003). 

 

 

 

Osteoclast formation is restricted to the bone surface, suggesting that bone provides a 

suitable environment for osteoclastogenesis (Miyamoto and Suda, 2003). During the 

resorption process osteoclasts are tightly sealed to the bone surface and so the resorption 

area is isolated from the extracellular fluid (Vaananen and Horton, 1995). 
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2.1.4.4.2 Resorption cycle 
 

The sum of cellular events needed for bone resorption is called the resorption cycle. The 

term resorption cycle covers neither the differentiation pathway of osteoclasts nor the 

cellular activities needed for the fusion of mononuclear precursors to form the 

multinuclear mature osteoclasts (Vaananen et al., 2000). 

 

Osteoclasts have several unique ultrastructural characteristics, for instance multiple 

nuclei surrounded by a well-developed Golgi apparatus, abundant pleomorphic 

mitochondria and many vacuoles and lysosomes (Takahashi et al., 2007). 

Resorbing osteoclasts are highly polarized cells. They achieve this polarization by 

reorganizing the cytoskeleton and from special areas such as a sealing zone (Miyamoto 

and Suda, 2003). 

 

 

Sealing zone/clear zone 

After migration of the osteoclast to the resorption site, a specific membrane domain, 

called sealing zone, forms on the apical side of the osteoclast (Vaananen et al., 2000). 

The sealing zone, defined as a unique thick band of actin, serves for the attachment of 

osteoclasts to the bone surface. In this way they isolate the resorption area, called 

“Howship´s lacuna“, from the surroundings (Takahashi et al., 2007). By tight sealing of 

the surrounding plasma membrane to the bone matrix the “proton-impermeable“ 

resorption lacuna is formed. This is necessary to create conditions where bone 

resorption can take place. This tight sealing of plasma membrane to the bone matrix is 

visualized at the ultrastructural level as the clear zone of osteoclasts (Vaananen and 

Horton, 1995). 

The molecular interactions between the plasma membrane of osteoclasts and the bone 

matrix at the sealing zone are still unknown. It appears that integrins play an important 

role in early phases of the resorption cycle (Vaananen et al., 2000).  
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Attachment occurs via dynamic structures called podosomes. Through their continuous 

assembly and disassembly they allow osteoclasts to move across the bone surface and 

let bone resorption proceed (Hadjidakis and Androulakis, 2006). 

 

 

Resorbing osteoclasts contain not only the sealing zone but also three other specialized 

membrane domains: a ruffled border, a functional secretory domain and a basolateral 

membrane (Vaananen et al., 2000). 

 

 

Ruffled border 

The ruffled border is the actual resorbing organ which faces the resorption lacuna 

(Vaananen and Horton, 1995). 

Acidification of the cavity between the cell membrane and the bone surface, and 

secretion of proteolytic enzymes into it, occurs through this specialized organelle 

(Mulari et al., 2003). This activity causes local dissolution of the mineral and digestion 

of the collagen matrix, thereby forming a “resorption pit“ (Baron, 1989). The low 

extracellular pH is generated via an active secretion of protons by V-type proton 

pumps/vacular type proton-ATPases in the ruffled border membrane and in intracellular 

vacuoles (Blair et al., 1989; Vaananen and Horton, 1995; Sundquist et al., 1990). 

Proteolytic enzymes such as cathepsin K, matrix metalloproteinase 9 (MMP-9), and 

lysosomal enzymes are secreted from the ruffled border into the resorption lacuna 

(Takahashi et al., 2007). 

 

Bone resorption involves both dissolution of bone mineral and degradation of organic 

bone matrix (Vaananen and Laitala-Leinonen, 2008). The first process during bone 

matrix resorption is the mobilization of the hydroxyapatite crystals that is determined by 

digestion of their link to collagen. Then the residual collagen fibers are digested by 

either cathepsins (which are secreted from the ruffled border) or by activated 

collagenases (Hadjidakis and Androulakis, 2006). Matrix degradation products are 

endocytosed from the central portion of the ruffled border. They are packaged into 
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transcytotic vesicles, transported to a functional secretory domain in the basolateral 

membrane and finally secreted through exocytosis (Takahashi et al., 2007). 

 

 

Basolateral membrane and functional secretory domain 

Basolateral membrane is the non-bone facing membrane. It is divided into two distinct 

domains. A specific membrane domain, called functional secretory domain (FSD), is 

formed in the center of the basolateral membrane (Salo et al., 1997). 

 

 

 

 
 

 

Figure 2.5.: Scheme of a bone-resorbing osteoclast. 

BL, basolateral domain (blue); FSD, functional secretory domain (rose); 

SZ, sealing zone (green); RB, ruffled border (black); RL, resorption 

lacuna (white) (Vaananen et al., 2000). 
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Cathepsin K 

Cathepsin K is a cysteine proteinase with the unique ability to degrade the triple helix of 

native collagen at an acid pH. It is the major acid hydrolase responsible for matrix 

degradation (Garnero et al., 1998). The enzyme is selectively expressed in osteoclasts, 

while other cathepsins are virtually absent (Saftig et al., 1998). 

 

 

Organization of the cytoskeleton during the resorption cycle 

The change in the polarization of the osteoclast during activation is caused by re-

organization of the actin cytoskeleton (Teti et al., 1991; Turksen et al., 1988). 

When the osteoclast is “transformed“ from the non-resorbing to the resorbing stage, 

three clearly distinct formations of F-actin and five patterns of vinculin distributions are 

observed (figure 1.6). In the first stages of the resorption cycle actin and vinculin are 

distributed throughout the developing punctate structures (podosomes) on the bone 

matrix. Towards the resorption stage these podosome-like structures coalesce to the 

specific area of the osteoclasts. Actin and vinculin dissociate from each other and actin 

forms a dense continuous band around the future resorptive area. Furthermore, the 

podosome type dot-like appearance is lost. This accumulation of actin filaments roughly 

corresponds to the morphological clear zone and is delimited by a double ring of 

vinculin and talin (Vaananen and Horton, 1995). The organization of F-actin into a belt 

or ring-like structure (actin ring) is typical only for resorbing osteoclasts. Therefore it 

can be used as a marker for resorbing cells. This characteristic changes in the molecular 

organization of the cytoskeleton in osteoclasts during the resorption cycle (Lakkakorpi 

and Vaananen, 1996). 
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Figure 2.6: Five different patterns of vinculin (green) and three different 

formations of actin (red) in osteoclasts during the resorption cycle. 

Stage 1 to 3 represent pre-resorptive events, stage 4 is a resorbing cell 

and stage 5 represents the post-resorptive stage (Vaananen and Horton, 

1995). 

 

 

 

2.1.5 Death of bone cells by apoptosis 
 

The average lifespan of human osteoclasts is about 2 weeks while that of osteoblasts is 

3 months (Parfitt, 1994). After osteoclasts have eroded, they die and are quickly 

removed by phagocytes (Hughes et al., 1996). The majority (65 %) of the osteoblasts 

that originally gathered at the remodeling site also die. The remaining osteoblasts are 

converted to lining cells. These lining cells then cover quiescent bone surface or are 

entrapped in the mineralized matrix as osteocytes (Jilka et al., 1998). Osteoclasts as well 
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as osteoblasts die by apoptosis. Apoptosis is a morphologically distinct form of 

programmed cell death and is a process common to several regenerating tissues (Steller, 

1995). It is an important regulatory program in which activation or suppression of many 

factors, including oncogenes, tumor suppressor genes, growth factors, cytokines and 

integrins, can determine a cell´s fate (Steller, 1995).  

 

As in other tissues, bone cells undergoing apoptosis are recognized by condensation of 

chromatin, the degradation of DNA into fragments and the formation of plasma and 

nuclear blebs (Manolagas, 2000). 

 

 

2.1.6 Cross-talk among bone cells 
 

Bone cells “talk“ to each other to maintain bone integrity and they communicate in 

order to regulate the balance between bone resorption and bone formation. Recent 

findings have suggested that the bone remodeling compartment is critical for osteoclast-

osteoblast communication during bone remodelling process. Differentiation, activation 

and apoptosis of the different bone cells are often dependent on the status of other types 

of bone cells. Bone cells in different lineages achieve intercellular communication not 

only by ligand-receptor interactions but also by molecules and ions that travel in the 

extracellular space or across gap junctions (Matsuo, 2009). 

 

 

2.1.6.1 Osteoclast-osteoblast communication 
 

Osteoclast-osteoblast communication occurs in the BMU (basic multicellular unit). 

There are at least three types of osteoclast-osteoblast communication. Osteoclasts and 

osteoblast can have direct contact where they allow membrane-bound ligands and 

receptors to interact and initiate intracellular signalling. They can also form gap 

junctions. This allows the passage of small water-soluble molecules between the two 

cell types. Their communication can also occur through diffusible paracrine factors, 
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such as growth factors, cytokines, chemokines and other small molecules secreted by 

either cell type and acting on the other via diffusion (Matsuo and Irie, 2008). 

 

 

2.1.6.2 OPG/RANKL/RANK system 
 

Around 1997, several laboratories identified the essential osteoclastogenic ligand 

RANKL (also known as OPGL, ODF, or TRANCE). This is a transmembrane 

glycoprotein belonging to the tumor necrosis factor (TNF)-α superfamily and produced 

as a trimer on the surface of pre-osteoblastic/stromal cells. Osteoclast precursors, on the 

other hand, express RANK (receptor activator of nuclear factor kappaB), the receptor 

for RANKL (Matsuo and Irie, 2008). The RANKL/RANK interaction results in 

activation, differentiation, and fusion of hematopoietic cells of the osteoclast lineage. 

Then they can begin the process of resorption. Furthermore, this interaction also 

prolongs osteoclast survival because the process suppresses their apoptosis (Hsu et al., 

1999). The expression of RANKL is relatively limited in osteoblasts. But it is also 

expressed in other cells, such as T cells and spleen cells (Miyamoto and Suda, 2003). 

 

The effects of RANKL can be blocked by osteoprotegerin (OPG), a secretory dimeric 

glycoprotein belonging to the TNF receptor family. OPG is a soluble receptor and acts 

as an antagonist for RANKL. This decoy receptor is mainly produced by cells of the 

osteoblast lineage, but can also be produced by the other cells in the bone marrow 

(Hofbauer and Schoppet, 2004; Simonet et al., 1997). By inhibiting the final 

differentiation and activation of osteoclasts and by inducing their apoptosis OPG 

regulates bone resorption. Since OPG is not incorporated into the bone matrix, its 

effects on bone resorption are fully reversible (Hadjidakis and Androulakis, 2006). 

