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1 Introduction 
 
Depression is among the four leading causes of disease burden throughout the 

world and is associated with medical morbidity and mortality across the lifespan 

(Wong et al. 2001; Evans et al. 2005). Besides being the most prominent 

psychiatric disorder, major depressive disorder (MDD) is also associated with 

many other chronic medical conditions. Recent studies have shown that MDD is 

not only a side-effect of severe medical conditions but additionally an independent 

risk-factor or pre-cursor being associated with different illnesses, such as ischemic 

heart disease, stroke, cancer, and epilepsy (Evans et al. 2005). Moreover, MDD is 

often accompanied by comorbid psychiatric disorders, most prominently anxiety 

disorders (Nemeroff et al. 2002). 

 
Given the importance of shedding light on the neurobiological underpinnings of 

MDD, chapter one and the following subchapters outline the neurobiological basis 

of MDD on a genetic, molecular, cellular and systemic level, focussing on 

functional and structural alterations in cognitive and emotional processing, 

including phylogenetic and ontogenetic mechanism, reported by a large body of 

literature.  

 

Chapter 1.1 and its subchapters delineate the neurobiological circuits involved in 

the pathophysiology of MDD and its functional and structural correlates, including 

data derived from human studies with acute MDD and remitted MDD patients. 

Since a lot of evidence in the neurophysiology of MDD within the last 15 years 

comes from neuroimaging studies, the present diploma thesis particularly focuses 

on corresponding data within the neuroimaging literature. However, since there is 

a lot of speculation and discussion about the genetic, molecular and cellular 

underpinnings of these functional and structural alterations, this field of research 

will be also tackled in the course of the following subchapters.  

 

Within the chapters 1.2 – 1.4 the focus lies on the structural aspects of MDD. 

Thus, developmental mechanisms concerning the human cerebral cortex and its 
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morphology will be thoroughly discussed, before thematic emphasis will be put on 

the molecular and cellular basis of cortical thickness as a measure of the 

morphology of the human cerebral cortex. Based on these results on a 

microscopic level, recent structural neuroimaging findings relying on cortical 

thickness as a structural marker distinguishing between healthy subjects and 

patients with neurological or psychiatric diseases will be reviewed extensively. 

Finally, the goal of the present diploma thesis will be briefly described in chapter 

1.5.  

 
 

1.1 The Neurobiology of Depression 
 

MDD is symptomatically characterized by depressed mood, irritability, reduced self 

esteem, feelings of hopelessness and guilt, cognitive disabilities like aberrant 

functioning of memory and attention and abnormalities in sleep, appetite and 

social interaction (Nestler et al. 2002). The diversity of cognitive, emotional and 

vegetative symptoms in MDD reflects the underlying, complex pathophysiology. 

Several lines of evidence indicate that the pathophysiology of MDD is a result of a 

dysfunctional interplay between several brain regions and neurotransmitter 

systems. Converging biochemical, pharmacological, post-mortem and 

neuroimaging studies evidence suggests MDD to be a system-level disorder 

(Mayberg et al. 2005; Drevets et al. 2008). 

 

1.1.1 Neural Circuitry of MDD 
 
Recent advantages in brain imaging techniques shed light on the neuroanatomical 

underpinnings of the pathophysiology of MDD on a system level. Especially 

prefrontal and limbic regions have been implicated in the pathogenesis of MDD. 

Mayberg (1997) has proposed a model of MDD based on the notion of a 

dysfunctional coordination of different brain areas within the framework of a 

distributed cortical network. It distinguishes between the dorsal compartment 

which includes the neocortical and the midline limbic regions, such as the 
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dorsolateral prefrontal cortex (DLPFC), the dorsal anterior cingulate cortex 

(dACC), the inferior parietal cortex, and the striatum and the ventral compartment 

comprising the paralimbic cortical, the subcortical and the brainstem regions, such 

as the hypothalamic-pituitary-adrenal axis (HPA), the insula, the subgenual 

anterior cingulate cortex and the amygdala. The dysfunctional coordination of 

these interconnected regions encompasses activity decreases in the dorsal 

compartment, especially the DLPFC and the dACC and activity increases in the 

ventral paralimbic areas measured by regional blood flow changes during positron 

emission tomographic (PET) measurements. Consequently, remission from MDD 

can be achieved by inhibition of the hyperactivated ventral compartment and 

restoring normal functioning of the dorsal compartment exerting control over 

ventral areas by modulating their levels of activity (Mayberg 1997; Mayberg et al. 

1999).  

 

Phillips et al. (2003) have extended and refined the aforementioned model of 

depression focussing on the neurobiological basis of abnormal emotion processing 

in depressive patients. Within that framework, aberrant functioning of the ventral 

and the dorsal system mediate different aspects of emotional dysregulation. The 

ventral system, consisting of the amygdala, insula, ventral striatum, ventral 

anterior cingulate gyrus, and prefrontal cortex plays a major role in detecting the 

emotional importance of a stimulus, producing affective states and regulating 

emotional responses. On the other hand, the dorsal system, including the 

hippocampus, dorsal anterior cingulate gyrus, and prefrontal cortex is mainly 

implicated in executive functioning, such as selective attention, planning and the 

effortful regulation of affective states. In MDD executive and emotional processing 

is impaired with patients identifying and experiencing emotional stimuli primarily 

within a negative context resulting in depressed mood and anhedonia (Phillips et 

al. 2003). 

 

Those circuits regulating and modulating the experience and evaluation of 

emotional events, are also discussed within an extended network, including limbic-

cortical-striatal-pallidal-thalamic circuits (LCSPT), formed by connections between 
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the orbital and medial prefrontal cortex, amygdala, hippocampal subiculum, 

ventromedial striatum, mediodorsal and midline thalamic nuclei and ventral 

pallidum, the orbital prefrontal network, encompassing sensory association and 

somato-sensory areas and the medial prefrontal network, consisting of the 

dorsomedial/dorsal anterolateral prefrontal cortex, the mid- and posterior cingulate 

cortex, and the entorhinal and posterior parahippocampal cortex (Ongur et al. 

2003; Saleem et al. 2008). The medial prefrontal network might be of special 

interest as it is not specifically linked to the sensory system, but interacts with 

limbic regions as well as the hypothalamus. By that, it mediates visceromotor 

functions producing and regulating visceral reactions to emotional stimuli which 

seem also to be impaired in MDD (Drevets et al. 2008). 

 

1.1.2 Brain Activation Abnormalities in MDD 
 
The pathophysiology of MDD may be explained by functional abnormalities in 

distributed networks of cognitive and emotional processing. Indeed, neuroimaging 

studies have shown global and regional changes in cerebral blood flow and 

glucose metabolism in depressed patients compared to normal controls (Soares et 

al. 1997; Fitzgerald et al. 2008). Meta-analyses of functional magnetic resonance 

imaging (fMRI) and PET studies measuring brain activation in MDD have 

demonstrated several brain areas consistently implicated in the pathophysiology of 

MDD. Especially, aberrant functioning of two neural networks has been identified 

in several studies. The first includes the dorsal/pregenual anterior cingulate, 

bilateral middle frontal gyrus (DLPFC), insula and the superior temporal gyrus 

which show decreased activity to negative emotion induction and increased 

activity after selective serotonin reuptake inhibitor (SSRI) treatment. The second 

neural circuit involved in the pathophysiology of MDD consists of the medial and 

inferior frontal cortex, the basal ganglia, the amygdala and the thalamus which 

display hyperactivity during negative emotion induction and reduced activity in 

response to SSRI treatment (Fitzgerald et al. 2008). 
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Several neuropsychological studies have provided evidence that MDD is not only 

characterized by dysfunctional emotional processing, but also by abnormal 

functioning of cognitive processing (Westheide et al. 2007).  

 

The memory system is one of the most affected neurocognitive systems in MDD. 

Studies have demonstrated deficits in memory encoding and retrieval in episodic, 

semantic and working memory in patients (Zakzanis et al. 1998; Rose et al. 2006). 

Consistent with these neuropsychological studies, neuroimaging findings have 

reported abnormal functioning in working memory associated brain areas, 

prominently the DLPFC. However, findings are conflicting, showing underactivated 

prefrontal cortex during working memory associated tasks (Barch et al. 2003; 

Okada et al. 2003) whereas other studies report hyperactivation of the prefrontal 

cortex (Matsuo et al. 2007).  

 

Within the framework of the aforementioned circuitry models of depression, 

dysfunctional activation of the prefrontal cortex might contribute to an abnormal 

evaluation and response to emotional stimuli frequently associated with MDD. The 

frequent observation that prefrontal hyperactivation is not correlated with deficits in 

behavioural performance provide some evidence that MDD patients need higher 

activation of working memory associated areas in order to maintain the same level 

of performance in solving given tasks.  

 

Another important area which might contribute to the pathophysiology of MDD is 

the anterior cingulate cortex (ACC). Neuroimaging studies have shown that the 

ACC, similar to recent findings focussing on the DLPFC, displays hyperactivation 

in patients compared with healthy controls (Harvey et al. 2005; Matsuo et al. 

2007). The role of the ACC in depression has been extensively discussed within 

the scientific literature (Bush et al. 2000; Drevets et al. 2008). A large body of 

evidence suggests that the ACC is both involved in emotional and cognitive 

processing. Whereas the dorsal part of the ACC subserves cognitive functions, 

such as working memory, attention, conflict monitoring and error processing (Bush 

et al. 2000; Mulert et al. 2007; Sohn et al. 2007), the ventral compartment plays a 



 9

key role in emotional assessment and regulation of behavioural responses 

(Whalen et al. 1998).  

 

The strong connections of the ACC with other cortico-limbic regions, such as the 

DLPFC, the amygdala, the hippocampus, the nucleus accumbens, the 

hypothalamus or the orbitofrontal cortex, which are also involved in the 

pathophysiology of depression, facilitates the hypothesis that a dysfunctional 

cortico-limbic network is the main contributor to the pathogenesis of MDD. 

Especially the amygdala has been shown to be involved in emotional 

dysregulation, displaying increased activity when confronted with fearful faces 

(Sheline et al. 2001).  

