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Acknowledgments

It is a great pleasure to thank Professor Karlheinz Gröchenig, who was my
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Deutsche Zusammenfassung

In dieser Arbeit werden Matrizen beschränkter linearer Operatoren mit Abkling-
verhalten der Nebendiagonalen behandelt, das sind Matrizen, deren Einträge mit
dem Abstand zur Diagonale betragsmäßig abfallen.

Es wird untersucht, unter welchen Bedingungen Matrizen mit derartigem Ab-
klingverhalten invers-abgeschlossene Teilalgebren der Algebra beschränkter Oper-
atoren sind, das heißt, wann die Inverse einer als Operator invertierbaren Matrix
mit Abklingverhalten wieder ein gleichartiges Abklingverhalten aufweist.

Derartige Fragen wurden bislang nur für gewisse Klassen von Matrizen be-
handelt (siehe dazu etwa die Arbeiten von Baskakov, Demko, Smith und Moss,
Jaffard, oder Gröchenig und Leinert). In dieser Arbeit wird versucht, systematis-
che Ansätze zur Behandlung des Abklingverhaltens von Matrizen zu geben, und
auch die Invers-Abgeschlossenheit systematisch zu behandeln.

Zwei Konstruktionen werden eingeführt: Einerseits kann das Abklingverhal-
ten von Matrizen mit Hilfe einer Glattheitstheorie von Banachräumen beschrieben
werden, andererseits kann es auch durch die Güte der Approximation durch Band-
matrizen gemessen werden. Beide Konstruktionen liefern in systematischer Weise
Klassen invers-abgeschlossener Teilalgebren zu einer gegebenen Banach-Algebra von
Matrizen, und beide Konstruktionen lassen sich sinnvoll für größere Klassen von
Banach-Algebren erklären. Auf die beschriebene Weise werden nicht nur bekannte
Resultate über Matrizen mit Abklingverhalten wiedergewonnen, sondern auch neue
invers-abgeschlossene Algebren von Matrizen mit Abklingverhalten konstruiert.

Der Zusammenhang zwischen beiden Konstruktionen – Abklingverhalten der
Nebendiagonalen durch Approximation beziehungsweise durch Glattheit – wird
wie im Fall der klassischen trigonometrischen Approximation durch Sätze vom
Jackson-Bernstein-Typ vermittelt. Dies erlaubt eine konstruktive Beschreibung
von Approximations- bzw. Glattheitsräumen durch Littlewood-Paley-Zerlegungen.

Schließlich wird versucht, die beschriebene Theorie für Matrizen mit Abklingver-
halten jenseits der polynomialen Ordnung anzuwenden. Dazu werden Analoga
zu ultradifferenzierbaren Funktionen für Operatoren konstruiert. Auch hier ist
es wieder möglich, die Invers-Abgeschlossenheit der entstehenden Algebren in den
beschränkten Operatoren nachzuweisen, und so etwa das klassische Resultat von
Demko, Smith und Moss auf allgemeinere Formen des Abklingverhaltens auszu-
dehnen.
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CHAPTER 1

Introduction

1.1. Overview

In this thesis, we study matrices of bounded linear operators with entries that
decay away from the diagonal in a certain way. We also study classes of operators
that give raise to matrices with common decay properties. What can be said about
the product of two of these operators?

More formally: If A is a subalgebra of matrices in B(`2), the algebra of bounded
operators on `2, defined by conditions on their off-diagonal decay, and A ∈ A has an
inverse in B(`2), is A−1 in A? Using mathematical terminology: Is A inverse-closed
in B(`2)?

We give a still more abstract formulation. Let us suppose that we are given
a Banach algebra B, which could be, for instance, an algebra of infinite matrices
whose norm describes some form of off-diagonal decay. We try to find a systematic
construction of subalgebras A ⊆ B such that an element a ∈ A is invertible in A
if and only if a is invertible in the larger algebra B. In the context of matrices, we
think of the smaller algebra as an algebra describing a stronger decay condition.
While often the existence of an inverse-closed subalgebra is taken for granted, e.g., in
non-commutative geometry [18, 30], our interest is in the systematic construction
of inverse-closed subalgebras and their application to matrix algebras.

Questions of inverse-closedness in algebras of matrices with off-diagonal decay
have been studied by several mathematicians. The methods that are used are quite
diverse.

Demko [35] used refinements of a Neumann series argument to prove that
the entries of the inverse of a banded matrix have exponential off-diagonal decay.
In [36] the same result is obtained using spectral theory of B(`2) and arguments
from approximation theory.

Jaffard [61] proves that in case of polynomial decay of the matrix coefficients,
the inverse has polynomial decay of the same order. His proof uses (implicitly)
commutator estimates and some form of quotient rule for the inverse.

In [44] the method of band extensions is used to prove the inverse-closedness of
the matrix valued Wiener algebra in B(`2), that is, the operators A ∈ B(`2), where∑
‖Â(k)‖B(`2) ≤ ∞, Â(k) denoting the kth side diagonal of A.

Kurbatov [68, 69] introduces the concept of convolution dominated operators,
which is essentially equivalent to that of the matrix valued Wiener algebra. An
operator A on B(`2) is convolution dominated, if |Ax(k)| ≤ h ∗ |x|(k), where h is
an `1- sequence, and |x| denotes the vector with components |x(k)|. This notion
offers the possibility to measure off-diagonal decay by using results on weighted
convolution algebras.

Baskakov [10, 11], working on convolution dominated operators, applies the
theorem of Bochner-Phillips, a Banach algebra version of Wiener’s Lemma, to show
the inverse-closedness of the algebra of weighted convolution dominated operators
in B(`2). The weight v is assumed to be submultiplicative and to satisfy the Gelfand
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2 1. INTRODUCTION

Raikov Shilov (GRS ) condition, that is, a precise condition on the subexponential
growth of v. It can be shown that this condition is in some sense optimal.

Gröchenig and Leinert [54] investigate “Schur algebras” of matrices, the norm
of which is obtained by a weighted version of Schur’s test. The weight is assumed
to be log-concave and radial, to have minimal polynomial growth and to satisfy
the GRS condition. Using a sequence of auxiliary weights that are constructed by
a procedure similar to the Fenchel-Young conjugate of convex analysis and with
the help of “Barnes’ Lemma” [9, Lemma 4.6] they are able to show the inverse-
closedness of the Schur algebras in B(`2). An interpolation argument proves a
similar statement for algebras of the type considered by Jaffard.

Sun [98] proves the inverse-closedness of algebras of generalized Schur and Jaf-
fard type in B(`2) for polynomial weights using (implicitly) Jackson-Bernstein con-
ditions and a spectral radius estimate. This type of argument is extended in [99] to
matrices indexed with spaces of homogeneous type and more general (anisotropic)
weights.

The treatment in [56] unifies some approaches to off-diagonal decay of matrices
by identification of a “natural class” of matrix algebras that includes the convolu-
tion dominated matrices and the matrices with off-diagonal decay in the sense of
Jaffard. The proof of Baskakov [11] is adapted to this more general situation.

So far most of the research is done on three classes of matrices: The matri-
ces with off-diagonal decay in the sense of Demko and Jaffard, the convolution-
dominated operators (Kurbatov, Baskakov), and matrices in a (generalized) Schur
class. We might conclude that, regardless of the important results discussed above,
algebras of matrices with off-diagonal decay, that are inverse-closed in B(`2) have
not been investigated on a systematic level yet.
In this thesis we treat two systematic constructions of algebras of matrices with
off-diagonal decay and investigate the question of their inverse-closedness. First,
we identify off-diagonal decay of matrices with smoothness, using derivations and
d-parameter automorphism groups. This is suggested by an analysis of Jaffard’s
proof, by Baskakov’s use of operator valued Fourier series, or by a study of the
relation between the decay of a convolution operator and the smoothness of its
symbol. In the second approach we measure off-diagonal decay of matrices by the
quality of approximation with banded matrices. The interplay of smoothness and
approximation theory allows us to obtain Jackson-Bernstein Theorems that relate
the off-diagonal decay of a matrix to the rate of approximation by banded matrices.

Both constructions can be carried out for general Banach algebras and lead to
systematic constructions of inverse-closed subalgebras of a given Banach algebra.
We are not only able to re-derive known results [36, 61] within a unified frame-
work but we can also construct new forms of Banach algebras of matrices with
off-diagonal decay.

Let us finally say a few words about applications and the relevance of the
results in the main part of this work. Matrices with off-diagonal decay are abun-
dant in applications. Without any claim to be exhaustive and focusing on the
area of signal processing and applied Harmonic Analysis we mention the theory of
localized frames [49] with its application to sampling theory, wavelet theory and
time-frequency analysis, e.g. [2, 8, 20, 48, 53, 96]. Applications include modeling
of time variant channels for mobile communications [97]. We also believe that a
theory of approximation of matrices with off-diagonal decay by banded matrices
might have some use in the numerical analysis of such matrices.
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1.2. Organization of the Thesis

In the following we describe the main results of this thesis in more detail.
In Chapter 2 we present notation and background material on weights, and

some results from the theory of Banach algebras, in particular on inverse-closedness.
We introduce the standard examples of Banach algebras of matrices, and list the
known results on off-diagonal decay and inverse-closedness in B(`2) for them.

In Chapter 3 we review and adapt parts of the theory of generalized approx-
imation spaces and algebras developed by Almira and Luther [4, 5, 6, 73]. This
theory allows us to give constructive characterizations of the weighted approxima-
tion spaces of solid matrix algebras (i.e., matrix algebras that are `∞-modules with
componentwise multiplication) of Littlewood-Paley type, see Proposition 3.13. For
Banach algebras a result of Almira and Luther [6] shows that the approximation
spaces Epr (A) of polynomial order are actually Banach algebras for an adapted ap-
proximation scheme. An estimate of their proof can be used to show that Epr (A)
is inverse-closed in A, if A is a symmetric Banach algebra (Theorem 3.26). For
solid and unweighted matrix algebras indexed over Z we can go beyond polynomial
approximations, and obtain inverse-closedness of weighted approximation spaces in
B(`2), where the weights may be subexponential (Proposition 3.29). The method
of proof, if applied to solid matrix algebras over Zd, still gives an approximation
result, but the hypotheses are too cumbersome to be useful.

The theory of smoothness in matrix and Banach algebras is developed in Chap-
ter 4. The formal commutator A → [X,A] = XA − AX with the diagonal matrix
X given by X(k, l) = 2πikδk,l, k, l ∈ Z , has the entries

[X,A](k, l) = 2πi(k − l)A(k, l)

and defines a closed derivation on many matrix algebras of interest, however, the
matrix algebras are neither C∗-algebras (they are only symmetric) nor is this deriva-
tion densely defined. We have to adapt the theory of derivations on C∗- and general
Banach algebras A (e.g., [23, 22, 64, 65]) to show that the domain D(A) of a set
of (commuting) derivations is inverse-closed in A (Proposition 4.8). For solid, sym-
metric matrix algebras this result implies the inverse-closedness of the subalgebras
of integer polynomial weight in B(`2) (Proposition 4.10). In turn, we can formulate
an anisotropic version of Jaffard’s theorem.

In order to describe smoothness and decay conditions of fractional order we
assume the (bounded) action of a d-parameter automorphism group on (a closed
subspace of) the Banach algebra A. For matrix algebras the appropriate concept
is related to homogeneous matrix algebras [32, 33, 34] and the matrix function

χt(A)(r, s) = A(r, s)e2πi(r−s)t

used by Baskakov [10, 11]. The theory of d-parameter (semi)groups on Banach
spaces and the construction of the smoothness spaces of Besov and Bessel potential
type are well-known (see [27] for a classic account, the subject is also treated
briefly in the literature on Besov spaces or in the context of interpolation and
approximation theory [13, 15, 79, 102]) and goes parallel to the corresponding
theory for functions on Rd to a large extent. However, we want to present matters
in a way

- to be useful for applications in approximation theory,
- to work for group actions on Rd that are only defined on a subspace,
- and to be suited to treat the questions of the algebra properties of the

smoothness spaces.
We are able to prove the inverse-closedness of the algebra valued Besov spaces Λpr(A)
and of the Bessel potential spaces Pr(A) in the Banach algebra A (Theorem 4.36,
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Theorem 4.47). An application of the latter result is Proposition 4.49. It states
that, given a homogeneous matrix algebra A, the weighted matrix spaces with
correctly chosen polynomial weights are inverse-closed subalgebras of A.

Remark. A useful tool in the simplification of some proofs is a reiteration
property of Besov spaces (Proposition 4.35). Though certainly well-known (and
easy to prove using the reiteration theorem of interpolation thory), we have not
found a reference in the literature, so a self-contained proof is included in the text.

Chapter 5 is dedicated to the proof of the Jackson-Bernstein Theorem 5.11 on
the equivalence of approximation spaces and Besov spaces. We relate the concepts
of smoothness and approximation developed in the two preceding chapters to each
other and consider the approximation with bandlimited elements. A spectral char-
acterization of bandlimited elements of a Banach space with automorphism group is
in Proposition 5.6, and versions of the Weierstrass approximation theorem are given
in Proposition 5.7 for periodic group actions, and in Corollary 5.16 in the general
case. This theorem identifies the continuous elements of an algebra with the ones
that can be approximated by bandlimited elements. With the Jackson-Bernstein
theorem it is a routine procedure to construct a Littlewood-Paley decomposition
for the Besov or approximation spaces. If A is a homogeneous matrix algebra, we
obtain the following description of the approximation spaces of polynomial order
(Proposition 5.21).

Proposition. If A is a homogeneous matrix algebra, and Φ = {ϕk}k≥−1 a
dyadic partition of unity, then

‖A‖Epr (A) �
( ∞∑
k=0

2kpr
∥∥∥ ∑
b2k−1c≤|l|<2k+1

ϕ̂k(l)Â(l)
∥∥∥p
A

)1/p

.

If A is solid, then the above expression simplifies to

‖A‖Epr (A) �
( ∞∑
k=−1

2kpr
∥∥∥ ∑
b2kc≤|l|<2k+1

Â(l)
∥∥∥p
A

)1/p

.

This should be compared to Proposition 3.13. We do not need assumptions
on the solidity of A, the price to pay is that we consider only approximation of
polynomial order.

In Chapter 6 we provide some results on smoothness and off-diagonal decay
beyond polynomial order. We focus on conditions on the growth of derivations
and investigate the properties of Denjoy-Carleman classes. We adapt a theorem
of Malliavin [74] (see Siddiqi [92]) to the noncommutative setting and show the
inverse-closedness of the Carleman classes under certain natural conditions (Propo-
sition 6.17). In particular, the algebra of analytic elements of A is inverse-closed
in A. If A is a homogeneous matrix algebra, this result implies a version of the
theorems of Demko, Smith, and Moss [36], and of Jaffard [61] on the inverses of
matrices with exponential off-diagonal decay. We are able to prove a similar result
for Carleman classes of matrices that satisfy the condition (M2’) of Komatsu [66] .

While the Carleman classes are locally convex algebras, it is also possible to
obtain results for Banach algebras with infinite smoothness. An interesting example
is provided by the Dales-Davie algebras [31]. Again it is possible to adapt a scalar
result [1] to show that a Dales-Davie algebra obtained from a Banach algebra A
is inverse-closed in A. However, in contrast to the result on the inverse-closedness
of Carleman classes, this result is not optimal. In the special case of algebras of
convolution operators we are able to obtain the optimal result using methods of
approximation theory.
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The results on ultradifferentiable classes are much more scattered than in some
of the previous chapters. One has to admit that this is true to some extent for
the theory of ultradifferentiable functions as well. There are many scales of ultra-
differentiable functions besides Carleman classes (we mention the Beurling Björck
approach), and the concept of Besov spaces does not generalize readily to the ul-
tradifferentiable setting (see, however, [81]).

Remark. A word on the presentation of the material: Some of the proofs in
Section 4.3 and 4.4 might be shorter using some interpolation theory. I have chosen
a more “pedestrian” approach, which, if nothing else, might let appreciate a reader
the compactness and elegance of the interpolation approach.

Remark. Parts of the results of this thesis will be published in Constructive
Approximation (joint work with Karlheinz Gröchenig). A preprint can be found
in [52].





CHAPTER 2

Preliminaries and Resources

2.1. Notation

2.1.1. Symbols, Sets, and Spaces. Constants will be denoted by C, C ′,C1,c,
etc.. The same symbol might denote different constants in each equation.

The cardinality of a finite set A is |A|. The natural numbers are N = {1, 2, . . .},
and N0 = N ∪ {0}. For an integer d ≥ 1 the sets Zd, Rd, Cd denote d-tuples of
integers, real and complex numbers, respectively, the symbol d will always have this
meaning. The d-dimensional torus is Td = Rd/Zd and will be often identified with
the unit cube [0, 1)d. Let Cd∗ = Cd \ {0}, and Rd∗ = Rd \ {0}. For a real number x,
bxc is the greatest integer smaller or equal to x.

A multi-index α = (α1, . . . , αd) ∈ Nd0 is a d-tuple of nonnegative integers. We
set xα = xα1

1 · · ·x
αd
d , and Dαf(x) = ∂α1

1 · · · ∂
αd
d f(x) is the partial derivative. The

binomial coefficients are
(
α
β

)
=
(
α1
β1

)
· · ·
(
α1
β1

)
, and the factorial is α! = α1! · · ·αd!.

The degree of xα is |α| =
∑d
j=1 αj , and β ≤ α means that βj ≤ αj for j = 1, . . . , d.

In Chapter 6 we need the relation |α|! < d|α|α!, it can be obtained from the multi-
nomial theorem by setting all d summands to one.

If f and g are positive functions, f � g means that C1f ≤ g ≤ C2f for positive
constants C1, C2. If there are chains of inequalities of the form f ≤ C1g ≤ C2h · · ·
and the constants C1, C2, . . . are unimportant for our argument, we sometimes use
the notation f . g (f & g) to express that there is a constant C > 0 such that
f ≤ Cg (f ≥ Cg).

For x in Cd and 1 ≤ p ≤ ∞ let |x|p denote be the p-norm of x, |x| will be
used for the 1-norm. The vectors ek, 1 ≤ k ≤ d, are the standard basis of Cd. The
standard scalar product on Cd is x · y =

∑d
k=1 xkȳk.

More generally, if Λ is an arbitrary set, the space `p(Λ), 1 ≤ p ≤ ∞, consists
of the sequences (xλ)λ∈Λ, for which the norm

‖x‖`p(Λ) =

{(∑
λ∈Λ|x|

p
λ

)1/p
, p <∞,

supλ∈Λ|x|λ, p =∞

is finite. We will always use the symbol p′ to denote the conjugate exponent to p,
1 ≤ p ≤ ∞, that is 1/p′ = 1− 1/p. If nothing else is said, the symbols p and q will
always be used for `p spaces.

The standard basis in `p(Zd) is ek = (δjk)j∈Zd , 〈x, y〉 =
∑
k∈Zd x(k)y(k) is the

standard dual pairing between `p(Zd) and its dual `p
′
(Zd). If p = 2, we define the

scalar product as 〈x, y〉 =
∑
k∈Zd x(k)y(k). This should not lead to confusion.

The support of a sequence x = (xλ)λ∈Λ is the set of nonzero coordinates:
supp(x) = {λ ∈ Λ: xλ 6= 0}.

7



8 2. PRELIMINARIES AND RESOURCES

Let S (Rd) denote the Schwartz space of rapidly decreasing functions on Rd.
The Fourier transform of f ∈ S (Rd) is Ff(ω) = f̂(ω) =

∫
Rd f(x)e−2πiω·x dx. This

definition is extended by duality to S ′(Rd), the space of tempered distributions.
The same symbol is also used for the Fourier transform on Zd and Td.

The continuous embedding of the normed space X into the normed space Y is
denoted as X ↪→ Y . The operator norm of a bounded linear mapping A : X → Y
between Banach spaces is denoted by ‖A‖X→Y . In the special case of operators
A : `2(Zd) → `2(Zd) we write ‖A‖B(`2(Zd)) = ‖A‖`2(Zd)→`2(Zd). If there is little
chance of confusion, we write ‖A‖B(`2).

We will consider Banach spaces with equivalent norms as equal.

2.1.2. Weights, Weighted Spaces, and Algebras. Decay conditions are
often quantified by using weight functions. A weight w on a measure space X is
a locally integrable, locally bounded, strictly positive function on X. We will use
weights defined on Zd to measure off-diagonal decay of matrices, and weights on
N0 and occasionally on R+

0 to define approximation spaces. If nothing else is said
we will always assume that

w(0) = 1 .
We will further assume that all weights are defined on Zd if nothing else is stated.

Special classes of weight functions are used to describe Banach algebra prop-
erties, module properties and spectral invariance of the underlying spaces. For a
detailed discussion in the context of time frequency analysis see [50]. Feichtinger’s
fundamental paper [40] is an important source for weighted convolution algebras,
see also [39].

A weight v on Zd is submultiplicative if v(x+ y) ≤ v(x)v(y) for all x, y ∈ Zd. If
v(x+ y) ≤ Cv(x)v(y) for some constant C > 1, then v is weakly submultiplicative.
A weight w is v-moderate, if w(x+ y) ≤ Cw(x)v(y). The weight v is subconvolutive
if 1/v ∈ `1(Zd) and 1/v ∗ 1/v ≤ C/v. Note that subconvolutive weights are also
(weakly) submultiplicative.

Definition 2.1. A weight w on Zd satisfies the Gelfand, Raikov , Shilov (GRS)-
condition if

lim
n→∞

w(nx)1/n = 1 for all x ∈ Zd.

A discussion of the GRS condition can be found in [50], see also Section 2.2.1.
A weight v on Zd is radial, if v(k) = v(|k| e1) for all k ∈ Zd, v is symmetric, if
v(k) = v(−k) for all k ∈ Zd.

The standard polynomial weights on Zd are denoted as vr(k) = (1+|k|)r, r > 0.
If r > d/p′, then vr is an algebra weight on `p(Zd).

Convention. We will often construct some “weighted object” Av from a
unweighted object A. If v is a polynomial weight, v = vr we often abbreviate
Ar = Avr .

We call a weight v an algebra weight on `p(Zd) for 1 ≤ p ≤ ∞, if 1/v ∈ `p′(Zd),
and (∑

k∈Zd

1(
v(k) v(l − k)

)p′ )1/p′

≤ C

v(l)
for all l ∈ Zd ,

with the obvious modification for p = 1 . If 1 < p ≤ ∞, then v is an algebra weight
if and only if vp

′
is subconvolutive. A weight is an algebra weight for `1(Zd) if and

only if it is weakly submultiplicative. Algebra weights are used to define Banach
algebras of weighted `p-spaces over Zd. We write down the relevant definitions and
results.
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Let w be a weight on Zd. A sequence x = (xk)k∈Zd is an element of the weighted
space `pw(Zd) if ‖x‖`pw(Zd) = ‖xw‖`p(Zd) <∞.

Proposition 2.2 ([40, Satz 3.6]). A sufficient condition for the space `pw(Zd),
1 ≤ p ≤ ∞ to be a Banach algebra under convolution is that w is an algebra weight
([104], see also [39, 63]). If p = 1 or p =∞, this condition is also necessary.

In [39, 3.2.8], [78, 7.1.5] simple additional conditions on the weight can be
found that lead to a characterization of convolution algebras for 1 < p <∞. Note
that 1/w ∈ `p′(Zd) implies that `pw(Zd) ⊆ `1(Zd).

Corollary 2.3. The space `pr(Zd) is a convolution algebra if and only if r >
d/p′.

Let w be a symmetric algebra weight on `p(Zd). With the involution x∗(k) =
x(−k), where x denotes the complex conjugate of x, the space `pw(Zd) is a Banach-
∗-algebra (see Section 2.2).

Solid convolution algebras. The spaces `pw(Zd) with w an algebra weight
do not exhaust the class of sequence spaces that are Banach algebras under convo-
lution. In Section 2.3 we need convolution algebras of solid sequence spaces.

Definition 2.4. Let X be a Banach space of sequences x = (xλ)λ∈Λ, where Λ
is an arbitrary index set. The space X is solid if

|xλ| ≤ |yλ| for all λ ∈ Λ implies ‖x‖X ≤ ‖y‖X
for all x, y ∈ X .

Solid spaces of sequences and functions are often used, so there are many similar
or equivalent concepts, including Banach sequence or Banach function spaces, Riesz
spaces, or Banach lattices [13, 106].

Proposition 2.5 ([56, Theorem 3.1]). If A is a solid Banach-*-algebra of
sequences under convolution on Zd, then ‖a‖`1(Zd) ≤ ‖a‖A. In particular, the space
`1(Zd) is the maximal solid Banach-*-algebra on Zd.

2.1.3. Matrices. An infinite matrix A (over Zd) is a function A : Zd×Zd → C.
If A : `p(Zd) → `q(Zd) is a bounded operator, we identify it with the matrix A
having entries A(k, l) = 〈Ael, ek〉.

We need to interpret the diagonals of a matrix both as matrices and as se-
quences.

Definition 2.6. The mth side diagonal Â(m) of the matrix A is the matrix

(2.1) Â(m)(k, l) =

{
A(k, l), k − l = m,

0, otherwise.

Furthermore let A[m] =
(
A(k, k−m)

)
k∈Zd be the m-th diagonal sequence associated

to A.
The matrix A is banded with bandwidth N if

(2.2) A =
∑

|m|∞≤N

Â(m).

We denote the banded matrices with bandwidth N − 1 by TN .

Remark. The choice of the infinity norm in the definition of banded matrices
is justified in Corollary 5.9, where we identify banded matrices with bandlimited
elements of a Banach algebra. The reader may check that results that do not
depend on this identifications are valid for general choices of a norm on Zd.
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Special Matrices and Operators. The adjoint of a matrix A is the matrix A∗

with entries A∗(k, l) = A(l, k). The translation operator on `pw(Zd) is given by
(Tkx)(l) = x(l − k).

More generally, if v is submultiplicative and w is v-moderate, the convolution
operator

Cf : `pw(Zd)→ `pw(Zd), (Cfx)(l) =
∑
k∈Zd

f(l − k)x(k)

is well defined for every f ∈ `1v(Zd) and satisfies

‖Cfx‖`pw(Zd) ≤ ‖f‖`1v(Zd)‖x‖`pw(Zd)

for every x ∈ `pw(Zd). Note that C∗f = Cf∗ . If A is a solid convolution algebra, we
define the algebra of convolution operators generated by A as

Conv(A) = {Cf : f ∈ A} ⊂ B(`2) .

We will need the modulation operator (Mtx)(k) = e2πik·tx(k), t ∈ Rd to de-
scribe decay properties of matrices. Obviously it defines an isometry on any solid
sequence space.

2.2. Concepts from the Theory of Banach Algebras

Many parts of our investigations on off-diagonal decay of matrices and their
inverses can (and will) be carried out in the broader context of Banach algebras.
Besides standard material we will use some less known concepts.

All Banach algebras are assumed to be unital. To verify that a Banach space
A with norm ‖ ‖A is a Banach algebra we will often prove the weaker property
‖ab‖A ≤ C‖a‖A‖b‖A for some constant C. The norm ‖a‖′A = sup‖b‖A=1‖ab‖A is
then an equivalent norm on A and satisfies ‖ab‖′A ≤ ‖a‖′A‖b‖′A.

2.2.1. Inverse Closed Subalgebras. It is natural to ask if the off-diagonal
decay of a matrix is preserved by inversion. To be more precise: Let A be a Banach
algebra of matrices, and let A ∈ A be invertible in B(`2). Is A−1 ∈ A ?

Definition 2.7 (Inverse-closedness). Let A ⊆ B be a nested pair of (Banach)
algebras with a common identity. The Banach algebra A is called inverse-closed in
B, if

(2.3) a ∈ A and a−1 ∈ B implies a−1 ∈ A.

Inverse-closedness is equivalent to spectral invariance. This means that the
spectrum σA(a) = {λ ∈ C : a−λ not invertible in A} of an element a ∈ A does not
depend on the algebra, and so

σA(a) = σB(a), for all a ∈ A.
The relation of inverse-closedness is transitive: If A is inverse-closed in B and B is
inverse-closed in C, then A is inverse-closed in C.

Inverse-closedness can be defined for general algebras. We will use it for locally
convex algebras of matrices in Chapter 6.

Remark. The property of A being inverse-closed in B can be seen as gener-
alization of Wiener’s Lemma: Actually, Wiener’s Lemma states precisely that the
Wiener algebra F`1(Zd) of absolutely convergent Fourier series is inverse-closed
in C(Td). See [51] for a concise overview of the importance of the concept of
inverse-closedness.

This is a convenient place to address the relevance of GRS weights (Defini-
tion 2.1).
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Proposition 2.8 ([51, Cor 3.4]). Let v be a submultiplicative weight on Zd.
The algebra

F`1v(Zd) = {f ∈ C(Td) :
(
f̂(k)

)
k∈Zd ∈ `

1
v(Zd)}

is inverse-closed in C(Td) if and only if v satisfies the GRS condition.

Proposition 2.8 can be restated as a result on convolution operators.

Corollary 2.9. Let v be a submultiplicative weight on Zd. The Banach algebra
Conv(`1v(Zd)) with the norm ‖Ca‖Conv(`1v(Zd)) = ‖a‖`1v(Zd) is inverse-closed in B(`2)
if and only if v satisfies the GRS condition.

It is easy to see this by taking the Fourier transform of both Conv(`1v(Zd)) and
B(`2). The unweighted case is discussed in more detail in [51, 2.11].

If v does not satisfy the GRS condition, then there is a k ∈ Zd and a constant
c > 0 such that v(nk) ≥ ecn for all n large enough. If Tk is the translation operator
defined in Section 2.1.3, and if 0 < δ < c, the operator A = id−e−δTk is in B(`2),
and, using the geometric series,

A−1 =
∞∑
l=0

e−δlTl k

is in B(`2) as well. But ‖A−1‖Conv =
∑∞
l=0 e

−δlv(l k) =∞.

2.2.2. The Lemma of Hulanicki. The verification of inverse-closedness is
often nontrivial. Under additional conditions this verification is sometimes possible
by using an argument of Hulanicki [60], see [41] for a corrected proof.

We call the Banach algebra A a Banach ∗-algebra if it has an involution ∗ that
is isometric, ‖a∗‖A = ‖a‖A for all a ∈ A.

The Banach ∗-algebra A is symmetric, if the spectrum of positive elements is
non-negative,

σA(a∗a) ⊆ [0,∞)
for all a ∈ A.

Denote the spectral radius of a ∈ A by ρA(a) = sup{|λ| : λ ∈ σA(a)}.

Proposition 2.10 (Hulanicki’s Lemma). Let B be a symmetric Banach algebra,
A ⊆ B a ∗-subalgebra with a common involution and a common unit element. The
following statements are equivalent.

(1) A is inverse-closed in B.
(2) ρA(a) = ρB(a) for all a = a∗ in A.

In particular, if A is a closed ∗-subalgebra of B, then A is inverse-closed in B.

Proof. Only the implication (2) ⇒ (1) is nontrivial. We assume first that
a ∈ A is invertible in B and satisfies

(2.4) a = c∗c ≥ 0, and ‖a‖B < 1 .

Then σB(a) is contained in an interval [α, β] for some 0 < α ≤ β < 1. So

σB(1− a) ⊂ [1− β, 1− α] ⊂ (0, 1) .

This implies that the series a−1 =
∑∞
k=0(1 − a)k converges in B. As 1 − a is

hermitian, we have ρB(1− a) = ρA(1− a) ≤ 1−α < 1 by assumption; so there is a
positive integer k0 such that ‖(1 − a)k0‖1/k0

A < 1. We rewrite the geometric series
in the form

∞∑
k=0

(1− a)k =
k0−1∑
l=0

∞∑
m=0

(1− a)m k0+l,

which proves the convergence of the series in A. So we have shown that a−1 ∈ A.
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The general situation of a ∈ A, with a−1 ∈ B can be reduced to the case above
by introducing

b =
a∗a

2‖a∗a‖B
.

The element b satisfies (2.4), so it has an inverse in A. Writing

1 = b−1b =
b−1a∗

2‖a∗a‖B
a

verifies that a has a left inverse in A. A similar procedure establishes the existence
of a right inverse for a. �

2.2.3. Brandenburg’s trick ([21]). This method is sometimes used to prove
the equality of spectral radii. Let A ⊆ B be two Banach algebras with the same
identity and involution, and assume that B is symmetric. Assume that the norms
satisfy

(2.5) ‖ab‖A ≤ C(‖a‖A‖b‖B + ‖b‖A‖a‖B) for all a, b ∈ A.
If we apply (2.5) with a = b = cn, we obtain

‖c2n‖A ≤ 2C‖cn‖A‖cn‖B.
Taking nth roots and the limit n → ∞ yields ρA(c) ≤ ρB(c). Since the reverse
inequality is always true for A ⊆ B, we obtain the equality of spectral radii. By
Proposition 2.10, A is inverse-closed in B, .

Remark. Note that the inequality (2.5) is related to the concept of Dp subal-
gebras (if p = 1) considered in [65], see also [19].

2.3. Algebras of Matrices With Off Diagonal Decay

Off-diagonal decay of matrices is usually defined by weights. In this section we
review examples of Banach spaces of matrices with off-diagonal decay used in the
literature, and we define weighted matrix spaces and algebras.

