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Abstract

In this MA thesis we examine the following question regarding the relation
between forcing and large cardinals: Which kinds of extensions do not cre-
ate new large cardinals? For small forcing and measurable cardinals this
question was settled in 1967 by a result of Lévy and Solovay, showing that
measurable cardinals are neither created nor destroyed under small forcing.
This result was then extended to other large cardinals, like strongly com-
pact, supercompact and huge cardinals. As the proof for the case of strong
and Woodin cardinals differs from the one of the Lévy-Solovay Theorem,
we will present it separately. A much more general result is due to Joel
Hamkins: He showed that for any extension V � V̄ , which satisfies the
δ approximation and cover properties, every embedding j : V̄ Ñ N̄ in V̄

satisfying certain closure properties can be restricted to V such that jæV is
amenable to V . For a large cardinal whose existence is witnessed by an ele-
mentary embedding, we can therefore show that it is not created in such an
extension. Hamkins also showed that many important forcing extensions,
like reverse Easton iterations, the Silver iteration, the Laver preperation
and the canonical forcing of the GCH have the approximation and cover
properties.

Zusammenfassung

In dieser Diplomarbeit untersuchen wir Erweiterungen, in denen keine neuen
grossen Kardinalzahlen entstehen. 1967 wurde von Lévy und Solovay gezeigt,
dass bei einem Forcing, das relativ zu der betrachteten Kardinalzahl klein
ist, keine neuen messbaren Kardinalzahlen entstehen und auch keine ver-
loren gehen. Dieses Resultat kann zu vielen grossen Kardinalzahlen verall-
gemeinert werden, wobei wir den Spezialfall der starken und Woodin Kar-
dinalzahlen gesondert betrachten werden. Eine Verallgemeinerung für eine
grosse Klasse an Forcings konnte allerdings erst von Joel Hamkins erziehlt
werden. Wir untersuchen seinen Beweis, dass für eine Erweiterung V � V̄ ,
die die δ Approximierungs- und Überdeckungseigenschaften erfüllt, eine in
geeigneter Form abgeschlossene elementare Einbettung j : V̄ Ñ N̄ in V̄

auf V beschränkt werden kann, so dass jæV “amenable”1 zu V ist. Für
1Soweit ich weiss, existiert keine offizielle deutsche Bezeichnung für dieses Konzept.
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grosse Kardinalzahen, die mit Hilfe von elementaren Einbettungen definier-
bar sind, heisst das, dass sie in solchen Erweiterungen nicht neu entste-
hen. Wir zeigen, welche Forcing Erweiterungen diese Approximierungs- und
Überdeckungseigenschaften haben und wie sich dies auf bestimmt grosse
Kardinalzahlen anwenden lässt.
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Chapter 1

Basic Definitions and Facts

In this chapter we will give some basics from set theory and model theory.
The goal is mainly to fix the notation and to refer to important results; the
definitions, facts and proofs can be found in standard introductions to set
theory, like [Jec03], [Kun80], [Kan09], [Lév02] and introductions to model
theory like [Hod97].

1.1 Basics from Set Theory

As a preparation to the next chapter, we will introduce the concept of car-
dinal numbers and mention other relevant concepts like the structure of the
universe V .

A binary relation   on a set P is a partial ordering of P if:

(i) p ¢ p for any p P P ,

(ii) if p   q and q   r, then p   r.

pP, q is called a partially ordered set. A partial ordering   of P is a linear
ordering if moreover

(iii) p   q or p � q or q   p for all p, q P P .

If pP, q and pQ, q are partially ordered sets and f : P Ñ Q, then f is
order-preserving if x   y implies fpxq   fpyq.

A one-to-one function of P onto Q is an isomorphism of P and Q if both
f and f�1 are order-preserving.

1
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Definition 1.1. A linear ordering   of a set P is a well-ordering if every
nonempty subset of P has a least element.

A set T is transitive if every element of T is a subset of T .

Definition 1.2. A set is an ordinal number or ordinal if it is transitive
and well ordered by P.

Usually, ordinals are denoted by lowercase Greek letters like α, β, γ and
so on. It holds that β   α if and only if β P α. So for each ordinal α,
α � tβ : β   αu. For every α, αY tαu is an ordinal and αY tαu � inf tβ :
β ¡ αu. α� 1 � αY tαu is the successor of α.

Definition 1.3. If there is a β such that α � β � 1, then α is called a
successor ordinal. If α is not a successor ordinal, then α � sup tβ : β  
αu �

�
α, and α is called a limit ordinal.

Definition 1.4. We denote the least nonzero limit ordinal ω or N. The
ordinals less then ω, the elements of N, are finite ordinals or natural num-
bers:

0 � H, 1 � 0� 1 � tHu, 2 � 1� 1 � tH, tHuu, etc.

A set X is finite if there is a one-to-one mapping of X onto some n P N.
X is infinte if it is not finite.

We generalize the intuitive concept of “size of a set” as follows: The sets
X and Y have the same cardinality |X| � |Y | if there exists a one-to-one
mapping of a set X onto a set Y . Then |X| ¤ |Y | if there is a one-to-one
mapping of X into Y . A set X is finite, if |X| � |n| for n P N.

Definition 1.5. An ordinal α is called a cardinal number or a cardinal if
|α| � |β| for all β   α.

Finite cardinals are natural numbers, i.e. |n| � n for all n P N.

Theorem 1.6 (Cantor). For every set X, |X|   |P pXq|.

Theorem 1.7 (Cantor-Bernstein). If |A| ¤ |B| and |B| ¤ |A|, then |A| �
|B|.

The proofs of the last two theorems can be found in [Jec03], pp. 27–28.
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Fact 1.8. If |A| � κ, then |P pAq| � 2κ.

The ordinal ω is the least infinite cardinal. All infinite cardinals are limit
ordinals.

Fact 1.9.

(i) For every α let α� be the least cardinal number greater than α. Then
α� is the cardinal successor of α.

(ii) If X is a set of cardinals, then supX is a cardinal.

Definition 1.10. The infinite ordinals which are cardinals are called alephs.
We define their increasing enumeration in the following way:

ℵ0 � ω0 � ω

ℵα�1 � ωα�1 � ℵ�α

ℵα � ωα � sup tωβ : β   αu if α is a limit ordinal

Sets whose cardinality is ℵ0 are called countable. Infinite sets that are
not countable are uncountable.

A cardinal ℵα�1 is a successor cardinal. A cardinal ℵα whose index is a
limit ordinal is a limit cardinal.

Definition 1.11. Let α be a limit ordinal.

• An increasing β-sequence xαξ : ξ   βy, β is a limit ordinal, is cofinal
in α if limξÑβ αξ � α.

• A � α is cofinal in α if supA � α.

• The cofinality of α is defined as follows:

cof α � the least limit ordinal β such that there is an increasing β-sequence

xαξ : ξ   βy with limξÑβ αξ � α

cof α is an infinite regular cardinal, and cof α ¤ α.

Definition 1.12. An infinite cardinal ℵα is regular if cof ℵα � ℵα. It is
singular if cof ℵα   ℵα.
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In the proof of Laver’s Theorem (see Chapter 5) we will work with a
beth fixed point, so let us define the beth function and state its relation to
fixed points:

Definition 1.13. The beth function is defined by induction:

i0 � ℵ0

iα�1 � 2iα

iα � sup tiβ : β   αu if α is a limit ordinal.

Definition 1.14. A function F : OrdÑ Ord is called normal if it is strictly
monotonic and continuous:

1. for all ordinals α   β, F pαq   F pβq.

2. for every infinite limit ordinal α, F pαq � suptF pβq|β   αu.

For a normal function it holds that for every ordinal α, F pαq ¥ α and for
any non-empty set of ordinals S, F psup Sq � sup F pSq. From this follows
the fixed-point lemma for normal functions:

Fact 1.15 (Fixed-point Lemma). Any normal function has unboundedly
many fixed points, e.g. for every ordinal α there is a β ¥ α such that
F pβq � β.

By definition the beth function is a normal function. So the fixed point
Lemma applies to it and we know that there are arbitrarily large beth fixed
points. For example the smallest fixed point of the beth sequence is the
supremum of the following ω-sequence of cardinals:

i0, ii0 , iii0
, . . .

By transfinite induction we can define a hierarchy of sets:

V0 � H, Vα�1 � P pVαq

Vα �
¤

β α

Vβ if α is a limit ordinal

The sets Vα have the following properties (by induction):

(i) Each Vα is transitive.
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(ii) If α   β, then Vα � Vβ.

(iii) α � Vα.

A word about the size of the Vα:

Lemma 1.16.

i) @n P ω : |Vn|   ω

ii) |Vω| � ω

iii) |Vω�α| � iα

iv) If κ is inaccessible, then |Vκ| � κ.

The proof of iq � iiiq can be found in [Kun80], p. 97, the proof of ivq in
[Jec03], p. 70.

The axiom of regularity implies that every set is in some Vα.

Lemma 1.17. For every x there is an α, such that x P Vα:

¤

αPOrd

Vα � V

The proof can be found in [Jec03], p. 64. This Lemma implies the the
next definition:

Definition 1.18. The rank of x is the least α such that x P Vα�1.

Theorem 1.19 (P-Induction). Let T be a transitive class, let ϕ be a prop-
erty. Assume that:

(i) ϕpHq and,

(ii) if x P T and ϕpzq for every z P x, then ϕpxq.

Then every x P T has property ϕ.

For a proof see [Jec03], p. 66.

Definition 1.20. A class R is well-founded on a class A if and only if

@X � A pX � HÑ Dy P X p Dz P X pxRyqqq
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Definition 1.21. A class R is set-like on A if and only if for all x P A,
the class ty P A : yRxu is a set.

Definition 1.22.

1. Let R be a well-founded and set-like relation on a class A. We define
the Mostowski collapsing function G for A and R by

Gpxq � tGpyq : y P A^ yRxu.

2. The Mostowski collapse M of A and R is the image of G.

Definition 1.23. R is extensional on A if and only if

@x, y P A p@z P ApzRxØ zRyq Ñ x � yq.

Theorem 1.24 (Mostowski Collapsing Theorem). Suppose R is well-founded,
set-like and extensional on A. Then there exists a transitive class M and
a one-to-one mapping G from A onto M such that G is an isomorphism
between pA,Rq and pM, Pq. Furthermore, M and G are unique.

For a proof see [Kun80], p. 106.

1.2 Basics from Model Theory

As the definition of large cardinals by means of elementary embeddings
plays a central role, we will give a short model theoretic introduction to the
subject. We start by defining models.1

Definition 1.25. A language is a set of symbols consisting of relation sym-
bols, function symbols and constant symbols:

L � tP, . . . , F, . . . , c, . . .u. (1.1)

where each P is a n-ary relation symbol and each F is a m-ary function
symbol for some integers n,m ¥ 1.

Starting from the language and the logical symbols  , Ñ, �, variables,
punctuation signs and @, we define formulas in the following way:

1We will mainly follow the definitions from [Hod97].
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Definition 1.26. Terms of a language L:

1. Every variable is a term of L.

2. Every constant is a term of L.

3. If n ¡ 1, F is an n-ary function symbol of L and t1, . . . , tn are terms
of L, then the expression F pt1, . . . , tnq is a term of L.

4. Nothing else is a term of L.

When we address the variables which occur in a term, we write t as tpx̄q,
where x̄ � px0, x1, . . .q is a sequence of distinct variables in which every
variable of t is listed. If we substitute the variables x0, x1, . . . by terms
s0, s1, . . ., we write tps̄q with s̄ � ps0, s1, . . .q.

Definition 1.27. Atomic formulas of L:

1. If s and t are terms of L, then s � t is an atomic formula of L.

2. If n ¡ 1, R is an n-ary relation symbol of L and t1, . . . , tn are terms
of L, then the expression Rpt1, . . . , tnq is an atomic formula of L.

An atomic sentence is an atomic formula in which no variables occur.

Definition 1.28. Formulas of L:

1. Every atomic formula is a formula of L.

2. If ϕ is a formula of L, then p ϕq is a formula of L.

3. If ϕ and ψ are formulas of L, then pϕÑ ψq is a formula of L.

4. If ϕ is a formula of L and x a variable, then @xϕ is a formula of L.

5. Nothing else is a formula of L.

Definition 1.29. An L-structure M is an object composed of the following:

1. A set M , which is called the domain or universe of M.

2. A set of constant elements, i.e. for each c in L an element cM.

3. For each integer n   0, a set of n-ary relations on M , i.e. for each
n-ary relation symbol P in L an n-ary relation PM �Mn.
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4. For each integer n   0, a set of n-ary functions on M , i.e. for each
n-ary function symbol F in L an n-ary function FM on M .