 

In addition to the involvement of the cortico-thalamo-limbic circuitry, other regions, 

such as the posterior cingulate, medial temporal lobe and the cerebellum also 

seem to contribute to the pathophysiology of MDD (Fitzgerald et al. 2008). 

Interestingly, the ventral part of the posterior cingulate cortex has direct 

connections to the subgenual anterior cingulate as well as the orbitofrontal cortex 

(Vogt et al. 2006) both of which functioning abnormally in MDD (Drevets 2007; 

Drevets et al. 2008). 

It has been proposed that the ventral posterior cingulate and the subgenual 

anterior cingulate are involved in the assessment of emotional content which is 

consistent with the notion of deficits in emotional evaluation and regulation in 

depressed patients. The subgenual anterior cingulate cortex has been intensively 

investigated within the last years with studies showing elevated activation of this 

structure in MDD patients (Mayberg et al. 1999; Drevets et al. 2008). Pezawas et 

al. (2005) have shown that a polymorphism in the 5’ promoter region (5-HTTPLR) 

of the human serotonin transporter gene (SLC6A4) is related to altered 

structural covariation between the amygdala and perigenual ACC, reflecting 

weaker functional coupling between these two areas resulting in stronger 

amygdala reactivity in S allele carriers.  
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As already mentioned before, dysfunctional fronto-limbic coupling described as 

loss of top-down control of the prefrontal cortex over limbic regions, such as the 

amygdala, has been a favoured model to describe the pathophysiology of MDD. 

Functional decoupling of this circuitry would mean a loss in cognitive control and 

consequently, elevated emotional responses which might be reversed with 

antidepressant treatment by strengthening fronto-limbic connections (Chen et al. 

2008). 

 

1.1.3 Brain Structure Abnormalities in MDD 
 
A large body of evidence suggests morphological changes in depression-related 

neural circuits. Primarily, structural changes in regions of the cortico-limbic 

network have been implicated in the pathophysiology of MDD (Sheline 2003; 

Koolschijn et al. 2009). Consistently replicated by structural neuroimaging studies 

are volume reductions in frontal regions, such as the ACC, the prefrontal cortex 

and the orbitofrontal cortex as well as in limbic regions including the amygdala and 

the hippocampus (Konarski et al. 2008). Other regions shown to be involved in the 

dysfunctional changes in MDD are the thalamus, the basal ganglia, the pituitary 

and the cerebellum (Konarski et al. 2008). However, besides those studies finding 

changes in structure between patients and healthy controls, some studies have 

reported no significant differences (see e.g. reviews of Sheline 2003; Konarski et 

al. 2008). 

 

Several studies have demonstrated that volume loss in cortico-limbic areas is 

particularly associated with stress-induced HPA-axis dysregulation which leads to 

increased levels of cortisol (Bao et al. 2008). Hypercortisolemia, elevated levels of 

cortisol, might be one causal factor producing volume loss including neuronal 

atrophy and/or inhibition of neurogenesis (Rajkowska et al. 1999; Czeh et al. 

2007).  

 

Additional mechanisms have been proposed linking the volume loss of several 

regions to stress and subsequently to MDD. Besides hypercortisolemia, reduction 
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in neurotrophic factors or glial cell loss, the latter of which has been found in the 

amygdala (Hamidi et al. 2004), might also account for reduced volume (Duman et 

al. 1997).  

 

Summing up, glucocorticoid (GC)-mediated neurotoxicity (Sapolsky 2000), might 

be one explanation for atrophic processes observed in MDD patients accounting 

for decreases in volume. The fact that cortico-limbic structures, primarily the 

hippocampus, amygdala and the prefrontal cortex display high concentrations of 

GC receptors (Sheline 2003), supports the glucocorticoid (GC)-mediated 

neurotoxicity hypothesis explaining volume reductions in MDD. Additionally 

supportive for that hypothesis are findings which show increases in pituitary 

volume in depressed patients (Krishnan et al. 1991).  

 

As already mentioned before, Pezawas et al. (2005) reported attenuated coupling 

between the amygdala and perigenual ACC in subjects with a polymorphism in the 

5’ promoter region (5-HTTPLR) of the human serotonin transporter gene 

(SLC6A4). Those short-allele carriers also display reduced grey matter volume in 

limbic regions involved in processing of negative stimuli, particularly the amygdala 

and perigenual cingulate cortex, eventually making them more vulnerable 

developing MDD.  

 

1.1.4 Molecular Mechanisms in MDD 
 
On a molecular basis, alterations in the network responsible for emotional and 

cognitive processing, might be induced by aberrant functioning of neurotransmitter 

systems, impairments in neurotrophin action and/or dysfunctions within the 

neuroendocrine system (Nestler et al. 2002; Krishnan et al. 2008). One favoured 

model, the so-called “monoamine hypothesis”, states that depression is caused by 

decreases in monoamine function (Krishnan et al. 2008). Antidepressant treatment 

with SSRIs or monoamine oxidase inhibitors have been shown to increase 

serotonin (5-HT) and and the latter one also noradrenaline neurotransmission 

(Berton et al. 2006; Pittenger et al. 2008). Animal studies report altered 5-HT 
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signalling in response to stress accompanied with changes in behaviour (Gaspar 

et al. 2003; Gross et al. 2004).  

 

Since 5-HT neurotransmission is regulated by receptors and transporters, it is 

hypothesized that aberrant functioning of these components of the 5-HT system is 

a key factor in the pathogenesis of depression. Different receptor types and 

transporters and their abnormal functioning in depression have been highlighted 

by genetic, pharmacological and neuroimaging studies (Staley et al. 1998). One of 

the most promising candidates suggested to be involved in the processes 

underlying dysfunctional 5-HT neurotransmission seems to be the 5-HT1A receptor 

subtype which is one of at least 14 different 5-HT receptor types been identified 

yet (Hoyer et al. 2002). 

 

5-HT1A receptors are pre- and postsynaptic G protein-coupled receptors expressed 

in a large number of brain regions including the frontal cortex, septum, amygdala, 

hippocampus and the hypothalamus which are terminal fields of serotonergic 

projections originating from the raphe nuclei in the brainstem. Activation of 

presynaptic 5-HT1A receptors leads to hyperpolarization of the serotonergic neuron 

resulting in an inhibition of neurotransmitter release. Consequently, the overall 

release of 5-HT neurotransmitters in the serotonergic projection areas is reduced, 

which is assumed to be a key feature of an dysregulated 5-HT system implicated 

in the pathogenesis of depression (Blier et al. 1987). Pharmacological studies 

have shown that injection of 5-HT1A receptor agonists in brain areas with a high 

density of somatodendritic 5-HT1A autoreceptors and also in regions known to 

express postsynaptic 5-HT1A receptors have anxiolytic effects in rats (De Vry et al. 

2004; Li et al. 2006).  

 

Whereas there seems to be a reduction in 5-HT1A binding across limbic regions 

such as the hippocampus or the ACC, Morley-Fletscher et al. (2004) found an 

increased level of expressed 5-HT1A receptor mRNA in the frontal cortex of 

prenatally stressed rats. These somehow conflicting results might be explained by 

compensatory phenomena. Thus, it is tempting to speculate that the increased 
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expression of 5-HT1A receptor mRNA in the frontal cortex is a compensatory 

mechanism aiming to regain top-down control over the hyperactivated limbic 

regions through overexpression of the inhibitory 5-HT1A receptor which might be 

reflected as disrupted fronto-limbic connectivity on a system level in MDD. 

 

Post mortem data focussing on the 5-HT1A receptor in depressed patients are 

basically inconsistent according to the direction of 5-HT1A receptor binding 

changes. Some studies have reported decreased binding potential in the terminal 

fields of serotonergic neurotransmission including the medial temporal cortex and 

the hippocampus (Drevets et al. 1999), whereas others have shown increased 

binding in the ventrolateral prefrontal cortex (Arango et al. 1995).  

 

The discrepancies across these studies may be explained by differences in factors 

such as former medication, duration of illness, sample structure, gender 

differences, post-mortem interval or methodological differences measuring the 

receptor binding (Boldrini et al. 2008). PET studies have reported elevated 5-HT1A 

receptor binding potential in almost all terminal fields but also in the raphe nuclei 

using the 5-HT1A antagonist [11C]WAY-100635 (Parsey et al. 2006; Sullivan et al. 

2009).  

 

Focussing on the C(-1019)G polymorphism of the 5-HT1A receptor gene, Lemonde 

et al. (2003) could show that the polymorphism effects the 5-HT1A receptor gene 

by derepressing the transcriptional machinery ultimately leading to an enhanced 

expression frequency of the 5-HT1A receptor in the raphe nuclei and consequently 

to reduced serotonergic neuron firing. On a systemic level elevated 5-HT1A 

receptor expression could lead to enhanced reactivity of brain regions known to be 

involved in emotional processing, especially the amygdala (Le Francois et al. 

2008). By that mechanism, the G-allele polymorphism could make the subjects 

more prone to develop a depressive phenotype highlighting 5-HT dysregulation as 

a biological trait marker of depression (Neumeister et al. 2004). 
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Besides, the 5-HT1A receptor, the serotonin transporter has been in focus in 

neuroimaging studies within the last years. Recent findings demonstrate that 

variations in the 5-HTT gene are associated with alterations in the neural circuitry 

involved in emotion evaluation and modulation (Hariri et al. 2002; Caspi et al. 

2003; Hariri et al. 2003; Pezawas et al. 2005). Recent studies provide some 

evidence that neurotrophic factors, most prominently the brain-derived 

neurotrophic factor (BDNF), modulate 5-HT signalling by promoting development 

of serotonergic neurons and buffering effects of stress (Nestler et al. 2002; 

Krishnan et al. 2007; Martinowich et al. 2008). The VAL allele of VAL66MET 

BDNF has been found to be one potential risk-allele in biasing brain wiring 

towards susceptibility for depression.  