2.3.1. Matrices Dominated by Convolution Operators.

Definition 2.11 ([56]). Let A ⊆ `1(Zd) be a solid Banach space of sequences
over Zd. A matrix A belongs to CA, if (‖A[k]‖`∞(Zd))k∈Zd ∈ A. The norm of A in
CA is

‖A‖CA =
∥∥∥(‖A[k]‖`∞(Zd)

)
k∈Zd

∥∥∥
A
.

If A = `pw(Zd), we use the notation Cpw for C`pw(Zd). Explicitly the norm on Cpw is

‖A‖Cpw =
(∑
k∈Zd
‖A[k]‖p

`∞(Zd)
w(k)p

)1/p

.

By definition the mapping A → CA, f 7→ Cf is an isometric embedding. If A
is a solid Banach-∗-algebra under convolution over Zd, then Proposition 2.5 implies
that A ⊆ `1(Zd). The following result describes basic properties of CA.

Proposition 2.12 ([56, Lemma 3.4]). Let A be a solid Banach-∗-algebra under
convolution over Zd. Then

(1) CA is a solid Banach-∗-algebra of matrices.
(2) If Y is a solid space of sequences over Zd, and if A∗Y ⊆ Y, then CA·Y ⊆ Y,

and ‖Ax‖Y ≤ ‖A‖CA‖y‖Y for all A ∈ CA and y ∈ Y.
(3) In particular, CA ⊆ B(`2) and ‖A‖B(`2) ≤ ‖A‖CA .

The spaces CA are important because they are inverse-closed in B(`2).
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Proposition 2.13. If A is a solid, Banach-∗-algebra of sequences convolution
over Zd, then the following are equivalent.

(1) The algebra CA is inverse-closed in B(`2).
(2) The algebra Conv(A) = {Cx : x ∈ A} is inverse-closed in B(`2).
(3) The weight w(k) = ‖ek‖A, k ∈ Zd, satisfies the GRS condition.

Different versions of this important theorem have been proved by different
methods, see the remarks below. A compact proof is in [56, Theorem 3.2].

Remarks. Inverse-closedness of C∞vs in B(`2) has been proved by Jaffard [61]
and Baskakov [10, 11] for polynomial weights vs, a very simple proof is due
to Sun [98]. For a general subconvolutive weight a proof is by Baskakov [11];
Gröchenig and Leinert give a different proof in [55].

The inverse-closedness of C1
v0

in B(`2) was proved by Gohberg, Kaashoek and
Woerdeman in [44], and by Sjöstrand in [93]. For submultiplicative GRS weights
the proof is by Baskakov [11].

The matrices in C1
v are also known as convolution dominated operators: A ∈ C1

v ,
v submultiplicative if and only if there is a h ∈ `1v(Zd) such that |Ax(k)| ≤ h∗|x|(k),
where |x| denotes the vector with components (|x(k)|)k∈Zd .

2.3.2. Schur Classes. A second scale of Banach algebras of matrices is given
by the weighted Schur algebras.

Definition 2.14 ([54], [98, 99] for general p). Let w be a weight, and 1 ≤
p ≤ ∞. A matrix A is in the Schur class Spw if the norm

‖A‖Spw = max
{

sup
k∈Zd

(∑
l∈Zd

A(k, l)pw(k− l)p
)1/p

, sup
l∈Zd

(∑
k∈Zd

A(k, l)pw(k− l)p
)1/p

}
is finite.

Lemma 2.15. If 1/w ∈ `p′(Zd) then Spw ⊆ S1
0 .

Proof. This follows from the corresponding inclusion of weighted `p-spaces
(see the remark after Proposition 2.2). �

Proposition 2.16. If 1 ≤ p ≤ ∞ and w is an algebra weight for `p(Zd), then
Spw is a Banach-∗-algebra embedded in B(`2).

Proof. The inclusion S1
0 ⊆ B(`2) is the content of the Schur test for infinite

matrices (see, e.g., [48, 6.2.1]). To prove that Spw is a Banach algebra we adapt the
proof that `pw(Zd) is a convolution algebra if w is an algebra weight [63, 104]. Let
A,B ∈ Spw and define matrices Aw, Bw by Aw(r, s) = A(r, s)w(r − s), Bw(r, s) =
B(r, s)w(r − s). Then ‖Aw‖Sp0 = ‖A‖Spw , likewise for B and Bw. We obtain

Q :=
(∑
s∈Zd
|(AB)(r, s)|pw(r − s)p

)1/p

≤
(∑
s∈Zd

(∑
u∈Zd
|A(r, u)B(u, s)|

)p
w(r − s)p

)1/p

=
(∑
s∈Zd

(∑
u∈Zd

γr,s,u|Aw(r, u)||Bw(u, s)|
)p)1/p

with

γr,s,u =
w(r − s)

w(r − u)w(u− s)
.

Using Hölder’s inequality we obtain the estimate∑
u∈Zd

γr,s,u|Aw(r, u)||Bw(u, s)| ≤
(∑
u∈Zd

γp
′

r,s,u

)1/p′(∑
u∈Zd
|Aw(r, u)Bw(u, s)|p

)1/p

,
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and so

Qp ≤
∑
s∈Zd

(∑
u∈Zd

γp
′

r,s,u

)p/p′(∑
u∈Zd
|Aw(r, u)Bw(u, s)|p

)
≤ sup
s∈Zd

(∑
u∈Zd

γp
′

r,s,u

)p/p′ ∑
s∈Zd

∑
u∈Zd
|Aw(r, u)|p|Bw(u, s)|p

= Cpr
∑
u∈Zd
|Aw(r, u)|p

∑
s∈Zd
|Bw(u, s)|p

with

(2.6) Cr = sup
s∈Zd

(∑
u∈Zd

γp
′

r,s,u

)1/p′

.

It is easy to verify that Cr is actually independent of r. Using Hölder’s inequality
again we obtain

Qp ≤ Cpr
(∑
u∈Zd
|Aw(r, u)|p

)
sup
u

(∑
s∈Zd
|Bw(u, s)|p

)
≤ Cpr ‖Aw‖

p
Sp0
‖Bw‖pSp0 .

An easy computation verifies that (2.6) is actually equivalent to 1/wp
′ ∗ 1/wp

′ ≤
C/wp

′
. This is the condition for w being an algebra weight and verifies that Cr <∞,

and finally proves the Banach algebra property. All other assertions are straight-
forward. �

Remarks.

(1) The scales Spw and Cpw are identical at the endpoint p =∞, i.e. S∞w = C∞w .
(2) It is easy to see that ‖A‖Spw ≤ ‖A‖Cpw for all A ∈ Cpw.

Again, the question, whether Spw is inverse-closed in B(`2) is of interest.

Proposition 2.17 ([54]). Let v be a weight of the form v(k) = eρ(|k|2), where
ρ is a continuous concave function with ρ(0) = 0 (such a weight is automatically
submultiplicative). Assume further that v satisfies the GRS-condition and that v is
weakly growing, that is,

(2.7) v(k) ≥ C(1 + |k|)δ for some 0 < δ ≤ 1.

Then the Schur-algebra S1
v is inverse-closed in B(`2).

Sun [98] has obtained the following result for polynomial weights vr.

Proposition 2.18. Let 1 ≤ p ≤ ∞. If r > d/p′ then Spr is inverse-closed in
B(`2(Zd)).

In [99] more general (nonradial) weights are used. However, the methods do
not allow to reproduce the result of [54].

2.3.3. A General Approach to Weighted Matrix Spaces. A matrix
space X is a Banach space of matrices over Zd. We denote the banded matri-
ces of bandwidth n−1 that are in X by Tn(X ). If possible we drop the dependence
on X .
A matrix algebra A (over Zd) is a Banach algebra of matrices that is continu-
ously embedded in B(`2(Zd)). We drop the reference to the index set Zd whenever
possible.

We gather some simple properties of matrix spaces and algebras.

Lemma 2.19.
(1) If A is a matrix algebra, the selection of matrix elements is continuous:
|A(k, l)| ≤ C‖A‖A.
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(2) If A is a Banach-∗-algebra of matrices, and A ⊆ B(`2), then ‖A‖B(`2) ≤
‖A‖A. In particular, A is a matrix algebra.

Proof. (1) |A(k, l)| = |〈Aek, el〉| ≤ ‖A‖B(`2) ≤ C‖A‖A.
(2) (see, e.g., [87]). Let ρA(A) denote the spectral radius of A as an element of

the matrix algebra A, and ρB(`2)(A) the spectral radius of A in B(`2). By known
properties of the spectral radius we obtain ‖A‖2B(`2) = ‖A∗A‖B(`2) = ρB(`2)(A∗A) ≤
ρA(A∗A) ≤ ‖A∗A‖A ≤ ‖A‖2A. �

Definition 2.20. Let X be a matrix space and w a weight on Zd. The weighted
matrix space Xw consists of the matrices A ∈ X such that the matrix Aw with
entries

Aw(k, l) = A(k, l)w(k − l) ,
is in X . The norm on Xw is ‖A‖Xw = ‖Aw‖X .

If A is a matrix algebra on Zd and w a weight on Zd, then it is interesting to
know if Aw is a matrix algebra again.

Proposition 2.21. If A is a solid matrix algebra, i.e., A is solid as a sequence
space, and w is a submultiplicative weight, then Aw is a solid matrix algebra.

Proof. The only nontrivial part is to verify that the Aw-norm is submulti-
plicative. Let A,B be in Aw. We write Aw(k, l) = A(k, l)w(k − l) as above, and
|A| for the matrix with entries |A(k, l)|. We obtain the following estimate for the
entries of |(AB)w|.

|(AB)w|(k, l) =
∣∣∣∑
m

A(k,m)B(m, l)w(k − l)
∣∣∣

≤
∑
m

|A(k,m)w(k −m)| |B(m, l)w(m− l)| = (|Aw||Bw|)(k, l) .

Consequently,

‖AB‖Aw = ‖(AB)w‖A ≤ ‖AwBw‖A ≤ ‖Aw‖A‖Bw‖A = ‖A‖Aw‖B‖Aw . �

For a certain class of polynomial weights we will prove a similar theorem for
more general non solid matrix algebras. In this case we will be able to show the
inverse-closedness of Aw in A (see Section 4.4.3).





CHAPTER 3

Generalized Approximation Spaces and Algebras

As already stated in the introduction it is possible to measure the off-diagonal
decay of matrices in terms of the speed of approximation with banded matrices.
The precise description is by means of generalized approximation spaces. A theory
of generalized approximation spaces has been developed by Almira and Luther
(see [4, 5, 73], and, for approximation of Banach algebras [6]). As we need only
special cases of this theory, we give a condensed and simplified survey in Section 3.2.

It is possible without any additional effort to develop the whole theory for
symmetric Banach algebras, if the approximation scheme is compatible with the
algebra multiplication. For approximation of polynomial order we obtain results on
the algebra structure of approximation spaces in Section 3.3. For approximation
orders beyond the polynomial order, we need additional properties of the Banach
algebra. The most complete results can be achieved for solid matrix algebras over
Z (see Section 3.3.3).

3.1. Definitions

Though our main interest lies in the theory of approximation algebras, we have
to define terms and derive results valid in the more general context of approximation
spaces.

Definition 3.1. Let the index set Λ be either R+
0 or N0. A (linear) approxi-

mation scheme on the Banach space X is a family (Xλ)λ∈Λ of closed subspaces Xλ

of X that fulfill the conditions

(3.1) X0 = {0} and Xλ ⊆ Xµ for λ ≤ µ.

Remark. General (nonlinear) approximation schemes replace the condition
that the Xλ are subspaces by conditions of the form Xλ + Xλ ⊆ Xφ(λ) for some
bounded function φ, see [5, 26, 73]. We treat only linear approximation schemes.

The λ-th approximation error of a ∈ X by Xλ is

(3.2) EXλ (a) = Eλ(a) = inf
x∈Xλ

‖a− x‖X .

Note that the functionals Eλ define nested seminorms on X , i.e.,

Eλ(a) ≥ Eµ(a) for λ ≤ µ, E0(a) = ‖a‖X .

Remarks.

(1) Let X be a solid space of sequences over Zd. Assume that the approxima-
tion scheme on X can be described by a nested support condition

Xk = {x ∈ X : supp(x) ⊆ Nk}
with Nj ⊂ Nj+1 ⊆ Zd for all j ∈ N0, then Ek(x) = ‖x − x cNk‖X ,
where cNk is the characteristic function of Nk. In particular, if X is a
solid matrix space, and Xn = Tn, the (n− 1)-banded matrices, then

(3.3) En(A) = ‖A−
∑
|j|∞<n

Â(j)‖X .

17
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(2) Observe that we do not assume that limn→∞En(a) = 0 for all a ∈ X .
In general, the subspace of banded matrices is not dense in X . As a
matter of fact, there are “natural” matrices in matrix spaces that are not
approximable by banded matrices. Define the anti-diagonal matrix Γr by

Γr(k, l) =

{
(1 + |2k|)−r, l = −k
0, l 6= −k.

Then Γr ∈ C∞r and Γr ∈ S1
r , and in fact ‖Γr‖C∞r = ‖Γr‖S1

r
= 1. Likewise,

Γ0 is unitary in B(`2). However, it is easy to see that

E
S1
r

k (Γr) = E
C∞r
k (Γr) = 1.

By a simple argument EB(`2)
k (Γ0) = 1 as well.

Specifying a rate of decay given by a weight w on Λ, we define a class of
approximation spaces Epw(X ) by the norm

(3.4) ‖a‖pEpw(X )
=

{
‖a‖pX +

∫∞
1
Eλ(a)pw(λ)p dλ, for Λ = R+

0 ,∑∞
k=0Ek(a)pw(k)p, for Λ = N0 ,

for 1 ≤ p < ∞ with the obvious change for p = ∞. Equivalent weights yield
equivalent norms on the spaces Epw(X ).

If the weight w on R+
0 satisfies a moderate regularity condition, then an ap-

proximation space with approximation scheme (Xλ)λ∈R+
0

can be identified with its
discretized version using the approximation scheme (Xk)k∈N0 . Assume that

w(k) �
(∫ k+1

k

w(t)p dt
)1/p

, 1 ≤ p <∞

w(k) � sup
t∈[k,k+1)

w(t) , p =∞,
(3.5)

then both norms in (3.4) are equivalent.

Definition 3.2 (Classical approximation spaces). If X is a Banach space and
r ≥ 0 (r > 0, if p = ∞) the classical approximation space Epr (X ) consists of those
x ∈ X , for which the norm

(3.6) ‖x‖Epr (X ) =
( ∞∑
k=0

(
Ek(x)(1 + k)r

)p 1
1 + k

)1/p

is finite (standard modification for p =∞).

We introduce this normalization to be in accordance with the literature for
approximation spaces with polynomial weights [29, 37, 83]. In particular, it is
easy to formulate the relation of the classical approximation spaces to Besov spaces
(see Chapter 5).

The reader should be warned that the normalization (3.6) might produce results
that look confusing or inconsistent. If w(λ) = vr−1/p(λ) = (1 + λ)r−1/p with r ≥ 0
we obtain

Epr (X ) = Epvr−1/p
(X ).

We define E0(X ) as the closure of ∪λXλ in X . Obviously this is also the set of
all elements a ∈ X for which Eλ(a)→ 0.

Remark. If X is a matrix space and the approximation scheme is given by
Xn = Tn, the space E0(X ) is called the space of band-dominated operators in
[85, 86].
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Let us state some simple facts about approximation spaces.

Proposition 3.3. Let X and Y be Banach spaces with Y ⊆ X , and with
common approximation scheme Xk = Yk for k ∈ N0. If v and w are weights on
N0, and 1 ≤ p ≤ ∞, then the spaces Epw(X ) and E0(X ) are Banach spaces. The
following inclusion relations hold:

X ⊆ Y ⇒ Epw(X ) ⊆ Epw(Y) .

p ≤ q ⇒ Epw(X ) ⊆ Eqw(X ) .

v ≤ C w ⇒ Epw(X ) ⊆ Epv (X ) .

The proofs are straightforward.
In many arguments we need regularity conditions for the weights, or we have

to know that an approximation space is a proper subspace of the underlying space.
We put these conditions into a definition.

Definition 3.4. A weight w on Λ = N0 or Λ = R+
0 is an approximation weight,

if it satisfies the following conditions.

(1) ‖w(k)‖Lp(Λ) =∞,
(2) w(k + 1) ≤ Cww(k),

where Cw is the growth constant for w. Additionally, we assume that an approxi-
mation weight on R+

0 satisfies (3.5).

The first condition forces a minimal growth of the weights. Indeed, if ‖w‖`p(N0) <
∞ then Epw(X ) = X . The second condition on an approximation weight is satisfied
by every submultiplicative weight on N0.

Lemma 3.5. Let w be a weight on N0, and assume that ‖w‖`p(N0) = ∞. If
a ∈ Epw(X ), then limn→∞En(a) = 0. In particular, Epw(X ) ⊆ E0(X ).

Proof ([5, 73]). Assume first that p < ∞. Let ε > 0 and a ∈ Epw(X ). Then
there is an n0 such that for all m ≥ n0

Epm(a)
m∑

k=n0

w(k)p ≤
m∑

k=n0

Epk(a)w(k)p ≤ ε.

For m → ∞ this statement can be true only if limk→∞Epk(a) = 0. The proof for
p =∞ is simpler. The definition of E0(X ) then implies that Epw(X ) ⊆ E0(X ). �

Lemma 3.5 is needed at various places, e.g., in the proof of the “Equivalence
Lemma” (Lemma 3.9), in Corollary 3.10, 3.11 and in the proof of Theorem 3.28. The
Lemma assures that all elements of an approximation space can be approximated
by elements of the approximation scheme.

Remark. Note that for p <∞ the constant weight v0 = 1 is an approximation
weight. In particular, the classical approximation spaces Epr (X ) fulfill condition (1)
if and only if r ≥ 0 (p <∞) or r > 0 (p =∞).

For the matrix spaces Cpv the norm in Epw(Cpv ) can be computed explicitly.

Proposition 3.6. If v is a weight on Zd, and w is an approximation weight,
then

(3.7) Epw(Cpv ) = Cp
v W̃p

with W̃p(k) =
(∑

j≤|k|∞ w(j)p
)1/p, if p <∞ and W̃∞(k) = supj≤|k|∞ w(j).
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Proof. Note that by (3.3) the approximation error is

Ej(A) = E
Cpv
j (A) =

( ∑
|k|∞≥j

‖A[k]‖p∞v(k)p
)1/p

.

With the function

u(j, k) =

{
1, |k|∞ ≥ j
0, else

we get

‖A‖pEpw(Cpv)
=
∞∑
j=0

E
Cpv
j (A)pw(j)p

=
∞∑
j=0

( ∑
|k|∞≥j

‖A[k]‖p∞v(k)p
)
w(j)p

=
∞∑
j=0

∑
k∈Zd

u(j, k)‖A[k]‖p∞v(k)pw(j)p

=
∑
k∈Zd
‖A[k]‖p∞v(k)p

∞∑
j=0

u(j, k)w(j)p

=
∑
k∈Zd
‖A[k]‖p∞v(k)p

∑
j≤|k|∞

w(j)p

= ‖A‖pCp
v W̃p

.

�

Remark. If p = 1, it is not difficult to show that W̃1 is weakly submultiplica-
tive, if w is submultiplicative.

Example 3.7 (Classical approximation spaces). In order to identify the clas-
sical approximation spaces Epr (Cps ) for r, s ≥ 0, we need the following fact.

w(λ) =(1 + λ)r−1/p

⇒ W̃p(k) �


vr(k), r > 0 and 1 ≤ p ≤ ∞,
log(e+ |k|∞)1/p, r = 0 and 1 ≤ p <∞,
1, r = 0 and p =∞ .

(3.8)

Then

(3.9) Epr (Cps ) =


Cpr+s, r > 0 and 1 ≤ p ≤ ∞,
Cp
vs log(e+|·|∞)1/p , r = 0 and 1 ≤ p <∞,
Cps , r = 0 and p =∞ .

The following result indicates the relationship between approximation with
banded matrices and off-diagonal decay.

Corollary 3.8. If A is a solid matrix algebra and w an approximation weight,
then E∞w (A) ⊆ C∞w(|·|∞), and A ∈ E∞w (A) decays with the order O(1/w(|n|∞)) off
the diagonal.

Proof. If A is a solid matrix algebra, then for A ∈ A

En(A) = ‖A−
∑
|k|∞<n

Â(k)‖A
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by (3.3). If A ∈ E∞w (A), the size of the lth diagonal is dominated by

‖Â(l)‖A ≤ ‖
∑

|k|∞≥|l|∞

Â(k)‖A ≤ ‖A‖E∞w (A)w(|l|∞)−1 .

Since A is embedded into B(`2), this implies that

‖Â(l)‖B(`2) ≤ ‖Â(l)‖A ≤ ‖A‖E∞w (A)w(|l|∞)−1 ,

and thus A ∈ C∞w(|·|∞). �

3.2. Equivalence, Representation and Interpolation Theorems

In this section we construct two equivalent norms for the approximation spaces
Epw(X ). The results are generalizations of the so-called equivalence and represen-
tation theorems for approximation of polynomial order (see [83] for an excellent
exposition). With the help of these norms we give a constructive description of
weighted approximation spaces for solid matrix spaces that is somewhat similar to
the Littlewood-Paley-representation for Besov spaces.

We do not use interpolation theory in this text. However, it is of interest
that under certain conditions an approximation space can be identified with an
interpolation space. We sketch the relevant concepts (adapted from [73]).

The material presented in this section is inspired by the fundamental work of
Almira and Luther on generalized approximation spaces [3, 4, 5, 6, 73]. We adapt
their approach to our needs.

3.2.1. Equivalence and Representation Theorems. We start with a sim-
ple geometric fact.

Lemma 3.9 (“Equivalence Lemma”). (1) Let w be an approximation weight on
R+

0 , with
∫∞

0
w(t) dt =∞. If κ > 1, then the sequence

(3.10) ϕ0 = 0, ϕj = sup{t ∈ R+
0 :
∫ t

0
w ≤ κj−1}, j ≥ 1

is well-defined, ϕj < ∞ for all j ≥ 0, and limj→∞ ϕj = ∞. For all positive,
nonincreasing functions f the following equivalence holds with constants C1, C2

independent of f .

(3.11) C1

∞∑
j=1

f(ϕj)κj ≤
∞∫

0

f(t)w(t) dt ≤ C2

∞∑
j=0

f(ϕj)κj .

(2) Let the weight w satisfy ‖w‖∞ =∞, and set

(3.12) ϕ0 = 0, ϕj = sup{t ∈ R+
0 : w(t) ≤ κj−1}, j ≥ 1

For all positive, nonincreasing functions f the following equivalence holds with con-
stants C1, C2 independent of f .

C1 sup
j≥1

f(ϕj)κj ≤ sup
t≥0

f(t)w(t) ≤ C2 sup
j≥0

f(ϕj)κj .

Proof. (1) As w is an approximation weight, Definition 3.4(1) implies that∫∞
0
w(t) dt = ∞, and ϕj < ∞ follows. Definition 3.4(2) implies that ϕj → ∞

for j → ∞. We may assume that the function f is not identically zero. Since f is
nonincreasing, estimating the integral by upper Riemann sums yields (see Figure 1)

∞∫
0

f(t)w(t) dt ≤ f(0)κ0 +
∞∑
j=1

f(ϕj)(κj − κj−1) ≤
∞∑
j=0

f(ϕj)κj .
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w
f

tκ0 κ1 κ2

η1 η2 η3

Figure 1

The lower Riemann sums give the inequality

f(ϕ1) +
∞∑
j=1

f(ϕj+1)(κj − κj−1) ≤
∞∫

0

f(t)w(t) dt .

This can be estimated further by
∞∑
j=0

f(ϕj+1)κj+1 ≤ C
∞∫

0

f(t)w(t) dt .

Shifting the index j by one gives the desired result.
(2) is proved in a similar manner. �

Corollary 3.10 (Equivalence Theorem). Let X be a Banach space and (Xλ)λ∈R+
0

an approximation scheme. Let w be an approximation weight for an exponent p,
1 ≤ p ≤ ∞. Define the weight Wp by

(3.13) Wp(r) =

{(∫ r
t=0

w(t)p dt
)1/p

, 1 ≤ p <∞,
sup0≤t≤r w(t), p =∞.

Choose a constant κ > 1. With

(3.14) ϕ0 = 0, ϕj = sup{t ∈ R+
0 : Wp(t) ≤ κj−1} for j ≥ 1

the expression

‖a‖∗Epw(X ) =
( ∞∑
j=0

κjpEpϕj (a)
)1/p

, a ∈ Epw(X )

is an equivalent norm for Epw(X ) (with the obvious change for p =∞).

Proof. If 1 ≤ p <∞ the Equivalence Lemma, applied to f(t) = Et(a)p with
weight w(t)p, gives

C1

∞∑
j=1

Eϕj (a)pκjp ≤
∫ ∞

0

Eλ(a)pw(λ)p dλ ≤ C2

∞∑
j=0

Eϕj (a)pκjp .

Adding E0(a)p yields the equivalence, details are left to the reader. The case p =∞
is handled in a similar way. �

Remark. The proof of Corollary 3.10 does not depend on any specific property
of approximation spaces. It uses only that Eλ(a) is nonincreasing in λ and that the
norm is of the form (3.4). We shall use Corollary 3.10 to obtain estimates for the
K-functional in Appendix C.
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We can use the Equivalence Theorem also for approximation schemes defined
on N0, if we define for λ ∈ R+

0

(3.15) Xλ = Xbλc, w(λ) = w(bλc), Eλ(a) = Ebλc(a),

where bxc denotes the greatest integer smaller or equal x. Then the approximation
spaces for this continuous approximation scheme coincide with the approximation
spaces using the discrete approximation scheme.

More general versions of the Equivalence theorem can be found in [6].

Remark. If w(k) = vr−1/p(k) = (1+k)r−1/p, we can choose κ = 2r and obtain
(standard change for p =∞)

‖a‖Epr (X ) �
(
E0(a) +

∞∑
k=0

2jrp(E2j (a))p
)1/p

.

See, e.g., [83] for details.

Proposition 3.11 (Representation theorem [73]). Let X be a Banach space
with approximation scheme (Xk)k∈N0 , and let w be an approximation weight on
`p(N0). Assume that κ > 1, and define ϕj as in (3.14). For an element a ∈ X the
following are equivalent:

(1) a ∈ Epw(X ),
(2) a =

∑∞
j=1 aj with convergence in X , aj ∈ Xϕj and (κj‖aj‖X )j≥1 ∈ `p(N).

An equivalent norm on Epw(X ) is

(3.16) ‖a‖∼Epw(X ) = inf
{( ∞∑

j=1

κjp‖aj‖pX
)1/p : a =

∞∑
j=1

aj , aj ∈ Xϕj

}
with the standard modification if p =∞.

Proof. For a ∈ Epw(X ) choose bj ∈ Xϕj with ‖a− bj‖X ≤ Eϕj (a) +κ−2j‖a‖X .
Set aj = bj−bj−1 ∈ Xϕj . Then a =

∑∞
k=0 aj and ‖aj‖X ≤ 2(Eϕj−1(a)+κ−2j‖a‖X ).

Summing up gives

‖(κj‖aj‖X )j≥0‖`p(N0) . ‖a‖X + ‖(κjEϕj (a))j≥0‖`p(N0) � ‖a‖Epw(X ) ,

the last relation by the Equivalence theorem. For the reverse inequality let a =∑∞
k=0 ak be a representation as in (2). Then Eϕj (a) ≤

∑∞
k=j‖ak‖X , and so

‖a‖Epw(X ) � ‖(κjEϕj (a))j≥0‖`p(N) . ‖(κj
∞∑
k=j

‖ak‖X )j≥0‖`p(N)

. ‖(κj‖aj‖)j≥0‖ .
The last relation follows from the discrete Hardy inequality (Appendix A.2). – Now
Equation (3.16) is an easy consequence of what has been proved. �

Again, a more general result can be found in [73]. If w(k) = vr−1/p(k) we
obtain

Corollary 3.12 ([83]). An element a ∈ X is in Epr (X ) if and only if

a =
∞∑
j=1

aj , aj ∈ X2j and
j∑
j=0

2rjp‖aj‖pX <∞

with convergence in X (standard modification for p =∞). An equivalent norm on
Epw(X ) is

(3.17) ‖a‖∼Epw(X ) = inf
{( ∞∑

j=1

2jrp‖aj‖pX
)1/p : a =

∞∑
j=1

aj , aj ∈ X2j

}
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with the standard modification for p =∞.

3.2.2. Approximation in Solid Matrix Spaces. The Representation the-
orem can be used to obtain an explicit expression for the norm in an approximation
space Epw(X ), whenever X is a solid matrix space.

Proposition 3.13. Let X be a solid matrix space with the approximation
scheme consisting of the banded matrices (Tk)k≥0. Let w be an approximation
weight on `p(N0), 1 ≤ p ≤ ∞. If κ > 1, and the quantities ϕj are defined as in
(3.14), then for all A ∈ Epw(X )

‖A‖Epw(X ) �
( ∞∑
j=0

κjp
∥∥∥ ∑
ϕj≤|k|∞<ϕj+1

Â(k)
∥∥∥p
X

)1/p

(3.18)

�
( ∞∑
j=0

κjp
∥∥∥ ∑
bκj−1c≤Wp(|k|∞)<κj

Â(k)
∥∥∥p
X

)1/p

(3.19)

�
( ∞∑
j=0

∥∥∥ ∑
bκj−1c≤Wp(|k|∞)<κj

Â(k)Wp(|k|)
∥∥∥p
X

)1/p

(3.20)

with the standard modification for p =∞.

Proof. By the Representation Theorem we have the norm equivalence

(3.21) ‖A‖Epw(X ) � inf
( ∞∑
j=1

κjp‖Bj‖pX
)1/p

,

where the infimum is taken over all Bj ∈ Tϕj that satisfy A =
∑∞
j=0Bj in the norm

of X .
Recall that Tϕj = {A ∈ X : A =

∑
|k|∞<ϕj Â(k)}. The solidity of X implies

that the infimum in (3.21) is attained for the choice

Bj =
∑

{k : ϕj−1≤|k|∞<ϕj}

Â(k) j ≥ 1,

where we set ϕ0 = 0. Shifting the summation index by 1 gives (3.18). The equiva-
lence (3.19) is just a different formulation of what has been just proved, and (3.20)
follows from the equivalence

(3.22) Wp(ϕj) � κj for j ≥ 1 ,

which is a direct consequence of the definitions. �

Let us apply Proposition 3.13 to the standard examples of matrix spaces.

Example 3.14. For the spaces Epw(Cpv ) we have already obtained the charac-
terization Epw(Cpv ) = Cp

vW̃p
(Proposition 3.6). Now we can also obtain results for the

more general approximation spaces Eqw(Cpv ). Actually, for A ∈ Eqw(Cpv ), Equation
(3.19) implies the norm equivalences

‖A‖Eqw(Cpv) �
( ∞∑
j=0

2jq‖
∑

Wp(|k|∞)∈[2j−1,2j)

Â(k)v(k)‖qCp0
)1/q

�
( ∞∑
j=0

2jq
( ∑
Wp(|k|∞)∈[2j−1,2j)

‖A[k]‖p
`∞(Zd)

v(k)p
)q/p)1/q

,
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where we have chosen w.l.o.g. κ = 2. If we specialize to approximation of poly-
nomial order and with the standard polynomial weights w = vr−1/q , v = vs and
choose κ = 2r, we arrive at

‖A‖Eqr (Cps ) �
( ∞∑
j=0

2jqr
( ∑
b2−1c≤|k|∞<2j

‖A[k]‖p
`∞(Zd)

(1 + |k|)sp
)q/p)1/q

�
( ∞∑
j=0

2jq(r+s)
( ∑
b2−1c≤|k|∞<2j

‖A[k]‖p
`∞(Zd)

)q/p)1/q

� ‖A‖Eqr+s(Cp0 ) .

(3.23)

For the last equivalence we used vs(k) � vs(2k). In general, weights with
w(2k) � w(k) are equivalent to polynomial weights, see [40].

We specialize to convolution matrices Ca for a ∈ `pv(Zd). Note that the embed-
ding a→ Ca from `pv(Zd) to Cpv is isometric. That implies that, e.g., for a ∈ `ps(Zd)

‖a‖Eqr (`ps(Zd)) �
( ∞∑
j=0

2jq(r+s)
( ∑
b2−1c≤|k|∞<2j

|a(k)|p
)q/p)1/q

.

The norm on the right side is the norm of the discrete Besov space bqr+s(`
p(Zd)), see

Pietsch [82]). So the spaces Eqw(Cpv ) can be regarded as a noncommutative weighted
generalization of discrete Besov spaces.

Remark. The equivalence Eqr (Cps ) = Eqr+s(C
p
0 ) in the above example depends on

the equivalence w(ϕj+1) � w(ϕj). It is a special instance of a reiteration theorem for
generalized approximation spaces. See [5] and [73, Section 6] for more details. We
will obtain similar relations for approximation of polynomial order in Section 5.5.

