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Chapter 1

Introduction

Originally, the class of Dynamic Stochastic General Equilibrium (DSGE) models dates

back to Kydland & Prescott (1982) who first introduced real shocks into the

neoclassical growth model under the assumption of completely flexible prices in order

to create business cycle fluctuations. Hence, this class of models is also known as Real

Business Cycle (RBC) models. Over the past two decades, DSGE models have become

state of the art in the (Quantitative) Macroeconomic literature, varying in their degrees

of complexity as well as in their specific focus of application.

Rotemberg & Woodford (1997) were the first to enhance these DSGE models

by monopolistic competition in spirit of Dixit & Stiglitz (1977) and by nominal

rigidities in terms of Calvo (1983) contracts. Differing from the original RBC liter-

ature, these two assumptions render money non-neutral (in the short run), which has

crucial implications on the effectiveness of monetary policy as laid out by Clarida et

al. (1999). The state-of-the-art reference on the methodology of these so-called New

Keynesian models still is the celebrated research monograph by Woodford (2003).

Meanwhile, a very accessible textbook for graduate students on New Keynesian mod-

eling is available with Gaĺı (2008).

With their famous redux model, Obstfeld & Rogoff (1995) pioneered New Open

Economy Macroeconomics by enriching the traditional Open Economy Macroeconomic

literature of the Mundell-Fleming-Dornbusch type as they first applied the DSGE struc-

ture to a two-country setting. Numerous authors have contributed to this topic, which

continues to appeal to a wide range of scholars. In consequence, various survey articles

and even survey book chapters on open-economy DSGE models have come up over

time such as Obstfeld & Rogoff (1996, chapter 10), Lane (2001), Engel (2002),

Walsh (2003, chapter 6), or Gaĺı (2008, chapter 7).

Chapter 2 of this dissertation develops a small-scale two-country DSGE model that
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is characterized by diverging interest-rate rules. These diverging interest-rate rules

represent the differing statutes of the two central banks under scrutiny, the European

Central Bank (ECB) and the Federal Reserve System (Fed).

Both RBC and New Keynesian models are micro-founded, i.e. most of the model

equations are derived from optimizing behavior on the part of the economy’s agents

within a dynamic setting. Hence, the models’ structural or deep parameters directly

stem, e.g., from the households’ utility function or the firms’ profit function. Estimating

these structural parameters should then mitigate the Lucas (1976) critique as opposed

to traditional large-scale Macroeconometric models which consisted of a collection of

purely ad-hoc equations.

Due to the effectiveness of monetary policy in New Keynesian models, customized

models such as the New Area-Wide Model (NAWM) for the Euro area (see Christof-

fel et al. 2008) are used nowadays by virtually every central bank in the world. These

institutions are usually interested in the applications of empirical policy analysis (see,

e.g., Smets & Wouters 2003), forecasting (see, e.g., Smets & Wouters 2004), or

both (see Adolfson et al. 2007 for a prominent example for an open-economy model).

In those applications of DSGE models, Bayesian estimation techniques play a major

role (see An & Schorfheide 2007 for a survey).

Chapters 3 and 4 of this dissertation will cover these two important empirical appli-

cations in more detail for two different pairs of countries and with respect to different

Bayesian and classical (vector) autoregressive benchmarks.

In Gaĺı (2008, chapter 8), the reader can find possible theoretical extensions to the

basic closed-economy New Keynesian framework, which may, in principle, be intriguing

to open economy researchers, too: the topics mentioned are state-dependent pricing,

labor market frictions and unemployment, imperfect information and learning, endoge-

nous capital accumulation, financial market imperfections, and the zero lower bound on

nominal interest rates (for the references on these topics see Gaĺı 2008, pp. 191-193).

Besides this general introduction, the present dissertation entitled Monetary DSGE

Models of Two Countries: Set-Up, Estimation, and Forecasting Performance contains

three more chapters.

InChapter 2, we investigate within a small-scale two-country DSGE set-up whether

there exists a determinate rational expectations equilibrium and what are the impli-

cations on key macroeconomic variables of the European Union (EU) and the United

States (US) if we assume that the ECB and the Fed stick to their differing legal statutes,

which is reflected by diverging interest-rate rules.

For a calibrated version of the model we find that a unique stationary solution exists
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and that positive realizations of all types of simulated macroeconomic disturbances have

a negative impact on output of both economies. Expansionary monetary policy shocks

always have a prosper thyself and beggar thy neighbor effect with respect to the terms

of trade as these shocks influence the terms of trade for the benefit of EU (US) resident

households by decreasing them below (raising them above) their zero-inflation steady-

state value.

Moreover, we find that if the ECB implemented the interest-rate rule proposed in

this chapter, it would encounter lower fluctuations in EU producer-price-index inflation

compared to an interest-rate rule as proposed for the Fed. This is consistent with the

ECB’s paramount objective of price stability. However, this advantage only holds at

the expense of relatively high fluctuations in the EU output gap.

In Chapter 3, we estimate and forecast with [1] the two-country DSGE model

with diverging interest-rate rules developed in Chapter 2 while employing Bayesian

techniques and [2] a atheoretical vector autoregressive (VAR) model while employing

standard ordinary least squares. In doing so, we use quarterly OECD data ranging

from 1994Q1 until 2009Q1 for the Euro area on the one hand and the US on the other.

We find that the estimated DSGE model qualitatively reproduces the findings of

the calibrated one from Chapter 2 with respect to most of the parameter values and to

impulse responses on the various exogenous error terms. Estimating an unconstrained

VAR(1) does not yield the identical causal relationships as implied by the DSGE and

impulse responses based on the VAR(1) sometimes differ from the ones obtained for

the DSGE. Both models as well as the additive seasonal Holt-Winters method, a sim-

ple univariate extrapolation method serving as a benchmark, are not able to predict

the severeness or, at least, the evolution of the economic and financial crisis for the

forecasting period from 2007Q2 until 2009Q1.

Finally, we obtain the result that the accuracy of one-step-ahead DSGE forecasts

can compete well with the accuracy of VAR(1), Holt-Winters, and uniformly combined

forecasts under regular economic conditions. In two cases, the DSGE is able to signifi-

cantly outperform some of the rival forecasting models, but only at the 10% level.

In Chapter 4, we shift the focus from the two large open economies to the inte-

rior of one of them, namely to two economically integrated EU members that share a

common border: Austria and Hungary. We want to compare the forecasting accuracy

of new variants of the two-country DSGE model with several Bayesian and classical

(vector) autoregressive benchmarks for the subsequent four variables of interest: Aus-

trian and Hungarian output gaps as well as consumer-price-index inflation rates. In

particular, we address the forecasting performance [1] of the original open-economy
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DSGE characterized by producer-price-index inflation under the interest-rate rules, [2]

of an open-economy DSGE with consumer-price-index inflation under the interest-rate

rules, [3] and of the closed-economy DSGE with consumer-price-index inflation under

the interest-rate rule that is nested in the open-economy structure. In doing so, we use

quarterly Eurostat and OECD data ranging from 2000Q1 until 2009Q3 for Austria and

Hungary.

We obtain the result that Bayesian and classically estimated (vector) autoregressive

benchmarks deliver the most accurate one-step-ahead forecasts for all four endogenous

variables with respect to the different variants of the two-country DSGE model, but

cannot significantly outperform them. For three out of four variables, open-economy

models perform best compared to other single forecasts. If we additionally calculate

various combined forecasts, again for three out of four variables open-economy forecast

combinations perform best with respect to other combined forecasts.

In summary, even if single DSGE forecasts were not able to deliver the most accu-

rate one-step-ahead forecasts, the additional information provided by these forecasting

models seems to be valuable for uniform forecast combination for two variables. Since

open-economy models deliver the lowest forecasting error for three out of four variables

across single and combined forecasts, taking into account the non-negligible impact of

economic interrelations between Austria and Hungary indeed leads to a more accurate

prediction of most of the macro variables we take into consideration.

Interestingly, an evolution somewhat comparable to the one of the small-scale two-

country DSGE model from above was already perceivable in the literature for a medium-

scale closed-economy DSGE model by Smets & Wouters (2003, 2004, 2007): In

Smets & Wouters (2003), the model is set up and estimated using Bayesian tech-

niques for Euro area data. In Smets & Wouters (2004), the estimated model is used

to perform out-of-sample forecasts of Euro area variables and to address the model’s

forecasting performance. Finally, in Smets & Wouters (2007), a new variant of the

model is estimated and forecasted with for a different country, namely the US.
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Chapter 2

A two-country DSGE model with

diverging interest-rate rules

2.1 Introduction

If one studies scholarly articles that deal with monetary models of two countries such

as Corsetti & Pesenti (2001), Clarida et al. (2002), Pappa (2004), or Benigno

& Benigno (2006), one usually encounters that the countries’ monetary authorities

are modeled as perfectly symmetric institutions.

This gives rise to the question to which extent these models are able to capture

real-world features and to which extent policy recommendations based on the results

of these models are applicable. The reason why this is questionable is that, in general,

two different central banks may each obey a differing and legally binding statute. More

specifically, let us think of the two monetary authorities under examination as the ECB

on the one hand and the Fed on the other.

Article 2 of the Protocol on the Statute of the European System of Central Banks

and of the European Central Bank (1992, 2004) states the following:1

”In accordance with Article 105(1) of this Treaty, the primary objective of

the ESCB shall be to maintain price stability. Without prejudice to the

objective of price stability, it shall support the general economic policies

in the Community with a view to contributing to the achievement of the

objectives of the Community as laid down in Article 2 of this Treaty. The

ESCB shall act in accordance with the principle of an open market economy

1More precisely, the responsible body for the monetary policy of the EU is the European System of
Central Banks (ESCB), which comprises the ECB and the national central banks of all 27 EU members
(in 2010).
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with free competition, favouring an efficient allocation of resources, and in

compliance with the principles set out in Article 4 of this Treaty.”

However, Section 2a of the Federal Reserve Act (1977, 2000) reads:

”The Board of Governors of the Federal Reserve System and the Federal

Open Market Committee shall maintain long run growth of the monetary

and credit aggregates commensurate with the economy’s long run potential

to increase production, so as to promote effectively the goals of maximum

employment, stable prices, and moderate long-term interest rates.”

As the reader can conclude from these diverging statutes, the paramount objective

of the ECB is price stability, whereas for the Fed this goal is just one out of many. In

order to model monetary policy of each central bank consistent with their diverging

statutes, we will incorporate these differing institutional features into their respective

policy functions.

It is worth noting that in the time from 1999 to 2004, the Fed revised its short-run

nominal interest rate more than twice as often as the ECB (see Sahuc & Smets 2008,

pp. 505-506). This difference in central bank activism can, at least, partly be explained

by differing sensitivities to the respective inflation rate and output gap in estimated

interest-rate rules for the ECB and the Fed within two separate closed-economy DSGE

models. The differing sensitivities, in turn, may be the empirically validated implication

of the diverging statutes of both monetary authorities as laid out above (see Sahuc &

Smets 2008, pp. 512-514). We extend Sahuc & Smets (2008) by investigating the

issue of differing statutes within a two-country DSGE framework.

In line with this observation, our main purpose is to investigate whether there ex-

ists a determinate rational expectations equilibrium and what are the implications of

this outcome for key macroeconomic variables of the EU and the US such as output

gaps, producer-price-index inflation rates, terms of trade, and short-run nominal in-

terest rates if we assume that the ECB and the Fed stick to their diverging statutes.

These implications will be expressed in terms of simulated impulse responses of the var-

ious endogenous variables to identical aggregate productivity, cost-push, and monetary

policy shocks.

Formally, we carry out the analysis by introducing diverging interest-rate rules into

a canonical log-linear representation of a variant of the two-country DSGE framework

by Obstfeld & Rogoff (2001), which will be extended by Calvo (1983) pricing,

a more subtle form of nominal rigidities within a New Keynesian model than the one

used in the original article.
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Obstfeld & Rogoff (2001) mostly concentrate on the issue of risk premia on

nominal exchange rates while Corsetti & Pesenti (2001) explore the international

transmission mechanism and the welfare properties of different types of money supply

and government spending shocks. Given the assumption of diverging interest-rate rules,

we will focus on the dynamic interrelations of two large open economies expressed by

the international transmission mechanism of various macroeconomic shocks.

A major part of the literature on two-country DSGE models such as Clarida et

al. (2002), Pappa (2004), Benigno & Benigno (2006), or Engel (2009) however,

cover the issue of optimal monetary policy in its various facets. Given the assump-

tion of producer currency pricing, Clarida et al. (2002) find that there are welfare

gains from monetary policy cooperation with respect to non-cooperation unless utility

of consumption is logarithmic and that the policy problem under non-cooperation is

isomorphic to the case of a closed economy. Assuming local currency pricing and co-

operation, Engel (2009) finds that optimal monetary policy should not only target

inflation and the output gap, but also currency misalignment.

In addition to cooperation and non-cooperation, Pappa (2004) investigates the wel-

fare properties of the intermediate case of a monetary union. Benigno & Benigno

(2006) show that it is possible to design specific targeting rules for non-cooperating

central banks, which have the property to assign the incentive for independent cen-

tral banks to replicate the cooperative allocation such that possible welfare losses from

non-cooperation can be avoided.

There are also numerous articles dealing with optimal monetary policy within a

small-open-economy DSGE setting like Clarida et al. (2001) or Gaĺı & Monacelli

(2005). Clarida et al. (2001) show that the log-linear representation of a small open

economy is isomorphic to a closed economy since all structural equations of a small

open economy are identical to their closed-economy counterparts, except that they are

related to the terms of trade. Gaĺı & Monacelli (2005) explore the size of welfare

losses of suboptimal monetary policies compared to the benchmark case of optimal

monetary policy as implied by the model structure.

The main results of a calibrated version of the model under scrutiny, for which a

determinate rational expectations equilibriums exists, are summarized in the following.

Simulated aggregate productivity shocks have a negative impact on EU and US

output, a result already described for the closed economy by Gaĺı (2002). Simulated

cost-push as well as contractionary monetary policy shocks also have a negative impact

on EU and US output.

In contrast to Corsetti & Pesenti (2001), expansionary monetary policy shocks
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always have a prosper thyself and beggar thy neighbor effect since they influence the

terms of trade for the benefit of EU (US) resident households by decreasing them

below (raising them above) their zero-inflation steady-state value. In addition, this

effect would induce a rise of both domestic and foreign output above their flexible-price

values.

If the ECB implemented the interest-rate rule proposed in the present article, it

would encounter lower fluctuations in EU producer-price-index inflation compared to an

interest-rate rule as proposed for the Fed. This is consistent with the ECB’s paramount

objective of price stability. However, this advantage only holds at the expense of rel-

atively high fluctuations in the EU output gap; a trade-off commonly observed in the

Monetary Policy literature.

The remainder of this chapter is structured as follows: Section 2.2 outlines the

discrete-time two-country DSGE model, Section 2.3 presents the equilibrium condi-

tions on all markets under flexible prices, Section 2.4 introduces the New Keynesian

framework, and Section 2.5 derives a locally unique rational expectations equilibrium

for a calibrated version of the model. The analysis is completed by an impulse-response

analysis in Section 2.6. Finally, Section 2.7 concludes. Detailed derivations of the model

equations are given in Appendix 2.8.

2.2 A New Open Economy Macroeconomic model

The subsequent model is based on the Obstfeld & Rogoff (2001) two-country

DSGE framework, which extends the basic Obstfeld & Rogoff (1995) model by

introducing uncertainty.

2.2.1 Preferences, consumption and price indices

Suppose world population is constant over time and consists of a continuum of unit mass

of infinitely lived atomistic households characterized by identical preferences. Assume

further perfect information and rational expectations on the part of all agents. There

are two countries, where domestic households live on the segment [0, n] of the unit

interval while foreign households live on the remaining segment (n, 1]. Even though we

will take up the idea of the home country representing the EU and the foreign country

representing the US again in Section 2.4, we shall abstract from this thought for the

moment since the present framework can possibly be applied to other pairs of countries,

too (see Chapter 4).
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The discounted stream of expected period utilities of the representative domestic

household reads as follows:2

Ut = Et

{ ∞∑
s=t

βs−t

[
C1−ρ

s

1− ρ
+

χ

1− ε

(
Ms

Ps

)1−ε

− γ

1− ξ
L1−ξ
s

]}
. (2.1)

The above utility function is a constant elasticity of substitution (CES) composite

separable in its arguments real consumption C, real money balances M/P (where P

denotes the domestic consumer price index (CPI)), and leisure −L such that the partial

derivatives of the utility function with respect to one variable are independent of all

other variables. β denotes an intertemporal discount factor (0 < β < 1). Moreover, the

following shall hold for the various parameters: χ, γ > 0, 0 < ρ, ε < 1, and ξ < 0. ρ

is the coefficient of relative risk aversion in consumption and the modulus of ξ denotes

the inverse of the elasticity of labor supply.3

Since (2.1) is a function in real money balances, the model is a variant of the

Sidrauski (1967) and Brock (1974) money-in-the-utility-function (MIU) models, in

which the inclusion of real money balances in the utility function is justified by assuming

that the use of money facilitates transactions. This modeling shortcut guarantees the

usage of money even though holding money per se does not yield a positive real return.4

2Note that a possible superscript i to distinguish individual variables is suppressed throughput the
analysis for the sake of better legibility.

3Therefore, we obtain the subsequent first and second partial derivatives of the utility function (2.1)
with respect to the single variables:

∂U

∂C
= C−ρ > 0,

∂2U

∂C2
= (−ρ)C−ρ−1 < 0,

∂U

∂(MP )
= χ

(
M

P

)−ε

> 0,
∂2U

∂(MP )2
= (−ε)χ

(
M

P

)−ε−1

< 0,

∂U

∂(−L)
= γL−ξ > 0,

∂2U

∂(−L)2
= ξγL−ξ−1 < 0.

1 minus each of the parameters represents the elasticity of the partial utility function in one of the
three arguments, denoted by the respective subscript, with respect to this very argument:

εUC ,C :=
∂U

∂C

C

UC
= C−ρ C

C1−ρ

1−ρ

= 1− ρ,

εUM
P

,MP
:=

∂U

∂(MP )

M
P

UM
P

= χ

(
M

P

)−ε M
P

χ
1−ε

(
M
P

)1−ε = 1− ε,

εU(−L),(−L) :=
∂U

∂(−L)

(−L)

U(−L)
= γL−ξ L

γ
1−ξL

1−ξ
= 1− ξ.

4Note, however, that some New Open Economy Macroeconomic models abstract from explicitly
modeling liquidity services provided by the use of money (see, e.g., Clarida et al. 2002, p. 882).
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The utility function of the representative foreign household is the same as (2.1),

except that C∗ may differ from C, as well as M∗ from M , P ∗ from P , χ∗ from χ, γ∗

from γ, and L∗ from L.5

Moreover, the total domestic consumption index C from above is defined as a

population-weighted per-capita Cobb-Douglas composite of domestic and foreign com-

modity bundles, which implicitly assumes that all consumption goods are tradable and

that there are no trading costs:6

Ct :=
Cn

t,HC
1−n
t,F

nn(1− n)1−n
. (2.2)

The commodity bundles CH and CF are CES composites of differentiated final goods

produced at home (CH) or abroad (CF ) as in Dixit & Stiglitz (1977):7

Ct,H :=

[(
1

n

) 1
θ
∫ n

0

Ct(z)
θ−1
θ dz

] θ
θ−1

, (2.3)

Ct,F :=

[(
1

1− n

) 1
θ
∫ 1

n

Ct(z)
θ−1
θ dz

] θ
θ−1

. (2.4)

The preference for differentiated goods expresses the households’ love of variety. As

one can see from (2.2), the elasticity of substitution between domestic and foreign

commodity bundles σCH ,CF
equals 1 (Cobb-Douglas specification). From (2.3) and (2.4)

we see that the elasticity of substitution across two individual goods z, z′ produced

within a country σC(z),C(z′) equals θ (CES specification, θ > 1 for an equilibrium to

exist).8

Note further that in the present analysis domestic households are assumed to hold and derive utility
from holding domestic money only, whereas foreign households are assumed to hold and derive utility
from using foreign money only.

5As one can see here, real and nominal foreign variables are denoted by a superscript asterisk. In
addition, nominal foreign variables are denominated in foreign currency. This holds except for interna-
tionally traded bonds, where foreign bond holdings indexed by a superscript asterisk are denominated
in domestic currency.

6As a consequence, there is no source for the Harrod-Balassa-Samuelson effect as described in
Obstfeld & Rogoff (1996, pp. 210-216). Furthermore, the total domestic consumption index (2.2)
is population-weighted for the CPI (2.5) below to have the usual form rather than a form such as, e.g.,
in Clarida et al. (2002, p. 882).

7Alternatively, we could treat imported goods as production factors rather than consumption goods
as in McCallum & Nelson (2001), which we will not consider in our analysis.

8

|σCH ,CF | :=

∣∣∣∣∣∣
d
(

CH

CF

)

d
(
dCH

dCF

)
dCH

dCF

CH

CF

∣∣∣∣∣∣
= 1,
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The domestic CPI is again a Cobb-Douglas composite of domestic and foreign pro-

ducer price indices (PPIs):

Pt = P n
t,HP

1−n
t,F , (2.5)

where these subindices are CES composites of domestic and foreign final goods prices:

Pt,H =

[
1

n

∫ n

0

Pt(z)
1−θdz

] 1
1−θ

, (2.6)

Pt,F =

[
1

1− n

∫ 1

n

Pt(z)
1−θdz

] 1
1−θ

. (2.7)

For a derivation of the domestic CPI (2.5), the domestic PPI (2.6) as well as the

domestic demand functions for individual and composite domestic goods, see Appendix

2.8. The foreign PPI in domestic currency (2.7), domestic demand curves for individual

and composite foreign goods as well as all foreign indices can be derived analogously.

Assume that the law of one price holds for consumers across all individual goods at

all times:

Pt(z) = StP
∗
t (z) ∀z ∈ [0, 1], (2.8)

where S denotes the endogenously determined nominal exchange rate in price quotation

(domestic currency units in terms of foreign currency units).

Thus, as domestic and foreign households are characterized by identical preferences,

the law of one price implies that absolute purchasing power parity (PPP) always holds

for the CPI (2.5), even though relative PPP (stating that changes in domestic and

foreign price levels should be equal in the long run) would be the more realistic statement

(see Obstfeld & Rogoff 1996, pp. 200-202):

Pt = StP
∗
t . (2.9)

The demand functions of the representative domestic household for individual domestic

|σC(z),C(z′)| :=

∣∣∣∣∣∣∣

d
[

C(z)
C(z′)

]

d
[
dC(z)

dC(z′)

]
dC(z)

dC(z′)
C(z)
C(z′)

∣∣∣∣∣∣∣
= θ.
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C(h) and foreign goods C(f) read as follows:

Ct(h) =
1

n

[
Pt(h)

Pt,H

]−θ

Ct,H , (2.10)

Ct(f) =
1

1− n

[
Pt(f)

Pt,F

]−θ

Ct,F , (2.11)

where z = h ∈ [0, n] denotes a typical differentiated good z produced at home and

z′ = f ∈ (n, 1] another typical differentiated good z′ produced abroad.

As we can see from equations (2.10) and (2.11), demand for individual goods is

decreasing in its own price relative to the respective domestic or foreign PPI.9 Note

that θ does not only denote the elasticity of substitution between any two individual

goods, but also the price elasticity of demand for any individual good faced by each

producer.10

Equation (2.2) implies that the demand curves for the composite domestic and

foreign goods, CH and CF , are given by:

Ct,H = n

(
Pt,H

Pt

)−1

Ct, (2.12)

Ct,F = (1− n)

(
Pt,F

Pt

)−1

Ct. (2.13)

Now we make use of the fact that world consumption Cw equals the population weighted

sum of total domestic and total foreign consumption, where Cw then denotes per capita

as well as total world consumption since world population is normalized to 1:

Cw
t := nCt + (1− n)C∗

t . (2.14)

Combining (2.14) with equations (2.8), (2.10), (2.11), (2.12), and (2.13) we finally

obtain the global demand functions for individual domestic and foreign goods in terms

9

∂C(h)

∂P (h)
= (−θ)

1

n

[
P (h)

PH

]−θ−1
CH

PH
< 0.

10

εC(h),P (h) :=
∂C(h)

∂P (h)

P (h)

C(h)
= (−θ)

1

n

[
P (h)

PH

]−θ−1
CH

PH
P (h)n

[
P (h)

PH

]θ
C−1

H = −θ.
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of (total) world consumption:11

Cw
t (h) =

[
Pt(h)

Pt,H

]−θ (
Pt,H

Pt

)−1

Cw
t , (2.15)

Cw
t (f) =

[
Pt(f)

Pt,F

]−θ (
Pt,F

Pt

)−1

Cw
t . (2.16)

2.2.2 Households

The representative domestic household maximizes her objective functional (2.1) subject

to the following sequence of intertemporal budget constraints (in nominal terms) with

respect to her decision variables Ct,Mt, Bt, and Lt:

WtLt + (1 + it−1)Bt−1 +Mt−1 + Γt(h) ≥ PtCt +Mt +Bt + Ptτt. (2.17)

As an example for a typical flow budget constraint, inequality (2.17) states that the

household’s period t expenditure (right-hand side) must not exceed period t income

(left-hand side).12 W denotes the endogenously determined nominal wage being the

remuneration for supplying labor, which is identical across households (L = L(h)), on

the perfectly competitive labor market. it−1 denotes the (short-run) nominal interest

rate between period t − 1 and period t on riskless one-period non-government bonds

Bt−1 carried over from period t−1. These nominal bonds are denominated in domestic

currency and are supposed to be internationally tradable.13

Money holdings Mt−1 can also be transferred from t− 1 to t, but yield no nominal

return. Consumption goods, however, are perishable and cannot be stored. Γt(h)

are instantaneous profits of the representative household acting as a producer of an

individual, differentiated domestic good h, which will be explained in more detail below.

Finally, let τ denote non-distortionary real lump-sum taxes.

11

Cw
t (h) = nCt(h)+(1−n)C∗

t (h) =

[
Pt(h)

Pt,H

]−θ (
Pt,H

Pt

)−1

[nCt+(1−n)C∗
t ] =

[
Pt(h)

Pt,H

]−θ (
Pt,H

Pt

)−1

Cw
t .

12

PtCt = Pt,HCt,H + Pt,FCt,F =

∫ n

0

Pt(h)Ct(h)dh+

∫ 1

n

Pt(f)Ct(f)df.