 

Pezawas et al. (2008) have demonstrated genetic interaction between the 5-

HTTPLR polymorphism human serotonin transporter gene (SLC6A4) and BDNF 

VAL66MET impacting the fronto-limbic circuitry. In the light of recent data 

indicating that antidepressive drugs may induce neurogenesis or stimulate neurite 

outgrowth and, by that, counteract neuronal atrophy associated with dysfunction of 

5-HT neurotransmission (Malberg et al. 2000), the findings of Pezawas et al. 

enable a deeper understanding of the mechanisms and effects of interacting 

neurotransmitter and neurotrophin systems in the pathogenesis of MDD. 

 

1.1.5 Brain Function and Structure in Remitted MDD 
 
Several lines of evidence indicate that remitted depressed patients still show 

functional and structural changes compared to healthy controls and/or acute 

depressed patients. Compared to acute depressed patients, remitted MDD 

patients displayed reduced activity in the anteromedial orbitofrontal cortex as well 

as in the subgenual prefrontal cortex where antidepressant therapy was 

associated with attenuated activity (Drevets 2007; Drevets et al. 2008). Other 

studies also demonstrated decreased activity in the pregenual anterior cingulate 

and the medial orbitofrontal (Liotti et al. 2002) and the left prefrontal cortex (Okada 

et al. 2009) in the remitted group compared to healthy controls. 
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However, while decreases in some regions critically involved in emotion 

processing have been reported, other findings demonstrate increases in prefrontal 

regions in response to affective faces interpreted as compensatory mechanism 

aiming to regain top-down control over an overactivated amygdala (Robinson et al. 

2008) and attenuated activity in the cingulate cortex during a working memory task 

hypothesized as compensatory mechanism to fulfil cognitive tasks on a normal 

performance level (Schoning et al. 2008).  

 

The notion that persistent miswiring of the fronto-limbic circuitry in the absence of 

acute depression and its behavioural symptoms might represent a trait-marker of 

MDD making the patient vulnerable for illness relapse is corroborated by studies 

showing structural abnormalities in remitted MDD. The orbitofrontal cortex has 

been reported to have smaller grey matter volume in remitted depressed patients 

in comparison to depressed patients (Nery et al. 2009). While morphological 

changes in the orbitofrontal cortex seem to reflect trait-dependent alterations of the 

depression related regions, corresponding neuropsychological studies indicate no 

changes on a performance level. Thus, executive impairment as well as impulsive 

behaviour are not observed in remitted MDD patients, whereas patients suffering 

from acute episodes of depression show impaired executive and impulsive 

behaviour indicating neuropsychological alterations as state-dependent 

(Westheide et al. 2007). 

 

Recent data suggest that structural changes in the cingulate cortex and the 

hippocampus are associated with MDD. Caetano et al. (2006) have shown that 

remitted depressed patients have smaller left ACC grey matter volumes compared 

to healthy controls, whereas acute depressed patients have smaller anterior and 

posterior cingulate volumes bilaterally compared to healthy subjects. However, 

patients with first-episode remitted geriatric depression exhibit larger volumes in 

the left cingulate cortex (Yuan et al. 2008).  
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In the line with studies showing reduced volume in regions associated with MDD, 

results on the hippocampus have also identified patterns of volume loss in remitted 

depressed patients compared to healthy controls (Frodl et al. 2004; Neumeister et 

al. 2005). However, Frodl et al. (2004) could not detect decreased volume in 

remitted depressed patients in a 1-year follow-up study, which, could demonstrate 

volume loss in non-remitted patients. Changes in volume have also been related 

to treatment response implicating increases in supragenual prefrontal cortex 

volume as positive indicator of antidepressant therapy efficacy (Yucel et al. 2009).  

 

Miller et al. (2009) demonstrated elevated 5-HT1A receptor binding potential in 

remitted depressed compared to healthy controls measured by PET. Moreover, 

they performed genotyping of the C(-1019)G polymorphism of the 5-HT1A receptor 

gene which is a well characterized G-allele polymorphism associated with 

increased risk of developing depression. Basically, they found that remitted 

depressed patients overrepresent the C(-1019)G polymorphism of the 5-HT1A 

receptor compared to healthy controls. This genetic abnormality could account for 

the higher distribution of 5-HT1A receptors in the raphe nuclei which might result in 

increased inhibition of serotonergic neurotransmission within the projection areas 

throughout the whole cortex caused by an elevated 5-HT1A autoreceptor binding. 

This inhibition of serotonergic neuronal firing could be accompanied by 

compensatory up-regulation of 5-HT1A receptors in the terminal fields of 

serotonergic neurons as indicated by an elevated 5-HT1A receptor binding potential 

in those areas. This might be one aspect of the molecular basis of system-level 

alterations in cortico-limbic circuits associated with MDD. 
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1.2 Morphology and Development of the Human Cerebral Cortex 
 

The evolution of the mammalian brain is characterized by progressive 

enlargement of the cerebral cortex. However, in contrast to other mammalian 

species showing a lissencephalic brain morphology without any significant 

convolution patterns, the human cerebral cortex is strongly convoluted reflecting a 

gyrencephalic structure made of convex gyri and concave sulci buried deeply 

within the cortical mantle (Hofman 1985).  

 

The evolutionary transformation from a flat to a strongly convoluted morphology is 

reflected in ontogenesis during which a smooth, lissencephalic cortex becomes a 

gyrencephalic, highly folded structure. While the degree of cortical folding during 

the first phase of development is correlated with the degree of enlargement, the 

second phase is accompanied by a stop in folding as the folding intensity matches 

the brain size. In terms of cortical folding, a brief postnatal overshot can be 

observed, causally related to increased brain size (Armstrong et al. 1995).  

 

One prominent feature of the human cerebral cortex is its inter-individual variability 

which is reflected in the complex architecture of cortical gyri and sulci. Thus, the 

vulnerability towards neurodevelopmental and/or neuropsychiatric disorders may 

be substantially determined by cortical folding processes during intra-urine and/or 

postnatal development (Dubois et al. 2008). 

 

In general, the cerebral cortex, which is ontogenetically developing out of the 

dorsal telencephalon, is divided into three regions, the neocortex, the archicortex 

(midline cortex and hippocampus) and the paleocortex. In contrast to the other 

regions, the neocortex consists of 6 layers which are radially organized and could 

be differentiated by distinct morphology and connectivity patterns. Tangentially, 

the neocortex encompasses a vast number of areas, which can be distinguished 

by several aspects, such as cyto- and chemoarchitecture, afferents and efferents, 

neurotransmitter and receptor distribution and patterns of gene expression. 

Basically, the neocortex can be distinguished in four primary areas, three out of 
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which are from sensory origin: the primary visual, somatosensory and the auditory 

area, which receive input from the peripheral sensory organs, such as the eye, ear 

or the body. The forth primary area is the motor cortex which mediates and 

modulates voluntary movements. These primary areas are strongly interconnected 

with higher order areas and subcortical nuclei, particularly the thalamus which 

receives modality-specific sensory input from the periphery and transmits it to the 

primary areas (O'Leary et al. 2008).  

 

The hierarchical organization of the human cerebral cortex reflects temporal 

aspects of development. Whereas the primary areas develop earlier in ontogeny, 

the higher areas, prominently the prefrontal cortex, develop in later maturation 

stages which is reflected by levels of synaptogenesis and myelogenesis 

(Huttenlocher et al. 1997). Neuroimaging studies provide evidence that full 

maturation of the prefrontal cortex is not finished until young adulthood which is 

corroborated by neuropsychological findings indicating complex cognitive functions 

still progressing during adolescent development (Paus et al. 1999; Sowell et al. 

1999).  

 

The prefrontal cortex can be divided into orbital, medial and lateral areas with the 

orbital and medial regions involved in emotion processing, and the lateral regions 

associated with cognitive, integrative functions. Based on the integrative functions 

performed by the prefrontal cortex, its complex network of connectivity with other 

regions of the brain is a mere function of processing complexity.  

 

Briefly, the prefrontal cortex is connected with the brainstem, the basal ganglia, the 

limbic system and the thalamus while most of the connections are reciprocal. The 

prefrontal cortex gets strong afferent input from regions, such as the brainstem, 

the amygdala, the hypothalamus and the hippocampus which provide information 

about the motivational and emotional status. Moreover, the prefrontal cortex is 

anatomically defined by efferents originating from thalamic nuclei.  
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The prefrontal cortex also establishes interconnections with the primary sensory 

and motor areas. Moreover, information transfer within the prefrontal regions is 

enabled through corticocortical interconnections some of which are 

interhemispheric and almost all of which show topological organization (Barbas 

2000; Fuster 2001; Krubitzer 2007). 

 

Cortical morphology is mainly driven by mechanical forces and genetical programs 

(Van Essen 1997; Thompson et al. 2001). Several lines of evidence indicate that 

arealization, a process during which the area`s functional characteristics and 

connectivity patterns with other regions are determined, is partly driven by genetic 

regulation (Krubitzer 2007). The latter is executed by transcription factors 

expressed by cortical progenitor cells and morphogens originating in specialized 

regions of the telencephalon (O'Leary et al. 2008). Several studies demonstrated 

genetical influences on cognitive abilities and also emotional behaviour (Eley et al. 

1997; McClearn et al. 1997).  

 

Interestingly, findings suggest heritability of the overall brain volume and certain 

brain structures, such as the frontal lobe or the corpus callosum (Oppenheim et al. 

1989; Tramo et al. 1998; Thompson et al. 2001), whereas cortical gyrification 

seems to be under less genetic control, although one has to mention that the small 

variability of gyri and its conservation over generations indicates more or less 

pronounced genetic control of cortical gyrification (Bartley et al. 1997; Fischl et al. 

2008). Particularly, neurodegenerative diseases affecting the frontal cortex and 

neuropsychiatric disorders, such as schizophrenia have been shown to exhibit 

remarkable genetic control (Cannon et al. 1998; Thompson et al. 2001). 

 

However, mechanical forces, which may interact with genetic factors, seem to play 

an important role as well in expanding and folding of the cortical sheet. Several 

hypotheses have been established tackling the mechanisms by which the human 

cerebral cortex becomes its characteristic gyrencephalic structure (Hilgetag et al. 