3.2.3. Realization of Approximation Spaces as Interpolation Spaces.
As for approximation with polynomial weights (see [37, 83]) it is possible to iden-
tify approximation spaces with real interpolation spaces, if Jackson and Bernstein
inequalities are satisfied. We will only use some rudiments of interpolation theory
in this treatment. A standard reference is [15].

Let X ,Y be Banach spaces with Y ↪→ X . For a ∈ X and t > 0 the K-functional
is defined by (see, e.g., [13, 15, 37])

(3.24) K(a, t) = inf
y∈Y

(
‖a− y‖X + t‖y‖Y

)
.

Let 0 < r < 1. The interpolation space (X ,Y)r,p consists of all a ∈ X for which
the norm

‖a‖r,p =
(∫ 1

0

t−rpK(a, t)p
dt

t

)1/p

<∞.

For every C > 1 an equivalent discrete version of this norm is [37, 6.7.6]

(3.25) ‖a‖r,p �
( ∞∑
j=1

CrpjK(a,C−j)p
)1/p

.

Definition 3.15 (Jackson-Bernstein conditions). Let X ,Y be Banach spaces,
Y ↪→ X , (Xλ)λ∈Λ an approximation scheme for X with Xλ ⊆ Y for all λ ∈ Λ, and
(ωn)n≥0 an increasing weight function. The pair (X ,Y) satisfies the JB-condition,
if

EXn (a) ≤ C

ωn
‖a‖Y for all a ∈ Y, (Jackson inequality)(3.26)

‖an‖Y ≤ C ′ωn‖an‖X for all an ∈ Xn (Bernstein inequality)(3.27)
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Example 3.16. If X is a solid matrix space, (Tn)n∈N0 the approximation
scheme consisting of the banded matrices in X , (ωn)n≥0 an increasing weight, and
Xω the weighted matrix space as in Definition 2.20, then

EXn (A) ≤ 1
ωn
‖A‖Xω for all A ∈ Xω(3.28a)

‖An‖Xw ≤ ωn‖An‖X for all A ∈ Tn.(3.28b)

The Jackson inequality follows from the solidity of X .

We formulate the main result relating approximation spaces to interpolation
spaces. The proof is in Appendix C.

Proposition 3.17. (Interpolation theorem, [73, 4.3, 4.5]) Let X ,Y and ω as
in Definition 3.15. If v is an approximation weight with Vp(m) � ωrm for some
0 < r < 1, 1 ≤ p ≤ ∞, then

Epv (X ) = (X ,Y)(r,p)

with equivalent norms.

3.3. Approximation of Banach Algebras

In this section we treat approximation schemes that are compatible with the
multiplication in a Banach algebra. These schemes include the trigonometric poly-
nomials, and the banded matrices. For these schemes we show that the approxi-
mation space E1

w(A) for a Banach algebra A is a Banach algebra itself.
If A is symmetric, we prove that approximable elements form an inverse-closed

subalgebra of A. Moreover, for approximation of polynomial order we obtain a
similar result for the approximation spaces Epr (A), using again a result of Almira
and Luther [6]. An application of this result to the Jaffard algebra allows for a
shortcut in the proof of Jaffard’s theorem [61].

For solid and unweighted matrix algebras over Z (see Proposition 3.29) we are
able to prove the inverse-closedness of Epw(A) in B(`2) if w is an algebra weight that
satisfies the GRS condition.

3.3.1. Compatible Approximation Schemes and Approximation Al-
gebras.

Definition 3.18. Let A be a Banach algebra and (Xλ)λ∈Λ an approximation
scheme (Definition 3.1). We call (Xλ)λ∈Λ compatible (with multiplication), if

(3.29) Xλ ·Xµ ⊆ Xλ+µ, for all λ, µ ∈ Λ.

If A has an involution, we further assume that

(3.30) 1 ∈ X1 and Xλ = X∗λ for all λ ∈ Λ.

If A is a Banach algebra with an approximation scheme (Xλ)λ∈Λ, we assume
that (Xλ)λ∈Λ is compatible with multiplication, if nothing else is said.

Example 3.19.
(1) Approximation with trigonometric polynomials. Let A = L∞(Td) and

choose the approximation scheme as

X0 = {0}, Xk = span{e2πir·t : |r|∞ < k}, k ≥ 1.

Clearly the conditions (3.29) and (3.30) are fulfilled.
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(2) Approximation with banded matrices. Let A be a matrix algebra and let
TN = TN (A) be the set of matrices in A with bandwidth smaller than N ,
then the sequence (Tk)k≥0 is an approximation scheme for A. The closure
of all banded matrices in A is the space of band-dominated matrices in
A [84, 86].

Remark. The condition (3.30) is easy to verify. More generally, it is sufficient
to verify that 1 ∈ E0(A) = (E0(A))∗, as the proof of Proposition 3.25 will show.

The next proposition is proved by an estimate that is used again later.

Proposition 3.20. If A is a Banach algebra with a compatible approximation
scheme (Xk)k≥0, then the set E0(A) is a closed subalgebra of A.

Proof. The space E0(A) is closed by definition. For the proof of the algebra
property let a, b ∈ A, and choose elements ak ∈ Xk and bl ∈ Xl. Then

Ek+l(ab) ≤ ‖ab− akbl‖A ≤ ‖ab− akb‖A + ‖akb− akbl‖A
≤ ‖a− ak‖A‖b‖A + ‖ak‖A‖b− bl‖A

Given ε > 0 we can choose ak and bl such that ‖a − ak‖A < (1 + ε)Ek(a), and
likewise ‖b− bl‖A < (1 + ε)El(b). So we arrive at

Ek+l(ab) ≤ (1 + ε)(Ek(a)‖b‖A + El(b)‖ak‖A)

≤ (1 + ε)(Ek(a)‖b‖A + 2El(b)‖a‖A) ,
(3.31)

if ak is close enough to a. If a, b ∈ E0(A), this implies that ab ∈ E0(A). �

We can obtain a similar result for approximation of polynomial order.

Proposition 3.21 ([3, 6]). If A is a Banach algebra with a compatible approx-
imation scheme (Xλ)λ∈Λ, then for every 1 ≤ p ≤ ∞ and r ≥ 0 (p < ∞) or r > 0
(p =∞) the approximation space Epr (A) is a Banach algebra and dense in E0(A) .

Proof. We give the proof only for the index set Λ = N0. Choose an, bn ∈ Xn

such that ‖a − an‖ ≤ 2En(a) and ‖b − bn‖ ≤ 2En(b) ≤ 2‖b‖A. Then ‖bn‖ ≤
‖b‖+ ‖bn − b‖ ≤ 3‖b‖ and

E2n+1(ab) ≤ E2n(ab) ≤ ‖ab− anbn‖A
≤ ‖a‖A ‖b− bn‖A + ‖bn‖A‖a− an‖A
≤ 2‖a‖AEn(b) + 6‖b‖AEn(a).

(3.32)

Using the estimate (3.31) for k = l = n and the equivalence (1 + n)r � (1 + 2n)r,
we obtain

(3.33) ‖ab‖Epr ≤ C
(
‖a‖Epr ‖b‖A + ‖b‖Epr ‖a‖A

)
.

The Banach algebra-property of Epr (A) now follows from (3.33). As vr−1/p is an
approximation weight, the claimed density follows. �

For general submultiplicative weights we obtain the following result.

Proposition 3.22. If A is a Banach algebra, (Xk)k∈N0 is a compatible ap-
proximation scheme for A, and w is a submultiplicative weight on N0, then the
approximation space E1

w(A) is a Banach algebra.

Before proving the proposition we need two lemmas. The first states a property
of the weights Wp.

Lemma 3.23. If w is submultiplicative on N0, then Wp is weakly submultiplica-
tive.
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Proof of the Lemma. Assume first that p <∞.

Wp(m+ n)p =
∫ m+n

0

w(j)p dj ≤
∫ m

0

w(j)p dj + w(m)p
∫

0nw(j)p dj

≤Wp(m)p + w(m)pWp(n)p ≤Wp(m)p +Wp(m)pWp(n)p

≤Wp(m)pWp(n)p +Wp(m)pWp(n)p = 2Wp(m)pWp(n)p .

(3.34)

If p =∞ the proof is similar. �

Lemma 3.24. If the integers ϕj are defined as in (3.14) and κ > 1, then

(3.35) ϕj + ϕk ≤ ϕj+k for all j, k ∈ N0 .

Proof. The definition of ϕ implies that m ≤ ϕj is equivalent to W1(m) ≤
κj−1. W.l.o.g we can assume that κ ≥ 2. If l ≤ ϕj + ϕk for an integer l, then we
can write l = m + n, m ≤ ϕj , n ≤ ϕk, and so W1(m)W1(n) ≤ κj+k−2. As W1 is
weakly submultiplicative we obtain

W1(l) ≤ 2W1(m)W1(n) ≤ 2κj+k−2 ≤ κj+k−1 ,

and so l ≤ ϕj+k−1 ≤ ϕj+k. �

Proof of Proposition 3.22. We use the representation theorem (Proposi-
tion 3.11). Let ε > 0. Choose aj ∈ Xϕj such that a =

∑∞
j=0 aj , and

∑∞
j=0 κ

j‖aj‖A ≤
(1 + ε)‖a‖∼E1

w(A) , where ‖a‖∼E1
w(A) denotes the norm defined in (3.16). For b we can

assume a similar decomposition and norm relation. Then the sums
∑∞
j=0‖aj‖A,∑∞

k=0‖bk‖A are convergent, and so the Cauchy product

ab =
∞∑
l=0

cl, cl =
l∑

m=0

ambl−m

is norm convergent in A. Equation (3.35) implies that cl ∈ Xϕl+1 , and with the
representation theorem we obtain

‖ab‖E1
w(A) .

∞∑
j=0

κj+1‖cj‖A

≤
∞∑
j=0

κj+1

j∑
m=0

‖am‖A‖bj−m‖A

= κ

∞∑
j=0

j∑
m=0

κm‖am‖Aκj−m‖bj−m‖A

≤ (1 + ε)2κ‖a‖∼E1
w(A)‖b‖

∼
E1
w(A) ,

and this was to be shown. �

3.3.2. Approximation and Inverse Closedness in Symmetric Banach
Algebras. If the Banach algebra A is symmetric, it is possible to prove results on
the inverse-closedness of the approximation spaces Epr (A) in A.

Proposition 3.25. If A is a symmetric Banach algebra with a compatible
approximation scheme (Xλ)λ∈Λ, then E0(A) is inverse-closed in A.

Proof. Proposition 3.20 tells us that E0(A) is a Banach algebra. Since E0(A)
is a closed ∗-subalgebra of the symmetric algebra A, E0(A) is inverse-closed in A
(see Proposition 2.10). �

We now treat the inverse-closedness of approximation spaces.
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Theorem 3.26. If A is a symmetric Banach algebra, and (Xλ)λ∈Λ is a com-
patible approximation scheme, then Epr (A) is inverse-closed in A.

Proof. The norm inequality (3.33) is exactly the hypothesis for the applica-
tion of Brandenburg’s trick (Section 2.2.3), so (3.33) implies that

ρEpr (a) = ρA(a), for all a ∈ Epr (A).

Since A is symmetric, Proposition 2.10 shows that Epr (A) is inverse-closed in A. �

Remark. If E0(A) = A, then Proposition 3.26 follows from a result of Kissin
and Shulman [65, Thm. 5] even without assuming that A is symmetric. However,
in most of our examples E0(A) 6= A. In this situation the result of [65] implies
only that Epr (A) is inverse-closed in E0(A). For the inverse-closedness of E0(A) in
A we still need the symmetry assumption on A. Our new proof has the advantage
of being short and concise.

Corollary 3.27. Let A be a symmetric matrix algebra.

(1) Then the band-dominated matrices in A form a closed and inverse-closed
∗-subalgebra of A.

(2) Each approximation space Epr (A) is inverse-closed in A.

For the algebra of bounded operators on vector-valued `p-spaces special cases
of (1) have been obtained in [84, 86].

Corollary 3.27 helps to simplify the proof of Jaffard’s original theorem in [61].
Suppose we already know that C∞d+ε is inverse-closed in B(`2(Zd)) for 0 < ε ≤ ε0. As
E∞s (C∞r ) = C∞r+s by(3.9), Corollary 3.27 implies that C∞s , s > d+ε, is inverse-closed
in C∞d+ε and hence in B(`2). Thus it suffices to prove Jaffard’s result for the range
d < r < d+ ε0 for some small ε0 > 0.

Remark. The same argument shows of course that Cpr+s is inverse-closed in
Cpr for s > 0 and r > d/p′.

3.3.3. Approximation in Solid Matrix Algebras. In Section 3.3.2 we
proved that the approximation space Epr (A) is inverse-closed in A for a polyno-
mial weight and a general symmetric Banach algebra A. If we restrict the class of
algebras under consideration, we might expect to have more freedom in the choice
of the weights. We can prove a theorem on the inverse-closedness of weighted ap-
proximation spaces of a solid matrix algebra A in B(`2(Z)). We have to assume
some mild regularity conditions on the weights and an invariance condition on the
algebra giving a precise meaning to the idea of an unweighted matrix algebra. This
condition will be discussed after the proof of the theorem.

Theorem 3.28. Let A be a solid matrix algebra with involution over Z. Assume
that

(3.36) C1
0 ↪→ A

for a value of p, 1 ≤ p ≤ ∞. If v is a symmetric algebra weight on `p(Z) (see
Section 2.1.2) that satisfies the GRS condition, then Epv (A) is an inverse-closed
subalgebra of B(`2(Z)).

Proof. The idea of the proof is to show the inverse-closedness of Epv (A) in Cpv
using Brandenburg’s trick (Section 2.2.3). For this to make sense we verify first
that

(3.37) Epv (A) ↪→ Cpv .
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Indeed, for A ∈ Epv (A) we have the chain of inequalities

‖A‖pCpv =
∑
k∈Z
‖Â(k)‖pB(`2)v(k)p =

∞∑
m=0

∑
|k|=m

‖Â(k)‖pB(`2)v(m)p

≤
∞∑
m=0

∑
|k|=m

‖Â(k)‖pAv(m)p ≤ 2
∞∑
m=0

EAm(A)pv(m)p,

using ‖A‖B(`2) ≤ ‖A‖A and, for the last inequality, the solidity of A.
In the next step we verify that the product AB of two elements of Epv (A) can

be written as a Cauchy product that converges to AB in the norm of A.

Claim. If A,B ∈ Epv (A), then A =
∑
k∈Z Â(k) is absolutely convergent in A,

and AB can be written as an absolutely convergent Cauchy product

AB =
∑
k∈Z

Ĉ(k), Ĉ(k) =
∑
l∈Z

Â(k − l)B̂(l) .

The convergence is in the norm of A.

We show that for A ∈ Epv (A) the sum
∑
k∈Z‖Â(k)‖A is convergent.∑

k∈Z
‖Â(k)‖A =

∑
k∈Z
‖Â(k)‖A

v(k)
v(k)

≤ ‖1/v‖`p′ (Z)

( ∞∑
l=0

(‖Â(l)‖pA + ‖Â(−l)‖pA)v(l)p
)1/p

≤ 2‖1/v‖`p′ (Z)

( ∞∑
l=0

(
EAl (A)v(l)

)p)1/p

≤ 2‖1/v‖`p′ (Z)‖A‖Epv (A) .

We used again that ‖Â(k)‖A ≤ EAk (A), if A is solid. The convergence of the Cauchy
product is then a standard result from analysis. .

Now we can estimate the approximation error of the product AB.

EAn (AB) =
∥∥∥∑
|k|≥n

∑
l∈Z

Â(l)B̂(k − l)
∥∥∥
A

≤
∥∥∥∑
|k|≥n

∑
|l|<n

Â(l)B̂(k − l)
∥∥∥
A

+
∥∥∥∑
|k|≥n

∑
|l|>n

Â(l)B̂(k − l)
∥∥∥
A

= I + II.

(3.38)

For the further estimation of the first term observe that the inner sum is finite, and
so we can exchange sums (using that

∑
k∈Z‖B̂(k)‖A ≤ ∞).

(3.39) I =
∥∥∥∑
|l|<n

∑
|k|≥n

Â(l)B̂(k − l)
∥∥∥
A
≤
∑
|l|<n

(
‖Â(l)‖A

∥∥∥∑
|k|≥n

B̂(k − l)
∥∥∥
A

)
In the next step we show that

(3.40) ‖
∑
|k|≥n

B̂(k − l)‖A ≤ EAn−|l|(B) =
∥∥∥ ∑
|k|≥n−|l|

B̂(k)
∥∥∥
A

for |l| < n.

In fact, the left side of the inequality is ‖
∑
|m+l|≥n B̂(m)‖A, and the right side

equals ‖
∑
|m|≥n−|l| B̂(m)‖A. As |m+ l| ≥ n implies |m| ≥ n− |l|, each term of the
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sum on left hand side of (3.40) appears also on the right hand side. The solidity of
A then implies (3.40). So the first term in (3.38) can be estimated as

(3.41) I ≤
∑
|l|<n

‖Â(l)‖AEAn−|l|(B).

This can be written in the form of a convolution on Z. If we introduce the quantities

am =
∑
|k|=m

‖Â(k)‖A, m ≥ 0, and am = 0, m < 0,

γm = EAm(B), m ≥ 0, and γm = 0, m < 0

we can rewrite (3.41) as

(3.42) I ≤
(
a ∗ γ

)
(n− 1).

For the estimation of the second term in (3.38) set Rn(A) =
∑
|k|≥n Â(k), so

R̂n(A)(l) = Â(l) for l ≥ n. Then

II =
∥∥∥∑
|k|≥n

∑
|l|>n

R̂n(A)(l)B̂(k − l)
∥∥∥
A
≤
∥∥∥∑
k,l∈Z

R̂n(A)(l)B̂(k − l)
∥∥∥
A

=‖Rn(A)B‖A ≤ EAn (A)‖B‖A .
(3.43)

Putting the estimates for both terms together we obtain

EAn (AB) ≤
∑
|l|<n

‖Â(l)‖AEAn−|l|(B) + EAn (A)‖B‖A

≤
∑
|l|≤n

‖Â(l)‖AEAn−|l|(B) + EAn (A)‖B‖A

= (a ∗ γ)(n− 1) + EAn (A)‖B‖A.

(3.44)

Now we take `pv(Z)-norms on both sides of (3.44), using the assumption that v is
an algebra weight for `p(Z). This leads to

‖AB‖Epv (A) ≤ ‖a‖`pv(N0)‖B‖Epv (A) + ‖A‖Epv (A)‖B‖A

≤ 2
(∑
k∈Z
‖Â(k)‖pAv(k)p

)1/p

‖B‖Epv (A) + ‖A‖Epv (A)‖B‖A.
(3.45)

At this place we use the assumption that C1
0 ↪→ A. This implies that ‖Â(k)‖A ≤

C‖Â(k)‖B(`2). As B ∈ Epv (A) ↪→ Cpv ↪→ C1
0 ↪→ A we can dominate ‖B‖A by ‖B‖Cpv .

We finally obtain the estimate

(3.46) ‖AB‖Epv (A) ≤ C
(
‖A‖Cpv‖B‖Epv (A) + ‖A‖Epv (A)‖B‖Cpv

)
Brandenburg’s trick (Section 2.2.3) shows that Epv (A) is inverse-closed in Cpv . By
Proposition 2.13 Cpv is inverse-closed in B(`2), if v is an algebra weight, so Epv (A) is
inverse-closed in B(`2). �

Discussion. We want to shed some light on the condition (3.36). Actually it
gives a precise meaning to the concept of an unweighted matrix algebra.

Proposition 3.29. Let A be a solid matrix algebra. The following are equiva-
lent:

(1) For all A ∈ C1
0 , ‖A‖A ≤ C‖A‖C1

0
.

(2) For all A ∈ A, ‖Â(k)‖A � ‖Â(k)‖B(`2) = ‖A[k]‖∞, uniformly in k.
(3) The translation operators on A are uniformly bounded: ‖Tk‖A ≤ C for

all k ∈ Z.
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Proof. (1) ⇒ (2): If A ∈ A then Â(k) ∈ A, and ‖Â(k)‖B(`2) ≤ ‖Â(k)‖A by
the definition of a matrix algebra. But ‖Â(k)‖B(`2) = ‖Â(k)‖C1

0
, so Â(k) ∈ C1

0 , and
(2) follows.

(2) ⇒ (1) is straightforward.
(1)⇒ (3): As ‖Tk‖C1

0
= 1, we obtain ‖Tk‖A ≤ C, uniformly in k. On the other

hand ‖Tk‖A ≥ ‖Tk‖B(`2) = 1.
(3)⇒ (1): Observe that the hypothesis implies that Tk ∈ A. Let A ∈ C1

0 . Then

‖A‖A ≤
∑
k∈Z
‖Â(k)‖A ≤

∑
k∈Z
‖A[k]‖∞‖Tk‖A ≤ C‖A‖C1

0
,

the second inequality follows from the solidity of A. �

Proposition 3.29 suggests to introduce the following concept.

Definition 3.30. A matrix algebra A over Z is unweighted, if there is a con-
stant C > 0 such that the translation operators are uniformly bounded: ‖Tk‖A ≤ C
for all k ∈ Z.

Remarks. (1) Theorem 3.28 gives an affirmative answer about algebra prop-
erties of weighted approximation spaces for solid, unweighted matrix algebras over
Z. Note that we need not assume that A is symmetric. We can consider the un-
weighted matrix algebras as a natural starting point to define off-diagonal decay
by approximation. With this interpretation Proposition 3.29 gives a rather com-
plete description of off-diagonal decay and inverse-closedness for the class of solid,
unweighted matrix algebras over Z.

(2) In particular, since C1
0 ⊆ S1

0 , Theorem 3.28 is applicable, and the approxi-
mation space Epv (S1

0 ) for the Schur algebra S1
0 over Z is an inverse-closed subalgebra

of B(`2), if v is a symmetric algebra weight on `p(Z).
(3) Unfortunately the proof does not carry over to Zd for d > 1. It is possible

to mimic the method of proof, identifying matrices over Zd with operator-valued
matrices over Z. We have to introduce an analogue of C1

v as well, which can be
shown to inverse-closed in B(`2) by an easy adaption of the proof in [11]. However,
we do not have a simple analogue of an unweighted algebra.



CHAPTER 4

Smoothness

Many results in the previous chapter have been verified only for solid matrix
spaces. In this chapter we develop a concept of smoothness that is related to the
off-diagonal decay of matrices.

We consider matrix algebras where the smoothness is defined by derivations
(Section 4.1) or the operation of the translation group on Rd. The smoothness
spaces that can be constructed this way are well-known and include the operator-
valued Triebel-Lizorkin spaces and the Besov spaces [15, 27, 79, 102], however, we
treat only Besov and Bessel potential spaces besides the spaces Ck(A) of k times
differentiable elements.

It turns out that these smoothness spaces provide systematic constructions of
inverse-closed algebras. In fact, this theory can be developed for general Banach
algebras (sometimes symmetry has to be assumed), and in part also for Banach
spaces with the action of the translation group or a set of commuting derivations.
The standard literature (e.g. [22, 24]) is formulated for C∗-algebras and densely
defined derivations, whereas we work mostly with Banach ∗-algebras and derivations
without dense domain. We are therefore obliged to be especially careful before
adopting a result for our purpose and provide the details of calculations.

The method of exposition is to develop concepts of smoothness and approxima-
tion in Banach algebras in analogy to the corresponding notions for real functions,
and to apply them to matrix algebras afterwards.

4.1. Derivations

Off-diagonal decay of Convolution Operators. Let us begin with an ex-
ample that sheds some light on the relation between smoothness and off-diagonal de-
cay of matrices. Recall that the matrices in C1

v defined in Section 2.3 are also known
as convolution dominated operators: A ∈ C1

v if and only if there is a h ∈ `1v(Zd) such
that |Ax(k)| ≤ h ∗ |x|(k), where |x| denotes the vector with components |x(k)|.

The off-diagonal decay of convolution operators Cf is closely related to the
smoothness of their symbols f .

Let f ∈ `1(Zd) and Cf ∈ B(`2) the corresponding convolution operator. Con-
jugation with the Fourier transform operator induces an isometric isomorphism Γ
between B(`2(Zd)) and B(L2(Td)), given by Γ(A) = FAF∗ for A ∈ B(`2(Zd)).
This isomorphism maps the convolution operators Cf into multiplication operators
MFf : g 7→ (Ff)g for all g ∈ L2(Td), see the commutative diagram below.

f ∈ `1(Zd)

F
��

Cf // B(`2(Zd))

Γ

��
Ff ∈ L∞(Td)

MFf // B(L2(Td))

33
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By standard results of Fourier analysis the decay of the matrix Cf is related to
the smoothness of Ff , e.g., Ff ∈ Ck(Td) implies ‖Ĉf (m)‖B(`2) = O(|m|−k) for all
m ∈ Zd.

We observe that the matrixM∂j(Ff) corresponds to a matrix δjCf with δ̂jCf (k) =
2πikjĈf (k).

Generalizing this observation, we define the formal operation

δj : A 7→ 2πi
∑
k∈Zd

kjÂ(k)

for matrices over Zd. It turns out that δj is a derivation.

4.1.1. Definition and Basic Properties.

Definition 4.1. A derivation δ on a Banach algebra A is a closed linear
mapping δ : D → A, where the domain D = D(δ) = D(A) = D(δ,A) is a subspace
of A, and δ fulfills the Leibniz rule

(4.1) δ(ab) = aδ(b) + δ(a)b for all a, b ∈ D.
If A possesses an involution, we assume that the derivation and the domain are
symmetric, i.e., D = D∗ and δ(a∗) = δ(a)∗ for all a ∈ D. The domain is normed
with the graph norm ‖a‖D = ‖a‖A + ‖δ(a)‖A.

Remark. The domain D(A) is not assumed to be closed or dense in A.

Equation (4.1) implies that D(A) is a (not necessarily unital) Banach algebra,
and the canonical mapping D(A)→ A is a continuous embedding.

Example 4.2 (Derivations on L∞). The classical derivative d
dx : f 7→ f ′ is a

closed, symmetric derivation on the von Neumann-algebra L∞(R). The domain of
d
dx in L∞(R) consists of all Lipschitz functions with essentially bounded derivative.
Clearly, D(δ, L∞) is not dense in L∞.

Proposition 4.3 (Derivations on Matrix Algebras). Let A be a matrix alge-
bra over Z. Define the diagonal matrix X by X(k, k) = 2πik. Then the formal
commutator

(4.2) δX(A) = [X,A] = XA−AX
with domain D(A) = {A ∈ A : δX(A) ∈ A} has the entries

[X,A](k, l) = 2πi(k − l)A(k, l)

for k, l ∈ Z, and δX defines a closed, symmetric derivation on A.

Proof. The Leibniz rule follows from the formal computation

AδX(B) + δX(A)B = A(XB −BX) + (XA−AX)B = XAB −ABX = δX(AB).

Symmetry can be verified directly as well. For the closedness let us choose a se-
quence An → A in A, and δXAn → B in A. As A ↪→ B(`2) the selection of coeffi-
cients is continuous, and so δXAn(k, l) = 2πiAn(k, l)(k − l)→ 2πiA(k, l)(k − l) =
B(k, l) for all k, l ∈ Z. This was to be proved. �

The operator δX is not necessarily densely defined. This will follow most easily
from results proved later (see Section 4.2).

The derivation δX is closely related to matrix weights as defined in Section 2.3.3,
at least in solid matrix algebras.

Proposition 4.4. If A is a solid matrix algebra over Z, then D(δ,A) is the
weighted matrix algebra Av1 , where v1(k) = 1 + |k| is the polynomial standard
weight, and the norms ‖ ‖D(A) and ‖ ‖Av1 are equivalent.
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Proof. Set Ã(k, l) = A(k, l)v1(k − l) = A(k, l)(1 + |k − l|). Since the norm of
A ∈ A depends only on the absolute values of the entries of A, we obtain that

‖A‖Av1 = ‖Ã‖A ≤ ‖A‖A + ‖ [X,A]‖A = ‖A‖D(δ) ≤ 2 · 2π‖A‖v1 ,

as claimed. �

Remark. For certain classes of non-solid matrix algebras a similar result can
be obtained (see Section 4.4.4).

If δ is a densely defined ∗-derivation of a C∗-algebra A, then by a result in [23]
1 ∈ D(A) and D(A) is inverse-closed in A. In [64] this result was extended to
densely defined derivations on arbitrary Banach algebras without involution. We
need an extension for derivations that are not necessarily densely defined.

Theorem 4.5. Let A be a symmetric Banach algebra, and δ a symmetric
derivation on A. If 1 ∈ D(A), then D(A) is inverse-closed in A and D(A) is
a symmetric Banach algebra, and the quotient rule

δ(a−1) = −a−1δ(a)a−1

is valid, and yields the explicit norm estimate

(4.3) ‖a−1‖D(δ) ≤ ‖a−1‖2A‖a‖D(δ).

Proof. The proof in [23] uses functional calculus and could be adapted to the
setting of the theorem. We prefer a short conceptual argument based on Hulanicki’s
Lemma (Proposition 2.10). We show that ρD(A)(a) = ρA(a) for any a ∈ D(A). The
inequality

(4.4) ‖δ(an)‖A ≤ n‖a‖n−1
A ‖δ(a)‖A

is established by induction. For n = 1 there is nothing to prove. Having established
the inequality for n− 1, we use the Leibniz rule for δ(an).

δ(an) = δ(a)an−1 + aδ(an−1).

Taking norms on both sides and using the induction hypotheses gives (4.4). Now
we can estimate the norm of an by

‖an‖D(A) = ‖an‖A + ‖δ(an)‖A ≤ ‖a‖nA + n‖a‖n−1
A ‖δ(a)‖A.

If we take nth roots on both sides and let n go to infinity, we obtain ρD(A)(a) ≤
‖a‖A, and consequently ρD(A)(a) ≤ ρA(a). The reverse inequality ρA(a) ≤ ρD(A)(a)
is always true for Banach algebras, since D(A) ⊆ A, so Proposition 2.10 implies
that D(A) is inverse-closed in A. Consequently σD(A)(a∗a) = σA(a∗a) ⊆ [0,∞) for
all a ∈ D(A), and thus D(A) is a symmetric Banach algebra.

Thus, if a ∈ D(A) and a−1 ∈ A, then a−1 ∈ D(A) and so δ(a−1) is well-defined
in A. Therefore the quotient rule and the norm inequality follow from the Leibniz
rule 0 = δ(1) = δ(aa−1) = δ(a)a−1 + aδ(a−1). �

Remarks. Theorem 4.5 is remarkable because it yields an explicit norm control
of the inverse in the subalgebra D(A). Norms that satisfy (4.3) are called strong
Leibniz norms in [88]. See, on the other hand, [77] for typical no-go results.

4.1.2. Commuting Derivations. The formulation of inverse-closedness re-
sults for matrices over Zd, and the definition of higher orders of smoothness require
derivations for each “dimension” of the index set Zd.

Let {δ1, · · · , δd} be a set of commuting derivations on the Banach algebra A.
Since products of unbounded operators and their domains are a subtle and rather
technical subject with many pathologies, we will make the following assumptions
and thus avoid many technicalities.
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The domain of a finite product δr1δr2 . . . δrn , 1 ≤ rj ≤ d is defined by induction
as

D(δr1δr2 . . . δrn) = D(δr1 ,D(δr2 . . . δrn)) .
We will assume throughout that the operator δr1δr2 . . . δrn and its domain

D(δr1δr2 . . . δrn) are independent of the order of the factors δrj .
Then for every multi-index α the operator δα =

∏
1≤k≤d δ

αk
k and its domain

D(δα) are well defined. In analogy to Ck(Rd) we equip D(δα) with the norm

‖a‖D(δα) =
∑
β≤α

‖δβ(a)‖A .

Since δj is assumed to be a closed operator on A, it follows that δj is a closed
operator on D(δα).

The operator δα satisfies the general Leibniz rule

(4.5) δα(ab) =
∑
β≤α

(
α

β

)
δβ(a)δα−β(b) .

Definition 4.6. Let A be a Banach algebra and k a nonnegative integer. The
derived space of order k is

A(k) =
⋂
|α|≤k

D(δα), and A(∞) =
∞⋂
k=0

A(k).

We summarize the results on commuting derivations.

Lemma 4.7. Let {δk : 1 ≤ k ≤ d} be a set of commuting derivations on the
Banach algebra A.

(i) Then D(δα) is a (not necessarily unital) subalgebra of A for every α ∈ Nd0.
(ii) Let R ⊆ Nd0 be an arbitrary finite index set and set

DR(δ) =
⋂
α∈R
D(δα) .

Then DR(δ) is a Banach-subalgebra of A with the norm ‖a‖DR(δ) =∑
α∈R
‖a‖D(δα). In particular A(k) is a Banach-subalgebra of A.