13Note that one could generalize this formulation by assuming that domestic and foreign households
had access to a complete portfolio of state-contingent Arrow-Debreu securities, both domestically and
internationally tradable, as in Clarida et al. (2002) in order to guarantee for the completeness of
(international) financial markets.
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Again, for the representative foreign household the intertemporal budget constraint

is the same as (2.17). Since internationally traded bonds are supposed to be denomi-

nated in domestic currency, foreign bond holdings in domestic currency B∗, however,

first have to be divided by the nominal exchange rate before they enter the foreign

intertemporal budget constraint: B∗/S. Moreover, W ∗ may differ from W , i∗ from i,

Γ∗(f) from Γ(h), as well as τ ∗ from τ . Hence, the sequence of foreign intertemporal

budget constraints (in nominal terms) reads as follows:

W ∗
t L

∗
t + (1 + i∗t−1)

B∗
t−1

St−1

+M∗
t−1 + Γ∗

t (f) ≥ P ∗
t C

∗
t +M∗

t +
B∗

t

St

+ P ∗
t τ

∗
t .

Similar to Corsetti & Pesenti (2001, p. 427), this equation implies that the realized

nominal return on internationally traded bonds at the beginning of period t in foreign

currency is given by:

(1 + i∗t−1) =
St−1

St

(1 + it−1). (2.18)

It is useful to introduce the domestic real interest rate r, which can be obtained via the

subsequent Fisher relation:

(1 + rt−1) ≡ Pt−1

Pt

(1 + it−1).

Note that an analogous equation to the preceding one also holds for the foreign real

interest rate r∗. If we substitute for 1+ i∗t−1 by (2.18) in the foreign analog to the above

equation, we will obtain that real interest rates are equal across countries: r = r∗.14

The maximization of the utility function (2.1) subject to the budget constraint (2.17)

then holding with equality is undertaken by maximizing the corresponding Lagrangian

and yields the subsequent first order conditions for a utility maximum:

C−ρ
t

Pt

= β(1 + it)Et

[
C−ρ

t+1

Pt+1

]
. (2.19)

This is the intertemporal Euler equation for real consumption stating that the marginal

rate of substitution between real consumption in t and in t+ 1 equals their discounted

relative prices.

Moreover, we obtain that in a utility maximum the marginal rate of substitution

between real money balances and real consumption equals the opportunity costs of

14This is the reason why the home and the foreign country can be treated as symmetric countries,
even though there is only one, domestic-currency denominated bond in this world.
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holding money:

χ

(
Mt

Pt

)−ε

C−ρ
t

=
it

1 + it
. (2.20)

Note that equation (2.20) can be rearranged in order to get the following money demand

equation:

(
Mt

Pt

)ε

= χ
1 + it
it

Cρ
t ,

where we can see that the higher total real consumption, the higher is demand for real

money balances.

Finally, we also get the subsequent labor supply equation:

γ
L−ξ

t

C−ρ
t

=
Wt

Pt

, (2.21)

which states that the marginal rate of substitution between labor and real consumption

equals their relative prices, the real consumer wage. For a derivation of conditions

(2.19), (2.20), and (2.21) see Appendix 2.8.

Note that analogous equations to (2.19), (2.20), and (2.21) also hold abroad.

2.2.3 Firms

Let us assume further that agents at home and abroad do not only act as utility max-

imizing households, but also as profit maximizing producers of final goods, which are

producible without the input of intermediate goods. In contrast to their role as house-

holds whose preferences are assumed to be identical, all commodities are differentiated

in order to satisfy the households’ love of variety.

Hence, there is the possibility to raise individual goods’ prices P (h), P (f) above

marginal cost without the risk of dropping out of the market. In other words, non-zero

profits are feasible in this model of monopolistic competition.

Let individual domestic output be produced according to the following linear pro-

duction function:

Yt(h) = AtLt(h). (2.22)

This is a production function in labor only. For the sake of simplicity, physical capital
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is omitted as additional input factor throughout the analysis. This step can be justified

by the short- to medium-run perspective of the model. A is a random variable denoting

an exogenous aggregate productivity shock, which can be interpreted as a transitory

process innovation.

Households need not be self-employed, but it is assumed that domestic firms can

employ domestic labor only as well as foreign firms shall be allowed to employ foreign

labor only. In other words, there is no migration in this world.

Individual foreign output is produced using the same technology (2.22) as at home.

Nonetheless, Y ∗(f) may differ from Y (h), A∗ from A, as well as L∗(f) from L(h).

Producers’ instantaneous profits Γt(h) are given by:

Γt(h) = Pt(h)Yt(h)−WtLt(h). (2.23)

Relative to the producer’s own price, equation (2.23) rearranges to:

Γt(h)

Pt(h)
= Yt(h)− Wt

Pt(h)
Lt(h) = Yt(h)− Wt

Pt(h)

Yt(h)

At

= Yt(h)− κtYt(h), (2.24)

where we have made use of the production function (2.22). In (2.24) κ := W/[P (h)A]

is defined as individual real marginal production cost.

For now, assume all goods prices to be flexible. Then each domestic producer charges

the same price denoted by the domestic PPI (PH = P (h)). Thus, instantaneous profits

rearrange to:

Γt(h) = Pt,HYt(h)−WtLt(h). (2.25)

Maximizing equation (2.25) with respect to Y (h) and using the fact that in case of

goods market clearing the output of a single producer equals global demand for the

differentiated good (Y (h) = Cw(h)), we get the standard first order condition for a

profit maximum in a model of monopolistic competition:

∂Γt(h)

∂Yt(h)
= Pt,H + Yt(h)

∂Pt,H

∂Yt(h)
−Wt

∂Lt(h)

∂Yt(h)
= Pt,H

(
1 +

1

εC(h),P (h)

)
−Wt

1

At

= Pt,H

(
1 +

1

−θ

)
−Wt

1

At

= 0

⇒ Wt

Pt,HAt

=
θ − 1

θ
:= κflex

t . (2.26)

Note that an analogous equation to (2.26) also holds abroad and that κflex = (κ∗)flex =
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(θ − 1)/θ.

Equation (2.26) states that in a profit maximum associated with flexible prices, the

corresponding real marginal production cost defined as κflex equals (θ − 1)/θ.15

2.3 Market clearing under flexible prices

Before introducing nominal rigidities in Section 2.4, we will first consider the benchmark

case of market equilibria in a world with completely flexible prices.

2.3.1 World bond and goods markets

For the derivation of the subsequent equations and their relation to one another see

Appendix 2.8.

Let us begin with the equilibrium conditions on the world markets for domestic and

foreign goods denoted in domestic currency:

Pt,HYt = PtC
w
t , (2.27)

Pt,FY
∗
t = PtC

w
t , (2.28)

where the left-hand side of equation (2.27) denotes global supply of and the right-hand

side global demand for domestic goods.

Note that an analogous interpretation for (2.28) also holds abroad.

Equations (2.27) and (2.28) immediately collapse to the definition of the terms of

trade (TOT):

Tt :=
Pt,F

Pt,H

=
StP

∗
t,F

Pt,H

=
Yt

Y ∗
t

, (2.29)

which is the ratio of imported goods’ and exported goods’ prices from the home coun-

try’s perspective.

Using the domestic intertemporal budget constraint (2.17) plus further manipula-

tions eventually yield the domestic and foreign balance of payment identities:

Pt,HYt − PtCt + it−1Bt−1 ≡ Bt −Bt−1, (2.30)

Pt,FY
∗
t − PtC

∗
t + it−1B

∗
t−1 ≡ B∗

t −B∗
t−1 (2.31)

15Note that if we solved equation (2.26) for PH , we would obtain the domestic PPI as a mark-up
on marginal unit labor costs W/A: PH = [θ/(θ − 1)]W/A with θ/(θ − 1) = 1/κflex denoting the
flexible-price mark-up factor.
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with the left-hand side of equation (2.30) representing the home country’s current ac-

count and the right-hand side its capital account.

Note that an analogous interpretation for (2.31) also holds abroad.

Internationally tradable bonds are supposed to be in zero net world supply:

nBt + (1− n)B∗
t = 0. (2.32)

Assuming that international bond holdings have initially been zero B0 = B∗
0 = 0

together with (2.14), (2.30), (2.31), and (2.32) implies that Bt = B∗
t = 0 at all times

according to Corsetti & Pesenti (2001, pp. 430-432) and Obstfeld & Rogoff

(2001, p. 8).16 Then equations (2.30) and (2.31) simplify to the following:

Ct =
Pt,HYt

Pt

, (2.33)

C∗
t =

Pt,FY
∗
t

Pt

. (2.34)

Using the definition of the TOT (2.29) the preceding equations can be rewritten as:

Ct = T n−1
t Yt, (2.35)

C∗
t = T n

t Y
∗
t . (2.36)

These are the conditions for domestic and foreign goods market clearing, which im-

ply that households across countries always consume exactly their real incomes (see

Obstfeld & Rogoff 2001, p. 8).

Moreover, B0 = B∗
0 = 0 together with (2.14), (2.30), (2.31), and (2.32) also implies

that Ct = C∗
t = Cw

t at all times such that

Ct = C∗
t = Cw

t = nCt + (1− n)C∗
t = nT n−1

t Yt + (1− n)T n
t Y

∗
t = Y n

t (Y
∗
t )

1−n,

while making use of (2.35) and (2.36).

As a consequence, consumption shares across countries are not only time-constant

but even equal (see Obstfeld & Rogoff 2001, p. 8). Since current and capital

accounts between the two countries are in balance at all times and in all possible states

of the world, the mechanism of adjustment to shocks in the world economy will only be

16More precisely, Cobb-Douglas preferences for the domestic and foreign commodity bundles as in
(2.2) together with producer-currency pricing and the absence of preference shocks imply under the
assumption of completely flexible prices that any shock that reduces the supply of output of a country
will increase its price in equal proportion. Thus, the value of its real income remains unchanged and
the allocation under complete markets can be achieved without trade in bonds.
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represented by movements in the TOT, but not by changes in the countries’ net asset

positions.

2.3.2 National money markets and world currency market

The government is assumed to set its expenditures equal to its revenues at all times

such that its budget is always in balance and no seignorage can occur (see Obstfeld

& Rogoff 1996, p. 523):17

Mt −Mt−1 + Ptτt = 0. (2.37)

Note that an analogous equation to (2.37) also holds abroad.

Equation (2.37) describes domestic money supply. Combining (2.37) with (2.20)

and using the condition for domestic goods market clearing (2.35), one obtains two

equations in M , which can be set equal and eventually solved for P :

Pt =
Mt−1

χ
1
ε

(
1+it
it

) 1
ε
(T n

t Y
∗
t )

ρ
ε + τt

.

Making use of (2.9), an analogous equation in P can be computed abroad such that

both equations can be set equal and finally solved for S:

St =

Mt−1

[
(χ∗)

1
ε

(
1+i∗t
i∗t

) 1
ε
(T n

t Y
∗
t )

ρ
ε + τ ∗t

]

M∗
t−1

[
χ

1
ε

(
1+it
it

) 1
ε
(T n−1

t Yt)
ρ
ε + τt

] .

As we can see from the above formula, the current equilibrium nominal exchange rate

St positively depends on past domestic nominal money balances Mt−1, current domestic

opportunity costs of holding money it/(1 + it), current foreign output Y ∗
t , and current

foreign real lump-sum taxes τ ∗t . The dependence on the remaining variables is of oppo-

site sign, except for the current TOT Tt, whose influence is ambiguous. An increase of

S illustrates a depreciation of the domestic currency, whereas a decrease characterizes

an appreciation.

17One could extend the model by introducing government spending (shocks) (see Obstfeld &
Rogoff 2001, pp. 37-38), which we will not consider in our analysis.
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2.3.3 National labor markets

Notice from equations (2.21) and (2.26) that the real wage differs between consumers

and producers because they use different price indices. The ratio between real producer

and real consumer wage is known as one type of wedge in Labor Economics (see, e.g.,

Landmann & Jerger 1999, pp. 136-138) and equals PH/P
n
HP

1−n
F = (PH/PF )

1−n =

T n−1 in the present set-up.

Nonetheless, by combining (2.21), (2.26), and (2.35) with the CPI (2.5) we obtain

two equations in W/P = (W/PH)T
n−1 which can be solved for L:

Lt = T
(n−1)(ρ−1)

ξ

t

(
At

γ

)− 1
ξ
(
θ − 1

θ

)− 1
ξ

Y
ρ
ξ

t . (2.38)

Equation (2.38) states that in an equilibrium on the perfectly competitive labor market,

domestic employment positively depends on the aggregate productivity shock A and

flexible-price real marginal production cost (θ − 1)/θ, but negatively on the TOT T

and domestic output Y .

Note that an analogous equation to (2.38) also holds abroad.

Combining equation (2.38) with the production function (2.22) and solving for Y ,

we finally obtain the domestic flexible-price equilibrium output Y flex:

Y flex
t = T

(n−1)(ρ−1)
ξ−ρ

t A
ξ−1
ξ−ρ

t

(
θ

θ − 1

) 1
ξ−ρ

γ
1

ξ−ρ . (2.39)

The domestic flexible-price equilibrium output positively depends on the aggregate

productivity shock A, yet negatively on the TOT T and the flexible-price mark-up

factor θ/(θ − 1).

Note that an analogous equation to (2.39) also holds abroad.

2.4 A New Keynesian framework

After having drawn the DSGE set-up and derived optimality conditions for both house-

holds and firms (Section 2.2) as well as market clearing conditions under flexible prices

(Section 2.3), let us now turn to the New Keynesian framework. In order to establish

this type of framework, we have to introduce some form of nominal rigidity in addition

to the assumption of monopolistic competition. In the present case, we will concen-

trate on sticky prices and forego sticky nominal wages as done, e.g., by Corsetti &

Pesenti (2001).
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Log-linearizing the alternative market clearing and optimality conditions in the

neighborhood of the non-stochastic zero-inflation steady state will lead to a canoni-

cal representation of the equilibrium of the model consisting of a dynamic IS curve, a

New Keynesian Phillips curve (NKPC), and some form of monetary policy rule for each

country, as well as an equation for the TOT.

As there are two countries, altogether we will obtain a system of seven log-linear

equations. This form makes the model analytically tractable, especially for empirical

applications.18

Finally, we assume the monetary policy rules introduced below to be different across

countries. This is one of the crucial assumptions of the present analysis.

2.4.1 Dynamic IS curves

It is straightforward to derive the dynamic IS curves for both countries by log-linearizing

the domestic intertemporal Euler equation for real consumption (2.19) and its foreign

analog around the non-stochastic zero-inflation steady state as shown in Appendix 2.8.

Accordingly, we obtain:

ŷt = Et[ŷt+1] +
1

ρ
{Et[πt+1]− ît} − (1− n)Et[∆tt+1], (2.40)

ŷ∗t = Et[ŷ
∗
t+1] +

1

ρ
{Et[π

∗
t+1]− î∗t}+ nEt[∆tt+1]. (2.41)

Note that except for all types of interest rates, lower-case Latin letters denote natural

logarithms of the corresponding variables. Usually, the hats above these log variables

signify percentage deviations from their zero-inflation steady-state values. However,

for all types of interest rates, these hats denote deviations measured in percentage

points. The zero-inflation steady-state values themselves are denoted by upper bars.

Note further that ī = ī∗ = r̄ = r̄∗ = (1− β)/β holds for the zero-inflation steady-state

nominal and real interest rates, both at home and abroad.19

These two dynamic IS curves represent aggregate demand in both countries, where

(2.40) can be interpreted as follows: current domestic demand is higher than its zero-

inflation steady-state value if the expected domestic output deviation Et[ŷt+1] is positive

(interpretable as an expected peak in the domestic business cycle). There is also a clear

18In contrast to Corsetti & Pesenti (2001) who present a closed-form solution of their (deter-
ministic) model, the log-linear approximation used here is considered to be advantageous since the link
to empirical applications is immediate.

19This can easily be obtained by solving the zero-inflation steady-state version of the domestic
intertemporal Euler equation for real consumption (2.19) and its foreign analog for ī and ī∗, respectively
(C−ρ

t = Et[C
−ρ
t+1] = C̄−ρ, Pt = Et[Pt+1] = P̄ ).
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positive relation of current demand to expected CPI inflation Et[πt+1] := Et[pt+1]− pt

(households consume more today if prices are expected to augment in the future) and

a negative relation to current deviations from the zero-inflation steady-state nominal

interest rate ît (investing in nominal bonds is relatively attractive compared to buying

consumption goods).

Moreover, there are also spill-over effects from abroad, which affect current domestic

demand through expected movements in the TOT Et[∆tt+1]: current domestic demand

negatively depends on an expected increase in the TOT since TOT expected to augment

mean that imported goods become more expensive relative to domestic goods.20 (1 −
n) denotes the degree of openness of the home country to the foreign country (see

Gaĺı 2008, pp. 155-156). Since the degree of openness coincides with the size of the

foreign country due the definition of the domestic CPI (2.2), there is no home bias in

consumption, different to what is discussed in Pappa (2004, pp. 770-771).

Note that an analogous interpretation for (2.41) also holds abroad.

2.4.2 New Keynesian Phillips curves

The NKPCs for both countries can be derived by log-linearizing the price-setting equa-

tions of domestic and foreign firms around the non-stochastic zero-inflation steady-state

as shown in Appendix 2.8. In order to obtain the short-run trade-off between PPI in-

flation and the output gap represented by a Phillips curve it is necessary to assure price

stickiness in addition to monopolistic competition.

This will be done by introducing Calvo (1983) contracts, which means that each

producer is only allowed to reset her price with probability (1− δ) in any given period,

independent of the time since the last adjustment. Therefore, a measure of (1 − δ) of

firms reset theirs prices each period, while a measure of δ of firms keep their prices

constant and simply adjust their individual output in order to meet demand. 1/(1− δ)

then captures the average duration of a price (see Gaĺı 2008, p. 43):

πt,H = βEt[πt+1,H ] +
(1− δ)(1− δβ)

δ
κ̂t, (2.42)

π∗
t,F = βEt[π

∗
t+1,F ] +

(1− δ∗)(1− δ∗β)
δ∗

κ̂∗
t . (2.43)

In equation (2.42), πt,H := pt,H − pt−1,H is defined as current domestic PPI inflation,

which typically differs from domestic CPI inflation in an open economy. The NKPC

20The TOT are expected to increase over time if either the domestic currency is expected to depre-
ciate or if expected foreign PPI inflation will be higher than expected domestic PPI inflation, where
these rates of inflation will be discussed below in more detail.
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(2.42) states that current domestic PPI inflation πt,H is an increasing function of both

expected domestic PPI inflation Et[πt+1,H ] and the deviation of current domestic real

marginal production cost from its zero-inflation steady-state value κ̂t := κt − κflex
t .

Note that an analogous interpretation for (2.43) also holds abroad. However, δ∗ is

assumed to differ from δ and κ∗ also from κ, although κflex = (κ∗)flex = (θ − 1)/θ.

Furthermore, let us assume that setting a new price at home and setting a new price

abroad are stochastically independent events. As domestic and foreign firms both set

theirs prices in the currency of the countries where they are located, the present model

features producer currency pricing, which is one of the possible occurrences of pricing

to market.21

Nonetheless, we want to express equations (2.40), (2.41), (2.42), and (2.43) in terms

of the output gap, which shall be defined as the difference between actual and flexible-

price output deviations: xt := ŷt − ŷflext and x∗
t := ŷ∗t − (ŷ∗t )

flex. In order to rewrite

equations (2.42) and (2.43) in terms of x and x∗, respectively, we have to take a closer

look at the ratio of the sticky-price real marginal production cost κt and its flexible-price

counterpart κflex
t as given by (2.25):

κt

κflex
t

=

Wt

Pt,HAt

θ−1
θ

=
θWtT

1−n
t

(θ − 1)PtAt

. (2.44)

Combining equation (2.44) with the labor supply curve (2.21), the production function

(2.22), and the condition for domestic goods market clearing (2.35), we obtain:

κt

κflex
t

=
θγ

(
Yt

At

)−ξ

T 1−n
t

(θ − 1)(T n−1
t Yt)−ρAt

=
θ

θ − 1
γAξ−1

t T
(n−1)(ρ−1)
t Y ρ−ξ

t =

(
Yt

Y flex
t

)ρ−ξ

, (2.45)

where Y flex
t denotes the domestic flexible-price equilibrium output as given by equation

(2.39). Log-linearizing this expression around the zero-inflation steady-state yields:

κ̂t = (ρ− ξ)(ŷt − ŷflext ) = (ρ− ξ)xt. (2.46)

Hence, by using (2.46) equations (2.40), (2.41), (2.42), and (2.43) rearrange to:

xt = Et[xt+1] +
1

ρ
{Et[πt+1]− ît} − (1− n)Et[∆tt+1] + Et[ŷ

flex
t+1 ]− ŷflext , (2.47)

21This specification has already been adopted in the theoretical literature (see, e.g., Clarida et al.
2002, p. 885) and can also be justified by empirical evidence for most of the G7 countries (see Leith
& Malley 2007, p. 420).
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x∗t = Et[x
∗
t+1] +

1

ρ
{Et[π

∗
t+1]− î∗t }+ nEt[∆tt+1] + Et[(ŷ

∗
t+1)

flex]− (ŷ∗t )
flex, (2.48)

πt,H = βEt[πt+1,H ] + µxt + ut, (2.49)

π∗
t,F = βEt[π

∗
t+1,F ] + µ∗x∗t + u∗t (2.50)

with µ := [(1 − δ)(1 − δβ)(ρ − ξ)]/δ (µ > 0) and µ∗ := [(1 − δ∗)(1 − δ∗β)(ρ − ξ)]/δ∗

(µ∗ > 0) representing the slope coefficients of the NKPCs with respect to the domestic

(foreign) output gap. In addition, ut denotes an exogenously given, stationary AR(1)

process of the form ut = ζuut−1 + ηu,t (0 < ζu < 1) with the exogenous error term ηu

assumed to be i.i.d. ∼ N(0, σ2
ηu). This AR(1) process can be interpreted as a transitory

cost-push shock reflecting determinants of real marginal production cost which do not

move proportionally with the output gap (see Clarida et al. 2001, pp. 250-251).

The two NKPCs represent aggregate supply in both countries and are isomorphic

to their closed-economy counterparts, where (2.49) can be interpreted as follows: the

positive short-run trade-off between current domestic PPI inflation πt,H and the current

domestic output gap xt can be seen.22 However, this is not really a trade-off to be

exploited since πt,H is also positively related to (discounted) expected domestic PPI

inflation βEt[πt+1,H ].
23

Note that an analogous interpretation for (2.50) also holds abroad. However, u∗

is uncorrelated with u such that domestic and foreign cost-push shocks are country-

specific.

It is useful that the following holds for Et[ŷ
flex
t+1 ]− ŷflext in case one makes use of the

log-linear version of the current domestic flexible-price equilibrium output according to

(2.39) and its expected counterpart:

Et[ŷ
flex
t+1 ]− ŷflext = Et[y

flex
t+1 ]− yflext

=
(n− 1)(ρ− 1)

ξ − ρ
Et[tt+1] +

ξ − 1

ξ − ρ
Et[at+1] +

1

ξ − ρ
ln

(
θ

θ − 1

)
+

1

ξ − ρ
ln γ

− (n− 1)(ρ− 1)

ξ − ρ
tt − ξ − 1

ξ − ρ
at − 1

ξ − ρ
ln

(
θ

θ − 1

)
− 1

ξ − ρ
ln γ

=
(n− 1)(ρ− 1)

ξ − ρ
Et[∆tt+1] +

ξ − 1

ξ − ρ
Et[∆at+1], (2.51)

where at is assumed to follow an exogenously given, stationary AR(1) process of the

22Note that NKPCs such as (2.49) and (2.50) in terms of the output gap sometimes are referred to
as aggregate supply (AS) curves (see Clarida et al. 2001, p. 250).

23If, for instance, some institution had the power to raise domestic output above its flexible-price
value (given the deviations from its zero-inflation steady-state value) by raising πt,H , not only πt,H but
also βEt[πt+1,H ] would have to rise for (2.49) to hold with equality. This means that if output were
kept on this artificially high level for an extended period of time, the respective expected inflation rates
would continue to rise at accelerating speed, which is described by the so-called acceleration theorem.
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form at = ζaat−1 + ηa,t (0 < ζa < 1) with the exogenous error term ηa assumed to be

i.i.d. ∼ N(0, σ2
ηa).

Note that an analogous equation to (2.51) also holds abroad. However, a∗ is un-

correlated with a such that domestic and foreign aggregate productivity shocks are

country-specific.

In consequence, the dynamic IS curves (2.47) and (2.48) rearrange to:

xt = Et[xt+1] +
1

ρ
{Et[πt+1]− ît}+ (n− 1)(ξ − 1)

ξ − ρ
Et[∆tt+1] +

ξ − 1

ξ − ρ
Et[∆at+1],(2.52)

x∗t = Et[x
∗
t+1] +

1

ρ
{Et[π

∗
t+1]− î∗t }+

n(ξ − 1)

ξ − ρ
Et[∆tt+1] +

ξ − 1

ξ − ρ
Et[∆a∗t+1]. (2.53)

Finally, we prefer to express these dynamic IS curves in terms of PPI rather than CPI

inflation, which can be achieved by using the subsequent log-linear representation of

the TOT (2.29): tt := st + p∗t,F − pt,H . Subtracting this expression from its expected

analog we get: Et[∆tt+1] = Et[∆st+1]+Et[π
∗
t+1,F ]−Et[πt+1,H ] = Et[πt+1,F ]−Et[πt+1,H ].

Combining this outcome with the log-linear versions of the domestic CPI (2.5) and its

foreign equivalent, we obtain the following relations between expected CPI and expected

PPI inflation at home and abroad:

Et[πt+1] ≡ Et[πt+1,H ]− (n− 1)Et[∆tt+1], (2.54)

Et[π
∗
t+1] ≡ Et[π

∗
t+1,F ]− nEt[∆tt+1]. (2.55)

Substituting for Et[πt+1] by (2.54) and for Et[π
∗
t+1] by (2.55), the dynamic IS curves

(2.52) and (2.53) change to the following:

xt = Et[xt+1] +
1

ρ
{Et[πt+1,H ]− ît}+ ϑEt[∆tt+1] +

ξ − 1

ξ − ρ
Et[∆at+1], (2.56)

x∗
t = Et[x

∗
t+1] +

1

ρ
{Et[π

∗
t+1,F ]− î∗t}+ ϑ∗Et[∆tt+1] +

ξ − 1

ξ − ρ
Et[∆a∗t+1], (2.57)

where ϑ := [(n − 1)(ξρ − ξ)]/[(ξ − ρ)ρ] (ϑ > 0) and ϑ∗ := [n(ξρ − ξ)]/[(ξ − ρ)ρ]

(ϑ∗ < 0) holds for the slope coefficients of the dynamic IS curves with respect to the

expected movements in the TOT. In consequence, we need an equation that expresses

these movements as a function of the remaining endogenous variables. Let us use

the log-linear version of equation (2.18), which reads ît−1 = ∆st + î∗t−1, in order to

substitute for ∆st in the log-linear representation of current movements in the TOT

∆tt = ∆st + π∗
t,F − πt,H . Hence, we obtain:

∆tt = ît−1 − î∗t−1 + π∗
t,F − πt,H . (2.58)
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2.4.3 Monetary policy rules

With the derivation of equations (2.49), (2.50), (2.56), (2.57), and (2.58) we have de-

rived a system of five log-linear expectational difference equations. However, with

x,x∗,πH ,π
∗
F ,∆t,̂i,̂i∗ we have seven endogenous variables, which gives us two more vari-

ables than equations. Therefore, we need two more equations representing domestic and

foreign monetary policy as Taylor (1993) type interest-rate rules in order to obtain a

determined system of equations.

