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1.) Unorthodox uses of Bennett’s acceptance ratio method

Gerhard König, Stefan Bruckner, Stefan Boresch

Journal of Computational Chemistry, 30(11), 1712-18 (2009)

(entspricht Kapitel 3)

2.) Non-Boltzmann Sampling and Bennett’s Acceptance Ratio Method:

How to profit from bending the rules

Gerhard König, Stefan Boresch

Akzeptiert vom Journal of Computational Chemistry (2010)

(entspricht Kapitel 4)

3.) Hydration Free Energies of Amino Acids: Why Side Chain Analog

Data Are Not Enough

Gerhard König, Stefan Boresch

Journal of Physical Chemistry B, 113(26), 8967-8974 (2009)

(entspricht Kapitel 5)

4.) Absolute hydration free energies of blocked amino acids: Are current

estimates of protein solvation overvalued ?

Gerhard König, Stefan Bruckner, Stefan Boresch

Wird eingereicht

(entspricht Kapitel 6)

Bis auf die letzte Arbeit, zu der mein Kollege Stefan Bruckner und ich in gleichen

Teilen beigetragen haben, handelt es sich bei den hier aufgeschlüsselten Publikatio-

nen um Erstautorenschaften meinerseits. Die darin beschriebenen Computerexper-

imente wurden gemeinsam mit meinem Betreuer, Prof. Stefan Boresch, konzipiert

und (ausgenommen die Ethan-Methanol und Phosphotyrosin-Rechnungen in der er-

sten Publikation) von mir persönlich durchgeführt.
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Zusammenfassung

Die Bestimmung von freien Energieunterschieden ist essentiell für die Untersuchung

von zahlreichen Prozessen, wie Wirkmechanismen von Medikamenten, den Ver-

lauf von enzymatischen Reaktionen oder die Löslichkeit von Chemikalien. Mittels

Molekulardynamiksimulationen sind freie Energierechnungen in der Lage freie En-

ergieunterschiede mit hoher Genauigkeit zu bestimmen. Diese Genauigkeit ist jedoch

mit einem gewaltigen Rechenaufwand verbunden, sodass eine Bestimmung oft Tage

oder Wochen dauert. Aus diesem Grunde werden erhebliche Anstrengungen zur

Optimierung dieser Techniken unternommen.

Der erste Teil dieser Dissertation beschreibt die Anwendung der Bennett’s Ac-

ceptance Ratio Methode (BAR) auf Probleme, wo konventionelle freie Energierech-

nungen nicht anwendbar sind. Dies illustriert die Vielseitigkeit dieser Methode.

Desweiteren demonstrieren wir eine Erweiterung von BAR zur Behandlung von gebi-

asten Simulationen, die nicht der klassischen Boltzmann-Verteilung gehorchen. Wir

bezeichnen diese Methode ergo als Non-Boltzmann Bennett (NBB). Im Rahmen von

einigen praktischen Anwendungen wird anschliessend gezeigt, wie eine kreative Wahl

des gebiasten Zustands die Effizienz von freien Energierechnungen erhöhen kann.

Im zweiten Teil werden BAR und NBB zur Bestimmung von Hydrationsenergien

verwendet. Speziell in der Proteinfaltung oder beim Binden von Liganden spielen

die Energiekosten für die (De-)Solvatation eine erhebliche Rolle. Unglücklicherweise

können die Hydrationsenergien von Aminosäuren nicht experimentell bestimmt wer-

den, weshalb oft auf Schätzungen mittels Seitenkettenanaloga zurückgegriffen wird.

Die Annahme, dass Seitenketten repräsentativ für volle Aminosäuren sind, ist jedoch

bisher nicht wissenschaftlich getestet worden. Daher wurden die Hydrationsenergien

sowohl von Aminosäuren, als auch von Seitenkettenanaloga bestimmt. Es zeigt

sich dabei eine erhebliche Diskrepanz, was sich auf zwei Effekte zurückführen läßt:

Solventexklusion und Selbstsolvatation. Während beim Erstem der Zugang zum

Lösungsmittel sterisch versperrt wird, ensteht zweiteres durch Wechselwirkungen des

Aminosäurerückgrats mit polaren Gruppen der Seitenkette. Da viele Techniken in

der computergestützten Chemie Selbstlösung nicht berücksichtigen, hat dies schwere