To give meaning to a term or formula, we will interpret them in a
structure. For a term tpx̄q this means that if M is an L-structure and
ā � pa0, a1, . . .q is a sequence of elements of M of at least the same length
as x̄, then the following holds:

1. if t is the variable xi, then tMrās is ai.

2. if t is a constant c, then tMrās is the element cM.

3. if t is of the form F ps1, . . . , snq where each si is a term sipx̄q, then
tMrās is the element FMpsM1 rās, . . . , s

M
n rāsq.

If no variables occur in t we write tM for tMrās.
For formulas we define the relation |ù :

Definition 1.30. Let φpx̄q and ψpx̄q be formulas of L with x̄ � px0, x1, . . .q.
Let M be an L-structure and ā a sequence pa0, a1, . . .q of elements of M,
where the length of ā is greater or equal to the length of x̄. We define “ ā
satisfies φ in M”, M |ù φrās, by induction on the complexity of the formula
φ:

1. φ is atomic. Then

(a) if φ is the formula s � t where spx̄q and tpx̄q are terms, then

M |ù φrās if and only if sMrās � tMrās.

(b) if φ is the formula Rps1, . . . , snq where s1px̄q, . . . , snpx̄q are terms,
then

M |ù φrās if and only if psM1 rās, . . . , s
M
n rāsq P R

M.

2. M |ù  φrās if ond only if it is not true that M |ù φrās

3. M |ù φrās ^ ψrās if and only if M |ù φrās and M |ù ψrās

4. Suppose φ is @y ψ, where ψ is ψpyx̄q. Then M |ù φrās if and only if
for all elements b of M, M |ù ψrb, ās.
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5. Suppose φ is Dy ψ, where ψ is ψpyx̄q. Then M |ù φrās if and only if
there is at least one elements b of M, M |ù ψrb, ās.

A formula is called a sentence if it contains no free variables, i.e. no
variables that are not bound by a quantifier. So, for a sentence φ we will
write M |ù φ instead of M |ù φrās. A theory is a class of sentences.

Definition 1.31. Let M be an L-structure and φ a sentence. If M |ù φ,
we say that M is a model of φ.
Let T be a theory. M |ù T means that M is a model of every sentence of
T . Than we say that M is a model of T .

In order to define elementary embeddings, some interrelations between
structures are relevant: In the following, let M and N be L-structures. An
embedding f :MÑ N is a one-to-one function from M to N such that:

i) for each constant c of L, fpcMq � cN ;

ii) for each n ¡ 0, each n-ary function symbol F of L, and each n-tupel
ā from M, fpFMqpāqq � FN pfpāqq.

iii) for each n ¡ 0, each n-ary relation symbol R of L, and each n-tupel ā
from M, ā P RM if and only if fpāq P RM.

We say that M is a substructure of N (write M � N ), if M � N and the
inclusion map i : M Ñ N is an embedding.
M is an elementary substructure of N (write M ¨ N ) if for every formula
φpx1, . . . , xnq and all tuples ā from M ,

M |ù φrās if and only if N |ù φrās. (1.2)

Theorem 1.32 (Tarski-Vaught Criterion for Elementary Substructures).
Let M and N be L-structures with M � N . Then the following are equiv-
alent:

1. M is an elementary substructure of N .

2. For every formula φpx̄, yq and all tuples ā from M, if N |ù Dyφpā, yq

then N |ù φpā, dq for some element d of M.

For a proof see [Hod97], p. 48.
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Definition 1.33. An elementary embedding j : MÑ N of an L-structure
M into an L-structure N is an embedding, whose range is an elementary
substructure.

An elementary embedding preserves all first-order formulas.
As we work mainly with models of set theory, i.e. models for the lan-

guage, which has one relation symbol P, we present some facts about elemen-
tary embeddings of the type j : V Ñ M , where M is a transitive subclass
of V :

Fact 1.34.

• For all ordinals α, jpαq ¥ α.

• If α is an ordinal, then jpαq is an ordinal.

• If α   β, then jpαq   jpβq.

Definition 1.35. An embedding j : V̄ Ñ N̄ is amenable to V̄ when jæA P V̄
for any A P V̄ .

Definition 1.36. An elementary embedding j : M Ñ N is cofinal if for
every set A P N there is a set B PM such that A � jpBq.



Chapter 2

Large Cardinals and

Elementary Embeddings

2.1 Large Cardinals

Most large cardinals can be approached from different viewpoints, leading
to several equivalent possibilities to define a large cardinal. A good example
are the weakly compact cardinals, which can be defined, for example, by
partitions or by an approach which involves the weak compactness theorem
for infinitary languages and therefore explains the name “weakly compact”.
As we want to examine extensions which do not create new large cardinals,
we will have to show that one of these large cardinal definitions holds in V .
For that, we will use the Main Theorem from Chapter 4, which shows that if
an elementary embedding j is amenable to the extension, then a restriction
of j is amenable to the ground model. This restriction will be an elemen-
tary embedding witnessing the large cardinal property in question. So we
will focus our attention on defining large cardinals by means of elementary
embeddings.

2.2 Weakly Compact and Indescribable Cardinals

Definition 2.1. A cardinal κ is inaccessible if

(i) κ ¡ ℵ0,

(ii) κ is regular,

11
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(iii) 2λ   κ for every λ   κ.

Fact 2.2. Inaccessibility is downwards absolute to any model.

Definition 2.3. A cardinal κ is weakly compact if it is uncountable and
every partition F : rκs2 Ñ 2 is constant on rHs2 for some H � κ with
|H| � κ.

Fact 2.4. The following are equivalent:

1. κ is weakly compact.

2. κ is inaccessible and for all A � κ there is an elementary embedding
j : M Ñ N such that critical point of j is κ, M is of size κ, M and
N are transitive, M κ �M and A PM .

3. κ is inaccessible and for every transitive structure M of size κ with
κ P M there is an elementary embedding j : M Ñ N into another
transitive structure N with critical point κ.

For the definition of indescribable cardinals we are going to introduce a
hierarchy of formulas.

i) a formula is Σ0
0 and Π0

0 if all of its quantifiers are bounded, i.e. are of
the form Dx   y and @x   y.

ii) a formula is Σ0
n�1 if it is of the form Dx ϕ, where ϕ is a Π0

n formula.

iii) a formula is Π0
n�1 if it is of the form @x ϕ, where ϕ is a Σ0

n formula.

iv) a formula is Σm
n if it is a formula of order n�1 of the form DX@Y . . . ϕ

(n quantifiers), where X,Y, . . . are pm� 1qth order variables and ϕ is
such that all quantified variables are of the order at most m.

v) a formula is Πm
n if it is a formula of order n�1 of the form @XDY . . . ϕ

(n quantifiers), where X,Y, . . . are pm� 1qth order variables and ϕ is
such that all quantified variables are of the order at most m.1

For first-order formulas (m � 0) this is called the Lévy Hierarchy.

Definition 2.5. A cardinal κ is Πm
n -indescribable if whenever U � Vκ and

σ is a Πm
n sentence such that pVκ, P, Uq |ù σ, then for some α   κ,

pVα, P, U X Vαq |ù σ.
1For details on iv) and v) see [Jec03], p. 295.
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In [Hau91], Kai Hauser gives a definition of indescribable cardinals in
terms of elementary embeddings:

Definition 2.6. Let M be a transitive model of ZF� with κ P M , m ¥ 1,
n ¥ 1. M is Σm

n correct for κ (in parameters from Vκ�m) if and only if
M |Vκ�m�2| � M (for m � 1 we mean M κ � M), and for any Σm

n formula
φpAq in a parameter A P pMqκ�m we have M |ù “Vκ |ù φpAq2 just in case
Vκ |ù φpAq. (Thus in case n � 0 the first clause implies the second.)

The second clause of the definition means that M correctly computes
the Σm

n facts over Vκ that hold in parameters from M X Vκ�m. Then the
following theorem holds:

Theorem 2.7. For natural numbers m,n ¥ 1 an inaccessible cardinal κ is
Πm

n indescribable if and only if for any transitive model M of ZF� of size
κ with M κ �M and κ PM , there is a transitive set N and an elementary
embedding j : M Ñ N with critical point κ such that N is Σm

n�1 correct for
κ and |N | � |Vκ�m�1|.2

Since any first order statement about Vκ�m is ∆0 in Vκ�m�1, using Vκ�m

as a parameter, it follows that Πm�1
1 indescribability implies Πm

n indescrib-
ability for any n.

Definition 2.8. A cardinal κ is totally indescribable if it is Πm
n indescribable

for any m,n P ω, or equivalently, if it is Πm
1 indescribable for every m.

2.3 Ultrafilters and Elementary Embeddings

There are several large cardinals which can be defined by certain kinds of
ultrafilters, amongst which the most prominent example are the measurable
cardinals. We will define the relevant concepts of filters and ideals and then
show how ultrafilters are related to elementary embeddings.

Definition 2.9. A filter on a nonempty set S is a collection F of subsets
of S such that

1. S P F and H R F ,

2. if X P F and Y P F , then X X Y P F ,
2For a proof see [Hau91], pp. 444–445.
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3. if X,Y � S, X P F and X � Y , then Y P F .

An ideal on a nonempty set S is a collection I of subsets of S such that

1. H P I and S R I,

2. if X P I and Y P I, then X Y Y P I,

3. if X,Y � S, X P I and Y � X, then Y P I.

If F is a filter on S, then the set I � tS�X : X P F u is an ideal on S; and
conversely, if I is an ideal, then F � tS �X : X P Iu is a filter. If this is
the case we say that F and I are dual to each other.

Definition 2.10. A filter U on a set S is an ultrafilter if for every X � S,
either X P U or S �X P U .
A ideal I on a set S is a prime ideal if for every X � S, either X P I or
S �X P I.
Note that if U and I are dual to each other and U is an ultrafilter (equiva-
lently I is a prime ideal), then I � P pSq � U .

Definition 2.11. A filter F on a nonempty set S is called principal if there
is a nonempty subset X0 of S such that F � tX � S : X � X0u.
An ultrafilter is nonprincipal if it is not principal.

Definition 2.12. If κ is a regular uncountable cardinal, and F is a filter
on S, then F is called κ-complete if whenever tXα : α   γu is a family of
subsets of S, γ   κ, and Xα P F for every α   γ, then

£

α γ

Xα P F.

A κ-complete ideal I on S is such that if whenever tXα : α   γu is a family
of subsets of S, γ   κ, and Xα P I for every α   γ, then

¤

α γ

Xα P I.

Fact 2.13. An ultrafilter U is κ-complete if and only if for any γ   κ and
�
tYα|α   γu P U there is an α   γ such that Yα P U .

Definition 2.14. Let I be a κ-complete ideal on κ containing all singletons.
I is λ-saturated (λ is a cardinal) if there exists no collection W of size λ of
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subsets of κ such that X R I for all X PW and X X Y P I whenever X and
Y are distinct members of W .

Lemma 2.15 (Tarski). If I is a κ-complete, λ-saturated ideal over κ where
2 λ   κ, then κ is measurable.

Proof. Let I� � P pκq�I. Suppose that I has an atom, that is, a set A P I�

such that whenever A � B Y C is a disjoint union, either B P I or C P I.
Then the κ-complete ultrafilter U � tX � κ : X X A P I�u witnesses that
κ is measurable.

Assume to the contrary that I has no atoms. Then we build a tree
T , which is ordered by � and consists of sets which are indexed by some
members of  κ2 �

�
α κ

α2 in the following way:

1. Set XH � κ.

2. For the successor step: If Xs has been defined for some s P  κ2, then
defineXsax0y andXsax1y exactly whenXs P I

� such thatXsax0y, Xsax1y P

I�, Xs � Xsax0y YXsax1y and Xsax0y XXsax1y � H.

3. If δ   κ is a limit and s P δ2, define Xs �
�

α δ Xsæα exactly when
Xsæα has been defined for each α   δ.

Note that the definition of the successor step is possible because we assumed
that I has no atoms. So we get a tree which splits in every step and has the
following property: If γ ¤ κ and s P γ2, then the collection of “offshoots”

W � tXsæαaxiy : α   γ ^ Xsæα�1 is defined ^ spαq � iu

is pairwise disjoint. Then T must have height at most λ, otherwise W would
be a collection of size λ of subsets of κ such that X R I for all X P W and
X Y Y � H P I whenever X and Y are distinct members of W , therefore
contradicting the λ-saturation of I (see Definition 2.14). As all Xs’s without
tree successors are elements of I and κ is the union of these Xs, κ is the
union of 2 λ many sets in I. But, by assumption, 2 λ   κ and therefore
κ P I, contradicting the κ-completeness of I.3

Definition 2.16. An uncountable cardinal κ is measurable if there exists a
κ-complete nonprincipal ultrafilter U on κ.