Proof. If a, b ∈ D(δα), i.e., δβ(a), δβ(b) ∈ A for β ≤ α, then clearly ab ∈
D(δα) and the norm inequality ‖ab‖D(δα) ≤ C‖a‖D(δα)‖b‖D(δα) follows after taking
norms in (4.5). Since the finite intersection of Banach algebras is a Banach algebra,
A(k) and DR(δ) are Banach algebras. �

Proposition 4.8. Assume that A is a symmetric Banach algebra with a set of
commuting symmetric derivations {δk : 1 ≤ k ≤ d} satisfying 1 ∈ D(δk), 1 ≤ k ≤ d.
Then D(δα) is inverse-closed in A. Furthermore, the Banach algebra DR(δ) is
inverse-closed in A, and A(∞) is a Fréchet algebra that is inverse-closed in A.

Proof. Let δα = δrn · · · δr1 with n = |α| and 1 ≤ rj ≤ d for all j. By
Theorem 4.5, D(δ1,A) is a symmetric Banach algebra and inverse-closed in A.
Now we argue by induction and assume that D(δrj . . . δr1) is symmetric and inverse-
closed in A. Since by definition

D(δrj+1 . . . δ1) = D(δrj+1 ,D(δrj . . . δrr1 ))

and δrj+1 is a closed derivation on the symmetric Banach algebra D(δrj · · · δr1), The-
orem 4.5 asserts thatD(δrj+1 . . . δr1) is symmetric and inverse-closed inD(δrj . . . δr1)
and thus inverse-closed in A by transitivity. We repeat this argument n times and
find that D(δα) = D(δrn . . . δr1) is symmetric and inverse-closed in A.
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Finally, the finite or infinite intersection of inverse-closed subalgebras of A
is again inverse-closed in A. Specifically, if a ∈ DR(δ) =

⋂
α∈RD(δα) and a is

invertible, then the argument above shows that a−1 ∈ D(δα,A) for each α ∈ R,
whence a−1 ∈ DR(δ). The argument for A(∞) is the same. �

Remark. The inverse-closedness of A(∞) in A is implicit in [12].

Example 4.9 (Matrix algebras over Zd). If A is a matrix algebra over Zd,
then we define the diagonal matrices Xj by Xj(k, k) = 2πikj and the derivations
δj(A)(k, l) = [Xj , A](k, l) = 2πi(kj − lj)A(k, l), 1 ≤ j ≤ d. These derivations are
symmetric and commute with each other, and 1 ∈ D(δj) for all j. An application
of Proposition 4.8 gives that all spaces DR(δ) are inverse-closed subalgebras of A.

If A is solid, there is an immediate generalization of Proposition 4.4 to matrix
algebras over the index set Zd.

Proposition 4.10. If A is a solid matrix algebra over Zd, then A(m) = Avm .
In particular, Avm is an inverse-closed subalgebra of A.

Proof. The identity A(m) = Avm is proved as in Proposition 4.4. The inverse-
closedness follows from Proposition 4.8. �

We apply Proposition 4.10 to the algebras Cpv and S1
v .

Corollary 4.11. Let Cpv be defined as in Section 2.3.1. If v is an algebra
weight, then for k ∈ N the algebra Cpvk v is inverse-closed in Cv. Likewise, the
weighted Schur algebra Spvk v is inverse-closed in Spv .

The value of Proposition 4.8 lies in its potential to treat anisotropic decay
conditions. As an example we state the following anisotropic generalization of
Jaffard’s theorem.

Proposition 4.12. Let A be a matrix over Zd, r > d, and α = (α1, . . . , αd) ∈
Nd0. If A is invertible on `2(Zd) and satisfies the anisotropic off-diagonal decay
condition

(4.6) |A(k, l)| ≤ C(1 + |k − l|)−r
d∏
j=1

(1 + |kj − lj |)−αj , k, l ∈ Zd ,

then the entries of the inverse matrix A−1 satisfy an estimate of the same type

|(A−1(k, l)| ≤ C ′(1 + |k − l|)−r
d∏
j=1

(1 + |kj − lj |)−αj , k, l ∈ Zd .

Proof. The off-diagonal decay condition is equivalent to saying that the ma-
trix Ã with entries Ã(k, l) =

∏d
j=1(kj−lj)αjA(k, l) is in the Jaffard algebra Jr. But

Ã is just a multiple of
∏d
j=1 δ

αj
j A = δαA, where δj(A) is defined in Example 4.9.

Since D(δα,Jr) is inverse-closed in Jr by Proposition 4.8 and Jr is inverse-closed
in B(`2), A−1 is again in D(δα,Jr), which is nothing but the off-diagonal decay
stated. �

Remark. Proposition 4.12 could be also obtained from the conditions of [99,
Thm 4.1].

4.2. Automorphism Groups and Continuity

Our next step is to treat the algebras Avr with non-integer parameter r in
analogy to spaces with fractional smoothness. Two natural approaches are either
fractional powers of the generators or automorphism groups and the associated
Hölder-Zygmund continuity. In the next two sections we concentrate on the latter
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approach and introduce a new structure, namely automorphism groups. This choice
is also motivated by the failure to distinguish between the spaces D( d

dx , L
∞(T)) =

{f ∈ Lip(T) : f ′ ∈ L∞(T)} and D( d
dx , C(T)) = C1(T) by means of derivations

alone. To explain this difference, we need to consider derivations that are generators
of groups of automorphisms.

Parts of the theory of smoothness can be developed for automorphism groups
acting on a Banach space. Though we are ultimately interested in the construction
of Banach algebras that are inverse-closed in a given Banach algebra, we develop
concepts in a natural framework.

Definition 4.13. An automorphism group, more precisely a d-parameter au-
tomorphism group acting on the Banach space X is a set of automorphisms Ψ =
{ψt}t∈Rd of X with the group properties

(4.7) ψsψt = ψs+t for all s, t ∈ Rd.

In addition, we always assume that Ψ is a uniformly bounded automorphism group,
that is,

MΨ = sup
t∈Rd
‖ψt‖X→X <∞ .

If A is a Banach algebra, we assume that Ψ consists of Banach algebra automor-
phisms of A, that is,

ψt(ab) = ψt(a)ψt(b)

for all a, b ∈ A, and all t ∈ Rd. If A is a ∗-algebra, we assume that Ψ consists of
∗-automorphisms.

This is all we need, but clearly the abstract theory works for much more general
group actions [57, 101].

Definition 4.14. An element x of the Banach space X is continuous, if

(4.8) ‖ψt(x)− x‖X → 0 for t→ 0.

The set of continuous elements of X is denoted by C(X ).

We will use the following concept.

Definition 4.15. Let P ∈ Rd+. We call the action of Ψ periodic with period
P ≥ 0 or P-periodic, if ψt+P = ψt for all t ∈ Rd.

If we speak of a periodic group action we usually mean a 1-periodic group action
(Pk = 1 for all k = 1, . . . , d). It is easy to check that for each P -periodic group action
Ψ we can define a new automorphism group Ψ by ψ(t1,...,td) = ψ(t1/P1,...,td/Pd). The
reader may verify that the smoothness spaces we will define in the sequel do not
depend on this normalization.

Definition 4.16. If X is a Banach space, and Ψ an automorphism group acting
on A, the generator δt is defined for each t ∈ Rd \ {0} as

(4.9) δt(x) = lim
h→0

ψht(x)− x
h

The domain of δt is the set of all x ∈ X for which this limit exists. The canoni-
cal generators of Ψ are δek and Ψ is called the automorphism group generated by
(δek)1≤k≤d.

If A is a Banach algebra, each generator δt, t ∈ Rd \ {0}, is a closed derivation.
If A is a Banach ∗-algebra, then δt is a ∗-derivation [24].
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Example 4.17. The classical example of an automorphism group acting on a
Banach algebra is the translation group {Tx : x ∈ Rd}, whose canonical generators
are the partial derivatives ∂k, 1 ≤ k ≤ d. If the translation group acts on A =
L∞(Rd), the continuous elements are the functions in C(L∞(Rd)) = Cu(Rd), where
Cu(Rd) denotes the space of bounded uniformly continuous functions on Rd.

Remarks.

(1) In a C∗-algebra all automorphisms are isometries. This is no longer true
for symmetric algebras. Let C̃ denote the C1 functions on the line with
norm ‖f‖∼ := ‖f‖∞ + ‖f ′v1‖∞ < ∞. Then C̃ is a a symmetric algebra,
and the natural action of the translation group on C̃ is not uniformly
bounded.

(2) In the theory of operator algebras it is usually assumed that Ψ is strongly
continuous on all of A, i.e. A = C(A). This is no longer true for most
matrix algebras, and C(A) is an interesting space in its own right.

Definition 4.18 (Homogeneous matrix algebras). Let Mt, t ∈ Rd, be the mod-
ulation operator Mtx(k) = e2πik·tx(k), k ∈ Zd. Then

χt(A) = MtAM−t, χt(A)(k, l) = e2πi(k−l)·tA(k, l) k, l ∈ Zd ,

defines a group action on matrices. A matrix algebra A is called homogeneous
(cf. [33, 34], see also [90, Chapter 9]), if the automorphism group χ = {χt}t∈Rd is
uniformly bounded on A.

The canonical generators for the automorphism group χ are the derivations
δk(A) = [Xk, A], k = 1, . . . , d, defined in Example 4.9. This automorphism group
is uniformly bounded on every solid matrix algebra and on B(`2).

The following proposition states the Banach algebra properties of C(A).

Proposition 4.19. If A is a Banach algebra and Ψ a uniformly bounded auto-
morphism group acting on A, then C(A) is a closed and inverse-closed subalgebra
of A. If A is a ∗-algebra, so is C(A).

Proof. First we verify that C(A) is an algebra. Let a, b ∈ C(A). Then

(4.10) ‖ψt(ab)− ab‖A ≤ ‖ψt(a)‖A‖ψt(b)− b‖A + ‖ψt(a)− a‖A‖b‖A.

This expression tends to zero for t→ 0 as ‖ψt‖A→A ≤MΨ, so ab ∈ C(A). For the
completeness of C(A) let an ∈ C(A) for all n, and an → a in A. Then

‖ψt(a)− a‖A ≤ ‖ψt(a− an)‖A + ‖ψt(an)− an‖A + ‖an − a‖A.

The first and the third term can be made arbitrarily small by choosing n sufficiently
large. Since an ∈ C(A), the second term can be made small. Thus a ∈ C(A).
To show the inverse-closedness, let a ∈ C(A) and assume that a is invertible in A.
Then (as in the proof of the quotient rule) the algebraic identity

(4.11) ψt(a−1)− a−1 = ψt(a−1)(a− ψt(a))a−1

yields that

‖ψt(a−1)− a−1‖A ≤MΨ ‖a−1‖2A ‖a− ψt(a)‖A → 0 for t→ 0,

and thus a−1 ∈ C(A). �
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Generators and Smoothness. Before defining the spaces Ck(X ), some tech-
nical preparations are needed, because generators commute only under some addi-
tional conditions (similar to partial derivatives).

Proposition 4.20 ([27, 58]).
(1) If δ is the generator of a one-parameter group, then the domain D(δ) is

dense in C(X ).
(2) If Ψ is a d-parameter automorphism group acting on X , then Ψ and the

generators commute, whenever defined, i.e.,

ψs(δt(x)) = δt(ψs(x)) for x ∈ D(δt,X ), s, t ∈ Rd.

(3) Derived spaces consist of continuous elements:

X (1) =
d⋂
k=1

D(δk,X ) ⊆ C(X ).

(4) If Ds,t = D(δs, C(X )) ∩ D(δt, C(X )) ∩ D(δsδt, C(X )), then for s, t 6= 0

Ds,t = Dt,s, and δsδt = δtδs on Ds,t.

Definition 4.21. For k ∈ N0 the spaces Ck(X ) and C∞(X ) are defined as

Ck(X ) =
⋂
|α|≤k

D(δα, C(X )) and C∞(X ) =
⋂
α≥0

D(δα, C(X )) .

The norm on Ck(X ) is ‖x‖Ck(X ) =
∑
|α|≤k

1
α!‖δ

αx‖X . For k = 0 we set C0(X ) =
C(X ).

Proposition 4.20 shows that this definition does not depend on the ordering of
the standard basis.

It is an important fact that the smoothness spaces consist of the continuous
elements of the derived spaces, i.e.,

(4.12) C(X (k)) = Ck(X ).

In fact, x ∈ C(X (k)) means that the norm
∑
|β|≤k‖δβx‖X is finite, and, moreover, ψt

acts continuously on x in this norm, so ψt(x)→ x in X , and δβψt(x) = ψtδ
β(x)→

δβ(x) in X for t → 0 and all indices β with |β| ≤ k. But this describes precisely
the membership of x in Ck(X ).

Algebra properties and inverse-closedness of the spaces Ck(A), A a Banach
algebra, are summarized in the following proposition. Note that in contrast to
Theorem 4.5 we do not need any further assumptions on A.

Proposition 4.22. If A is a Banach algebra, each space Ck(A) is an inverse-
closed Banach subalgebra of A. C∞(A) is an inverse-closed Fréchet subalgebra of
A.

Proof. If A is symmetric, then Ck(A) is inverse-closed in C(A) already by
Proposition 4.8. For general A let a ∈ C(A) and a ∈ D(δ, C(A)). Then we obtain
directly from (4.11) that

δek(a)−1 = lim
h→0

ψhek(a−1)− a−1

h
= lim
h→0

ψhek(a−1)
a− ψhek(a)

h
a−1 = −aδ−1

ek
(a)a−1

and thus a−1 ∈
⋂d
k=1D(δek , C(A)) = C1(A). Consequently C1(A) is inverse-closed

in C(A) and by induction Ck(A) is inverse-closed in C(A). Since C(A) is inverse-
closed in A, Ck(A) is inverse-closed in A. If a ∈ C∞(A) ⊆ Ck(A), k ≥ 0, is
invertible in A, then a−1 ∈ Ck(A) for all k ≥ 0 and thus a−1 ∈ C∞(A). �
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We summarize the inclusion relations between the derived spaces X (k) and the
spaces Ck(X ).

(4.13) X ⊇ C(X ) ⊇ X (1) ⊇ C1(X ) ⊇ X (2) ⊇ · · · ⊇ C∞(X ) = X (∞) .

In general, C(X (k)) is not dense in X (k), but C∞(X ) is dense in C(X ). The
inclusions follow from Proposition 4.20(3) and (4.12).

Weak Definition. If X is a Banach space, and x ∈ C(X ), x′ ∈ X ′ (the dual
of X ), we define

(4.14) Gx′,x(t) = 〈x′, ψt(x)〉,

where 〈 , 〉 denotes the dual pairing of X ′ ×X .

Remark. Instead of the dual space X ′ we can take any norm fundamental set
([13, p.12]), i.e., a subspace L ⊆ X ′ with ‖x‖X = sup{〈x′, x〉 : x′ ∈ L, ‖x′‖X ′ ≤ 1};
in particular the predual will be useful in many instances.

Lemma 4.23.

(1) For every x ∈ X there holds the equivalence ‖x‖X � sup‖x′‖X′≤1‖Gx′,x‖∞.
(2) ‖δαx‖X � sup‖x′‖X′≤1‖DαGx′,x‖∞.

Proof. (1) follows from

‖x‖X = sup
‖x′‖X′≤1

|〈x′, x〉| ≤ sup
‖x′‖X′≤1

sup
t∈Rd
|〈x′, ψtx〉|

= sup
‖x′‖X′≤1

‖Gx′,x‖∞ ≤MΨ‖x‖X .

For the proof of the second statement it is sufficient to verify that

(4.15) Gx′,δαx = DαGx′,x.

If |α| = 1, this is a direct consequence of the definition of a generator, the case
|α| > 1 follows by induction. �

Functional Calculus and Fourier Coefficients. Given µ ∈ M(Rd) and
x ∈ C(X ), the action of µ on x is defined by

(4.16) µ ∗ x =
∫

Rd
ψ−t(x)dµ(t).

This action generalizes the usual convolution and satisfies similar properties.

Proposition 4.24. The space C(X ) is a M(Rd)- module that satisfies

(4.17) ‖µ ∗ x‖X ≤MΨ‖µ‖M(G)‖x‖X

for x ∈ C(X ) and µ ∈M(Rd).
If f ∈ C1(Rd), then

(4.18) δj(f ∗ x) = ∂j(f) ∗ x ∈ C(X ), 1 ≤ j ≤ d.

If µ ∈M(Rd), x ∈ X , then for every x′ ∈ X ′

(4.19) Gx′,µ∗x = µ ∗Gx′,x.

See, e.g., [27] for a proof of (4.17) and (4.18). The verification of (4.19) is
straightforward.
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Remarks. It should be noted that the action of M(Rd) is only defined on
C(A); in this text a more general definition is not needed. Actually, a measurable
group action is also strongly continuous [38]. However, for B(`2) the continuity of
ΦA,x : t 7→ χt(A)x ∈ `2(Zd) can be exploited (this approach follows [33]): Continu-
ity implies that the integrals ∫

Td
χt(A)x dµ(t)

are well defined, and∥∥∥∫
Td
χt(A)x dµ(t)

∥∥∥
`2(Zd)

≤ ‖χt(A)x‖`2(Zd)‖µ‖M(Rd) ≤MΨ‖A‖B(`2)‖x‖`2(Zd)‖µ‖M(Rd) .

So there exists a bounded operator∫
Td
χt(A) dµ(t) : x 7→

∫
Td
χt(A)x dµ(t)

such that (4.17) and (4.18) hold for all A ∈ B(`2) (see also [14]).

Definition 4.25. If Ψ is a periodic automorphism group on X with period one
in each variable, and x ∈ C(X ) we define the Fourier coefficients x̂(k), k ∈ Zd, by

(4.20) x̂(k) =
∫

Td
ψt(x) e−2πik·t dt .

Proposition 4.26. Let Ψ be periodic on X . If

x̂(k) = 0 for all k ∈ Zd then x = 0 .

Proof. This follows from the uniqueness of scalar Fourier Series. As

(4.21) 〈x′, x̂(k)〉 = Ĝx′,x(k)

for x ∈ X , x′ ∈ X ′, and k ∈ Zd, it follows that Ĝx′,x(k) = 0 for all x′ and all k ∈ Zd.
By the uniqueness of scalar Fourier series Gx′,x = 0 for all x′ ∈ X ′, so x = 0. �

If the group action is periodic with period one, an application of the convolution
theorem shows that the action of µ on x is

(4.22) µ̂ ∗ x(k) = F(µ)(k)x̂(k) .

An application of (4.18) shows that for x ∈ Ck(X ) and |α| ≤ k

(4.23) δ̂α(x)(l) = (2πil)αx̂(l) ,

for all l ∈ Zd.

Remark. By an observation of Baskakov [10] for the action χt(A) = MtAM−t
on a matrix A, the Fourier coefficient

∫
Td χt(A)e−2πik·t dt is exactly the kth side-

diagonal Â(k) of A. So there is no ambiguity in our notation. The identification of
side-diagonals of matrices with Fourier coefficients is a key step in the proof of the
inverse-closedness of C1

v in B(`2), see [10].

If the matrix algebra A is solid, the product µ ∗ A can be defined entry-wise
via µ ∗A(r, s) := µ̂(r − s)A(r, s), and solidity implies

‖µ ∗A‖A ≤ ‖µ̂‖∞‖A‖A ≤ ‖µ‖M(Rd)‖A‖A.

The relations (4.17) and (4.18) are true in this case, too.
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Smoothness in Matrix Spaces. We now identify the spaces C(A) for the
weighted matrix spaces Cpv and S1

v with respect to the automorphism group {χt}.

Proposition 4.27. If v is a weight for Cpv , 1 ≤ p ≤ ∞, then

C(Cpv ) = Cpv , 1 ≤ p <∞,

C(C∞v ) = {A ∈ C∞v : lim
|k|∞→∞

‖Â(k)‖C∞v = lim
|k|∞→∞

‖A[k]‖∞v(k) = 0} .

Proof. We treat the case 1 ≤ p <∞ first and consider A ∈ Cpv arbitrary. By
definition, A is in C(Cpv ) if and only if

‖χt(A)−A‖pCpv =
∑
k∈Zd
‖Â(k)‖pB(`2)v(k)p|1− e2πik·t|p

=2p
∑
k∈Zd
‖Â(k)‖pB(`2)v(k)p|sin(πk · t)|p → 0

(4.24)

if t→ 0. For any ε > 0 there exists a k0 ∈ Zd such that∑
|k|∞>k0

‖Â(k)‖pB(`2)v(k)p < εp .

Now it is possible to find a t0 > 0 such that

2p
∑

|k|∞≤k0

‖Â(k)‖pB(`2)v(k)p|sin(πk · t)|p < εp

for all t with |t| < t0. This implies that ‖χt(A) − A‖p
C(Cpv )

< (2p + 1)εp, and, as ε
was arbitrary, we have verified that every A ∈ Cpv is continuous.

If p = ∞ we show first that A ∈ C(C∞v ) implies that limk→∞‖Â(k)‖C∞v = 0.
Again, for every ε > 0 there is a t0 > 0 such that

‖χt(A)−A‖C∞v = 2 sup
k∈Zd
|sinπk · t| ‖Â(k)‖C∞v < ε

for all t with |t| < t0. If |k|2 > (2t0)−1 and t = k
2|k|22

, then ‖Â(k)‖C∞v < ε, and so

limk→∞‖Â(k)‖C∞v = 0.
For the converse implication let us assume that limk→∞‖Â(k)‖C∞v = 0. The

following estimate holds for every natural number N .

‖χt(A)−A‖C∞v ≤ max
|k|∞<N

‖Â(k)‖C∞v |e
2πik·t − 1|+ 2 sup

|k|∞≥N
‖Â(k)‖C∞v .

If we choose N sufficiently large, the second term of this expression becomes arbi-
trarily small. If t tends to zero, the first term becomes arbitrarily small as well.
Consequently, A ∈ C(C∞v ). �

Similarly, a matrix A is in C(S1
0 ) if and only if

(4.25) lim
N→∞

sup
k∈Zd

∑
|s|∞>N

|A(k, k − s)| = 0 and lim
N→∞

sup
k∈Zd

∑
|s|∞>N

|A(k − s, k)| = 0.

This can be shown by a similar computation as above, however, it will follow
immediately from Corollary 5.8.

Next we show that C(B(`2)) 6= B(`2) by giving an explicit example. Define the
anti-diagonal matrices Γv by

Γv(k, l) =

{
1/v(k), k = −l
0, k 6= −l .
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If we choose v0 ≡ 1, then Γ = Γv0 is unitary in B(`2). Now the matrix χt(Γ) − Γ
has nonzero entries only on the anti-diagonal,

(χt(Γ)− Γ)(k,−k) = 2|sin(2πk · t)| ,
and it is easy to see that

lim sup
t→0

‖χt(Γ)− Γ)‖B(`2) = 2 .

In a similar manner we can use the matrix Γv ∈ S1
v to conclude

lim sup
t→0

‖χt(Γv)− Γv)‖S1
v

= 2 .

We have shown that

C(B(`2)) 6= B(`2) ,

C(S1
v ) 6= S1

v .

Proposition 4.27 together with Proposition 4.10 and (4.12) gives the following char-
acterization of Ck spaces

Corollary 4.28.

Ck(Cpv ) = Cpv vk , 1 ≤ p <∞,

Ck(C∞v ) = C(C∞v vk) ,

Ck(S1
v ) = C(S1

v vk
) .

The continuous elements of the Jaffard and the Schur algebra are characterized by
Proposition 4.27 and by (4.25).

4.3. Abstract Besov Spaces and Algebras

The theory of vector valued Besov spaces is well established. A classic treatment
is [27], information on vector-valued Besov spaces can also be found in [15, 79,
102]. A treatment suited to the needs of approximation theory is in [37]. The
purpose of this section is to introduce notation and to present some relevant results
needed in the sequel. For proofs we refer to the literature cited above, some proofs
are also included in Appendix D. However, I was not able to find a result on the
“reiteration” of Besov spaces in the literature (Theorem 4.35), so a proof is included.

The main results of this section are the algebra properties of vector-valued
Besov spaces derived from a given Banach algebra A. Though possibly known, we
were not able to find any references, so full proofs of the results are included.

Remark. There are many equivalent ways to define Besov spaces. The one
chosen here is suited to the needs of approximation theory, cf. [37, 103].

4.3.1. Definition and Basic Properties. Let X be a Banach space and Ψ
a d-dimensional automorphism group acting on X . For t ∈ Rd the kth difference of
an element x ∈ X is given inductively as

∆t(x) = ψt(x)− x, ∆k
t x = ∆t∆k−1

t x, k > 1.

The modulus of continuity of x for h > 0 is

ωh(x,X ) = ωh(x) = sup
|t|≤h
‖∆tx‖X .

If k > 1, the kth modulus of smoothness of x for h > 0 is given as

ωkh(x,X ) = ωkh(x) := sup
|t|≤h
‖∆k

t x‖X .

In the following Lemma we collect basic properties of moduli of smoothness. Proofs
can be found, e.g., in [13, 27, 37].
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Lemma 4.29. If l, k ∈ N, l ≥ k, t ∈ Rd and h > 0, then
(1)

‖∆l
t(x)‖X ≤ (MΨ + 1)k‖∆l−k

t (x)‖X and ωlh(x) ≤ (MΨ + 1)kωl−kh (x) ,

(2)

‖∆k
2t(x)‖X ≤ (MΨ + 1)k‖∆k

t (x)‖X and ωk2h(x) ≤ (MΨ + 1)kωkh(x) ,

(3) If λ > 0 then

‖ωkλt(x)‖X ≤ (MΨ + 1)k(λ+ 1)k‖∆k
t (x)‖X .

(4) (Marchaud inequality)

ωkh(x) ≤ Chk
∫ ∞
h

ωlu(x)
uk

du

u
.

(5) The averaged modulus of smoothness

wkh(x) = h−d
∫
|t|≤h
‖∆k

t x‖X dt

is equivalent to the “standard” modulus of smoothness: wkh(x) � ωkh(x)
[37, Lemma 6.5.1].

(6) The modulus of smoothness is also equivalent to the iterated modulus of
smoothness [13, 5.4.11],

ωkt (x) � sup
|hj |≤t
1≤j≤k

‖
( k∏
j=1

∆hj

)
x‖X .

(7) If x ∈ Ck(X ), then

ωk+l
h (x) ≤ C sup

|α|=k
ωlh(δα(x))

For completeness the proof is included in Appendix D.

Definition 4.30. Let 1 ≤ p ≤ ∞, r > 0, l = brc + 1. The (vector valued)
Besov space Λpr(X ) consists of all x ∈ X for which the norm

‖x‖Λpr(X ) =

{
‖x‖X +

(∫
R+(h−rωlh(x))p dhh

)1/p = ‖x‖X + |x|Λpr(X ) , 1 ≤ p <∞
‖x‖X + suph>0 h

−rωlh(x) = ‖x‖X + |x|Λ∞r (X ) , p =∞

is finite. The term |x|Λpr(X ) is the Besov seminorm of x, and r is the smoothness
parameter.

It is well known that Λpr(X ) is a Banach space for 1 ≤ p ≤ ∞, see, e.g. [27].
For further properties of Besov spaces see, e.g., [15, 79, 102]. We will need some
equivalent norms on the Besov spaces.

Proposition 4.31. If x ∈ X , r > 0, then for any integer k > brc the following
expressions define equivalent (semi)norms on Λpr(X ).

(1)

|x|Λpr(X ) �
(∫

R+
(h−rωkh(x))p

dh

h

)1/p

.

(2)

‖x‖Λpr(X ) � ‖x‖X +
(∫

Rd
(|t|−r‖∆k

t x‖X )p
dt

|t|d

)1/p

.
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(3)

‖x‖Λpr(X ) � ‖x‖X +
( ∞∑
l=0

(
2rlωk2−l(x)

)p)1/p

,

(4) If l ∈ N0, and l ≤ r, then

‖x‖Λpr(X ) � ‖x‖X +
∑
|α|=l

‖δα(x)‖Λpr−l(X ) .

The proof of the equivalences can be found in any of the references cited above.
The modifications to cover the situation of group actions are minor. For complete-
ness the proofs are included in Appendix D.2.

The Besov space Λ∞r (X ) has a weak characterization of the norm, namely

‖x‖Λ∞r (X ) � sup
‖x′‖X′≤1

‖Gx′,x‖Λ∞r (Rd).

As we do not need this relation we omit a proof, see [52].
We need to verify that the group action Ψ is bounded on Λpr(X ).

Lemma 4.32. If X is a Banach space with (bounded) automorphism group Ψ,
then Ψ is a bounded automorphism group on Λpr(X ) for every 1 ≤ p ≤ ∞, and
r > 0.

Proof. Assume that p <∞. If x ∈ Λpr(X ), k > brc and s ∈ Rd, then

‖ψsx‖Λpr(X ) = ‖ψsx‖X +
(∫

Rd
(|t|−r‖∆k

tψsx‖X )p
dt

|t|d
)1/p

≤MΨ‖x‖Λpr(X ) .

The proof for p =∞ is similar. �

For the continuous elements of Besov spaces we have

Proposition 4.33 ([27, Def. 3.1.5, Sec.3.4.3]). Assume that k > brc.

C(Λpr(X )) =

{
Λpr(X ), 1 ≤ p <∞,
λ∞r (X ) = {x ∈ X : limh→0 h

−rωkh(x) = 0}, p =∞.

4.3.2. Inclusion Relations. The proofs of the following result can be found
in the standard literature [15, 37, 79].

Proposition 4.34. If 1 ≤ p, q ≤ ∞ and 0 < r < s, then
(1) Λps(X ) ↪→ Λqr(X ) .
(2) If p < q then Λpr(X ) ↪→ Λqr(X ).

Does the iteration of the construction of Besov spaces yield refined smoothness
spaces? Fortunately, this is not the case:

Theorem 4.35 (Reiteration theorem). If 1 ≤ p, q ≤ ∞ and r, s > 0 then

(4.26) Λqs(Λ
p
r(X )) = Λqr+s(X ) .

Remark. I was not able to find a reference for this result in the literature. With
the “classical” notion of Besov spaces on Rd it is not even possible to formulate the
result. We want to use (4.26) to simplify proofs of approximation results.

Proof. We assume first that x is in Λqs+r(X ) and estimate ‖x‖Λqs(Λpr(X )).
As ‖x‖Λqs(Λpr(X )) = ‖x‖Λpr(X ) + |x|Λqs(Λpr(X )) and Proposition 4.34(1) implies that
‖x‖Λpr(X ) ≤ C‖x‖Λqr+s(X ), it suffices to estimate |x|Λqs(Λpr(X )).
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Assume that brc < m and bsc < n, m,n ∈ N. Using Proposition 4.31(1) we
can write

|x|Λqs(Λpr(X )) �

{∫
R+

[
h−sωn+m

h (x,Λpr(X ))
]q dh
h

}1/q

= ‖h−sωn+m
h (x,Λpr(X ))‖Lq∗ ,

(4.27)

where ‖f‖Lq∗ =
(∫∞

0
f(t)q dtt

)1/q. We can estimate the modulus of smoothness as

ωn+m
h (x,Λpr(X )) = sup

|u|≤h
‖∆n+m

u x‖Λpr(X )

≤ sup
|u|≤h

‖∆n+m
u x‖X + sup

|u|≤h
|∆n+m

u x|Λpr(X )

. sup
|u|≤h

‖∆n+m
u x‖X + sup

|u|≤h
|∆n+m

u x|Λ1
r(X ) ,

(4.28)

where the last inequality uses the embedding Λ1
r(X ) ↪→ Λpr(X ) for p ≥ 1 (Proposi-

tion 4.34).
Inserting this estimate into (4.27) we obtain

(4.29) |x|Λqs(Λpr(X )) . |x|Λqs(X ) + ‖h−s sup
|u|≤h

|∆n+m
u x|Λ1

r(X )‖Lq∗ .

With
φ(v, u) = ‖∆n+m

v ∆n+m
u x‖X

the Lq∗-norm in (4.29) can be rewritten as

‖h−s sup
|u|≤h

∫
R+
t−r sup

|v|≤t
φ(v, u)

dt

t
‖Lq∗

≤ ‖h−s sup
|u|≤h

∫ h

0

t−r sup
|v|≤t

φ(v, u)
dt

t
‖Lq∗ + ‖h−s sup

|u|≤h

∫ ∞
h

t−r sup
|v|≤t

φ(v, u)
dt

t
‖Lq∗

=: I + II.

(4.30)

The first term can be estimated further using Hardy’s inequality (Appendix A.1):

Iq =
∫ ∞

0

h−sq sup
|u|≤h

[∫ h

0

sup
|v|≤t

t−rφ(v, u)
dt

t

]q
dh

h

≤
∫ ∞

0

h−sq
[∫ h

0

sup
|v|,|u|≤h

t−rφ(v, u)
dt

t

]q
dh

h

(∗)
.
∫ ∞

0

(
t−(r+s) sup

|v|,|u|≤t
φ(v, u)

)q
dt

t

(∗∗)
.
∫ ∞

0

(
t−(r+s)ω

2(n+m)
t (x,X )

)q
dt

t
= |x|q

Λqr+s(X )
,

(∗) by Hardy’s inequality, and (∗∗) using Lemma 4.29(6). For the second term we
use (1) of Lemma 4.29 to get

φ(v, u) = ‖∆n+m
v ∆n+m

u x‖X . ‖∆n+m
u x‖X .