Following Woodford (2003, pp. 90-101), these interest-rate rules comprise a feed-

back from (some of) the endogenous variables. In Woodford (2003), those interest-

rate rules are first incorporated into a Neo-Wicksellian cashless economy, but Wood-

ford (2003, pp. 101-106) also shows that rules of this form produce equivalent results

in case of monetary frictions, e.g., in case of a MIU model such as given by equation

(2.1). Even though the Woodford (2003) results have been derived for the closed

economy, they are supposed to hold for the open economy, too, which is due to the

isomorphism of the models.

The feedback is introduced to circumvent price level (and inflation) indeterminacy

as shown by Sargent & Wallace (1975), which is typically associated with purely

exogenous interest-rate targets (see Woodford 2003, p. 86). In case the latter type

of modeling is avoided, the monetary aggregate is not a superior policy instrument in

comparison to the short-run nominal interest rate. Moreover, it is assumed that the

central banks are committed to their rules rather than they implement new rules on

a period-by-period basis. This is done to overcome time inconsistency of monetary

policy.24

Hereinafter, the two monetary authorities will be called ECB at home and Fed

abroad. As a consequence, the home country will be denoted EU and the foreign

country US.

These two non-optimizing central banks are assumed to conduct their monetary

policies autonomously while taking as given the policy actions of the respective other

monetary authority. This assumption differs, for instance, from Clarida et al. (2002),

Pappa (2004), Benigno & Benigno (2006), or Engel (2009) who discuss cooperative

and non-cooperative equilibria of optimizing central banks among other possibilities.

A particular reason why we neglect cooperative solutions is the finding that there are

only quantitatively negligible welfare gains from cooperation between the ECB and the

Fed for empirically plausible parameter constellations (see Pappa 2004, pp. 770-774).

24For a debate on discretion versus commitment in monetary policy and possible welfare gains from
the latter see, e.g., Clarida et al. (1999, pp. 1670-1671) or Gaĺı (2008, chapter 5).
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Even though the central banks’ targeting rules fulfill a similar purpose in the EU

and the US, it can be justified to assume that they differ up to a certain degree. This

is due to the diverging statutes of the ECB and the Fed.

Therefore, the interest-rate rules differ to the extent that the Fed is supposed to

conduct its monetary policy by considering current US PPI inflation π∗
t,F and the current

US output gap x∗
t , while, for the sake of simplicity, the ECB imposes its monetary policy

by taking into account current EU PPI inflation πt,H only. This difference is due to

the fact that all conceivable policy goals of the ECB besides price stability can be

interpreted as secondary.

Hence, the two interest-rate rules read:

ît = απt,H + ωît−1 + vt (2.59)

⇔ it = απt,H + ωit−1 + (1− ω)̄i+ vt,

î∗t = α∗π∗
t,F + ι∗x∗

t + ω∗î∗t−1 + v∗t (2.60)

⇔ i∗t = α∗π∗
t,F + ι∗x∗

t + ω∗it−1 + (1− ω∗)̄i∗ + v∗t .

The ECB’s interest rate rule (2.59) can be interpreted as follows: α (α > 0) denotes

the sensitivity of the ECB to current domestic PPI inflation πt,H . Since past decisions

cannot be ignored under commitment (see Pappa 2004, p. 754), the rule incorporates

some degree of inertia of the monetary policy instrument i itself, which is measured by

the parameter ω (0 < ω < 1). The parameter 1 − ω, however, measures the degree of

adjustment to the zero-inflation steady-state value of the nominal interest rate ī.

Note that the feature of interest-rate inertia is rather an empirical finding than an

implication of the statutes of the central banks (see Woodford 2003, pp. 95-96).

Following Gaĺı & Monacelli (2005, p. 723), both rules (2.59) and (2.60) could also

be denoted PPI (or domestic) inflation-based Taylor rules (DITR) as opposed to CPI

inflation-based Taylor rules (CITR) or a credible peg for the nominal exchange rate.

These are the three suboptimal monetary policies compared to the optimal monetary

policy benchmark in the Gaĺı & Monacelli (2005) model. We will not take up these

other possibilities of monetary policy design here, but will employ a CITR later on in

Chapter 4.

In (2.59), vt denotes an exogenously given, stationary AR(1) process of the form

vt = ζvvt−1 + ηv,t (0 < ζv < 1) with the exogenous error term ηv assumed to be i.i.d.

∼ N(0, σ2
ηv). This AR(1) process can be interpreted as a transitory monetary policy

shock, where a positive realization of ηv denotes a contractionary shock (see Gaĺı 2008,

p. 51).
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Note that an analogous interpretation for (2.60) also holds for the US. However, α∗

may differ from α as well as ω∗ from ω. Moreover, v∗ is uncorrelated with v such that

domestic and foreign monetary policy shocks are country-specific. ι∗ (ι∗ > 0) denotes

the sensitivity of the Fed to the current foreign output gap x∗
t , where ι = 0 is assumed

to hold for the ECB. Since the signs of the elasticities of the central banks’ policy

instruments to endogenous variables are all positive so that they react anti-cyclically to

their changes, the policies can alternatively be characterized as having a lean against

the wind property (see Clarida et al. 1999, p. 1672).

2.5 Determinacy of the rational expectations equi-

librium

To investigate whether there exists a determinate rational expectations equilibrium to

the system of expectational difference equations (2.49), (2.50), (2.56), (2.57), (2.58),

(2.59), and (2.60) we have to rearrange it in matrix form:

Ay = Bx+ u, (2.61)

where the vectors of unknowns y,x and the vector of disturbance terms u read as

follows:

y :=




xt

x∗
t

πt,H

π∗
t,F

∆tt

ît−1

î∗t−1




,x :=




Et[xt+1]

Et[x
∗
t+1]

Et[πt+1,H ]

Et[π
∗
t+1,F ]

Et[∆tt+1]

ît

î∗t




,u :=




ξ−1
ξ−ρ

Et[∆at+1]
ξ−1
ξ−ρ

Et[∆a∗t+1]

ut

u∗
t

0

−ω−1vt

−(ω∗)−1v∗t




.
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The coefficient matrices A,B, however, read:

A :=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

−µ 0 1 0 0 0 0

0 −µ∗ 0 1 0 0 0

0 0 1 −1 1 −1 1

0 0 α
ω

0 0 1 0

0 ι∗
ω∗ 0 α∗

ω∗ 0 0 1




,

B :=




1 0 ρ−1 0 ϑ −ρ−1 0

0 1 0 ρ−1 ϑ∗ 0 −ρ−1

0 0 β 0 0 0 0

0 0 0 β 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 ω−1 0

0 0 0 0 0 0 (ω∗)−1




.

To determine the eigenvalues of the system of equations (2.61), it has to be rearranged

in the following form:

y = Mx+ v, (2.62)

where M := A−1B and v := A−1u. Moreover, A−1 denotes the inverse of A, which

exists because A is quadratic and det(A) = 1.
The matrices A−1 and M and the vector v read as follows:
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where det(M) = 0.

The impact of the single disturbances contained in v on the structural equations

of the model can be characterized as follows. The aggregate productivity shocks a, a∗

affect the respective dynamic IS curves, NKPCs, and interest rate rules. The cost-push

shocks u, u∗, however, only influence the respective NKPCs and interest-rate rules. The

monetary policy shocks v, v∗ have a sole impact on the respective interest-rate rules. All

macroeconomic shocks spill over abroad since they explicitly affect the TOT equation

(2.58).

2.5.1 Analytical solution

The system of equations (2.62) consists of two predetermined variables (̂it−1, î
∗
t−1) and

five non-predetermined ones (xt, x
∗
t , πt,H , π

∗
t,F ,∆tt). Comparable to the case discussed

for the closed economy in Gaĺı (2008, p. 56), there is a unique stationary solution

of (2.62) if and only if the coefficient matrix M has five eigenvalues k inside and two

eigenvalues k′ on or outside the complex unit circle (sufficient condition for equilibrium

determinacy). If there were more than five stable eigenvalues, there would be multiple

stationary solutions (indeterminacy). If there were more than two unstable eigenvalues

instead, no stationary solution would exist at all (non-existence).

By computing the characteristic determinant det(M−kI7) we obtain one eigenvalue

k = 0 and a sixth-degree polynomial in k, which cannot be solved analytically.25

In consequence, we have to assign sensible numerical values to the model parameters

in order to determine the remaining eigenvalues of M.

2.5.2 Calibration

The numerical exercise is carried out as follows. First, the EU and the US can be

treated as approximately equal-sized countries such that n = 1 − n = 0.5.26 β = 0.97

is assumed to hold for the intertemporal discount factor. This implies ī = ī∗ = r̄ =

r̄∗ = (1 − β)/β ≈ 0.03 for the zero-inflation steady-state nominal and real interest

rates across countries. Furthermore, ξ = −1 such that εUL,L = εU∗
L,L

∗ = 2 holds for the

partial elasticity of the utility function with respect to domestic (foreign) labor. The

sensitivity of the Fed to the current foreign output gap shall be fixed (ι∗ = 0.5), where

this number corresponds to the original value estimated by Taylor (1993) for the Fed

for the time from 1987 to 1992.

25This polynomial is not displayed here, but its Matlab code is available on request.
26Note that we would obtain qualitatively similar calibration and simulation results for n 6= 0.5.
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The Taylor principle, which states that the monetary authority ought to react to

an increase in current PPI inflation by augmenting its policy instrument more than

one for one in order to account for a determinate rational expectations equilibrium

(see Woodford 2003, p. 40), is assumed to be fulfilled by both central banks (α =

α∗ = 1.5).27 The degrees of nominal interest-rate inertia across countries shall also be

fixed (ω = ω∗ = 0.1) implying that both monetary authorities are supposed to place

relatively more weight (1 − ω = 1 − ω∗ = 0.9) on the adjustment of their short-run

policy instruments to their common zero-inflation steady-state value.

Moreover, let us set ρ = 0.8 such that the intertemporal elasticity of substitution

of real consumption 1/ρ = 1.25. Hence, we get the following for the slope coefficients

ϑ, ϑ∗ of the dynamic IS curves (2.56) and (2.57) with respect to expected movements

in the TOT:

ϑ =
(0.5− 1)[(−1) · 0.8− (−1)]

[(−1)− 0.8]0.8
≈ 0.07,

ϑ∗ =
0.5[(−1) · 0.8− (−1)]

[(−1)− 0.8]0.8
≈ −0.07.

Finally, let us set the degree of price stickiness to δ = δ∗ = 0.75 across countries,

which corresponds to an average duration of a price of four periods. This implies the

following for the slope coefficients µ, µ∗ of the NKPCs (2.49) and (2.50) with respect

to the domestic (foreign) output gap:

µ = µ∗ =
(1− 0.75)(1− 0.75 · 0.97)[0.8− (−1)]

0.75
≈ 0.16.

Calculating the characteristic determinant det(M− kI7) while using the above param-

eter configuration yields the subsequent numerical eigenvalues:

k1 = 0,

k2 = 0.5441,

k3 = 0.8176 + 0.2411i,

k4 = 0.8176− 0.2411i,

k5 = 0.9775,

27Note that the Taylor principle in its purest form is not a necessary condition for equilibrium
determinacy for an interest-rate rule of type (2.60). Instead, the condition µ∗(α∗−1)+(1−β)ι∗ > 0 is
a necessary and sufficient condition for equilibrium determinacy in case of a contemporaneous interest-
rate rule (see Bullard & Mitra 2002, pp. 1125-1126). For a graphical representation of determinacy
and indeterminacy regions for contemporaneous and forward-looking interest-rate rules seeGaĺı (2008,
pp. 77-80).
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k6 = 13.3372,

k7 = 18.2548.

Since M contains five stable (k1 to k5) and two unstable eigenvalues (k6 and k7), there

is a unique stationary solution to the system of equations (2.62) such that the rational

expectations equilibrium is determinate.

2.6 Impulse-response analysis

After having assured determinacy of the rational expectations equilibrium, we want to

investigate how the endogenous variables of the model react to simulated transitory

shocks at home and abroad. This impulse-response analysis can also be viewed as

additional robustness test for the goodness of the present model specification.

For this purpose, let us assume the following autocorrelation coefficients of the

domestic and foreign productivity, cost-push, and monetary policy shocks: ζa = ζ∗a =

ζu = ζ∗u = ζv = ζ∗v = 0.8.28

Using the above specification and starting from the non-stochastic zero-inflation

steady state, we entail impulses in period 1 on the exogenous error terms ηa, η
∗
a, ηu, η

∗
u,

ηv, η
∗
v in terms of one standard deviation of +

√
0.4 on their expected value of 0. The

impulse-response analysis is carried out by employing the Dynare preprocessor for

Matlab while performing a Monte Carlo simulation with 10100 draws, where the first

100 draws are used as burn-in draws before computing the usual summary statistics,

which are given below.29

The six figures below show the responses of the output gaps x, x∗, PPI inflation

rates πH , π
∗
F , movements in the TOT ∆t, nominal interest rates î, î∗, and the relevant

shock variables themselves to (orthogonalized) impulses on the various exogenous error

28We propose this relatively high serial correlation of the transitory shock variables mainly for
illustrative reasons. Qualitatively, we would obtain the same results if we used smaller autocorrelation
coefficients.

29The software is downloadable in its current version from
http://www.cepremap.cnrs.fr/dynare/. For all computations associated with the impulse-
response analysis it uses the pure perturbation algorithm developed by Schmitt-Grohé & Uribe
(2004, pp. 764-765) as default option. The Dynare program code for Matlab is not reported here,
but is available on request.
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terms for a time range of 40 periods.30
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Figure 2.1: EU productivity shock

A detailed interpretation of the results that can be seen from Figures 2.1 to 2.6 can

be found in the following.

1. The EU output gap, PPI inflation and nominal interest rates decrease before they

return to their zero-inflation steady-state values in response to an impulse on the

EU productivity shock (Figure 2.1). The TOT first augment, then drop below

their zero-inflation steady-state value until they gradually converge. There is also

an impact on all US endogenous variables, which is of opposite sign and quanti-

tatively small.

30Note that the following is assumed for the variance-covariance matrix of the exogenous error terms:

V ar(η) =




σ2
ηa

0 0 0 0 0
0 σ2

η∗
a

0 0 0 0

0 0 σ2
ηu

0 0 0
0 0 0 σ2

η∗
u

0 0

0 0 0 0 σ2
ηv

0
0 0 0 0 0 σ2

η∗
v




.
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Figure 2.2: US productivity shock

2. The US output gap, PPI inflation and nominal interest rates decrease before they

return to their zero-inflation steady-state values in response to an impulse on the

US productivity shock (Figure 2.2). The TOT first decrease, then jump above

their zero-inflation steady-state value until they gradually converge. There is also

an impact on all EU endogenous variables of opposite sign, which is quantitatively

larger compared to the impact of the EU productivity shock on foreign variables.

3. The EU output gap decreases, yet the EU PPI inflation and nominal interest rates

increase before all endogenous variables return to their zero-inflation steady-state

values in response to an impulse on the EU cost-push shock (Figure 2.3). The

TOT first plummet, then jump above their zero-inflation steady-state value until

they gradually converge. There is also an impact on all US endogenous variables,

which is of opposite sign except for the US output gap.

4. The US output gap decreases, yet the US PPI inflation and nominal interest rates
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Figure 2.3: EU cost-push shock

increase before all endogenous variables return to their zero-inflation steady-state

values in response to an impulse on the US cost-push shock (Figure 2.4). The

TOT first augment, then drop below their zero-inflation steady-state value until

they gradually converge. There is also an impact on all EU endogenous variables,

which is of opposite sign except for the EU output gap.

5. The EU output gap, PPI inflation and nominal interest rates decrease before all

endogenous variables return to their zero-inflation steady-state values in response

to an impulse on the EU monetary policy shock (Figure 2.5). The TOT augment

before they return to their zero-inflation steady-state value without any sudden

drops to the negative. There is also an impact on all US endogenous variables,

which is of the same sign.

6. The US output gap, PPI inflation and nominal interest rates decrease before all

endogenous variables return to their zero-inflation steady-state values in response

to an impulse on the US monetary policy shock (Figure 2.6). The TOT plummet
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Figure 2.4: US cost-push shock

before they return to their zero-inflation steady-state value without any sudden

jumps to the positive. There is also an impact on all EU endogenous variables,

which is of the same sign.

The deviation of the EU output gap from the zero-inflation steady state is higher

than the one of the US output gap for all three types of disturbances in case they are

home-made. However, the picture is ambiguous for PPI inflation and nominal interest

rates. None of the shocks discussed above is able to raise output above its flexible-price

equilibrium level, neither in the EU nor in the US. Instead, output in both countries

drops in response to all entailed impulses before it gradually converges. The negative

effect on output is not surprising in context of cost-push shocks, but needs somewhat

more explanation concerning the remaining two types of disturbances.

The negative influence of the productivity shocks on the economy contradicts one

of the central implications of the standard RBC model, namely a positive correlation

of productivity (shocks) and output. Findings for a closed-economy New Keynesian

model, which are similar to the present results, are reported, e.g., in Gaĺı (2002, pp.

17-18).31 This finding also seems to be plausible according to empirical studies, which

31The technical reason for this phenomenon is that a positive technology shock hits flexible-price
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Figure 2.5: EU monetary policy shock

show in addition that technology shocks do not seem to be a significant source for the

creation of business cycles at all, which contradicts another central implication of the

standard RBC model, namely that technology shocks ought to be the dominant driving

force for the creation of business cycles (see Gaĺı & Rabanal 2004, pp. 36-39).

Contrary to Corsetti & Pesenti (2001, pp. 435-439), negative realizations of

v, v∗, which correspond to expansionary monetary policy shocks, always have a prosper

thyself and beggar thy neighbor effect since they influence the TOT for the benefit of

EU (US) resident households by decreasing them below (raising them above) their zero-

inflation steady-state value. In addition, this effect induces a rise of both EU and US

output above their flexible-price values.32

Finally, statistical moments, correlations, and autocorrelations of the simulated en-

dogenous variables are given in Tables 2.1 to 2.3 below.

As one can see from Table 2.1, the explanation why for almost any impulse the

equilibrium output (2.39) harder than actual output (2.22), which needs time to adjust.
32Note, however, that monetary policy shocks in Corsetti & Pesenti (2001) are modeled in terms

of permanent and unexpected changes in money supply. Moreover, we interpret the prosper/beggar
effect somewhat differently since we do not formulate an explicit welfare criterion but stick to the
common interpretation of the TOT as laid out in Section 2.3.
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Figure 2.6: US monetary policy shock

Table 2.1: Moments of simulated variables

Variable Mean Std. Dev. Variance Skewness Exc. Kur.

x 0.118737 5.457627 29.785693 0.012991 -0.091208
x∗ -0.022633 3.210084 10.304640 0.074824 -0.199552
πH 0.002329 1.474853 2.175191 -0.019620 0.097960
π∗
F 0.018958 2.635538 6.946059 -0.046841 -0.042459

∆t -0.025424 2.123355 4.508637 -0.013460 0.046453

î -0.016873 1.748576 3.057518 0.000733 0.009221

î∗ 0.024047 2.549748 6.501216 -0.064055 -0.093567

deviation of x is notably higher than of x∗ may be found in the differing interest-rate

rules for the ECB (2.59) and the Fed (2.60). The positive and fixed sensitivity of the Fed

to the current US output gap ceteris paribus absorbs part of the impulses transmitted

through the system of equations (2.62). This additional channel works like an attenuator

to exogenous disturbances, which does not exist for the EU by assumption. As a

consequence, the simulated variance of the domestic output gap σ̃2
x is almost three
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Table 2.2: Correlation of simulated variables

Variable x x∗ πH π∗
F ∆t î î∗

x 1.0000 0.0269 -0.4315 0.0360 -0.2352 -0.7875 0.0453
x∗ 0.0269 1.0000 0.0001 -0.8655 -0.1809 -0.0011 -0.9041
πH -0.4315 0.0001 1.0000 -0.0368 -0.1235 0.8854 -0.0406
π∗
F 0.0360 -0.8655 -0.0368 1.0000 0.2703 -0.0538 0.9924

∆t -0.2352 -0.1809 -0.1235 0.2703 1.0000 0.0630 0.2258

î -0.7875 -0.0011 0.8854 -0.0538 0.0630 1.0000 -0.0620

î∗ 0.0453 -0.9041 -0.0406 0.9924 0.2258 -0.0620 1.0000

Table 2.3: Autocorrelation of simulated variables

Variable t− 1 t− 2 t− 3 t− 4 t− 5

x 0.8131 0.6528 0.5266 0.4261 0.3462
x∗ 0.8226 0.6641 0.5340 0.4327 0.3536
πH 0.7975 0.6489 0.5270 0.4262 0.3480
π∗
F 0.8014 0.6423 0.5125 0.4104 0.3284

∆t 0.1119 0.0553 0.0302 0.0286 0.0236

î 0.8276 0.6715 0.5432 0.4382 0.3584

î∗ 0.8230 0.6620 0.5296 0.4254 0.3426

times as high as the simulated variance of the foreign output gap σ̃2
x∗ :

σ̃2
x

σ̃2
x∗

=
29.785693

10.304640
≈ 2.89.

On the contrary, the simulated variance of the foreign PPI inflation rate σ̃2
π∗
F
is more

than three times as high as the simulated variance of the domestic PPI inflation rate

σ̃2
πH

:

σ̃2
π∗
F

σ̃2
πH

=
6.946059

2.175191
≈ 3.19.

This means that if the ECB implemented its monetary policy by following the interest-

rate rule (2.59), sustaining price stability would be better attainable than if, e.g., it

were using an interest-rate rule as proposed for the Fed (2.60) instead. Nonetheless,

this advantage can only be reached at the expense of relatively high fluctuations in
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the EU output gap, which is a trade-off commonly observed in the Monetary Policy

literature.

2.7 Concluding remarks

The main results of the present chapter, which have already been stated in the intro-

ductory Section 2.1, shall again be summarized in the following.

Simulated aggregate productivity shocks have a negative impact on EU and US

output, a result already described for the closed economy by Gaĺı (2002). Simulated

cost-push as well as contractionary monetary policy shocks also have a negative impact

on EU and US output.

In contrast to Corsetti & Pesenti (2001), expansionary monetary policy shocks

always have a prosper thyself and beggar thy neighbor effect since they influence the

TOT for the benefit of EU (US) resident households by decreasing them below (raising

them above) their zero-inflation steady-state value. In addition, this effect would induce

a rise of both domestic and foreign output above their flexible-price values.

If the ECB implemented the interest-rate rule proposed in the present article, it

would encounter lower fluctuations in EU PPI inflation compared to an interest-rate

rule as proposed for the Fed. This is consistent with the ECB’s paramount objective

of price stability. However, this advantage only holds at the expense of relatively high

fluctuations in the EU output gap; a trade-off commonly observed in the Monetary

Policy literature.

Besides possible theoretical extensions to the model as summarized, e.g., in Gaĺı

(2008, chapter 8) and as referred to in Chapter 1, an immediate application of the

present New Keynesian framework is an empirical one.

In Chapter 3, we want to do that using quarterly Euro area and US data to esti-

mate the model parameters while employing Bayesian techniques. Moreover, we want

to analyze impulse responses based on the estimated model and perform out-of-sample

forecasts for the model’s endogenous variables in comparison to a classically estimated

VAR model and the additive seasonal Holt-Winters method. Finally, we evaluate the

forecasting performance of all three forecasting models and of uniformly combined fore-

casts.

In Chapter 4, we will shift the focus from the two large open economies to the

interior of one of them, namely the EU. Here we use quarterly Austrian and Hungarian

data to measure the forecast accuracy of new variants of the model in comparison to a

number of (Bayesian) (vector) autoregressive benchmarks.
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2.8 Appendix to Chapter 2

2.8.1 Price indices and demand curves

The derivation of all price indices and demand curves follows the ideas in Obstfeld

& Rogoff (1996, pp. 662, 664) for the basic Obstfeld & Rogoff (1995) model.

Consumption-based consumer price index and demand curves for composite

goods The representative domestic household maximizes

C =
Cn

HC
1−n
F

nn(1− n)1−n

with respect to CH subject to the budget constraint

PC = PHCH + PFCF .

Hence, using the Lagrangian, we get:

Λ =
Cn

HC
1−n
F

nn(1− n)1−n
− λ(PHCH + PFCF − PC) → max

CH

⇒ ∂Λ

∂CH

=
nCn−1

H C1−n
F

nn(1− n)1−n
− λPH = 0.

Solving this expression for CH , one obtains the subsequent preliminary demand function

for the composite domestic good:

CH = λ
1

n−1P
1

n−1

H

n

1− n
CF .

Multiplying the preceding equation with PH , one obtains:

PHCH = λ
1

n−1P
n

n−1

H

n

1− n
CF ,

with PHCH = nPC. Now combine the preceding equation with the preliminary demand

function from above. Then one gets for CH equation (2.12):

CH = n

(
PH

P

)−1

C.
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Analogously, one gets for CF equation (2.13):

CF = (1− n)

(
PF

P

)−1

C.

Plugging these two equations into the definition of C, one gets:

C =

[
n
(
PH

P

)−1
C
]n [

(1− n)
(
PF

P

)−1
C
]1−n

nn(1− n)1−n
=

(
PH

P

)−n (
PF

P

)n−1

C.

Solving this for P , one finally obtains equation (2.5):

P = P n
HP

1−n
F .