Auswirkungen auf die Genauigkeit. Wir illustrieren dies anhand von impliziten Sol-

ventmethoden und diskutieren den Einfluss unserer Ergebnisse auf Proteinstudien.
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Abstract

The determination of free energy differences is fundamental to the study of several

processes such as the binding of drugs to proteins, the paths of enzymatic reactions

or the solubility of chemical compounds. By employing molecular dynamics simu-

lations, free energy calculations are capable to compute such free energy differences

with high accuracy. However, this accuracy comes at excessive computational costs,

often requiring days or weeks to obtain exact results. Thus, considerable effort still

has to be invested in the optimization of such techniques.

The first half of this dissertation focuses on the application of Bennett’s Accep-

tance Ratio method (BAR) to problems where standard methods to compute free

energy differences are not feasible. This highlights the unique versatility of BAR.

Furthermore, we demonstrate how to extend BAR in order to make use of non-

Boltzmann probability distributions in biased simulations. We refer to this method

as Non-Boltzmann Bennett (NBB). The NBB method is illustrated by several ex-

amples that demonstrate how a creative choice of the biased state can also improve

the efficiency of free energy simulations.

The second half is concerned with the application of BAR and NBB to the

study of hydration free energies. Especially in protein folding or ligand binding

(de)-solvation penalties can contribute considerably to the free energy difference.

Unfortunately, hydration free energies of amino acids cannot be measured experi-

mentally. Thus, approximations based on side chain analog data are used instead.

However, the assumption that side chain analogs are representative for full amino

acids has never been thoroughly tested. We, therefore, computed both relative

and absolute solvation free energies of amino acids and side chain analogs, show-

ing that the results can deviate considerably due to two effects: Solvent exclusion

and self-solvation. While the former accounts for the reduction of solute–solvent

interactions due to sterical occlusions, the latter arises from interactions between

the backbone and the polar functional groups of the side chains. Since several tech-

niques in computational chemistry do not account for self-solvation, this finding has

severe consequences. We illustrate this for several implicit solvent models and briefly

discuss the implication of our results for the field of protein science.
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Chapter 1

Introduction

Predictions not only form the basis of scientific discovery, but also constitute a cru-

cial factor in planning and optimizing system designs in engineering. According to

the philosopher Karl Popper the capability to develop clear and testable predictions

is actually the one central feature that characterizes a mature scientific discipline [1].

However, in case of complex systems, such as encountered in the biological domain,

making useful quantitative predictions is far from trivial, since their properties are

characterized by a phenomenon that is called emergence [2]. The term emergence

conveys the idea that multiple basic entities which form relatively simple interac-

tions can combine to a very intricate collective whose properties cannot be directly

explained by the properties of its individual constituents. This concept was already

described by Aristotle and became proverbial with the words ”The whole is greater

than the sum of its parts” [3].

Humans, for example, are not simple bags filled with water and some secret

ingredients. Our bodies are composed of different forms of cells, and all components

of these cells, such as enzymes or the DNA, are subject to a very intricate self-

regulatory system, whose complex responses to itself and the environment make out

the very essence of the emergent quality that we casually call ”life”. Emergence is

also part of everyone’s life, as illustrated by human society itself, which sometimes

appears to be quite independent of the will of its individuals (e.g., in social processes

such as decision making in a state or, on a more local level, in committees). The

same concept can also be transferred to animal societies, whose interactions are less

complex (e.g. the behavior of ant colonies or the formation of ecosystems based on
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simple predator-prey relationships). Similar considerations also apply to the shape

of weather phenomena in meteorology, the behavior of stock markets in economics,

or the interactions of neurons in the brain that lead to human thought [4].

Biochemistry is mainly characterized by the reactions and interactions between

biomolecules such as proteins. On the molecular level an average protein consists

of several thousand atoms. In principle one has to compute the interactions of each

atom with all other atoms in proximity, a task that becomes increasingly difficult

with growing system size (e.g., in a system of 10 atoms 100 interactions have to be

considered, while for 1000 atoms the number of interactions grows to 1, 000, 000).

In addition, proteins are not isolated entities, but interact with other proteins and

substrates in an aqueous environment. Thus, one has to account for the influence of

water molecules in the surrounding, as well as for other freely diffusing compounds

that are essential for the function of the protein. Due to this high level of complexity,

processes taking place in living matter can appear to behave quite cryptic or even

erratic at times (as every biology student is painfully aware of).