Then sup|v|≤t φ(u, v) is independent of t, and

IIq .
∫ ∞

0

(
h−s sup

|u|≤h

∫ ∞
h

t−r‖∆n+m
u x‖X

dt

t

)q
dh

h

=
∫ ∞

0

h−(r+s)q sup
|u|≤h

‖∆n+m
u x‖qX

dh

h
= |x|q

Λqr+s(X )
.

(4.31)



48 4. SMOOTHNESS

I and II together give the desired estimate.
For the converse assume that x ∈ Λqs(Λ

p
r(X )). Then, by Proposition 4.31 (2),

|x|q
Λqr+s(X )

�
∫

Rd

(
|t|−(r+s)‖∆n+m

t x‖X
)q

dt

|t|d

�
∫

Rd
|t|−rq

(∫
|η|≥|t|

|η|−sp‖∆n+m
t x‖pX

dη

|η|d

)q/p
dt

|t|d
,

(4.32)

where we used |t|−s �
(∫
|η|≥|t||η|

−sp dη
|η|d
)1/p for the last equivalence. As ‖∆n+m

t x‖X ≤
sup|v|≤|η|‖∆m

v ∆n
t ‖X for |η| ≥ |t| , we can dominate the right hand side of (4.32) by∫

Rd
|t|−rq sup

|u|≤|t|

(∫
|η|≥|t|

|η|−sp sup
|v|≤|η|

‖∆n
v∆m

u x‖
p
X
dη

|η|d

)q/p
dt

|t|d

≤
∫

Rd
|t|−rq sup

|u|≤|t|

(∫
Rd
|η|−sp sup

|v|≤|η|
‖∆n

v∆m
u x‖

p
X
dη

|η|d

)q/p
dt

|t|d

≤
∫

Rd
|t|−rq sup

|u|≤|t|
(|∆m

u x|Λps(X ))
q dt

|t|d

≤ |x|q
Λqr(Λps(X ))

.

�

Remark. A different proof of the reiteration theorem can be obtained using
the so-called reiteration theorems in interpolation theory (see, e.g. [29]) or in ap-
proximation theory [83].

4.3.3. Algebra Properties.

Theorem 4.36. Let A be a Banach algebra, Ψ be a d-dimensional group of
automorphisms acting on A, 1 ≤ p ≤ ∞ and r > 0 . Then

(1) the Besov space Λpr(A) is a Banach subalgebra of A, and
(2) the Besov space Λpr(A) is inverse-closed in A.

Proof. We treat the case r < 1 first. To show that Λpr(A) is a Banach algebra
we use the identity

(4.33) ∆t(ab) = ψt(a)∆t(b) + ∆t(a)b .

Taking norms we obtain
‖∆t(ab)‖A ≤ ‖ψt(a)‖A‖∆t(b)‖A + ‖∆t(a)‖A‖b‖A

≤MΨ‖a‖A‖∆t(b)‖A + ‖∆t(a)‖A‖b‖A
≤MΨ

(
‖a‖A‖∆t(b)‖A + ‖∆t(a)‖A‖b‖A

)
,

where we used MΨ ≥ 1 for the last inequality. This implies a similar relation for
the Besov-seminorms, namely,

|ab|Λpr(A) ≤MΨ(‖a‖A|b|Λpr(A) + ‖b‖A|a|Λpr(A)).

So
‖ab‖Λpr(A) = ‖ab‖A + |ab|Λpr(A) ≤ C‖a‖Λpr(A)‖b‖Λpr(A) ,

and the assertion follows.
Next we show the inverse-closedness of Λpr(A) in A. Assume that a ∈ Λpr(A) is

invertible inA. It is sufficient to verify that |a−1|Λpr(A) is finite. By a straightforward
computation we obtain

(4.34) ∆t(a−1) = −ψt(a−1) ∆t(a) a−1 .

This implies that a−1 has a finite Λpr(A)-norm.
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In the general case we can use the reiteration theorem (Theorem 4.35) and the
transitivity of inverse-closedness, and prove the statement by induction. Assume
that the statement is proved for all smoothness parameters smaller than s > 0.
If s < r < s + 1 then Λpr(A) = Λpr−s(Λ

p
s(A)), and, by the preceding argument

Λpr−s(Λ
p
s(A)) is inverse-closed in Λps(A), which by hypotheses is inverse-closed in

A. The theorem is proved. �

4.4. Bessel Potential Spaces

4.4.1. Definitions, Basic Properties. Bessel potentials allow us to define
an analogue of polynomial weights in Banach spaces with an automorphism group.
We define the Bessel kernel Gr by its Fourier transform,

FGr(ω) = (1 + |2πω|22)−r/2 , r > 0.

Some properties of the Bessel kernel will be needed in the sequel.

Lemma 4.37 ([95, V.5]).
(1) Gr ∈ Λ∞r (L1(Rd)) , ‖Gr‖L1(Rd) = 1,
(2) Gr ∗ Gs = Gr+s for all r, s > 0,
(3) Gr ∗S = {Gr ∗ ϕ : ϕ ∈ S } = S .

Definition 4.38. Let X be a Banach space and Ψ an automorphism group
acting on X . The Bessel potential space of order r > 0 is

Pr(X ) = Gr ∗ X = {x ∈ X : x = Gr ∗ y for some y ∈ X}
with the norm

‖Gr ∗ y‖Pr(X ) = ‖y‖X .

We have to verify that the definition of the norm on Pr(X ) is consistent, that
is, we show that the convolution with Gr is injective on X . We use a weak type
argument.

Let y ∈ X with Gr ∗ y = 0. This is equivalent to

Gx′,Gr∗y(t) = Gr ∗Gx′,y(t) = 0

for all t ∈ Rd and all x′ ∈ X ′. Here Gx′,y(t) is the function defined in (4.23). Now
we proceed as in [95, V.3.3]. We choose a test function ϕ ∈ S and obtain∫

Rd
(Gr ∗Gx′,y)(t)ϕ(t) dt =

∫
Rd
Gx′,y(t)(Gr ∗ ϕ)(t) dt = 0 .

By Lemma 4.37 (3) the convolution with Gr is surjective on S , and so it follows
that Gx′,y = 0 for all x′ ∈ X ′, that is, y = 0.

An immediate consequence of Definition 4.38 is the embedding Pr(X ) ↪→ X . If
x ∈ Pr(X ), then x = Gr ∗ y for a y ∈ X , and

(4.35) ‖x‖X ≤ ‖Gr‖L1(Rd)‖y‖X = ‖Gr‖L1(Rd)‖x‖Pr(X ).

As Gr ∗ Gs = Gr+s for r, s > 0 we obtain a (trivial) reiteration property for the
Bessel potential spaces.

Proposition 4.39.

Pr(Ps(X )) = Pr+s(X ), r, s > 0.

The following inclusion will be complemented in Proposition 4.44.

Lemma 4.40.
Pr(X ) ↪→ Λ∞r (X ).
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Proof. Let x ∈ Pr(X ) with x = Gr∗y, y ∈ X . Then |x|Λ∞r (X ) can be estimated
for k > brc as

|x|Λ∞r (X ) = sup
|t|6=0

‖∆k
t (Gr ∗ y)‖X
|t|r

= sup
|t|6=0

‖∆k
t (Gr)
|t|r

∗ y‖X

≤ ‖Gr‖Λ∞r (L1)‖y‖X = ‖Gr‖Λ∞r (L1)‖x‖Pr(X ) ,

and this is the desired embedding. �

4.4.2. Characterization by Hypersingular Integrals.

Lemma 4.41. If x ∈ Pr(X ), then ‖x‖Pr(X ) � sup‖x′‖X′≤1‖Gx′,x‖Pr(L∞), where
the dual pairing in Gx′,x is the one of X ′ ×X .

Proof. Let x = Gr ∗ y. Then

‖x‖Pr(X ) =‖y‖X � sup
‖x′‖X′≤1

‖Gx′,y‖∞

= sup
‖x′‖X′≤1

‖Gr ∗Gx′,y‖Pr(L∞) = sup
‖x′‖X′≤1

‖Gx′,Gr∗y‖Pr(L∞) . �

We state a special case of a result by Wheeden [105] (see also [94],[95, V.6.10]).

Theorem 4.42. Let 0 < r < 2. A function f is an element of Pr(L∞(Rd)) if
and only if f ∈ L∞(Rd) and

(4.36) sup
ε>0

∥∥∥∫
|t|≥ε
|t|−r∆t(f)

dt

|t|d
∥∥∥
L∞(Rd)

<∞.

If (4.36) holds,

(4.37) ‖f‖L∞(Rd) + sup
ε>0

∥∥∥∫
|t|≥ε
|t|−r∆t(f)

dt

|t|d
∥∥∥
L∞(Rd)

<∞

defines an equivalent norm on Pr(L∞(Rd)).

An application of Lemma 4.41 allows us to state an equivalent result for vector-
valued Bessel potential spaces.

Theorem 4.43. Let X be a Banach space and Ψ an automorphism group acting
on it. For 0 < r < 2 the norm ‖x‖Pr(X ) is equivalent to

(4.38) ‖x‖X + sup
ε>0

∥∥∥∫
|t|≥ε
|t|−r∆t(x)

dt

|t|d
∥∥∥
X
.

Proof. The proof is a direct calculation using the scalar result and Lemma 4.41.
�

In the following result we obtain a comparison of Bessel potential spaces and
Besov spaces.

Proposition 4.44.

Λ1
r(X ) ↪→ Pr(X ) ↪→ Λ∞r (X ) if r > 0.

Proof. The embedding Pr(X ) ↪→ Λ∞r (X ) has been proved in Lemma 4.40.
We have to verify only the first inclusion. Assume first that 0 < r < 1. By
Theorem 4.43, for an x ∈ Pr(X )

‖x‖Pr(X ) � ‖x‖X + sup
ε>0

∥∥∥∫
|t|≥ε
|t|−r∆t(x)

dt

|t|d
∥∥∥
X

≤ ‖x‖X +
∫
|t|≥0

|t|−r‖∆t(x)‖X
dt

|t|d

= ‖x‖Λ1
r(X ) .
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In the general case we proceed by induction. Let the statement be true for all
positive values up to s > 0, and s < r < s+ 1. Then

Λ1
r(X ) = Λ1

r−s(Λ
1
s(X )) ⊆ Pr−s(Λ1

s(X )) ⊆ Pr−s(Ps(X )) = Pr(X ) ,

where we have used the reiteration theorems for the Bessel and the Besov spaces. �

Remark. In order for this proof to be useful it is necessary to know that we
“play fair” here: For the proof of Theorem 4.42 only the embedding of Lemma 4.40
is needed.

Another application of the reiteration theorem and the representation of the
norm of Pr(X ) by the hypersingular integral (4.38) yields the following result.

Proposition 4.45. If r, s > 0, then

(4.39) Pr(Λps(X )) = Λps(Pr(X )) = Λpr+s(X ) .

Proof. Using the reiteration theorems for Bessel potential spaces and Besov
spaces, it suffices to prove the proposition only for 0 < r, s < 1.

We show first that Pr(Λps(X )) ↪→ Λps(Pr(X )). Now y ∈ Λps(X ) if and only if
x = Gr ∗ y ∈ Pr(Λps(X )). We obtain the following estimate.

‖Gr ∗ y‖pΛps(Pr(X ))
=
∫

Rd

‖∆t(Gr ∗ y)‖pX
|t|sp

dt

|t|d

=
∫

Rd

‖Gr ∗∆t(y)‖pX
|t|sp

dt

|t|d

≤
∫

Rd

‖Gr‖pL1(Rd)
‖∆t(y)‖pX

|t|sp
dt

|t|d

=‖y‖p
Λps(X )

= ‖Gr ∗ y‖pPr(Λps(X ))
.

Now let x = Gr ∗ y ∈ Pr(Λps(X )). Then

‖x‖pPr(Λps(X ))
=‖Gr ∗ y‖pPr(Λps(X ))

= ‖y‖p
Λps(X )

=
∫

Rd

‖∆t(y)‖pX
|t|sp

dt

|t|d

=
∫

Rd

‖∆t(Gr ∗ y)‖pPr(X )

|t|sp
dt

|t|d
=‖Gr ∗ y‖Λps(Pr(X )) = ‖x‖Λps(Pr(X )) .

Proposition 4.44 implies that

Λps(Λ
1
r(X )) ↪→ Λps(Pr(X )) ↪→ Λps(Λ

∞
r (X )) ,

and the first and last space in this chain equal Λpr+s(X ) by the reiteration theorem
for Besov spaces. �

4.4.3. Algebra Properties. If A is a Banach algebra, the characterization
of Bessel potential spaces by a hypersingular integral in Theorem 4.43 yields the
Banach algebra properties of Pr(A). For the proof we need one more norm equiv-
alence.

Lemma 4.46. If r > 0, then

‖x‖X + sup
ε>0

∥∥∥∫
|t|≥ε

∆t(x)
|t|r

dt

|t|d
∥∥∥
X
� ‖x‖X + sup

ε>0

∥∥∥∫
ε≤|t|≤1

∆t(x)
|t|r

dt

|t|d
∥∥∥
X
.
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Proof. For the nontrivial part of the Lemma observe that∥∥∥∫
ε≤|t|

∆t(x)
|t|r

dt

|t|d
∥∥∥
X
≤
∥∥∥∫

ε≤|t|≤1

∆t(x)
|t|r

dt

|t|d
∥∥∥
X

+
∥∥∥∫
|t|≥1

∆t(x)
|t|r

dt

|t|d
∥∥∥
X

≤
∥∥∥∫

ε≤|t|≤1

∆t(x)
|t|r

dt

|t|d
∥∥∥
X

+ (1 +MΨ)‖x‖X
∫
|t|≥1

|t|−r dt
|t|d

�

Theorem 4.47. Let A be a Banach algebra and Ψ be a d-dimensional group of
automorphisms acting on A.

(1) For each r > 0 the Bessel potential space Pr(A) is a Banach subalgebra
of A.

(2) Pr(A) is inverse-closed in A.

Proof. We treat the case r < 1 first. Let a, b ∈ Pr(A). Using

∆t(ab) = ∆t(a)∆t(b) + a∆t(b) + ∆t(a)b

we obtain ∥∥∥∫
ε≤|t|≤1

∆t(ab)
|t|r

dt

|t|d
∥∥∥
A
≤
∥∥∥∫

ε≤|t|≤1

∆t(a)∆t(b)
|t|r

dt

|t|d
∥∥∥
A

+
∥∥∥a ∫

ε≤|t|≤1

∆t(b)
|t|r

dt

|t|d
∥∥∥
A

+
∥∥∥(∫

ε≤|t|≤1

∆t(a)
|t|r

dt

|t|d
)
b
∥∥∥
A
.

(4.40)

The second and third term of the expression on the right hand side of the inequality
are dominated by

‖a‖A‖b‖Pr(A) + ‖a‖Pr(A)‖b‖A . ‖a‖Pr(A)‖b‖Pr(A) .

For the estimation of the first term in (4.40) we use the embedding Pr(A) ↪→
Λ∞r (A) (Proposition 4.44), so ‖∆ta‖A . |t|r‖a‖Pr(A), with a similar estimate for
b. Therefore∥∥∥∫

ε≤|t|≤1

∆t(a)∆t(b)
|t|r

dt

|t|d
∥∥∥
A
. ‖a‖Pr(A)‖b‖Pr(A)

∫
0≤|t|≤1

|t|r dt
|t|d
≤ Cr‖a‖Pr(A)‖b‖Pr(A) ,

and Cr does not depend on ε. Combining the estimates and using Lemma 4.46 we
have proved that

‖ab‖Pr(A) . ‖a‖Pr(A)‖b‖Pr(A).

For the verification of the inverse-closedness of Pr(A) in A we use a similar
argument: Expand the identity (4.34) to obtain

∆t(a−1) = −∆t(a−1)∆t(a)a−1 − a−1∆t(a)a−1.

So

(4.41)
∥∥∥∫

ε≤|t|≤1

∆t(a−1)
|t|r

dt

|t|d
∥∥∥
A
≤
∥∥∥∫

ε≤|t|≤1

∆t(a−1)∆t(a)a−1

|t|r
dt

|t|d
∥∥∥
A

+
∥∥∥∫

ε≤|t|≤1

a−1∆t(a−1)a−1

|t|r
dt

|t|d
∥∥∥
A
.

As a ∈ Λ∞r (A), we know that

‖∆t(a)‖A . |t|r‖a‖Λ∞r (A),

‖∆t(a−1)‖A . |t|r‖a−1‖Λ∞r (A) . |t|r‖a−1‖2A‖a‖Λ∞r (A),

the last inequality follows by taking norms in (4.34). The first term on the right
hand side of (4.41) can be dominated by
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∫
ε≤|t|≤1

‖∆t(a−1)‖A‖∆ta‖A‖a−1‖A
|t|r

dt

|t|d
. ‖a−1‖3A‖a‖2Λ∞r (A) . ‖a

−1‖3A‖a‖2Pr(A) .

For the second term we get

∥∥∥∫
ε≤|t|≤1

a−1∆t(a)a−1

|t|r
dt

|t|d
∥∥∥
A

=
∥∥∥a−1

(∫
ε≤|t|≤1

∆t(a)
|t|r

dt

|t|d
)
a−1

∥∥∥
A

.‖a−1‖2A‖a‖Pr(A).

Putting both estimates together we get a−1 ∈ Pr(A), that is, the inverse-closedness
of Pr(A) in A.

If r ≥ 1 we can proceed by induction. Let Ps(A) be inverse-closed in A, and
s < r < s+1. By what we have just proved Pr(A) = Pr−s(Ps(A)) is inverse-closed
in Ps(A). As Ps(A) is inverse-closed in A by hypotheses we are done. �

4.4.4. Application to Weighted Matrix Algebras. We call a weight of
the form v∗r (k) = (1 + |2πk|2)r/2 for r > 0 the Bessel weight of order r.

Proposition 4.48. If X be a homogeneous matrix space, then

Xv∗r = Pr(X ) .

Proof. By definition A is in Pr(X ), if there is a A0 ∈ X such that A = Gr∗A0.
This is equivalent to

Â(k) = (1 + |2πk|2)−r/2Â0(k) ,

or Â0(k) = (1 + |2πk|2)r/2Â(k), and therefore

‖A‖Pr(X ) = ‖A0‖X = ‖A‖Xv∗r
by (4.22), i.e., A ∈ Xv∗r . �

If A is a homogeneous matrix algebra, the weighted matrix spaces Av∗r are
inverse-closed matrix algebras.

Proposition 4.49. If A is a homogeneous matrix algebra, and v∗r , r > 0, is a
Bessel weight, then Av∗r = Pr(A) is a matrix algebra. This algebra is inverse-closed
in A.

Proof. This is an application of Theorem 4.47. �

For solid matrix algebras the standard polynomial weights vr can be taken
instead of v∗r .

Corollary 4.50. If A is a solid matrix algebra, then Avr is an inverse-closed
subalgebra of A.

This result should be compared with Proposition 2.21 and Proposition 4.10.
For later use we state the results of Proposition 4.44 and Proposition 4.45 for
weighted matrix algebras.

Proposition 4.51. If A is a homogeneous matrix algebra, and r, s > 0, then

Λ1
r(A) ↪→ Av∗r ↪→ Λr∞(A),

Λpr(Av∗s ) = (Λpr(A))v∗s = Λpr+s(A).
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Remark. We have not identified the Besov spaces related to a matrix algebra
yet. Though this is not difficult, we postpone it to Section 5.5. However, from
the inclusion relations in Prop 4.34 and the first relation in Proposition 4.51 we
conclude that for ε > 0 and r > 0

Av∗r+ε ↪→ Λ1
r(A) ↪→ Av∗r ↪→ Λ∞r (A) ↪→ Av∗r−ε ,

so Besov spaces are related to off-diagonal decay. The last embedding in the relation
above follows directly from the characterization of the norm of Pr−ε(A) by the
hypersingular integral (4.38).



CHAPTER 5

Smoothness and Approximation with Bandlimited
Elements

So far the two constructions of inverse-closed subalgebras are based on dif-
ferent structural features of Banach algebras, namely, derivations or commutative
automorphism groups, and approximation schemes. Again classical approximation
theory indicates how to relate smoothness properties to approximation properties.
The prototype of such a connection is the Jackson-Bernstein theorem for polynomial
approximation of periodic functions.

In this section we develop a similar theory for Banach spaces with an automor-
phism group Ψ. The application to matrix algebras then supports once more the
insight that “smoothness of matrices” amounts to their off-diagonal decay.

Throughout this chapter we assume that X is a Banach space with automor-
phism group Ψ. The letter A indicates a Banach algebra.

5.1. Bandlimited Elements and Their Spectral Characterization

We need an analogue of the trigonometric polynomials in the context of a
Banach space with an automorphism group.

Definition 5.1. An element x ∈ X is σ-bandlimited for σ > 0, if there is a
constant C > 0 such that

(5.1) ‖δα(x)‖X ≤ C(2πσ)|α|

for every multi-index α. An element is bandlimited, if it is σ-bandlimited for some
σ > 0. Inequality (5.1) is a generalized Bernstein inequality.

Example 5.2. In C(T) the N -bandlimited elements are exactly the trigono-
metric polynomials of degree N ∈ N0. If f is a trigonometric polynomial of degree
N , then, by the classical Bernstein inequality, we have ‖f ′‖∞ ≤ 2πN‖f‖∞. This
implies (5.1).

Conversely, if f ∈ C(T) is N -bandlimited in the sense of (5.1), then

C(2πN)k ≥ ‖Dkf‖L∞(T) ≥ ‖Dkf‖L2(T) = ‖((2πil)kf̂(l))l∈Z‖`2 ≥ (2π|m|)k|f̂(m)|

for all m ∈ Z. This is true for all k ≥ 0, whence f̂(m) = 0 for |m| > N . See [103,
3.4.2] for related statements.

Lemma 5.3. Let A be a Banach algebra, and a, b ∈ A. If a is σ-bandlimited,
and b is τ -bandlimited, then ab is σ + τ -bandlimited.

Proof. Taking norms in the iterated Leibniz rule for δα(ab) and using that
‖δα(a)‖A ≤ Ca(2πσ)|α|, ‖δα(b)‖A ≤ Cb(2πτ)|α| for all multiindices α, we obtain

‖δα(ab)‖A ≤
|α|∑
k=0

(
|α|
k

)
CaCb(2πσ)k(2πτ)|α|−k = CaCb(2π(σ + τ))|α|.

�

55
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We next generalize Fourier arguments to obtain an alternative characterization
of bandlimited elements in a Banach space. To avoid vector-valued distributions,
we need some technical preparation.

Definition 5.4 ([22, Def. 2.2.5],[7]). Let X be a Banach space with automor-
phism group Ψ. For x ∈ C(X ) let J(x) = {f ∈ L1(Rd) : f ∗ x = 0}. Then the
spectrum of x is

(5.2) spec(x) = {ω ∈ Rd : f̂(ω) = 0 for all f ∈ J(x)}.

This condition can also be written in the form

(5.3) spec(x) =
⋂

f∈J(x)

f̂−1(0),

which shows immediately that spec(x) is a closed subset of Rd.
For basic properties of the spectrum, see e.g. [22].

Remark. The spectrum of an element of a Banach space can be defined when-
ever the action f ∗ x of f ∈ L1(Rd) on x ∈ X is well-defined, see the discussion in
Section 4.2. An important example is L∞(Rd) with the translation group, see [62].
For completeness, we note that for h ∈ L∞(Rd) a distributional description of the
spectrum can be given [62, 6.6.1] as

(5.4) spec(h) = supp ĥ,

where supp ĥ is the distributional support of the pseudo measure ĥ.

We need a similar (“weak type”) characterization in the general case.

Proposition 5.5. If x ∈ C(X ), then

(5.5) spec(x) =
⋃

x′∈X ′
supp F(Gx′,x) =

⋃
x′∈X ′

spec(Gx′,x) ,

where the Fourier transform F is used in the distributional sense and Gx′x,(t) =
〈x′, ψtx〉.

Proof. Assume first that ω ∈ suppF(Gx′,x) for some x′ ∈ X ′. If f ∈ J(X),
then f ∗ Gx′,x = Gx′,f∗x = 0, the first equality by (4.19). Taking the Fourier
transform we obtain F(f)F(Gx′,x) = 0 (the product exists in the distributional
sense, see [62, VI.4.10]). As ω ∈ suppF(Gx′,x), it follows that f̂(ω) must be 0.
This implies that ⋃

x′∈X ′
supp F(Gx′,x) ⊆ spec(x) .

Taking closures on both sides of this relation we obtain⋃
x′∈X ′

supp F(Gx′,x) ⊆ spec(x) .

On the other hand, if ω /∈
⋃
x′∈X ′ supp F(Gx′,x), then there exists an open ball

Bε(ω) around ω with

Bε(ω) ∩
⋃

x′∈X ′
supp F(Gx′,x) = ∅.

Now for every f ∈ L1(Rd) with supp f ⊂ Bε(ω) and f̂(ω) 6= 0 the product f̂ Ĝx′,x
is zero for every x′ ∈ X ′, so f ∗ x = 0, and f ∈ J(x). As f̂(ω) 6= 0 we conclude that
ω /∈ spec(x). So we have shown that

spec(x) ⊆
⋃

x′∈X ′
supp F(Gx′,x) .
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The last equality in (5.5) follows from (5.4). �

Here is a spectral characterization of σ-bandlimited elements in X .

Proposition 5.6. An element x ∈ C(X ) is σ-bandlimited if and only if

spec(x) ⊆ [−σ, σ]d .

Proof. Assume first that spec(x) ⊆ [−σ, σ]d. Then by Proposition 5.5

suppF(Gx′,x) ⊆ [−σ, σ]d for all x′ ∈ X ′.

By the Paley-Wiener-Schwartz theorem [103, 3.4.9], [59, 7.3.1] the bandlimited
function Gx′,x can be extended to an entire function of exponential type σ, i.e., for
every ε > 0 there is a constant A = A(ε) such that

|Gx′,x(t+ iy)| ≤ Ae(σ+ε)|y| for t, y ∈ Rd .

Since Gx′,x = 〈x′, ψt(x)〉 is holomorphic for all x′ ∈ X ′, the mapping t 7→ ψt(x) is
holomorphic. This implies the existence of δα(x) ∈ X for each multi-index α. To
deduce (5.1) we use the Bernstein inequality for entire functions [103, 3.4.8],

(5.6) ‖DαGx′,x‖∞ ≤ (2πσ)|α|‖Gx′,x‖∞

for all x′ ∈ X ′. In particular, the weak type characterization of ‖δα(x)‖X in
Lemma 4.23 implies that

‖δα(x)‖X � sup
‖x′‖X′≤1

‖DαGx′,x‖∞

≤ (2πσ)|α| sup
‖x′‖X′≤1

‖Gx′,x‖∞ ≤MΨ(2πσ)|α|‖x‖X .
(5.7)

Therefore x is σ-bandlimited.
Conversely, assume that x is bandlimited with bandwidth σ. For arbitrary

t0 ∈ Rd and x′ ∈ X ′ the weak-type argument representation of ‖δα(x)‖X used
above implies that

(5.8) |DαGx′,x(t0)| ≤ ‖x′‖X ′ ‖δα(x)‖X ≤ C(2πσ)|α| .

Consequently the Taylor series of Gx′,x at t0 converges uniformly on Rd and can
be extended to an entire function

Gx′,x(z) =
∑
α≥0

DαGx′,x(t0)
α!

(z − t0)α for z ∈ Cd .

The extension of Gx′,x is clearly independent of the base point t0 and satisfies the
growth estimate

|Gx′,x(z)| ≤ C
∑
α≥0

(2πσ)|α|

α!
|z − t0||α| ≤ Ce2πσ|z−t0| .

(Recall that |α| = |α|1.) For z = t0 + iy, y ∈ Rd, we obtain |Gx′,x(t0 + iy)| ≤
Ce2πσ|y|, and thus Gx′,x is an entire functions of exponential type σ [100, 4.8.3]
for every x′ ∈ X ′. Once again, the Paley-Wiener-Schwartz theorem implies that
suppF(Gx′,x) ⊆ [−σ, σ]d for all x′ ∈ X . We conclude that spec(x) is contained in
[−σ, σ]d. �
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5.2. Periodic Group Actions

If the automorphism group Ψ on X is periodic, the bandlimited elements can
be described more explicitly by means of a Banach algebra-valued Fourier series.
Without loss of generality we will assume that P = (1, . . . , 1). Remember that the
kth Fourier coefficient of x ∈ C(X ) is

(5.9) x̂(k) =
∫

Td
ψt(x) e−2πik·t dt.

If A is a matrix and χt(A) = MtAM−t, the Fourier coefficient
∫

Td χt(A)e−2πik·t dt

is exactly the kth side-diagonal Â(k) of A. The formal series
∑
k∈Zd â(k)e2πik·t is

the Fourier series of a. See deLeeuw’s work [32, 33, 34] for first developments of
operator-valued Fourier series.

Proposition 5.7 ([33, Prop. 3.4]). Let Ψ be a periodic automorphism group
on X . The following statements are equivalent for x ∈ X .

(1) a ∈ C(X ).
(2) The Fejer-means of the Fourier series of x ∈ X converge in norm:

ψt(x) = lim
n→∞

∑
|k|∞≤n

d∏
j=1

(
1− |kj |

n+ 1

)
x̂(k)e2πik·t.

(3) The C1-means of the Fourier coefficients converge in norm to x:

x = lim
n→∞

∑
|k|∞≤n

d∏
j=1

(
1− |kj |

n+ 1

)
x̂(k).

DeLeeuw considers only the algebra B(`2), but the proof for general X is
identical. See also [62, 2.12]. An immediate consequence of Proposition 5.7 is
a Weierstrass-type density theorem for periodic group actions.

Corollary 5.8.

(1) The set of bandlimited elements is dense in C(X ).
(2) Ck(X ) is dense in C(X ).
(3) An element x ∈ X is σ-bandlimited if and only if ψt(x) is the trigonometric

polynomial of the form

(5.10) ψt(x) =
∑
|k|∞≤σ

x̂(k)e2πik·t

We single out a characterization of bandlimited elements of matrix algebras.

Corollary 5.9. A matrix A is banded with bandwidth N in the matrix algebra
A if and only it is N -bandlimited with respect to the group action {χt}.

Remark. Corollary 5.8(1), when applied to C(S1
0 ) gives Equation (4.25). To

be more precise, A ∈ C(S1
0 ) if and only if A is in the closure of the band matrices

in S1
0 . As S1

0 is solid, this is equivalent to A = limn→∞
∑
|k|∞≤n Â(k) in the norm

of S1
0 , or, written differently, to

‖
∑
|k|∞>n

Â(k)‖S1
0
→ 0 for n→∞ .

Using the definition of the norm of S1
0 , we obtain (4.25).
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5.3. Characterization of Smoothness by Approximation

When working with an automorphism group on X , the subspaces of bandlimited
elements of given bandwidth provide a natural approximation scheme for X . For
this case, we show that the Besov spaces defined in Chapter 4 can be characterized
as approximation spaces. Put differently, we state and prove a general version of
the Jackson-Bernstein theorem. Although our proofs are similar to the classical
ones in [37, 100, 103], we gain a new insight from the generalization to Banach
spaces. In particular, we need a theory of smoothness based on the action of
an automorphism group, and a spectral characterization of bandlimited elements
(Section 5.1). Related results were obtained independently in [57, 101].

It is important to realize that for a Banach algebra A the approximation scheme
of bandlimited elements is compatible with multiplication (Definition 3.18).

Lemma 5.10. Let A be a Banach algebra with automorphism group Ψ, and set

(5.11) X0 = {0}, Xσ = {a ∈ A : spec(a) ⊆ [−σ, σ]d}, σ > 0.

Then {Xσ : σ ≥ 0} is an approximation scheme for A consisting of the bandlimited
elements.

Proof. We have to show that XσXτ ⊆ Xσ+τ . But this is the content of
Lemma 5.3. �

Remark. From now on we use the approximation scheme of bandlimited ele-
ments {Xσ : σ ≥ 0} without further notice.

Next we formulate a theorem of Jackson-Bernstein type for Banach spaces.

Theorem 5.11. Let X be a Banach space with automorphism group Ψ and
assume that r > 0 and 1 ≤ p ≤ ∞. If {Xσ : σ ≥ 0} is the approximation scheme of
bandlimited elements, then

(5.12) Λpr(X ) = Epr (X ) .

We will split the proof into several statements. One of the main tools will be
smooth approximating units in X , which we will review next.

Proposition 5.12. Taylor’s formula: if x ∈ Ck(X ), then

(5.13) ψt(x) =
∑
|α|≤k

δα(x)
α!

tα +Rk(t, x) ,

Rk(t, x) = k
∑
|α|=k

tα

α!

∫ 1

0

(1− u)k−1∆ut(δα(x)) du(5.14)

= (k + 1)
∑

|α|=k+1

tα

α!

∫ 1

0

(1− u)kψut(δα(x)) du(5.15)

Proof. We use a weak-type argument and prove the remainder estimate in
the form (5.14). Recall that Gx′,x(t) = 〈x′, ψt(x)〉 for x′ ∈ X ′. A version of Taylor’s
theorem [43] yields

Gx′,x(t) =
∑
|α|≤k

DαGx′,x(0)
α!

tα+k
∑
|α|=k

tα

α!