2005; Hilgetag et al. 2006). One prominent hypothesis, the mechanical tension 

hypothesis proposed by van Essen (1997), relates the structure of folding patterns 
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of the cortex to the specific organization of long-range projecting axons which pull 

highly interconnected regions tightly together, while weakly interconnected or 

unconnected regions drift apart potentially affecting migration patterns of neurons 

and interneurons within the laminar layers of the cortical sheet. 

 

 

1.3 Cortical Thickness – A Structural Measure of Brain Morphology 
 

As already described before, the human cerebral cortex is a highly convoluted 

sheet of nerve cells with a surface area of ~2600cm2 and a cortical thickness 

between 1 to 4.5 mm, with an average of about 2.5 mm (Mountcastle 1997). Since 

the cortical thickness reflects the underlying cyto- and myeloarchitecture, such as 

the structure of the laminar cortical layers, the size, number and density of the 

neuronal cell bodies as well as synaptogenesis and the myelination of axons, 

changes in one or some of these cyto- and myeloarchitectural aspects can affect 

the structure and arrangement of the cortical thickness. Thus, it doesn’t seem 

surprising that regional variations are typical for cortical thickness with sulcal areas 

normally thinner than gyral regions.  

 

Moreover, the specific thickness each of the six cortical layers isn’t uniformly 

distributed either (Fischl et al. 2000). These differences in laminar thickness may 

be seen in the context of the mechanical tension hypothesis (Van Essen 1997), 

where mechanical folding forces within the gyri, would result in tangential pressure 

creating mechanical resistance in vertical direction avoiding neurons to migrate in 

the superficial layers of the cortex. Since the cortical layers are characterized by 

an inside-out pattern, migrating neurons would be arrested within the deep gyral 

layers of the cortex due to mechanical resistance forces within the intermediate 

layers. On the other hand, weaker mechanical resistance forces within 

intermediate layers due to expanded sulci may potentially facilitate neuronal 

migration. These processes might explain the higher number of neurons and 

consequently, greater cortical thickness in regions more strongly folded (Hilgetag 

et al. 2005; Hilgetag et al. 2006). 
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The mechanisms of neuronal migration in the context of cortical layers have been 

profoundly conceptualized by the radial unit hypothesis (Rakic 1988) proposing 

glial guiding of migrating neurons to their target regions. The processes underlying 

neuronal migration are reflected in the structure, number and organization of 

cortical layers. According to that, the 1000-fold increase in cortical surface during 

mammalian evolution without significant increase in the thickness of the cortical 

mantle might reflect an increase in the number of radial columnar units, also called 

minicolumns (Mountcastle 1997). Thus, the number of neurons within those 

minicolumns should be, despite regional differences reflecting different numbers of 

neurons within cortical minicolumns, highly conserved within mammalian evolution 

with only little variations (Rakic 1995).  

 

Cortical thickness is a function of volume and surface area, exactly the quotient of 

the cortical volume divided by the cortical surface area. While the cortical volume 

is a highly variable measure of cortical morphology enlarging during development 

by a major increase in pial surface, cortical thickness contributes far less to the 

enlargement of volume remaining relatively constant during normal ontogeny. 

Consistently, cortical volume is significantly affected by aging, decreasing by 

~10% accompanied by loss of neurons, whereas cortical thickness remains 

relatively constant. According to that, cortical atrophy and concomitant volume loss 

observed during normal aging seem to reflect two-dimensional reductions of the 

pial surface. Thus, the cellular basis of reductions in pial surface area during aging 

might lie in a reduction of radial cortical minicolumns rather than the number of 

neurons within these (Pakkenberg et al. 1997). 

 

Consistent with these results, showing interindividual differences in cortical grey 

matter volume as a function of differences in surface area without significant 

influences of differences in cortical thickness suggesting little covariation between 

surface area and cortical thickness, a recent genetic study with twins 

demonstrated that distinct genetic factors might be affecting these two measures 

of cortical morphology (Panizzon et al. 2009). As a consequence, studies which 
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only rely on cortical grey matter volume as a measure of morphological changes in 

the neocortex, may confound the diversity of underlying genetic and cellular forces 

contributing to normal and pathogenic structural, cortical alterations. 

Consequently, to consider cortical thickness as a potential endophenotype might 

provide additional insight in the mechanisms associated with the pathogenesis of 

neuropsychiatric disorders, such as MDD.  

 

However, focussing on cortical thickness ultimately needs consideration of 

potentially confounding factors which might obscure the interpretation of 

neuropathogenic changes in the thickness of the human cerebral cortex. 

Accordingly, studies have been provided evidence that cortical thickness may be 

sexually dimorph with a tendency towards larger thickness in healthy female than 

in healthy male, especially in the temporoparietal regions of the brain (Luders et al. 

2006; Sowell et al. 2007). Consistent with this line of research addressing gender 

differences in measures of cortical morphology, studies have shown sexual 

dimorphism in cortical thickness in patient groups suffering form several 

neurodevelopmental or neuropsychiatric disorders, such as schizophrenia 

(Kuperberg et al. 2003; Narr et al. 2005).  

 

This may have functional implications possibly accounting for gender specific 

differences in the pathogenesis and –physiology of disorders affecting the cortical 

mantle. Further confounding factors may lie in aspects concerning MRI 

measurement technique and instrumental specifications. Han et al. (2006) could 

demonstrate that the reliability of cortical thickness depends on the type of pulse 

sequence being used during scan sessions and on data processing parameters 

whereas scanner upgrade and the number of acquisitions had negligible effects on 

reliability of cortical thickness measurements. Thus, studies measuring cortical 

thickness have to be, at least, aware of these potential confounding factors taking 

them into account in the interpretation of findings, especially when comparing 

them to data derived from other studies of brain morphology.   
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1.4 Alterations in Cortical Thickness in Neurological and            
Neuropsychiatric Disorders  

 

Within the last years, structural neuroimaging studies have put a lot of effort in 

examining the pathophysiology of neurological diseases on the level of the 

cerebral cortex morphology. As already described in chapter 1.2, most of these 

neuroimaging studies have been focussing on the cortical grey matter volume in 

aiming to delineate structural cortical alterations.  

 

Cortical thickness, as a measure of cortical integrity, has been sparsely used 

within the neuroimaging community, especially compared to cortical volume, 

mainly due to software limitations and greater computational cost in data 

processing. Recent studies on neurological disorders have been addressing 

alterations of cortical thickness in Alzheimer’s disease, where strong thinning of 

the medial temporal lobe as well as the frontal and the parietal lobes has been 

demonstrated (Du et al. 2007; Im et al. 2008; Dickerson et al. 2009), 

frontotemporal dementia accompanied with cortical thinning in bilateral, frontal and 

temporal regions, inferior parietal regions and the posterior cingulate (Du et al. 

2007), schizophrenia associated with a reduction in cortical thickness in paralimbic 

regions of the ACC, the orbitofrontal cortices, prefrontal and parietal regions 

(Kuperberg et al. 2003; Goghari et al. 2007; Wang et al. 2007; Fornito et al. 2008; 

Nesvag et al. 2008; Goldman et al. 2009), attention-deficit/hyperactivity disorder 

with affected cingulate, prefrontal and inferior parietal regions showing attenuated 

cortical thickness (Makris et al. 2007), mesial temporal lobe epilepsy with cortical 

e cingulate during MDD � ADDIN EN.CITE (McDonald et al. 2008), autism 

characterized by cortical thinning of the mirror neuron system (Hadjikhani et al. 

2006), specific phobia indicating thickening in cingulate and visual cortical regions 

(Rauch et al. 2004), Huntington’s disease accompanied by cortical thinning in 

sensomotoric areas (Rosas et al. 2002; Rosas et al. 2008), multiple sclerosis with 

reductions in cortical thickness in frontal, temporal and motor regions (Sailer et al. 

2003) and bipolar disorder associated with strong cortical thinning in prefrontal, 

sensory and sensory association areas (Lyoo et al. 2006). 
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In the context of depression, there have only been two studies examining cortical 

thickness alterations, none of these considering remitted MDD. Walterfang et al. 

(2009) showed increases in cortical thickness focussing on the corpus callosum in 

geriatric depression, whereas Peterson et al. (2009) have demonstrated cortical 

thinning across the lateral surface of the right cerebral hemisphere in persons at 

high risk for depression, which was deducted from their familial depression history. 

Moreover, the latter study could provide some evidence that cortical thinning 

causes cognitive alterations, such as inattention and deficits in visual memory, 

which, in turn, increased the vulnerability for developing MDD. Thus, it might be 

reasonable to assume, that functional changes on a behavioural level might 

mediate the effects of cortical thinning on developing depressive symptoms.  

 

Summarized, there are several lines of evidence indicating that disorders of the 

brain including neuropsychiatric disorders, might be associated with morphological 

alterations of the cerebral cortex, measured by cortical thickness. However, it 

remains unclear, if those cortical alterations reflect trait- or state-dependent 

changes of the structural integrity of the cerebral cortex. The findings of Peterson 

et al. (2009), showing reductions in cortical thickness in non-depressive subjects 

with high risk of developing depression, might be some evidence for thickness 

changes as trait-related biomarkers of MDD.  

 
 

1.5 Goal of the Study 
 

The goal of the present diploma thesis is to investigate the pathophysiology of 

remitted MDD on a systemic, structural level using a mere surface-based 

approach accounting for individual topological variety. By using cortical thickness 

as a structural measure potentially altered in remitted MDD, the present study 

takes some evidence into account indicating cortical thickness having different 

genetic influences than other structural measures, particularly cortical grey matter 

volume or surface area (see chapter 1.3). Consequently, different genetic origins 

might result in different patterns and mechanisms in ontogenetic development. 
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Thus, it is reasonable to assume that cortical thickness might be uniquely involved 

in the pathophysiology of MDD which still might be reflected on a structural level in 

remitted MDD patients.  