3In this proof we followed [Kan09], p. 212.
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In 1961 Dana Scott introduced a technique to construct elementary em-
beddings from κ-complete nonprincipal ultrafilters via ultrapowers4. This
technique provided a definition of measurable cardinals by elementary em-
beddings:

Theorem 2.17. The following are equivalent:

1. There is a measurable cardinal.

2. There exists a nontrivial elementary embedding j : V ÑM , where M
is transitive.

As the ideas which are developed in the proof of this theorem and the
next lemma are important for the next chapters, we will show them in detail.
In the proof we will mainly follow [Jec03], pp. 285–287

Proof.
(1 implies 2). First we will give a general description of ultrapowers: Let U
be ultrafilter on a set S, let F be the class of all functions f : S Ñ V . We
define

f �� g if and only if tx P S : fpxq � gpxqu P U,

f P� g if and only if tx P S : fpxq P gpxqu P U,

Since U is a filter, �� is a equivalence relation and for every f P F we get
an equivalence class

rf s � tg : f �� g and @hph �� f Ñ rank g ¤ rankhqu

Then the model UltU � pUltU , P�q has as its universe the class of all rf s,
where f is a function on S and rf s P� rgs if and only if f P� g.

The following Lemma is crucial to see that the ultrapower is elementarily
equivalent to the universe:

Lemma 2.18 ( Los̀). 5 If ϕpx1, . . . , xnq is a formula and rf1s, . . . , rfns P

UltU , then

UltU |ù ϕprf1s, . . . , rfnsq if and only if tx P S : ϕpf1pxq, . . . , fnpxqqu P U

4see [Sco61].
5For a proof see [Jec03], pp.159–160.
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We get the following elementary embedding of the universe V into UltU :
Let ca : S Ñ V be the constant function with value a and define jU : V Ñ
UltU as jU paq � rcas. Then for each formula ϕpx1, . . . , xnq the following
holds:

ϕpx1, . . . , xnq if and only if UltU |ù ϕpjU px1q, . . . , jU pxnqq.

Now we have by assumption a κ-complete, non-principal ultrafilter U on
κ and therefore we get a model pUltU , P�q, where the relation P� is well-
founded, set-like and extensional on UltU 6. So by the Mostowski Collapsing
Theorem (see Theorem 1.24) there is an isomorphism πU between pUltU , P�

q and a transitive model pMU , Pq. To simplify the notation, rf s will be
identified with πU prf sq and UltU with MU . We say that the function f

represents the element rf s of MU . MU is a model of ZFC, which contains
all the ordinals and therefore MU is an inner model.

It remains to show that jU is nontrivial, which means that jU is not the
identity. Since j is elementary, jpαq is an ordinal if α is an ordinal and the
facts about elementary embeddings hold (see Fact 1.34).

By induction one can show that for all α   κ, jpαq � α: Assume that
β � jpβq for all β   αp  κq. If rf s   jpαq, then tζ   κ : fpζq   αu P U

and by κ-completeness there is a β   α such that tζ : fpζq � βu P U and
therefore rf s �� jpβq. So jpαq � rcαs � α.

But κ   jpκq: Let d be the diagonal function on κ, dpαq � α for α   κ.
Since U is κ-complete, it contains no bounded subsets of κ. Therefore for
any γ   κ, tα : γ   α   κu P U . So we have α � jpαq   rds, thus κ ¤ rds
and because rds   jpκq, κ   jpκq.

(2 implies 1): As there exists an α such that α � jpαq, let κ be the least
such; so κ is the critical point of j, cppjq � κ. As jpωq � ω, κ ¡ ω. To show
that κ is a measurable cardinal, we will define a κ-complete nonprincipal
ultrafilter D in the following way: Let D be the collection of subsets of κ
defined by:

X P D if and only if κ P jpXq pX � κq (2.1)

D is a filter since κ P jpκq, κ P D and because H R D, jpHq � H. Also,
6For details see [Jec03], p.286.
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if X,Y P D, then κ P jpXq X jpY q � jpX X Y q and if X � Y , then
κ P jpXq � jpY q.

D is an ultrafilter because jpκ�Xq � jpκq�jpXq and D is nonprincipal
because, for every α   κ, tαu R D (as jptαuq � tjpαqu � tαu and so
κ R jptαuq.

It remains to show that D is κ-complete: Let γ   κ and X � xXα : α  
γy be a sequence of elements of D. Then jpX q is a sequence of length jpγq

of subsets of jpκq, such that its jpαqth term is jpXαq for every α   γ and
so jpX q �yjpXαq : α   γx. So jp

�
α γ Xαq �

�
α γ jpXαq and as κ P jpXαq

for each α   γ,
�

α γ Xα P D.

Lemma 2.19. Let j : V Ñ M be a nontrivial elemetary embedding with
critical point κ and let D be the ultrafilter on κ defined in Definition 2.1.
Let jD : V Ñ UltD be the canonical embedding of V in the ultrapower UltD.
Then there is an elementary embedding k of Ult in M such that for all a:

kpjDpaqq � jpaq

�
�

�>
?

-

UltD

V M

jD

j

k

Proof. To show that kpjDpaqq � jpaq for all a, we define for each rf s P UltD:
kprf sq � pjpfqqpκq, where f is a function on κ and jpfq is a function on
jpκq. It can be shown that the definition is independent from the f chosen
to represent rf s. Because of this and Definition 2.1, k is elementary.

From the ultrapower construction we know that jDpaq � rcas, so, to-
gether with our definition from above, we have that kpjDpaqq � pjpcaqqpκq,
where jpcaq is the constant function on jpκq with value jpaq and so pjpcaqqpκq �
jpaq.7

There are other large cardinals, for example strongly compact, super-
compact and huge cardinals, which can be defined by means of ultrafilters
and, because of the above construction, also by elementary embeddings.

7In this proof we follow [Jec03], pp. 288–289.
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Definition 2.20. A cardinal κ is γ-compact if for any set S, every κ-
complete filter over S generated by at most |γ| sets can be extended to a κ

complete ultrafilter over S.

Fact 2.21. The following are equivalent:

i) κ is γ-compact.

ii) There is an elementary embedding j : V Ñ M with critical point κ
such that: for any X � M with |X| ¤ γ, there is a Y P M such that
Y � X and M |ù |Y |   jpκq.

Definition 2.22. A cardinals κ is strongly compact if and only if κ is
γ-compact for every γ ¥ κ.

Definition 2.23. Let A be a set of size at least κ, let F be the filter on
PκpAq generated by the sets P̄ � tQ P PκpAq : P � Qu, P P PκpAq:

F � tX � PκpAq : X � P̄ for some P P PκpAqu

A κ-complete ultrafilter U on PκpAq that extends F is called a fine measure.
A fine measure U on P κpAq is normal if whenever f : PκpAq Ñ A is
such that jpP q P P for all P in a set in U , then f is constant on a set
in U . Equivalently U is normal if it is closed under diagonal intersections
∆aPAXa � tx P PκpAq : x P

�
aPxXau.

Lemma 2.24. The following are equivalent:

1. κ is strongly compact.

2. For any A such that |A| ¥ κ, there exists a fine measure on PκpAq.

The proof can be found in [Jec03], p. 366.

Definition 2.25. An uncountable cardinal κ is supercompact if for every
A such that |A| ¥ κ there exists a normal measure on PκpAq.

The equivalent definition by elementary embeddings is:

Definition 2.26. For κ ¤ γ, a cardinal κ is γ-supercompact if and only if
there is an elementary embedding j : V Ñ M such that its critical point is
κ, γ   jpκq and Mγ �M .
An uncountable cardinal κ is supercompact if and only if κ is γ-supercompact
for every γ ¥ κ.
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Definition 2.27. A cardinal κ is huge if there exists an elementary embed-
ding j : V ÑM with critical point κ such that M jpκq �M .

Fact 2.28. A cardinal κ is huge, with j : V ÑM and jpκq � λ if and only
if there is a normal κ-complete ultrafilter U on tX � λ : otpXq � κu.

2.4 Extenders

As Joel Hamkins and Hugh Woodin point out in [HW00], strong and Woodin
cardinals have to be considered separately, because their embeddings are not
simple ultrapowers, as in the case of measurable cardinals, but directed sys-
tems of them. These embeddings are constructed from extenders instead
of ultrafilters. So we will first look at the relation between elementary em-
beddings and extenders and then give a definition for strong and Woodin
cardinals.8

Let j : V Ñ M be an elementary embedding with critical point κ and
let κ ¤ λ ¤ jpκq. Then the pκ, λq-extender derived from j is the collection

E � tEs : s P rλs ωu; (2.2)

where, for every finite subset s � λ, Es is the measure on rκs ω defined as
follows:

X P Es if and only if s P jpXq. (2.3)

Note that Es concentrates on rκs|s|, κ is the critical point of E and λ is the
length of E.

As every measure Es rκs
 ω is κ-complete, we can build the correspond-

ing ultrapower embedding similar to the proof of Theorem 2.17: So for every
s P rλs ω let UltEs denote the ultrapower of V by Es and let js : V Ñ UltEs

be the corresponding elementary embedding. If for each equivalence class
rhs of a function h on rκs ω we let ksprhsq � jphqpsq, then ks is an elemen-
tary embedding ks : UltEs ÑM and ks � js � j:

�
�

�>
?

-

UltEs

V M

js

j

ks

8This section follows the presentation of extenders given in [Jec03], pp. 382–384.
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Let s � b, where b � tα1, . . . , αnu with α1   . . .   αn. We show that
there is an elementary embedding between the ultrapower built by Es and
the ultrapower built by Eb. First observe that the ultrafilters Es, s P rλs ω

are coherent in the following sense: Define πb,s : rλs|b| Ñ rλs|s| by

πb,sptξ1, . . . , ξnuq � tξi1 , . . . ξimu, pξ1   . . .   ξnq

where s � tαi1 , . . . , αimu, and

X P Es if and only if tt : πb,sptq P Xu P Eb.

So we define is,b : UltEs Ñ UltEb
by

is,bprhsEsq � rh � πb,ssEb

This is an elementary embedding, and

tUltEs , is,b : s � b P rλs ωu (2.4)

is a directed system. The direct limit UltE of (2.4) is well founded: Note that
the embeddings ks have a direct limit k : UltE Ñ M such that k � jE � j,
where jE is the elementary embedding jE : V Ñ UltE .

There is another description of UltE which resembles more closely the
procedure given in the proof of Theorem 2.17. Instead of speaking about
equivalence classes of functions, the elements of UltE are here the equiv-
alence classes rs, f sE and ps, fq and pb, gq are equivalent if tt P rκs|sYb| :
f̄ptq � ḡptqu P EsYb, where f̄ � f �πsYb,s and ḡ � g �πsYb,b. The embedding
jE : V Ñ UltE is then defined by jEpxq � rH, cxs, where cx is the constant
function with value x. The embedding k : UltE ÑM is defined by

kprs, f sq � jpfqpsq. (2.5)

It follows that k � jE � j.

Lemma 2.29.

i) kpαq � α for all α   λ.

ii) jE has critical point κ and jEpκq ¥ λ.
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iii) UltE � tjEphqpsq : s P rλs ω, h : rκs ω Ñ V u.

The Lemma can be proven from the following observations: For each
s P rλs ω, let js,8 : UltEs Ñ UltE be the direct limit embedding such that
js,8 � js � jE ; then k � js,8 � ks. If x P UltE then x � js,8prf sq for some
rf s P UltE , and from (2.5) follows that

kpxq � kpjs,8prf sqq � ksprf sq � jpfqpsq.

Therefore
k2UltE � tjphqpsq : s P rλs ω, h : rκs ω Ñ V u. (2.6)

Hence jE : V Ñ UltE is an elementary embedding with critical point κ. As
j � k � jE and kpsq � s for all s P rλs ω, it follows that for all X P rκs|s|,
s P jEpXq if and only if s P jpXq. So E is the extender derived from jE .

Definition 2.30. A cardinal κ is a strong cardinal if for every set x there
exists an elementary embedding j : V Ñ M with critical point κ such that
x PM .