 

Estrogen deficiency, glucocorticoid exposure, T-cell activation (e.g. rheumatoid 

arthritis) and skeletal malignancies (e.g. myeloma, metastases) enhance the ratio of 

RANKL to OPG. This fact promotes osteoclastogenesis, accelerates bone resorption 

and so induces bone loss. RANKL blockade (using OPG, RANK fusion proteins or 

RANKL antibodies) has prevented bone loss caused by osteoporosis, chronic 
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inflammatory disorders and malignant tumors in some animal models. Therefore, 

RANKL blockade can emerge as a therapy in humans (Hofbauer and Schoppet, 2004). 

 

 

Denosumab 

In the last few years densumab was studied as a treatment for postmenopausal 

osteoporosis and bone destruction due to rheumatoid arthritis or metastatic cancer 

(Pageau, 2009). Denosumab is a human antibody to RANKL. It prevents the interaction 

of RANKL with RANK on osteoclasts and their precursors, thereby blocking the 

formation, function, and survival of osteoclasts. Hence to that, densosumab decreases 

bone resorption, and increases bone density. Denosumab offers an alternative approach 

to the treatment of osteoporosis (Cummings et al., 2009).  

 

 

 

 
 

 

Figure 2.7: Interaction of RANKL, RANK and OPG (Coetzee and Kruger, 2004). 
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2.2 Skeletal disorders 
 

 

2.2.1 Osteopetrosis “marble bone disease” 
 

Osteopetrosis comprises a clinically and genetically heterogeneous group of conditions 

that have the characteristic of increased bone density. The increase in bone density 

results from abnormalities in osteoclast differentiation or function and mutations in at 

least 10 genes in humans (Stark and Savarirayan, 2009). 

 

These conditions are quite rare. Autosomal recessive osteopetrosis (ARO) has an 

incidence of 1 in 250,000 births and autosomal dominant osteopetrosis (ADO) has an 

incidence of 1 in 20,000 births (Stark and Savarirayan, 2009). 

 

The different subforms are classified into three major groups on the basis of inheritance, 

age of onset, severity and secondary clinical features: autosomal recessive infantile 

malignant osteopetrosis, autosomal recessive intermediate mild osteopetrosis and 

autosomal dominant adult onset benign osteopetrosis (Stoker, 2002). 

 

The increased bone mass can cause phenotypic changes such as macrocephaly and 

altered craniofacial morphology. But more importantly it can effect other organs and 

tissues, notably the bone marrow and nervous systems (Stark and Savarirayan, 2009). 

 

 

2.2.2 Osteoporosis 
 

Osteoporosis is one of the major public health problems that is associated with aging. It 

is defined as a skeletal disorder characterized by decreased bone strength increasing the 

risk of fracture for the respective person. Bone strength is influenced by bone density as 

well as by bone quality (Sipos et al., 2009). 
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A BMD (bone mineral density) value between 1 and 2 SD (standard deviation) below 

the mean value for young adults is described as osteopenia. A BMD value more than 2.5 

standard deviations below the adult mean value is defined as osteoporosis (Kanis et al., 

1994). 

 

It is well known that osteoporosis is primarily a consequence of estrogen deficiency. 

But there are also many additional factors that contribute to the pathogenesis of 

osteoporosis such as genetic and life-style factors, nutrition and the intake of 

medications (Sipos et al., 2009). 

 

In the early 1980s Riggs and Melton proposed the existence of two types of involutional 

osteoporosis: postmenopausale (type 1) and senile (type 2) osteoposrosis. They stated 

that postmenopausal women experience both types of osteoporosis, whereas men 

undergo mainly type 2 osteoporosis. Furthermore, Riggs and Melton believed that 

postmenopausal osteoporosis is caused by estrogen deficiency and senile osteoporosis is 

due to aging processes including osteoblast dysfunction (Riggs and Melton, 1983).  

 

In 1998 the type 1/type 2 model of Riggs and Melton was revised and from now on 

termed “unitary model of osteoporosis in postmenopausal women and aging men”. In 

the unitary model, estrogen deficiency was suggested to be the main cause of both 

phases of bone loss in postmenopausal women and osteoporosis in elderly men (Riggs 

et al., 1998). 
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2.3 Destruxin 
 

 

Destruxins are secondary metabolites produced by different soil fungi (Pedras et al., 

2002). Most of the more than 35 characterized congeners have been described from 

Metarhizium anisoplia, an entomopathogenic fungus that is used as a biological pest 

control (BCA) (Wang et al., 2004). 

 

 

2.3.1 Nomenclature 
 

The name “destruxin” is derived form the word “destructor”. This term derives from the 

species Oospora destructor, the entomopathogenic fungus from which these metabolites 

were first isolated. Later on, Oospora destructor was re-named Metarhizium anisoplia, 

but the compounds´ trivial names were retained. The trivial names of destruxins include 

“destruxin” followed by a single capital which may contain a subscript number, as 

shown in figure 1.8 (Pedras et al., 2002). Destruxin A, B and E are predominating in 

quantitative terms (Wang et al., 2004). 

 

 

2.3.2 Chemical structure 
 

Destruxins are cyclic hexadepsipeptides composed of an α-hydroxy acid and five amino 

acid residues joined by peptide and ester bonds. Individual destruxins differ on the 

hydroxyl acid, the N-methylation and the R group of the amino acid residues. The 

configurations of the amino acid residues are S and those of the hydroxy acids are R 

(Pedras et al., 2002). 
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Figure 2.8: Chemical structures of destruxins. 

A-E (n=3, R′=–CHMeCH2Me), A1–E1 (n=4, R′=–CHMeCH2Me), A2–E2 

(n=3, R′=–CHMe2) (Pedras et al., 2002). 

 

 

 

2.3.3 Synthesis 
 

Cyclic peptides are normally synthesized by coupling intact amino acid and hydroxy 

acid residues. This coupling is followed by intramolecular cyclization of the resulting 

linear peptide chain (Pedras et al., 2002). 

 

 

2.3.4 Biological activity 
 

 

2.3.4.1 Insecticidal activities 
 

The insecticidal activity of destruxins was tested on a large variety of insects. These 

toxins were administered by topical application, forced ingestion, immersion or 
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injection to larvae or adult insects. Apparently, destruxins cause an initial tetanic 

paralysis, which at lethal doses, can lead to the death of insects. The tetanic paralysis 

appears to cause muscle depolarization by direct opening of the Ca2+ channels in the 

membrane (Pedras et al., 2002). Moreover, Dumas et al. found out that destruxin E 

induced Ca2+ influx and phosphorylation of intracellular proteins in insect cells. They 

tested this effect in vitro on lepidopteran cell lines (Dumas et al., 1996). 

 

Structure-activity relationship studies showed that the presence of the ester bond is 

essential for biological activity of destruxins (Cavelier et al., 1998). Tests on the 

variation of the side chain of the hydroxy acid residue showed that the presence of a 

hydrophilic group decreased the insecticidal activity. Compounds with an electron-rich 

side chain (destruxin A) showed a greater effect than those with a fully saturated side 

chain (destruxin B). But overall, destruxin E seemed to be the most potent of all 

compounds (Cavelier et al., 1997). 

 

Dumas et al. found out that destruxin, especially destruxin E and A, exhibited a 

cytotoxic effect on insect cells (Dumas et al., 1994). 

 

Destruxin A, destruxin B and destruxin E were shown to exhibit antiviral and 

immunodepressant activity in insect cells (Pedras et al., 2002). 

 

 

2.3.4.2 Phytotoxic activities 
 

Destruxins, mainly destruxin B, produced by Alternaria brassicae were shown to be 

phytotoxic to a variety of plants. This toxicity is manifested by chlorosis and necrotic 

spots on the leaf surface. The degree of sensitivity of different Brassica species to 

destruxin B correlated with their degree of susceptibility to Alternaria brassicae. This 

suggestes that the toxin is host-specific (Pedras et al., 2002). 
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2.3.4.3 Immunosuppressive effects on the hepatitis B viral surface 

antigen 
 

Chen et al. have shown the strong suppressive effect of destruxin B on hepatitis B viral 

surface antigen (HBsAg) gene expression in human hepatoma Hep3B cells. Destruxin B 

and homodestruxin B were suggested as potential candidates for development of new 

antihepatitis agents (Chen et al., 1997).  

 

 

2.3.4.4 Cytotoxic effects on leukemia cells 
 

Odier et al. investigated the antitumor effect of destruxin A, B and E on P388 leukemic 

cell line cells in vitro by flow cytometry on growth, cell viability and cell cycle 

perturbation 48 hours after destruxin exposure. Destruxin A, B and E inhibited P388 

leukemic cell proliferation. Destruxin E showed greater antiproliferative activity than 

destruxin A and destruxin B (Odier et al., 1992). 

 

 

2.3.4.5 Inhibition of the growth of certain cancer cell lines 
 

Kobayashi et al. found out that destruxin E inhibited anchorage-independent growth of 

v-Ki-ras-expressed pMAM-ras-REF cells. Anchorage independence is a specific 

characteristic of malignant tumor cells. Inhibitors of anchorage-independent growth of 

tumor cells, such as destruxin E, could be useful for the treatment of cancer (Kobayashi 

et al., 2004). 

 

Also see: cytotoxic effect on leukemic cells (Odier et al., 1992)  
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2.3.4.6 Effect on the contraction of isolated rat heart tissue 
 

Destruxin A and Destruxin B exhibited a positive inotropic effect with negative 

chronotropy on isolated rat cardiac tissue in vitro. Furthermore, these effects are 

independent of cAMP levels in the heart muscle tissue. Other positive inotropic agents 

in contrast, such as digitalis and phosphodiesterase inhibitors, were shown to increase 

cyclic AMP in heart muscles thus inducing pathological changes in the myocardium 

(Tsunoo and Kamijo, 1999). 

 

 

2.3.4.7 Induction of erythropoietin production 
 

Erythropoietin (EPO) is the primary hormone that regulates the proliferation and 

differentiation of immature erythroid cells. An alternative to the human erythropoietin, 

as an intravenous drug, in the treatment of patients with anemia, would be an orally 

active drug that induces endogenous EPO production. Cai et al. stated that destruxin-A4 

is able to induce gene expression and marked secretion of erythropoietin in cultured 

cells of the epo-3 line (Cai et al., 1998). 

 

 

2.3.4.8 Inhibition of vacuolar ATPase activity 
 

Destruxin B was shown to be a specific, dose dependent and reversible inhibitor of 

vacuolar-type ATPase, which maintains the acidity in the vacuolar organelles such as 

Golgi apparatus and lysosomes (Muroi et al., 1994). 

Bandani et al. studied the effect of destruxins on the hydrolytic activity of a vacular type 

ATPase that they had identified from Galleria mellonella midgut columnar cell brush 

border membrane vesicles (BBMV) by its cation and pH dependence and sensitivity to 

proton pump inhibitors. They found that destruxins had little effect on this ATPase, 

whereas destruxin B was the most effective of all tested destruxins (Bandani et al., 

2001). 
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2.3.4.9 Influence of calcium flux dependent processes 
 

Destruxins also modify calcium-dependent processes like the modulation of calcium 

balance in Lepidopteran cell lines and the induction of calcium-dependent 

morphological changes in insect epithelial cells from Leptidoptera sp. (Dumas et al., 

1996). 