 

Moreover, by investigating potential cortical thickness alterations in remitted MDD 

patients compared to healthy controls, the present study aims to shed light on the 

pathophysiology of remitted MDD in comparison to acute MDD. Since 

neuroanatomical changes in acute MDD patients might reflect mainly the current 

psychopathological state or medication status and hence, represent state markers 

of MDD, remitted MDD patients might be more appropriate to directly study the 

vulnerability to depression. Thus, the detection of structural alterations in remitted 

MDD patients compared to healthy controls might suggest trait-related changes in 

brain morphology during ontogenetic development associated with the 

pathophysiology of MDD. 

 
Finally, the present diploma focuses on the influence of particular personality traits 

on structural alterations measured by cortical thickness aiming to answer the 

question if potential alterations in cortical thickness really reflect group differences 

between patients and healthy controls or rather differences in personality traits.  
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2 Methods 
 
At first, the main advantages of surface-based methods compared to volume-

based approaches will be discussed within chapter 2.1. Subsequently, chapters 

2.2 – 2.4 contain information about the main methodological parameters, 

techniques and procedures, such as the sample structure and size, the magnetic 

resonance imaging acquisition protocol and the preprocessing workflow. Finally, in 

chapter 2.5, the statistical procedures and methods will be briefly illustrated. 

 

2.1 Surface-based vs. Volume-based Approaches in Structural MRI 
 
In contrast to functional magnetic resonance imaging (fMRI) which is regarded as 

neuroimaging method providing dynamical physiological information about 

ongoing processes within the brain (Logothetis 2008), structural magnetic 

resonance imaging (sMRI) provides static anatomical information based on 

diverse structural measures, such as volume, sulcal depth, gyrification or cortical 

thickness (Symms et al. 2004).  

 

As already described in chapter 1.2, the human cortex is a highly convoluted two-

dimensional sheet consisting of numerous of regions separated by morphological 

or functional features. The anatomy of the human cortex is a highly variable with 

brain regions varying in size, orientation and shape. During pathological conditions 

of the brain, these variations become even more significant. Thus, comparing 

brains of different subjects in the context of statistical analysis necessitates 

registration of brains allowing one-to-one comparison so that one particular 

location in one brain corresponds to the same location in another brain 

(Rademacher et al. 1993; Roland et al. 1994). 

 

Within the last decade, a lot of effort has been put into developing methods 

accounting for interindividual variability of the highly variable convoluted two-

dimensional human cortex. However, common neuroimaging techniques, such as 

MRI, display the cortex as a three-dimensional object producing three-dimensional 
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functional or structural data. Thus, it is not surprising that most of the commonly 

used methods concerning the minimization of cortical variability rely on volume-

based registration techniques normally using 3-D stereotaxic coordinate systems 

(Van Essen 2004). Several volumetric alignment procedures have been developed 

using different principles and algorithms (Pantazis et al. 2009). While those 

alignment approaches provide good results for subcortical regions successfully 

minimizing interindividual variations, they have clear limitations when applied to 

the human cerebral cortex typically exhibiting poor correspondence between 

cortical regions (Makris et al. 2006; Devlin et al. 2007; Pantazis et al. 2009). 

 

The most commonly used registration method compensating for interindividual 

variability is the so-called Talairach transformation proposed by Talairach and 

Tournoux (1988). While this method has been proven to be very useful and easy 

applicable in accounting for interindividual differences in brain size, it doesn’t 

properly account for cortical variability resulting in poor accuracy regarding gyral 

and sulcal folding patterns. One of the major drawbacks of volume-based 

alignment approaches, such as Talairach transformation, lies in the incompatibility 

between the three-dimensional structure of volume representations of the cortex 

and the natural two-dimensional structure of the cortical sheet resulting in 

inaccuracies of localization and consequently, in misalignment of cortical regions. 

Due to the highly folded structure of the human cerebral cortex, anatomical gyral 

or sulcal landmarks do not occupy the same position in standard volumetric space. 

On the other hand, anatomical landmarks that may be quite distant in surface 

space, such as the superior temporal gyrus and the inferior frontal cortex or, more 

general, the opposite banks of a sulcus, share the same location in volume space. 

Thus, distances between two points in volume space may not reflect the true 

distances observed in surface related space causing significant misalignment 

during Talairach transformation (Fischl et al. 1999; Desai et al. 2005; Argall et al. 

2006). 
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To overcome those limitations of volume-based approaches, surface-based 

analysis methods of sMRI and fMRI data has been expensively elaborated within 

the last years resulting in sophisticated registration algorithms in surface space.  

 

Basically, those approaches can be distinguished by their degree of 

automatization and the surface metrics they are based on. Whereas one approach 

relies on manually or automatically defined anatomical landmarks and deformation 

algorithms aligning the individual surface models to the corresponding landmarks 

on a flattened target surface (e.g. Van Essen et al. 1998; Van Essen 2004; Van 

Essen 2005), another approach is focussing on automatically constructing surface 

models based on shape metrics, such as sulcal shape or cortical convexity, which 

are aligned to a standardized spherical representation of the cortex (e.g. Fischl et 

al. 1999).  

 

Irrespectively of the surface reconstruction and surface registration method, 

respectively, used, their reliability and validity depends on implementing adequate 

surface models accurately representing cortical folding patterns, surface-based 

atlases as a standardized framework allowing across-subjects statistical analysis 

of neuroimaging datasets and faithful surface registration algorithms compensating 

for neuroanatomical differences in cortical shape and folding characteristics (Van 

Essen 2004; Van Essen 2005). Choosing the right surface-based atlas enabling 

statistical analysis across subjects for example, is not trivial at all. Whether 

someone relies on an atlas derived from one individual brain which accurately 

reflects cortical shape but fails to account for interindividual variability (Van Essen 

et al. 1997; Geyer et al. 2001), or an atlas based on an averaged template from a 

population of subjects which reflects shape homologies across subjects but has 

the disadvantage of blurred cortical convolutions (Mazziotta et al. 2001) strongly 

depends on the hypothesis and the research questions formulated within the 

concept of the study.  

 

Several studies have already demonstrated the advantages of surface-based 

analysis compared to volume-based approaches (Fischl et al. 1999; Andrade et al. 
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2001; Desai et al. 2005; Anticevic et al. 2008). These advantages mainly include 

superior cortical alignment precision, spatial preservation of signal after data 

smoothing and increased statistical power (e.g. Anticevic et al. 2008). 

 

2.2 Participants 
 
A sample of 28 remitted major depressive patients without any current drug 

treatment or psychiatric illness, who did not receive any treatment for at least three 

months before assessment and 28 age and gender-matched healthy controls, 

aged from 19 to 43 years, were included in this study. All subjects were recruited 

in Vienna, Austria, were right-handed and from European ancestry to avoid 

stratification artifacts.  

 

Inclusion criteria for healthy subjects included: (a) willingness and competence to 

sign the informed consent form; (b) aged 18 to 45 years; (c) right-handedness; (d) 

absence of any concurrent or previous psychiatric DSM-IV diagnosis except 

nicotine dependence; (e) Caucasian subjects of European ancestry. Inclusion 

criteria for patients included: (a) willingness and competence to sign the informed 

consent form; (b) aged 18 to 45 years; (c) right-handedness; (d) a DSM-IV 

diagnosis of remitted MDD; (e) Caucasian subjects of European ancestry. 

 

Exclusion criteria for healthy subjects included: (a) previous or concurrent major 

medical, neurological or psychiatric illness; (b) clinically significant abnormal 

values in routine laboratory screening or general physical examination; (c) 

previous psychopharmacological or psychotherapeutic treatment; (d) current or 

previous substance abuse except nicotine dependence; (e) current drug treatment 

except anticontraceptives (f) failure to comply with the study protocol or to follow 

the instructions of the investigating team. Exclusion criteria for patients included: 

(a) previous or concurrent major medical or neurological illness; (b) clinically 

significant abnormal values in routine laboratory screening or general physical 
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examination; (c) current or previous substance abuse except nicotine dependence; 

(d) current drug treatment except anticontraceptives (e) failure to comply with the 

study protocol or to follow the instructions of the investigating team. 

 

Inclusion and exclusion criteria were carefully assessed during neurological 

examination. Subjects gave written informed consent. The study has been 

approved by the ethics commission of the Medical University, Vienna. 

 

Psychiatric assessment was conducted using a semi-structured diagnostic 

interview (Structured Clinical Interview for DSM-IV) (Spitzer et al. 1992) and the 

Hamilton Depression Rating Scale (Williams 1988) performed by experienced and 

specially trained staff psychiatrists to exclude the presence of psychiatric illness in 

the present sample. Moreover, subjects underwent personality assessment 

including a self-administered personality questionnaire (NEO five factor Inventory) 

(Costa et al. 1992) and the Temperament and Character Inventory questionnaire 

(Cloninger et al. 1993). 

 

2.3 MRI Acquisition 
 
Three-dimensional structural MRI scans were acquired on a 3T Siemens TIM Trio 

scanner using a 3D MPRAGE sequence (TR/TE = 2300/4.21ms, flip angle = 9°, 

inversion time = 900ms, voxel size = 1x1x1.1mm) and preprocessed as being 

described in chapter 2.4. All MRI measurements were performed at the Centre of 

Excellence for High-Field Magnetic Resonance, Vienna.  

 

2.4 Preprocessing 
 

MRI images were preprocessed using FreeSurfer version 4.0.2. 

(http://surfer.nmr.mgh.harvard.edu) aiming to generate normalized surface models 

for each participant for further statistical analysis. The whole FreeSurfer workflow 

is described in detail in Dale et al. (1999) as well as Fischl et al. (1999). 
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Nevertheless, the surface reconstruction workflow architecture should be briefly 

described herein.  

 

The automated preprocessing workflow started with intensity normalization in 

order to compensate for magnetic field inhomogeneties during scanning. The 

intensity normalized image, which is generated from a high resolution anatomical 

dataset, is further skull stripped to remove extracerebral voxels (Segonne et al. 

2004). Next, the resulting image is subcortically segmented by using cutting 

planes facilitating separation of subcortical structures from cortical regions. Any 

interior holes within the cortical components were filled in order to create filled 

white matter masks out of which the full cortical surface models have been 

generated.  