A cardinal κ is λ-strong, where λ ¥ κ, if there exists some j : V Ñ M

with critical point κ such that jpκq ¡ λ and Vλ �M . Such a j is also called
a λ-strongness embedding. A cardinal κ is strong if and only if it is λ-strong
for all λ ¥ κ.

Lemma 2.31. A cardinal κ is strong if and only if for every λ ¥ κ there is
a pκ, |Vλ|

�q-extender E such that Vλ � UltE and λ   jEpκq.

In the rest of the section we present some ideas from [HW00], regarding
strongness embeddings.

Definition 2.32. A λ-strongness embedding j : V Ñ M is natural when
M � tjphqpsq : h P V & s P γ ωu , where γ � |Vλ|

M .

Equivalently, we could require that M � tjphqpsq : h P V & s P Vλu (see
also (2.6)) .

Remark 2.33. Every strongness embedding factors through a natural em-
bedding.

Proof. Let j : V Ñ M be a λ strongness embedding, where λ ¡ κ and
let X � tjphqpsq : h P V and s P γ ωu. First we define the embedding
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j0 : V Ñ M0: With the Tarski-Vaught Criterion (see Theorem 1.32) we
can check that X is an elementary substructure of M covering ranpjq. Let
π : X Ñ M0 be the Mostowski Collapse of X. Then we get an embedding
j0 : V ÑM0 with M0 transitive, by defining j0 � π � j. Thus also j � k � j0,
where k � π�1, and so j factors through j0.

�
�

�>
?

-

M0

V M

j0

j

k

Since Vλ � X, it follows from the Mostowski Collapsing Theorem (see 1.24)
that π2Vλ � Vλ and Vλ � M0, and, since M0 � ranpπq and π æ γ � id,
it follows that M0 � tj0phqpsq : h P V & s P γ ωu. Thus, j0 is a natural
λ-strongness embedding.

Remark 2.34. If j : V Ñ M is a natural λ-strongness embedding with
critical point κ and λ is either a successor ordinal or a limit ordinal with
cofinality above κ, then M is closed under κ-sequences. Otherwise, M is
closed under   cofλ-sequences.

Proof. Suppose that λ ¡ κ and M � tjphqpsq : h P V and s P Vλu. Then we
have the following three cases:

Case 1: Suppose λ � ξ � 1 and xjphαqpsαq : α   κy is a κ-sequence of
elements from M , with each sα P Vξ�1. Since a κ-sequence of subsets of Vξ

can be coded with a single subset of Vξ, it follows that xsα : α   κy is in M .
Then, since the sequence xjphαq : α   κy � jpxhα : α   κyq æ κ is in M , it
follows that xjphαqpsαq : α   κy is in M .

Case 2: Suppose λ is a limit ordinal of cofinality larger than κ. Then
on cofinality grounds the sequence xsα : α   κy is in Vλ, and hence in M , so
again xjphαqpsαq : α   κy is in M .

Case 3: Suppose λ is a limit ordinal, β   cofpλq ¤ κ and xjphαqpsαq :
α   βy is a sequence of elements of M . Then on cofinality grounds we know
that xsα : α   βy is in Vλ, and hence in M , and so xjphαqpsαq : α   βy is in
M .

So, while strongness embeddings in general need not satisfy any closure
properties, natural strongness embeddings do satisfy certain closure proper-
ties.
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Definition 2.35. A cardinal δ is a Woodin cardinal if for all A � Vδ there
are arbitrarily large κ   δ such that for all λ   δ there exists an elementary
embedding j : V Ñ M with critical point κ, such that jpκq ¡ λ, Vλ � M ,
and AX Vλ � jpAq X Vλ.



Chapter 3

Small Forcing

One of the first results concerning the interrelation between forcing and large
cardinals was a theorem by Azriel Lévy and Robert Solovay. In [LS67] they
showed that if ZFC�“there is a measurable cardinal” is consistent, then it
is consistent with the Continuum Hypothesis and with its negation. They
worked with a special kind of forcing, the so called “small forcing”, which
is characterized by |P |   κ, where pP, q is the notion of forcing and κ the
measurable cardinal. Under small forcing the Continuum Hypothesis can be
forced to hold or fail, so the authors of the above paper had to show that a
measurable cardinal can neither be destroyed by small forcing (that means,
if there is a measurable cardinal in the ground model, it is measurable in the
extension) nor can it be created (so every measurable cardinals in the ex-
tension is measurable in the ground model). This result can be extended to
various other large cardinals, for example strongly compact, supercompact
and huge cardinals. Like measurable cardinals they can be defined by ele-
mentary embeddings which are ultrapower embeddings (see Theorem 2.17)
and the proof for these cardinals resembles the Lévy-Solovay proof. Strong
and Woodin cardinals on the other hand present a special case; as they are
not defined by ultrapower embeddings but extender embeddings, they will
be dealt with a separate section.

3.1 The Theorem of Lévy and Solovay

In [LS67], Lévy and Solovay proved both directions (from the ground model
to the extension and vice versa) by showing that it is always possible to find a

25
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κ-complete nonprincipal ultrafilter U witnessing that κ is measurable. But,
as we also want to direct our attention to elementary embedding, we will
present a proof from [Jec03]1 which uses embeddings for the direction from
the ground model to the extension and for the other direction ultrafilters.
The Main Theorem from Chapter 4 will give us then the direction from the
extension to the ground model by elementary embeddings in a general way.

Theorem 3.1 (Lévy-Solovay). Let pP, q be a notion of forcing such that
|P |   κ. Then κ is a measurable cardinal in the ground model if and only if
κ is measurable in the generic extension.

Proof. “ñ” Assume that κ is a measurable cardinal in V . So by Theorem
2.17 we have an elementary embedding j : V Ñ M , where M is transitive
and κ is the critical point of j and we will extend j to an elementary embed-
ding ĵ : V rGs ÑM rGs in the forcing extension, witnessing the measurability
of κ in the forcing extension.

As |P |   κ, we assume that P P Vκ and, as κ is the critical point of j,
jppq � p for all p P P and so jpP q � P . Let G be a generic ultrafilter on P

and we work in V rGs. Since G is generic over V , G is generic over M . So
the interpretation of P -names in MP by G is the same wether computed in
V or in M .

We extend j to V rGs in the following way: For every x P V rGs, let
9x P V P be its name, x � 9xG. Then jp 9xq P MP and so pjp 9xqqG P M rGs. So
define ĵpxq for x P V rGs as follows:

ĵpxq � pjp 9xqqG (3.1)

The choice of the name for x has no bearing on the definition in (3.1): Let 9y

be another P -name for x. Then there is a condition p P G which forces the
names to be equal: p , 9x � 9y. Under the embedding j we get in M that
jppq , jp 9xq � jp 9yq. Now we use the fact that the forcing is small: Since
jppq � p P G, it follows that pjp 9xqqG � pjp 9yqqG.

For ĵ to witness the measurability of κ in the extension, ĵ has to be
elementary (note that cppĵq � cppjq).

Let ϕpx, . . .q be a formula such that

V rGs |ù ϕpx, . . .q

1See [Jec03], pp. 389–391.
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Choosing names 9x, . . . for the variables x, . . . such that p 9xqG � x, . . ., there
is as before some p P G such that

p , ϕp 9x, . . .q

Therefore we get in M by applying j:

p , ϕpjp 9xq, . . .q

and so
M rGs |ù ϕpĵpxq, . . .q

So, because ϕ was arbitrary, ĵ is elementary.

“ð” If κ is measurable in V rGs, let U P V rGs be a κ-complete nonprin-
cipal ultrafilter on κ, let J be the dual prime ideal and let 9J P V P be its
name. Without loss of generality we may assume that v 9J is a κ complete
nonprincipal prime idealw � 1. From 9J we define the following κ-complete
ideal containing all singletons:

I � tX � κ : vX P 9Jw � 1u

Then I is |P |�-saturated (see Definition 2.14): If p , X̌ R 9J and p , Y̌ R 9J ,
then p , X̌X Y̌ R 9J , because 9J is prime. So if X and Y are such that X R I,
Y R I and X X Y P I, then vX X Y P 9Jw � 1. This is a contradiction and
therefore I is |P |�-saturated.

By Fact 2.2 we know that if κ is inaccessible in V rGs, then κ is inacces-
sible in V . Since I is ν-saturated for a ν   κ and κ is inaccessible, we know
by Lemma 2.15 that κ is measurable in V .

This result can be extended to other large cardinal properties:

Theorem 3.2. Let κ be an infinite cardinal and let pP, q be a notion of
forcing such that |P |   κ. Let G be a V -generic filter on P . Then κ is in-
accessible (Mahlo, weakly compact, Ramsey, measurable, strongly compact,
supercompact, huge) in V if and only if it is inaccessible (Mahlo, weakly com-
pact, Ramsey, measurable, strongly compact, supercompact, huge) in V rGs.

For large cardinals, which are defined like measurable cardinals by ele-
mentary embeddings or ultrafilters, the proof is quite similar to the one of
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the Lévy-Solovay Theorem: For the direction from V to V rGs we define a ĵ
in V rGs and prove the required properties be using j in the ground model.
For the converse, we build an ideal I with certain properties, which gives
us the desired large cardinal property of κ in V . Therefore we will only
give the proof2 for strongly compact cardinals as an example to show the
similarities.3

Proof for strongly compact cardinals.
“ñ” Suppose that κ is strongly compact in V and let λ ¥ κ. Because

of Lemma 2.24, we show that there is a fine measure on Pκpλq. So let
U be a fine measure on Pκpλq in V . Then, similarly to the construction
in the proof of Theorem 2.17, we can construct an elementary embedding
j � jU : V Ñ UltU such that X P U if and only if H P jpXq, where H is
the set in UltU represented by the diagonal function dpZq � Z on Pκpλq.
From the construction it follows that H � j2λ. Now we can follow the same
steps as in the proof of Theorem 3.1: We extend j to V rGs by defining
ĵpxq � pjp 9xqqG, where 9x is a name for x. Since we can assume, without
loss of generality, that P P Vκ and therefore jppq � p for all p P P and
jpP q � P , the definition does not depend on the choice of the name. From
this elementary embedding in V rGs we can construct an ultrafilter W on
Pκpλq by the equation:

X PW if and only if H P ĵpXq

Then W is a fine measure on Pκpλq: If Z0 is an element of Pκpλq, then
jpZ0q � tjpαq : α P Z0u � H, because H � j2λ and therefore tZ P Pκpλq :
Z � Z0u PW , as required in Definition 2.23.

“ð” Suppose that κ is strongly compact in V rGs. Let S be a set in V

and let F be a κ-complete filter on S in V . Following Definition 2.20, we
will show that there is a κ-complete ultrafilter in V extending F . Since the
forcing is small, every setX � F with |X|V rGs   κ is included in some Y � F

with |Y |   κ such that Y P V . Therefore F generates a filter in V rGs which
is κ-complete and, because of the assumption, this filter can be included in a
κ-complete ultrafilter U . Similar to the proof of the Lévy-Solovay Theorem,

2We follow the proof from [Jec03], pp. 399–400
3The proof for Mahlo, weakly compact and Ramsey cardinals can be found in [Jec03],

p. 391.
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let J be its dual prime ideal. Then I � tX � S : vX P 9Jw � 1u is a
κ-complete, |P |�-saturated ideal and X P F implies S � X P I. So, using
Lemma 2.15, we know that I has an atom A and therefore if X P F , then
X XA R I. Hence tX � S : X XA R Iu is a κ-complete ultrafilter extending
F .

3.2 Strong and Woodin Cardinals

In Chapter 2 we defined strong and Woodin cardinals by elementary embed-
dings and then showed that there is an equivalent definition by extenders. In
contrast to measurable cardinals, strong and Woodin cardinals are defined
by the direct limit of a directed system of ultrapowers instead of a single
ultrapower. For this reason, the proof of the Lévy-Solovay Theorem cannot
simply be transferred. Specifically, the direction from the extension to the
ground model requires another approach.

Here we will follow the paper [HJed] by Hugh Woodin and Joel Hamkins.
The authors show a detailed Level-by-Level Version, which allows them to
include also the case of partially strong cardinals.

Theorem 3.3. Let pP, q be a notion of forcing, where |P |   κ and κ is
an uncountable cardinal. Suppose that G � P is V -generic for P . Then κ

is strong in V if and only if it is strong in V rGs.

Proof. Assume P P Vκ and let δ � |P |   κ.
“ñ” This case is analog to the proof of the Lévy-Solovay Theorem: Any

λ-strongness embedding j : V Ñ M in V lifts to an embedding ĵ : V rGs Ñ
M rGs in V rGs by defining ĵpxq for x P V rGs as follows: Let 9x P V P be a
name for x, x � 9xG. Let

ĵpxq � pjp 9xqqG (3.2)

This embedding witnesses the λ-strongness of κ in V rGs because V rGsλ �
VλrGs and as Vλ �M , V rGsλ �M rGs.