 

 

2.3.4.10 Formation of trans-membrane ion channels 
 

It has been suggested that the bioactivity of destruxin (respectively of 

cyclohexadepsipeptides) are linked to ionophoric properties. Computer-aided molecular 

modeling shows the potential for destruxin A to form a coordination complex with 

calcium. In this complex the divalent cation is bound at the center of a sandwich formed 

by two molecules of destruxin A (similar to that observed for the enniatins). Hinaje et 

al. demonstrated an ionophoric capability for destruxin A by detecting a movement of 

calcium ions across the liposomal barrier by externally applied destruxin A (Hinaje et 

al., 2002). 

 

 

2.3.4.11 Inhibition of the bone-resorbing activity of osteoclast-like 

multinucleated cells 
 

Nakagawa et al. tested destruxin B and E on their anti-resorptive activity. They stated 

that the substances inhibit pit formation without affecting osteoclast differentiation and 

survival. Destruxins block the formation of actin rings, prominent clear zones and 

ruffled borders in osteoclast in a dose-dependent manner (Nakagawa et al., 2003). 

 

 

During my research on the biological activity of destruxins I found out that there are 

only a few recent studies available about these compounds. This field offers a wide 

range of opportunities for further research. 
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3. Material and methods 
 

 

 

3.1 Equipment 
 

Equipment Name of the company 

Autoclave SX-300E, Tomy Digital Biology, Japan 

Bone saw + 

Saw blade 

Isomet Low speed saw, Buehler, USA 

Diamond wafering blade/series 15 HC diamond, 

Buehler, USA 

Cell counter Cell counter + analyzer Casy®1 Model DT, Schärfe 

System, Germany 

Centrifuge Hermle Z323K, Bartelt, Austria 

Computers Power Macintosh G4 (Apple) 

PC (Windows) 

Digital camera Coolpix 995, Nikon, Japan 

Color View III, Olympus, Japan 

F-601, Nikon, Japan 

ELISA-reader Multiscan MS reader, Labsystem, Finland 

Fluorescence high pressure lamp Nikon, Japan 

Incubator Model 500, Memmert, Germany 

HERAcell® 240, Kendro, USA 

Laminar airflow workbench Ehret, Austria 

Light source for microscope KL 1500 electronic, Schott, North America 

Magnetic stirrer Ikamag® RCT, Janke & Kunkel, Germany 

Microscopes Diaphot 300, Nikon, Japan 

Optiphot-2-UD, Nikon, Japan (fluorescence) 

TMS, Nikon, Japan 

BX51, Olympus, Japan 

pH-meter Metrohm, Austria 
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Scales LC 621 P, Sartorius, Austria 

MC 210 P, Sartorius, Austria 

Shaker Swip, Edmund Bühler, Germany 

Sterilisator WTC, Binder, Germany 

Ultrasound bath Transsonic 570, Elma, Austria 

Vortex Vortex Genie 2TM, Bender & Hobein AG, 

Switzerland 

Water bath GFL-1086, GFL, Germany 

Table 3.1: List of all used equipment. 
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3.2 Materials 
 

 

Materials Name of the company 

Adjustable micropipette Eppendorf, Germany 

Thermo-Labsystem, Finland 

Gilson, France 

Centrifuge tube: 

15 ml, 50 ml 

Becton Dickinson, USA 

Greiner Bio-One, Germany 

Cover slips La Fontaine, Germany 

Cryo vials Becton Dickinson, USA 

Eppendorf tube Eppendorf, Germany 

Glass pipette: 

5 ml, 10 ml, 25 ml 

Brand, Germany 

Injection needle: 

27G3/4, 0,4 * 19, Nr. 20 

Becton Dickinson, USA 

Microscope slide La Fontaine, Germany 

Parafilm “M” American National Can Group, USA 

Pasteur pipette Copan, Italy 

Petri dish Iwaki, Japan 

Sterilin, Bibby Sterilin Ltd., U.K. 

Pipetboy Integra Biosciences, Switzerland 

Polystyrene tube BD Biosciences, USA 

Silicon GE Bayer Silicones, USA 

Syringe Terumo Europe, Belgium  

Well plate 

 

  

Iwaki, Japan 

Nunc, Denmark 

Costar, USA 

Greiner Bio-One, Germany 

Table 3.2: List of all used materials. 
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3.3 Substances 
 

 

Substances Name of the company 

α-MEM Gibco BRL, USA 

1,25-(OH)2-Cholecalciferol Hoffmann-La Roche, Switzerland 

4´,6-Diamidino-2-phenylindole (DAPI) Sigma, USA 

Acetone Riedel-de Haen, Germany 

Alexa Fluor®488 phalloidin Molecular Probes, USA 

CaCl2 (calcium chloride) Sigma, USA 

CellTiter 96® AQueous One Solution Reagent Promega, Germany 

Collagenase 0,1 % Sigma, USA 

Diethyl ether Riedel-de Haen, Germany 

Dispase 0,2 % Boehringer Mannheim, Germany 

DMSO (dimethyl sulfoxide) Sigma, USA 

EDTA (ethylenediaminetetraacetic acid) Sigma, USA 

Ethanol absolute Sigma, USA 

Fast-Red-Violet-Salt Sigma, USA 

Fetal calf serum PAA Laboratories, Austria 

Formaldehyde  Sigma, USA 

HCl (hydrogen chloride) Merck, Germany 

HEPES  Sigma, USA 

Isopropanol 70 % Riedel-de Haen, Germany 

KCl (potassium chloride) Merck, Germany 

KH2PO4 (monopotassium phosphate) Merck, Austria 

Methanol Merck, Germany 

MgCl2.6H2O (magnesium chloride hexahydrate) Sigma, USA 

Mounting medium (FluorSave) Calbiochem-Novabiochem, USA 

N-N-dimethylformamide  Sigma, USA 

Na2C4H4O6 (sodium tartrate) Sigma, USA 

Na2HPO4.2H2O (disodium phosphate dihydrate) Merck, Germany 
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NaCl (sodium chloride) Sigma, USA 

NaOH (sodium hydroxide) Merck, Germany 

NaCH3CO2 (sodium acetate) Sigma, USA 

Naphtol AS-MX-phosphate Sigma, USA 

Penicillin  Gibco BRL, USA 

PGE2 (prostaglandin E2) Cayman, USA 

Pfizer, USA 

Silicon grease Wacker-Chemie, Germany 

Sodium borate Sigma, USA 

Streptomycin Gibco BRL, USA 

Toluidine blue Sigma, USA 

Trypsin Boehringer Mannheim, Germany 

Table 3.3:  List of all used substances. 
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3.4 Solutions 
 

 

Phosphate Buffered Saline Solution (PBS) 10x: 

 

2,00 g...................................KCl (potassium chloride) 
2,00 g...................................KH2PO4 (monopotassium phosphate) 
80,00 g .................................NaCl (sodium chloride) 
27,07 g .................................Na2HPO4.2H2O (disodium phosphate dihydrate) 
 

KCl (2,6 mM), KH2PO4 (1,4 mM), NaCl (140 mM) and Na2HPO4.2H2O (15,2 mM) was 

diluted in 1000 ml double distilled water. 

 

The solution in use was PBS 1x. For this purpose, the PBS 10x was diluted 1:10 with 

double distilled water. 

 

 

Phosphate Buffered Saline Solution (PBS) with Ca2+ and Mg2+10x: 

 

2,00 g...................................KCl (potassium chloride) 
2,00 g...................................KH2PO4 (monopotassium phosphate) 
80,00 g .................................NaCl (sodium chloride) 
14,342 g ...............................Na2HPO4.2H2O (disodium phosphate dihydrate) 
1,00 g...................................CaCl2 (calcium chloride) 
1,00 g...................................MgCl2.6H2O (magnesium chloride hexahydrate) 
 

KCl (2,6 mM), KH2PO4 (1,4 mM), NaCl (140 mM), Na2HPO4.2H2O (8 mM) and 

MgCl2.6H2O (0,5 mM) were diluted in a approximately 100 ml double distilled water. 

Then the pH was adjusted to a value of 2-3 with 5N HCl. At this pH-value CaCl2 is 

dissolved best. CaCl2 (0,9 mM) was added and the solution was filled up with double 

distilled water to 1000 ml. 

 

The solution in use was PBS with Ca2+/Mg2+1x. For this purpose, PBS with Ca2+/Mg2+ 

10x was diluted 1:10 with double distilled water. Finally the pH was adjusted to the 

value of 7,2 (almost neutral) with 5N NaOH (sodium hydroxide). 
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TRAP-buffer solution: 

 

544 mg .................................NaCH3CO2 (sodium acetate) 
230 mg .................................Na2C4H4O6 (sodium tartrate) 
 

NaCH3CO2 (40 mM) was dissolved in 100 ml double distilled water. After adjusting the 

pH-value to 5 with 1N HCl, Na2C4H4O6 (10 mM) was added. 

 

 

TRAP-staining solution: 

 

30 mg ..................................fast red violet salt 
5 mg.....................................naphtol AS-MX-phosphate 
500 µl...................................N-N-dimethylformamide 
 

Fast red violet salt (1,59 mM) was dissolved in 50 ml TRAP-buffer solution. Naphtol 

AS-MX-phosphat (0,24 mM) was dissolved in N-N-dimethylformamide (10 µl/ml). 

Finally these two solutions were combined.  

 

 

Toluidine blue staining solution 1 %: 

 

1,00 g ...................................sodium borate 
1,00 g ...................................toluidine blue O 
 

Sodium borate and toluidine blue O were suspended in 100 ml double distilled water. 

 

 

Fixing Solution: 

 

A 37 % formaldehyde solution was diluted 1:10 with PBS with Ca2+/Mg2+ 1x to obtain 

a 3,7 % formaldehyde solution to fix the cells (OCs). 
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4´,6-Diamidino-2-phenylindole (DAPI)-dye: 

 

DAPI stock solution (5 µg/ml) was diluted 1:50 with PBS with Ca2+/Mg2+. This means 

that 200 µl of the DAPI stock solution was diluted in 10 ml PBS with Ca2+/Mg2+. 

 

 

Phalloidin-rhodamine-dye: 

 

200 units (6,6 µM) of a phalloidin rodamine stock solution have been diluted in 1 ml of 

methanol (solvent). Therefore, methanol was let evaporate at room temperature before 

use. For the solution used (0,165 µM), the stock solution was diluted 1:40 with PBS 

with Ca2+/Mg2+. This means that 5 µl of the phalloidin rodamine stock solution were 

diluted in 200 µl PBS with Ca2+/Mg2+. 