∫ 1

0

(1−u)k−1(DαGx′,x(ut)−DαGx′,x(0)) ,

or, written explicitly,

〈x′, ψt(x)〉 = 〈x′,
∑
|α|≤k

δα(x)
α!

tα + k
∑
|α|=k

tα

α!

∫ 1

0

(1− u)k−1∆ut(δα(x)) du〉 .
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As x′ ∈ X ′ is arbitrary the proof is complete. The proof of the remainder estimate
(5.15) is similar. �

For the construction of approximating units let fρ(t) = ρ−df(ρ−1t), ρ > 0, be
the dilation of f ∈ L1(Rd). Then

(5.16) fρ ∗ x =
∫

Rn
ψ−ρu(x)f(u) du .

Lemma 5.13. Let X be a Banach space with an automorphism group Ψ acting
on it, x ∈ C(X ), and κ ∈ L1(Rd) with

∫
Rd κ(t) dt = 1.

(1) If κ ∈ L1
v1

(Rd), where v1(k) = (1 + |k|), then

‖x− κρ ∗ x‖X ≤ Cωρ(x).

(2) If κ ∈ L1
vk+1

(Rd) for some k ∈ N, and if the moments
∫

Rd t
ακ(t) dt = 0

for 1 ≤ |α| ≤ k, then for every x ∈ Ck(X )

‖x− κρ ∗ x‖X ≤ Cρk
∑
|β|=k

ωρ(δβ(x)) .

(3) If κ ∈ L1
vk+2

(Rd) for some k ∈ N, if
∫

Rd t
ακ(t) dt = 0 for 1 ≤ |α| ≤ k + 1,

and if κ(−t) = κ(t) for all k ∈ Rd, then for every x ∈ Ck(X )

‖x− κρ ∗ x‖X ≤ Cρk
∑
|β|=k

ω2
ρ(δβ(x))

The constants C depend on k.

Proof. The proof is similar to standard approximation results for C(T) or
Cu(Rd). We want to estimate the identity

x− κρ ∗ x =
∫

Rd
κ(t)

(
x− ψ−ρt(x)

)
dt .

Part (1) follows from

‖x− κρ ∗ x‖X ≤
∫

Rn
|κ(u)| ‖x− ψ−ρu(x)‖X du ≤

∫
Rd
|κ(u)|ωρ|u|(x) du,

and the property
ωρ|u|(x) ≤MΨ (1 + |u|)ωρ(x) ,

see Lemma 4.29.
The proof of (2) uses Taylor’s formula (5.13) for ψρt(x). As

∫
Rd κ(t)tα dt = 0

for 1 ≤ |α| ≤ k, only the remainder term Rk(t, x) does not cancel in the integral
(5.3). We obtain the norm estimate

‖x− κρ ∗ x‖X ≤ k
∥∥∥ ∑
|α|=k

1
α!

∫
Rd
κ(t)(−ρt)α

∫ 1

0

(1− u)k−1∆−uρt(δαx) du dt
∥∥∥
X

≤ kρk
∑
|α|=k

1
α!

∫
Rd
|κ(t)||t|k−1

∫ 1

0

(1− u)k−1‖∆−uρt(δαx)‖X du dt

≤ ρk
∑
|α|=k

1
α!

∫
Rd
|κ(t)||t|k−1ωρ|t|(δαx) dt

≤ ρk
∑
|α|=k

1
α!
ωρ(δαx)

∫
Rd
|κ(t)||t|k−1(1 + |t|) dt

= Cρk
∑
|α|=k

ωρ(δαx) .

(5.17)
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For the proof of (3) we use the fact that κ is an even function and therefore

x− κρ ∗ x =
1
2

∫
Rd
κ(t)(2x− ψ−ρt(x)− ψρt(x)) dt =

1
2

∫
Rd
κ(t)ψ−ρt

(
∆2
ρt(x)

)
dt .

We proceed as in the proof of (2), but we use the remainder estimate (5.15) for
Rk−1(−ρt, x) and obtain

x− κρ ∗ x =
k + 1

2

∑
|α|=k

1
α!

∫
Rd
κ(t)(−ρt)α

∫ 1

0

(1− u)k−1∆2
ρt

(
ψ−uρt(δαx)

)
du dt .

This yields

‖x− κρ ∗ x‖X ≤
k + 1

2
ρk

∑
|α|=k+1

1
α!

∫
Rd
|κ(t)||t|k

∫ 1

0

(1− u)k−1‖ψ−ut
(
∆2
uρt(δ

αx)
)
‖X du dt

≤ Cρk
∑
|α|=k

1
α!

∫
Rd
|κ(t)||t|kω2

ρ|t|(δ
αx) dt

≤ Cρk
∑
|α|=k

1
α!
ω2
ρ(δαx)

∫
Rd
|κ(t)||t|k(1 + |t|)2 dt

≤ Cρk
∑
|α|=k

ω2
ρ(δαx) . �

We need another property of the spectrum.

Lemma 5.14. If x ∈ C(X ) and f ∈ L1(Rd), then

(5.18) spec(f ∗ x) ⊆ supp(Ff) ∩ spec(x).

Proof.

spec(f ∗ x) =
⋃

x′∈X ′
supp(FGx′,f∗x)

=
⋃

x′∈X ′
supp

(
F(f ∗Gx′,x)

)
=

⋃
x′∈X ′

supp
(
Ff FGx′,x

)
⊆

⋃
x′∈X ′

supp(Ff) ∩ supp(FGx′,x)

= supp(Ff) ∩
⋃

x′∈X ′
supp(FGx′,x)

⊆ supp(Ff) ∩
⋃

x′∈X ′
supp(FGx′,x)

= supp(Ff) ∩ spec(x) ,

where we have used that supp(Ff) is closed, and that supp((Ff)G) ⊆ supp(Ff)∩
supp(G) for f ∈ L1(Rd) and G ∈ F(L∞(Rd)) ([62, 6.4.10]). �

With the existence of approximating kernels we can now state a Jackson-type
theorem for automorphism groups.

Proposition 5.15. Let x ∈ X and σ > 0.
(1) There is a σ-bandlimited element xσ ∈ C(X ) such that

‖x− xσ‖X ≤ Cω1/σ(x)

with C independent of σ and x.
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(2) If x ∈ Ck(X ), then there exists a σ-bandlimited element xσ ∈ X such that

‖x− xσ‖X ≤ Cσ−k
∑
|α|=k

ω2
1/σ(δαx) .

Proof. (1) We follow [103, 4.4.3]. Let κ ∈ S(Rd),
∫

Rd κ = 1, supp Fκ ⊆
[−1, 1]d. By Lemma 5.13(1)

‖x− κ1/σ ∗ x‖X ≤ Cω1/σ(x).

Since suppF(κ1/σ) ⊆ [−σ, σ]d, Lemma 5.14 implies that κ1/σ ∗ x is σ-bandlimited,
and we can take xσ = κ1/σ ∗ x.

(2) The proof is similar. We choose an even kernel κ ∈ S(Rd) that satisfies∫
Rd κ(t) dt = 1 and

∫
Rd t

ακ(t) dt = 0 for 1 ≤ |α| ≤ k + 1. Now we use part (3) of
Lemma 5.13 instead of part (1). �

We draw two consequences of Proposition 5.15. The first one is a density result
in the style of Weierstrass’ theorem, the second one is a Jackson-type theorem that
proves one half of the fundamental Theorem 5.11.

Corollary 5.16 (Weierstrass). The set of bandlimited elements is dense in
C(X ). Since Ck(X ) contains the bandlimited elements, Ck(X ) is also dense in
C(X ).

If the group action Ψ is periodic, we obtain again Corollary 5.8.

Corollary 5.17. If x ∈ Λpr(X ) for r > 0, then x ∈ Epr (X ).

Proof. We use the integral version of the norm for an approximation space
in (3.4) and assume that 1 ≤ p <∞. The proof for p =∞ is simpler.

Assume first that 0 < r < 1. Then, by Proposition 5.15(1),∫ ∞
1

(
Eσ(x)σr

)p dσ
σ
≤ C

∫ 1

0

(
ωτ (x)τ−r

)p dτ
τ
≤ C|x|p

Λpr(X )
,

and so the approximation norm is dominated by the Besov norm.
If r = k + η, 0 < η ≤ 1, and k ∈ N, we use Proposition 5.15(2), and get∫ ∞

1

(
Eσ(x)σr

)p dσ
σ
≤ C

∑
|α|=k

∫ 1

0

(
ω2
τ (δα(x))τ−η

)p dτ
τ

and so ‖x‖Epr (X ) is dominated by the Besov norm (see Proposition 4.31). �

Before proving the converse implication in Theorem 5.11, i.e., the Bernstein-
type result, we need a mean-value property of automorphism groups.

Lemma 5.18. If x is σ-bandlimited, then

(5.19) ‖∆tx‖X ≤ Cσ |t| ‖x‖X .

Proof. We use a weak-type argument.

‖∆tx‖X = sup
‖x′‖≤1

|〈x′, ψt(x)− x〉| = sup
‖x′‖≤1

∣∣∣∫ 1

0

∇Gx′,x(λt) · t dλ
∣∣∣

≤ sup
‖x′‖≤1

C|t|2‖|∇Gx′,x|2‖∞ .

Since Gx′,x is bandlimited, Bernstein’s inequality for scalar functions yields that
‖ |∇Gx′,x|2‖∞ ≤ Cσ‖Gx′,x‖∞. We may continue the estimate by
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‖∆tx‖X . |t|2 sup
‖x′‖≤1

‖|∇Gx′,x|2‖∞ . |t|2 σ sup
‖x′‖≤1

‖Gx′,x‖∞

. |t|2 σ ‖x‖X . σ |t| ‖x‖X .

�

Proposition 5.19. Let x ∈ X , and r > 0, 1 ≤ p ≤ ∞. If x ∈ Epr (X ), then
x ∈ Λpr(X ).

Proof. We adapt a standard proof (e.g.,[28]) and verify the statement for
p <∞. We will work with the discrete Besov norm (see Proposition 4.31)

‖x‖Λpr(X ) � ‖x‖X +
( ∞∑
l=0

(
2lrωm2−l(x)

)p)1/p

,

where m > brc. If x ∈ Epr (X ), the Corollary of the Representation Theorem
(Corollary 3.12 implies that

(5.20) x =
∞∑
k=0

xk, with xk ∈ X2k and
∞∑
k=0

2krp‖xk‖pX <∞ ,

where (Xσ)σ≥0 is the approximation scheme of bandlimited elements. By Corol-
lary 3.12 or a direct application of Hölders inequality

∑∞
k=0 xk is convergent in X .

Note that (5.20) implies that

(5.21) ‖xk‖X ≤ C2−kr

for all k ∈ N0.
We assume first that 0 < r < 1. We need an estimate for the norm of ∆tx.

‖∆tx‖X ≤
M∑
k=0

‖∆txk‖X +
∞∑

k=M+1

‖∆txk‖X

≤
M∑
k=0

‖∆txk‖X + (MΨ + 1)
∞∑

k=M+1

‖xk‖X ,

(5.22)

where the value of M will be chosen later.
Lemma 5.18 implies that

‖∆txk‖X ≤ C2k|t| ‖xk‖X

for all k ∈ N. Substituting back into (5.22) yields

(5.23) ‖∆tx‖X ≤ C
( M∑
k=0

2k|t|‖xk‖X +
∞∑

k=M+1

‖xk‖X
)
.

We use this relation for the estimation of the Besov seminorm.

|x|Λpr(X ) �
( ∞∑
l=0

(
2lrω2−l(x)

)p)1/p

.

( ∞∑
l=0

2lrp
( M∑
k=0

2k2−l‖xk‖X +
∞∑

k=M+1

‖xk‖X
)p)1/p

.
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We split this expression into two parts and assume that M = l in the inner sums.

|x|Λpr(X ) .

( ∞∑
l=0

2l(r−1)p
( l∑
k=0

2k‖xk‖X
)p)1/p

+
( ∞∑
l=0

2lrp
( ∞∑
k=l+1

‖xk‖X
)p)1/p

.

We apply Hardy’s inequalities (Appendix A) to both terms on the right hand side
and obtain

|x|Λpr(X ) .
( ∞∑
l=0

2l(r−1)p2lp‖xl‖pX
)1/p

+
( ∞∑
l=0

2lrp‖xl‖pX
)1/p

= 2
( ∞∑
l=0

2lrp‖xl‖pX
)1/p

.

After taking the infimum over the representations x =
∑∞
k=0 xk as in (3.16) we

conclude that |x|Λpr(X ) . ‖x‖∼Epr (X )
. Next consider the case r = m + η for m ∈ N0

and 0 < η < 1. By (5.7) we have

‖δα(xk)‖X ≤ C(2π2k)|α|‖xk‖X

for all k ∈ N and α ∈ Nd0. Consequently the series
∑∞
k=0 δ

αxk converges in X
for all α with |α| ≤ m and its sum must be δα(x) (because each δj is closed on
D(δα)). We now apply the above estimates (5.22) and (5.23) with δα(x) instead of
x and deduce that δα(a) must be in Λpη(X ) for |α| ≤ k by Proposition 4.31. Thus
x ∈ Λpr(X ).

If r is an integer, then we have to use second order differences and a corre-
sponding version of the mean value theorem. The argument is almost the same as
above (see [103] for details in the scalar case). �

Combining Propositions 5.17 and 5.19, we have completed the proof of Theo-
rem 5.11.

5.4. Littlewood-Paley Decomposition

The various equivalent norms for Besov spaces given Proposition 4.31 are not
easily computable. We construct another explicit norm for these spaces by means
of a Littlewood-Paley decomposition.

The procedure is well-known. We include the derivation of the relevant results
to keep the presentation self-contained. We follow [15], but we use approximation
arguments where feasible.

Dyadic scaling functions. Let ϕ ∈ S (Rd) with

supp ϕ̂ ⊆ {ω ∈ Rd : 2−1 ≤ |ω|∞ ≤ 2} ,
ϕ̂(ω) > 0 for 2−1 < |ω|∞ < 2 ,∑

k∈Z
ϕ̂(2−kω) = 1 for all ω ∈ Rd \ {0}

(5.24)

Set ϕ̂k(ω) = ϕ̂(2−kω), k ∈ N0, so ϕk(x) = 2kdϕ0(2kx), and let ϕ̂−1 = 1−
∑∞
k=0 ϕ̂k.

We call {ϕ̂k}k≥−1 a dyadic partition of unity.
Obviously, supp ϕ̂k = 2k supp ϕ̂ ⊆ {ω : 2k−1 ≤ |ω|∞ ≤ 2k+1} for k ≥ 0, and

suppϕ−1 ⊆ {ω : |ω|∞ ≤ 1}. As the intersection of supp(ϕ̂k) with supp(ϕ̂l) is
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nonempty only for l ∈ {k − 1, k, k + 1} we obtain that

ϕk = ϕk ∗ (ϕk−1 + ϕk + ϕk+1) k ≥ 0,

ϕ−1 = ϕ−1 ∗ (ϕ−1 + ϕ0) .
(5.25)

Remarks.

(1) The existence of dyadic partitions of unity is elementary. A common
construction works as follows: Choose a function f ∈ S (Rd) that satisfies
the first two conditions above, and set F (ω) =

∑∞
k=−∞ f(2−kω). Then

ϕ̂ = f/F has the desired properties.
(2) The condition that ϕ ∈ S (Rd) can be weakened considerably [102].

Littlewood-Paley decomposition. For x ∈ C(X ) each element ϕk ∗x is well
defined in X . As

∑∞
k=−1 ϕk = δ in S ′, it is natural to ask about the convergence

of the Littlewood-Paley decomposition

(5.26) x ∼
∞∑
k=0

ϕk ∗ x .

Proposition 5.20. Let x ∈ X and let {ϕ̂k}k≥−1 be a dyadic partition of unity,
and r > 0. An element x ∈ X is in Λpr(X ), if and only if

(5.27)
( ∞∑
k=−1

2rkp‖ϕk ∗ x‖pX
)1/p

<∞ .

The expression (5.27) defines an equivalent norm on Λpr(X ). Moreover the Littlewood-
Paley decomposition (5.26) is convergent in the norm of X .

If p = ∞, we can prove the statement by a weak type argument and use the
corresponding results for functions (see [52]). This approach does not work for
p <∞, so we adapt the proof given in [15].

Proof. Assume first that (5.27) holds. Then ‖ϕk ∗ x‖X ≤ C2−rk, and so the
series

∑∞
k=−1 ϕk ∗ x is norm convergent in X . We use a distributional argument

to show that the limit is actually x. Actually, y =
∑∞
k=−1 ϕk ∗ x implies Gx′,y =∑∞

k=−1 ϕk ∗Gx′,x with convergence in the norm of L∞(Rd) for all x′ ∈ X ′. Choose
a test function υ ∈ S , then

〈Gx′,y, υ〉 = 〈
∞∑

k=−1

ϕk ∗Gx′,x, υ〉 = 〈
∞∑

k=−1

ϕ̂kĜx′,x, υ̂〉 .

where 〈 , 〉 denotes the dual pairing between S ′ and S . As
∑∞
k=−1 ϕ̂k = 1 in

S ′, we conclude

〈
∞∑

k=−1

ϕ̂kĜx′,x, υ̂〉 = 〈Ĝx′,x, υ̂〉 = 〈Gx′,x, υ〉 .

As the identity
〈Ĝx′,y, υ̂〉 = 〈Gx′,x, υ〉

is valid for all υ ∈ S , we conclude that Gx′,x = Gx′,y for all x′ ∈ X ′, and this
implies y = x.

For x ∈ Λpr(X ) and m > brc we use the norm equivalence

‖x‖Λpr(X ) � ‖x‖X +
( ∞∑
k=0

(
2rkωm2−k(x)

)p)1/p

.
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As ‖∆m
t (ϕk ∗ x)‖X ≤ Cm‖ϕk ∗ x‖X by Lemma 4.29 (1), and ‖∆m

t (ϕk ∗ x)‖X ≤
C|t|m2mk‖ϕk ∗ x‖X by repeated application of Lemma 5.18 we conclude that

(5.28) ‖∆m
t (ϕk ∗ x)‖X ≤ C min(1, |t|m2mk)‖ϕk ∗ x‖X .

As an immediate consequence we obtain

(5.29) ωm|t|(x) ≤ C
∞∑

k=−1

min(1, tm2mk)‖ϕk ∗ x‖X ,

and so

(5.30) 2rjωm2−j (x) ≤ C
∞∑
k=1

2(j−k)r2kr min(1, 2−(j−k)m)‖ϕk ∗ x‖X .

The right hand side of this relation can be written as a convolution. Set

u(l) = min(1, 2−lm)2lr for l ∈ Z ,

v(l) =

{
2lr‖ϕl ∗ x‖X , l > −1
0 , l < 0

then u and v are sequences in `1(Z), and the right hand side of (5.30) is just
(u ∗ v)(j).

So
‖
(
2rjωm2−j (x)

)
j∈N‖`p(N) ≤ C‖u‖`1(Z)‖v‖`p(Z) ,

and this means that

(5.31) ‖x‖Λpr(X ) ≤ C
( ∞∑
k=−1

2rkp‖ϕk ∗ x‖pX
)1/p

,

so (5.27) implies that x ∈ Λpr(X ).
For the other inequality we use

‖x‖Λpr(X ) � ‖x‖Cm(X ) +
∑
|α|=m

‖δα(x)‖Λpr−m(X )

with m < r ≤ m+ 1.
First we show the following inequalities.

(5.32) ‖ϕk ∗ x‖X ≤ C2−mk‖ϕk ∗ δα(x)‖X , m = |α|
and

(5.33) ‖ϕk ∗ δα(x)‖X ≤ Cω2
2−k(δαx).

For the proof of these relations choose Φ ∈ S(Rd) such that

Φ̂ ≡ 1 on supp ϕ̂0,

Φ̂ ≡ 0 in a neighbourhood of 0

and Φ̂(ω) = Φ̂(−ω) for all ω ∈ Rd, so Φ̂ and Φ are even functions. Set Φk(t) =
2kdΦ(2kt), then ‖Φk‖1 = ‖Φ‖1 and Φk ∗ ϕk = ϕk.

The function η(α) defined by

η̂(α)(ω) =
Φ̂(ω)

(2πiω)α

is an element of S . Again, if we set η(α)
k (t) = 2kdη(α)(2kt), then ‖η(α)

k ‖1 = ‖η(α)‖1.
Then

Φ̂k(ω) = Φ̂(2−kω) = 2−k|α|(2πiω)αη̂(α)
k (w) ,
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and so, assuming that |α| = m,

ϕ̂k(ω) = 2−kmη̂(α)
k (ω)(2πiω)αϕ̂k(ω)

for all ω ∈ Rd, which implies

ϕk ∗ x = 2−kmη(α)
k ∗ δα(ϕk ∗ x) = 2−kmη(α)

k ∗ ϕk ∗ δα(x),

the last equality by (4.18). Now (5.32) follows immediately.
For the proof of (5.33) set y = δα(x) and yk = ϕk ∗ y = Φk ∗ ϕk ∗ y = Φk ∗ yk.

We obtain

ϕk ∗ y = Φk ∗ yk =
∫

Rd
Φk(t)ψ−t(yk) dt

= 1
2

∫
Rd

Φk(t)
{
ψ−t(yk)− 2yk + ψt(yk)

}
dt

= 1
2

∫
Rd

Φk(t)ψ−t∆2
t (yk) dt ,

as
∫

Rd Φk = 0 and Φk(−t) = Φk(t). Changing variables we obtain

ϕk ∗ y = 1
2

∫
Rd

Φ(u)ψ−2−ku∆2
2−ku(yk) dt = 1

2

∫
Rd

Φ(u)ψ−2−ku

(
ϕk ∗∆2

2−ku(y)
)
dt.

Taking norms we get

‖ϕk ∗ y‖X ≤ Mψ

2

∫
Rd
|Φ(u)|‖ϕk‖1ω2

2−k|u|(y) dt.

≤ Mψ

2 ‖ϕ0‖1
∫

Rd
|Φ(u)|(1 + |u|2)ω2

2−k(y) dt

≤ Cω2
2−k(y) ,

where the estimate for ω2
2−k|u|(y) follows from Lemma 4.29. This is what we wanted

to show.
The proof of the reverse inclusion now follows by putting (5.32) and (5.33)

together.

2rk‖ϕk ∗ x‖X ≤ C2(r−m)k‖ϕk ∗ δα(x)‖X ≤ C2(r−m)kω2
2−k(δα(x)) ,

and so
∞∑

k=−1

2rpk‖ϕk ∗ x‖pX ≤ C
(
‖x‖pX +

∞∑
k=0

2(r−m)pkω2
2−k(δα(x))p

)
≤ C ′(‖x‖pX + |δα(x)|p

Λpr−m(X )
)

≤ C”‖x‖p
Λpr−m(X )

.

(5.34)

We have shown that x ∈ Λpr(X ) implies (5.27). The norm equivalence follows from
(5.31) and (5.34). �

5.5. Approximation of Polynomial Order in Homogeneous Matrix
Spaces

If the action of Ψ on X is periodic, then for x ∈ C(X ), and {ϕk}k≥−1 a dyadic
partition of unity,

(5.35) ϕk ∗ x =
∑

b2k−1c≤|l|∞<2k+1

ϕ̂k(l)x̂(l) .
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Proof. Let ϕΠ
k (t) =

∑
l∈Zd ϕk(t+ l) denote the periodization of ϕk. Then

ϕΠ
k (t) =

∑
b2k−1c≤|l|∞<2k+1

ϕ̂k(l)e2πil·t

by Poisson’s summation formula. As

ϕk ∗ x =
∫

Rd
ψ−t(x)ϕk(t) dt =

∫
Td
ψ−t(x)ϕΠ

k (t) dt ,

Equation (5.35) follows. �

With this result, and with the Jackson-Bernstein Theorem of the previous
section we get a constructive characterization of the approximation spaces for ho-
mogeneous matrix algebras.

Proposition 5.21. Let A be a homogeneous matrix algebra, r > 0, and Φ =
{ϕk}k≥−1 a dyadic partition of unity. Then the norm on the approximation space
Epr (A) = Λpr(A) is equivalent to

(5.36) ‖A‖Epr (A) �
( ∞∑
k=0

2kpr
∥∥∥ ∑
b2k−1c≤|l|∞<2k+1

ϕ̂k(l)Â(l)
∥∥∥p
A

)1/p

.

If v∗s (k) = 1 + (2π|k|)2)s/2, s > 0 is a Bessel weight, then

Epr (Av∗s ) = Epr+s(A) .

The spaces Epr (A) and Av∗s are inverse-closed subalgebras of A.
If A is solid, then the statements simplify to

(5.37) ‖A‖Epr (A) �
( ∞∑
k=−1

2kpr
∥∥∥ ∑
b2kc≤|l|∞<2k+1

Â(l)
∥∥∥p
A

)1/p

.

and

(5.38) Epr (Avs) = Epr+s(A) .

Proof. The results for general homogeneous matrix algebras follow from the
Jackson Bernstein Theorem (Theorem 5.11), the Littlewood-Paley decomposition,
and the results of Section 4.4.4. We still have to prove the representation (5.37).
Set Ck = ‖

∑
2k≤|l|<2k+1 Â(l)‖A. The solidity of A implies that, for k ≥ −1,

Bk = ‖ϕk ∗A‖A ≤ ‖
∑

2k−1≤|l|∞<2k+1

Â(l)‖A = Ck−1 + Ck

On the other hand, since φk−1 + φk + φk+1 ≡ 1 on {ξ : 2k−1 ≤ |ξ|2 ≤ 2k+1}, we
obtain Ck ≤ Bk−1 +Bk +Bk+1.

The identity (5.38) follows from Proposition 4.51 together with Avs = Av∗s ,
which is valid in solid matrix algebras. �

For the standard matrix algebras Cpr we obtain

(5.39) Eqs (Cpr ) = Eqs+r(C
p
0 )

The same result has been obtained in (3.23). One might argue that now the “rea-
son” for this result is more transparent: Eqs (Cpr ) = Λqs(Λ

p
r(C

p
0 )), and the reiteration

theorem for Besov spaces together with the characterization of Besov spaces as ap-
proximation spaces yields the result. However, this is a matter of taste. There are
reiteration theorems for approximation spaces [73, 83] that can produce this result
as well.

For the Schur algebras Spr we obtain a similar result.

Eqs (Spr ) = Eqs+r(S
p
0 ) .
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In this case we can argue as follows: Eqs (Spr ) = Eqs (Pr(Sp0 )) = Eqs+r(S
p
0 ) by Propo-

sition 4.51. A direct argument using the Littlewood-Paley-like representation of
Proposition 3.13 is also possible.

If A is not solid, the results of Proposition 5.21 are new. In particular, if
A = B(`2), Proposition 5.21 states a result that cannot be obtained with the
methods of Chapter 3 alone.





CHAPTER 6

Smooth and Ultradifferentiable Classes

In the final chapter we present some applications of the theory developed so
far that go beyond smoothness and approximation of polynomial order. In general
we restrict the discussion to periodic group actions, and sometimes we assume that
the action is over R, rather than Rd.

In the first section we treat some important special cases, namely the classes
C∞ and the analytic elements of a Banach algebra with automorphism group.

Guided by the results for real functions and for operators on Hilbert spaces [45,
46] we introduce Carleman classes (of Roumieu type) CM (A) related to a Banach
algebra A with automorphism group. These classes are defined by a growth con-
dition on the norms of the derivations. Some analogues of familiar results for
Carleman classes of real functions can also be obtained in this general setup. In
particular, the Carleman classes are algebras, and a criterion of Malliavin [74] (see
also [92]) leads to a sufficient condition for the inverse-closedness of CM (A) in A.
As a corollary, we derive a new proof of the result of Demko, Smith and Moss [36]
(and a similar result of Jaffard [61]) on the inverse-closedness of matrices with
exponential off-diagonal decay in B(`2). We can extend this result to some sorts
of sub-exponential decay by clarifying the relation between the spaces CM (A) and
weighted matrix algebras.

The Carleman classes are locally convex algebras. For functions in the complex
domain Dales and Davie [31] introduced a class of Banach algebras that is also
defined by growth conditions on the derivatives. We introduce a similar concept for
general Banach algebras. Following [1] we call these algebras Dales-Davie algebras.
Some results of the classical theory can be transferred to the context of Banach
algebras. In particular, we generalize a result of [1] on the inverse-closedness of
Dales-Davie algebras.

Carleman classes and Dales-Davie algebras for matrices cannot in general be
realized as weighted matrix algebras, so we obtain new inverse-closed classes of
matrices with off-diagonal decay. However, in some cases we can identify Carleman
classes with unions of weighted matrix algebras, and we give inclusion relations.

As said above, the results in this chapter allow alternative versions. Other
approaches to ultradifferentiable functions, in particular the Beurling Björck ap-
proach [16, 25] could have served as starting point for our generalizations.

6.1. Smooth and Analytic Classes

In the following proposition we characterize the smooth elements of A in terms
of their approximation properties and, if the group action is periodic, in terms of
the decay of the Fourier coefficients.

Proposition 6.1. Let A be a Banach algebra with automorphism group Ψ,
and C∞(A) =

⋂
k≥0 C

k(A) the inverse-closed Fréchet subalgebra of elements with
derivations of all order (see Proposition 4.22).

71
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If (Xσ)σ≥0 is the approximation scheme that consists of the bandlimited ele-
ments of A, then a ∈ C∞(A) if and only if for all r > 0

(6.1) lim
k→∞

Ek(a)kr = 0 .

If the action of Ψ is periodic, this is equivalent to

(6.2) lim
|k|→∞

‖â(k)‖A|k|r = 0

for all r > 0.

Proof. The proof works as for the scalar case. If a ∈ C∞(A), then for any
r > 0 we get a ∈ Λ∞r+1(A) = E∞r+1(A), so Ek(a)kr+1 ≤ C, and Ek(a)kr → 0 for
k →∞. For the other inclusion observe that (6.1) implies a ∈ Λ∞r (A), and further
a ∈ Cbrc(A).

If the action of Ψ is periodic, we use the following property of Fourier coeffi-
cients. For all b ∈ X|k| the following identity holds.

(6.3) â(k) =
∫

Td
(ψt(a)− ψt(b))e−2πik·t dt .

If we take the infimum of the norm over all b ∈ X|k|∞ , we obtain

(6.4) ‖â(k)‖A ≤ CE|k|∞(a) ,

and (6.2) follows. If we assume (6.2) then
∑
k∈Zd(2πi)kâ(k) converges in the norm

of A for all multi-indices α, and the limit is δα(a) (because each δj is closed in
D(δα)). �

Corollary 6.2. If A is a homogeneous matrix algebra and A ∈ A, the follow-
ing are equivalent:

‖Â(k)‖A = O(|k|−r) for all r > 0,

El(A) = O(l−r) for all r > 0 .

If A−1 ∈ A then both conditions are equivalent to

‖Â−1(k)‖A = O(|k|−r) for all r > 0 .

Analytic elements. An element a ∈ A is analytic, if the series

(6.5)
∑
α∈Nd0

δα(a)
α!

tα

converges in a ball Bρ(0) around 0. Let Hol(A) denote the analytic elements of A.
As ψt and δα commute, it is obvious that ψt(a) is analytic, if a is analytic.

Remark. If a ∈ A is analytic, then ψt(a) can be extended to an analytic
function in Bρ(0), and the power series expansion of ψt(a) coincides with (6.5).

Lemma 6.3. An element a ∈ A is in Hol(A) if and only if there are constants
C,m > 0 such that

(6.6) ‖δα(a)‖A ≤ Cm|α||α|!

for all α ∈ Nd0.

Proof. If a is analytic, then
∑
α∈Nd0

δα(a)
α! tα converges absolutely for small |t|,

so ‖δα(a)‖A ≤ C(1/|t|)|α|α!.
If (6.6) holds, we obtain, using that |α|! < d|α|α!, the estimate ‖δα(a)‖A < C |α|.

This implies that the series (6.5) converges absolutely for small values of |t|. �
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Proposition 6.4. If A is a Banach algebra with periodic automorphism group
Ψ, then the following are equivalent:

(1) a ∈ Hol(A),
(2) There is a constant γ > 0 such that ‖â(k)‖ . e−γ|k| for all k ∈ Zd,
(3) There is a constant γ′ > 0 such that El(a) . e−γ

′l for all l ∈ N.

Proof. Again, this result is well-known in the approximation theory of func-
tions [100]. We sketch a proof.

(1)⇒ (2). We want to obtain an estimate for ‖â(k)‖A. W.l.o.g. we can assume
that |k1| = |k|∞. Then for fixed t2, · · · , td the function.

η(t) = ψ(t,t2,··· ,td)(a)e2πik1t

is analytic on T and 1-periodic. So there is a γ1 > 0 such that η is analytic in
the strip R + i[−γ, γ], and the rectangular path integral

∫
Γ
η(t) dt vanishes, Γ the

rectangle with corners 0, 1, 1 + iγ, iγ, if k1 > 0 (otherwise use the rectangle below
the real axis). The periodicity of η implies that the contributions of the vertical
paths cancel. We obtain∣∣∣∫ 1

0

η(t)dt
∣∣∣ ≤MΨ‖a‖A

∫ 1

0

e−2πγt ≤ Ce−2πγ .