“ð” Here we will prove a slightly different version of the theorem above.
Level-by-level Version: If G � P is V -generic for the small forcing P , then
for every ordinal λ (except possibly the limit ordinals with cofλ ¤ |P |�)
every natural λ-strongness embedding j : V rGs Ñ M rGs in the extension
lifts a λ-strongness embedding j æ V : V Ñ M definable in the ground
model.
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Let κ be λ-strong in V rGs with natural embedding j : V rGs Ñ M rGs (see
Definition 2.32), where λ ¡ κ is either a successor ordinal or a limit ordinal
with cofpλq ¡ δ�. Since j is natural, we know that M rGs � tjphqpsq : h P
V rGs and s P γ ωu, where γ � iM

λ .
We will define jæV by an extender E (Claim 1) and then show that

E is in V (Claim 2). Moreover we will prove that jæV is a λ-strongness
embedding (Claim 3).

First observe that Vκ � pVκq
M because cppjq � κ and therefore, sets

with rank below the κ are fixed by j. Also Vκ�1 � pVκ�1q
M : If A � κ in

V , then A in V rGs, jpAq in M rGs, A � jpAq X κ in M and so P rκsV �M .
Conversely if A � κ in M , then every initial segment of A is in V , but
because |P |   κ we have only less than κ many conditions which decide
that these inital segments are in V , so there is a condition p which decides
it for cofinally many initial segments and then this p decides A. So we have
that A is in V .

Let E be the following induced V -extender (see also (2.3) and (2.2)):

E � txA, sy : s P γ ω &A P Vκ�1 & s P jpAqu (3.3)

This extender defines jæV :

Claim 1. The restricted embedding j æ V : V Ñ M is precisely the embed-
ding induced by the extender E

�
�

�>
?

-

UltE

V M

jE

jæV

k

Proof of Claim 1. Since j æ V � jE � k, we have to show that j æ V � jE

and therefore that k : xh, sy ÞÑ jphqpsq is an isomorphism. For this it suffices
to show that

M � tjphqpsq : h P V and s P γ ωu � k2UltE (3.4)

Since j is natural in V rGs, any set a in M has the form jphqpsq for some
function h : rκsn Ñ V in V rGs and some s P γn and n P ω. To show (3.4),
we need to find such a function in V and we will define it by a name for
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the corresponding function h in V rGs: Let 9h be a name for a function h

(i.e. 9hG � h) such that jp 9hqGpsq � a in M rGs. Then there must be a
condition p P G such that we have in M : p , jp 9hqpšq � ǎ. Then let h̄ be the
following function in V : h̄pxq � y when p forces that 9hpx̌q � y̌. It follows
that jph̄qpsq � a and so a has the desired form.

As we have established jæV to be the above extender embedding, the
question of jæV being definable in V reduces to the problem if E is in V :

Claim 2. E lies in V .

Proof of Claim 2. First we prove the following statement:

If F � E and |F | � δ � |P |, then there is F � P V such that F � F � � E

(3.5)
Using a fixed F with the above properties we will build an κ-complete non-
principal ultrafilter in V from which we can compute F � to be a restriction
of the extender E.

Let σ be the set of ordinals appearing in any s which appears in F (σ is
the set of generators which appear in F ). Since |F | � δ and s P γ ω we have
that σ � γ and |σ| ¤ δ. Because of the closure properties for the natural
strongness embedding j from Remark 2.34, we know that M rGs is closed
under κ-sequences and by small forcing we have that δ   κ (the needed
assumptions on λ are given by the hypothesis of the Level-by-level Version).
So, σ is in M rGs and therefore the set σ has names both in M and V . We
use such names from V and M to build an increasing δ�-sequence of sets
~σ � xσα : α   δ�y such that every σα has cardinality δ. We start with
σ0 � σ, take a name for σ in V and built from it a σ1 in V covering σ; then
we go to M and use a name for σ to get a σ2 covering σ1 and so on. Then we
have that for cofinally many α the set σα is in V , and that for cofinally many
α it is in M . Again, by the closure properties of the embedding, ~σ PM rGs
has names in both M and V .

Let τ �
�

α σα. Then τ is in V : As ~σ has a name in V , there are
conditions in P which force the various σα to appear. Since ~σ is a δ� �

|P |�-sequence and δ� is regular there must be a condition p which decides
unboundedly many of the 9σα in 9~σ. This p then decides τ and so τ P V . As
~σ has also a name in M , it holds by the same argument that τ PM .
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Let µ � tA P Vκ�1 : τ P jpAqu. This is a κ-complete nonprincipal V -
ultrafilter on κ in V rGs and by the Lévy-Solovay Theorem 3.1 for measurable
cardinals it lies in V . From µ and τ we build F � as the restriction of E to
τ .

F � � txA, sy : s P τ ω &A P Vκ�1 & s P jpAqu � E æ τ (3.6)

That F � is in V follows from the fact that any s from F � corresponds
to a projection of τ : If s consists of the αth

0 , . . . , α
th
n elements of τ , then

xA, sy P F � exactly when π�1A P M (because xA, sy P F � iff s P jpAq

iff πpτq P jpAq iff τ P jpπ�1Aq iff π�1A P µ) where πptq restricts t to its
αth

0 , . . . , α
th
n elements. So F � is in V .

To prove Claim 2, we will show that E in intersection with a certain
elementary substructure of V is in V : As E P V rGs, it has a name 9E P V .
Let X   Vη be an elementary substructure of size δ which contains P , F �,
9E and every element of P with η " γ (recall that γ � iM

λ ). Then G is
X-generic, XrGs   Vλ and E P XrGs. Let F � E XX. As we have proven
above, there is a set F � P V such that F � F � � E. Then also F is in V

because by F � F XX � F �XX � EXX � F it follows that F � F �XX.
So EXX is in V and this means that there is a condition p P G which decides
“xA, sy P 9E” for all xA, sy in X. Since X is an elementary substructure of
Vη, p decides “xA, sy P 9E” for all xA, sy in V . Hence E is in V .

With Claim 1 and Claim 2 we have defined j æ V and proven that it is
definable from E in V . Now it remains to show that j æ V is a λ-strongness
embedding and therefore witnesses that κ is λ-strong in V . For this it suffices
to show that the following claim holds:

Claim 3: Vλ �M .

Proof of Claim 3. Since j : V rGs Ñ M rGs is λ-strong, we know that Vλ �

M rGs. Let a P Vλ. Then there is a condition p P G which decides a in V ,
but since we have the same generic G in M rGs, p has to decide a in the
same way in M . So p forces over V that ǎ � 9a (where 9a is a name in M)
and using p and 9a in M it follows that a PM . So, Vλ �M .

With the techniques from above we can prove the same result for Woodin
cardinals.
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Corollary 3.4. Let pP, q be a notion of forcing, where |P |   κ and κ is a
cardinal. Suppose that G � P is V -generic for P . Then κ is Woodin in V

if and only if it is Woodin in V rGs.

Proof. “ñ” This is analog to Theorem 3.3 and the respective direction in
the Lévy-Solovay Theorem.

“ð” Let δ be a Woodin cardinal in V rGs and A � δ in V . By definition
of a Woodin cardinal (Definiton 2.35), there is a cardinal κ   δ such that
for every λ   δ there is a natural λ-strongness embedding j : V rGs ÑM rGs

with critical point κ such that jpAq X λ � A X λ. By the Level-by-level
Version of Theorem 3.3 we know that j æ V has the same properties in V if
λ is a successor ordinal. But then it follows that δ is Woodin in V because
the successor ordinals are unbounded in δ.





Chapter 4

The Approximation and

Cover Properties

In the previous chapter we showed that under small forcing large cardinals
are neither destroyed nor created. But what can we say about forcings of
size greater or equal than κ? Here the results for the direction from the
ground model to the extension and for the converses direction can be very
different. For example, an inaccessible cardinal in the ground model becomes
a successor cardinal in the extension by the Lévy Collapse, but for the other
direction one can show that inaccessible cardinals, like Mahlo cardinals, are
downwards absolute to any model.

Furthermore, there are extensions which have new large cardinals: For
example, Joel Hamkins mentions in [Ham03] a result by Kunen which showed
that “a non-weakly compact cardinal κ can become measurable or more after
adding a branch to a κ-Suslin tree”1.

However, Hamkins succeeds in showing that for a large class of forcing
notions new large cardinals are not created. In fact he identifies two prop-
erties, the δ approximation property and δ cover property, and shows that
in every extension satisfying these properties the following holds: If there is
an elementary embedding (with certain closure properties) in the extension,
then its restriction to the ground model is amenable to the ground model.
As we have seen in Chapter 2, certain embeddings witness the existence of
certain large cardinals and therefore Hamkins can answer the above question
for the direction from the extension to the ground model.

1[Ham03], p. 257. Hamkins refers to [Kun78].

35
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So in this chapter we present the main results from Joel Hamkins’ paper
[Ham03].

4.1 The Main Theorem

We will follow the notation of [Ham03], where a model of set theory means a
model of the Σ100 fragment of ZFC. Unlike in his paper, we will first prove
the general case of the Main Theorem and then show the modifications for
the less complex Central Case.

Definition 4.1. A pair of transitive classes M � N satisfies the δ approx-
imation property (with δ P CardN ) if whenever A � M is a set in N and
AX a PM for any a PM of size less than δ in M , then A PM .

For models of set theory equipped with classes, the pair M � N satisfies
the δ approximation property for classes if whenever A �M is a class of N
and AX a PM for any a of size less than δ in M , then A is a class of M .

We will refer to the sets AX a where a has size less than δ in M as the
δ approximations to A over M .

Definition 4.2. The pair M � N satisfies the δ cover property if for every
set A in N with A � M and |A|N   δ, there is a set B P M with A � B

and |B|M   δ.

Theorem 4.3 (Main Theorem). Suppose that V � V̄ satisfies the δ approx-
imation and cover properties, δ is regular in V̄ , M̄ is a transitive submodel
of V̄ such that M � M̄ X V is also a model of set theory, and j : M̄ Ñ N̄

is a (possibly external) cofinal elementary embedding of M̄ into a transitive
class N̄ � V̄ .

Suppose further that δ   cppjq, P pδqV̄ � M̄ and that M̄ δ � M̄ and
N̄ δ � N̄ in V̄ . Let N �

�
j2M so that jæM : M Ñ N . Then:

1. If M̄ is a set in V̄ , then M is a set in V .

2. N � V ; indeed, N � N̄ X V

3. If j is amenable to V̄ , then jæM is amenable to V . In particular, if j
is a set in V̄ , then the restricted embedding jæM is a set in V .

4. If j and M are classes in V̄ and V � V̄ satisfies the δ approximation
property for classes, then jæM is a class of V . If V � V̄ satisfies the
δ approximation property for classes, then jæM is definable in V .
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The situation is described in the following picture:

V̄ � M̄
j
ÝÑ N̄

�

V �M
jæM
ÝÑ N �

�
j2M

Proof.

Lemma 4.4. M � M̄ satisfies the δ approximation property and δ cover
property.

Proof. First we show the δ approximation property: Suppose that A P M̄ ,
A �M and, for any a PM of size less than δ in M , it holds that AXa PM .
Since M � M̄ X V , we only have to show that A P V and for this we will
use the δ approximation property for V � V̄ : We know that A � V and
A P V̄ , because M̄ is an elementary submodel of V̄ . Let a � σXM for some
fixed σ of size less than δ in V . For sufficiently large β this is the same as
σ X pVβq

M and therefore a P V . Since a �M has size less than δ, it follows
by the closure properties of M̄ that a is in M̄ and hence in M � M̄ X V .
So A X a P M . Since A X σ � A X a and M � V , this means that all δ
approximations to A over V are in V , and so A P V . Hence A P M̄XV �M .

For the δ cover property we will use the respective property for V � V̄ :
Let a P M̄ , A � M and A has size less than δ in M̄ . Since A � V , A P V̄
and A has size less than δ in V̄ , there is a set B0 of size less than δ in V with
A � B0 (δ cover property for V � V̄ ). For a sufficiently large pVβq

M there is
a set B1 PM � V with A � B1. The set B0XB1 is a subset of M (because
B1 PM), it has size less than δ in V (bec. of B0) and A � B0XB1. Because
of the closure properties of M̄ , B0XB1 is in M̄ . So B0XB1 is in M̄XV �M

and it has size less than δ in M because any bijection witnessing that this
set has size less than δ in V will be in M̄ So B0 XB1 in M as well.