 

 

Enzyme-solution for isolation of the osteoblasts: 

 

0,10 g................................... collagenase 0,1 % 
0,20 g...................................dispase 0,2 % 
 

Collagenase and dispase were dissolved in 100 ml of α-MEM without serum and then 

the solution was filtrated through a 0,2 µm filter. 

 

 

Trypsin-EDTA solution.10x: 

 

0,155 g .................................EDTA (ethylendiaminetetraacetic acid) 
0,50 g................................... trypsin 
0,90 g...................................NaCl (sodium chloride) 
 

EDTA was dissolved in approximately 90 ml of double distilled water. Then the pH 

was adjusted to a value of 7,4 - 7,6. Trypsin and NaCl were added and the solution was 

restocked to 100 ml of double distilled water. Then the pH was adjusted again, to a 

value of 7,7 with 5N NaOH and the solution was sterile filtrated. 
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To obtain trypsin-EDTA solution 1x, 1 ml of trypsin-EDTA solution 10x was added to 

9 ml of PBS without Ca2+/Mg2 10x. 
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3.5 Culture medium 
 

The culture medium used for the coculture was Minimal Essential Medium, α-

configuration (α-MEM) by Harry Eagle. It contains amino acids, salts (choline chloride, 

calcium chloride, potassium chloride, sodium chloride, magnesium sulphate and sodium 

dehydrogenate phosphate), glucose and vitamins (folic acid, thiamine/vitamin B1, 

riboflavin/vitamin B2, niacin/vitamin B3, pantothenic acid/vitamin B5, 

pyridoxal/vitamin B6). 

 

Powdered α-MEM (reference number: 11900-073) was solved in 10 liters of sterile 

water and 2,2 g sodium bicarbonate for each liter of final volume of the medium. The 

pH of the medium was adjusted to 7,1 by using 1N HCL or 1N NaOH. Finally, the 

solution was sterilized by filtration through a membrane with porosity of 0,2 µm. 

 

The medium in use contains fetal calf serum (FCS), which provides growth factors for 

the cells to survive, grow and divide. For the coculture α-MEM with 10 % FCS was 

used. For the pre-incubation of the surface and for the seeding of osteoblasts heat 

inactivated FCS was used. By the time bone marrow cells were added to the culture, 

regular FCS (not heat inactivated) was used. Heat-inactivation is achieved by warming 

up the serum to 56°C in a water bath for 30 minutes under mild shaking. In the 

experiments with isolated rabbit osteoclasts α-MEM + 10 % heat inactivated FCS was 

only used for pre-incubation. As soon as the osteoclasts were seeded α-MEM + 5 % 

heat inactivated FCS was used. To control microbial contamination in cell culture 

antibiotics (penicillin-streptomycin solution – P/S) were added to the medium. The 

concentration of penicillin and of streptomycin in the medium was 100 U/ml and 

100 µg/ml respectively. 

 



Material and methods 

 

42 

3.6 Test substance 
 

The cyclohexadepsipeptide destruxin E was investigated in this thesis. The substance 

was applied by the University of Innsbruck; Department of Pharmacognosy 

(Dr. Christoph Seger). 

 

Destruxin E had a purity of 90 % (according to HPLC-DAD). The molecular weight is 

593 g/mol. The used concentrations of destruxin E were 1*10-6 M, 1*10-7 M, 1*10-8 M, 

3*10-9 M and 1*10-9 M. 

 

The substance was dissolved in 100 % methanol. The concentration of the stock 

solution was 2,58 mM. This stock solution was diluted in methanol to gain the used 

standards with the concentration 1*10-3 M, 1*10-4 M, 1*10-5 M, 3*10-6 M and 1*10-6 M 

destruxin E. These standards were used in the experiments in a dilution of 1:1000 in the 

culture medium as indicated in the experimental description. To make sure that the 

solvent methanol does not harm the cells, a group with culture medium alone was 

always used in the experiment to be compared with the methanol group. 

 

Destruxin E was stored dark at -20°C. 
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3.7 Isolation of osteoblasts 
 

Osteoblasts were isolated from the calvariae of 12-48 hour old mice. The calvariae were 

used for the isolation because they contain a big number of osteoblasts. 

 

The calvariae were removed and washed with cold PBS without Ca2+/Mg2+. For the 

enzymatic digestion the calvariae were treated with an enzyme-solution (0,1 % 

collagenase, 0,2 % dispase, 10 mM HEPES, α-MEM) for 10 minutes in a shaking 

incubator at 37°C. This step was repeated 5 times and all fractions were collected in an 

ice-cold centrifuge tube. The first fraction was discarded because it contains a lot of 

other cells beside osteoblasts. After collection of all fractions in the centrifuge tube they 

were centrifuged at 1500 rpm for 5 minutes at 4°C. The supernatant was extracted and 

the cell pellet was re-suspended in α-MEM + 10 % FCS. The suspension was put in 

Petri dishs and incubated for 24 hours. Then the medium was changed to remove 

contaminating cells and incubated for 24 more hours so that the cells became confluent. 

 

Splitting 

The cell surface was detached with a trypsin-EDTA solution 1x. The detached 

osteoblasts were transferred into a 50 ml centrifuge tube and centrifuged at 1500 rpm 

for 5 minutes at 4°C. The supernatant was extracted and the cell pellet was re-

suspended in culture medium and seeded on a new culture plate with a splitting rate of 

1:4 (2 ml of the re-suspension were added to 8 ml of α-MEM + 10 % FCS). 

 

Freezing 

The cell surface was detached with a trypsin-EDTA solution 1x again. Then the 

detached osteoblasts were transferred into a 50 ml centrifuge tube and centrifuged at 

1500 rpm for 5 minutes at 4°C. The supernatant was extracted and the cell pellet was re-

suspended in culture medium. The cells were then counted with a Casy® cell counter 

and analyzer system, centrifuged (1500 rpm for 5 minutes at 4°C) and suspended in the 

freezing solution (50 % FCS hi, 40 % α-MEM, 10 % DMSO/dimethyl sulfoxid). 1,5 ml 

cell suspension was put in each vial containing approximately 4 million cells 

(4*106 cells). The vials were stored overnight in a Nalgene freezing container 
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(containing isopropanol) at -80°C. So the cells could be frozen continuously at 

1°C/hour. Finally the osteoblasts were stored in a liquid nitrogen tank at –196°C until 

they were needed for the experiments. 
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3.8 Methods 
 

 

 

3.8.1 Resorption assay (“pit assay”) 
 
 

3.8.1.1 Preparation of bone slices 
 

The bone used as a substrate for the resorption of the osteoclasts in the resorption assay 

was isolated from cattle obtained from a local slaughterhouse. The long bones were 

cleaned off muscles and the ends were cut off with a metal saw. After the bone marrow 

was removed the bones were dried for 24 hours at 50°C and cut into smaller pieces. 

Finally they were stored in the refrigerator (4°C). 

 

At first a piece of bovine long bone was cut in slices with a thickness of 300-350 µm 

using a low speed saw with a diamond blade. The slices were then cut into small equal 

squares (ca. 5 * 5 mm) with a scalpel. To clean the bone slices they were washed 3 

times with double distilled water and once with 70 % ethanol in an ultrasonic bath for 5 

minutes each time. Then they were put in ethanol absolute and stored overnight. After 

that the bone slices were sterilized with a 15-minute UV-light treatment for each side in 

a laminar airflow workbench. The sterilized bone slices were then glued to the well 

surface of a 48-well culture plate with sterile silicone (4 bone slices per well) and pre-

incubated in a α-MEM + 10 % FCS for at least 2 hours (or overnight). 

 

 

3.8.1.2 Coculture 
 

Seeding of Osteoblasts 

First osteoblasts isolated from murine calvariae were seeded on 48-well culture plates. 

The frozen cells (stored in 1,5 ml vials with approximately 4 million cells) were taken 
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from the liquid nitrogen tank and thawed in a water bath until there was only a small ice 

cube left. The cells were then diluted in heat inactivated α-MEM + 10 % FCS. The 

whole medium used for pre-incubation was removed with a glass Pasteur pipette and a 

vacuum pump. Finally 2-4 million osteoblasts were seeded on one culture plate (48-well 

culture plate: 42.000 – 83.000 cells/cm2 area of growth). The culture plates were then 

incubated (37°C, 5 % CO2) for 24 hours to give the cells time to attach to the bone or 

plate surface. 

 

Seeding of Bone Marrow Cells 

Femora and tibiae of several week old mice were isolated. 8 bones were used for one 

culture plate. The mice were killed by cervical dislocation and their hind feet were cut 

off with scissors or a scalpel. The legs were then placed in a PBS without Ca2+/Mg2+ 

filled Petri dish that was set on ice. Under the laminar airflow bench the muscles were 

removed from the bones with a knife, tweezers and by hand (with kitchen roll paper). 

The cleaned bones were put into another Petri dish filled with PBS without Ca2+/Mg2+ 

and settled on ice again. Then the upper ends of the bones were cut off. The bone 

marrow cells were flushed out of the bone with α-MEM + 10 % FCS, using a 

hypodermic needle (0,4 * 19 mm) and a 1 ml syringe. The cell suspension was 

transferred to a 50 ml centrifuge tube and then centrifuged for 5 minutes, at 1500 rpm 

and 4°C. After the centrifugation, the supernatant medium was removed from the tube 

and the remaining pellet was re-suspended in medium (6 ml medium for 2 bones). 

Finally the medium in the wells of the culture plate was removed and the bone marrow 

cells were added to the culture. For that purpose 400 µl of the bone marrow cell 

suspension and 100 µl of medium with 1,25-(OH)2-vitamin-D3 and PGE2 was added to 

each well of a 48-well culture plate. The stock solution of 1,25-(OH)2-vitamin-D3 was 

1*10-5 M, which was added to the cell suspension to reach the final concentration of 

1*10-9 M. The stock solution of PGE2 was 1*10-3 M, which was added to the suspension 

to reach the final concentration of 1*10-6 M. Then the well plate was incubated again. 

 

The medium was changed every 48 hours. The test substance was added according to 

the aim of the respective experiment (day 0 – day 3/day 0 – day 5/day 3 – day 5). The 

coculture was ended after 5-6 days when osteoclasts could be observed. 
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3.8.1.3 Staining of the bone slices 
 

At the end of the culture time the bone slices were taken out of the wells of the culture 

plate and placed in polypropylene tubes. To clean them from remaining medium, silicon 

and osteoclasts, the bone slices were then washed with 70 % isopropanol in an 

ultrasound bath for 15 minutes. Finally the slices were stained with a 1 % toluidine blue 

solution for 4 minutes on a shaker and then washed 3 times with double distilled water 

to rinse off the remaining dye. The stained bone slices were placed in a marked 96-well 

plate until pit area measurement. 