Consumption-based producer price index and demand curves for individual

goods The representative domestic household maximizes

CH =

[(
1

n

) 1
θ
∫ n

0

C(h)
θ−1
θ dh

] θ
θ−1

with respect to C(h) subject to the budget constraint

PHCH =

∫ n

0

P (h)C(h)dh.

Hence, using the Lagrangian, we get:

Λ =

[(
1

n

) 1
θ
∫ n

0

C(h)
θ−1
θ dh

] θ
θ−1

− λ

[∫ n

0

P (h)C(h)dh− PHCH

]
→ max

C(h)

⇒ ∂Λ

∂C(h)
=

[(
1

n

) 1
θ
∫ n

0

C(h)
θ−1
θ dh

] 1
θ−1 (

1

n

) 1
θ

C(h)−
1
θ − λP (h) = 0.

Solving this expression for C(h), one obtains the subsequent preliminary demand func-

tion for individual domestic goods:

C(h) = P (h)−θ





λ
[(

1
n

) 1
θ
∫ n

0
C(h)

θ−1
θ dh

] 1
θ−1 ( 1

n

) 1
θ





−θ

.
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Multiplying the preceding equation with P (h), one obtains:

P (h)C(h) = P (h)1−θ





λ
[(

1
n

) 1
θ
∫ n

0
C(h)

θ−1
θ dh

] 1
θ−1 ( 1

n

) 1
θ





−θ

.

Taking the integral from 0 to n over both sides of this equation, one gets:

∫ n

0

P (h)C(h)dh =

∫ n

0

P (h)1−θdh





λ
[(

1
n

) 1
θ
∫ n

0
C(h)

θ−1
θ dh

] 1
θ−1 ( 1

n

) 1
θ





−θ

,

with
∫ n

0
P (h)C(h)dh = PHCH . Now combine the preceding equation with the prelimi-

nary demand function from above. Then one gets for C(h):

C(h) = P (h)−θ PHCH∫ n

0
P (h)1−θdh

.

Plugging this into the definition of CH , one gets:

CH =

{(
1

n

) 1
θ
∫ n

0

[
P (h)−θ PHCH∫ n

0
P (h)1−θdh

] θ−1
θ

dh

} θ
θ−1

.

Dividing this formula by CH and raising both sides of the resulting equation to the

power of (θ − 1)/θ, we obtain:

1
θ−1
θ =

(
1

n

) 1
θ
∫ n

0

[
P (h)−θ PH∫ n

0
P (h)1−θdh

] θ−1
θ

dh,

which can be solved for PH to finally obtain the domestic PPI given by equation (2.6):

PH =

[
1

n

∫ n

0

P (h)1−θdh

] 1
1−θ

.

Plugging this formula into the last given equation in C(h), one eventually gets equation

(2.10):

C(h) =
1

n

[
P (h)

PH

]−θ

CH .
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2.8.2 First order conditions for a utility maximum

The representative household maximizes

Ut = Et

{ ∞∑
s=t

βs−t

[
C1−ρ

s

1− ρ
+

χ

1− ε

(
Ms

Ps

)1−ε

− γ

1− ξ
L1−ξ
s

]}

with respect to the decision variables Ct,Mt, Bt, Lt subject to the intertemporal budget

constraint (in real terms)

Wt

Pt

Lt + (1 + it−1)
Bt−1

Pt

+
Mt−1

Pt

+
Γt(h)

Pt

= Ct +
Mt

Pt

+
Bt

Pt

+ τt.

Hence, using the Lagrangian, we get:

Λt = Et

{ ∞∑
s=t

βs−t

[
C1−ρ
s

1− ρ
+

χ

1− ε

(
Ms

Ps

)1−ε

− γ

1− ξ
L1−ξ
s

]

− λs

[
Ws

Ps
Ls + (1 + is−1)

Bs−1

Ps
+

Ms−1

Ps
+

Γs(h)

Ps
− Cs − Ms

Ps
− Bs

Ps
− τs

]}
→ max

Ct,Mt,Bt,Lt,λt

with {λ}∞s=t denoting a sequence of Lagrange multipliers.

⇒ ∂Λt

∂Ct

= C−ρ
t − λt(−1) = 0,

∂Λt

∂Mt

= χ

(
Mt

Pt

)−ε
1

Pt

− λt

(
− 1

Pt

)
− βEt

[
λt+1

Pt+1

]
= 0,

∂Λt

∂Bt

= −λt

(
− 1

Pt

)
− β(1 + it)Et

[
λt+1

Pt+1

]
= 0,

∂Λt

∂Lt

= −γL−ξ
t − λt

Wt

Pt

= 0,

∂Λt

∂λt

= −
[
Wt

Pt

Lt + (1 + it−1)
Bt−1

Pt

+
Mt−1

Pt

+
Γt(h)

Pt

− Ct − Mt

Pt

− Bt

Pt

− τt

]
= 0.

From the first partial derivative one obtains C−ρ
t = −λt and therefore C−ρ

t+1 = −λt+1.

Plugging this into the fourth one, one gets equation (2.21):

γ
L−ξ

t

C−ρ
t

=
Wt

Pt

.
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Now, by using C−ρ
t = −λt and C−ρ

t+1 = −λt+1, one obtains from the third partial

derivative equation (2.19):

C−ρ
t

Pt

= β(1 + it)Et

[
C−ρ

t+1

Pt+1

]
.

Finally, plugging the above expression into the second partial derivative yields equation

(2.20):

χ

(
Mt

Pt

)−ε

C−ρ
t

=
it

1 + it
.

2.8.3 Equilibrium conditions on world bond and goods mar-

kets

The subsequent derivation is based on Obstfeld & Rogoff (2001, pp. 7-9), which

itself is based on reasoning by Corsetti & Pesenti (2001, pp. 430-433).

Start with the market clearing condition for a single good z:

Yt(z) = nCt(z) + (1− n)C∗
t (z).

Assuming, for instance, that good z is a typical domestic good such that z = h ∈ [0, n]

and multiplying the preceding equation with Pt(h) one obtains:

Pt(h)Yt(h) = nPt(h)Ct(h) + (1− n)Pt(h)C
∗
t (h).

Taking the integral from 0 to n and using equations (2.6) and (2.10) yields:

∫ n

0

Pt(h)Yt(h)dh = nPt,HCt,H + (1− n)Pt,HC
∗
t,H .

Because of equations (2.12) and (2.14) this expression implies:

∫ n

0

Pt(h)Yt(h)dh = n2PtCt + (1− n)nPtC
∗
t = nPtC

w
t ,

where the right-hand side of the above equation denotes global demand for domestic

goods in domestic currency. Since Y denotes domestic per-capita output, the left-hand

side of the equation can alternatively be written as nPt,HYt, which yields the subsequent
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equilibrium condition on the world market for domestic goods (2.27):

Pt,HYt = PtC
w
t .

Note that the equilibrium condition on the world market for foreign goods (2.28) can

be derived analogously.

Both equations immediately collapse to the definition of the TOT given by equation

(2.29):

Tt :=
Pt,F

Pt,H

=
StP

∗
t,F

Pt,H

=
Yt

Y ∗
t

.

Furthermore, substituting equation (2.23) for the domestic household’s instantaneous

profits into the domestic intertemporal budget constraint (2.17) we get:

(1 + it−1)Bt−1 +Mt−1 + Pt(h)Yt(h) = PtCt +Mt +Bt + Ptτt.

Integrating from 0 to n and using
∫ n

0
Pt(h)Yt(h)dh = nPt,HYt one obtains:

(1 + it−1)Bt−1 +Mt−1 + Pt,HYt = PtCt +Mt +Bt + Ptτt.

Due to the government’s budget constraint (2.37) the preceding equation rearranges to

the domestic balance of payments identity (2.30):

Pt,HYt − PtCt + it−1Bt−1 ≡ Bt −Bt−1.

Note that the foreign balance of payments identity (2.31) can be derived analogously.

2.8.4 Dynamic IS curves

First rewrite the domestic Euler equation for real consumption (2.19) as follows:

C−ρ
t = β(1 + it)PtEt

[
C−ρ

t+1

Pt+1

]
.

After having done so, we plug the condition for domestic goods market clearing (2.35)

into the preceding equation:

(T n−1
t Yt)

−ρ = β(1 + it)PtEt

[
(T n−1

t+1 Yt+1)
−ρ

Pt+1

]
.
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The non-stochastic zero-inflation steady-state version of this equations reads as follows:

(T̄ n−1Ȳ )−ρ = β(1 + ī)P̄
(T̄ n−1Ȳ )−ρ

P̄
.

The ratio of the last two equations then reads:

(
T n−1
t Yt

T̄ n−1Ȳ

)−ρ

=
1 + it
1 + ī

Pt

Et

[
(Tn−1

t+1 Yt+1)−ρ

Pt+1

]

(T̄ n−1Ȳ )−ρ
.

By taking the natural logarithm of this ratio, one obtains:

−ρ[(n− 1)tt + yt − (n− 1)t̄− ȳ] = ln(1 + it)− ln(1 + ī) + pt − Et[pt+1]

− ρ{(n− 1)Et[tt+1] + Et[yt+1]}+ ρ[(n− 1)t̄+ ȳ].

Note that in approximation ln(1+it) ≈ it and ln(1+ī) ≈ ī. Moreover, the approximation

lnEt[Ψt+1] ≈ Et[Ψt+1] − 1 = Et[Ψt+1 − 1] ≈ Et[lnΨt+1] = Etψt+1 assures for the

exchangeability of the ln and expectations operators for a generic random variable Ψ.

Subsequently, Et[πt+1] := Et[pt+1]−pt shall be defined as the expected CPI inflation

rate in period t+ 1. In addition, let hatted variables denote the percentage deviations

from their zero-inflation steady-state values (ŷt := yt − ȳ, Et[ŷt+1] := Et[yt+1]− ȳ, ît :=

it − ī).

Taking this into account and canceling the term ρ(n − 1)t̄ on both sides, the last

equation rearranges to:

−ρ(n− 1)tt − ρyt + ρȳ = ît − Et[πt+1]− ρ(n− 1)Et[tt+1]− ρEt[yt+1] + ρȳ.

Solving this for ŷt, one finally obtains the domestic dynamic IS curve (2.40):

ŷt = Et[ŷt+1] +
1

ρ
{Et[πt+1]− ît} − (1− n)Et[∆tt+1].

Note that the foreign dynamic IS curve (2.41) can be derived analogously.

2.8.5 New Keynesian Phillips curves

In period t, a domestic producer willing to reset her price maximizes her expected

discounted future profits with respect to Pt(h):

Et

{ ∞∑
s=t

δs−tβs−t

(
Cw

s

Cw
t

)−ρ [
Pt(h)

Ps,H

Ys(h)− κsYs(h)

]}
→ max

Pt(h)
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βs−t(Cw
s /C

w
t )

−ρ is a stochastic discount factor, which denotes the marginal rate of

substitution of real (world) consumption between periods s and t. Note that here

one has made use of equation (2.24). In case of goods market clearing output of an

individual producer equals global demand for the differentiated good (Y (h) = Cw(h)).

Note further that the condition Pt(h) = Ps(h) during the length of the contract implies

for the global demand function (2.15) for a representative domestic good:

Cw
s (h) =

[
Pt(h)

Ps,H

]−θ (
Ps,H

Ps

)−1

Cw
s .

Substituting this into the above equation yields

Et

{ ∞∑
s=t

(δβ)s−t

(
Cw

s

Cw
t

)−ρ
[(

Pt(h)

Ps,H

)1−θ (
Ps,H

Ps

)−1

Cw
s − κs

(
Pt(h)

Ps,H

)−θ (
Ps,H

Ps

)−1

Cw
s

]}
→ max

Pt(h)

and gives as the subsequent first order condition:

Et

{ ∞∑
s=t

(δβ)s−t

(
Cw

s

Cw
t

)−ρ
1

Ps,H

[
(1− θ)

(
Pt(h)

Ps,H

)−θ (
Ps,H

Ps

)−1

+ θκs

(
Pt(h)

Ps,H

)−θ−1 (
Ps,H

Ps

)−1
]
Cw

s

}
= 0.

Solving this for Pt(h)/Pt,H , one gets the following price-setting equation:

Pt(h)

Pt,H

=
θ

θ − 1

Et

{∑∞
s=t(δβ)

s−t

[
κs

(
Ps,H

Pt,H

)θ (
Ps,H

Ps

)−1

(Cw
s )

1−ρ

]}

Et

{∑∞
s=t(δβ)

s−t

[(
Ps,H

Pt,H

)θ−1 (
Ps,H

Ps

)−1

(Cw
s )

1−ρ

]} .

Now consider the case where everybody resets their prices (δ = 0). As each producer

charges the same price (PH = P (h)), the above equation collapses to the following :

Pt(h)

Pt,H

=
θ

θ − 1
κt = 1.

Again we get the real marginal production cost associated with a flexible-price equilib-

rium κflex:

κflex
t =

θ − 1

θ
.

Now let us return to the case of sticky prices (δ > 0). From the domestic PPI (2.6) one

gets the subsequent law of motion:

P 1−θ
t,H = (1− δ)Pt(h)

1−θ + δP 1−θ
t−1,H .
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Log-linearizing the preceding formula around the zero-inflation steady-state price level

P̄H yields the following percentage deviations:

p̂t,H = (1− δ)p̂t(h) + δp̂t−1,H .

Now reformulate the price-setting equation as follows:

Et

{ ∞∑
s=t

(δβ)s−t

[(
Ps,H

Pt,H

)θ−1 (
Ps,H

Ps

)−1

(Cw
s )

1−ρ

]}
Qt

=
θ

θ − 1
Et

{ ∞∑
s=t

(δβ)s−t

[
κs

(
Ps,H

Pt,H

)θ (
Ps,H

Ps

)−1

(Cw
s )

1−ρ

]}
,

where Qt := Pt(h)/Pt,H .
If one log-linearizes this equation around the zero-inflation steady-state, one finally

obtains the subsequent percentage deviations (Q̄ = 1, [θ/(θ − 1)]κflex
t = 1):

ln

[
(C̄w)1−ρ

1− δβ

]

+
1

(C̄w)1−ρ

1−δβ

{
(C̄w)1−ρ

1− δβ
q̂t +

∞∑
s=t

(δβ)s−t(C̄w)1−ρ[(1− ρ)ĉws + (θ − 1)(Et[p̂s,H ]− p̂t,H) + (−1)(Et[p̂s,H ]− Et[p̂s])]

}

= ln

[
(C̄w)1−ρ θ

θ−1κ
flex
t

1− δβ

]

+
1

(C̄w)1−ρ

1−δβ

{ ∞∑
s=t

(δβ)s−t(C̄w)1−ρ[(1− ρ)ĉws + Et[κ̂s] + θ(Et[p̂s,H ]− p̂t,H) + (−1)(Et[p̂s,H ]− Et[p̂s])]

}
,

where most of the terms cancel out.

Solving the remainder for q̂t + p̂t,H , one gets:

q̂t + p̂t,H = (1− δβ)
∞∑
s=t

(δβ)s−t{Et[p̂s,H ] + Et[κ̂s]}

= (1− δβ)(p̂t,H + κ̂t) + δβ{Et[q̂t+1] + Et[p̂t+1,H ]}
⇔ q̂t = (1− δβ)κ̂t + δβ{Et[q̂t+1] + Et[πt+1,H ]},

where Et[πt+1,H ] := Et[p̂t+1,H ] − p̂t,H . Due to q̂t := p̂t(h) − p̂t,H and p̂t(h) = [1/(1 −
δ)]p̂t,H − [δ/(1− δ)]p̂t−1,H , it follows that q̂t = [δ/(1− δ)]πt,H . Plugging this result into

the above equation one finally obtains the domestic NKPC (2.42):

πt,H = βEt[πt+1,H ] +
(1− δ)(1− δβ)

δ
κ̂t.

Note that the foreign NKPC (2.43) can be derived analogously.
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Chapter 3

Estimation, structural analysis, and

forecasting performance

3.1 Introduction

The present chapter deals with two important applications of DSGE models: estimation

and forecasting. These empirical applications are of importance since, e.g., large-scale

DSGE models such as the NAWM are regularly used by the ECB and other central

banks for macroeconomic projection and policy analysis within the Euro area (see

Christoffel et al. 2008, p. 4). Despite misspecification, especially those large-scale

DSGE models seem to be accurate enough to be used for reliable policy analysis and

projection (see DelNegro et al. 2005, p. 4).

The small-scale sticky-price two-country DSGE model of the Euro area and the

US being our first model under scrutiny is the one developed in Chapter 2 and is

characterized by diverging interest-rate rules assigned to the monetary authorities of

the two countries, the ECB on the one hand and the Fed on the other. The interest-

rate rules differ since they reflect the diverging statutes of these two central banks. The

impact of the ECB’s and the Fed’s differing legal statutes on their monetary policy

functions also seems to be empirically plausible (see Sahuc & Smets 2008, pp. 512-

514).

We want to estimate this DSGE model by employing Bayesian inference, which

will be discussed in more detail later. Role-model closed-economy papers of the Euro

area using Bayesian techniques that are frequently cited in the literature are Smets &

Wouters (2003) concerning estimation and Smets & Wouters (2004) concerning

forecasting. For a general overview of Bayesian inference in DSGE models, the reader

is referred to An & Schorfheide (2007).
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Since VARs of infinite order represent unconstrained versions of DSGE models (see

Rubaszek & Skrzypczyński 2008, p. 499), such models are suitable as plausibility

tests for the causality structure of DSGE models that is imposed by economic theory.

Hence, the second model under scrutiny is of the atheoretical VAR type. Even for VARs

of finite order on which we have to rely in practice, Kascha & Mertens (2009) show

that those can be good approximations to the dynamic behavior of DSGE models.

Differing from a major part of the literature on the topic (see, e.g., Adolfson et

al. 2007, pp. 306-309 or Rubaszek & Skrzypczyński 2008, pp. 505-511), we do not

estimate and forecast with a Bayesian VAR (BVAR) for now (see Lütkepohl 2005,

pp. 222-229 for a characterization) since we think that assuming the availability of

prior information for VAR estimation does not deliver the most unconstrained VAR

model possible. Later on in Chapter 4, we will also present an application of several

BVAR models.

Besides Smets & Wouters (2007) and Rubaszek & Skrzypczyński (2008)

who both investigate the forecasting performance of closed-economy DSGE models of

the US, there are many more examples for estimated and/or forecasted DSGE models

applying Bayesian techniques such as Adolfson et al. (2007) who investigate the

forecasting performance of an open-economy DSGE model of the Euro area. While

Smets & Wouters (2004, 2007) and Adolfson et al. (2007) find that their DSGE

models are able to forecast well in comparison to (B)VAR benchmarks, Rubaszek &

Skrzypczyński (2008) obtain mixed results.

Further analyses are, e.g., Gaĺı & Rabanal (2004) who find that a traditional

RBC model does not fit well postwar US data. Moreover, Sahuc & Smets (2008)

explore reasons for observed differences in the amplitude of the interest-rate cycles of

the ECB and the Fed since 1999 while estimating medium-scale DSGE models of the

Euro area and the US separately.

The main results of the analysis based on quarterly OECD data ranging from 1994Q1

until 2009Q1 are summarized in the following.

The estimated DSGE model qualitatively reproduces the findings of the calibrated

one from Chapter 2 with respect to most of the parameter values and to impulses

responses on the various exogenous error terms. Nonetheless, the degrees of price

stickiness in both countries are lower and the degrees of interest-rate inertia across

countries are higher than expected prior to estimation.

Estimating an unconstrained VAR(1) does not yield the identical causal relation-

ships as implied by the DSGE. However, Granger causality tests suggest a rather com-

plex causality structure including causalities between real and nominal variables across
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countries. In addition, impulse responses based on the VAR(1) sometimes differ from

the ones obtained for the DSGE.

Both models and the additive seasonal Holt-Winters method, a simple univariate

extrapolation method serving as a benchmark, were not able to predict the severeness

or, at least, the evolution of the economic and financial crisis for the forecasting period

from 2007Q2 until 2009Q1 since the current crisis is so at odds with regular economic

activity.

Finally, we obtain that the accuracy of DSGE forecasts, measured by the root

mean squared forecasting error and the mean absolute forecasting error, can compete

well with the accuracy of VAR(1), Holt-Winters, and uniformly combined forecasts in

times of usual economic performance. In two cases, the DSGE is able to significantly

outperform some of the rival forecasting models, but only at the 10% level.

The rest of this chapter is structured as follows. Section 3.2 introduces the two

models under scrutiny. Section 3.3 outlines the estimation methodology, followed by

the presentation of the OECD data used for launching the estimation in Section 3.4.

Section 3.5 states the estimation results for both models. The chapter proceeds with an

impulse-response analysis in Section 3.6 and out-of-sample forecasts of the two models

and the additive seasonal Holt-Winters method in Section 3.7. In Section 3.8, we

continue with measuring the forecast accuracy of all three forecasting models as well

as a uniformly combined forecast. Finally, Section 3.9 concludes. Additional tables are

given in Appendix 3.10.

3.2 Two models

Subsequently, we introduce the two models that will be under examination throughout

the remainder of the present chapter of this dissertation.

3.2.1 A two-country DSGE model with diverging interest-rate

rules

The first model under scrutiny is a canonical log-linear representation of the fully micro-
founded two-country DSGE framework of the Euro area (EU) and the US developed in
Chapter 2. For the reader’s convenience, we again state the model’s seven structural
equations and briefly summarize its properties. Variables indexed by superscript aster-
isks denote foreign, i.e. US, variables. As we will see in Chapter 4, this model can be
applied to other pairs of countries, too. Therefore, we choose to stick to this generic
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notation.

xt = Et[xt+1] +
1

ρ
{Et[πt+1,H ]− ît}+ (n− 1)(ξρ− ξ)

(ξ + ρ)ρ
Et[∆tt+1] +

ξ + 1

ξ + ρ
Et[∆at+1], (3.1)

x∗
t = Et[x

∗
t+1] +

1

ρ
{Et[π

∗
t+1,F ]− î∗t }+

n(ξρ− ξ)

(ξ + ρ)ρ
Et[∆tt+1] +

ξ + 1

ξ + ρ
Et[∆a∗t+1], (3.2)

πt,H = βEt[πt+1,H ] +
(1− δ)(1− δβ)(ρ+ ξ)

δ
xt + ut, (3.3)

π∗
t,F = βEt[π

∗
t+1,F ] +

(1− δ∗)(1− δ∗β)(ρ+ ξ)

δ∗
x∗
t + u∗

t , (3.4)

∆tt = ît−1 − î∗t−1 + π∗
t,F − πt,H + dt, (3.5)

ît = απt,H + ωît−1 + vt, (3.6)

î∗t = α∗π∗
t,F + ι∗x∗

t + ω∗î∗t−1 + v∗t . (3.7)

The determined system of expectational difference equations (3.1) to (3.7) consists of

Euro area and US dynamic IS curves representing Euro area and US aggregate demand

as given by equations (3.1) and (3.2), which can be derived by log-linearizing Euro area

and US intertemporal Euler equations for real consumption around the non-stochastic

zero-inflation steady state while making use of the goods market clearing conditions for

Euro area and US final goods.

In addition, we have Euro area and US NKPCs representing Euro area and US

aggregate supply as given by equations (3.3) and (3.4), which can be derived by log-

linearizing the price-setting equations of monopolistically competitive Euro area and

US final goods firms around the non-stochastic zero-inflation steady-state under the

assumption of producer currency pricing. Moreover, we have an equation that relates

current movements in the TOT ∆t to the other nominal endogenous variables as given

by equation (3.5).

The remaining endogenous variables in this two-country model are the Euro area

and US output gaps x, x∗, Euro area and US PPI inflation rates πH , π
∗
F , and the Euro

area and US short-run nominal interest rates î, î∗, where the latter are determined by

the interest-rate rules of the ECB (3.6) and the Fed (3.7), respectively.

In the present case, we assume that the divergence of the central banks’ statutes,

which has been mentioned in Section 3.1, materializes as follows: besides current US

PPI inflation, measured by the sensitivity α∗ (α∗ > 0), the Fed takes into account

the current US output gap, measured by the sensitivity ι∗ (ι∗ > 0), whereas the ECB

is supposed to implement its monetary policy by considering current Euro area PPI

inflation only, measured by the sensitivity α (α > 0). Moreover, ω, ω∗ (0 < ω, ω∗ < 1)

denote the degrees of interest-rate inertia of the ECB and the Fed, respectively.

From the Euro area and US CES period utility functions we obtain the coefficient
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of relative risk aversion in consumption ρ (0 < ρ < 1) and the inverse of the elasticity

of labor supply ξ (ξ > 0), whereby the inverse of ρ denotes the intertemporal elasticity

of substitution of real consumption 1/ρ in the Euro area and US dynamic IS curves

(3.1) and (3.2).1

n denotes the country size of the Euro area and 1 − n the country size of the US

such that world population is normalized to 1. [(n− 1)(ξρ− ξ)]/[(ξ + ρ)ρ] > 0 denotes

the slope coefficient of the Euro area dynamic IS curve (3.1) with respect to expected

movements in the TOT. [n(ξρ−ξ)]/[(ξ+ρ)ρ] < 0, however, denotes the slope coefficient

of the US dynamic IS curve (3.2).

In the Euro area and US NKPCs (3.3) and (3.4), we further encounter the intertem-

poral discount factor β (0 < β < 1). [(1− δ)(1− δβ)(ρ+ ξ)]/δ > 0 represents the slope

coefficient of the Euro area NKPC (3.3) with respect to the Euro area output gap.

[(1 − δ∗)(1 − δ∗β)(ρ + ξ)]/δ∗ > 0, however, represents the slope coefficient of the US

NKPC (3.4). Finally, δ, δ∗ (0 < δ, δ∗ < 1) denote the degrees of price stickiness in the

Euro area and the US, respectively, and originate from introducing nominal rigidities

in terms of Calvo (1983) contracts.

The above framework comprises various transitory macroeconomic disturbances,

which read as follows:

at = ζaat−1 + ηa,t, (3.8)

a∗t = ζ∗aa
∗
t−1 + η∗a,t, (3.9)

ut = ζuut−1 + ηu,t, (3.10)

u∗
t = ζ∗uu

∗
t−1 + η∗u,t, (3.11)

dt = ζddt−1 + ηd,t, (3.12)

vt = ζvvt−1 + ηv,t, (3.13)

v∗t = ζ∗vv
∗
t−1 + η∗v,t. (3.14)

We assume that 0 < ζ < 1 holds for all autocorrelation coefficients ζ such that the

stochastic processes (3.8) to (3.14) are all stationary. All exogenous error terms η are

assumed to be i.i.d. ∼ N(0, σ2
η) and uncorrelated, such that Et[ηt] = 0, Et[ηtη

′
t] = Ση,

and Et[ηtη
′
s] = 0 holds (s 6= t), where Ση denotes the corresponding variance-covariance

matrix.