With Lemma 4.4 we can prove the first claim of the Main Theorem:
Assume that M̄ is a set in V̄ . We prove that M is a set in V with the δ
approximation property. Let a be a set in V with size less than δ in V ,
then M X a � B for some B P M � V . Then M X a � B X a because
M X a � B and conversely B X a � M X a because B P M and therefore
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M X a � B X a P V . So all the δ approximations to M over V are in V and
hence we have that M P V .

Lemma 4.5. N � N̄ satisfies the δ approximation and cover properties.

Proof. We prove the δ approximation property of N � N̄ by using the
elementarity of j and the δ approximation property for M � M̄ .

So by Defintion 4.1 let A P N̄ , A � N and AXa P N for any a P N of size
less than δ in N . We show that A P N : By the cofinality of j (see Definition
1.36) there is some B P M̄ with A � jpBq. By the δ approximation property
we know that if A1 � B, A1 P P pBqM̄ such that A1 X a P P pBqM for any
a P P pBqM of size less than δ in P pBqM , then A1 P P pBqM . So any subset
of B having all δ approximations over P pBqM in P pBqM is in P pBqM . By
elementarity of j we can transfer these facts to N̄ : Any subset of jpBq having
all jpδq � δ approximations over jpP pBqM q � P pjpBqqN (as N �

�
j2M)

in P pjpBqqN is in P pjpBqqN . Since we know that A is a subset of jpBq and
we know by assumption that A has all its δ approximations over N in N ,
we conclude that A P N (because A P P pjpBqqN ).

Similarly we prove the δ cover property by using the elementarity of j
and the cover property of M � M̄ : Let A P N̄ , A � N , |A|N̄   δ. Since
j is cofinal, there is a B P M̄ with A � jpBq. In M any subset of B can
be covered by an B1 P M with the right properties. Since j is elementary,
the corresponding fact is true about subsets of jpBq and jpδq � δ guaranties
that the size of the cover is still   δ.

Lemma 4.6. If A � ORDN is a set of size less than δ in V̄ , then there is
a set B P V XN of size at most δ with A � B.

Proof. Starting from A, we build B as the union of a sequence of sets Aα

of size less than δ such that unboundedly many of the Aα are in V and
unboundedly many are in N .

So let A � A0 � ORDN , |A|V̄   δ. Then, because of the closure
properties of N̄ , A0 P N̄ . Using the δ cover property of Lemma 4.5, there
is a set of ordinals A1 P N of size less than δ with A0 � A1 . Since
A P N � N̄ � V̄ , A1 is in V̄ and because of the cover property for V � V̄

there is a set A2 P V of size less than δ with A1 � A2.
We can repeat this procedure by alternately using the δ cover property

for N � N̄ and V � V̄ . At limit stages we make use of the regularity of δ. So
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we have constructed a sequence xAα|α   δy in V̄ such that α   β ñ Aα �

Aβ, all Aα are subsets of ORDN having size less than δ and unboundedly
often Aα P V and unboundedly often Aα P N .

Let B �
�

α δ Aα (therefore B � ORDN ). Since B is an union of δ
many sets of size less than δ, B has size at most δ in V̄ and as N̄ δ � N̄ , it
follows that B is in N̄ and has size at most δ there. To show that B is in V
and N , we use the respective δ approximation properties: Let a be a set of
ordinals of size less than δ in V . Then B X a � Aα X a for sufficiently large
α, and so B X a P V . Therefore all the δ approximations to B over V are
in V and so B P V . By the same argument, all the δ approximations to B
over N are in N , and so B P N . We conclude that B P V XN .

Lemma 4.7. V and N have the same subsets of ORDN of size less than δ.

Proof. Assume that A � ORDN and |A|V̄   δ. Then by Lemma 4.6 there
is a set B P V X N of size at most δ in V̄ with A � B. We enumerate
B in the natural order as B � tβα|α   δ̄u, where δ̄ � otpBq   δ�. Let
a � tα   δ̄|βα P Au. We show that a is in V if and only if a is in N : Suppose
that a P V . Then, by assumption, a P PpδqV̄ � M̄ , so a P M̄ and therefore
a P M � M̄ X V . Equivalently, a P Ppδ̄qM if and only if jpaq P jpPpδ̄qM q,
which holds if and only if a P Ppδ̄qN because jpaq � apδ̄   cppjq), and
this is equivalent to a P N . But a is in V (respectively in N) if A is in V

(respectively in N) because a is constructible from A and B. So if A is in
either V or N , then a is in both of them. But then A is in both V and N

as well, because A is constructible from B and a.

With these lemmata we can now prove the second claim of the Main
Theorem:

Lemma 4.8. N � V . Indeed, N � N̄ X V .

Proof.
“N � N̄ X V ”: We have to show that every set in N is in V . But as

V and N are models of set theory, every set can be coded with a set of
ordinals by the axiom of choice and therefore it suffices to show that every
set of ordinals in N is in V . So let A � ORDN and A P N . We use the δ
approximation property to show that A P V . So let a be a fixed set in V of
size less than δ. Because of the δ approximation property, we are interested
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in the intersection A X a, and so we can assume that a � ORDN . So, by
Lemma 4.7 it follows that a P N and hence also AX a P N . By Lemma 4.7
again, AX a is in V , and so all the δ approximations to A over V are in V .
Hence A P V .

“N � N̄ X V ”: For the converse direction we work with sets in N̄ X V .
Here we can consider ordinals only as a special case and then we will prove
the Lemma for arbitrary sets. So, let A P N̄ X V be a set of ordinals. Then
a P N by the δ approximation property of N � N̄ : Let a � ORD be of size
less than δ in N . By Lemma 4.7, it follows that a P V and so A X a P V .
Therefore, using Lemma 4.7 again, AXa P N and so all the δ approximations
to A over N are in N . Hence, A P N .

For the general case suppose that A is any set in N̄ X V . We prove that
A is in N by P-induction (see Theorem 1.19): Suppose that every element
of A is in N . So there is some set B P N such that A � B. We enumerate
B � tbα|α   βu in N � V in N � V and consider the following set of
ordinals: A0 � tα   β|bα P Au. A0 is constructible from A and B and
B P N � N̄ X V , as we have proven above. So A0 is in N̄ and V . Since A0

is a set of ordinals, it is in N and so also A P N , as A is constructible from
A0 and the enumeration of B.

Lemma 4.9. If j is amenable to V̄ , then jæM is amenable to V .

Proof. Assume that j is amenable to V̄ (see Definition 1.35). We show that
jæA P V for any A PM . So suppose that A PM . By Lemma 4.8, it follows
that N �

�
j2M � V and so jæA � V . So we can show that jæA is in V by

showing that jæA has all its δ approximations in V , and for this it suffices
to show that for any a of size less than δ in V , jæa P V . So let a be any set
in V , |a|V   δ, and enumerate a as ~a � xaα|α   βy. Since β   δ   cppjq,
it follows that jp~aq � xjpaαq|α   βy. As PpδqV̄ � M̄ , a is in M � M̄ X V

and therefore jp~aq P N � V . So we can construct jæa � txaα, jpaαqy|α   βu

from ~a and jp~aq in V .

The same argument as in the proof of Lemma 4.9 shows that if j and M
are classes in V̄ and one has the δ approximation property for classes, then
jæM is a class in V . So if j is a set in V̄ , then jæM is a set in V . Now we
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have completed the proof of the Main Theorem.

Corollary 4.10. Under the hypothesis of the Main Theorem, for any λ,

1. If N̄λ � N̄ in V̄ , then Nλ � N in V

2. If Vλ � N̄ , then Vλ � N .

Proof. For 1. Any λ sequence over N in V is in N̄ because of the assumption
and in V and therefore in N̄ X V � N .

For 2. If Vλ � N̄ , then, again by N̄ X V � N , Vλ is a subset of N .

As we have seen in Chapter 2, many large cardinals like measurable or
supercompact cardinals are defined by elementary embeddings from V to a
transitive N . So we will consider the case where M̄ � V̄ and hence M � V

as a special case of the Main Theorem.

Theorem 4.11 (The Central Case). Suppose that V � V̄ satisfies the δ

approximation and cover properties, δ is regular in V̄ and j : V̄ Ñ N̄ is
a (possibly external) cofinal elementary embedding into a transitive class
N̄ � V̄ . Suppose further that δ   cppjq and N̄ δ � N̄ (N̄ is closed under δ
sequences) in V̄ . Let N �

�
j2V so that jæV : V Ñ N . Then:

1. N � V ; indeed, N � N̄ X V

2. If j is amenable to V̄ , then jæV is amenable to V .

3. If j and V are classes in V̄ and V � V̄ satisfies the δ approximation
property for classes, then jæV is a class of V .

So our picture from above simply becomes the following:

j : V̄ ÝÑ N̄ � V̄

�

j æ V :V ÝÑ N
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Proof. First note that the restricted embedding jæV : V Ñ N is elemen-
tary. To prove this, we have to show that for every formula ϕ, and ev-
ery a1, . . . , an in the universe of jpV q, jpV q |ù ϕra1, . . . , ans if and only if
N |ù ϕra1, . . . , ans. But, because N �

�
j2V , this can be done by induction

on formulas.
Now we can prove the central case with the same succession of lemmas

as in the proof of the Main Theorem:

Lemma 4.12. N � N̄ satisfies the δ approximation and cover properties.

Lemma 4.13. If A � ORDN is a set of size less than δ in V̄ , then there
is a set B P V XN of size at most δ with A � B.

Lemma 4.14. V and N have the same subsets of ORDN of size less than
δ.

Lemma 4.15. N � V . Indeed, N � N̄ X V

Lemma 4.16. If j is amenable to V̄ , then jæV is amenable to V .

The proof of Lemma 4.12 differs from the one of Lemma 4.5 only by using
the δ approximation and cover properties for V � V̄ instead of M � M̄ .

The proof of Lemma 4.13 doesn’t change and the proof of Lemma 4.14
simplifies the proof of Lemma 4.7: We prove that a P V if and only if a P N .
We need the fact that jpP pδ̄qV q � P pδ̄qN and we get the equivalences:
a P V Ø a P P pδ̄qV Ø jpaq P jpP pδ̄qV q Ø a P P pδ̄qN Ø a P N .

The proof of Lemma 4.15 is the same as the one of Lemma 4.8; Lemma
4.16 is proven like Lemma 4.9 and the third claim then follows easily.

We can drop the property of j being cofinal by adding the assumption
that N � N̄ X V (we only needed the cofinality to prove Lemma 4.12). By
speaking directly about classes, we get the following summary of the Central
Case:

Corollary 4.17. Suppose that V � V̄ satisfies the δ approximation and
cover properties for classes. If V is a class in V̄ and j : V̄ Ñ N̄ is a class
embedding in V̄ with δ   cppjq and N̄ δ � N̄ in V̄ , then the restriction
jæV : V Ñ N , where N � N̄ X V , is a class elementary embedding in the
ground model.
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4.2 Closure Point Forcing

Of course, forcing will be the principal example for the extensions of the
Main Theorem. We get a first result regarding forcing extensions V rGs if
we take the assumptions of Corollary 4.17 and additionally assume that
the models involved are only equipped with their classes definable from
parameters.

Lemma 4.18. Suppose that V � V rGs is a set forcing extension satisfying
the δ approximation property (for sets). If the models are equipped with only
their definable classes, allowing a predicate for V in V rGs, then V � V rGs

also satisfies the δ approximation property for classes.

Proof. Suppose that A � V is a class in V rGs such that AX a P V for any
set a of size less than δ in V . We have to show that A is a class in V . First
let Aη � A X Vη for any ordinal η and consider Aη X a for some a P V of
size less than δ in V . Then Aη X a � pAX Vηq X a � pAX aq X Vη and the
right part of the equation is the intersection of two sets in V , and therefore
Aη X a is in V . As Aη X a are the δ approximations to Aη over V , it follows
by the δ approximation property for sets that Aη P V for all η.