 

 

3.8.1.4 Pit area measurement 
 

The resorption areas were visualized with an Olympus BX51 reflected-light microscope 

with a 10x magnification. For each bone slice 2 images, one in the upper left corner and 

the other one in the lower right corner, were taken with an Olympus Color View III 

digital camera, which was connected to the microscope. The 2 images of one bone slice 

were merged in an imaging software program called cell^F to one picture (figure 3.1) 

which could be analyzed in the same program. The resorption areas could be marked 

with this program because of the variable color intensity of the pits compared to the rest 

of the bone slice. 
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Figure 3.1: Stained bone slice with resorption pits in the imaging software 

cell^F. 

 

 

 

The total number of resorption pits, their total area and the average pit area were 

calculated by the program as well as the total area of the whole bone slice visible on the 

picture. These data were then copied to Microsoft Excel for calculation of the 

resorption (%). 

 

- Total number of pits = sum of all pits on the whole picture 

- Total area of pits = sum of the areas of all pits 

- Total area of bone slice 
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- 

! 

Average pit area =
total area of pits

total number of pits
 

 

- 

! 

% Resorption =
total area of pits *  100

total area of bone slice
 

 

 

This method was carried out with 8 samples for each group (8 bone slices in 

2 wells/group). 

 

Finally the graphical presentation was performed with the program Prism 5.0. 

 

 

3.8.2 Quantification of TRAP-positive cells 
 

TRAP-positive cells were stained with a red staining solution and were then visible 

under a light microscope with a 10x objective. Only TRAP-positive multinucleated cells 

with 3 or more nuclei were counted as OCs. With this method the number of osteoclasts 

in each group (different concentrations of treatment or control) could be determined. 

 

 

3.8.2.1 Coculture 
 

Done as described in detail in chapter 3.8.1.2. 

 

 

3.8.2.2 Fixation 
 

OC-like cells were fixed with 3,7 % formaldehyde solution (3 minutes, and 10 minutes). 

Before and after the fixation the cells were washed several times with PBS with 

Ca2+/Mg2+. 
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3.8.2.3 Staining 
 

The cells were pre-incubated with a TRAP-buffer (containing 40 mM sodium acetate 

and 10 mM sodium tartrate) for 30 minutes. Then the cell membranes were made 

permeable with a treatment with an acetone/ethanol 1:1 solution for 30 seconds. 

Thereafter the wells with the cells were dried for 2 minutes before the cells were treated 

with the TRAP staining solution. This solution contained dimethyl formamide, naphtol 

AS-MX phosphate and Fast-Red-Violet-Salt. The cells were then incubated for 5-8 

minutes in the incubator. Finally, washing the cells 3 times with double distilled water 

stopped the staining. The cells were stored in double distilled water at 4°C until further 

analysis. 

 

This method was carried out with 3 samples for each group (3 wells/group). 

 

 

 

 
 

 

Figure 3.2:  TRAP-positive cells of a coculture with osteoblasts and bone 

marrow cells (control-group) under the light microscope. 
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Finally, the TRAP-positive cells with 3 or more nuclei were counted under a light 

microscope. The graphical presentation was done with the program Prism 5.0 

 

 

 

3.8.3 Morphological analysis 
 

To examine the morphology of osteoclasts and of osteoblasts the cytoskeleton and the 

nuclei of these cells were stained.  

 

Fluorescence labeled phalloidin was used to lable and to observe the cytoskeleton under 

the fluorescence microscope. Phalloidin binds at the interface between F-actin subunits 

with high affinity. By labeling phalloidin with fluorescent analogs, like alexa 

fluor®488, the distribution of F-actin in cells (in this case osteoclasts and osteoblasts) 

could be investigated. The conjugated dye, alexa fluor®488, emits green light. This way 

it was possible to visualize the actin rings of the active osteoclasts and the widespread 

cytoskeleton of the osteoblasts. 

 

The nuclei were stained with 4´,6-Diamidino-2-phenylindole (DAPI). This fluorescent 

dye (blue) easily enters cells and binds strongly to DNA because it forms complexes 

with AT-rich regions of double-stranded DNA, mainly at the minor groove. 

 

 

3.8.3.1 Preparation of the cover slips 
 

The cover slips were cleaned with ethanol absolute overnight. Then they were sterilized 

at 180°C for about 2 hours. The sterilized cover slips were then pre-incubated in α-

MEM + 10 % FCS for at least 2 hours (or overnight) before the experiment. 
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3.8.3.2 Rabbit osteoclasts 
 

Isolation of rabbit osteoclasts 

Long bones of 1-4 day old rabbits with an average weight of 100 g were isolated. Under 

the laminar airflow bench the bones were cut into slices with a scalpel and the slices 

were put into a centrifuge tube filled with 6 ml α-MEM + 5% FCS (for the long bones 

of one rabbit). The bone pieces were cut with scissors for about 2 minutes, before 7 ml 

of α-MEM + 5 % FCS was added. With a transfer pipette the supernatant cell 

suspension (OCs) was transferred to a second centrifuge tube set on ice. This process 

was repeated twice. 13 ml of α-MEM + 5 % FCS (first 5 ml, then another 5 ml and 

finally 3 more ml) were added to the hackled bone in the first centrifuge tube and the 

cell suspension was vortexed for 30 seconds. After 2 minutes of sedimentation, the 

supernatant was also transferred to the first centrifuge tube on ice with the other 

suspension. The collected cell suspension was centrifuged for 5 minutes, at 600 rpm and 

4°C. After the centrifugation the supernatant medium was removed from the tube and 

the remaining pellet was re-suspended in the right amount of new medium (15 ml α-

MEM + 5 % FCS for the long bones of one rabbit). 

 

Seeding of rabbit osteoclasts 

100 µl of the osteoclast cell suspension was put on each cover slip of a 6-well culture 

plate. The cell suspension should not flow down of the cover slips. After incubating 

(37°C, 5 % CO2) the plates for 1,5 – 2 hours, the medium was removed and replaced by 

new medium (2 ml for each well of the 6-well culture plate) including the respective 

concentration of test substance or vehicle (control). Finally the well plates were 

incubated (37°C, 5 % CO2) for 24 or 48 hours depending on the experimental design. 

 

 

3.8.3.3 Fixation of the cells 
 

At the end of the culture, the medium was removed and the cover slips were washed 

with 1x PBS with Ca2+/Mg2+. The osteoclasts were then fixated on the cover slips with 

1 ml 3,7 % formaldehyde solution per well, first for 3 minutes and then for 10 minutes. 
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Finally the cover slips were washed again with PBS with Ca2+/Mg2+ (3 times) and 

stored at 4°C in PBS with Ca2+/Mg2+ in addition of NaN3 (500x) for further analysis. 

 

 

3.8.3.4 Alexa Fluor/Phalloidin-DAPI staining 
 

The cover slips were washed once more with PBS with Ca2+/Mg2+. Then they were 

treated with 3 ml of pre-cooled (-20°C) acetone per well for 3 minutes in suitable glass 

plates. This step is required to make the cell membranes permeable. 

 

Since the Alexa Fluor/Phalloidin dye was dissolved in methanol, the solvent had to 

evaporate (at room temperature or through aeration with nitrogen). 5 µl Alexa 

Fluor/Phalloidin dye were diluted in 200 µl PBS with Ca2+/Mg2+ for staining one cover 

slip. The cover slips were put in a light free metal box and each one was treated with 

200 µl of the staining solution for 30 minutes. 

 

To stop the Alexa Fluor/Phalloidin staining, the cover slips were washed with PBS with 

Ca2+/Mg2+ again. 40 µl of DAPI stock solution (50x) were diluted in 2 ml PBS with 

Ca2+/Mg2+ to stain one cover slip. Each cover slip was treated with 2 ml of this solution 

and incubated for 10 minutes at 37°C. To stop the staining, the cover slips were washed 

3 times with PBS with Ca2+/Mg2+ and in order to avoid salt formation they were also 

washed 3 times with double distilled water. 

 

Finally the cover slips with the fixed and stained cells were placed on an object slide 

with the cell sight upside down on a mounting fluid. The edges of the cover slips were 

glued to the object slide so that the cells would not dry out. For further analysis the 

cover slips were stored at 4°C. 

 

Notice that the staining solution always had to be protected against light. 
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3.8.3.5 Analysis 
 

The cells of each experiment were examined with a Nikon Optiphot-2-UD fluorescence 

microscope with a 40x or 60x magnification, using filters for EGFP and DAPI. For each 

cover slip around 10-15 images were taken with an Olympus Color View III digital 

camera, which is connected to the microscope. The images were then saved in the 

cell^F program, which displays the nuclei blue and the cytoskeleton red. The total 

number of nuclei and apoptotic cells was counted and the differences between the cells 

in the control group and the cells of the treated groups were estimated. Osteoclasts were 

analyzed in regard of the actin ring and cytoskeleton oranisation. 

 

Each treatment was carried out on 2 cover slips with cells. 

 

 

  
A) B) 

 

 

Figure 3.3: Alexa fluor®488/phalloidin and DAPI staining. 

The nuclei are stained blue and the cytoskeleton red.; scale bar indicates 

100 µm. 

A) Example for osteoblast (control) 

B) Example for osteoclast (control): with an actin ring shown around 

the cell, clear cytoplasm and smooth periphery. 
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3.8.4 MTS-test 
 

The MTS-test is a colorimetric method for determining the number of viable cells in 

cytotoxicity assays. For this assay a CellTiter 96® AQueous One Solution Reagent is 

used. It contains a tetrazolium compound [3-(4,5-dimethyl-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an 

electron-coupling reagent (phenazine ethosulfate; PES).  

 

The MTS tetrazolium compound is bioreduced by cells (for instance by osteoblasts or 

RAW 264.7 cells) into a colored formazan product. The conversion is dependent on the 

existence of NADPH or NADH, which are produced by dehydrogenase enzymes in 

metabolically active cells. The quantity of the produced formazan is directly 

proportional to the number of living cells in the tested culture. This was measured with 

the absorbance at 490 nm, using an ELISA plate reader. 

 

 

 

 
 

 

Figure 3.4: Conversion of MTS tetrazolium in its formazan product (CellTiter 

96® AQueous One Solution Cell Proliferation Assay, Promega Technical 

Bulletin Part # TB245 – according to the manufacturer´s instruction). 
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For the assay, about 4 million osteoblasts, respectively 8 million RAW 264.7 cells were 

seeded on one 96-well plate in a volume of 100 µl medium per well. Then the cells were 

incubated for 24 hours (37°C, 5 % CO2, humidified atmosphere) before the treatment 

with the test substance took place. After 24 hours additional incubation time 20 µl of the 

CellTiter 96® AQueous One Solution Reagent, that contained already 100 µl medium 

with treatment, was added per well. The well plates were then incubated with the 

reagent for 2 more hours (total incubation time with treatment was 26 hours). At the 

end, the absorbance was measured and recorded at 490 nm with an ELISA 96-well plate 

reader. 