 

Using a tessellation algorithm, the resulting white matter volume, created for each 

hemisphere, is covered with triangles in order to produce a triangle-based surface 

mesh. Simultaneously, the white matter volume is deformed and smoothed 

resulting in an accurate representation of the grey/white matter boundary and the 

pial surface (Dale et al. 1999). Using a topology fixer, the defects in the surface 

models, particularly arising from midbrain structures, were automatically corrected 

(Segonne et al. 2005).   

 

In order to allow for intersubject comparison of cortical thickness, the surface 

models, which are still in native space at this step of preprocessing, have to be 

aligned to a standard template. Intersubject registration in FreeSurfer is performed 

by inflating each of the surfaces to a sphere and consequently registering the 

spherical surface models to a standard surface-based coordinate system in which 

cortical thickness comparisons can be made on a node-to-node basis (Fischl et al. 

1999; Fischl et al. 1999). The main advantage of a spherical representation of the 

cortex is its simplicity in mathematical terms and its topological accuracy which 

allows the preservation of the cortical anatomy of the original surface model 

(Fischl et al. 1999; Desai et al. 2005).  
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Cortical thickness estimates were obtained by measuring the distance between 

the grey/white and the pial surfaces. Due to the intersubject registration, mean 

cortical thickness measurements could be compared between subjects at each 

point/node on the cortical surface.  

 
 

2.5 Statistical Analysis 
 

2.5.1 Demographic and Psychometric Data 
 
In order to assess group differences in age and psychometric scores unpaired, 

two-tailed t-tests using SPSS version 15.0 (http://www.spss.com) were performed. 

Three psychometric variables were used, two of them (neuroticism and 

extraversion) derived from a personality questionnaire (NEO Five Factor 

Inventory) and one (harm avoidance) from the Temperament and Character 

Inventory questionnaire (TCI).  

 

2.5.2 Region-of-Interest Analysis  
 
Based on the literature reviewed in chapter one showing functional and structural 

alterations in subjects with both, acute MDD and remitted MDD, five, manually 

drawn regions of interest (ROI`s) were a priori selected, namely the three subparts 

of the cingulate cortex (i.e. the anterior cingulate, the midcingulate and the 

posterior cingulate cortex) according to Vogt (2005), the dorsolateral prefrontal 

cortex and the orbitofrontal cortex.  

 

To calculate group differences in mean cortical thickness within these ROI`s, 

thickness data was mapped on a average surface, generated from the healthy 

subjects and smoothed using a 10 mm full-width-at-half-maximum Gaussian filter. 

Statistical cortical thickness difference maps for each hemisphere were 

constructed using a general linear model assessing the main effect of group on 
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cortical thickness on a node-to-node basis using the statistical software and 

graphical interface qdec provided by FreeSurfer.  

 

To compensate for multiple comparisons, cortical thickness differences were false 

discovery rate (FDR) corrected at a region-based  P <.05 significance level for 

each hemisphere (Genovese et al. 2002). For illustrating purposes, statistical 

difference maps were imported into SUMA (Saad et al. 2004) and projected onto 

an average healthy subjects` surface. 

 

Further statistical analysis focussing on the main effects of the three psychometric 

variables separately and the interaction effects between the group variable and 

each of the psychometric variables on cortical thickness were conducted using 

SPSS and the free statistical software R (http://www.r-project.org). This was done 

by extracting the peak node showing the strongest group difference with respect to 

cortical thickness and performing an ANCOVA for each of the psychometric 

variables consistently including the group variable.  

 

2.5.3 Whole Cortex Analysis 
 
In order to assure that the ROI approach did not overlook significant group 

differences in cortical thickness in other areas than the a priori hypothesized, 

whole cortex analysis was performed. This was done by using a general linear 

model assessing the main effect of group on cortical thickness on a node-to-node 

basis using the statistical software and graphical interface qdec provided by 

FreeSurfer. To compensate for multiple comparisons, results, as in the ROI 

analysis, were false discovery rate (FDR) corrected at a surface-wide P <.05 

significance level for each hemisphere. Psychometric variables were not included 

in the whole cortex analysis.   
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3 Results  
 

3.1 Demographic and Psychometric Data 
 

There were no significant group differences in age between remitted MDD patients 

and healthy controls (see table 1). However, there were significant group 

differences in all three psychometric variables (see table 1 and figure 1). With 

respect to neuroticism, the patient group showed significantly higher scores than 

the healthy control group (t= -4.9; df=54; p < 0.001). Concerning the psychometric 

variable extraversion, remitted MDD patient demonstrated lower scores compared 

to healthy controls (t= 3.3; df=54; p < 0.01). Analyzing group differences in harm 

avoidance scores also revealed higher values in the patient group (t= -2.3; df=49; 

p < 0.05).  
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Figure 1. Differences in psychometric scores between remitted MDD patients and healthy controls.  
A. Boxplot illustrating higher neuroticism scores in patients compared to healthy controls (mean 
(SD) neuroticism score: healthy = 1.3mm (0.5); patients = 2 (0.6)). B. Boxplot illustrating lower 
extraversion scores in patients compared to healthy controls (mean (SD) extraversion score: 
healthy = 2.6 (0.4); patients = 2.2 (0.5)). C. Boxplot illustrating higher harm avoidance scores in 
patients compared to healthy controls (mean (SD) harm avoidance score: healthy = 9.9 (3.9); 
patients = 12.4 (3.6)).  
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3.2 Region-of-Interest Analysis  
 
A statistical cortical thickness difference map for the left hemisphere is shown in 

figure 2. This map shows a pattern of reduced cortical thickness in the left 

midcingulate cortex, localized more within the anterior portion, in remitted MDD 

patients compared to healthy controls (corrected p = 0.004). The group difference 

within this region remained significant even after FDR correction. The other to 

parts of the cingulate cortex (see chapter 2.5.2) as well as the dorsolateral 

prefrontal cortex and the orbitofrontal cortex, which have been, based on results 

from recent structural MRI depression research literature, a priori selected as 

ROI`s, displayed no statistically significant group differences after controlling for 

multiple comparisons by means of FDR correction.  

 

 

       

   
 
 
Figure 2. Differences in cortical thickness between remitted MDD patients and healthy controls.  
A. Statistical cortical thickness difference map showing reduced cortical thickness in the 
midcingulate cortex in remitted MDD patients compared to healthy controls (p < 0.004). Colorbar 
represents FDR corrected p-values. B. Boxplot illustrating lower mean cortical thickness (mm) in 
patients compared to healthy controls (mean (SD) cortical thickness: patients = 2.8mm (0.2); 
healthy = 3mm (0.2)). Mean cortical thickness has been extracted from the peak node showing the 
largest group difference lying within the anterior portion of the midcingulate cortex. 
 
 
 
 
 
 
 

A 

p > 0.05 

p < 0.004 

B



 37

Further analyses focussing of putative effects of the three psychometric scores 

neuroticism, extraversion and harm-avoidance on cortical thickness didn’t show 

any significant main effects. Moreover, analysis displayed no significant interaction 

effects between group and each of the psychometric variables (see figure 3). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Correlation of psychometric scores and cortical thickness compared between remitted 
MDD patients and healthy controls. A. Scatterplot illustrating no correlation between neuroticism 
and cortical thickness. B. Scatterplot illustrating no correlation between extraversion and cortical 
thickness. C. Scatterplot illustrating no correlation between harm avoidance and cortical thickness. 
Mean regional cortical thickness has been extracted from the peak node showing the largest group 
difference lying within the anterior portion of the midcingulate cortex (see figure 2). 
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3.3 Whole Cortex Analysis 
 
In order to assure that the ROI approach did not overlook significant group 

differences in cortical thickness in other areas than the a priori hypothesized, 

additional whole cortex analysis was performed. After correcting for multiple 

comparisons no further significant group differences in cortical thickness along the 

cortex have been found. Figure 4 shows uncorrected statistical difference maps 

also showing a tendency of cortical thinning within some parietal and frontal 

regions of the cortex bilaterally in the patient group, but also tendencies of cortical 

thickening in other parts of the parietal cortex bilaterally and the temporal cortex 

more pronounced within the right hemisphere. 
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Figure 4. Whole cortex statistical difference cortical thickness maps of the patient and healthy 
group based on -log(10)p values used for illustration purposes (i.e. a logarithmized p value of 1.3, 
for example, means a straight p value of 0.05). A. Statistical difference cortical thickness map of 
medial and lateral left hemisphere. B. Statistical difference cortical thickness map of medial and 
lateral right hemisphere. Color bars representing uncorrected logarithmized p values ranging 
between -2.5 (dark blue representing higher cortical thickness in the patient group compared to 
healthy controls) and 3.3 (dark red representing lower cortical thickness in the patient group 
compared to healthy controls) for the left hemisphere and between -2.4 and 3.1 for the right 
hemisphere. Results in the corpus callosum and the midbrain are not meaningful.  
 

 

Average thickness maps of remitted MDD patients and healthy controls, as 

illustrated in figure 5, display reductions in cortical thickness in the patient group 

especially within the whole cingulate cortex bilaterally, but more pronounced on 

the left hemisphere, as well within the temporal cortex. However, none of these 

regions, except the already mentioned midcingulate cortex, with reduced cortical 

thickness in the patient group compared to healthy controls remained significant 

after FDR correction.  
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Figure 5. Mean cortical thickness maps (mm) of the patient and healthy group (mean cortical 
thickness in both groups for each hemisphere = 2.6mm). A. Whole cortex mean cortical thickness 
maps of medial and lateral left hemisphere of healthy controls. B. Whole cortex mean cortical 
thickness maps of medial and lateral right hemisphere of healthy controls. C. Whole cortex mean 
cortical thickness maps of medial and lateral left hemisphere of patients. D. Whole cortex mean 
cortical thickness maps of medial and lateral right hemisphere of patients. Color bars representing 
mean cortical thickness values in mm ranging between 1mm (dark blue) and 4.5mm (dark red). 
Results in the corpus callosum and the midbrain are not meaningful. t-tests showed no group 
differences in whole cortex mean cortical thickness in the left as well as in the right hemisphere 
between patients and healthy controls.  
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4 Discussion 
 

The present diploma thesis showed reduced cortical thickness in the anterior 

midcingulate cortex in remitted MDD patients compared to healthy controls. To our 

knowledge, this is the first study demonstrating cortical thickness alterations in 

MDD patients indicating structural changes still present even after full remission.  