Since we have assumed that A is definable in V rGs, there is a formula ϕ
(allowing a predicate for the ground model) and parameter z such that

V rGs |ù x P A ðñ ϕpx, zq. (4.1)

From the argument above we know that AX Vη � Aη P V , so there is some
condition pη P G such that

x P Aη ðñ pη , ϕpx̌, 9zq. (4.2)

where 9z is a name for z. Since G is a set in V rGs and the mapping η ÞÑ pη

exists in V rGs, the value of pη must be the same for unboundedly many η.
Let p� be this common value. Then we can use p� for any pη and so we have
for any η that

x P Aη ðñ p� , ϕpx̌, 9zq. (4.3)

Therefore, by using the parameters 9z, p� and the forcing poset, the formula
x P Aô p� , ϕpx̌, 9zq provides a definition of A as a class of V .
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So, in set forcing extensions we don’t have to consider classes explicitly
and we get the following corollary:

Corollary 4.19. If V � V rGs is a set forcing extension with the δ approx-
imation and cover properties and j : V rGs Ñ N̄ is a definable embedding in
V rG| with N̄ δ � N̄ and δ   cppjq, then the restriction jæV : V Ñ N , where
N � N̄ X V is an elementary embedding definable in the ground model.

Now, the most interesting question is: Which kind of forcing extensions
actually satisfy the approximation and cover properties? To answer this
question we will introduce the notion of a closure point forcing and show
that such a forcing satisfies the δ� approximation and cover properties.

In the proof of Lemma 4.23 we will follow [HJed], as this version is easier
than the proof originally given in [Ham03].

Lemma 4.20. Let P be a forcing poset, A � P an antichain and τa be a
P -name for each a P A. Then there is a P -name τ such that @a P A it holds
that a , τ � τa.2

Definition 4.21. A poset P � xP,¤Py is said to be κ-strategically closed if
Player II has a winning strategy in the following game:
Player I p0 p2 . . . pδ�1 . . .

Ó Õ Ó Ó Õ Ó

Player II p1 . . . pδ pδ�2 . . .

δ limit.

That means that Player I plays odd stages and Player II even and limit
stages. Here xpα : α   η ¤ κy should be a descending chain in P with respect
to ¤P. Player II wins iff for all α   κ pα can be played. P is   κ-strategically
closed iff P is λ-strategically closed for all λ   κ.

A notion of forcing is called nontrivial if it necessarily adds a new set.

Definition 4.22. A forcing notion has a closure point at δ when it factors
as P � 9Q, where P is nontrivial, |P| ¤ δ and ,P 9Q is ¤ δ-strategically closed.

Lemma 4.23 (Main Lemma). Forcing with a closure point at δ satisfies the
δ� approximation and cover properties.

Proof. Suppose that V � V rgsrGs is a forcing extension by the forcing
g � G � P � 9Q, where P is nontrivial, |P| ¤ δ and ,P 9Q is ¤ δ-strategically
closed.

2For a proof of this Lemma see [Kun80], p. 226.
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The δ� cover property holds because if we consider V � V rgs � V rgsrGs,
each step of the extension holds because of the properties of P and Q.

For the δ� approximation property suppose that A P V rgsrGs and A �

V , but A R V . Let 9A be a P � 9Q-name for A, 9Ag�G � A, for which

1 , 9A � V and 1 , 9A R V (4.4)

(4.4) is justified: Assume that 9A1 is 9A if (4.4) and 9gpPq otherwise. Then
1 , 9gpPq R V because P is nontrivial.

Since 9A is forced not to be in V , there cannot exist a condition which
decides for every b P V if b̌ P 9A, because this condition would decide the
whole 9A. So for every condition pp, 9qq there is b P V such that pp, 9qq does not
decide whether b̌ P 9A. Then there are two conditions pp0, 9q0q and pp1, 9q1q

below pp, 9qq such that pp0, 9q0q , b̌ R 9A and pp1, 9q1q , b̌ P 9A. Since P
is nontrivial, we will assume without loss of generality that p0 and p1 are
incompatible. By Lemma 4.20 it follows that there is a name 9q1 such that
p0 forces 9q1 � 9q0 and p1 forces 9q1 � 9q1. Indeed, we may assume that 1 forces
9q1   9q.

So, in summary, instead of taking pp0, 9q0q and pp1, 9q1q as above, we could
have used the conditions pp0, 9q

1q and pp1, 9q
1q with the same second coordi-

nate, such that 1 ,P 9q1   9q.
Now enumerate P � tpβ|β   δu and let τ be a P-name for the strategy

witnessing that 1 ,P 9Q is ¤ δ-strategically closed. Our goal is to build a
sequence of P-names 9qβ for elements of 9Q such that α   β implies p1, 9qβq  
p1, 9qαq, and there are p0

β and p1
β below pβ and an element bβ such that

pp0
β, 9qβq , b̌β R 9A and pp1

β , 9qβq , b̌β P 9A. For successor steps it would be
enough to use the argument from above iteratively. But, as we want to
continue the construction through limits, we have to combine it with an
application of the strategy τ , so that the construction accords with τ .

Finally we get the following: For any ppβ, 9tβq, there are p0
β and p1

β below
pβ, a name 9qβ and an element bβ such that p1, 9qβq   p1, 9tβq and pp0

β, 9qβq ,

b̌β R 9A and pp1
β , 9qβq , b̌β P 9A. Furthermore, since 1 forces that the 9qβ are

descending and conform with the strategy, there is 9qδ such that p1, 9qδq  
p1, 9qβq for all β   δ. But, if pp, 9rq is a condition which is stronger than p1, 9qδq,
there is a β such that p � pβ from the enumeration of P and therefore pp, 9rq
cannot decide 9A on tbβ |β   δu. So not all approximations to 9A are in V .
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Closure point forcings include a large class of forcings: For trivial reasons
every small forcing has a closure point and the Lemma also applies, for ex-
ample, to the Silver iteration, the Laver preparation, the lottery preparation
and reverse Easton iterations.



Chapter 5

Applications of the Main

Theorem

5.1 Application to Large Cardinal Properties

In this section we are going to examine how the Main Theorem can be
applied to several large cardinals1. The procedure will essentially be the
following: We will use the results of Chapter 2 to get an elementary em-
bedding j witnessing the existence of a large cardinal in the extension and
then apply Claim 3, therefore showing that jæV is amenable to V . Then it
only remains to show that jæV witnesses the same large cardinals property
in V . As this procedure can be seen more clearly in the simplified version
of Theorem 4.11, we will start with some applications of the Central Case.

As we have seen in Lemma 4.23, the cardinal δ will depend on the forcing
in question. For now let δ be an arbitrary regular cardinal.

Corollary 5.1. Suppose V � V̄ satisfies the δ approximation and cover
properties. Then every measurable cardinal above δ in V̄ is measurable in
V .

Proof. Since κ is measurable in V̄ , we can construct an elementary embed-
ding j : V̄ Ñ N̄ with critical point κ via ultrapowers (see Proof of Theorem
2.17). Since N̄κ � N̄ , the Central Case implies that the restricted embed-
ding jæV : V Ñ N is amenable to V . Then, as in the Proof of Theorem 2.17,

1All results presented here can be found in [Ham03], pp. 266–272.

47
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we can construct a normal V -ultrafilter µ on κ from jæP pκqV by defining
X P µô κ P jpXq.

Corollary 5.2. Suppose V � V̄ satisfies the δ approximation and cover
properties. Then every strong cardinal above δ in V̄ is strong in V .

Proof. Suppose that κ is θ strong in V̄ and θ is either a successor ordinal
or has cofinality above δ. Then by Section 2.4 we know that in V̄ there is
a θ strongness extender embedding j : V̄ Ñ N̄ with cppjq � κ, V̄θ � N̄

and N̄ δ � N̄ . By the Central Case the restricted embedding jæV : V Ñ N

is amenable to V , and by Corollary 4.10 we know Vθ � N . So, in V , let
E � jæP pκqV be an extender and let jE : V Ñ ME be the corresponding
extender embedding. Then jEæP pκq

V � jæP pκqV , and consequently Vθ �

ME . So jE witnesses that κ is θ strong in V .

Corollary 5.3. Suppose V � V̄ satisfies the δ approximation and cover
properties. Then every Woodin cardinal above δ in V̄ is Woodin in V .

Proof. Suppose that κ is Woodin in V̄ . Then by Definition 2.35 for every
A � κ in V there is γ P pδ, κq such that for arbitrarily large λ   κ there is an
extender embedding j : V̄ Ñ N̄ such that cppjq � γ and jpAq X λ � AX λ.
We may also assume N̄γ � N̄ . It follows from the Central Case that the
restriction jæV : V Ñ N is amenable to V and still satisfies jpAq X λ �

AXλ. Since jæP pκqV P V by amenability, the induced extender embeddings
therefore witness that κ is a Woodin cardinal in V .

Corollary 5.4. Suppose V � V̄ satisfies the δ approximation and cover
properties. Then every supercompact cardinal above δ in V̄ is supercompact
in V . Indeed, for any γ, every γ supercompact cardinal above δ in V̄ is γ
supercompact in V .

Proof. Suppose that κ is γ-supercompact in V̄ . Then by Definition 2.26
there is an elementary embedding j : V̄ Ñ N̄ in V̄ such that its critical
point is κ, γ   jpκq and N̄γ � N̄ . Then by the Central Case the restriction
jæV : V Ñ N is amenable to V and N � N̄ X V . By Corollary 4.10 we
know that Nγ � N in V , and so j2γ P N . Thus, from jæP pPκγq

V we
may in V construct the induced normal fine measure µ on Pκγ by defining
X P µô j2γ P jpXq. So κ is γ supercompact in V .



5.1. APPLICATION TO LARGE CARDINAL PROPERTIES 49

For the application of the Main Theorem, we first have to show two
slightly technical lemmata:

Lemma 5.5. Suppose that V � V̄ satisfies the δ approximation and cover
properties. If X̄ δ � X̄ in V̄ and X̄   V̄θ in the language with a predicate
for V , so that xX̄,X, Py   xV̄θ, Vθ, Py, where X � X̄ X V , then X P V .
Further, if M̄ is the Mostowski collapse of X̄, then the Mostowski collapse
of X is the same as M̄ X V .

Proof. We will use the δ approximation property to show that X P V :
Therefore, if we take an a P V that has size less than δ in V , it only remains
to show that X X a P V . Since X X a � X is of size less than δ in V̄ ,
it is in X̄ and it is an element of V̄θ of size less than δ. By the δ cover
property there is an element b P Vθ which has size less than δ in Vθ and
covers X X a. By elementarity there is such a b in X. Since b has size less
than δ and δ is a subset of X, b is also a subset of X. So we have shown
that X X a � b � X and therefore X X a � b X a. As b P V , we have that
X X a is in V and therefore all the δ approximations to X over V are in V .
By the δ approximation property it follows that X P V .

Our second task is to show that the Mostowski collapse of X is the
same as M̄ X V . So let xM̄,M, Py be the Mostowski collapse of xX̄,X, Py.
We show that the Mostowski Collapse of X is the same as the image of X
under the Mostowski Collapse of X̄: As V̄θ knows that Vθ is transitive, every
element of X̄ which is an element of an element of X is itself in X. So M
is the Mostowski Collapse of X and that means that M P V . Therefore
M � M̄ X V .

So it remains to show that M̄XV �M . Let π : X̄ � M̄ be the Mostowski
Collapse of X̄ and suppose that πpAq P M̄ X V , where A P X̄. We show
that πpAq P M . By induction we assume that every element of πpAq is in
M . Therefore A X X̄ � X and so by elementarity A � V . To show that
A P V , we will use the δ approximation property: Let a be an element of
X having size less than δ there. Then AX a is an element of X̄ of size less
than δ in X̄ and a subset of X. By the δ cover property there is some b P X
of size less than δ in X such that AXa � b. We enumerate b � tbα | α   βu

in V , where β   δ and let A0 � tα | bα P A X au. Then α P πpA0q � A0 if
and only if πpbαq P πpAq X πpaq because π fixes all ordinals below δ and all
subsets of δ. Since πpbαq, πpAq, πpaq and the sequence xπpbαq|α   βy are
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all in V , it follows that A0 P V and therefore A X a P V . As X � X̄ X V

and A P X̄, we have that AX a P X and so all δ approximations to A using
a P X are in X. By elementarity it follows that all δ approximations to A
over V are in V and so we conclude that A P V . Thus πpAq PM .

The next Lemma makes use of the following Reflection Principle of Mon-
tague and Lévy2: For any formula ϕpv1, . . . , vnq and any β, there is a limit
ordinal α ¡ β such that for any x1, . . . , xn P Vα,

ϕrx1, . . . , xns iff ϕVαrx1, . . . , xns

Lemma 5.6. Suppose that V � V̄ satisfies the δ approximation and cover
properties and κ ¥ δ is an inaccessible cardinal. If A � κ is any set in V̄ ,
then there is a transitive model of set theory M̄ , |M̄ | � κ such that A P M̄ ,
M̄ κ � M̄ and M � M̄ X V P V is a model of set theory.