 

The graphical presentation was done with the program Prism 5.0. The number of viable 

cells/absorbance of the wells treated with the test substance (Destruxin E in different 

concentrations) was compared to the wells that were only treated with the solvent of 

Destruxin E. The results were evaluated as percentage of viable cells in treated wells 

compared to the wells of the control. 
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Figure 3.5: Absorbance spectrum of MTS/formazan (CellTiter 96® AQueous One 

Solution Cell Proliferation Assay, Promega Technical Bulletin Part # 

TB245 - according to the manufacturer´s instruction). 

 

 

 

This method was carried out with 8 samples for each group (8 wells/group). 

 

 

With this test I tested the viability of osteoblast and RAW 264.7 cells. RAW 264.7 cells 

are a murine macrophage cell line. Their viability under treatment with destruxin E 

reflects the effect of this substance on osteoclast precursors, which again affects the 

number of mature resorbing osteoclasts. Also osteoblasts were tested to see at which 
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concentration the test substance has an effect, which is not wished for these cells (death 

of the cells). 

 

 

3.8.5 Statistical analysis 

 

Statistical significance was defined by using analysis of variance (ANOVA). Statistical 

differences between the respective groups were computed using Fisher’s least 

significant difference (LSD) test. Data are presented as the mean ± standard error of 

mean (SEM). Significant differences were compared to the control group (solvent = 

methanol) as p<0,05; p<0,01 or p<0,001. 
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4. Results and discussion 
 

 

4.1 Resorption assay 
 

For the resorption assay the used concentrations of destruxin E were 1*10-7 M, 1*10-8 

M and 1*10-9 M. In preliminary tests we also analyzed the concentration of destruxin E 

of 1*10-6 M, but since it exhibited no resorption at all like the next higher concentration 

(1*10-7 M), it is not shown in the results above. Destruxin E was found to inhibit the 

formation of pits in a resorption assay in a dose-dependent manner. Not only the 

number of pits, but also the size of pits decreased with increasing concentrations. The 

main subject of interest was at which stage of the coculture the test substance has which 

effect on the osteoclasts. Therefor three different groups were tested. For group 1 (effect 

of destruxin E on the activity of OCs) the test substance was added on day 3 of the 

coculture until its end. For group 2 (effect of destruxin E on the differentiation of OCs) 

the test substance was added from the beginning of the coculture till day 3. For group 3 

(effect of destruxin E on the differentiation and the activity of OCs) the test substance 

was added from the beginnung of the coculture until its end. 

 

 

4.1.1 Effect of destruxin E on activity and differentiation of 

coculture-derived osteoclasts 
 

 

 

4.1.1.1 Effect of destruxin E on the activity of osteoclasts (Group 1) 
 

Figure 4.1 shows that destruxin E had a clear inhibitory effect on bone resorption. 

Destruxin E, at a concentration of 1*10-7 M and 1*10-8 M, significantly inhibited OC 

function. Since the substance in this group was added on day 3 of the coculture 
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(beginning of OC appearance) until the end of it, it appears that destruxin E has a strong 

effect on the activity of the osteoclast (which is the resorption of bone material). 

 

 

 

 
 

Figure 4.1: Effect of destruxin E on the resorption of murine osteoclasts on 

bovine bone slices. 

The total culture time was 5 days; the substance was added from day 3 to 

day 5 of the coculture; time of treatment was 48 hours. 

 Inhibition was 99 % for Des.E 1*10-7 M, 84 % for Des.E 1*10-8 M and 

32 % for Des.E 1*10-9 M. 

 ++ p<0,01 vs. control; + p<0,05 vs. control 
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Table 4.1: Resorption in percentage on the individual bone slices. 

Y1-Y8 stands for the different samples of each group. 

 

 

 

 
 

Table 4.2: Resorption on the individual bone slices. 

This is stated with the mean of 8 samples and the standard deviation. 

 

 

 

4.1.1.2 Effect of destruxin E on the differentiation of osteoclasts 

(Group 2) 
 

Figure 4.2 does not show inhibition on differentiation at a concentration of destruxin E 

of 1*10-7 M and 1*10-8 M compared to the control. The inhibitory effect was 99 % for 

destruxin E 1*10-7 M. At a concentration of destruxin E of 1*10-9 M there was a 

significant difference of p<0,05 compared to the control. Since at this concentration of 

destruxin E the resorption was greater than in the control, it rather shows an irregularity 

in the method. Taken together, destruxin E has a stronger effect on the activity of 

osteoclasts than on the differentiation of osteoclasts. 
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Figure 4.2: Effect of destruxin E on the resorption of murine osteoclasts on 

bovine bone slices.  

The total cultutre time was 5 days; the substance was added from day 0 

to day 3 of the coculture; time of the treatment was 72 hours. 

 Inhibition for Des.E 1*10-7 M was 99 %. 

 + p<0,05 vs. control 

  

 

 
 

Table 4.3: Resorption in percentage on the individual bone slices.  

Y1-Y8 stands for the different samples of each group. 
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Table 4.4: Resorption on the individual bone slices.  

This is stated with the mean of 8 samples and the standard deviation. 
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4.1.1.3 Effect of destruxin E on the activity and on the differentiation 

of osteoclasts (Group 3) 
 

As shown in figure 4.3, the greatest inhibitory effect on bone resorption by destruxin E 

was achieved when the test substance was added during the whole period of the 

coculture (day 0 – day 5). Destruxin E at all 3 concentrations (destruxin E 1*10-7 M, 

1*10-8 M and 1*10-9 M) exerted significant inhibition (p<0,001 compared to the 

control). 

 

 

 

 
 

Figure 4.3: Effect of destruxin E on the resorption of murine osteoclasts on 

bovine bone slices.  

The total culture time was 5 days; the substance was added from day 0 to 

day 5 of the coculture; time of the treatment was 120 hours. 

 Inhibition was 100 % for Des.E 1*10-7 M, 68 % for Des.E 1*10-8 M and 

79 % for Des.E 1*10-7 M. 

 +++ p<0,001 vs. control 
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Table 4.5: Resorption in percentage on the individual bone slices.  

Y1-Y8 stands for the different samples of each group. 

 

 

 

 
 

Table 4.6: Resorption on the individual bone slices.  

This is stated with the mean of 8 samples and the standard deviation. 
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4.2 Quantification of TRAP-positive cells 
 

 

For these experiments destruxin E was tested in the concentrations 1*10-7 M, 1*10-8 M 

and 1*10-9 M. In preliminary tests destruxin E in the concentration of 1*10-6 M was also 

analyzed, but since it completely eliminated TRAP-positive cells, it is not shown in the 

results below. As shown in figure 4.4, the test substance decreased the number of 

TRAP-positive cells, but not in a clear dose-dependent matter. 1*10-7 M destruxin E 

showed a significant difference at a level of p<0,01 compared to the control group. 

There was no significant difference at a concentration of destruxin E of 1*10-8 M and of 

1*10-9 M. Noticeable is that the inhibitory effect was, with 18 %, smaller at a 

concentration of destruxin E of 1*10-8 M than, with 34 %, at a concentration of 

destruxin E of 1*10-9 M. This result does not correlate with the dose-dependent result of 

the resorption assay (see figure 4.1). Based on the results of the resorption assay there 

should be more resorbing cells (OCs) at a concentration of destruxin E of 1*10-9 M than 

at a concentration of destruxin E of 1*10-8 M, which is not the case in figure 4.4. 
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Figure 4.4: Effect of destruxin E on the number of TRAP-positive cells with 3 

or more nuclei (osteoclasts). 

The total culture time was 5 days; the substance was added on day 3 of 

the coculture; time of treatment was 48 hours. 

 Inhibition was 82 % for Des.E 1*10-7 M, 18 % for Des.E 1*10-8 M and 

34 % for Des.E 1*10-7 M. 

++ p<0,01 vs. control 
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Table 4.7: Number of osteoclasts in the individual wells.  

Y1-Y3 stands for the different samples of each group. 

 

 

 

 
 

Table 4.8: Number of osteoclasts in the individual wells. 

This is stated with the mean of 3 samples and the standard deviation. 

 

 

 

Under the light microscope it could be clearly seen that there were different kinds of 

TRAP-positive multinucleated cells present in the culture under these conditions. On 

the one hand there were big, round cells with an outspread cytoplasm (figure 4.5, A, 

arrow) and on the other hand there were small, mostly star-shaped cells with a 

concentrated cytoplasm (figure 4.5, C, arrow). The big, round cells could be determined 

easier. To distinguish the small cells was much harder. They were stained in a darker 

red (because of the concentration of the cytoplasm) and so the number of nuclei was 

harder to analyse. But also the star-shaped cells could be distinguished from the 

mononuclear monocytes (figure 4.5, B, arrow). 
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A) B) 

  
C) D) 

 

 

Figure 4.5: Stained TRAP-positive cells of a coculture under the light 

microscope. 

A) Control: mainly big, round cells (OCs), stated by the arrow. 

B) Destruxin E, 1*10-7 M: almost no cells at all; just small TRAP-

positive cells; arrow states a mononuclear monocyte.  

C) Destruxin E, 1*10-8 M: mostly small, star-shaped cells (OCs), stated 

by the arrow, and a few big ones. 

D) Destruxin E, 1*10-9 M: about same amount of big, round and small, 

star-shaped TRAP-positive cells with 3 or more nuclei. 
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For further analysis the two different cell populations were analyzed separately. The 

statistical outcome and the appendent graphics are shown below. 

 

 

 

4.2.1 Detection of small, star-shaped multinucleated TRAP-

positive cells 
 

It could be demonstrated that the number of small, star-shaped multinucleated TRAP-

positive cells does not correlate with the dose-dependent results of the resorption assay 

(see figure 4.1). Figure 4.6 shows that there was no significant difference at any used 

concentration of destruxin E, compared to the control group, on the number of small, 

star-shaped multinucleated TRAP-positive cells (OCs). The only inhibitory effect could 

be seen at the concentration of 1*10-7 M of destruxin E with 50 %. It is remarkable, that 

destruxin E at a concentration of 1*10-8 M even induces an increase in the number of 

cells. Cultures with destruxin E in a concentration of 1*10-8 M exhibit almost double 

the amount of small cells than cultures without destruxin (control group). At the lowest 

concentration of destruxin E, 1*10-9 M, the number of small cells is about the same as 

in the control group. 
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Figure 4.6: Effect of destruxin E on the number of small, star-shaped TRAP-

positive cells with more than 3 nuclei (osteoclasts).  

The total culture time was 5 days; the substance was added on day 3 of 

the coculture; time of treatment was 48 hours. 

 Inhibition was 50 % for Des.E 1*10-7 M. 