The single macroeconomic shocks can be interpreted as follows. a, a∗ denote country-

1Note that we have to account for ξ having the opposite sign compared to Chapter 2 in equations
(3.1) to (3.4) since the prior distribution we wish to assign to this parameter in Section 3.3 is only
defined for non-negative real numbers.
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specific aggregate productivity shocks. u, u∗ denote country-specific cost-push or in-

flationary shocks. d denotes a global measurement error component comparable to

Adolfson et al. (2007, p. 297). This assumption differs from Chapter 2 and is mainly

introduced at this point since the movements in the TOT will be the variable we will

have to construct ourselves in Section 3.4, which is why we introduce a measurement

error here. v, v∗ denote country-specific monetary policy or interest-rate shocks.

3.2.2 An unconstrained vector autoregressive model

The second model under scrutiny is rather simple. It is an atheoretical VAR model of lag

order p, which a priori neither imposes constraints concerning causality between vari-

ables nor declares some of the variables exogenous. It reads as follows (see Lütkepohl

2005, p. 13):

yt = ν+M1yt−1+...+Miyt−i+...+Mpyt−p+εt, t = 0,±1,±2, ..., i = 1, ..., p. (3.15)

Using the same variables as introduced for the DSGE model above, we have yt :=

(xt, x
∗
t , πt,H , π

∗
t,F ,∆tt, it, i

∗
t )

′, which is a 7×1-dimensional vector of unknowns. Moreover,

Mi are 7×7-dimensional fixed coefficient matrices. ν := (νx, νx∗ , νπH
, νπ∗

F
, ν∆t, νi, νi∗)

′ is

a fixed 7×1-dimensional vector of intercept terms, which allows for a possible non-zero

mean Et[yt]. Finally, εt is a 7 × 1-dimensional vector of exogenous error terms, for

which Et[εt] = 0, Et[εtε
′
t] = Σε, and Et[εtε

′
s] = 0 holds (s 6= t), where Σε denotes the

corresponding variance-covariance matrix.

3.3 Estimation methodology

Let us now turn to the basic elements of Bayesian inference, which is commonly used

to estimate the structural parameters of DSGE models. Basically, there are three

main differences associated with Bayesian estimation in comparison, e.g., to GMM as

summarized by An & Schorfheide (2007, p. 123). These differences are sometimes

seen to be advantageous by adherents of Bayesian techniques.

1. Bayesian estimation is system-based, which means that it fits the solved DSGE

model to a vector of aggregate time series. Unlike GMM, it does not depend on

specific equilibrium relations such as Euler equations for real consumption.

2. The estimation is based on the likelihood function generated by the DSGE model
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rather than on comparing divergences between DSGE and VAR impulse responses.

3. Prior probability density functions (PDF) of the model parameters, which will be

introduced below, add information to the estimation procedure.

The question of how to efficiently estimate the unconstrained VAR(p) model (3.15),

however, is a straightforward issue. Since there are only lagged values of endogenous

variables on the right-hand side of (3.15), we can safely apply standard ordinary least

squares (OLS) estimation (see Lütkepohl 2005, p. 71).

3.3.1 Bayesian inference

As laid out in Lütkepohl (2005, pp. 222-223), it is assumed in the Bayesian approach

that non-sample information on a generic parameter vector ψ available prior to estima-

tion is summarized in its prior PDF g(ψ). The sample information on ψ, however, is

summarized in its sample PDF given by f(y|ψ), which is algebraically identical to the

likelihood function l(ψ|y). Applying Bayes’ theorem, we can establish the subsequent

relation between these two pieces of information, where f(y) denotes the unconditional

sample density:

g(ψ|y) = f(y|ψ)g(ψ)
f(y)

.

The preceding equation states that the distribution of ψ conditional on the sample

information contained in y can be summarized by g(ψ|y), which is known as posterior

PDF. In other words, the posterior distribution, which contains all information available

for the parameter vector ψ, is proportional to the likelihood function times the prior

PDF:2

g(ψ|y) ∝ f(y|ψ)g(ψ) = l(ψ|y)g(ψ).

Since the posterior distribution cannot be determined analytically, we have to adopt a

type of Monte-Carlo Markov-Chain (MCMC) sampling algorithm to simulate the distri-

bution of the parameter vector ψ (see Christoffel et al. 2008, pp. 34-35). MCMCs

are commonly applied to Bayesian inference techniques because they are relatively easy

2By reweighting the likelihood function by a prior, the so-called dilemma of absurd parameter
estimates (An & Schorfheide 2007, pp. 124-125) can be circumvented, which would otherwise
result in probably unrealistic posterior means. That is why pure maximum likelihood estimation is
not as prominent in DSGE estimation as Bayesian inference.
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to implement and less intensive in research time compared to other sampling methods

such as importance sampling (see Bauwens et al. 1999, pp. 83-84). In particular, we

adopt the Metropolis-Hastings (MH) algorithm whose steps shall be briefly outlined in

the following (see Koop 2003, pp. 92-94).

1. Choose a starting value ψ0.

2. Take a candidate draw ψ̃ from the candidate generating density q = (ψs−1;ψ).

3. Calculate its acceptance probability Prob(ψs−1; ψ̃).

4. Set ψs = ψ̃ with probability Prob(ψs−1; ψ̃) (candidate draw is accepted) and

ψs = ψs−1 with probability 1− Prob(ψs−1; ψ̃) (candidate draw is discarded).

5. Repeat steps 2 to 4 S times.

6. Take the average over the S draws h(ψs), ĥS = 1/S
∑S

s=1 h(ψ
s), in order to obtain

an estimate of E[h(ψ)|y].

In practice, we have to discard some S0 initial draws to reduce the impact of our choice

for the starting value ψ0. Moreover, the precise formula for the acceptance probability

Prob(ψs−1; ψ̃) is given by:

Prob(ψs−1; ψ̃) = min

[
g(ψ = ψ̃|y)q(ψ̃;ψ = ψs−1)

g(ψ = ψs−1|y)q(ψs−1;ψ = ψ̃)
; 1

]
,

where g(ψ = ψ̃|y) denotes the posterior distribution conditional on the sample infor-

mation contained in y evaluated at the point ψ = ψ̃, whereas q(ψ̃;ψ = ψs−1) denotes

the density of the random variable ψ evaluated at the point ψ = ψs−1.

3.3.2 Calibration and prior distributions

In the present framework, the parameters introduced in Section 3.2 constitute the pa-

rameter vector ψ := (n, β, ρ, ξ, δ, δ∗, α, α∗, ι∗, ω, ω∗, ζa, ζ∗a , ζu, ζ
∗
u, ζd, ζv, ζ

∗
v , σηa , ση∗a , σηu , ση∗u ,

σηd , σηv , ση∗v)
′, which is subject to estimation based on quarterly data. The means of
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the proposed prior distributions are taken from the calibration section of Chapter 2,

whereby the parameters n and β are assumed to be fixed throughout the analysis. We

set n = 1 − n = 0.5 since the Euro area and the US can be treated as approximately

equal-sized countries. Differing from Chapter 2, however, we set β = 0.99, which implies

quarterly zero-inflation steady-state nominal and real interest rates across countries of

ī = ī∗ = r̄ = r̄∗ = (1 − β)/β ≈ 0.01. This corresponds to annualized zero-inflation

steady-state interest rates of approximately 4%.

What makes the present calibration still differ from well-known articles of the empiri-

cal DSGE literature such as Smets & Wouters (2003, pp. 1142-1143) or Rubaszek

& Skrzypczyński (2008, p. 505) is that with ρ = 0.8, ξ = 1, α = α∗ = 1.5, and

ω = ω∗ = 0.1 we assume that the prior means of some of the parameters to be esti-

mated are a bit lower than usually done. Concerning the chosen value for the coefficient

of relative risk aversion in consumption ρ, the domain of this parameter 0 < ρ < 1 as

implied by the theoretical model from Chapter 2 prevents us from setting it equal to

ρSW = 1. In addition, ρSW = 1 would result in canceling out the TOT effects in the

dynamic IS curves (3.1) and (3.2).

Not setting the inverse of the elasticity of labor supply equal to ξSW = 2 implies a

somewhat high elasticity of labor supply of 1 prior to estimation. However, a value of

ξ = 1 is seen as a good compromise between the micro Labor and macro Business Cycle

literature (see Gaĺı et al. 2007, p. 47). If the posterior means of these and the other

parameters were to differ substantially from their prior means, this will be indicated by

the estimation results anyway.

Table 3.1 given below summarizes the prior information on the various parameters

contained in the vector ψ, where the choice of prior PDFs follows [1] common suggestions

in the literature as laid out in An & Schorfheide (2007, pp. 127-130), and [2] the

domain of the various parameters as implied by theory. The different prior PDFs are

documented, e.g., in Bauwens et al. (1999, pp. 290-294). The inverse gamma prior

PDF is extensively used in the literature for residual variances according to Bauwens

et al. (1999, p. 292) and reflects the fact that there is only little prior information

available for these parameters (see Christoffel et al. 2008, p. 40).

Employing the Dynare preprocessor for Matlab, we will use the inverse gamma-1

rather than the inverse gamma prior and choose to estimate standard deviations rather

than variances, where an infinite standard deviation around the mean of the standard

deviation to be estimated assures a closed-form solution. This is necessary in order to

be able to derive the scale and shape parameters of the inverse gamma-1 prior PDF (see

Adjemian 2007, p. 7). Note that similar to Chapter 2, there is a unique stationary
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solution to the system of equations (3.1) to (3.7) for the selected parameter values

since there are five eigenvalues inside and two eigenvalues on or outside the complex

unit circle of the corresponding coefficient matrix, which is the sufficient condition

for equilibrium determinacy in case of two predetermined variables (̂it−1, î
∗
t−1) and five

non-predetermined ones (xt, x
∗
t , πt,H , π

∗
t,F ,∆tt).

Table 3.1: Prior information

Parameter Domain Prior PDF Mean Std. Dev.

ρ [0, 1) Beta 0.8 0.025
ξ [0,+∞) Gamma 1 0.25
δ [0, 1) Beta 0.75 0.1
δ∗ [0, 1) Beta 0.75 0.1
α (−∞,+∞) Normal 1.5 0.1
α∗ (−∞,+∞) Normal 1.5 0.1
ι∗ (−∞,+∞) Normal 0.5 0.25
ω [0, 1) Beta 0.1 0.05
ω∗ [0, 1) Beta 0.1 0.05

ζa [0, 1) Beta 0.8 0.05
ζ∗a [0, 1) Beta 0.8 0.05
ζu [0, 1) Beta 0.8 0.05
ζ∗u [0, 1) Beta 0.8 0.05
ζd [0, 1) Beta 0.8 0.05
ζv [0, 1) Beta 0.8 0.05
ζ∗v [0, 1) Beta 0.8 0.05

σηa [0,+∞) Inv. Gamma-1 0.02 +∞
ση∗

a
[0,+∞) Inv. Gamma-1 0.02 +∞

σηu [0,+∞) Inv. Gamma-1 0.02 +∞
ση∗

u
[0,+∞) Inv. Gamma-1 0.02 +∞

σηd
[0,+∞) Inv. Gamma-1 0.02 +∞

σηv [0,+∞) Inv. Gamma-1 0.02 +∞
ση∗

v
[0,+∞) Inv. Gamma-1 0.02 +∞

3.4 Quarterly data for the Euro area and the US

We want to estimate quarterly models of the Euro area and US economies using OECD

data for the time from 1994Q1 until 2009Q1, which means that we have 61 observations

altogether. Note that we have to limit our analysis to the time after 1994Q1 because

there are no data available on Euro area short-run nominal interest rate prior to this
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date.3 The OECD data are either taken from OECD (2008) (output gaps) or from

OECD (2010) (all other variables).

• The Euro area and US output gaps x, x∗ are calculated from the natural logarithm

of the actual volume at constant prices of the respective seasonally and working-

day adjusted gross domestic product (GDP) minus the natural logarithm of the

volume at constant prices of the respective potential output of the total economy.

• The Euro area and US PPI inflation rates πH , π
∗
F are proxied by the percentage

change to the previous period of the domestic producer price indices in manufac-

turing. We restrict ourselves to these prices since we assume that firms employ

producer currency pricing and that only final goods are produced and traded.

• We have to construct the TOT ∆t ourselves, which is done by employing the

following formula (see Chapter 2): ∆tt = ∆st + π∗
t,F − πt,H , where ∆st denotes

the first difference of the natural logarithm of the monthly average of the nominal

exchange rate of Euro (from 1994Q1 until 1998Q4 of European Currency Units,

ECU) per US Dollar.

• The nominal interest rates in per cent per annum of the ECB and the Fed i, i∗ are

proxied by the subsequent time series: the three-month Euro Interbank Offered

Rate (EURIBOR) in case of i and the three-month nationally traded certificates

of deposit issued by commercial banks in case of i∗.4 Both interest rates have to be

subtracted by their common annualized zero-inflation steady-state value ≈ 0.04

before entering the DSGE estimation in order to obtain the desired percentage-

point deviations î, î∗. In the case of the VAR(p), this constraint on the nominal

interest rates is not imposed by the model, but will also be accounted for to assure

3Note that we choose to employ interbank rates as a reasonable compromise between central bank
and retail interest rates since, e.g., households usually decide for their asset holdings according to the
interest rates offered by commercial banks.

4We are aware of the fact that the ECB has been operating no sooner than January 1999. This
means that the time series used for the Euro area short-run nominal interest rate during the period
from 1994Q1 until 1998Q4 is a synthetic rate calculated by using national rates, London Interbank
Offered Rate (LIBOR) where available, weighted by GDP (see OECD 2010). A rejection of this
approximation would shorten the sample. It would be possible to even extend the sample prior to
1994Q1 by employing the former German short-run nominal interest rate FIBOR (Frankfurt Interbank
Offered Rate) as predecessor of the EURIBOR since also the Deutsche Bundesbank could be seen as
predecessor of the ECB. Since there are many contrary opinions on this issue, we will stick to our
original suggestion.
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comparability of the two models. Moreover, the actual means of the nominal

interest rates in both countries roughly correspond to 0.04 during the estimation

period, anyway (̄i = 0.0395 for the Euro area and ī∗ = 0.0430 for the US).

The subsequent graphs plot the various variables in levels for the period under scrutiny,

whereby EU is used to indicate Euro area variables in all graphs and tables below.
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Figure 3.1: Euro area and US output gaps

As we can conclude from Figures 3.1 and 3.2, the output gaps and PPI inflation

rates are negative in both the Euro area and the US from 2008Q3 (output gaps) or

2008Q4 (PPI inflation rates), respectively, onwards. This reflects the global economic

downturn associated with the present economic and financial crisis. The comovement

of the graphs of the output gaps of both economies indicates a positive correlation of

Euro area and US business cycles. The TOT as given in Figure 3.3 have been beneficial

for US resident households from 2008Q3 onwards. The values of the Euro area and US

nominal interest rates as given in Figure 3.4 have already been below their common

zero-inflation steady-state value since 2008Q1 (US) or 2009Q1 (Euro area), which may

reflect countercyclical monetary policy by both central banks designed to mitigate the

impact of the crisis. This countercyclical policy seems to have already positively affected

the interbank markets across countries, too.

In our opinion, the current crisis is so much at odds with regular economic behavior

that including the observations during the period from 2007Q2 until 2009Q1 would

harm the goodness of the estimation and of the structural analysis thereafter. Hence,
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Figure 3.2: Euro area and US PPI inflation rates
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Figure 3.3: Terms of trade

we restrict our estimation sample to the period from 1994Q1 until 2007Q1, which leaves

us 53 observations.
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Figure 3.4: Euro area and US nominal interest rates

The year 2007 is typically associated with the initial point of the crisis (see, e.g.,

the timeline by the Federal Reserve Bank of St. Louis).5 Chow break-point tests in the

work of Čihák et al. (2009, p. 13) further suggest August 2007 as split point between

pre-crisis and crisis for the ECB’s short-run and several market interest rates of the

Euro area. If we observe the data underlying Figures 3.1 to 3.4, we can conclude that

at least in 2007Q1 no unusual economic activity is recognizable regarding our variables

of interest. Therefore, we choose to keep the observations of 2007Q1 for our estimation

sample. Nonetheless, having the actual observations for the period of crisis will allow us

to compare them with out-of-sample forecasts of the two rival models and a benchmark

later on in Section 3.7.

3.5 Estimation results

In the following, we want to summarize the estimation results based on the above OECD

data both for the DSGE (3.1) to (3.14) and the VAR(p) (3.15).

5See http://timeline.stlouisfed.org/index.cfm?p=timeline.
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3.5.1 DSGE

Employing the Dynare preprocessor for Matlab we obtain the subsequent results

for estimating the DSGE model (3.1) to (3.14) while using Bayesian techniques for 53

observations ranging from 1994Q1 to 2007Q1. The options specified in the estimation

command associated with the MH algorithm whose selected values differ from the de-

fault values, shall be briefly discussed in the following (see Mancini-Griffoli 2007,

pp. 52-53).6

• mh_replic=50000 denotes the number of replications within each MH simulation

S, whereby S0 = 25000 initial replications are discarded as burn-in draws.

• mh_nblocks=5 states the number of runs of MH simulations or the number of

parallel MCMCs, respectively.

• mh_jscale=0.25 denotes the scale to be used for the candidate generating density

q = (ψs−1;ψ) in the MH algorithm.

• mh_init_scale=0 gives us the scale to be used for drawing the initial value ψ0 of

all the MCMCs.

The estimation results in terms of the posterior means and a 90% confidence interval

around these means are summarized in Table 3.2 below.

We will briefly discuss the most important results (see Table 3.2) in the following.

The posterior means of the parameters stemming from the utility function (ρ, ξ) and

of the sensitivities of both central banks towards current PPI inflation (α, α∗) are a bit

higher than their prior means. The posterior mean of ι∗, however, is a bit lower. There

seem to be higher degrees of interest-rate inertia in both the Euro area and the US

(ω, ω∗) than believed prior to the estimation. I.e. both central banks put more weight

on past realizations of the nominal interest rates (it−1, i
∗
t−1) than on their common

zero-inflation steady-state value (̄i = ī∗).

Interestingly, the posterior means of δ, δ∗ suggest that the degrees of price stickiness

in both countries are much lower than expected, maybe because producer prices are able

to react more flexible to business cycle fluctuations than consumer prices. The posterior

means of the Euro area and US degrees of price stickiness both imply an average

6The Dynare program code for Matlab is not reported here, but is available on request.
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Table 3.2: DSGE estimation results

Parameter Prior Mean Post. Mean 90% Conf. Int. Prior PDF Prior Std. Dev.

ρ 0.8000 0.8436 0.8123 0.8776 Beta 0.0250
ξ 1.0000 1.0313 0.5931 1.4597 Gamma 0.2500
δ 0.7500 0.3706 0.2956 0.4439 Beta 0.1000
δ∗ 0.7500 0.4007 0.3161 0.4863 Beta 0.1000
α 1.5000 1.5890 1.4340 1.7422 Normal 0.1000
α∗ 1.5000 1.5710 1.4128 1.7224 Normal 0.1000
ι∗ 0.5000 0.4161 0.0270 0.7993 Normal 0.2500
ω 0.1000 0.4381 0.3155 0.5650 Beta 0.0500
ω∗ 0.1000 0.4304 0.3028 0.5626 Beta 0.0500

ζa 0.8000 0.8392 0.7864 0.8945 Beta 0.0500
ζ∗a 0.8000 0.8179 0.7613 0.8793 Beta 0.0500
ζu 0.8000 0.8929 0.8533 0.9355 Beta 0.0500
ζ∗u 0.8000 0.8584 0.8044 0.9141 Beta 0.0500
ζd 0.8000 0.7015 0.6097 0.7916 Beta 0.0500
ζv 0.8000 0.6434 0.5544 0.7314 Beta 0.0500
ζ∗v 0.8000 0.6312 0.5289 0.7349 Beta 0.0500

σηa 0.0200 0.0376 0.0262 0.0490 Inv. Gamma-1 +∞
ση∗

a
0.0200 0.0449 0.0324 0.0574 Inv. Gamma-1 +∞

σηu 0.0200 0.0076 0.0049 0.0102 Inv. Gamma-1 +∞
ση∗

u
0.0200 0.0088 0.0052 0.0126 Inv. Gamma-1 +∞

σηd
0.0200 0.0412 0.0343 0.0474 Inv. Gamma-1 +∞

σηv 0.0200 0.0104 0.0085 0.0123 Inv. Gamma-1 +∞
ση∗

v
0.0200 0.0152 0.0124 0.0180 Inv. Gamma-1 +∞

duration of a price of approximately two quarters: 1/(1 − δ) ≈ 1.5888, 1/(1 − δ∗) ≈
1.6686.

As pointed out by Pichler (2008, pp. 10-11), we have to interpret the parameter

estimates with a grain of salt. This is due to the fact that the likelihood function of

some of the parameters may be almost flat or it may feature several local maxima,

two problems typically associated with the estimation of DSGE models using Bayesian

inference. One solution to these issues could be to calibrate rather than estimate more

of the parameters, especially those that are said to be weakly identified. In Chapter 4,

we will pick up this idea and keep the parameters stemming from the utility function,

ρ and ξ, fixed during estimation.

Figures 3.5 to 3.7 below display the prior distributions (solid gray line), the posterior

distributions (solid black line), as well as the posterior modes that are calculated from

the numerical optimization of the posterior kernel (dashed green line) for the various
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parameters. According to Mancini-Griffoli (2007, p. 59), the fact that the mode

expressed by the dashed green line and the mode of the posterior distribution are almost

equal gives us confidence in the goodness of the estimation. The fact that the posterior

distributions of some of the parameters differ from their prior distributions signifies that

in these cases the observed data are particularly able to provide additional information

(see Christoffel et al. 2008, p. 42).
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Figure 3.5: Priors and posteriors I

Finally, Figure 3.8 below gives us additional confidence that the aggregated estima-

tion results based on the eigenvalues of the variance-covariance matrix of each parameter

over the five parallel MCMCs are sensible, since both the red and the blue line, which

are based on differing initial values, remain (almost) constant over all draws for the

three displayed specific measures and converge in the end. interval reports an 80%

confidence interval around the parameter mean, m2 a specific measure of variance, and

m3 a specific measure of skewness (see Mancini-Griffoli 2007, p. 58). For each of

the runs of MH simulations we obtain an acceptance probability Prob(ψs−1; ψ̃) of about

50%.
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Figure 3.6: Priors and posteriors II
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Figure 3.7: Priors and posteriors III

3.5.2 VAR

Before we estimate the VAR(p) model (3.15), we first have to determine the appropriate

lag order. The maximum lag order supported by EViews for VAR estimation for
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Figure 3.8: MCMC multivariate diagnostics

the given number of variables is p = 6. The Schwarz (SC) and Hannan-Quinn (HQ)

information criteria for this preliminary estimation, however, suggest that the optimal

lag order is p = 1 as can be seen from Table 3.7 in Appendix 3.10. Unlike, e.g., Akaike’s

information criterion (AIC), SC and HQ are strongly consistent information criteria (see

Lütkepohl 2005, pp. 150-151). Since we lose as little information as possible by using

only one lag, we follow their recommendation and restrict our attention to the analysis of

the subsequent simple VAR(1) model, which enables us to use 52 observations ranging

from 1994Q2 until 2007Q1, one observation less than in case of the DSGE (3.1) to

(3.14), for launching the estimation:

yt = ν +M1yt−1 + εt. (3.16)

The OLS estimation results of the VAR(1) model (3.16) including standard errors,

t-statistics, and the usual summary statistics are given in Table 3.3 below. Significant

t-statistics are indicated by boldface numbers.

As we can conclude from the t-statistics in Table 3.3, VAR(1) estimation suggests

that there is a statistically significant, positive influence of past values of Euro area and

US output gaps on their respective current values, which is not too surprising. There is

also a statistically significant, negative impact of the past Euro area output gap on the

current US nominal interest rate. We further observe a statistically significant, positive
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Table 3.3: VAR(1) estimation results

Vector Autoregression Estimates
Date: 05/20/10 Time: 15:55
Sample (adj.): 1994Q2 2007Q1
Incl. obs.: 52 after adjustments
Std. errors in ( ) & t-statistics in [ ]

X EU X US PI EU PI US TOT I EU I US

X EU(-1) 0.766383 -0.136643 -0.298464 -0.446885 -0.440509 -0.039116 -0.423885
(0.04827) (0.08861) (0.13424) (0.17722) (0.74646) (0.05341) (0.07161)
[15.8774] [-1.54216] [-2.22342] [-2.52160] [-0.59013] [-0.73241] [-5.91930]

X US(-1) 0.173376 0.871283 0.384487 0.473280 0.481585 0.064219 0.238397
(0.05944) (0.10910) (0.16529) (0.21822) (0.91914) (0.06576) (0.08818)
[2.91706] [7.98591] [2.32615] [2.16882] [0.52395] [0.97653] [2.70363]

PI EU(-1) 0.208025 -0.071884 0.493498 0.274085 -2.911130 0.369345 0.267275
(0.07693) (0.14122) (0.21395) (0.28246) (1.18971) (0.08512) (0.11413)
[2.70404] [-0.50902] [2.30664] [0.97036] [-2.44693] [4.33906] [2.34178]

PI US(-1) -0.191877 -0.000978 -0.164483 -0.127614 1.457977 -0.165792 -0.081844
(0.05995) (0.11006) (0.16673) (0.22013) (0.92717) (0.06634) (0.08895)
[-3.20039] [-0.00888] [-0.98650] [-0.57973] [1.57251] [-2.49925] [-0.92015]

TOT(-1) 0.006889 0.006172 0.004321 4.55E-05 0.084019 -0.004914 0.011651
(0.00908) (0.01666) (0.02524) (0.03332) (0.14036) (0.01004) (0.01346)
[0.75899] [0.37043] [0.17120] [0.00136] [0.59862] [-0.48935] [0.86531]

I EU(-1) -0.031524 -0.200199 0.183641 0.154181 -0.366408 0.896498 0.038799
(0.04936) (0.09061) (0.13727) (0.18122) (0.76331) (0.05461) (0.07323)
[-0.63868] [-2.20957] [1.33784] [0.85078] [-0.48003] [16.4154] [0.52984]

I US(-1) 0.052954 0.071359 -0.123698 -0.186613 1.027763 0.057739 0.938502
(0.02991) (0.05490) (0.08317) (0.10980) (0.46249) (0.03309) (0.04437)
[1.77065] [1.29983] [-1.48728] [-1.69950] [2.22222] [1.74488] [21.1522]

C -0.000602 -0.000356 0.002438 0.003498 -0.001024 -0.001794 -0.002181
(0.00042) (0.00077) (0.00117) (0.00154) (0.00649) (0.00046) (0.00062)
[-1.43442] [-0.46258] [2.08933] [2.27062] [-0.15774] [-3.86417] [-3.50274]

R-squared 0.964201 0.922108 0.336724 0.249272 0.309584 0.976353 0.972490
Adj. R-squared 0.958506 0.909716 0.231202 0.129838 0.199745 0.972591 0.968113
Sum sq. resids 0.000208 0.000701 0.001610 0.002806 0.049778 0.000255 0.000458
S.E. equation 0.002175 0.003993 0.006049 0.007986 0.033635 0.002407 0.003227
F-statistic 169.2995 74.41225 3.191050 2.087108 2.818529 259.5268 222.2027
Log likelihood 249.3569 217.7720 196.1706 181.7246 106.9523 244.0965 228.8451
Akaike AIC -9.282959 -8.068153 -7.237332 -6.681717 -3.805859 -9.080635 -8.494044
Schwarz SC -8.982768 -7.767961 -6.937141 -6.381526 -3.505667 -8.780444 -8.193852
Mean dependent -0.004399 -0.000339 0.004652 0.005402 -0.002205 -0.001036 0.003124
S.D. dependent 0.010677 0.013287 0.006898 0.008561 0.037599 0.014536 0.018070

Determinant resid cov. (df adj.) 1.09E-33
Determinant resid cov. 3.40E-34
Log likelihood 1487.210
Akaike information criterion -55.04656
Schwarz criterion -52.94522

impact of past Euro area PPI inflation on the current Euro area nominal interest rate,

which may indicate the relatively high inflation awareness of the ECB. Past observations

of US PPI inflation influence the current Euro area output gap significantly negatively.