 

The anterior midcingulate cortex is involved in several integrative processes such 

as attention-for-action/target selection (Posner et al. 1988), motivational valence 

assignment/reward assessment (Mesulam 1990; Knutson et al. 2000; Bush et al. 

2002; Kirsch et al. 2003), novelty detection (Raichle et al. 1994; Clark et al. 2000), 

motor response selection (Pardo et al. 1990; Bush et al. 1999; Williams et al. 

2004), error detection/monitoring (Gehring et al. 2000), reward-based decision 

making (Bush et al. 2002) and working memory (Petit et al. 1998). Moreover 

several lines of evidence indicate involvement of the anterior midcingulate cortex 

in fear processing (Vogt et al. 2003), social pain perception (Eisenberger et al. 

2004), pain anticipation (Ploghaus et al. 1999; Bermpohl et al. 2006), and in 

visceral stimulation (Svensson et al. 1997; Strigo et al. 2003).  

 

Through recruitment of the rostral cingulate motor area, which is a part of the 

anterior midcingulate cortex, projecting to the spinal cord and motor cortices (Dum 

et al. 1991), the anterior midcingulate cortex mediates behavioural responses, 

such as avoidance behaviours (Vogt 2005). Thus, through integration of 

motivational, reward- and pain-related information, the anterior midcingulate cortex 

plays a key role in multiinformational decision making directly modulating areas 

known to be responsible for motor, cognitive and behavioural responses by 

recruitment of the rostral cingulate motor area and areas such as the dorsolateral 

prefrontal cortex, the parietal cortex, the striatum and thalamus. 
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Thus, the anterior midcingulate cortex is assumed to be a motivational and 

attentional control centre preparing and monitoring adequate behavioural 

responses to incoming emotional, reward- and pain-related information (Whalen et 

al. 1998; Bush et al. 2000). Drevets et al. (2008) suggest the anterior midcingulate 

cortex as part of a highly interconnected visceromotor network particularly involved 

in introspective functions and visceral reactions to emotional information. 

Interestingly, the visceromotor network is lacking substantial direct sensory 

connections, but interacts with limbic regions as well as the hypothalamus. By that, 

it mediates visceral reactions to emotional stimuli which seem to be impaired in 

MDD (Drevets et al. 2008).  

 

Studies focussing on functional alterations affecting the anterior midcingulate 

cortex in the pathophysiology of MDD demonstrated reduced activity in this brain 

region at rest as well as a reaction to emotional stimuli (Mayberg et al. 1999; 

Drevets et al. 2002). Fitzgerald et al. (2008) corroborated these findings showing 

decreased activity to negative emotion induction and increased activity after 

selective serotonin reuptake inhibitor treatment.  

 

Besides functional changes in the anterior midcingulate cortex associated with the 

pathophysiology of MDD, several studies also could demonstrate reductions in 

grey matter volume in MDD patients (Sassi et al. 2004; Caetano et al. 2006). 

Those structural changes, together with functional alterations, might suggest 

impaired emotional and executive functioning in patients with acute MDD, mainly 

affecting selective attention, planning and the effortful regulation of affective 

states. This might explain symptoms of depressed mood and anhedonia with 

patients identifying and experiencing emotional stimuli primarily within a negative 

context (Phillips et al. 2003).  

 

Reduced cortical thickness in the left anterior midcingulate cortex could be 

interpreted within the framework of impaired executive functioning and regulation 

of affective states. Since the present diploma thesis found reduced cortical 

thickness in remitted MDD patient, it is reasonable that cognitive, integrative 
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processing is still abnormal when mood is restored which might be evidence for 

trait-related structural changes associated with MDD. This interpretation is 

corroborated by findings showing functional changes in euthymic MDD patients in 

the cingulate cortex (Schoning et al. 2008) and reduced left anterior cingulate grey 

matter volume reductions in remitted MDD patients (Caetano et al. 2006). 

Interestingly, Caetano et al (2006) only found structural changes in the left anterior 

cingulate cortex in remitted MDD patients compared to healthy controls, whereas 

in the right hemisphere as well as in other regions, which displayed reduced 

volumes in acute MDD patients, the authors did not find any structural 

abnormalities in remitted MDD patients.  

 

Since the anterior midcingulate cortex mediates fear processing in the context of 

visceromotor reactions, one might also argue that cortical thickness reductions 

within this region might provoke impaired fear processing and subsequent 

behavioural responses. The pattern of reduced cortical thickness in remitted MDD 

patients might, therefore, indicate that these functions are still impaired explaining 

the tendency of interpreting emotional stimuli primarily within a negative context as 

a typical behavioural abnormality observed in acute MDD patients. Less control 

over visceral stress responses induced by negative stimuli, in turn, makes remitted 

MDD patients more vulnerable developing recurrent depression.  

 

Moreover, cortical thickness reductions in the cingulate cortex have also been 

observed in subjects with attention-deficit/hyperactivity disorder (Makris et al. 

2007) demonstrating dysfunctional attentional control associated with reduced 

cortical thickness which might be still present in remitted MDD patients. 

Interestingly, Chen et al. (2007) reported a negative correlation between baseline 

symptom severity in MDD and anterior midcingulate cortex grey matter volume. 

The authors interpreted this result as attenuated protective power of the 

structurally impaired anterior midcingulate cortex in regulating affective-attentional 

processes which might predispose people to greater severity of depressive 

symptoms. Reduced cortical thickness in the anterior midcingulate cortex might 

have similar implications, predisposing remitted MDD patients for relapsing. 
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The notion that cortical thickness reductions might affect cognitive functioning 

which, in turn, increases the vulnerability developing MDD, is strengthened by 

results of Peterson et al. (2009) showing cortical thinning on persons high risk for 

depression, deducted from their familial depression history, causing cognitive 

alterations, such as inattention and deficits in visual memory. This causal 

relationship has been inferred with a special statistical mediator analysis. Within 

the context of the present study, the observed cortical thickness reductions in 

remitted MDD patients might lead to impaired fear processing, allocation of 

attentional resources and subsequent deficits in decision making and behavioural 

responses in response to emotional stimuli in the anterior midcingulate cortex 

increasing the probability developing MDD.  

 

Since the cortical thickness reflects the underlying cyto- and myeloarchitecture, 

such as the structure of the laminar cortical layers, the size, number and density of 

the neuronal cell bodies as well as synaptogenesis and the myelination of axons 

(Mountcastle 1997), theses factors might be involved in cortical thickness 

reductions. Several studies provided evidence of neuronal and glial atrophy 

resulting in cortical thickness reductions in regions such as the pregenual 

cingulate cortex, orbitofrontal cortex or the DLPFC (Ongur et al. 1998; Rajkowska 

et al. 1999; Rajkowska et al. 2001). Interestingly, laminar analysis of cortical 

thickness reductions revealed layers III and V mostly affected by glial loss (Ongur 

et al. 1998; Rajkowska et al. 1999; Rajkowska et al. 2001).  

 

Studies on rats have shown that prolonged stress leads to dendritic atrophy and 

glia loss within the prefrontal cortex, including the anterior midcingulate cortex, 

which is assumed to have a key regulatory role in stress-related homeostatic 

mechanisms, particularly by modulating HPA axis function and by that, cortical 

secretion (Liu et al. 2008), through increased, stress-induced HPA activity (Radley 

et al. 2006; Banasr et al. 2007). In rats increased stress-induced HPA activity and 

concomitant dendritic, neuronal and/or glial atrophy was associated with impaired 

regulation of fear processing of conditioned stimuli (Izquierdo et al. 2006). In the 

light of the herein reported structural changes in cortical thickness in the anterior 
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midcingulate cortex putatively associated with functional impairments on cognitive 

modulation level involved in emotional processing, these results from rat 

experiments and additional findings in human post-mortem studies reporting 

increased cortisol levels (Gold et al. 2002; Carroll et al. 2007), might be one 

possible explanation mechanism for the cellular processes underlying cortical 

thickness reductions in remitted MDD patients. 

 

The origins of weakened protective power of the anterior midcingulate cortex with 

respect to stress-inducing emotional stimuli from the environment might lie in 

attenuated inhibition via gabaergic neurotransmission. Studies provide some 

evidence that MDD patients display reduced GABA concentrations in the plasma 

and cerebrospinal fluid resulting in blunted inhibition of hypothalamic-pituitary-

adrenal activity (Hasler et al. 2007), which, in turn, leads to increased cortisol 

secretion provoking perpetuated and thereby even greater impairments in anterior 

midcingulate cortex functioning associated with structural changes, such as 

reductions in cortical thickness. Indeed, studies have demonstrated gabaergic 

neuron atrophy in the medial prefrontal cortex including the anterior midcingulate 

cortex resulting in weakened inhibitory control over the HPA axis (Radley et al. 

2009). Based on these results it is reasonable to assume that abnormal gabaergic 

neurotransmission arising from and affecting the anterior midcingulate cortex via 

reciprocal feedback processes between the latter and the HPA axis, still occur 

when mood is restored making remitted MDD patients more vulnerable towards 

stress-inducing, environmental stimuli and ultimately, MDD itself.  

 

Impaired top-down control over limbic regions has also been reported in studies 

applying functional connectivity approaches showing reduced functional 

connectivity between the anterior midcingulate cortex and the amygdala (Anand et 

al. 2005; Chen et al. 2008). Attenuated functional connectivity might reflect 

impaired regulatory power of the anterior midcingulate cortex over limbic regions, 

such as the amygdala or the hypothalamus, ultimately leading to emotional 

dysregulation for which weakened gabaergic control might be symptomatic on a 

neuromolecular level. Reduced cortical thickness in the anterior midcingulate 
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cortex in remitted MDD patients might be a structural marker of impaired top-down 

control as a trait-marker of MDD.  