 

 

 
 

Table 4.9: Number of osteoclasts in the individual wells.  

Y1-Y3 stands for the different samples of each group. 
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Table 4.10: Number of osteoclasts in the individual wells.  

This is stated with the mean of 3 samples and the standard deviation 

 

 

 

4.2.2 Detection of big, round multinucleated TRAP-positive 

cells 
 

Figure 4.7 shows that destruxin E had a clear dose-dependent inhibitive effect on the 

number of big, round multinucleated TRAP-positive cells (OCs). At the concentration 

of 1*10-7 M and 1*10-8 M destruxin E there was a significant difference at a level of 

p<0,001 compared to the control group. This result correlates perfectly with the result 

of the resorption assay (see figure 4.1). The inhibition by destruxin E, 1*10-9 M, 

reached 55 %, compared to the control (significant difference at a level of p<0,01). This 

inhibiton is comparable to the inhibitory effect of 32 % in the resorption assay (see 

figure 4.1) at the same concentration. 
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Figure 4.7: Effect of destruxin E on the number of TRAP-positive cells with 

more than 3 nuclei (osteoclasts). 

The total culture time was 5 days; the substance was added on day 3 of 

the coculture; time of treatment was 48 hours. 

 Inhibition was 100 % for Des.E 1*10-7 M, 87 % for Des.E 1*10-8 M and 

55 % for Des.E 1*10-9 M. 

++ p<0,01 vs. control; +++ p<0,001 vs. control 

 

 

 
 

Table 4.11: Number of osteoclasts in the individual wells.  

Y1-Y3 stands for the different parallels of each group. 
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Table 4.12: Number of osteoclasts in the individual wells.  

This is stated with the mean of 3 parallels and the standard deviation. 
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4.3 Morphological effects on bone cells 
 

For these experiments, concentrations of destruxin E used were 1*10-6 M, 1*10-7 M, 

1*10-8 M and 1*10-9 M. 

 

 

4.3.1 Effect on bone resorbing rabbit osteoclasts 
 

Actin rings are a marker of polarized osteoclasts and polarization is essential to initiate 

bone resorption. The phalloidin-labelled actin rings can be recognized as bright red-

stained belts surrounding the cells (figure 4.8, A). I found that destruxin E induces 

morphological changes in rabbit osteoclasts. It causes disruption of the actin ring and 

spreading of F-actins throughout the cytoplasm of the cells. The cytoplasm of 

osteoclasts was observed as “foamy” rather than clear, and the cell periphery was 

irregular rather than smooth. Destruxin E also induced apoptosis in the osteoclasts. 

Bone cells undergoing apoptosis show condensation of chromatin and degradation of 

DNA into fragments and the formation of plasma and nuclear vesicles. 

 

In untreated cultures mainly large multinucleated cells with well-described actin rings 

and no sign of apoptosis (figure 4.8, A) could be detected. Adding destruxin E in a 

concentration of 1*10-9 M, resulted in no difference compared to the control group. But 

the grade of apoptosis and disruption of the actin rings increased gradually towards 

higher concentrations. Osteoclasts treated with destruxin, E 1*10-8 M, (figure 4.8, B) 

exhibited mostly ring-like actin structures, but with first signs of disruption. Some cells 

showed already apoptotic nuclei, mainly by condensation. In cultures with destruxin E 

at the two highest concentrations, 1*10-7 M (figure 4.8, C) and 1*10-6 M (figure 4.8, D), 

osteoclasts did not form actin rings at all. F-actin was distributed throughout the 

cytoplasm and the cell periphery was irregular. Furthermore, the general number of 

cells was highly reduced (osteoclasts, but also other bone marrow cells), the osteoclasts 

were small in size and all detected cells showed signs of apoptosis. 
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A) B) 

  
C) D) 

 

 

Figure 4.8: Effect of destruxin E on the cytoskeleton and on the apoptosis of 

rabbit osteoclasts. 

The nuclei were stained with DAPI (blue) and the cytoskeleton is stained 

with Alexa fluor488/phalloidin (red); on cover slip; under fluorescence 

microscope; 60x magnification; scale bar indicates 100 µm. 

A) Control: large multinucleated osteoclasts; actin rings; no apoptosis 

B) Destruxin E, 1*10-8 M: ring-like actin structures with signs of 

disruption 

C) Destruxin E, 1*10-7 M: no actin rings; small apoptotic cells 

D) Destruxin E, 1*10-6 M: no actin rings; small apoptotic cells 
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4.3.2 Effect on bone forming osteoblasts 
 

Since bone is a living tissue and is continuously remodelled, it is also important to look 

at the effect of the test substance on the osteoblasts, to consider destruxin E as a 

potential anti-resorptive drug against osteoporosis.  

 

As shown in figure 4.9, the test substance also induced morphological changes in 

osteoblasts. In the control group (figure 4.9, A) there were almost no apoptotic cells and 

their cytoskeleton was outspread over the whole substrate surface (cover slip). At a 

concentration of destruxin E of 1*10-6 M (figure 4.9, B) all cells were found to be 

apoptotic and their cytoskeleton was agglomerated and hardly detectable. At a 

concentration of destruxin E of 1*10-7 M (figure 4.9, C) the osteoblasts were fewer in 

number and their cytoskeleton was not that distinctive compared to the control group. 

Some apoptotic osteoblasts could be observed at this concentration of destruxin E. 

There was no noticeable difference in the number of cells, their cytoskeleton and the 

number of apoptotic cells at a concentration of destruxin E of 1*10-8 M (figure 4.9, D) 

and 1*10-9 M compared to the control group. 
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A) B) 

  
C) D) 

 

 

Figure 4.9: Effect of destruxin E on the cytoskeleton of osteoblasts and on their 

apoptosis. 

The nuclei were stained with DAPI (blue) and the cytoskeleton is stained 

with Alexa fluor488/phalloidin (red); on cover slip; under fluorescence 

microscope; 40x magnification; scale bar indicates 100 µm. 

A) Control: outspread cytoskeleton; no apoptotic cells 

B) Destruxin E, 1*10-6 M: agglomerated cytoskeleton; just apoptotic 

cells 

C) Destruxin E, 1*10-7 M: fewer number of OBs; some apoptotic cells 

D) Destruxin E, 1*10-8 M: outspread cytoskeleton, no apoptotic cells 
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4.4 Effects of destruxin E on cell viability 
 

 

For the MTS-test destruxin E was used in the concentrations of 1*10-6 M, 1*10-7 M, 

1*10-8 M and 1*10-9 M. Figure 4.10 shows that destruxin E had no inhibitory effect on 

the viability of osteoblasts at almost all concentrations. Only at a concentration of 

destruxin E of 1*10-6 M there was a significant difference at a level of p<0,05 compared 

to the control. All other concentrations of destruxin E showed no significant difference. 

 

 

 

 
 

Figure 4.10: Effect of destruxin E on osteoblast cell viability. 

Time of treatment was 48 hours. 

 Inhibition was 8 % for Des. E 1*10-6 M and 4 % for Des. E 1*10-7 M.  

 + p<0,05 vs. control 
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Table 4.13: Effect of destruxin E on the viability of osteoblasts. 

This is stated with the absorbance of formazan within the individual 

groups. Y1-Y8 stands for the different samples of each group 

 

 

 

 
 

Table 4.14: Effect of destruxin E on the viability of osteoblasts. 
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Figure 4.11 shows the effect of destruxin E on RAW 264.7 cells. The test substance had 

an inhibitory effect on the viability of these osteoclast precursor cells. At the 

concentration 1*10-6 M and 1*10-7 M of destruxin E, the reduction of viability was 

highly significant at a level of p<0,001. 

 

 

 

 
 

Figure 4.11: Effect of destruxin E on RAW 264.7 cell viability.  

Time of treatment was 48 hours. 

Inhibition was 83 % for Des. E 1*10-6 M and 54 % for Des. E 1*10-7 M. 

 +++ p<0,001 vs. control 
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Table 4.15: Effect of destruxin E on the viability of RAW 264.7 cells. 

This is stated with the absorbance of formazan within the individual 

groups. Y1-Y8 stands for the different samples of each group. 

 

 

 

 
 

Table 4.16: Effect of destruxin E on the viability of RAW 264.7 cells.
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4.5 Discussion 
 

 

This thesis demonstrates that the mycotoxin destruxin E inhibits osteoclast function and 

differentiation in vitro. 

 

Destruxin E has a dose-dependent inhibitory effect on the activity of osteoclast 

(figure 4.1) as well as on the differentiation (figure 4.2). The performed resorption 

assays clearly show that the inhibitory effect on the activitiy of osteoclasts is stronger 

than the inhibitory effect on the differentiation. When destruxin E was present during 

the whole period of the coculture hardly no resorption could be observed (figure 4.3). 

This effect can be explained by the combined inhibition of destruxin E on the 

differentiation and activity of osteoclasts. 

 

An assay for cell viability on osteoclast precursor cells (RAW 264.7 cells) and on 

osteoblasts was carried out to determine whether or not the inhibitory effects of 

destruxin E resulted from cytotoxicity. In the performed experiments no cytotoxicity of 

destruxin E on osteoblasts in the concentration range at which the compound inhibits pit 

formation could be observed (figure 4.10). But the reduction of viability of osteoclast 

precursor cells at high concentrations of destruxin E (1*10-6 M and 1*10-7 M) was 

highly significant compared to the control group (figure 4.11). From this can be 

concluded that the inhibitory effect of high concentrations of destruxin E on the pit 

formation is, at least partly, due to a cytotoxic effect of the substance on osteoclasts 

precursors. 

 

There is already some evidence of the cytotoxic effect of destruxins. Odier et al. 

demonstrated the inhibitory effect of destruxins on leukemic cell proliferation (Odier et 

al., 1992). Dumas et al. found out that destruxin, especially destruxin E and A, exhibited 

a cytotoxic effect on insect cells (Dumas et al., 1994). Destruxins were shown to be 

phytotoxic to a variety of plants (Pedras et al., 2002). 
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Different kinds of TRAP-positive multinucleated cells could be detected in the cultures 

treated with destruxin E. On the one hand big, round cells with an outspread cytoplasm 

and on the other hand small, mostly star-shaped cells with a concentrated cytoplasm 

were distinguished. For this reason the two different cell populations were analyzed 

separately. This is supported by the evidence of two different types of osteoclasts 

(Yuasa et al., 2007). 

 

The only inhibitory effect on the number of small, star-shaped multinucleated TRAP-

positive cells (OCs) detectable was at the highest concentration of destruxin E 

(1*10 7 M). It is remarkable, that destruxin E at a concentration of 1*10-8 M even 

induced an increase in the number of cells (figure 4.6). What we have to keep in mind is 

that for this data only the small cells were counted and not all of the potential resorbing 

cells. 