Inserting this in the definition of â(k) we obtain

‖â(k)‖A ≤ Ce−γ
′|k|∞ ≤ Ce−γ̃|k| .

This is true as proved only for the indices k ∈ Zd that satisfy |k1| = |k|∞. For
the other choices different values γ2, · · · γd have to be considered. If we take γ =
min1≤i≤d(γi), we obtain an uniform estimate.

(2) ⇒ (3).

El(a) ≤
∑
|k|∞≥l

‖â(k)‖A .
∑
|k|∞≥l

e−γk

.
∫
|t|2≥l

e−γ|t|2 dt

.
∫ ∞
l

e−γrrd−1 dr .

The second line in the chain of estimates above follows from the relation between
the ∞- and 2-norms on Rd. Now choose 0 < β < γ. Then rd−1 < eβr for r large
enough. If we insert this estimate in the last inequality we obtain

El(a) . e−(γ−β)dl

for all l > 0.
(3) ⇒ (2) follows from (6.4).
(2) ⇒ (1). If ‖â(k)‖A ≤ Ce−γ|k| the series

∑
k∈Zd(2πik)αâ(k) converges to

δα(a) for all α ∈ Nd0. Arguing as above we obtain

‖δα(a)‖ ≤
∑
k∈Zd

(2π|k|)|α|e−γ|k| ≤ C |α|
∫ ∞

0

e−γrr|α|+d−1

. C ′|α|Γ(|α|+ d)

. C ′′m|α||a|!

for some constants C ′′ and m. �

A description of the algebra properties of Hol(A) follows in the next section.



74 6. SMOOTH AND ULTRADIFFERENTIABLE CLASSES

6.2. Carleman Classes

For the description of smoothness between C∞ and analytic and the related
off-diagonal decay of matrices we need additional concepts.

Definition 6.5. Let A be a Banach algebra with commuting derivations
δ1, · · · , δd, and the defining sequence M = {Mk}k∈N0 a sequence of positive num-
bers with M0 = 1. For each m > 0 we define the Banach space

Cm,M (A) = {a ∈ A : ∃C > 0, ‖δαa‖A ≤ Cm|α|M|α| for all α ∈ Nd0}

with the norm

‖a‖Cm,M (A) = sup
α∈Nd0

‖δα(a)‖A
m|α|M|α|

.

The Carleman Class CM (A) is the union of the spaces Cm,M (A),

CM (A) =
⋃
m>0

Cm.M (A)

with the inductive limit topology.
We call CM (A) trivial, if for each a ∈ A the relation ψt(a) = a holds for all

t ∈ Rd, otherwise CM (A) is nontrivial.

Remark. If CM (A) is a matrix algebra, then CM (A) is trivial if and only if it
consists only of diagonal matrices.

If the derivations δ1, . . . , δd are generators of the automorphism group Ψ acting
on A, we can give a weak type characterization of Cm,M (A) using the functions
Ga,a′ .

Lemma 6.6. An element a ∈ A is in Cm,M (A) if and only if Ga′,a is in
Cm,M (L∞(Rd)) = Cm,M (Rd) for all a′ ∈ A′. In this case

‖a‖Cm,M (A) ≤ sup
‖a′‖A′≤1

‖Ga′,a‖Cm,M (Rd) ≤MΨ‖a‖Cm,M (A) .

Proof.

sup
α∈Nd0

‖δαa‖A
m|α|M|α|

≤ sup
α∈Nd0

sup
‖a′‖A′≤1

‖Ga′,δαa‖L∞(Rd)

m|α|M|α|

= sup
‖a′‖A′≤1

sup
α∈Nd0

‖DαGa′,a‖L∞(Rd)

m|α|M|α|

≤MΨ‖a‖Cm,M (A) .

�

From now on we assume that the derivations δ1, . . . , δd are the generators of a
periodic group action Ψ on A.

Example 6.7. IfMk = 1 for all k, then C2πm,M (A) consists of them-bandlimited
elements of A.

If Mk = k! for all k, then CM (A) = Hol(A) by Lemma 6.3.
The Gevrey-class Jr(A) is the space CM (A) for Mk = k!r, r > 0. If r ≤ 1 then

Jr(A) consists only of analytic elements and is a subspace of Hol(A).

The example Nk = ckMk shows that different defining sequences give raise to
the same Carleman class. More generally, if

ckNk ≤Mk ≤ CkNk
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for all indices k, then CM (A) = CN (A). For the Gevrey classes this implies (using
Stirling’s formula) that

(6.7) Nk = krk

is a defining sequence for Jr.
In order to state the necessary and sufficient conditions for two defining se-

quences Mk, NK to generate the same Carleman class we introduce weights associ-
ated to the sequence (Mk)k≥0.

Definition 6.8. Let M be a defining sequence. The associated function to M
is

(6.8) TM (r) = sup
k≥0

rk

Mk
for r > 0 .

By definition, TM is increasing. If for all C > 0 Mk & Ck for k > k(C), that
is, Mk grows faster than any power, then TM is finite valued. If Nk = CkMk then
TN (r) = TM (r/C). We call TN and TM equivalent and write TN ∼ TM , if there
are positive constants c, C such that TN (r/c) ≤ TM (r) ≤ TN (r/C) for all r > 0.

Lemma 6.9. log TM (r) is convex in log r.

Proof. The logarithm of TM is the supremum of a set of affine functions in
ρ = log r,

(6.9) τM (ρ) = log TM (r) = sup
k≥0

(k log r − logMk) ,

and the supremum of a set of affine functions is convex (see, e.g.[89]). �

Remarks. The associated function TM is related by (6.9) to a concept of
convex analysis, the Fenchel-Young conjugate of a real valued function. Actually,
if f : R→ R is continuous then f∗(y) = supx∈R(xy − f(x)) is the Fenchel - Young
conjugate of f , and the Fenchel-Young duality expresses that

(6.10) f∗∗ = (f∗)∗

is the largest convex minorant of f , that is, the largest convex function smaller than
f . If f is convex, it follows that f∗∗ = f . See, e.g. [89]. It can be shown ([75, 76],
see also [67]) that τM is the Fenchel-Young conjugate of the function ν(x) that is
constructed by piecewise linear interpolation of logMk for x ≥ 0, and∞ elsewhere.
Restating the Fenchel-Young duality (6.10) for TM we get

Proposition 6.10 ([75, 76, 66]). The log-convex regularization M c of the
sequence M = (Mk)k∈N0 is defined as

(6.11) M c
k = sup

r>0

rk

TM (r)
.

It is the largest logarithmically convex sequence smaller than M . Moreover,

TMc = TM and M cc = M c .

We will also need the following simple facts about log-convex sequences.

Lemma 6.11. [67, 76]
(1) For all k, l ∈ N0 the sequence M satisfies M c

kM
c
l ≤M c

k+l

(2) The sequence (M c
k)1/k is increasing.

Example 6.12. An elementary calculation shows that the function TM (r) as-
sociated to Mk = kak is

(6.12) TM (r) � exp(
a

e
r1/a) .
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The notions just introduced allow us to classify the sequences Mk.

Proposition 6.13 ([47, 76]). Let M be a defining sequence for the Carleman
class CM (A).

(1) If lim infk→∞M
1/k
k = 0, then CM (A) is trivial.

(2) If 0 < lim infk→∞M
1/k
k < ∞, then CM (X) is the class of bandlimited

elements.
(3) If limk→∞M

1/k
k =∞, and

(6.13) (M c
k)1/k � (N c

k)1/k ,

then CM (A) = CN (A). Moreover, condition (6.13) is equivalent to TM ∼
TN .

Sketch of proof. We do not give a detailed proof of this result but we in-
dicate how it follows from the existing literature by straightforward adaptions. As
a ∈ CM (A) if and only if Ga′,a ∈ CM (Rd) for all a′ ∈ A′, the conditions follow from
[76, 6.5.III] by a weak type argument. The statement given there is for functions
on the real line, but it remains true for functions on Rd. In the proof one has to
replace the Kolmogorov inequality [75, 6.3.III] by the Cartan-Gorny estimates [76,
(6.4.5)]. They can be verified for functions on Rd as well (see [67, IV.E.,Problem
7]).

The equivalence between condition (6.13) and Tm ∼ TN follows directly from
the definition of equivalent associated functions. �

Remark. If for all k ∈ Zd there are elements ak ∈ A such that âk(k) 6= 0
(weaker statements are possible) then an argument of Siddiqi [91, Theorem B]
shows that the equality of the classes CM (A) and CN (A) implies that (M c

k)1/k �
(N c

k)1/k.

Proposition 6.14 (see, e.g., [66]). Each Carleman class CM (A) is an algebra.

Proof. The cases C0(A) (CM is trivial) and C1(A) (bandlimited elements)
are straightforward, so we may assume that M = M c. Let a1, a2 ∈ CM (A), so
there are constants C1, C2 > 0, and m1,m2 > 0 such that for all indices α ∈ Nd0
‖δαaj‖A ≤ Cjm|α|j M|α|, j = 1, 2. Then

‖δα(a1a2)‖A ≤
∑
β≤α

(
α

β

)
‖δβa1‖A‖δα−βa2‖A

≤ C1C2

∑
β≤α

(
α

β

)
m
|β|
1 m

|α−β|
2 M|β|M|α−β|

≤ C1C2(m1 +m2)|α|M|α| ,

where we used Mk−lMl ≤Mk, see Lemma 6.11. �

Definition 6.15. A sequence (uk)k∈N0 of positive numbers is almost increas-
ing, if uk < Cul for all k < l and a constant C > 0.

Lemma 6.16. Assume that the defining sequence M satisfies M = M c . The
sequence (Mk/k!)1/k is almost increasing if and only if there is a C > 0 such that
for all l ∈ N and all indices jk, k = 1, . . . , l

(6.14)
l∏

k=1

Mjk

jk!
≤ C

∑l
k=1 jk

M∑l
k=1 jk

(
∑l
k=1 jk)!

.
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Proof. By definition,

Mjk

jk!
≤ Ck

( M∑l
k=1 jk

(
∑l
k=1 jk)!

) k∑l
k=1 jk ,

and the “if” part follows by multiplying these estimates. For the other direction
observe first that Stirling’s formula implies that (Mk/k!)1/k is almost increasing if
and only if

M
1/k
k

k
≤ C

M
1/l
l

l
for all k < l.

If l = rk, for an integer r then (6.14) implies

M
1/k
k

k
≤ C

M
1/rk
rk

rk
.

If rk < l < (r + 1)k, we use an interpolation argument. By Lemma 6.11 the
sequence M1/k

k is increasing in k, so

M
1/l
l

l
≥
M

1/kr
kr

kr

kr

l
≥ kr

l

1
C

M
1/k
k

k

by what has been just proved. So

M
1/k
k

k
≤ C l

kr

M
1/l
l

l
≤ 2C

M
1/l
l

l
.

�

Remark. Note that for the proof of the direct implication we did not need the
hypothesis that M = M c.

Theorem 6.17 ([74, 92]). Assume that CM (A) is nontrivial, and its defin-

ing sequence satisfies limk→∞M
1/k
k = ∞. If

(
Mk

k!

)1/k

is almost increasing, then
CM (A) is inverse-closed in A.

We adapt the proof in [92] to the noncommutative situation. We need the
following form of the iterated quotient rule whose proof can be found in Appendix B.

Lemma 6.18. Let E = {1, . . . , d} and δ1, . . . , δd be derivations satisfying the
quotient rule:

δj(a−1) = −a−1δj(a)a−1 for all j ∈ E.
For every k ∈ N and every tuple B = (b1, . . . , bk) ∈ Ek set |B| = k, and

δB(a) = δb1 . . . δbk(a) .

Define the partitions of B into m nonempty subtuples as

P (B,m) = {(B1, · · · , Bm) : B = (B1, · · · , Bm), Bi 6= ∅ for all i} .

Then

(6.15) δB(a−1) =
|B|∑
m=1

(−1)m
∑

(Bi)1≤i≤m∈P (B,m)

( m∏
j=1

a−1δBi(a)
)
a−1 .

Proof of Theorem 6.17. Assume that |α| = k. With the notation of Lemma 6.18
there is a set B with |B| = k such that δα = δB . Observe that the number of
(nonempty) partitions of B in sets (Bi)1≤i≤m ∈ P (B,m) of cardinality ki is(

k

k1, . . . , km

)
.
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As a ∈ CM (A) we know that ‖δBi(a)‖ ≤ Ah|Bi|M|Bi| for some constants A, h > 0.
We obtain the norm estimate

‖δα(a−1)‖A ≤
k∑

m=1

‖a−1‖m+1
A

∑
k1+···km=k

kj≥1

(
k

k1, . . . , km

)( m∏
j=1

AhkiMki

)

=hk
k∑

m=1

‖a−1‖m+1
A Am

∑
k1+···km=k

kj≥1

(
k

k1, . . . , km

)( m∏
j=1

Mki

)(6.16)

As (Mk/k!)1/k is almost increasing we obtain

(6.17)
m∏
i=1

Mki ≤ Ck
k1! · · · km!

k!
Mk ,

and so

‖δα(a−1)‖A ≤ hkCkMk

k∑
m=1

‖a−1‖m+1
A Am

∑
k1+···km=k

kj≥1

1

= hkCkMk

k∑
m=1

‖a−1‖m+1
A Am

(
k − 1
m− 1

)

≤ AhkCkMk‖a−1‖2A
(

1 +A‖a−1‖A
)k−1

≤ ‖a−1‖2A
(
hC(1 +A‖a−1‖A)

)k
Mk ,

and this is what we wanted to show. �

Corollary 6.19. The Gevrey classes Jr(A) are inverse-closed in A, if r ≥ 1.
In particular, HolA is inverse-closed in A.

Sketch of proof. By Stirling’s formula,

(
Mk

k!
)1/k = (

k!r

k!
)1/k � (

k

e
)r−1 ,

and so (Mk/k!)1/k is almost increasing. �

If A = B(`2) and Mk = k! we obtain the following result by using the charac-
terization of analytic elements in Proposition 6.4

Corollary 6.20 (cf. [36, 61]). If A ∈ B(`2) with |A(r, s)| ≤ Ce−γ|k| for
constants C, γ > 0 and all r, s,∈ Zd. If A−1 ∈ B(`2), then there exist C ′, γ′ > 0
such that

|A−1|(r, s) ≤ C ′e−γ
′|r−s| for all r, s ∈ Zd.

6.3. Relation to Weighted Spaces

If A is a matrix algebra, the relation between the Carleman classes CM (A) and
the class of weighted spaces Aw is of interest.

Definition 6.21. Let A be a Banach algebra with periodic automorphism
group Ψ. Let 1 ≤ p ≤ ∞, and v a weight for `p(Zd). In analogy to Definition 2.11
we introduce the spaces

Cpv (A) = {a ∈ A : ‖a‖Cpv (A) =
(∑
k∈Zd
‖â(k)‖pAv(k)p

)1/p

<∞}

with the obvious modification for p =∞.
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Remark. If v is an algebra weight for `p(Zd), then Cpv (A) is an inverse-closed
subalgebra of A. The proof is a straightforward adaption of [56, Theorem 3.2].

Lemma 6.22. If M is a defining sequence for CM (A), m > 0, and Tm,M (k) =
TM ( 2π|k|∞

m ), then

(6.18) C1
Tm,M (A) ⊆ Cm,M (A) ⊆ C∞Tm,M (A) .

Proof. Assume first that a ∈ Cm,M (A). We want to obtain an estimate for
‖â(k)‖A. Let j be an index such that |kj | = |k|∞. Then

â(k) =
∫

Td
ψt(a)e−2πik·t dt =

1
(2πikj)l

∫
Td
ψt(δleja)e−2πik·t dt ,

the second equality by l-fold partial integration (see (4.18)). Taking norms we
obtain

‖â(k)‖A ≤
1

|2πkj |l
‖
∫

Td
ψt(δleja)e−2πik·t dt‖A ≤ C

mlMl

(2π|k|∞)l
.

This relation is valid for all l ∈ N0, and therefore also for the infimum, which yields

(6.19) ‖â(k)‖A ≤ C/Tm,M (k) ,

or a ∈ C∞Tm,M (A).
For the other inclusion assume that ‖a‖C1

Tm,M
(A) ≤ ∞ for an m > 0. For

α ∈ Nd0 we can estimate the norm of δα(a) by

‖δα(a)‖A ≤
∑
k∈Zd
‖δα(â(k))‖A ≤

∑
k∈Zd

(2π|k|∞)|α|‖â(k)‖A

≤ ‖a‖C1
Tm,M

(A) sup
k∈Zd

(2π|k|∞)|α|

Tm,M (k)
≤ ‖a‖C1

Tm,M
(A) sup

r>0

r|α|

TM (r/m)

= ‖a‖C1
Tm,M

(A)m
|α|M c

|α| ,

(6.20)

the last equality by (6.11), and so a ∈ Cm,M (A). �

Remark. In general the weight Tm,M is not submultiplicative.

Corollary 6.23. With the notation of Lemma 6.22,⋃
m>0

C1
Tm,M (A) ↪→ CM (A) ↪→

⋃
m>0

C∞Tm,M (A) ,

where the spaces
⋃
m>0 C1

Tm,M
(A) and

⋃
m>0 C∞Tm,M (A) are equipped with their nat-

ural inductive limit topologies.

Proof. The only thing to verify is the continuity of the embeddings. By the
properties of inductive limits (see, e.g.[42]) it is sufficient to show that C1

Tm,M
(A) ↪→

CM (A) for every m > 0, and that Cm,M (A) ↪→
⋃
m>0 C∞Tm,M (A). This, however,

follows from (6.19) and (6.20). �

A sufficient condition for the equality of the spaces in Corollary 6.23 is the
condition (M2’) of Komatsu [66] for the defining sequence M .

(M2’) There exist constants c > 0, h > 1 such that for all k ∈ N

Mk+1 ≤ chkMk .

(M2’) is equivalent to the following conditions on TM .

Lemma 6.24. If M is a defining sequence, the following are equivalent:
(1) M satisfies (M2’) with constants c and h.
(2) TM (hr) ≥ CrTM (r) for all r > 0.
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(3) TM (λr)
TM (r) ≥ exp

(
log(r/c) log λ/ log h

)
for all r, λ > 0.

For a proof see [80] (cf. also [66, Proposition 3.4]). A related condition on
weights can be found in [45, 2.4].

Example 6.25. The Gevrey-classes Jr, r > 0 satisfy (M2’).

Proposition 6.26. If the defining sequence satisfies (M2’), then

⋃
m>0

C1
Tm,M (A) = CM (A) =

⋃
m>0

C∞Tm,M (A) ,

and this equality is also an isomorphism of topological vector spaces.

Proof. (see, e.g.,[70]) We can estimate the norm in C1
Tm,M

(A) by the norm in
C∞Tm,M (A) using Lemma 6.24, (3).

∑
k∈Zd
‖â(k)‖ATm,M (|k|∞) ≤

∑
k∈Zd
‖â(k)‖ATm,M (λ|k|∞) exp

(
− log(

|k|∞
c

)
log λ
log h

)
≤ sup
k∈Zd
‖â(k)‖ATm,M (λ|k|∞)

∑
k∈Zd

( |k|∞
c

)−log λ/log h
.

If we choose λ such that log λ/log h > d, the sum on the right hand side of the
inequality is convergent. Then C∞Tλm,M (A) ⊆ C1

Tm,M
(A), so taking unions over m > 0

gives the equality of the involved spaces. Equation (6.3) implies also the topological
embedding ⋃

m>0

C∞Tm,M (A) ↪→
⋃
m>0

C1
Tm,M (A) . �

If M satisfies (M2’) we can obtain a characterization of CM (A) that is a gen-
eralization of Proposition 6.4.

Proposition 6.27. If A is a Banach algebra with periodic automorphism group
Ψ, and M a defining sequence for CM (A) that satisfies (M2’), then the following
are equivalent:

(1) a ∈ CM (A),
(2) There are constants C,m > 0 such that ‖â(k)‖ < C/TM (|k|/m) for all

k ∈ Zd,
(3) There are constants C ′,m′ > 0 such that El(a) < C ′/TM (l/m′) for all

l ∈ N.

Proof. (1)⇔ (2) is an immediate consequence of Proposition 6.26. (3)⇒ (2)
follows from (6.4).
(2) ⇒ (3). As (M2’) holds for Tm,M with different constants c′, h′, we assume
w.l.o.g that m = 1. The approximation error can be estimated by

El(a) ≤
∑
|k|∞≥l

‖â(k)‖ .
∑
|k|∞≥l

T−1
M (|k|) .
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As TM (r) is increasing in r, we can replace the sum by an integral. We assume
that l is so large that log(l/c)

log h > 2d, and obtain∑
|k|∞≥l

T−1
M (|k|) ≤

∫
|k|∞≥l

T−1
M (|k|) dk .

∫ ∞
l

1
TM (u)

ud−1 du

= ld
∫ ∞

1

1
TM (lv)

vd−1 dv

≤ ld

TM (l)

∫ ∞
1

vd−1e−
log(l/c) log v

log h dv

=
ld

TM (l)

∫ ∞
1

vd−1− log(l/c)
log h dη

=
ld

TM (l)
1

log(l/c)
log h − d

≤ ld

TM (l)
d−1 ,

(6.21)

using again (3) of Lemma 6.24. Observe that by (2) of Lemma 6.24 TM (l) ≥
CldT (l/hd) with a constant C independent of l. Substituting this estimate for
TM (l) in the last line of (6.21) we finally get

El(a) ≤ C/TM (l/hd) ,

and the constant C is independent of l. �

A somewhat similar approximation result can be found in [17], see also [81].

6.4. Dales-Davie Algebras

For this section we assume that Ψ is a one parameter automorphism group
acting on the Banach algebra A.

It is possible to construct Banach algebras related to A that are determined
by growth conditions on the sequence (‖δk(a)‖A)k∈N0 . We adapt some notions
introduced in [31] for scalar functions in the complex plane.

Definition 6.28. Let M = (Mk)k≥0 be an algebra sequence, that is, a sequence
of positive numbers with M0 = 1 and

(6.22)
Mk+l

(k + l)!
≥ Mk

k!
Ml

l!
for all k, l ∈ N0.

The Dales-Davie algebra D1
M (A) consists of the elements a ∈ A with finite norm

‖a‖D1
M (A) =

∞∑
k=0

‖δk(a)‖A
Mk

.

The space D1
M (A) is indeed a Banach algebra. This will be proved in Proposi-

tion 6.31.

Example 6.29. (1) Let A = C1
v0

the unweighted Baskakov algebra. Then

‖A‖D1
M (A) =

∞∑
k=0

M−1
k

∑
l∈Z
‖A[l]‖∞(2π|l|)k =

∑
l∈Z
‖A[l]‖∞

∞∑
k=0

(2π|l|)k

Mk
.

If we set

(6.23) vM (l) =
∞∑
k=0

(2π|l|)k

Mk

we obtain
D1
M (C1

v0
) = C1

vM .
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At least in this situation we have established a relation between the growth of
derivatives and weights.

We call the function vM defined in (6.23) the weight associated to the sequence
M .

In the following lemma some basic properties of vM are collected. We need
two notions from complex analysis (see, e.g. [71]). For an entire function f let
Mf (r) = sup|x|≤r|f(x)|.

The order of f is

ρf = lim sup
r→∞

log logMf (r)
log r

.

If f has finite order ρf , the type of f is

σf = lim sup
r→∞

logMf (r)
rρf

.

If σf = 0, we say that f has minimal type.

Lemma 6.30.
(1) If M is an algebra sequence, then vM (|k|) is submultiplicative.
(2) The weight vM associated to M can be extended from the positive real axis

to an entire function if and only if limk→∞M
1/k
k =∞.

(3) The weight vM associated to M satisfies the GRS condition (see Defini-
tion 2.1) if and only if

lim
k→∞

(Mk

k!
)1/k = e lim

k→∞

M
1/k
k

k
=∞ .

This is further equivalent to the analytic continuation of vM being an
entire function of order ρvM ≤ 1, and, if ρvM = 1 then vM is of minimal
type.

Proof. (1) Let r, s ≥ 0. Then

vM (r + s) =
∞∑
k=0

(2π)k

Mk

k∑
l=0

k!
l!(k − l)!

rlsk−l ≤
∞∑
k=0

k∑
l=0

(2πr)l

Ml

(2πs)k−l

Mk−l

≤ vM (r)vM (s) .

As vM is increasing on R+
0 , vM (|r + s|) ≤ vM (|r| + |s|), and this proves (1) for all

values of r, s ≥ 0.
(2) This follows from the formula for the convergence radius R of a power series∑∞
k=0 akx

k, 1/R = lim supk→∞|ak|1/k. So

lim sup
k→∞

|ak|1/k = 0 if and only if lim
k→∞

M
1/k
k =∞ .

(3) We use the following formulas for order and type of the entire function f(x) =∑∞
k=0 akx

k [71, Theorem 1.2].

ρf = lim sup
n→∞

n log n
log(1/|an|)

,(6.24)

σf =
1
ρf e

lim sup
n→∞

n|an|ρf/n .(6.25)

If vM satisfies the GRS condition then for all ε > 0 there is a r(ε) such that

(6.26) 1 ≤ vM (r) ≤ (1 + ε)r

for all r > r(ε). This implies that vM (r) ≤ exp(log(1 + ε)r), if r > r(ε), and this
means that ρvM ≤ 1, and if ρvM = 1, then vM is of minimal type. The relation
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limk→∞(Mk/k!)1/k = ∞ then follows from (6.24) and (6.25) by a straightforward
calculation, using Stirling’s formula.

Set M̃K = Mk/(2π)k. Assume first that ρvm < 1 and choose ε > 0 so small
that ρvm + ε < 1. Then (6.24) implies that

k log k ≤ (ρvM + ε) log M̃k

for k > k(ε), and so

kk < M̃k

ρvM+ε
.

It follows that
M̃k > (kk)

1
ρvm+ε = kk(1+δ)

for a δ > 0, and therefore

(6.27)
M̃

1/k
k

k
> kδ →∞

for k →∞.
If ρvM = 1, then vM is of minimal type, and (6.25) implies that

(6.28) 0 = lim
k→∞

k

M̃
1/k
k

,

and that is what we wanted to show.
If we assume that limk→∞(Mk/k!)1/k =∞, then the relations (6.27) and (6.28)

together with (6.24) and (6.25) imply that vm is of order ≤ 1, and, if order one,
of minimal type, so for all ε > 0 there is r(ε) such that vM (r) ≤ (1 + ε)r for all
r > r(ε). This implies that vM is a GRS weight. �

Proposition 6.31. If A is a Banach algebra with a one-parameter group of
automorphisms Ψ generated by δ acting on A, and M is an algebra sequence, then
D1
M (A) is a Banach algebra.

Proof. The algebra property is straightforward, using Lemma 6.30(1). For
the completeness let an be a Cauchy sequence in D1

M (A). This implies that δkan
is a Cauchy sequence in A for all indices k. As δ is a closed operator and A is
complete it follows that there is an element a ∈ A such that for all k ≥ 0 the
sequence δkan converges to δka in A. By standard arguments this implies that
an → a in D1

M (A). �

Proposition 6.32. If A is a Banach algebrawith a one-parameter group of
automorphisms Ψ acting on A, and M an algebra sequence, then the action of ψ is
continuous on the whole of D1

M (A), and so

C(D1
M (A)) = D1

M (A).

Proof. For a ∈ D1
M (A),

‖ψt(a)− a‖D1
M (A) ≤

M∑
k=0

‖ψt(δk(a))− δk(a)‖A
Mk

+ (MΨ + 1)
∞∑

k=M+1

‖δk(a)‖A
Mk

.

For ε > 0 given we can choose M such that the second sum in the expansion above
is smaller than ε. As δk(a) ∈ C(A) for all k ∈ N0 by Proposition 4.20 the first sum
can be made small by choosing t small enough. �

An application of Weierstrass’ theorem (Corollary 5.16) yields

Corollary 6.33. The bandlimited elements are dense in D1
M (A).

Proposition 6.34.

D1
M (Λ1

r(A)) = Λ1
r(D

1
M (A)) for r > 0.
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Proof. Let a ∈ D1
M (Λ1

r(A)), and assume that l > brc. Then

‖a‖D1
M (Λ1

r(A)) =
∞∑
k=0

M−1
k ‖δ

ka‖Λ1
r(A)

=
∞∑
k=0

M−1
k

∫ ∞
0

‖∆l
tδ
ka‖A
|t|r

dt

|t|d

=
∫ ∞

0

‖∆l
tδ
ka‖D1

M (A)

|t|r
dt

|t|d
= ‖a‖Λ1

r(D1
M (A)) . �

As E1
r (D1

M (A))=Λ1
r(D

1
M (A)) by (5.12), Proposition 6.34 identifies the approx-

imation spaces E1
r (D1

M (A)) with the Dales-Davie algebras over Λ1
r(A).

It would be natural to assume that D1
M (A) is inverse-closed in A if and only if

vM is A GRS weight. However we can only prove the following.

Theorem 6.35. Let A be a symmetric Banach algebra, and M an algebra
sequence. Set Pk = Mk/k!. If

(6.29) Am = sup
{
Pk
−1

m∏
j=1

Plj : lj ≥ 1 for 1 ≤ j ≤ m,
m∑
j=1

lj = k
}

satisfies limm→∞A
1/m
m = 0, then D1

M (A) is inverse-closed in A.

Proof. We adapt [1, Theorem 3.3]. If a ∈ D1
M (A), then for every positive

integer p,

(6.30) ‖ap‖D1
M (A) =

∞∑
k=0

‖δk(ap)‖A
Mk

≤
∞∑
k=0

1
Mk

∑
l1+...lp=k

k!
l1! · · · lp!

p∏
j=1

‖δlja‖A .

We want to isolate terms with lj = 0. If Cp,k denotes the partitions of {1, . . . , k}
in p possibly empty subsets,

Cp,k = {(l1, . . . , lp) : lj ≥ 0 for all 1 ≤ j ≤ p,
p∑
j=1

lj = k}

|Cp,k| =
k!

l1! · · · lp!

and

C∗m,k = {(l1, . . . , lm) : lj ≥ 1 for all 1 ≤ j ≤ m,
m∑
j=1

lj = k}

then

|Cp,k| =
p∑

m=1

(
p

m

)
|C∗m,k| ,

k!
l1! · · · lp!

=
p∑

m=1

(
p

m

) ∑
l1+...lm=k

lj≥1

k!
l1! · · · lm!
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Using this relation we can further simplify (6.30).

‖ap‖D1
M (A) ≤

∞∑
k=0

1
Mk

min{p,k}∑
m=0

(
p

m

)
‖a‖p−mA

∑
l1+...lm=k

lj≥1

k!
l1! · · · lm!

m∏
j=1

‖δlja‖A

=
p∑

m=0

(
p

m

)
‖a‖p−mA

∞∑
k=m

k!
Mk

∑
l1+...lm=k

lj≥1

m∏
j=1

‖δlja‖A
lj !

=
p∑

m=0

(
p

m

)
‖a‖p−mA

∞∑
k=m

∑
l1+...lm=k

lj≥1

( 1
Pk

m∏
j=1

Plj

) m∏
j=1

‖δlja‖A
Mlj

≤
p∑

m=0

(
p

m

)
‖a‖p−mA Am

∞∑
k=m

∑
l1+...lm=k

lj≥1

m∏
j=1

‖δlja‖A
Mlj

=
p∑

m=0

(
p

m

)
‖a‖p−mA Am(‖a‖D1

M (A) − ‖a‖A)m .

We need the following result [1, Lemma 3.1].

Lemma 6.36. If K > 0 and (εm)m≥0 is a sequence of positive numbers with
limm→∞ εm = 0, then

lim sup
p→∞

( p∑
m=0

(
p

m

)
εmmK

p−m
)1/p

≤ K .

If we set εm = A
1/m
m (‖a‖D1

M (A) − ‖a‖A) we obtain

‖ap‖D1
M (A) ≤

p∑
m=0

(
p

m

)
‖a‖p−mA εmm ,

and Lemma 6.36 implies that

ρD1
M (A)(a) ≤ lim sup

p→∞
‖ap‖1/p

D1
M (A)

≤ ‖a‖A.

As A is symmetric, Hulanickis Lemma (Proposition 2.10) implies that D1
M (A) is

inverse-closed in A. �

The condition (6.29) is not easy to verify. In [1] sufficient conditions on the
sequence Pk = Mk/k! are identified that guarantee (6.29).

Proposition 6.37. The following conditions on the sequence Pk = Mk/k!
imply that limm→∞A

1/m
m = 0 and that D1

M (A) is inverse-closed in the symmetric
algebra A.

(1) PjPk ≤ CPj+k−1 for a constant C > 0 and all j, k ∈ N0,
(2) maxk≤n−1 P

−1
n (PkPn−k)→ 0 for n→∞,

(3) P 2
k ≤ Pk−1Pk+1 for all k ∈ N, i.e. Pk is log-convex.

Proofs of these statements can be found in [1]. Condition (3) is sometimes
referred to as “Mk is strongly log-convex”. Unfortunately we did not find equivalent
descriptions for the weights vM .