Moreover, there is a statistically significant, positive impact of past values of the area

and US nominal interest rates on on their respective current values, which corroborates

our idea of the existence of interest-rate smoothing from Chapter 2. In addition, only

the means of the Euro area and the US nominal interest rates seem to significantly

differ from zero.

By performing autocorrelation LM tests with 10 lags as summarized in Table 3.8 in

Appendix 3.10, we cannot reject the null hypothesis of no serial correlation of residuals
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for most of the lags. White heteroskedasticity tests without cross terms as given in

Table 3.9 in Appendix 3.10 cannot reject the null hypothesis of homoskedasticity of the

residual variances. However, as all equations in (3.16) have the same regressors, the

presence of autocorrelation and/or heteroskedasticity would not render OLS estimation

inefficient since it would be equivalent to generalized least squares (GLS) estimation

(see Lütkepohl 2005, p. 71). We further conclude from Table 3.10 in Appendix 3.10

that Jarque-Bera tests cannot reject the null hypothesis that residuals are normally

distributed for the single variables with two degrees of freedom each.

Moreover, we want to investigate whether there are causal relationships between

(some of) the endogenous variables according to the data. We check for pairwise

Granger causality between the variables, whereby causality within this concept means

that if some generic random variable z is said to cause another generic random variable

z′, preceding information on the former variable should help to improve forecasting the

latter (see Lütkepohl 2005, p. 41).

As shown in Table 3.11 in Appendix 3.10, Granger causality tests with ten lags reject

the null hypothesis of no Granger causality for the subsequent relationships (at least at

the 10% significance level): x → î, x∗ → πH , î → x∗, π∗
F → πH , î → πH , î

∗ → π∗
F , î → î∗.

Besides these seven direct causal relationships, there may be even more indirect ones,

which cannot be immediately retrieved. Thus, the causality structure as a whole may

be quite complex. From the seven identified causal relationships, three are between

nominal and real variables.

3.6 Impulse-response analysis

Impulse-response analysis together with Granger causality testing in a VAR(p) setting

is sometimes summarized under the term structural analysis (see Lütkepohl 2005, pp.

41-66). Although testing for Granger causality in a DSGE framework is unnecessary,

comparing impulse responses based on estimated DSGEs to those based on estimated

VARs is quite common in the literature (see, e.g., Christiano et al. 2005 or DelNe-

gro et al. 2005).

The impulse-response analysis for both the DSGE (3.1) to (3.14) and the VAR(1)

(3.16) is carried out in terms of one standard deviation on the respective residuals

(η̂ or ε̂). Due to possible cross-correlations of residuals, Cholesky decompositions are

applied to the residual variance-covariance matrices while using the subsequent ordering

of variables: x, x∗, πH , π
∗
F ,∆t, î, î∗.

77



3.6.1 DSGE

In case of the DSGE (3.1) to (3.14), Figures 3.9 to 3.15 below show the posterior dis-

tributions of Bayesian impulse-response functions of the various endogenous variables,

which are computed from the estimated parameter values and residual variances as

obtained from their respective posterior distributions (see Mancini-Griffoli 2007, p.

54).
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Figure 3.9: Euro area productivity shock

Qualitatively, the results obtained from Figures 3.9 to 3.12, which shall be summa-

rized in the following for the reader’s convenience, are very similar to those obtained in

Chapter 2 for the calibrated model including the negative impact of a home-made pro-

ductivity shock on own output and the undesirable response of the TOT to a home-made

contractionary monetary policy shock. The major difference to Chapter 2, however, is

the presence of responses to an impulse on the global measurement error component as

shown by Figure 3.13.

1. The EU output gap, PPI inflation and nominal interest rates decrease before they

return to their zero-inflation steady-state values in response to an impulse on the

EU productivity shock (Figure 3.9). The TOT first augment, then drop below
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Figure 3.10: US productivity shock

their zero-inflation steady-state value until they gradually converge. There is also

an impact on all US endogenous variables, which is of opposite sign and quanti-

tatively small.

2. The US output gap, PPI inflation and nominal interest rates decrease before they

return to their zero-inflation steady-state values in response to an impulse on the

US productivity shock (Figure 3.10). The TOT first decrease, then jump above

their zero-inflation steady-state value until they gradually converge. There is also

an impact on all EU endogenous variables of opposite sign, which is quantitatively

larger compared to the impact of the EU productivity shock on foreign variables.

3. The EU output gap decreases, yet the EU PPI inflation and nominal interest rates

increase before all endogenous variables return to their zero-inflation steady-state

values in response to an impulse on the EU cost-push shock (Figure 3.11). The

TOT first plummet, then jump above their zero-inflation steady-state value until

they gradually converge. There is also an impact on all US endogenous variables,
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Figure 3.11: Euro area cost-push shock

which is of opposite sign except for the US output gap.

4. The US output gap decreases, yet the US PPI inflation and nominal interest rates

increase before all endogenous variables return to their zero-inflation steady-state

values in response to an impulse on the US cost-push shock (Figure 3.12). The

TOT first augment, then drop below their zero-inflation steady-state value until

they gradually converge. There is also an impact on all EU endogenous variables,

which is of opposite sign except for the EU output gap.

5. The Euro area output gap, PPI inflation and nominal interest rates increase

before all endogenous variables return to their zero-inflation steady-state values

in response to an impulse on the global measurement error component (Figure

3.13). The TOT augment before they return to their zero-inflation steady-state

value without any sudden drops to the negative. The impact on all US endogenous

variables is of opposite sign.

6. The EU output gap, PPI inflation and nominal interest rates decrease before all
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Figure 3.12: US cost-push shock

endogenous variables return to their zero-inflation steady-state values in response

to an impulse on the EU monetary policy shock (Figure 3.14). The TOT augment

before they return to their zero-inflation steady-state value without any sudden

drops to the negative. There is also an impact on all US endogenous variables,

which is of the same sign.

7. The US output gap, PPI inflation and nominal interest rates decrease before all

endogenous variables return to their zero-inflation steady-state values in response

to an impulse on the US monetary policy shock (Figure 3.15). The TOT plummet

before they return to their zero-inflation steady-state value without any sudden

jumps to the positive. There is also an impact on all EU endogenous variables,

which is of the same sign.

3.6.2 VAR

Figure 3.16 below shows the responses of the various endogenous variables on the seven

different impulses for the VAR(1) (3.16) in combined graphs.

81



5 10 15 20

1

2

3

4

x 10
−4 x_eu

5 10 15 20

−4

−3

−2

−1

x 10
−4 x_us

5 10 15 20

2
4
6
8

10
12

x 10
−4 pi_eu

5 10 15 20

−10

−8

−6

−4

−2

x 10
−4 pi_us

5 10 15 20

0.01

0.02

0.03

0.04

tot

5 10 15 20

5

10

15

x 10
−4 i_eu

5 10 15 20
−2

−1.5

−1

−0.5

x 10
−3 i_us

Figure 3.13: Global measurement error component

We will forego to interpret every single impulse response of the VAR(1) model, but

as far as the results obtained from Figure 3.16 substantially differ from those obtained

from Figures 3.9 to 3.15, they shall be briefly discussed in the following. What most

VAR(1) impulse responses have in common and what makes them differ from the DSGE

impulse responses, however, is that they show oscillating behavior and that it takes them

almost twice as long to converge.

From an economic theory perspective, the difference in impulse responses on Euro

area and US productivity shocks between the DSGE (3.1) to (3.14) and the VAR(1)

(3.16) is of special interest. The negative impact of productivity shocks on actual

output across countries in case of the DSGE reproduces the findings of the calibrated

DSGE from Chapter 2, which in turn is in line with Gaĺı (2002, pp. 17-18) and Gaĺı

& Rabanal (2004, pp. 36-37). The positive impact of productivity shocks on actual

output across countries in case of the VAR(1), however, is closer to the ideas of the

RBC literature (blue and red lines in Figure 3.16).

This make-believe contradiction can be explained as follows: since potential (or

flexible-price equilibrium) output is assumed to be hit more severe than actual output

by a positive technology shock because of the structure of the DSGE model (see Chapter
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Figure 3.14: Euro area monetary policy shock

2), actual output simply needs time to adjust. Because of the different structure of the

VAR(1) model, this phenomenon is not present in the latter case.

Again contrary to the DSGE (3.1) to (3.14) there does not seem to be any noteworthy

effect at all of Euro and US nominal interest rates on the TOT so that prosper thyself or

beggar thy neighbor effects in spirit of Corsetti & Pesenti (2001) are not observable

for VAR(1) (3.16) impulse responses.

3.7 Out-of-sample forecasting

Starting from the forecast origin 2007Q1, we perform out-of-sample mean forecasts of

the DSGE (3.1) to (3.14) on the one hand and the VAR(1) (3.16) on the other for a

forecast horizon of two years or eight quarters, i.e. until 2009Q1, to check if one of the

models were able to predict the severeness or, at least, the evolution of the economic

and financial crisis.

The reason why we employ out-of-sample forecasting is that using all information

available up to the forecast origin, the maximum information set possible, assures op-

timal prediction in the sense that the associated mean squared forecast error (MSFE),
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Figure 3.15: US monetary policy shock

which is interpretable as the squared loss of forecasting, is minimized (see Lütkepohl

2005, pp. 32-35).

In addition, we want to compare the forecast accuracy of the two models under

scrutiny with the forecast accuracy of one of the many model-free extrapolation methods

to serve as a benchmark (see Chatfield 2001, pp. 97-98): the additive seasonal Holt-

Winters method (HW), which is a generalization of the various univariate exponential

smoothing procedures accounting for possible trend and seasonal components:7

Lt,z = τ1,z(zt,z − St−s,z) + (1− τ1,z)(Lt−1,z + Tt−1,z), (3.17)

Tt,z = τ2,z(Lt,z − Lt−1,z) + (1− τ2,z)Tt−1,z, (3.18)

St,z = τ3,z(zt,z − Lt,z) + (1− τ3,z)St−s,z. (3.19)

In (3.17) to (3.19), zt denote actual values of the various variables, Lz the corresponding

local level, Tz the corresponding local trend, and Sz the corresponding additive seasonal

factor. As we investigate quarterly data, we have the following length of the seasonal

7Note that other univariate benchmarks, e.g. from the AR(I)MA class, would also be feasible and
will be taken up in Chapter 4.
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Figure 3.16: VAR(1) impulse responses

cycle: s = 4. The various smoothing parameters τ1,z, τ2,z, τ3,z (0 < τ1,zτ2,z, τ3,z < 1) are

estimated in EViews by minimizing the sum of squared errors.

Figures 3.17 to 3.20 below plot once more the actual values (blue lines) of the various

endogenous variables for the time period from 2007Q2 until 2009Q1 and also the eight-

step-ahead predictors of the three forecasting models: DSGE (3.1) to (3.14) (red lines),

VAR(1) (3.16) (orange lines), and HW (3.17) to (3.19) (green lines).

As we can see from Figure 3.17, only in case of the Euro area output gap the two
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Figure 3.17: Euro area and US output gaps – actual and forecasted values
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Figure 3.18: Euro area and US PPI inflation rates – actual and forecasted values

models could identify the downward swing of the business cycle, whereas for the US

output gap the extrapolation method performed better. In the case of PPI inflation

and the TOT none of the three methods was able to replicate the actual behavior

of these variables across countries (see Figures 3.18 and 3.19). Taking a look at the

nominal interest rates across countries, again the two models could at least indicate the

downward trend in the given period (see Figure 3.20).

Nonetheless, we have to conclude that none of the forecasting models was able to

predict at least the evolution of the crisis as a whole: the output gaps across countries

were way more negative than the three forecasting models were able to predict and

so were PPI inflation rates. Also the nominal interest rates were closer to their zero-

lower bound towards the end of the forecast horizon than the forecasting models could
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Figure 3.19: Terms of trade – actual and forecasted values
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Figure 3.20: Euro area and US nominal interest rates – actual and forecasted values

predict. As a consequence, shortening the sample by leaving out this period of irregular

economic behavior could indeed have added to improve the goodness of the estimation

and of the structural analysis in Sections 3.5 and 3.6.

3.8 Measuring forecast accuracy

If we now assess the forecasting performance of the DSGE (3.1) to (3.14), the VAR(1)

(3.16), and the HW (3.17) to (3.19) by quantitative measures of forecast accuracy we

have to rely on out-of-sample forecasts for a test set that lies within a period of regular

economic activity. Therefore, we want to compare the accuracy of the one-step-ahead

predictor for the time period from 2006Q2 until 2007Q1. In general, a better forecast
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accuracy of the DSGE (3.1) to (3.14) relative to the VAR(1) (3.16) would justify the

constraints in the DSGE as imposed by economic theory relative to the unconstrained

VAR specification (see Rubaszek & Skrzypczyński 2008, p. 499).

We evaluate the forecasting performance of the one-step-ahead predictor for 2006Q2,

2006Q3, 2006Q4, and 2007Q1.8 Hence, each of the four training sets comprises 49

observations so that we obtain four predictions based on estimations of equal quality:

1994Q1-2006Q1, 1994Q2-2006Q2, 1994Q3-2006Q3, and 1994Q4-2006Q4.

One commonly used quantitative forecast measure is the already mentioned MSFE,

which reads as follows for each of the seven variables (see Chatfield 2001, p. 150):

MSFE :=
1

m

N∑
t=N−m+1

[zt − ẑt−1(1)]
2 ,

where zt again denote actual and ẑt−1(1) forecasted values of the various variables and

m = 4 the number of one-step-ahead forecasts.

Nonetheless, we want to indicate the loss of forecasting in terms of standard de-

viations rather than variances, which could ease the interpretation. Therefore, we

introduce the root mean squared forecast error (RMSFE), which simply is the square

root of the MSFE:

RMSFE :=

√√√√ 1

m

N∑
t=N−m+1

[zt − ẑt−1(1)]
2.

Another commonly used linear measure of forecast accuracy is the mean absolute fore-

cast error (MAFE), which is given in the following (see Chatfield 2001, p. 150):

MAFE :=
1

m

N∑
t=N−m+1

|zt − ẑt−1(1)| .

This measure is more sensitive to small deviations from zero compared to the other

ones presented, but less sensitive to large deviations since it is not computed based on

squared losses. Besides the RMSFE and the MAFE used here, there are several other

measures of forecast accuracy (see, e.g., Chatfield 2001, chapter 6 for an overview).

Finally, empirical studies often suggest that combined forecasts yield more accurate

forecasts than the underlying single forecasts that are built on possibly misspecified

forecasting models (see Chatfield 2001, pp. 101-102). Hence, we choose to calculate

8Due to the computational burden associated with DSGE estimation, we restrict ourselves to re-
estimate all three forecasting models only four times on a quarterly basis.
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the various measures of forecast accuracy for an average of the forecasted values based

on the DSGE (3.1) to (3.14), the VAR(1) (3.16), and HW (3.17) to (3.19). As opposed

to multiple encompassing tests in spirit of Harvey & Newbold (2000), we simply

assign uniform weights since recent simulation experiments have shown little evidence

for the superiority of test-based combination compared to uniform weighting for the

one-step-ahead predictor in typical forecasting situations (see Costantini et al. 2010,

p. 11):

fCOMB =
1

3
fDSGE +

1

3
fV AR(1) +

1

3
fHW . (3.20)

Subsequently, Table 3.4 shows the RMSFE, whereas Table 3.5 shows the MAFE as

obtained for the DSGE (3.1) to (3.14), the VAR(1) (3.16), HW (3.17) to (3.19), and

the combined forecast (3.20) for the various endogenous variables, where the smallest

RMSFE and MAFE values for the single variables are given in boldface numbers.

Table 3.4: RMSFE of rival models

Model x x∗ πH π∗
F ∆t î î∗

DSGE 0.0044 0.0034 0.0085 0.0198 0.0077 0.0026 0.0042
V AR(1) 0.0006 0.0062 0.0069 0.0153 0.0338 0.0021 0.0021
HW 0.0025 0.0042 0.0075 0.0161 0.0280 0.0003 0.0037
COMB 0.0021 0.0042 0.0074 0.0166 0.0197 0.0013 0.0014

Table 3.5: MAFE of rival models

Model x x∗ πH π∗
F ∆t î î∗

DSGE 0.0040 0.0025 0.0075 0.0191 0.0064 0.0024 0.0034
V AR(1) 0.0006 0.0058 0.0060 0.0143 0.0318 0.0021 0.0016
HW 0.0021 0.0039 0.0066 0.0150 0.0192 0.0002 0.0033
COMB 0.0018 0.0035 0.0064 0.0161 0.0170 0.0011 0.0014

Observing Tables 3.4 and 3.5, we can derive the following. The RMSFE and the

MAFE qualitatively deliver the same results. The DSGE (3.1) to (3.14) performs best

for the US output gap and for the TOT. The VAR(1) (3.16) outperforms all other

models in case of the Euro area output gap and both PPI inflation rates. The HW
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benchmark (3.17) to (3.19) is able to predict best the Euro area nominal interest rate.

Only in the case of the US nominal interest rate the combined forecast (3.20) delivers

the most accurate result.

Finally, we want to investigate if the forecasting model characterized by the lowest

RMSFE/MAFE per variable can significantly outperform the remaining three forecast-

ing models. In doing so, we employ Diebold & Mariano (1995) (DM) tests. The null

hypothesis of this test is that the loss differentials (square of true minus forecasted val-

ues) of two different forecasting models LD(Model1), LD(Model2) are identical. The

DM test statistic is calculated as follows and is asymptotically ∼ N(0, 1) distributed:

DM :=
LD(Model1)− LD(Model2)√

V ar(Numerator)
.

The forecasting model under examination, i.e. Model1, would indeed significantly

outperform another model if the corresponding DM test statistic were significantly

different from zero and negative. In order to interpret the results from Table 3.6 below

correctly, we have to check whether the modulus of the DM test statistic is significantly

greater than zero as indicated by the one-sided p-value. Significance at the 10% level

is indicated by (∗), at the 5% level by (∗∗), and at the 1% level by (∗∗∗).

Taking a look at Table 3.6, we can conclude that we indeed see statistically signifi-

cant outperformance of the forecasting model characterized by the lowest RMSFE/MAFE

per variable in some cases. The VAR(1) improves at the 10% level on the DSGE for x

as well as on the combined forecast for π∗
F . The DSGE, however, improves at the 10%

level on the VAR(1) for x∗ and ∆t. The HW benchmark significantly outperforms the

DSGE at the 10% level and the VAR(1) even at the 1% level for î. In case of πH and

î∗ the best-performing models per variable (VAR(1) for πH , combined forecast for î∗)

seem to forecast equally well as the remaining three forecasting models.

3.9 Concluding remarks

Putting things together, we want to summarize once more the key findings obtained

from the above analysis, which constitutes an empirical application of DSGE models.

The estimated DSGE model qualitatively reproduces the findings of the calibrated

one from Chapter 2 with respect to most of the parameter values and to impulses

responses on the various exogenous error terms. Nonetheless, the degrees of price

stickiness in both countries are lower and the degrees of interest-rate inertia across

countries are higher than expected prior to estimation.
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Table 3.6: DM test statistics

Variable Models under comparison DM test statistic One-sided p-value

x V AR(1) vs. DSGE -1.3009∗ 0.0966
V AR(1) vs. HW -0.9843 0.1625
V AR(1) vs. COMB -0.9364 0.1745

x∗ DSGE vs. V AR(1) -1.4136∗ 0.0787
DSGE vs. HW -0.4125 0.3400
DSGE vs. COMB -0.6187 0.2681

πH V AR(1) vs. DSGE -0.5962 0.2755
V AR(1) vs. HW -0.3029 0.3810
V AR(1) vs. COMB -0.9935 0.1602

π∗
F V AR(1) vs. DSGE -0.7880 0.2153

V AR(1) vs. HW -0.1872 0.4258
V AR(1) vs. COMB -1.5907∗ 0.0558

∆t DSGE vs. V AR(1) -1.4498∗ 0.0736
DSGE vs. HW -0.6096 0.2711
DSGE vs. COMB -0.8572 0.1957

î HW vs. DSGE -1.5630∗ 0.0590
HW vs. V AR(1) -2.8197∗∗∗ 0.0024
HW vs. COMB -1.1266 0.1300

î∗ COMB vs. DSGE -0.9064 0.1824
COMB vs. V AR(1) -0.4139 0.3395
COMB vs. HW -1.0396 0.1493

Estimating an unconstrained VAR(1) does not yield the identical causal relation-

ships as implied by the DSGE. However, Granger causality tests suggest a rather com-

plex causality structure including causalities between real and nominal variables across

countries. In addition, impulse responses based on the VAR(1) sometimes differ from

the ones obtained for the DSGE.

Both models and the additive seasonal Holt-Winters method, a simple univariate

extrapolation method serving as a benchmark, were not able to predict the severeness

or, at least, the evolution of the economic and financial crisis for the forecasting period

from 2007Q2 until 2009Q1 since the current crisis is so at odds with regular economic

activity.

Finally, we obtain that the accuracy of DSGE forecasts, measured by the RMSFE

and the MAFE, can compete well with the accuracy of VAR(1), Holt-Winters, and uni-

formly combined forecasts. In two cases, the DSGE is able to significantly outperform

some of the rival forecasting models, but only at the 10% level.
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3.10 Appendix to Chapter 3

Table 3.7: Lag order selection criteria

VAR Lag Order Selection Criteria
Endogenous variables:
X EU X US PI EU PI US TOT I EU I US
Exogenous variables: C
Date: 05/20/10 Time: 15:43
Sample: 1994Q1 2007Q1
Included observations: 48

Lag LogL LR FPE AIC SC HQ

0 1083.224 NA 7.90e-29 -44.84269 -44.56980 -44.73956
1 1398.260 525.0588 1.24e-33* -55.92749 -53.74442* -55.10250*
2 1427.942 40.81247 3.16e-33 -55.12256 -51.02931 -53.57572
3 1466.872 42.17456 6.91e-33 -54.70300 -48.69956 -52.43429
4 1511.555 35.37429 1.88e-32 -54.52313 -46.60951 -51.53256
5 1662.022 75.23355* 1.63e-33 -58.75093* -48.92712 -55.03850

* indicates lag order selected by the criterion

Table 3.8: Autocorrelation LM tests

VAR Residual Serial Correlation LM Tests
Null Hypothesis: no serial correlation at lag order h
Date: 05/21/10 Time: 10:02
Sample: 1994Q1 2007Q1
Included observations: 52

Lags LM-Stat Prob

1 50.58592 0.4107
2 34.66013 0.9396
3 34.67918 0.9393
4 34.72418 0.9386
5 80.48746 0.0031
6 49.84059 0.4397
7 52.48338 0.3406
8 34.20719 0.9462
9 48.48202 0.4940
10 51.35996 0.3814

Probs from chi-square with 49 df.
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Table 3.9: White heteroskedasticity tests

VAR Residual Heteroskedasticity Tests: No Cross Terms
Date: 05/21/10 Time: 10:13
Sample: 1994Q1 2007Q1
Included observations: 52

Joint test:

Chi-sq df Prob.

410.3690 392 0.2515

Individual components:

Dependent R-squared F(14,37) Prob. Chi-sq(14) Prob.

res1*res1 0.221743 0.753009 0.7093 11.53063 0.6439
res2*res2 0.069429 0.197181 0.9989 3.610315 0.9974
res3*res3 0.316009 1.221017 0.3020 16.43244 0.2877
res4*res4 0.347451 1.407195 0.1985 18.06746 0.2037
res5*res5 0.316468 1.223616 0.3003 16.45635 0.2863
res6*res6 0.208172 0.694807 0.7647 10.82492 0.6997
res7*res7 0.224543 0.765270 0.6974 11.67622 0.6323
res2*res1 0.205830 0.684964 0.7738 10.70314 0.7092
res3*res1 0.230656 0.792352 0.6709 11.99412 0.6068
res3*res2 0.300976 1.137926 0.3602 15.65076 0.3352
res4*res1 0.192851 0.631456 0.8213 10.02827 0.7601
res4*res2 0.262143 0.938944 0.5290 13.63143 0.4775
res4*res3 0.313751 1.208305 0.3104 16.31504 0.2945
res5*res1 0.134668 0.411296 0.9617 7.002724 0.9346
res5*res2 0.236050 0.816605 0.6471 12.27459 0.5843
res5*res3 0.285573 1.056413 0.4247 14.84981 0.3885
res5*res4 0.245187 0.858485 0.6061 12.74975 0.5463
res6*res1 0.085973 0.248585 0.9963 4.470574 0.9919
res6*res2 0.199187 0.657359 0.7988 10.35770 0.7356
res6*res3 0.329965 1.301500 0.2528 17.15818 0.2478
res6*res4 0.309660 1.185485 0.3259 16.10233 0.3072
res6*res5 0.321969 1.254983 0.2804 16.74238 0.2702
res7*res1 0.162782 0.513857 0.9095 8.464673 0.8637
res7*res2 0.178314 0.573527 0.8681 9.272339 0.8132
res7*res3 0.289133 1.074937 0.4094 15.03492 0.3758
res7*res4 0.283599 1.046218 0.4332 14.74715 0.3957
res7*res5 0.336272 1.338979 0.2323 17.48613 0.2312
res7*res6 0.212891 0.714818 0.7459 11.07032 0.6805
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Table 3.10: Jarque-Bera normality tests

VAR Residual Normality Tests
Orthogonalization: Cholesky (Lutkepohl)
Null Hypothesis: residuals are multivariate normal
Date: 05/21/10 Time: 10:06
Sample: 1994Q1 2007Q1
Included observations: 52

Component Skewness Chi-sq df Prob.