Proof. Suppose ZFC� is a fixed finite fragment of ZFC used to define the
models of set theory. The Reflection Principle from above shows that there
is an ordinal θ above κ such that every formula appearing in ZFC� reflects
from the structure xV̄ , V, Py to xV̄θ, Vθ, Py. In particular, both V̄θ and Vθ are
models of set theory. In V̄ , let X̄   V̄θ be an elementary substructure of
size κ in the language with a predicate for V , so that xX̄,X, Py   xV̄θ, Vθ, Py,
where X � X̄XV , such that X̄ κ � X̄ and A P X̄. So it follows by Lemma
5.5 that the collapse M̄ of X̄ has the property that M � M̄ X V is in V .
And since M is the collapse of X, it is a model of set theory.

Corollary 5.7. Suppose V � V̄ satisfies the δ approximation and cover
properties. Then every weakly compact cardinal above δ in V̄ is weakly com-
pact in V .

Proof. Suppose κ is weakly compact in V̄ . By Lemma 5.6 there is for any
subset A � κ in V a model of set theory M̄ in V̄ such that A P M̄ , |M̄ | � κ,
M̄ κ � M̄ and M � M̄ XV is a model of set theory in V . That κ is weakly
compact in V̄ implies by Fact 2.4 that there is an elementary embedding
j : M̄ Ñ N̄ in V̄ with critical point κ. In order to use the Main Theorem,
it remains to show that j is cofinal, M̄ δ � M̄ in V̄ and N̄ δ � N̄ in V̄ .

That M̄ δ � M̄ in V̄ is clear because M̄ κ � M̄ and δ   κ. Similarly to
the proof of Theorem 2.17 we can construct the induced normal M̄ -measure.

2For a reference see [Kan09], p. 58.
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Then j is cofinal because if x P M̄µ then x � jpfqpκq and X P ran jpfq.
So choose y � ran f � tfpξq : ξ   κu and therefore x � jpfqpκq P jpyq �

ran jpfq. Furthermore N̄ δ � N̄ in V̄ , because if ~s P N̄ κ, then ~s � xsξ : ξ  
αy for some α   κ and each sξ � jpfξqpκq for some fξ P M̄ , fξ : κ Ñ M̄ ,
~f � xfξ : ξ   αy P M̄ . Then jp~fq � xjpfξq : ξ   αy and ~s is constructible
from jp~fq and κ, so ~s P N̄ .

So by the Main Theorem jæM : M Ñ N is an embedding in V . Since
this restricted embedding still has critical point κ and A P M , it follows
from Fact 2.4 that κ is weakly compact in V .

By a theorem of Hanf and Scott3 κ is weakly compact if and only if
κ is Π1

1-indescribable. So we will give a generalization of Corollary 5.7 by
proving that indescribable cardinals are not created in extensions with the
δ approximation and cover properties. We will use the definition of inde-
scribable cardinals by elementary embeddings as we gave it in Theorem 2.7
and Definition 2.6. Note that the statement about the size of N in Theorem
2.7 is only needed in the part of the proof where we show that if κ is Πm

n

indescribable, then there is an elementary embedding.4

Corollary 5.8. Suppose V � V̄ satisfies the δ approximation and cover
property. Then every totally indescribable cardinal above δ in V̄ is totally
indescribable in V . Indeed, for m ¥ 1 every Πm

1 indescribable cardinal above
δ in V̄ is Πm

1 indescribable in V .

Proof. Suppose that κ is Πm
1 indescribable in V̄ , and let M0 be any transitive

model of set theory in V of size less than κ with M κ
0 � M0 and κ P M0.

By Lemma 5.6 we know that there is a model of set theory M̄ in V̄ with
M̄ κ � M̄ in V̄ and M0 P M̄ such that M � M̄ X V is also a model
of set theory. Since κ is Πm

1 indescribabale in V̄ , there is an elementary
embedding j : M̄ Ñ N̄ such that N̄ is Σm

0 correct in V̄ . By applying the
Main Theorem it follows that the restricted embedding jæM : M Ñ N

lies in V . Then we can restrict the j further down to M0 and obtain the
embedding j0 � jæM0 : M0 Ñ N0, where N0 � jpM0q.

To show that j0 witnesses the indescribability of κ in V , it remains to
show that N0 is Σm

0 correct, because, as we noted above, we don’t need the
statement about the size of N for this direction. Since Vκ�m�2 � V̄κ�m�2

3See [HS61].
4For details see [Hau91].
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and N̄ |V̄κ�m�2| � N̄ in V̄ , we know by Corollary 4.10 that N |Vκ�m�2| �

N in V , and consequently |Vκ�m�2|
V   p|V̄κ�m�2|

�qV̄ . The fact that M
knows that M κ

0 � M0 transfers by elementarity to the fact that N knows
that N jpκq � N0. Since N has all the sequences over N0 of length up to
|Vκ�m�2|, which is less than jpκq, it follows that N |Vκ�m�2

0 � N0 in V . So
the first clause of Definition 2.6 is fulfilled. Furthermore, because pN0qκ�m

is a transitive subset of Vκ�m, it follows that Σ0 truth is preserved. So, as
the second clause means that M correctly computes the Σm

n facts over Vκ

that hold in parameters from M X Vκ�m, the embedding j0 : M0 Ñ N0 is
Σm

0 correct.

5.2 Definability of V in V rGs

Here we present a result from Laver which uses Hamkins’ work on the δ
approximation and cover properties. In [Lav07] Theorem 5.10 is stated for
models of ZFC. But, as Laver uses it to proof Theorem 5.13 where we only
have models for ZFC �Replacement, we will follow an approach by Jonas
Reitz.5

Definition 5.9. Let ZFCδ be the theory consisting of Zermelo set theory,
Choice and ¤ δ-Replacement (that is, Replacement holds for functions with
domain δ, which is a regular cardinal), together with the axiom

p�q @A Dα P ORD DE � α� α xα,Ey � xTCptAuq, Py

which asserts “every set is coded by a set of ordinals”.

Theorem 5.10. Suppose V , V 1 and W are transitive models of ZFCδ, δ is a
regular cardinal in W , the extensions V �W and V 1 �W have the δ cover
and δ approximation properties, PpδqV � PpδqV 1

and pδ�qV p� pδ�qV
1

q �

pδ�qW . Then V � V 1.

Proof. Because of axiom p�q, we have to show that V and V 1 have the same
sets of ordinals. If A � ORD, A P W then the statements ”|A|   δ“ and
”|A| � δ“ means the same in all models, because of the δ cover properties
and because pδ�qV � pδ�qV

1

� pδ�qW respectively.
5See [Rei07].
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We will now adjust the proof of Lemma 4.6 and Lemma 4.7 to this
situation and show where the ¤ δ-Replacement is needed.

Lemma 5.11. If A � ORD, A PW , |A|   δ, then there is a set B P V XV 1,
B ¤ δ with A � B.

Proof. Let A � A0 � α be as above and fix in W a well-ordering ¨ of pαqW .
As before we construct a sequence xAξ|ξ   δy of subsets of α, each of size
less than δ. If Aξ P V , then let Aξ�1 P V

1 be the ¨-least subset of α such
that Aξ�1 � Aξ and |Aξ�1|   δ. Such a set exists because of the δ cover
property of V 1 � W . If Aξ R V , then let Aξ�1 P V to be the ¨-least subset
of α such that Aξ�1 � Aξ and |Aξ�1|   δ. For limit ξ, let Aξ �

�
β ξ Aβ .

Here we need ¤ δ-Replacement for Aξ to be in W . |Aξ|   δ, as δ is regular
and each Aβ has size less than δ. So we get a sequence for every ξ   δ and
Aξ P V for cofinally many ξ and Aξ P V

1 for cofinally many ξ as well.
Let B �

�
ξ δ Aξ. Then B P W and |B|   δ. If a P V is any set of size

less than δ, then (by regularity of δ) BXa � AαXa for all sufficiently large
α, and so B X a P V . Thus, all the δ approximations to B over V are in V

and so B P V . Similarly for V 1. Therefore B P V X V 1.

Lemma 5.12. V and V 1 have the same sets of ordinals of size less than δ.

Proof. Suppose that A � ORD, |A|   δ, A P V . By Lemma 5.11 there is a
set B P V X V 1 of size at most δ with A � B. Then otpBq   δ�, so pick a
well ordering w P V of δ, or possibly of a subset of δ of length otpBq which
lies in V X V 1. Since w � δ� δ and by assumption PpδqV � PpδqV 1

, w must
be in V 1. The ordering induces an enumeration B � tbα|α   δ1u, for some
δ1 ¤ δ, which, by ¤ δ-Replacement, lies in V X V 1. Then a � tα   δ1|bα P

Au P V , and it follows again from PpδqV � PpδqV 1

that a P V 1. Since A is
constructible from a, B and w, A is in V 1. By the same argument every set
of ordinals in V 1 of size less than δ is in V .

By the δ approximation property we can now show that every set of
ordinals in V is in V 1 and vice versa: Let A be a set of ordinals in V

(therefore in W ). Let a P V 1 be a set of ordinals with |a|   δ. Then it
follows by Lemma 5.12 that a P V , and therefore aXA P V . So, by Lemma
5.12 again, aXA P V 1.
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Theorem 5.13. Suppose V is a model of ZFC, P P V , and V rGs is a P-
generic extension of V . Then, in V rGs, V is definable from parameter Vδ�1,
for δ � |P|�.

Proof. In V rGs, let γ ¡ δ be a beth fixed point of cofinality ¡ δ. Because
of Lemma 1.15 such a fixed point does always exist. Then Vγ is definable as
the unique transitive model M of height γ such that:

(i) M satisfies Zermelo set theory, Choice and ¤ δ-Replacement.

(ii) the extension M � pV rGsqγ has the δ approximation and cover prop-
erties, and

(iii) Mδ�1 � Vδ�1

We show that, living in V rGs, M � Vγ satisfies (i)-(iii):
About (i): For any limit ordinal γ, Vγ is a model of Zermelo set theory

and Choice. But for Vγ to be a model of replacement, γ would have to be
regular and @λ   γ: 2λ   γ. So we don’t have full Replacement, but only
¤ δ-Replacement. This holds because of the cofinality of γ: For any function
f : aÑ Vγ with |a| � δ has its range contained in some Vβ for β   γ and so
ranpfq P Vβ�1.

About (ii): Note that the forcing from above (small forcing) is a closure
point forcing with closure point at |P|. So V � V rGs has the |P|� � δ

approximation and cover properties. It holds further that VγrGs � pV rGsqγ :
Let σG P pV rGsqγ , so rankpσGq   γ. Since |P| is less than γ, there is a name
σ1 in V , with σ1G � σG and rankpσ1q   γ and because Vγ � V X VγrGs,
σ1 P VγrGs. Then also Vγ � pV rGsqγ � VγrGs has the δ approximation
and cover properties: Let A P pV rGsqγ , A � Vγ and |A|pV rGsqγ   δ, then
A P pV rGsqβ for some β   γ. By the δ cover property of V � V rGs there
is a B P V with size less than δ which covers A. Then B X Vβ covers A in
Vγ and has size less than δ there. For the δ approximation property assume
that A P pV rGsqγ , A � Vγ and AX a P Vγ for any a P Vγ of size less than δ.
Then, by the δ approximation property for V � V rGs, A P V and because
of the above argument A P Vγ .

It remains to show that any M, which is transitive, satisfies (i)-(iii) and
is of height γ, equals Vγ . Such an M is a model of ZFCδ and has every set
codeable in an absolute way by a set of ordinals: In general it holds that if
M is a transitive model of ZFC, then we can code all sets in M by sets
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of ordinals in M, that means if x P M, where x is transitive, there is an
isomorphism:

px, Pq � pCardpxq, Rq

where R is a binary relation on Cardpxq. If x is not transitive, we work
with the transitive closure of x, TCpxq. The point here is that the coding
must happen in M, so it must not happen that the cardinality of TCpxq is
not an element of M (as it could be the case, for example, in Vω�ω). In our
case M is not a full model of ZFC but it has height γ, which is a beth fixed
point. Therefore the transitive closure of x is of size less than γ.
Furthermore pδ�qMp� pδ�qVγ q � pδ�qpV rGsqγ , because pV rGsqγ is a forcing
extension by forcing of size   δ.
Thus Theorem 5.10 applies to the extensions M � pV rGsqγ and Vγ �

pV rGsqγ , and so Vγ �M.
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