Example 6.38. The Gevrey sequence Mk = k!r is an algebra sequence that
satisfies (3) of Proposition 6.37, if r > 1. In particular, if A = B(`2) we obtain the
following result.
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Corollary 6.39. If A ∈ B(`2(Z)) satisfies
∞∑
k=0

(k!)−r‖δkA‖B(`2)(Z) <∞

for a r > 1, and A has an inverse A−1 ∈ B(`2(Z)), then this inverse satisfies
the same estimate.

If the algebra A is commutative, we can do better by adapting a proof of
Hulanicki [60].

Proposition 6.40. If A is a commutative, symmetric Banach algebra, Ψ a
periodic one-parameter group of automorphisms acting on A, and M a weight se-
quence that satisfies limk→∞(Mk/k!)1/k = ∞ (equivalently, vM is a GRS weight),
then D1

M (A) is inverse-closed in A.

Proof. Assume an ε > 0, and decompose a ∈ A in

a = aσ + r ,

where ‖r‖D1
M (A) < ε, and aσ is σ-bandlimited for a σ > 0 that clearly depends on

ε. Bernstein’s inequality for bandlimited elements (Equation (5.7)) implies that

(6.31) ‖aσ‖D1
M (A) =

∞∑
k=0

‖δk(aσ)‖A
Mk

≤
∞∑
k=0

(2πσ)k

Mk
‖aσ‖A = vM (σ)‖aσ‖A .

Then

‖ap‖D1
M (A) ≤

p∑
l=0

(
p

l

)
‖alσ‖D1

M (A)ε
p−l

≤ C
p∑
l=0

(
p

l

)
vM (lσ)‖aσ‖lAεp−l

≤ CvM (pσ)
p∑
l=0

(
p

l

)
‖aσ‖lAεp−l

= CvM (pσ)(‖aσ‖A + ε)p

≤ CvM (pσ)(‖a‖A + 2ε)p ,

the estimate for vM in the second line uses that σl is lσ-bandlimited. So

ρD1
M (A)(a) = lim

p→∞
‖ap‖1/p

D1
M (A)

≤ ‖a‖A + 2ε .

The Lemma of Hulanicki (Lemma 2.10) shows that D1
M (A) is inverse-closed in

A. �

Remark. Let B be a solid convolution algebra and CB as in Definition 2.11. It
is an open question whether D1

M (CB) is inverse-closed in CB, if vM is a GRS weight.



APPENDIX A

Hardy’s Inequality

A.1. Integral Version

Proposition A.1 ( [37, 2.3.1]). Let r > 0, 1 ≤ p <∞. Then for φ a positive
measurable function on R+∫ ∞

0

[
t−r

∫ t

0

φ(u)
du

u

]q dt
t
≤ r−p

∫ ∞
0

t−rqφ(t)q
dt

t
,∫ ∞

0

[
tr
∫ ∞
t

φ(u)
du

u

]q dt
t
≤ r−p

∫ ∞
0

trqφ(t)q
dt

t
.

For p =∞ we obtain

sup
t>0

[
t−r

∫ t

0

φ(u)
du

u

]
≤ 1
r
‖t−rφ(t)‖∞,

sup
t>0

[
tr
∫ ∞
t

φ(u)
du

u

]
≤ 1
r
‖trφ(t)‖∞.

A.2. Discrete Version

We also need the following discrete version of Hardy’s inequality [73, Lemma
2.1], [37, Lemma 2.3.4]

Proposition A.2. Let r > 0, 1 ≤ p, q ≤ ∞. Then for C > 1 and all sequences
of complex numbers (ai)i≥0

∞∑
l=0

Crlq(
∞∑
k=l

|ak|p)q/p .
∞∑
l=0

Crlq|al|q,

∞∑
l=0

C−rlq(
l∑

k=0

|ak|p)q/p .
∞∑
l=0

C−rlq|al|q

with the obvious interpretation for p, q =∞.
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APPENDIX B

A General Quotient Rule

We provide a proof of Lemma 6.18.

Lemma. Let E = {1, . . . , d} and δ1, . . . , δd be derivations satisfying the quotient
rule:

δj(a−1) = −a−1δj(a)a−1 for all j ∈ E.

For every k ∈ N and every tuple B = (b1, . . . , bk) ∈ Ek set |B| = k, and

δB(a) = δb1 . . . δbk(a) .

Define the partitions of B into m nonempty subtuples as

P (B,m) = {(B1, · · · , Bm) : B = (B1, · · · , Bm), Bi 6= ∅ for all i} .

Then

(B.1) δB(a−1) =
|B|∑
m=1

(−1)m
∑

(Bi)1≤i≤m∈P (B,m)

( m∏
j=1

a−1δBi(a)
)
a−1 .

The proof is by induction over |B|. If |B| = 1 there is nothing to prove. Assume
that the statement is true for |B| < k, and assume |B| = k. The Leibniz rule for
δB(a−1a) yields

(B.2) δB(a−1a) = 0 =
∑

(B1,B2)∈P (B,2)

δB1(a−1)δB2(a) + a−1δB(a) + δB(a−1)a ,

So

(B.3) δB(a−1) = −a−1δB(a)a−1 −
∑

(B1,B2)∈P (B,2)

δB1(a−1)δB2(a)a−1 .

As |B1| < k we can apply the induction hypothesis.

δB(a−1) =− a−1δB(a)a−1

−
∑

(B1,B2)∈P (B,2)

|B1|∑
m=1

(−1)m
∑

(Di)1≤i≤m∈P (B1,m)

( m∏
j=1

a−1δDi(a)
)
a−1 δB2(a)a−1 .

Interchanging the first two summations we obtain

δB(a−1) =− a−1δB(a)a−1

−
k−1∑
m=1

(−1)m
∑

(B1,B2)∈P (B,2)
|B1|≥m

∑
(Di)1≤i≤m∈P (B1,m)

( m∏
j=1

a−1δDi(a)
)
a−1 δB2(a)a−1 .

Now observe that in this expression (D1, · · · , Dm, B2) varies over all partitions of
B, The condition (Di)1≤i≤m ∈ P (B1,m) already implies that |B1| ≥ m, so we can
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set Dm+1 = B2 and obtain

δB(a−1) =− a−1δB(a)a−1

−
k−1∑
m=1

(−1)m
∑

(Di)1≤i≤m+1∈P (B,m+1)

(m+1∏
j=1

a−1δDi(a)
)
a−1 .

We change the summation index.

δB(a−1) =− a−1δB(a)a−1

+
k∑
l=2

(−1)m
∑

(Di)1≤i≤l∈P (B,l)

( l∏
j=1

a−1δDi(a)
)
a−1 .

The term −a−1δB(a)a−1 can included into the sum for l = 1. We obtain

δB(a−1) =
k∑
l=1

(−1)m
∑

(Di)1≤i≤l∈P (B,l)

( l∏
j=1

a−1δDi(a)
)
a−1 ,

and this is (B.1).



APPENDIX C

The Interpolation Theorem

We give a proof of Proposition 3.17.

Proposition (Interpolation theorem, [73, 4.3, 4.5]). Let X ,Y and ω as in
Definition 3.15. Let v be an approximation weight with Vp(m) � ωrm for some
0 < r < 1, 1 ≤ p ≤ ∞. Then

Epv (X ) = (X ,Y)(r,p)

with equivalent norms.

We need the following auxiliary result.

Lemma C.1 ([73, Lemma 4.2]). Assume that the pair (X ,Y) satisfies the JB-
condition for an approximation scheme (Xn)n≥0 and with a weight (ωn)n≥0. If
1 = n0 ≤ n1 ≤ · · · ≤ nj is a sequence of natural numbers, then for every a ∈ X
and every n ∈ N0

(C.1) EXn (a) ≤ K(a, 1/ωn),

and

(C.2) K(a, 1/ωnj ) ≤ C
1
ωnj

j∑
l=0

ωnlE
X
nl−2

(a)

using the convention n−1 = n−2 = 0.

Proof. Choose elements y ∈ Y, and xn ∈ Xn, then EXn (a) ≤ ‖a− y‖X + ‖y−
xn‖X . If xn converges to the best approximation to y in Xn, we obtain with the
help of Jackson’s inequality EXn (a) ≤ ‖a − y‖X + EXn (y) . ‖a − y‖X + 1

ωn
‖y‖Y .

Taking the infimum over y ∈ Y we get (C.1).
For the second inequality let aj be an arbitrary element of Xnj−1 . Then

K(a, 1/ωnj ) ≤ ‖a− aj‖X +
1
ωnj
‖
j∑
l=0

(al − al−1)‖Y

. ‖a− aj‖X +
1
ωnj

j∑
l=0

ωnl−1‖al − al−1‖X

. ‖a− aj‖X +
1
ωnj

j∑
l=0

ωnl(‖a− al‖X + ‖a− al−1‖X ).

Taking infima over the al we obtain

(C.3) K(a, 1/ωnj ) . E
X
nj−1

(a) +
1
ωnj

j∑
l=0

ωnlE
X
nl−2

(a).
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As EXnj−1
(a) ≤ EXnl−2

(a) for all l ≤ j, and trivially ωnj ≤
∑j
l=0 ωnl , we can control

EXnj−1
(a) by

EXnj−1
(a) ≤ 1

ωnj

j∑
l=0

ωnlE
X
nj−1

(a) ≤ 1
ωnj

j∑
l=0

ωnlE
X
nl−2

(a) .

Inserting this in (C.3) we obtain (C.2). �

The plan of the proof of Proposition 3.17 is as follows: First we derive an equiv-
alent norm for (X ,Y)(r,p). Using this characterization, we verify the embeddings
Epv (X ) ↪→ (X ,Y)(r,p) and (X ,Y)(r,p) ↪→ Epv (X ) .

Claim. Under the conditions of Proposition 3.17,

‖a‖(r,p) � ‖(K(a, 1/ωn))n≥0‖`pv(N) .

Proof of the claim. We show first that

(C.4) (hn)n≥0 � (ηn)n≥0 implies (K(a, hn))n≥0 � (K(a, ηn))n≥0 .

Indeed, if (hn) � (ηn) then hn ≤ Cηn, and w.l.o.g we can assume that C ≥ 1.
Trivially, for C ≥ 1 and t ≥ 0,

‖a− y‖X + Ct‖y‖Y ≤ C(‖a− y‖X + t‖y‖Y),

which shows that K(a,Ct) ≤ CK(a, t) for C ≥ 1, and so K(a, hn) ≤ K(a,Cηn) ≤
CK(a, ηn). Reversing the roles of ηn and hn proves the other direction of the
inequality. The assumptions on Vp imply that

(C.5) 1/ωn � Vp(n)−1/r.

So, with ϕj defined as in (3.14) we get

‖(K(a, 1/ωn))n≥0‖`pv(N0) � ‖(K(a, Vp(n)−1/r))n≥0‖`pv(N0)

� ‖(κjK(a, Vp(ϕj)−1/r)j≥0‖`p(N0)

� ‖(κjK(a, κ−j/r)j≥0‖`p(N0) .

(C.6)

In the above chain the second line follows from the remark follwoing the Equivalence
Theorem 3.10. Indeed, ‖a‖(r,p) � ‖a‖X +

∫∞
1

(
trK(a, 1/t)

)p dt
t , and we can apply

Corollary 3.10 with Eλ(a) = K(a, 1/λ). The third equivalence in (C.6) results
from (3.22). The last expression is an equivalent discrete norm on (X ,Y)(r,p),
see (3.25). �

Proof of Proposition 3.17. To verify the embedding Epv (X ) ↪→ (X ,Y)(r,p)

Let a ∈ (X ,Y)(r,p). By (C.4) and using ωϕj � κj/r we obtain

‖a‖(r,p) � ‖
(
κjK(a, κ−j/r)

)
j≥0
‖`p(N0) � ‖

(
κjK(a, 1/ωϕj )

)
‖`p(N0) .

With (C.3) we arrive at

‖a‖(r,p) . ‖
(
κj

1
ωϕj

j∑
i=0

ωϕiEϕi−2(a)
)
j≥0
‖`p(N0)

� ‖
(
κj(1−1/r)

j∑
i=0

κi/rEϕi−2(a)
)
j≥0
‖`p(N0) .

Hardy’s inequality (Appendix A.2) implies that the last norm can be dominated by

‖
(
κjEϕj−2(a)

)
j≥0
‖`p(N)0 . ‖

(
κjEϕj (a)

)
j≥0
‖`p(N0) � ‖a‖Epw(X ) ,

and so ‖a‖(r,p) . ‖a‖Epv (X ).
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For the proof of the embedding (X ,Y)(r,p) ↪→ Epv (X ) set

‖a‖Epw(X ) � ‖a‖X + ‖(vkEk(a))k≥1‖`p(N)

. ‖a‖X + ‖(vkK(a, 1/ωk))k≥1‖`p(N) ,

using (C.1). As ‖a‖X ≤ ‖a−g‖X +‖g‖X ≤ ‖a−g‖X +‖g‖Y for all g ∈ Y we obtain
that ‖a‖X ≤ K(a, 1) = K(a, 1/ω0), and actually ‖a‖Epv (X ) . ‖a‖(r,p). This was to
be proved. �





APPENDIX D

Smoothness in Banach Algebras

D.1. Moduli of Smoothness

We give a proof of Lemma 4.29.

Lemma. If l, k ∈ N, l ≥ k, t ∈ Rd and h > 0, then
(1)

‖∆l
t(x)‖X ≤ (MΨ + 1)k‖∆l−k

t (x)‖X and ωlh(x) ≤ (MΨ + 1)kωl−kh (x) ,

(2)

‖∆k
2t(x)‖X ≤ (MΨ + 1)k‖∆k

t (x)‖X and ωk2h(x) ≤ (MΨ + 1)kωkh(x) ,

(3) If λ > 0 then

‖ωkλt(x)‖X ≤ (MΨ + 1)k(λ+ 1)k‖∆k
t (x)‖X .

(4) (Marchaud inequality)

ωkh(x) ≤ Chk
∫ ∞
h

ωlu(x)
uk

du

u
.

(5) The averaged modulus of smoothness

wkh(x) = h−d
∫
|t|≤h
‖∆k

t x‖X dt

is equivalent to the “standard” modulus of smoothness: wkh(x) � ωkh(x)
[37, Lemma 6.5.1].

(6) The modulus of smoothness is also equivalent to the iterated modulus of
smoothness [13, 5.4.11],

ωkt (x) � sup
|hj |≤t
1≤j≤k

‖
( k∏
j=1

∆hj

)
x‖X .

(7) If a ∈ Ck(X ), then

ωk+l
h (x) ≤ C sup

|α|=k
ωlh(δα(x))

Proof. The proofs of (1), (2) and (3) are easy calculations in complete analogy
to the corresponding properties of the moduli of smoothness for functions. See,
e.g., [37].

Proof of 4. The proof of the Marchaud inequality is in many textbooks [37,
13, 100]. We reproduce the proof of [37, 13].

Claim. For all k ≥ 0 and t ∈ Rd the identity

(D.1) ∆k
2t =

k∑
j=1

(
k

j

) j−1∑
m=0

∆k+1
t ψmt + 2k∆k

t

is valid [13, 5.4.8].
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Using this algebraic identity we obtain the norm inequality

‖∆k
t (x)‖X ≤ 2−k

(
‖∆k

2t(x)‖X +
k∑
j=1

(
k

j

) j−1∑
m=0

‖∆k+1
t ψmt(x)‖X

)

≤ 2−k
(
‖∆k

2t(x)‖X +MΨ

k∑
j=1

(
k

j

)
j‖∆k+1

t (x)‖X
)

≤ 2−k‖∆k
2t(x)‖X + 2−kMΨ2k−1 k‖∆k+1

t (x)‖X ,
and so we obtain

(D.2) ‖∆k
t (x)‖X ≤ 2−k‖∆k

2t(x)‖X +
k

2
MΨ‖∆k+1

t (x)‖X .

Iterating this relation and taking suprema over |t| ≤ h gives

(D.3) ωkh(x) ≤ k

2
MΨ

n∑
j=0

2−jkωk+1
2jh (x) + 2−(n+1)kωk2nh(x),

which can be considered as a discrete form of the Marchaud inequality for l = k+1.
The continuous form follows using the identity

(2jt)−k = k(1− 2−k)
−1
∫ 2j+1t

2jt

s−k−1 ds

in (D.3). Then, as (1− 2−k)−1 ≤ 2

ωkh(x) ≤ k2MΨt
k

n∑
j=0

∫ 2j+1t

2jt

s−k−1ωk+1
2jh (x) ds+ 2−(n+1)kωk2nh(x)

≤ k2MΨt
k

∫ 2n+1t

t

s−kωk+1
s (x)

ds

s
+ 2−(n+1)kωk2nh(x),

(D.4)

and for n → ∞ this is the Marchaud inequality for l = k + 1. The general case
follows by induction: If

ωkh(x) ≤ Ctk
∫ ∞
t

s−kωls(x)
ds

s

for some l > k, then by (D.4)

ωkh(x) ≤ Cl2MΨt
k

∫ ∞
t

s−k sk
∫ ∞
s

u−lωl+1
u (x)

du

u

ds

s
.

Changing the order of integration the Marchaud inequality follows for l + 1.

Proof of the claim.

∆k
2t = (ψ2t − id)k = (ψ2

t − id)k = (ψt + id)k(ψt − id)k .

But

(ψt + id)k =
k∑
j=0

(
k

j

)
ψjt ,

(ψt + id)k − 2k id =
k∑
j=1

(
k

j

)
(ψjt − id)

=
k∑
j=1

(
k

j

) j−1∑
m=0

ψmt∆t

Putting these identities together yields (D.1). �
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�

Proof of (5). We adapt a proof of [37]. The relation |h|−d
∫
|t|<h‖∆

k
t x‖X dt .

ωkh(x) is immediate. For the other inequality we need the identity

(D.5) ∆k
h =

k∑
j=1

(
k

j

)
(−1)j

(
∆k
jsψjh −∆k

h+js

)
,

which is valid for all h, s ∈ Rd. Then

‖∆k
h(x)‖X .

k∑
j=1

(
k

j

)(
‖∆k

js(x)‖X + ‖∆k
h+js(x)‖X

)
Integrating yields

‖∆k
h(x)‖X Vol({s : |s| ≤ 1})|h|d .

k∑
j=1

(
k

j

)(∫
|s|≤|h|

‖∆k
js(x)‖X ds+

∫
|s|≤|h|

‖∆k
h+js(x)‖X ds

)
,

so

‖∆k
h‖X . |h|−d

k∑
j=1

(
k

j

)(∫
|s|≤|h|

‖∆k
js‖X ds+

∫
|s|≤|h|

‖∆k
h+js‖X ds

)
.

A change of variables gives

‖∆k
h‖X . |h|−d

∫
|s|≤(k+1)|h|

‖∆k
s‖X ds = wk(k+1)h.

So we have shown that ωkh . wk(k+1)h . ωk(k+1)h. As ωkλh � ωkh we are finished, if
(D.5) is verified. For this,

k∑
j=0

(−1)j+k
(
k

j

)
∆k
h+js =

k∑
j=0

(−1)j+k
(
k

j

) k∑
l=0

(
k

l

)
(−1)k+lψl(h+js)

=
k∑
l=0

(
k

l

)
(−1)k+l

k∑
j=0

(−1)j+k
(
k

j

)
ψlhψljs

=
k∑
l=1

(
k

l

)
(−1)k+l∆k

lsψlh .

Isolating the term j = 0 on the left and reshuffling gives (D.5). �

Proof of 6. This is [13, Lemma 5.4.11]. We reproduce the proof given there.
The relation ωkt (x) ≤ sup |hj |≤t

1≤j≤k
‖
(∏k

j=1 ∆hj

)
x‖X is a consequence of the definition

of ωkt (x). To prove the other inequality we need the following fact.

(D.6)
k∏
j=1

∆hj =
∑

D⊆{1,...,k}

(−1)|D|ψh∗D∆k
hD ,

where the sum is over all subsets D of {1, . . . , k}, and h∗D =
∑
j∈D hj , hD =

−
∑
j∈D

hj
j .

Using this relation and the observation that |hD| ≤ kt we obtain

sup
|hj |≤t
1≤j≤k

‖
( k∏
j=1

∆hj

)
x‖X ≤ Cωkkt(x) ≤ C ′ωkt (x) ,

an that is what we wanted to show.



98 D. SMOOTHNESS IN BANACH ALGEBRAS

The proof of (D.6) is purely algebraic. For each integer l with 0 ≤ l ≤ k
k∏
j=1

∆(j−l)hj =
k∏
j=1

(ψ(j−l)hj − id) =
∑

D⊆{1,...,k}

(−1)k−|D|
∏
j∈D

ψ(j−l)hj

=
∑

D⊆{1,...,k}

(−1)k−|D|ψ(
∑
j∈D jhj)

ψl(−
∑
j∈D hj)

.

(D.7)

Obviously,
∏k
j=1 ∆(j−l)hj = 0, if l > 0. So

k∑
l=0

(−1)k−l
(
k

l

) k∏
j=1

∆(j−l)hj = (−1)k
k∏
j=1

∆(j−l)hj

=
∑

D⊆{1,...,k}

(−1)k−|D|ψ(
∑
j∈D jhj)

k∑
l=0

(−1)k−l
(
k

l

)
ψl(−

∑
j∈D hj)

=
∑

D⊆{1,...,k}

(−1)k−|D|ψ(
∑
j∈D jhj)

∆l
(−

∑
j∈D hj)

.

If we replace hj by hj/j, we obtain (D.6). �

Proof of 7. Let M1 = c[0,1], Mj = M1 ∗Mj−1, j > 1 the B-splines of order
j. Then, as we will show later, for each x ∈ Ck(X )

(D.8) ∆k
h(x) =

∫ ∞
−∞

Mk(ξ)
∑
|α|=k

k!
α!
ψξh(δαx)hα dξ.

So,

∆k+l
h (x) =

∫ ∞
−∞

Mk(ξ)
∑
|α|=k

k!
α!
ψξh(δα∆l

hx)hα dξ.

Taking norms we obtain

‖∆k+l
h (x)‖X ≤Mψ

∑
|α|=k

k!
α!
‖∆l

hδ
αx‖hk . hk sup

|α|=k
ωlh(δαx) ,

and this was to prove. Equation (D.8) follows from the one-dimensional identity

(D.9) ∆k
h(x) =

∫ ∞
−∞

ψξh(δkx)hkMk(ξ) dξ

for a one-parameter group ψt and reducing to the one-dimensional case as usual.
Equation (D.9) itself is proved by induction. See [13, 5.4.7-8] for details. �

�

D.2. Equivalent Norms on Besov Spaces

In this section we give a prove of Proposition 4.31.

Proposition. Let x ∈ X , r > 0. Then for every integer k > brc the following
expressions define equivalent (semi)norms on Λpr(X ).

(1)

|x|Λpr(X ) �
[∫

R+
(h−rωkh(x))p

dh

h

]1/p

.

(2)

‖x‖Λpr(X) � ‖x‖X +
[∫

Rd
(|t|−r‖∆k

t x‖X )p
dt

|t|d

]1/p

.
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(3)

‖x‖Λpr(X) � ‖x‖X +
( ∞∑
l=0

(
2rlωk2−l(x)

)p)1/p

,

(4) If l is an integer, and l ≤ r, then

‖x‖Λpr(X ) � ‖x‖X +
∑
|α|=l

‖δα(x)‖Λpr−l(X ) .

Proof. Part (1) follows from the Marchaud inequality, see [37, 2.10.1]. For
the proof of (2) observe that∫

Rd

(
|t|−r‖∆k

t x‖X
)p dt
|t|d
≤
∫

Rd

(
|t|−r sup

|s|≤|t|
‖∆k

t x‖X
)p dt
|t|d

≤ C
∫

R+

(
h−rωkh(x)

)p dh
|h|
.

For the proof of the converse we need the averaged modulus of smoothness defined
in Lemma 4.29.∫

R+
((h−rωkh(x))p

dh

h
≤ C

∫
R+
h−rp

[
1
hd

∫
|t|≤h
‖∆k

t x‖X dt
]p
dh

≤ C
∫

R+
h−rp

[∫
|t|≤h

‖∆k
t x‖X
|t|d

dt

]p
dh.

We use the the surface measure σ on the unit sphere Sd−1 and define Ω(r) =∫
Sd−1‖∆k

rt′x‖X dσ(t′) (t′ a unit vector in Rd). Then we get∫
R+
h−rp

[∫
|t|≤h

‖∆k
t x‖X
|t|d

dt

]p
dh =

∫
R+
h−rp

[∫ h

0

Ω(r)
dr

r

]p
dh

≤ C ′
∫

R+
(r−rΩ(r))p

dr

r

For the last relation we use Hardy’s inequality (Appendix A). The right hand side
is equal to

C ′
[∫

Rd
(|t|−r‖∆k

t x‖X )p
dt

|t|d

]1/p

,

as desired.
The relation (3) can be obtained from (1) by discretizing, see [37, 2.10.5].
For the proof of (4) we verify first

‖x‖Λpr(X ) ≤ C‖x‖Cl(X ) +
∑
|α|=l

‖δα(x)‖Λpr−l(X ) ,

which follows directly from Lemma 4.29(7). Indeed, for k > r∫ ∞
0

(
h−rωkh(x)

)p dh
h
≤ C

∑
|α|=l

∫ ∞
0

[h−r+lωk−lh (δα(x))]p
dh

h
,

which proves the assertion. For the other inequality we need the important relation

(−δej )(x) =
1
Ck

∫ ∞
0

∆k
hej

(x)

h

dh

h
,

Ck =
∫ ∞

0

(e−h − 1)k

h

dh

h

(D.10)

for all x ∈ Λ1
1(X ) and integers k > 1, which is proved in Appendix D.3.
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We prove

‖x‖Λpr(X ) ≥ C‖x‖X +
∑
|α|=l

‖δα(x)‖Λpr−l(X )

by induction on l. If l = 1 choose k > r and estimate

‖∆k
t δej (x)‖X .

∫ ∞
0

‖∆k
t∆k

hej
(x)‖X

h

dh

h

=
∫ |t|

0

‖∆k
t∆k

hej
(x)‖X

h

dh

h
+
∫ ∞
|t|

‖∆k
t∆k

hej
(x)‖X

h

dh

h
= I + II

Then

I ≤ (Mψ + 1)k
∫ |t|

0

‖∆k
hej

(x)‖X
h

dh

h
,

II ≤ (Mψ + 1)k
‖∆k

t (x)‖X
|t|

,

both inequalities using Lemma 4.29(1). With this estimates we obtain for the
Λpr-seminorm of δej (x)∫

Rd\{0}

[
|t|−r−1

∫ |t|
0

‖∆k
hej

(x)‖X
h

dh

h

]p
dt

|t|d
.
∫ ∞

0

[
u−r−1

∫ u

0

‖∆k
hej

(x)‖X
h

dh

h

]p
du

u

.
∫ ∞

0

[
u−r‖∆k

uej (x)‖X
]p du
u

.
∫ ∞

0

[
u−rωku(x)

]p du
u
,

using Hardy’s inequality for the estimation of the double integral. The second term
yields the same estimate, so

|δej (x)|Λpr−1(X ) . |x|Λpr(X )

If x ∈ Λpr(X ), r > 1, then x ∈ Λ1
1(X ) by Proposition 4.34. The integral representa-

tion (D.10) implies that

‖δej (x)‖X . ‖δej (x)‖Λ1
1(X ) . ‖δej (x)‖Λpr(X ),

and this finally proofs the assertion for l = 1. The case l > 1 follows by induction.
It remains to verify the important relation (D.10). For completeness we repro-

duce a proof in appendix D.3. �

D.3. Integral Representation of Derivations

Proposition D.1. Let X be a Banach space with a d-parameter automorphism
group Ψ. If x in Λ1

1(X ), and h ∈ Rd, then

−δh(x) =
1
Ck

∫ ∞
0

(ψth − id)k(x)
t

dt

t

for any integer k > 1, where Ck =
∫∞

0
(e−t−1)k

t
dt
t .

The statement is proved in [72, 2.3] or in [27, Prop.3.4.5]. We reproduce the
proof of [27].
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Proof. We need the following identities

∆k
t =

k∑
j=1

(−1)k−j
(
k

j

)
∆jt,(D.11)

k∑
j=1

(−1)k−j
(
k

j

)
jl =

{
0, l < k

k!, l = k
(D.12)

The first of these follows from the binomial theorem for ∆k
t and (id− id)k, the

second from expanding (et−1)k and differentiating l times at t = 0 . An immediate
consequence of (D.12) is the relation

(D.13)
k∑
j=1

(−1)k−j
(
k

j

)
jl
∫ kε

jε

t−(l−n) dt

t
= 0 for 1 ≤ n < l < k.

Now to the proof of the proposition! As x ∈ Λ1
1(X ) the integral

∫∞
0
‖∆k

th(x)‖X
t

dt
t

exists, and so does the Bochner integral∫ ∞
0

∆k
th(x)
t

dt

t

consequently. So the elements

xε =
∫ ∞
ε

∆k
th(x)
t

dt

t

are well defined. We rewrite this expression somewhat.

xε
(D.11)

=
k∑
j=1

(−1)k−j
(
k

j

)∫ ∞
ε

t−1∆jth(x)
dt

t
=

k∑
j=1

(−1)k−j
(
k

j

)
j

∫ ∞
jε

t−1∆th(x)
dt

t

As
∑k
j=1(−1)k−j

(
k
j

)
j
∫∞
kε
t−1∆th(x)dtt = 0 by (D.13), we get

xε =
k∑
j=1

(−1)k−j
(
k

j

)
j

∫ kε

jε

t−1∆th(x)
dt

t

The following algebraic identity is easily verified:∫ s

0

ψσh(∆th(x)) dσ =
∫ t

0

ψσh(∆sh(x)) dσ

Then ∫ s

0

ψσh(xε) dσ =
k∑
j=1

(−1)k−j
(
k

j

)
j

∫ kε

jε

t−1

∫ s

0

ψσh(∆th(x)) dσ
dt

t

=
k∑
j=1

(−1)k−j
(
k

j

)
j

∫ kε

jε

t−1

∫ t

0

ψσh(∆sh(x)) dσ
dt

t
.

As t−1
∫ t

0
ψσh(∆sh(x)) dσ → ∆sh(x) for t→ 0 we get∫ s

0

ψσh(x0) dσ = lim
ε→0

∫ s

0

ψσh(xε) dσ =
k∑
j=1

(−1)k−j
(
k

j

)
j∆sh(x) log(

k

j
),

and so we infer that x0 ∈ D(δh), and

x0 =
k∑
j=1

(−1)k−j
(
k

j

)
j log(

k

j
)δh(x).
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It remains to verify the value of the constant Ck. As the preceding derivation is
true for any semigroup action it is also valid for the action ψt(x) = e−tx. Using
this we obtain the desired value of the constant. �

Remark: C2 = 2 log 2.
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[39] O. Èl′-Falla, N. K. Nikol′skĭı, and M. Zarrabi. Estimates for resolvents in Beurling-Sobolev
algebras. Algebra i Analiz, 10(6):1–92, 1998.

[40] H. G. Feichtinger. Gewichtsfunktionen auf lokalkompakten Gruppen. Österreich. Akad.
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[62] Y. Katznelson. An introduction to harmonic analysis. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, third edition, 2004.

[63] R. Kerman and E. Sawyer. Convolution algebras with weighted rearrangement-invariant

norm. Studia Math., 108(2):103–126, 1994.
[64] E. Kissin and V. S. Shul′man. Dense Q-subalgebras of Banach and C∗-algebras and un-

bounded derivations of Banach and C∗-algebras. Proc. Edinburgh Math. Soc. (2), 36(2):261–

276, 1993.
[65] E. Kissin and V. S. Shul′man. Differential properties of some dense subalgebras of C∗-

algebras. Proc. Edinburgh Math. Soc. (2), 37(3):399–422, 1994.
[66] H. Komatsu. Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci.

Univ. Tokyo Sect. IA Math., 20:25–105, 1973.

[67] P. Koosis. The logarithmic integral. I, volume 12 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, 1988.

[68] V. G. Kurbatov. Algebras of difference and integral operators. Funktsional. Anal. i

Prilozhen., 24(2):87–88, 1990.
[69] V. G. Kurbatov. Some algebras of operators majorized by a convolution. Funct. Differ. Equ.,

8(3-4):323–333, 2001. International Conference on Differential and Functional Differential

Equations (Moscow, 1999).
[70] M. Langenbruch. Ultradifferentiable functions on compact intervals. Math. Nachr., 140:109–

126, 1989.

[71] B. Y. Levin. Lectures on entire functions, volume 150 of Translations of Mathematical
Monographs. American Mathematical Society, Providence, RI, 1996. In collaboration with

and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the
Russian manuscript by Tkachenko.

[72] J.-L. Lions and J. Peetre. Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci.
Publ. Math., (19):5–68, 1964.

[73] U. Luther. Representation, interpolation, and reiteration theorems for generalized approxi-

mation spaces. Ann. Mat. Pura Appl. (4), 182(2):161–200, 2003.

[74] P. Malliavin. Calcul symbolique et sous-algèbres de L1(G). I, II. Bull. Soc. Math. France,
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