1 -0.167268 0.242482 1 0.6224
2 0.566265 2.779018 1 0.0955
3 0.047331 0.019415 1 0.8892
4 -0.088543 0.067945 1 0.7944
5 -0.177099 0.271823 1 0.6021
6 -0.083489 0.060410 1 0.8058
7 -0.323550 0.907269 1 0.3408

Joint 4.348363 7 0.7389

Component Kurtosis Chi-sq df Prob.

1 1.745038 3.412348 1 0.0647
2 2.420606 0.727344 1 0.3937
3 2.420122 0.728561 1 0.3934
4 2.058128 1.922098 1 0.1656
5 1.947782 2.398853 1 0.1214
6 1.700503 3.658835 1 0.0558
7 2.158985 1.532496 1 0.2157

Joint 14.38053 7 0.0448

Component Jarque-Bera df Prob.

1 3.654830 2 0.1608
2 3.506362 2 0.1732
3 0.747976 2 0.6880
4 1.990044 2 0.3697
5 2.670676 2 0.2631
6 3.719245 2 0.1557
7 2.439765 2 0.2953

Joint 18.72890 14 0.1756
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Table 3.11: Pairwise Granger causality tests

Pairwise Granger Causality Tests
Date: 05/21/10 Time: 10:59
Sample: 1994Q1 2007Q1
Lags: 10

Null Hypothesis: Obs F-Statistic Prob.

X US does not Granger Cause X EU 43 0.67939 0.7319
X EU does not Granger Cause X US 0.95513 0.5061

PI EU does not Granger Cause X EU 43 0.35857 0.9520
X EU does not Granger Cause PI EU 1.16930 0.3610

PI US does not Granger Cause X EU 43 1.09585 0.4068
X EU does not Granger Cause PI US 0.92800 0.5269

TOT does not Granger Cause X EU 43 1.17440 0.3579
X EU does not Granger Cause TOT 1.51097 0.2010

I EU does not Granger Cause X EU 43 1.35611 0.2633
X EU does not Granger Cause I EU 2.64184 0.0276

I US does not Granger Cause X EU 43 1.26621 0.3070
X EU does not Granger Cause I US 1.31270 0.2837

PI EU does not Granger Cause X US 43 0.78169 0.6457
X US does not Granger Cause PI EU 2.37630 0.0435

PI US does not Granger Cause X US 43 1.25974 0.3104
X US does not Granger Cause PI US 0.86239 0.5790

TOT does not Granger Cause X US 43 0.93548 0.5212
X US does not Granger Cause TOT 0.86492 0.5770

I EU does not Granger Cause X US 43 1.96580 0.0896
X US does not Granger Cause I EU 0.98045 0.4872

I US does not Granger Cause X US 43 1.04164 0.4433
X US does not Granger Cause I US 0.98586 0.4832

PI US does not Granger Cause PI EU 43 2.24297 0.0549
PI EU does not Granger Cause PI US 1.24243 0.3196

TOT does not Granger Cause PI EU 43 0.89177 0.5554
PI EU does not Granger Cause TOT 1.25337 0.3137

I EU does not Granger Cause PI EU 43 1.95584 0.0912
PI EU does not Granger Cause I EU 0.35167 0.9549

I US does not Granger Cause PI EU 43 1.08300 0.4152
PI EU does not Granger Cause I US 1.28794 0.2959

TOT does not Granger Cause PI US 43 1.52785 0.1951
PI US does not Granger Cause TOT 0.99948 0.4733

I EU does not Granger Cause PI US 43 1.59536 0.1732
PI US does not Granger Cause I EU 0.54570 0.8390

I US does not Granger Cause PI US 43 2.99300 0.0153
PI US does not Granger Cause I US 1.13350 0.3828

I EU does not Granger Cause TOT 43 0.83999 0.5973
TOT does not Granger Cause I EU 1.37077 0.2567

I US does not Granger Cause TOT 43 0.89385 0.5537
TOT does not Granger Cause I US 1.76188 0.1289

I US does not Granger Cause I EU 43 1.71166 0.1409
I EU does not Granger Cause I US 3.80672 0.0043
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Chapter 4

New variants of the DSGE model

and a different pair of countries

4.1 Introduction

Two-country DSGE models as the one developed in Chapter 2 are usually applied

for modeling economic interrelations between two large open economies such as the

EU (or the Euro area) and the US. As laid out in Chapter 3, the parameters of the

DSGE structure can be comfortably estimated by applying Bayesian techniques and the

estimated model can further be used for forecasting endogenous variables and assessing

the model’s forecasting performance compared to rival models. In principle, the latter

is also possible for small-open-economy DSGE models for which Gaĺı & Monacelli

(2005) can be taken as prototypical example.

Meanwhile, there exist estimated open-economy New Keynesian models, too, which

are explicitly tuned to the Austrian (see Breuss & Rabitsch 2009) and the Hungarian

economy (see Jakab & Világi 2008). Similar models respecting country-specific

particularities also exist for many other small open economies (see, e.g., the estimated

model by Christiano et al. 2009 for the case of Sweden or the simulated model by

Cuche-Curti et al. 2009 for the case of Switzerland) and are usually developed and

used by the countries’ monetary authorities.

After concentrating on a pair of large countries such as the EU and the US, we

now shift the focus to the interior of one of these economies, namely the EU. We apply

the two-country model from Chapters 2 and 3 to Austria and Hungary, two European

countries of approximately equal size that share a common border and whose economies

should be treated as small, of course. In the case of small open economies, European

or world variables certainly have an impact on Austrian and Hungarian variables, but
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not vice versa. Austria and Hungary are being integrated within the European context

since the fall of the Iron Curtain in 1989. The integration is of political as well as

of economic nature since both countries are members of the EU (Austria since 1995,

Hungary since 2004) and, hence, also of the Common Market.

Alternatively, the subsequent exercise could be performed for two different regions

within one large economy, e.g. two other EU members or two US states. Basically, there

are three reasons why we want to concentrate on Austria and Hungary in particular.

1. As can be seen from recent numbers in Table 4.1 below (see OECD 2010), trade in

goods between the two countries (all commodities) is non-negligible compared to

trade with the countries’ largest trading partners (the EU of 27 for both countries)

and with the rest of the world. This may suggest that the impact of Austrian

and Hungarian macro variables on one another may be non-negligible as well (see

Section 4.3).

2. Austria and Hungary use different currencies (the Euro in Austria, the Forint in

Hungary) such that the nominal exchange rate of these two currencies typically

is not equal to 1. Besides PPI inflation rates, the nominal exchange rate then

constitutes an additional source for movements in the TOT.

3. If we neglect other countries in the analysis, we can isolate the impact Austrian

macro variables may have on Hungarian ones and vice versa.1

In this chapter, we want to compare the forecasting accuracy of the two-country

DSGE model from Chapter 2 and of several new variants thereof in terms of the RMSFE

with Bayesian and classical (vector) autoregressive benchmarks. In particular, we will

address the forecasting performance [1] of the original open-economy DSGE with PPI

inflation under the interest-rate rules, [2] of an open-economy DSGE with CPI inflation

under the interest-rate rules, [3] and of the closed-economy DSGE with CPI inflation

under the interest-rate rule that is nested in the open-economy structure. Consistently,

we employ open-economy as well as closed-economy benchmarks comprising different

vectors of endogenous variables.

Our hypothesis is the following: if the impact of economic interrelations between

Austria and Hungary were non-negligible, using open-economy models should add in-

1There are other studies on two neighboring countries within the EU that, e.g., explore the ef-
fects and transmission channels of macroeconomic shocks between these countries while neglecting the
remaining EU members (see Prettner & Kunst 2009 for the case of Austria and Germany).
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Table 4.1: Commodity trade of Austria and Hungary in 2008

Trade in goods Austria Hungary

Imports from the other country
(in per cent of imports 3.01% 7.10%
from the rest of the world)

Imports from the other country
(in per cent of imports 3.69% 9.04%
from the EU of 27)

Exports to the other country
(in per cent of exports 3.86% 5.61%
to the rest of the world)

Exports to the other country
(in per cent of exports 5.06% 6.26%
to the EU of 27)

formation to the forecasting procedure of the output gaps and CPI inflation rates, the

macro variables we are mostly interested in, so that those could be predicted more ac-

curately. These economic interrelations will be directly captured by movements in the

TOT and indirectly within the remaining variables. As the reader will see in Section

4.3, pairwise Granger causality tests already suggest that indeed preceding information

on some variables of one country should help to improve forecasting the variables of

central interest of the other.

As we will further see in Section 4.3, both Austrian and Hungarian variables are not

only positively correlated with one another, but are both strongly correlated with the

corresponding Euro area variables. Thus, distinctly Austrian time series cannot simply

be taken as proxies for Euro area time series.

For the short-run nominal interest rate and the currency of Austria we have to

rely on Euro area variables, anyway. By doing that, we can account for two things.

First, we can mitigate an omitted variable bias possibly caused by completely neglecting

the influence of Euro area variables, especially on the Austrian economy. Second, by

including Euro area variables we are able to capture some sort of rest of the world,

which the reader may expect to encounter in a typical small-open-economy analysis.

In addition to the different variants of the two-country DSGE model to be estimated

and forecasted with, there are some more differences to Chapter 3. We not only treat

a different pair of countries and, hence, use a different dataset, but also employ a

different calibration, which is based on Breuss & Rabitsch (2009) and is more likely
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to resemble plausible values for the structural parameters of the Austrian economy.

This time, we will concentrate on measuring forecasting accuracy with respect to rival

models. Since we only possess a small sample, we will keep the observations during the

economic and financial crisis for estimation and forecasting. Despite possible caveats

arising from this procedure, it may be interesting to see how well the variants of the

DSGE model are able to forecast in times of economic turmoil.

The main results of the analysis based on quarterly Eurostat and OECD data rang-

ing from 2000Q1 until 2009Q3 are summarized subsequently.

Bayesian and classically estimated (vector) autoregressive benchmarks deliver the

most accurate one-step-ahead forecasts in terms of the RMSFE for Austrian and Hun-

garian output gaps and CPI inflation rates with respect to the different variants of the

two-country DSGE model. However, the benchmarks cannot significantly outperform

the DSGE models. For three out of four variables (Austrian and Hungarian output

gaps, Hungarian CPI inflation) open-economy models perform best with respect to

other single forecasts.

If we additionally calculate various uniformly combined forecasts, again for three

out of four variables (Austrian and Hungarian output gaps, Austrian CPI inflation)

open-economy forecast combinations perform best with respect to other combined fore-

casts. In case of Austrian and Hungarian CPI inflation rates, the combined forecasts

perform better than their best single forecasts, where these two combined forecasts also

incorporate single DSGE forecasts.

Hence, we conclude that even if single DSGE forecasts were not able to deliver the

most accurate one-step-ahead forecasts, the additional information provided by these

forecasting models seems to be valuable for uniform forecast combination in case of

CPI inflation rates across countries. Since open-economy models deliver the lowest

RMSFE for three out of four variables across single and combined forecasts, taking

into account the non-negligible impact of economic interrelations between Austria and

Hungary indeed leads to a more accurate prediction of most of their macro variables. As

a consequence, applying the same forecasting models used here to calculate combined

forecasts of other pairs of regions within the EU or the US may be appealing for future

research.

The rest of this chapter is structured as follows. Section 4.2 briefly outlines the

two-country DSGE model and introduces two new variants. Section 4.3 describes the

quarterly Eurostat and OECD data ranging from 2000Q1 until 2009Q3 to be used for

estimation and forecasting. Section 4.4 proceeds with calibration and prior distribu-

tions of the model parameters. Section 4.5 compares the forecast accuracy in terms
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of the RMSFE of out-of-sample one-step-ahead forecasts based on the variants of the

model with respect to several (B)(V)AR benchmarks and various uniformly combined

forecasts. Finally, Section 4.6 concludes. Additional tables are given in Appendix 4.7.

4.2 New variants of the DSGE model

For the reader’s convenience, we once again state the two-country DSGE model from

Chapters 2 and 3 in the following. Differing from the previous analysis and as mentioned

in Section 4.1, we now turn attention to the forecast accuracy of CPI inflation of both

countries under scrutiny. Therefore, we have to include equations (4.3) and (4.4), which

correspond to equations (2.54) and (2.55) from Chapter 2. e, e∗ again denote stationary

AR(1) measurement errors in spirit of Adolfson et al. (2007) as already introduced

for the TOT in Chapter 3.
The domestic country in the present case corresponds to Austria and the foreign

country, whose variables are indexed by superscript asterisks, corresponds to Hungary.
Besides that, all variables, parameters, and macroeconomic shocks are again defined as
in Chapters 2 and 3. One difference to the previous analysis is that from here onwards
we do not impose the a-priori restriction that the Austrian National Bank does not
react at all to the Austrian output gap, as can be seen in equation (4.7) by ι > 0.

xt = Et[xt+1] +
1

ρ
{Et[πt+1,H ]− ît}+ (n− 1)(ξρ− ξ)

(ξ + ρ)ρ
Et[∆tt+1] +

ξ + 1

ξ + ρ
Et[∆at+1], (4.1)

x∗
t = Et[x

∗
t+1] +

1

ρ
{Et[π

∗
t+1,F ]− î∗t }+

n(ξρ− ξ)

(ξ + ρ)ρ
Et[∆tt+1] +

ξ + 1

ξ + ρ
Et[∆a∗t+1], (4.2)

πt = πt,H − (n− 1)∆tt + et, (4.3)

π∗
t = π∗

t,F − n∆tt + e∗t , (4.4)

πt,H = βEt[πt+1,H ] +
(1− δ)(1− δβ)(ρ+ ξ)

δ
xt + ut, (4.5)

π∗
t,F = βEt[π

∗
t+1,F ] +

(1− δ∗)(1− δ∗β)(ρ+ ξ)

δ∗
x∗
t + u∗

t , (4.6)

ît = απt,H + ιxt + ωît−1 + vt, (4.7)

î∗t = α∗π∗
t,F + ι∗x∗

t + ω∗î∗t−1 + v∗t , (4.8)

∆tt = ît−1 − î∗t−1 + π∗
t,F − πt,H + dt. (4.9)

In addition to the original model above, we introduce two new variants for estimation

and measurement of forecast accuracy.

First, we want to replace PPI by CPI inflation in the interest-rate rules (4.7) and

(4.8) and hence employ a CITR rather than a DITR (see Chapter 2 or Gaĺı & Mona-

celli 2005, p. 723). Since these equations stem from ad-hoc assumptions anyway, a

change in those variables does not alter the consistency of the rest of the model.

100



Hence, for a CITR, equations (4.7) and (4.8) rearrange as follows:

ît = απt + ιxt + ωît−1 + vt,

î∗t = α∗π∗
t + ι∗x∗

t + ω∗î∗t−1 + v∗t .

Second, we notice that similar to Clarida et al. (2001) the closed-economy model of

Austria or Hungary, respectively, is incorporated in (4.1) to (4.9): if we set the country

size n = 1, the TOT effect in equation (4.1) disappears and the shock-free equation

(4.3) implies π = πH .

Hence, for the closed economy the above model collapses to equations (4.1), (4.5),

and (4.7) once we have replaced PPI with CPI inflation:

xt = Et[xt+1] +
1

ρ
{Et[πt+1]− ît}+ ξ + 1

ξ + ρ
Et[∆at+1],

πt = βEt[πt+1] +
(1− δ)(1− δβ)(ρ+ ξ)

δ
xt + ut,

ît = απt + ιxt + ωît−1 + vt.

Altogether, we can now estimate and forecast with three different variants or four

different models.

• AUT/HUNPPI ,

• AUT/HUNHCPI ,

• AUTHCPI , and HUNHCPI .

4.3 Quarterly data for Austria and Hungary

Our sample of quarterly data for Austria and Hungary for the nine endogenous variables

ranges from 2000Q1 to 2009Q3 and only comprises 39 observations. The shortness of

the sample is due to the availability of PPI inflation rates for the Austrian economy.

The data are either taken from Eurostat (2010) (output gaps) or from OECD (2010)

(all other variables). More precisely, we use the subsequent time series.

• The Austrian and Hungarian output gaps x, x∗ are calculated from the natural

logarithm of the actual volume at constant prices of the respective seasonally and
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working-day adjusted GDP minus its Hodrick-Prescott filtered value.

• The Austrian and Hungarian CPI inflation rates π, π∗ are given by the percentage

change to the previous period of the harmonized consumer price indices.

• The Austrian and Hungarian PPI inflation rates πH , π
∗
F are proxied by the per-

centage change to the previous period of the domestic producer price indices in

manufacturing. We again restrict ourselves to these prices since the model still

assumes that firms employ producer currency pricing and that only final goods

are produced and traded.

• The Austrian and Hungarian National Banks’ short-run nominal interest rates in

per cent per annum i, i∗ are proxied by the subsequent times series: the three-

month EURIBOR serving as official successor of the Vienna Interbank Offered

Rate (VIBOR) since January 1999 in case of i and the interest rate on unsecured

Hungarian Forint interbank lending transactions of three months’ duration in case

of i∗. Both interest rates have to be subtracted by their common annualized zero-

inflation steady-state value ≈ 0.04 before entering the DSGE estimation in order

to obtain the desired percentage-point deviations î, î∗ (see Section 4.4).

• Again, we have to calculate the TOT ∆t ourselves, which is done by employing

the subsequent formula ∆tt = ∆st + π∗
t,F − πt,H (see Chapters 2 and 3), where

∆st denotes the first difference of the natural logarithm of the monthly average

of the nominal exchange rate of Euro per Hungarian Forint.

Note that we are aware that the economic and financial crisis from 2007Q2 onwards

has affected Austria and Hungary, too. Differing from Chapter 3, however, we decide

to keep the observations after 2007Q1 in our sample because it already is very short.

Despite possible caveats arising from this procedure, it may be interesting to see how

well the variants of the DSGE model AUT/HUNPPI , AUT/HUNHCPI , AUTHCPI , and

HUNHCPI are able to forecast with respect to various benchmarks in times of economic

turmoil.

Figures 4.1 and 4.2 below plot the variables of central interest for this chapter: Aus-

trian and Hungarian output gaps as well as CPI inflation rates. If we investigate Figure

4.1, we can conclude that due to the economic and financial crisis, both the Austrian
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(since 2009Q1) and the Hungarian (since 2008Q4) output gaps have been negative.

Taking a look at Figure 4.2, one can immediately see that Hungarian CPI inflation

has been notably higher and more volatile than its Austrian equivalent throughout the

sample and that CPI inflation in both countries follows some seasonal pattern.
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Figure 4.1: Austrian and Hungarian output gaps
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Figure 4.2: Austrian and Hungarian CPI inflation rates
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As can be seen from Table 4.7 in Appendix 4.7, pairwise Granger causality tests

with four lags reject the null hypothesis of no Granger causality for the subsequent

relationships (at least at the 10% significance level): x∗ → x, x → π, x → î,∆t →
x, x∗ → π, x∗ → πH , x

∗ → π∗
F , x

∗ → î, π∗ → π, π → î,∆t ↔ π∗, î → πH ,∆t → î∗ with

↔ denoting a mutual causality, where cause and effect cannot be clearly distinguished.

Hence, the impact of Austrian and Hungarian macro variables on one another indeed

seems to be non-negligible in at least eight cases.

Tables 4.8 to 4.11 in Appendix 4.7 further show that not only Austrian and Hun-

garian variables are positively correlated with one another, but that both are strongly

correlated with their Euro area equivalents. The positive correlation of Hungarian with

Euro area variables is most prominent for the output gaps and PPI inflation rates, but

is also present for CPI inflation and nominal interest rates. In the case of Austrian vari-

ables, the correlation with Euro area variables is generally very high. The correlation

between Austrian and Euro area nominal interest rates, however, is perfect because we

employ the same time series.

Since Hungarian variables themselves are often highly correlated with Euro area

variables, Austrian times series cannot be simply interpreted as proxies for Euro area

time series. Nonetheless, the use of Euro area time series for some of the Austrian

variables (Euro area nominal interest rate and the nominal exchange rate of Euro per

Hungarian Forint to calculate the TOT) should mitigate an omitted variable bias, which

we would possibly face when completely ignoring Euro area variables.

4.4 Calibration and estimation

Before we assess the forecasting performance of the four models, we first have to cal-

ibrate and estimate them using the same Bayesian techniques as laid out in Chapter

3.2 The calibration itself, however, will be somewhat different and is based on Breuss

& Rabitsch (2009, pp. 139-144) for both countries. Hence, α = α∗ etc. Concerning

the choice of fixed parameter values as well as prior means and standard deviations for

their DSGE model of Austria, these authors are guided by previous studies on New

Keynesian models, e.g. Smets & Wouters (2003).

In order to tie in with most of the existing literature we choose to keep those

parameters fixed that are said to be weakly identified, i.e. the parameters stemming

from the utility function (2.1): β = 0.99, ρ = 0.67, ξ = 1.5. As before, β = 0.99

2Note that again all computations associated with Bayesian inference are again carried out using
the Dynare preprocessor for Matlab. All other computations are performed in EViews.
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implies zero-inflation steady-state nominal and real interest rates of approximately 4%

per annum for both countries. Since country size is not an economic parameter, we

fix it to n = 0.45, which roughly corresponds to the population of Austria relative to

Hungary in 2008 if the world were just made up of these two countries (Austria: approx.

8.3 million inhabitants, Hungary: approx. 10.0 million inhabitants, see OECD 2010).

The sensitivity of the central banks towards the current output gaps is also fixed to

ι = ι∗ = 0.2 since we only possess a small sample. In consequence, we use the prior

PDFs given in Table 4.2 below for the remaining parameters according to their domain

as implied by economic theory (see Chapter 3).

Table 4.2: Prior information

Parameter Domain Prior PDF Mean Std. Dev.

δ [0, 1) Beta 0.6 0.15
α (−∞,+∞) Normal 1.7 0.15
ω [0, 1) Beta 0.8 0.05

ζa [0, 1) Beta 0.8 0.05
ζe [0, 1) Beta 0.8 0.05
ζu [0, 1) Beta 0.8 0.05
ζv [0, 1) Beta 0.8 0.05
ζd [0, 1) Beta 0.8 0.05

σηa [0,+∞) Inv. Gamma-1 0.1 +∞
σηe [0,+∞) Inv. Gamma-1 0.1 +∞
σηu [0,+∞) Inv. Gamma-1 0.1 +∞
σηv [0,+∞) Inv. Gamma-1 0.1 +∞
σηd

[0,+∞) Inv. Gamma-1 0.1 +∞

Bayesian estimation is carried out by employing the MH algorithm. The only dif-

ference to Chapter 3 is that we have to set mh_jscale=0.1 in case of AUT/HUNHCPI

to obtain a reasonable acceptance probability of 25% for each of the runs of MH simu-

lations.3

4.5 Measuring forecast accuracy

Differing from Chapter 3, we are only interested in forecasting the output gaps x, x∗

and CPI inflation rates π, π∗. We evaluate the forecasting performance of the one-step-

3Estimation results (posterior means and standard deviations, graphs of posterior PDFs) and con-
vergence results of the five parallel MCMCs for each of the models comparable to Chapter 3 are not
reported here but are available on request.
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ahead predictor for 2008Q4, 2009Q1, 2009Q2, and 2009Q3 so that each of the four

training sets (2000Q1-2008Q3, 2000Q2-2008Q4, 2000Q3-2009Q1, and 2000Q4-2009Q2)

comprises 35 observations.

Besides the four DSGE models AUT/HUNPPI , AUT/HUNHCPI , AUTHCPI , and

HUNHCPI , we will estimate and forecast with several multivariate (B)VAR and also

univariate AR benchmarks with ad-hoc lag length of p = 1 (see, e.g., Smets &

Wouters 2004, p. 847, Adolfson et al. 2007, p. 309, or Pichler 2008, p. 19

for other articles using (B)VAR benchmarks with ad-hoc lag order).4 Since we want

to investigate whether taking into account the economic interrelations between the two

countries can improve the predictive accuracy of their output gaps and CPI inflation

rates, we consistently employ closed- and open-economy (vector) autoregressive bench-

marks as done, e.g., by Adolfson et al. (2007, p. 306).

We distinguish the forecasts based on classically estimated VARs using OLS from

those that are estimated in a Bayesian fashion since the latter may constitute a more

natural benchmark for DSGEs as they use similar estimation techniques. Moreover,

unrestricted VARs may be overparameterized and, hence, may perform poorly in out-

of-sample forecasting (see Smets & Wouters 2007, p. 595). For BVAR estimation

and forecasting we employ the Minnesota prior, an informative prior developed by

Doan et al. (1984) for an otherwise unconstrained VAR with intercept. For further

details on the Minnesota prior see, e.g., Bauwens et al. (1999, pp. 269-272).

Thus, we employ the subsequent closed- and open-economy benchmarks (all with

lag order p = 1).

• AR(x), AR(x∗), AR(π), AR(π∗),

• (B)V AR(x, π), (B)V AR(x∗, π∗),

• (B)V AR(x, π, πH), (B)V AR(x∗, π∗, π∗
F ),

• (B)V AR(x, π, î), (B)V AR(x∗, π∗, î∗),

• (B)V AR(x, x∗, π, π∗),

4For the generic VAR(p) model see equation (3.15) in Chapter 3.
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• (B)V AR(x, x∗, π, π∗, πH , π
∗
F ), and

• (B)V AR(x, x∗, π, π∗, î, î∗).

Since the MAFE (usually) delivers qualitatively similar results as the RMSFE (see

Chapter 3), this time we concentrate on the RMSFE as the only quantitative measure of

forecast accuracy. Results of single forecasts are summarized in Table 4.3 below, where

the smallest RMSFE values for the single variables are given in boldface numbers.