 

One might assume that impaired fear processing through weakened inhibitory 

control of the anterior midcingulate cortex over limbic regions predisposing MDD 

patients to avoidance behaviour might be reflected on a personality level including 

higher harm avoidance scores. Statistical analysis in the context of this study 

revealed higher harm avoidance scores in remitted MDD patients compared to 

healthy controls, but could not detect any significant effects of these differences on 

cortical thickness. One possible explanation of these findings could be that 

pronounced harm avoidance behaviour might be simply not reflected in alterations 

of cortical thickness or, as an epiphenomenon of MDD, could not explain cortical 

thickness alterations as much as the psychiatric disorder itself. However, there is 

some evidence that, at least, neuroticism and extraversion are reflected on the 

structural level of cortical thickness with more neurotic and extraverted persons 

displaying thinner cortex in several cortical regions (Wright et al. 2006). Although 

the results of this study show differences in these personality scores between 

remitted MDD patients and healthy controls, the psychiatric disorder may explain 

cortical thickness differences to a much greater extent than personality differences 

which could be confirmed by statistical analysis performed in the course of the 

present diploma thesis.  

 

Besides increased cortisol levels and decreased gabaergic neurotransmission, 

several studies also demonstrate decreased postsynaptic 5-HT1A receptor binding 

and mRNA expression in the cingulate during MDD (Drevets et al. 2007) reflecting 

blunted serotonin neurotransmission as a hallmark of depression. Several lines of 

indicate that there is a strong interaction between the serotonin and the cortisol 

system particularly highlighting the influence of the cortisol on 5-HT1A receptor 

binding and mRNA expression which is both reduced under persistent cortisol 

hypersecretion (Lopez et al. 1998) which might explain attenuated postsynaptic  

5-HT1A receptor binding and mRNA expression in MDD patients (Drevets et al. 

2007).  
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These results have to be examined within the context of genetic variations in the 

serotonin receptor and/or transporter genes. For example, recent findings 

demonstrated that variations in the serotonin transporter gene (SLC6A4) are 

associated with alterations in the neural circuitry involved in emotion evaluation 

and modulation (Hariri et al. 2002; Caspi et al. 2003; Hariri et al. 2003; Pezawas et 

al. 2005). Especially carriers of the s allele of the 5-HTTLPR polymorphism of the 

serotonin transporter display increased risk for depression when exposed to 

stressful life events (Hariri et al. 2002; Caspi et al. 2003).  

 

Moreover, recent studies provide some evidence that neurotrophic factors, most 

prominently the brain-derived neurotrophic factor (BDNF), modulate 5-HT 

signalling by promoting development of serotonergic neurons and buffering effects 

of stress (Nestler et al. 2002; Krishnan et al. 2007; Martinowich et al. 2008). The 

VAL allele of VAL66MET BDNF has been found to be one potential risk-allele in 

biasing brain wiring towards susceptibility for depression. Taking its protective 

effects into account, failures within the genetic architecture would lead to reduced 

neurogenesis and/or neurite outgrowth which could be counteracted by 

antidepressant therapy (Malberg et al. 2000). Interestingly, Pezawas et al. (2008) 

have demonstrated genetic interaction between the 5-HTTPLR polymorphism 

human serotonin transporter gene (SLC6A4) and BDNF VAL66MET impacting the 

fronto-limbic circuitry.  

 

Taking all together, reduced cortical thickness of the anterior midcingulate cortex 

in remitted MDD patients and concomitant impairments in cognitive control and 

emotional regulation might be partially explained by a hypoactivated gabaergic 

and serotonergic neurotransmission, an impaired neurotrophic system and a 

hyperactivated cortisol secretion promoting glial, dendritic and neuronal atrophy 

which exerts its detrimental effects especially in the context of stressful live events 

or adverse environmental stimuli predisposing remitted MDD patients to develop 

depression.  
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Limitations of the study lie in the sample size and potential inhomogenities within 

the sample. Since differences in cortical thickness between remitted MDD patients 

and healthy controls are expected to be smaller compared to acute depressed 

patients, possible structural alterations in additional cortical regions might be 

masked through the relatively small sample size of 28 patients. Moreover, the 

patient group displays some inhomogenities, for example with respect to the 

distribution and patterns of personality variables, maybe influencing the 

interpretation of results. Thus, future studies should control for factors being 

inhomogeneous within the patient group and if necessary and meaningful, perform 

advanced statistical analysis with carefully built subgroups based on clinical and/or 

psychometric variables.  
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5 Conclusion 
 
For the first time, the present study was able to show cortical thickness alterations 

in remitted MDD patients indicating that structural changes in special regions of 

the cortical mantle still exist when mood is restored. These results might provide 

evidence that cortical thickness reductions, particularly in the anterior midcingulate 

cortex, might represent a trait marker reflecting vulnerability to depression. On a 

functional level, changes in cortical thickness might be associated with 

dysfunctional emotional processing in terms of impaired top-down control over 

limbic circuits and/or the neuroendocrine system, especially the HPA axis, 

regulating stress responses to emotional stimuli. These results may enhance the 

understanding of the neurobiology of remitted MDD and provide a putative 

structural disease marker reflecting vulnerability to depression. 
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Abstract 
 

Major depressive disorder (MDD) is among the four leading causes of disease 

burden throughout the world and is associated with medical morbidity and 

mortality across the lifespan. It is characterized by functional and structural 

alterations of the brain reflecting dysfunctional brain circuits of emotion processing 

and cognitive control. A vast number of studies have focussed on alterations in the 

acute state of depression which may primarily represent state-dependent 

pathophysiological changes thereby masking those neurobiological changes 

mainly associated with genetic susceptibility to depression. Thus, the present 

diploma thesis focuses on the remitted state of MDD aiming to reveal trait markers 

of MDD by using cortical thickness as a measure of morphological integrity.  

 

Structural magnetic resonance imaging scans of 28 remitted major depressive 

patients without any current drug treatment or psychiatric illness, who did not 

receive any treatment for at least three months before assessment and 28 age 

and gender-matched healthy controls, were obtained. Structural images were 

analyzed using a mere surface-based approach, which, in contrast to standard 

volumetric methods, preserves the topological folding patterns of the cortex, and, 

by that, reduces anatomical variability thereby increasing statistical power. After 

standard preprocessing the data were analyzed within a general linear model 

assessing the effects of group differences between patients and healthy controls. 

Additionally, psychometric variables were included in statistical analysis aiming to 

investigate potential influences of personality traits. 

 

Analysis revealed cortical thickness alterations in remitted MDD patients 

compared to healthy controls localized within the anterior midcingulate cortex. 

Since the anterior midcingulate cortex is mainly implicated in emotional control and 

regulation, these results might suggest impaired top-down control over limbic 

circuits on a functional level indicating increased stress responsiveness even 

when mood is restored on a behavioural level. These findings may enhance the 
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understanding of the neurobiology of remitted MDD and provide a putative 

structural disease marker reflecting vulnerability to depression. 
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Zusammenfassung 
 
Depression gehört zu den weltweit vier häufigsten Ursachen von Krankheitslast 

und ist assoziiert mit medizinischer Morbidität und Mortalität. Charakteristisch für 

Depression sind funktionelle und strukturelle Veränderungen des Gehirns als 

Zeichen dysfunktionaler Gehirnschaltkreise der Emotionsverarbeitung sowie der 

kognitiven Kontrolle. Viele Studien haben sich hauptsächlich mit der akuten Phase 

von Depression beschäftigt, in der sich in erster Linie vermutlich 

zustandsabhängige pathophysiologische Veränderungen zeigen, wodurch die 

eigentlichen neurobiologischen Veränderungen, die im Zusammenhang mit 

genetischer Vulnerabilität für Depression stehen, verschleiert werden. Um 

tatsächliche Merkmals-Marker zu finden, setzt die vorliegende Diplomarbeit den 

Schwerpunkt auf remittierte Depression unter Verwendung der kortikalen Dicke als 

Maß für die morphologische Integrität. 

 

Strukturelle Magnetresonanztomographie-Scans wurden an 28 remittiert 

Depressiven, die keine Form von Behandlung innerhalb der letzten drei Monate 

erhalten haben und ohne aktuelle medikamentöse Behandlung bzw. 

psychiatrische Erkrankung waren, sowie an 28, in Bezug auf Alter und Geschlecht 

abgestimmte, Gesunden durchgeführt. Die erhobenen, strukturellen Bilder wurden 

mittels eines oberflächen-basierten Verfahrens, welches im Kontrast zu reinen 

volumetrischen Ansätzen, die topologischen Faltungsmuster des Kortex 

realitätsgetreu abbildet, wodurch die anatomische Variabilität reduziert und die 

statistische Power erhöht werden, ausgewertet. Mit dem Ziel mögliche 

Gruppenunterschiede zwischen Depressiven und Gesunden ausfindig zu machen, 

wurden die Daten im Anschluss an die Präprozessierung mittels eines 

‚Allgemeinen linearen Modells’ statistisch analysiert. Um mögliche Einflüsse von 

Persönlichkeitsmerkmalen zu untersuchen, wurden zusätzlich psychometrische 

Variablen in das Modell integriert.  

 

Die statistische Analyse konnte Unterschiede in der kortikalen Dicke zwischen 

Depressiven und Gesunden zeigen, die im anterioren midzingulären Kortex 
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lokalisiert sind. In Anbetracht dessen dass der anteriore midzinguläre Kortex eine 

wichtige Rolle bei der Emotionskontrolle bzw. –regulation spielt, deuten die 

Ergebnisse auf eine beeinträchtigte Top-Down-Kontrolle von 

Emotionshirnschaltkreisen hin, was sich auf der Verhaltensebene vermutlich in 

Form eine erhöhten Empfindlichkeit gegenüber Stresseinflüssen äußert. Die 

vorliegenden Ergebnisse können hoffentlich zu einem vertieften Verständnis der 

neurobiologischen Grundlagen von Depression beitragen und legen womöglich 

einen potentiellen, strukturellen Krankheitsmarker, der die Vulnerabilität für 

Depression widerspiegelt, nahe.  
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