 

It could be displayed in this work that destruxin E has a clear dose-dependent inhibitory 

effect on the number of big, round multinucleated TRAP-positive cells (figure 4.7). 

This result correlates perfectly with the result obtained from the resorption assay. More 

precisely, destruxin E inhibits the differentiation of progenitor cells into (big, round) 

multinucleated osteoclasts, at the same concentrations at which it inhibits pit formation. 

 

Based on these results, I suppose that just the big, round multinucleated TRAP-positive 

cells are actually active osteoclasts that are able to resorb bone material. The small, star- 

shaped ones are also considered to be osteoclasts, but without their typical resorbing 

function. Maybe they are already apoptotic or their functional structure is not fully 

developed. As a conclusion, it is advisable to consider just the big, round multinucleated 

TRAP-positive cells to get an idea about the number and nature of the active 

osteoclasts. 

 

The performed experiments on the quantification of TRAP-positiv cells suggest that 

destruxin E not only inhibits the activity of osteoclasts, but also reduces the total 

number of cells. This fact confirms the cytotoxic effect of destruxin E demonstrated in 
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this study also on osteoclast precursors. The reduction of cells is most likely an effect of 

induced apoptosis. 

 

Destruxin E affected morphological features in osteoclasts in the performed 

experiments. Disruption of actin rings increased gradually towards higher 

concentrations of destruxin E. (See chapter 2.1.4.4.2 for details about polarized 

morphological features of osteoclasts.) 

 

In cultures treated with the concentration of destruxin E that inhibits pit formation 

completely (1*10-7 M) all actin rings in osteoclasts were disrupted. This result suggests 

that destruxin E directly induces disruption of the cytoskeletal actin rings in osteoclasts, 

thereby inhibiting their bone-resorbing activity. Furthermore, a clear reduction in the 

general number of cells (osteoclasts and also other bone marrow cells) could be 

observed at the same concentration of destruxin E that showed complete impairment of 

actin rings. Moreover, the osteoclasts were much smaller in size (compared to the 

untreated osteoclasts) and all cells showed signs of apoptosis. It appears that the 

inhibitory effect on the bone resorption (100 %) at this concentration of destruxin E is 

based on a combination of the toxicity of destruxin E and on the morphological changes 

it causes in osteoclasts. 

 

 

Research on the effect of destruxins or related cyclodepsipeptides on the bone is still in 

the early stages. So far only one paper has been puplished concerning this field of 

research. Nakagawa et al. reported the inhibitory effect of destruxins (E and B) on the 

bone-resorbing activity of osteoclasts for the first time. At the moment, further 

publications on the effect of the related cyclodepsipeptides enniatin and beauvericin on 

bone are in progress. These compounds seem to have similar effects on bone as 

destruxins. 

 

The osteoclasts used in the study of Nakagaw et al. were also derived from cocultures of 

osteoblasts and osteoclast precursors in the presence of 1,25-(OH)2-vitamin-D3 and 



Results and discussion 

 

86 

PGE2 in α-MEM. The pit formation assay was performed on sperm whale dentin slices 

(in contrast to bovine bone slices in this study). 

 

Destruxin E inhibits pit formation by incducing morphological changes (disruption of 

the actin rings) in osteoclast without affecting osteoclast differentiation and survival (at 

a concentration of 1*10-8 M destruxin E). This conclusion can be confirmed by 

Nakagawa et al. But disagreements in the affecting concentrations of destruxin E could 

be noticed, since Nakagawa et al. observed this correlation at a higher concentration of 

destruxin E, 1*10-7 M. But, in this study it can be demostrated that a concentration of 

destruxin E of 1*10-7 M induces bone resorption mainly by directly reducing the 

number of TRAP-positve multinucleated osteoclasts. 

 

According to the here stated results it is advisable to take a concentration of 1*10-8 M 

destruxin E under consideration for anti-resorptive use.  

 

The changes in morphological structures and the thereby induced inhibition of the bone-

resorbing activity of osteoclasts by destruxin E were shown to be reversible if cultivated 

in fresh medium (Nakagawa et al., 2003). This reversibilty have not been investigated in 

this study. Since the inhibitory effect at a concentration of 1*10-7 M destruxin E is 

partly due to cytotoxicity, the activity of osteoclasts could probably not be regained 

completely. But, at a concentration of 1*10-8 M destruxin E the reversibility of the 

changes in the actin ring structure could regain the activity of osteoclasts to almost full 

extent. 

 

Further research will be necessary to clarify the detailed mechanism of the inhibitory 

effect of destruxin on the bone-resorbing function of osteoclasts. Especially the 

examination of transcription factors involved in the osteoclastogenesis may be 

revealing. This could be performed with western blot. Also to investigate the effect of 

destruxins in vivo will be worthwhile. 
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5. Conclusion 
 

This work was performed to investigate the effect of destruxin E on osteoclasts, on their 

morphology and their activity, and on bone remodeling with the intention to investigate 

new therapeutic approaches for the treatment of bone diseases with excessive bone loss, 

mainly osteoporosis.  

 

Destruxin E was found to inhibit the bone resorbing ability of osteoclasts in a dose-

dependent manner. This effect of the test substance was more due to the inhibition of 

the activity of osteoclasts than to their differentiation from precursor cells. Osteoblasts 

are not as sensitive to destruxin E as osteoclasts, but a cytotoxic effect could be 

observed at the highest concentration of the test substance (1*10-6 M). 

 

Destruxin E, at the highest concentrations (1*10-6 M and 1*10-7 M), also seems to be 

cytotoxic to osteoclasts. The anti-resorptive effect derives at least to some extent from 

the absence of the bone resorbing cells. That could be shown with the reduction of 

TRAP-positive multinucleated cells. But it may mainly be assumed that destruxin E 

inhibits bone resorption by disrupting actin rings (a highly polarized morphological 

feature) that are necessary for functional osteoclasts.  

 

However, further work is necessary before this substance can come into consideration 

for being used as a pharmaceutical agent in the treatment of bone disorders like 

osteoporosis.  
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6. Abstract 
 

Bone is continuously remodeled by osteoblasts (synthesize bone matrix) and osteoclasts 

(resorb bone). Several bone diseases, most notably ostoeporosis, are related to a 

pathological imbalance between their activities. Osteoporosis is responsible for millions 

of fractures annually. Therefore the search for new anti-resorptive agents is a reasonable 

field of study. 

 

Destruxins are cyclic hexadepsipeptides secreted by the entomopathogenic fungus 

Metarhizium anisspliae. These mycotoxins are best known for their insecticidal and 

phytotoxic activities. Destruxin E is the most active compound of this family. There is 

evidence that this mycotoxin inhibits the bone-resorbing activity of osteoclasts (see 

Nakagawa et al., 2003). 

 

I investigated the effect of destruxin E on osteoclasts and bone remodeling in vitro. 

Main focus was the inhibition of the bone resorbing activity of osteoclasts, inhibition of 

osteoclast differentiation, changes in morphological structure, apoptosis and 

cytotoxicity. Additionally, the effect of destruxin E on the cytoskeleton of osteoblasts, 

on their apoptosis and its cytotoxicity was investigated.  

 

In the experiments performed destruxin E was used in the concentrations of 1*10-9 M, 

1*10-8 M, 1*10-7 M and 1*10-6 M. Destruxin E was found to inhibit the bone resorbing 

ability of osteoclasts in a dose-dependent manner. At all concentrations a significant 

inhibitory effect on the number of big round multinucleated TRAP-positive 

cells/osteoclasts could be observed. Destruxin E had no effect on the viability of 

osteoblasts at most concentrations, but had a significant inhibitory effect on the viability 

of osteoclast precursors at 1*10-7 M and 1*10-6 M. The test substance was also shown to 

cause impairment of actin rings in osteoclasts (markers of active osteoclasts) and 

induction of apoptosis. At 1*10-6 M and 1*10-7 M of destruxin E the actin rings were 

completely disrupted and only apoptotic cells were found. Additionally, an effect on the 

cytoskeleton of osteoblasts and on apoptosis at the same concentration of the destruxin 

E could be found. 
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7. Zusammenfassung 
 

Der Knochen wird fortlaufend von Osteoblasten und Osteoklasten umgebaut. Etliche 

Knochenkrankheiten, am beachtenswertesten Osteoporose, stehen in Beziehung mit 

einem pathologischen Ungleichgewicht zwischen der Aktivität dieser Zellen. 

Osteoporose verursacht jährlich mehrere Millionen Knochenbrüche. Deshalb ist die 

Suche nach neuen antiresorptiven Wirkstoffen ein sehr sinnvolles Forschungsgebiet. 

 

Destruxine sind cyclische Hexadepsipeptide, die von dem entomopathogenen Pilz 

Metarhizium anisspliae sezerniert werden. Diese Mykotoxine sind vor allem für ihre 

insektizide und phytotoxische Wirkung bekannt. Destruxin E ist die wirksamste 

Verbindung dieser Stoffklasse. Eine Studie deutet schon darauf hin, dass dieses 

Mykotoxin die knochenresorbierende Wirkung der Osteoklasten hemmt (Nakagawa et 

al., 2003). 

 

In dieser Diplomarbeit wurde die Wirkung von Destruxin E auf Osteoklasten und auf 

das Knochenremodeling in vitro untersucht. Das Hauptaugenmerk galt der Hemmung 

der Substanz auf die knochenresorbierende Wirkung von Osteoklasten, die Hemmung 

der Zellzahl, sowie Veränderungen in der morphologischen Struktur und Einflüsse auf 

Apoptose und die Zytotoxizität. Weiters wurde die Zytotoxizität der Substanz auf 

Osteoblasten, sowie die Wirkung auf Zytoskelett und Apoptose untersucht. In den 

durchgeführten Versuchen wurde Destruxin E in den Konzentrationen 1*10-9 M, 1*10-8 

M, 1*10-7 M und 1*10-6 M eingesetzt. Es konnte gezeigt werden, dass Destruxin E die 

knochenresorbierende Wirkung von Osteoklasten dosisabhängig hemmt. Bei allen 

Konzentrationen zeigte sich ein signifikanter Unterschied in der Zellzahl von großen, 

runden Osteoklasten zu der Kontrollgruppe. Destruxin E hatte keine Auswirkung auf 

die Viabilität von Osteoblasten (außer bei 1*10-6 M), aber es hatte eine signifikante 

hemmende Wirkung auf die Viabilität von Osteoklastenvorläuferzellen (bei 1*10-6 M 

und 1*10-7 M). Die Substanz verursacht Schädigungen des Aktinring von Osteoklasten 

und induziert deren Apoptose, vor allem bei Konzentration 1*10-6 M and 1*10-7 M. 

Weiters konnten bei diesen Konzentrationen auch Auswirkungen auf das Zytoskelett 

von Osteoblasten und deren Apoptose festgestellt werden. 
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