Table 4.3: RMSFE of single forecasts

Model x x∗ π π∗

AUT/HUNPPI 0.0182 0.0240 0.0420 0.0258
AUT/HUNHCPI 0.1055 0.1579 0.0424 0.0283
AUTHCPI , HUNHCPI 0.0178 0.0239 0.0050 0.0166

AR(x), AR(x∗), AR(π), AR(π∗) 0.0174 0.0204 0.0045 0.0113

V AR(x, π), V AR(x∗, π∗) 0.0179 0.0204 0.0071 0.0102
V AR(x, π, πH), V AR(x∗, π∗, π∗

F ) 0.0176 0.0201 0.0074 0.0099

V AR(x, π, î), V AR(x∗, π∗, î∗) 0.0167 0.0210 0.0069 0.0129

V AR(x, x∗, π, π∗) 0.0161 0.0180 0.0071 0.0107
V AR(x, x∗, π, π∗, πH , π∗

F ) 0.0167 0.0181 0.0076 0.0099

V AR(x, x∗, π, π∗, î, î∗) 0.0161 0.0185 0.0071 0.0137

BV AR(x, π), BV AR(x∗, π∗) 0.0177 0.0205 0.0059 0.0109
BV AR(x, π, πH), BV AR(x∗, π∗, π∗

F ) 0.0170 0.0200 0.0065 0.0115

BV AR(x, π, î), BV AR(x∗, π∗, î∗) 0.0172 0.0212 0.0058 0.0129

BV AR(x, x∗, π, π∗) 0.0160 0.0208 0.0065 0.0107
BV AR(x, x∗, π, π∗, πH , π∗

F ) 0.0156 0.0201 0.0066 0.0104

BV AR(x, x∗, π, π∗, î, î∗) 0.0161 0.0217 0.0073 0.0095

Regarding single forecasts, we can conclude that BV AR(x, x∗, π, π∗, πH , π
∗
F ) deliv-

ers the highest forecast accuracy for x, V AR(x, x∗, π, π∗) for x∗, AR(π) for π, and

BV AR(x, x∗, π, π∗, î, î∗) for π∗. Thus, Bayesian and classically estimated benchmarks

outperform the DSGE models in two cases each. The DSGE AUT/HUNHCPI deliv-

ers particularly high RMSFEs for the forecasts of the Austrian and Hungarian output

gaps. However, for three out of four variables, open-economy models are preferred over

closed-economy models.

In order to check whether the forecasting model characterized by the lowest RMSFE

per variable can significantly outperform the four DSGE models, we again employ DM
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tests (see Chapter 3). Significance at the 10% level would again be indicated by (∗),

at the 5% level by (∗∗), and at the 1% level by (∗∗∗). Nonetheless, as we see from

Table 4.4, none of the autoregressive benchmarks delivers significantly more accurate

forecasts than the four DSGE models, not even with respect to AUT/HUNHCPI .

Table 4.4: DM test statistics of single forecasts

Variable Models under comparison DM test statistic One-sided p-value

x BV AR(x, x∗, π, π∗, πH , π∗
F ) vs. AUT/HUNPPI -0.6744 0.2500

BV AR(x, x∗, π, π∗, πH , π∗
F ) vs. AUT/HUNHCPI -0.9167 0.1798

BV AR(x, x∗, π, π∗, πH , π∗
F ) vs. AUTHCPI -0.6289 0.2647

x∗ V AR(x, x∗, π, π∗) vs. AUT/HUNPPI -1.0141 0.1553
V AR(x, x∗, π, π∗) vs. AUT/HUNHCPI -0.7749 0.2192
V AR(x, x∗, π, π∗) vs. HUNHCPI -0.9989 0.1589

π AR(π) vs. AUT/HUNPPI -1.0153 0.1550
AR(π) vs. AUT/HUNHCPI -1.1024 0.1351
AR(π) vs. AUTHCPI -0.1137 0.4547

π∗ BV AR(x, x∗, π, π∗, î, î∗) vs. AUT/HUNPPI -0.7923 0.2141

BV AR(x, x∗, π, π∗, î, î∗) vs. AUT/HUNHCPI -0.6771 0.2492

BV AR(x, x∗, π, π∗, î, î∗) vs. HUNHCPI -0.6245 0.2661

Similar to Chapter 3, we calculate the RMSFE of various uniformly combined fore-

casts. Besides a combined forecast across all forecasting models, we calculate com-

bined forecasts across DSGE models, (V)AR benchmarks, BVAR benchmarks, closed-

economy models, and open-economy models.

• COMBALL,

• COMBDSGE, COMBV AR, COMBBV AR,

• COMBCLOSED, and COMBOPEN .

Results of combined forecasts are given in Table 4.5 below, where the smallest RMSFE

values for the single variables are again given in boldface numbers.

Observing Table 4.5 we can conclude that with COMBBV AR, COMBV AR, and

COMBALL for three out of four variables (x, x∗, π) combinations including open-economy

forecasts are preferred. Only for π∗ the purely closed-economy combined forecast

COMBCLOSED outperforms the other combinations. Moreover, with COMBALL and
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Table 4.5: RMSFE of combined forecasts

Model x x∗ π π∗

COMBALL 0.0184 0.0202 0.0038 0.0107

COMBDSGE 0.0406 0.0525 0.0269 0.0143
COMBV AR 0.0166 0.0195 0.0066 0.0108
COMBBV AR 0.0166 0.0207 0.0062 0.0109

COMBCLOSED 0.0173 0.0208 0.0056 0.0094
COMBOPEN 0.0209 0.0240 0.0078 0.0130

COMBCLOSED two combinations incorporating single DSGE forecasts deliver the low-

est RMSFEs among combined forecasts for Austrian and Hungarian CPI inflation rates.

Their RMSFEs are even lower than the ones of the single forecasts. Since single DSGE

forecasts are not significantly worse than the single most accurate forecasts per vari-

able, the additional information provided by the DSGEs as forecasting models seems

to be valuable for uniform forecast combination in case of CPI inflation rates across

countries.

Table 4.6 once again summarizes the results, where boldface letters denote the most

accurate model type across single and combined forecasts.

Table 4.6: Model type with lowest RMSFE across forecast types

Forecast type x x∗ π π∗

Single forecast Open-economy Open-economy Closed-economy Open-economy

Combined forecast Open-economy Open-economy Open-economy Closed-economy
(including DSGE (including DSGE
forecasts) forecasts)

4.6 Concluding remarks

In summary, Bayesian and classically estimated (vector) autoregressive benchmarks de-

liver the most accurate one-step-ahead forecasts in terms of the RMSFE for Austrian
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and Hungarian output gaps and CPI inflation rates with respect to the different vari-

ants of the two-country DSGE model. However, the benchmarks cannot significantly

outperform the DSGE models. For three out of four variables (Austrian and Hungarian

output gaps, Hungarian CPI inflation) open-economy models perform best with respect

to other single forecasts.

If we additionally calculate various uniformly combined forecasts, again for three

out of four variables (Austrian and Hungarian output gaps, Austrian CPI inflation)

open-economy forecast combinations perform best with respect to other combined fore-

casts. In case of Austrian and Hungarian CPI inflation rates, the combined forecasts

perform better than their best single forecasts, where these two combined forecasts also

incorporate single DSGE forecasts.

Hence, we conclude that even if single DSGE forecasts were not able to deliver the

most accurate one-step-ahead forecasts, the additional information provided by these

forecasting models seems to be valuable for uniform forecast combination in case of

CPI inflation rates across countries. Since open-economy models deliver the lowest

RMSFE for three out of four variables across single and combined forecasts, taking

into account the non-negligible impact of economic interrelations between Austria and

Hungary indeed leads to a more accurate prediction of most of their macro variables. As

a consequence, applying the same forecasting models used here to calculate combined

forecasts of other pairs of regions within the EU or the US may be appealing for future

research.
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4.7 Appendix to Chapter 4

Table 4.7: Pairwise Granger causality tests

Pairwise Granger Causality Tests
Date: 06/02/10 Time: 08:06
Sample: 2000Q1 2009Q3
Lags: 4

Null Hypothesis: Obs F-Statistic Prob.

X HUN does not Granger Cause X AUT 35 2.96761 0.0382
X AUT does not Granger Cause X HUN 1.03371 0.4087

HCPI AUT does not Granger Cause X AUT 35 0.23210 0.9178
X AUT does not Granger Cause HCPI AUT 2.74571 0.0498

HCPI HUN does not Granger Cause X AUT 35 0.06997 0.9905
X AUT does not Granger Cause HCPI HUN 0.23346 0.9170

PPI AUT does not Granger Cause X AUT 35 0.58883 0.6736
X AUT does not Granger Cause PPI AUT 1.61914 0.1994

PPI HUN does not Granger Cause X AUT 35 0.87749 0.4909
X AUT does not Granger Cause PPI HUN 0.86591 0.4975

I AUT does not Granger Cause X AUT 35 0.36359 0.8322
X AUT does not Granger Cause I AUT 4.33248 0.0081

I HUN does not Granger Cause X AUT 35 1.50376 0.2301
X AUT does not Granger Cause I HUN 0.71984 0.5862

TOT does not Granger Cause X AUT 35 3.00933 0.0364
X AUT does not Granger Cause TOT 1.32083 0.2885

HCPI AUT does not Granger Cause X HUN 35 0.55628 0.6963
X HUN does not Granger Cause HCPI AUT 7.77885 0.0003

HCPI HUN does not Granger Cause X HUN 35 0.16799 0.9527
X HUN does not Granger Cause HCPI HUN 0.34927 0.8421

PPI AUT does not Granger Cause X HUN 35 0.61837 0.6534
X HUN does not Granger Cause PPI AUT 2.87582 0.0426

PPI HUN does not Granger Cause X HUN 35 1.21646 0.3278
X HUN does not Granger Cause PPI HUN 3.38574 0.0234

I AUT does not Granger Cause X HUN 35 1.55229 0.2166
X HUN does not Granger Cause I AUT 3.56339 0.0191

I HUN does not Granger Cause X HUN 35 0.67583 0.6148
X HUN does not Granger Cause I HUN 0.15053 0.9611

TOT does not Granger Cause X HUN 35 0.53434 0.7117
X HUN does not Granger Cause TOT 0.96118 0.4453

HCPI HUN does not Granger Cause HCPI AUT 35 2.97913 0.0377
HCPI AUT does not Granger Cause HCPI HUN 1.25700 0.3120

PPI AUT does not Granger Cause HCPI AUT 35 1.08477 0.3845
HCPI AUT does not Granger Cause PPI AUT 2.07903 0.1125

PPI HUN does not Granger Cause HCPI AUT 35 1.99800 0.1244
HCPI AUT does not Granger Cause PPI HUN 1.90893 0.1390

I AUT does not Granger Cause HCPI AUT 35 1.26433 0.3092
HCPI AUT does not Granger Cause I AUT 2.24004 0.0922

I HUN does not Granger Cause HCPI AUT 35 0.24259 0.9115
HCPI AUT does not Granger Cause I HUN 0.80910 0.5307

TOT does not Granger Cause HCPI AUT 35 0.22060 0.9245
HCPI AUT does not Granger Cause TOT 0.97802 0.4366

PPI AUT does not Granger Cause HCPI HUN 35 0.22803 0.9202
HCPI HUN does not Granger Cause PPI AUT 0.76227 0.5593

PPI HUN does not Granger Cause HCPI HUN 35 0.92343 0.4654
HCPI HUN does not Granger Cause PPI HUN 1.08073 0.3863

I AUT does not Granger Cause HCPI HUN 35 0.73397 0.5771
HCPI HUN does not Granger Cause I AUT 1.04150 0.4049
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I HUN does not Granger Cause HCPI HUN 35 0.90426 0.4759
HCPI HUN does not Granger Cause I HUN 0.36069 0.8342

TOT does not Granger Cause HCPI HUN 35 3.54359 0.0195
HCPI HUN does not Granger Cause TOT 4.44540 0.0072

PPI HUN does not Granger Cause PPI AUT 35 1.49548 0.2325
PPI AUT does not Granger Cause PPI HUN 0.15134 0.9607

I AUT does not Granger Cause PPI AUT 35 3.42068 0.0225
PPI AUT does not Granger Cause I AUT 1.91515 0.1379

I HUN does not Granger Cause PPI AUT 35 0.74098 0.5727
PPI AUT does not Granger Cause I HUN 1.01166 0.4195

TOT does not Granger Cause PPI AUT 35 1.70936 0.1782
PPI AUT does not Granger Cause TOT 0.41357 0.7972

I AUT does not Granger Cause PPI HUN 35 2.06504 0.1145
PPI HUN does not Granger Cause I AUT 2.15964 0.1018

I HUN does not Granger Cause PPI HUN 35 0.65340 0.6297
PPI HUN does not Granger Cause I HUN 1.00472 0.4230

TOT does not Granger Cause PPI HUN 35 0.42216 0.7912
PPI HUN does not Granger Cause TOT 0.80469 0.5334

I HUN does not Granger Cause I AUT 35 0.42295 0.7906
I AUT does not Granger Cause I HUN 1.97327 0.1283

TOT does not Granger Cause I AUT 35 1.95685 0.1309
I AUT does not Granger Cause TOT 0.60899 0.6598

TOT does not Granger Cause I HUN 35 2.40672 0.0752
I HUN does not Granger Cause TOT 0.46917 0.7578
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Table 4.8: Correlation of output gaps

x xEURO x∗

x 1.000000 0.805056 0.782258
xEURO 0.805056 1.000000 0.689072
x∗ 0.782258 0.689072 1.000000

Table 4.9: Correlation of CPI inflation rates

π πEURO π∗

π 1.000000 0.728417 0.488245
πEURO 0.728417 1.000000 0.394072
π∗ 0.488245 0.394072 1.000000

Table 4.10: Correlation of PPI inflation rates

πH πEURO
PPI π∗

F

πH 1.000000 0.857666 0.614582
πEURO
PPI 0.857666 1.000000 0.701888

π∗
F 0.614582 0.701888 1.000000

Table 4.11: Correlation of nominal interest rates

î îEURO î∗

î 1.000000 1.000000 0.554328

îEURO 1.000000 1.000000 0.554328

î∗ 0.554328 0.554328 1.000000
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Abstract

Besides an introductory chapter, the present dissertation entitled Monetary DSGE Models of

Two Countries: Set-Up, Estimation, and Forecasting Performance is divided into three more

chapters.

In Chapter 2, we develop a two-country DSGE model and investigate what are the

implications of diverging interest-rate rules on key macroeconomic variables of the EU and

the US in terms of impulse responses. We find that positive realizations of all types of

disturbances have a negative impact on output of both economies. Expansionary monetary

policy shocks always have a prosper thyself and beggar thy neighbor effect. Moreover, we

find that if the ECB implemented the interest-rate rule proposed in this chapter, it would

encounter lower fluctuations in EU PPI inflation compared to an interest-rate rule as proposed

for the Fed. This is consistent with the ECB’s paramount objective of price stability.

In Chapter 3, we estimate and forecast with the two-country DSGE model developed in

Chapter 2 and a VAR model using Euro area and US data. We find that the estimated DSGE

model qualitatively reproduces most of the findings of the calibrated one from Chapter 2.

Estimating the VAR does not yield the identical causal relationships as implied by the DSGE

and impulse responses based on the VAR sometimes differ from the ones based on the DSGE.

Both models as well as some extrapolation benchmark are not able to predict the severeness

or, at least, the evolution of the economic and financial crisis. Finally, we obtain the result

that the accuracy of one-step-ahead DSGE forecasts can compete well with the accuracy of

VAR, extrapolation, and uniformly combined forecasts in times of regular economic activity.

In Chapter 4, we shift the focus to Austria and Hungary. We compare the forecasting

accuracy of closed- and open-economy variants of the DSGE model from Chapter 2 for four

variables with respect to closed- and open-economy Bayesian and classical (V)AR bench-

marks. We obtain the result that these benchmarks deliver the most accurate one-step-ahead

forecasts, but cannot significantly outperform the DSGE models. For three out of four vari-

ables open-economy models perform best with respect to other single forecasts. If we calculate

uniformly combined forecasts, we obtain similar results. Even if single DSGE forecasts were

not able to deliver the most accurate one-step-ahead forecasts, this additional information is

important for uniform forecast combination for two of the four variables. Taking into account

the economic interrelations between Austria and Hungary by using open-economy models

leads to a more accurate prediction of most of their macro variables in general.

119



Zusammenfassung

Die vorliegende Dissertation mit dem Titel Monetary DSGE Models of Two Countries: Set-

Up, Estimation, and Forecasting Performance beinhaltet neben einem einleitenden noch drei

weitere Kapitel.

InKapitel 2 entwickeln wir ein Zwei-Länder-DSGE-Modell und untersuchen die Auswirkun-

gen von divergierenden Zinssatzregeln auf wichtige makroökonomische Variablen der EU und

der USA in Form von Impuls-Antwort-Funktionen. Positive Realisierungen aller Arten von

Schocks haben einen negativen Einfluss auf den Output beider Volkswirtschaften. Expansive

geldpolitische Schocks haben immer einen Prosper-thyself - bzw. Beggar-thy-neighbor -Effekt.

Des Weiteren erhalten wir das Ergebnis, dass sich die EZB im Falle der für sie vorgeschlagenen

Zinssatzregel einer geringeren Produzentenpreisindex-Inflationsrate gegenüber sieht, als es für

eine Zinssatzregel der Fall wäre, wie sie für die Fed vorgeschlagen wird. Dies ist konsistent

mit dem vorrangigen Ziel der Preisniveaustabilität der EZB.

In Kapitel 3 schätzen wir das Zwei-Länder-DSGE-Modell aus Kapitel 2, sowie ein VAR-

Modell, indem wir US-amerikanische und Euroraum-Daten verwenden. Das geschätze DSGE-

Modell repliziert die Mehrzahl der Ergebnisse des kalibrierten Modells aus Kapitel 2. Das

geschätze VAR impliziert nicht immer dieselben Kausalzusammenhänge wie das DSGE und

auch die Impuls-Antwort-Funktionen basierend auf dem VAR weichen manchmal von den auf

dem DSGE basierenden ab. Beide Modelle, sowie ein extrapolatives Benchmark, sind nicht

in der Lage, die Schärfe der Wirtschafts- und Finanzkrise oder zumindest deren Entwick-

lung vorherzusagen. Unter normalen ökonomischen Rahmenbedingungen weist das DSGE bei

einperiodigem Prognosehorizont jedoch eine recht gute Prognosegüte im Vergleich zu VAR-,

extrapolativen und einheitlich kombinierten Prognosen auf.

In Kapitel 4 verlagern wir unser Hauptaugenmerk auf Österreich und Ungarn. Wir un-

tersuchen die Prognosegüte von Varianten des DSGE-Modells geschlossener und offener Volk-

swirtschaften für vier Variablen in Bezug auf bayesianische und klassische (V)AR-Benchmarks

geschlossener und offener Volkswirtschaften. Diese Benchmarks liefern die besten Prognosen

bei einperiodigem Prognosehorizont, sind jedoch nicht signifikant besser als die Prognosen

des DSGE-Modells. Im Falle einzelner Prognosen sind für drei von vier Variablen Mod-

elle offener Volkswirtschaften genauer. Im Falle einheitlich kombinierter Prognosen erhalten

wir ähnliche Ergebnisse. Obwohl einzelne DSGE-Prognosen nicht die besten einperiodigen

Prognosen liefern, ist diese zusätzliche Information wichtig für die Berechnung einheitlich

kombinierter Prognosen für zwei der vier Variablen. Im Allgemeinen trägt das Einbeziehen

der volkswirtschaftlichen Verflechtungen zwischen Österreich und Ungarn durch Verwendung

von Modellen offener Volkswirtschaften dazu bei, die Mehrzahl ihrer Makrovariablen genauer

zu prognostizieren.

120



DIPL.-VOLKSWIRT UNIV. ULRICH GUNTER: LEBENSLAUF 

 
PERSÖNLICHE DATEN 
Geburtsdatum und -ort 25. November 1982, Regensburg 
Nationalität  Deutschland 
 
AUSBILDUNG 
10/2007 - 9/2010  PhD-Studium der Volkswirtschaftslehre (Economics) an der Universität Wien 

• Studienabschluss als Doctor of Philosophy (PhD) in Economics (erwartet für 
9/2010) 

• Dissertation: Monetary DSGE Models of Two Countries: Set-Up, Estimation, 

and Forecasting Performance (Betreuer: Prof. Dr. Gerhard Sorger und Prof. 
Dr. Robert M. Kunst) 

3/2006 - 6/2006 Auslandsstudium an der Leavey School of Business, Santa Clara University, Santa 
Clara, USA 

10/2004 - 7/2007 Studium Honors Wirtschaftswissenschaften (www.honors.de) im Elitenetzwerk Bayern 
(www.elitenetzwerk.bayern.de) des Bayerischen Staatsministeriums für Wissenschaft, 
Forschung und Kunst and der Universität Regensburg 

10/2002 - 7/2007 Diplomstudium der Volkswirtschaftslehre an der Universität Regensburg 

• Studienabschluss als Dipl.-Volkswirt Univ. (äquivalent zu MSc with Honors) 

• Diplomarbeit: Geldpolitische Regeln in Woodfords monetärer Makroökonomik 
(Betreuer: Prof. Dr. Lutz Arnold) 

• Schwerpunkte: Empirische Wirtschaftsforschung, Finanzmarkttheorie, 
Fortgeschrittene Makroökonomie, Fortgeschrittene Mikroökonomie, 
Internationale und interregionale Ökonomie 

6/2002 Allgemeine Hochschulreife (Abitur) am Werner-von-Siemens-Gymnasium, Regensburg 
 
BERUFSERFAHRUNG 
4/2009 - 8/2009 Praktikant bei der Österreichischen Finanzmarktaufsicht, Bereich Integrierte Aufsicht, 

Abteilung Integrierte Finanzmärkte, Wien, Mitarbeit u. a. am Entwurf eines 
europäischen Makro-Stresstests für Versicherungsunternehmen, Verfassen einer 
schriftlichen Ausarbeitung über die Adaption der Ratingmethodologien für Hybridkapital 
von Banken im Zuge der Finanzkrise 

10/2007 - 9/2010 Kollegassistent im Initiativkolleg Issues in the Global Economy: Dynamics, Governance, 

and Information (www.univie.ac.at/vwl/IKHomepage/willkommen.html) am Institut für 
Volkswirtschaftslehre, Universität Wien 

4/2007 - 5/2007  Praktikant bei der Deutschen Bundesbank, Zentralbereich Banken- und Finanzaufsicht, 
Abteilung Mikro- und Makroprudenzielle Analysen des Bankensektors, Frankfurt (Main),  
Mitarbeit am Teilprojekt Untersuchung der Besicherung und der Verlustquote von 

Interbankkrediten 

 

 1 

http://www.honors.de/
http://www.elitenetzwerk.bayern.de/
http://www.univie.ac.at/vwl/IKHomepage/willkommen.html


DIPL.-VOLKSWIRT UNIV. ULRICH GUNTER: LEBENSLAUF 

 
8/2005 - 10/2005  Praktikant am Institut für Wirtschaftsforschung Halle, Abteilung Makroökonomik, Halle 

(Saale), Bearbeitung des Themas Besteuerung von Unternehmensgewinnen in 

ausgewählten Ländern der Europäischen Union 

 
FORSCHUNGSINTERESSEN (ALPHABETISCH) 
(Empirische) Makroökonomie, empirische Wirtschaftsforschung allgemein, Finanzmärkte, Geldtheorie und -politik 
 
WORKING PAPERS 
2010 Forecast combination based on multiple encompassing tests in a macroeconomic 

DSGE 

system, zusammen mit Mauro Costantini und Robert M. Kunst, Economics Series No. 
251, Institute for Advanced Studies, Vienna 

2009 On the Forecasting Performance of a Two-Country DSGE Model, Mimeo 
Macroeconomic Interdependence in a Two-Country DSGE Model under Diverging 

Interest-Rate Rules, Vienna Economic Papers No. 0903 
 
VORTRÄGE 
6/2010 30th International Symposium on Forecasting, San Diego, USA: Forecast combination 

based on multiple encompassing tests in a macroeconomic DSGE system 

5/2010 Quantitative Economics Doctorate (QED) Meeting, Alicante, Spanien: Forecast 

combination based on multiple encompassing tests in a macroeconomic DSGE system 

9/2009 Public Lecture und Workshop The Financial Crisis – The End of Globalization? des 
Initiativkollegs in Zusammenarbeit mit der Unicredit Bank Austria AG, Wien: On the 

Forecasting Performance of a Two-Country DSGE Model 
 
LEHRE 
3/2010 - 4/2010 Lektor für Introduction to Macroeconomics (Studierende der BWL im 1. 

Studienabschnitt, auf Englisch) am Institut für Betriebswirtschaftslehre, Universität Wien 
10/2009 - 1/2010 Tutor für Einführung in die Wirtschaftswissenschaft (Studierende der Statistik und VWL 

im 1. Studienabschnitt) am Institut für Volkswirtschaftslehre, Universität Wien 
10/2008 - 1/2009 Tutor für Applied Econometrics - Praktikum aus Empirischer Wirtschaftsforschung 

(Studierende der VWL im 2. Studienabschnitt, auf Englisch) am Institut für 
Volkswirtschaftslehre, Universität Wien 

10/2004 - 7/2007 Tutor für Makroökonomie I und II (Studierende der BWL und VWL im 1. 
Studienabschnitt) am Institut für Volkswirtschaftslehre, Universität Regensburg 

 
 
 
 
 

 2 



DIPL.-VOLKSWIRT UNIV. ULRICH GUNTER: LEBENSLAUF 

 3 

 
PERSÖNLICHE KOMPETENZEN 
Software  Dynare, EViews, LaTeX, Microsoft Office (jeweils sehr gute Anwenderkenntnisse) 

Matlab, SAP R/3 (Modul FI), Stata (jeweils grundlegende Anwenderkenntnisse) 
Sprachen Deutsch (Muttersprache) 

Englisch (verhandlungssicher) 
  Französisch (fließend) 

Portugiesisch, Spanisch (jeweils fortgeschritten) 
Japanisch, Türkisch (jeweils Grundkenntnisse) 

 
SONSTIGES 
9/2009 Teilnahme an der OeNB Summer School 2009 The Current Financial Crisis: What Can 

Structural Macro Models tell us? (Prof. Dr. Tommaso Monacelli und Dr. Mathias 
Trabandt) am Joint Vienna Institute 

Seit 5/2005  Mitglied der Deutsch-Japanischen Gesellschaft Regensburg 
Interessen Kino, Politik, Reisen 


	Titelblatt Dissertation
	Leerseite
	Dissertation - Ulrich Gunter
	Lebenslauf Dissertation