Although experienced molecular biologists have been able to achieve a good un-

derstanding for the sometimes chaotic twists and turns of the biochemical pathways,

there is a continuing interest to find generally applicable theoretical means that can

be employed in this field. Thus, the holy grail of every biochemist is to fully describe

biological phenomena in terms of physicochemical processes (Richard Feynman ar-

ticulated this view particularly clearly with the words ”Everything that living things

do can be understood in terms of the jiggling and wiggling of atoms” [5]). With

the advance of computer technology, a full atomistic representation of the dynamics

of macromolecules on a mesoscopic level is gradually becoming feasible. Thus, the

importance of accurate simulations of the properties and dynamics of proteins (and

other biomolecules) will increase even further, especially in areas where experimen-

tal methods are not applicable (due to methodological restrictions) or exceedingly

expensive. In the long term, computer simulations might even pave the way to

the rational design of enzymes or, in combination with systems biology, even whole

biochemical pathways [6]. This could turn biotechnology to a fully developed engi-

neering science with a large emphasis on in silico approaches, making the creation

of novel biological systems possible (a concept also known as synthetic biology).
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To be of practical use for such purposes, simulations must be able to calculate

the chemical properties of a system to high accuracy. One of the most fundamental

thermodynamic properties of a chemical system is its free energy (A). The concept of

free energy is mostly encountered in form of free energy differences (∆A) associated

with chemical reactions, i.e. processes that lead from one state to another state

(e.g. 2 H2 + O2 → 2 H2O). The free energy difference between the two states

involved determines the probability and direction of chemical reactions (such as

the synthesis of biomolecules), conformational changes (such as protein folding) or

transfer processes (such as solvation). Thus, the development of theoretical means

to determine free energy differences has been the focus of generations of researchers

[7–11].

One half of this dissertation focuses on the study of solvation free energies of

amino acids and their corresponding side chain analogs. This is motivated by the

great impact of the so-called hydrophobic effect for correctly predicting properties

of biomolecules. However, the importance of determing solvation free energies is

not restricted to biomolecules. Various properties of potential drugs also depend on

hydrophobicity. The affinity of a drug for its target is affected by the polarity of

the drug itself as well as of the protein binding site. An equally important issue,

however, is bioavailability: Since most drugs are administered orally, they have

to absorbed in the gastrointestinal tract [12]. In this context, the percentage of

the dose reaching the circulation is called the bioavailability. Since too hydrophilic

drugs are unable to pass through cell membranes, most of the drug would be lost

and higher doses would be necessary to reach the necessary drug concentration

in the blood. Hydrophobic drugs are, therefore, more economical. However, too

hydrophobic drugs will accumulate in the cell membranes and, thus, can lead to

toxic effects [13]. Therefore, data on the hydrophobicity of a compound is also

relevant for absorption, distribution, metabolism, excretion and toxicity (ADMET)

tests in drug development.

Similar considerations also apply to the study of environmental effects of hy-

drophobic compounds. Research in this area has been sparked with the discovery

of the hazardous properties of the well-known synthetic pesticide DDT in the sec-

ond half of the 20th century [14]. Strongly hydrophobic compounds such as DDT
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get easily absorbed by soil and are highly persistent, with half lifes ranging from

days to years. Especially in aquatic ecosystems, hydrophobic compounds are quickly

absorbed by organisms, thus getting into the global food chain, where they accu-

mulate in top-level predators. Due to its reproductive toxicity, DDT almost lead to

the extinction of various birds of prey, including the national symbol of the USA,

the bald eagle. Therefore, the evaluation of the hydrophobicity of potentially haz-

ardous chemicals has caught considerable attention. In Europe the necessity of

testing chemicals for (eco-)toxicity led to the European Community Regulation on

chemicals and their safe use (REACH). This law entered into force in 2007, and

requires the registration and evaluation of about 143,000 chemical substances mar-

keted within the union. Considering such extraordinary efforts, the employment of

computer simulations to characterize at least some aspects of these chemicals could

pose a fast, cost-effective and ecological alternative to normal laboratory work in

analytical chemistry. However, such delicate applications require methods that are

both accurate and reliable.

Today, so-called “free energy simulations” are the most accurate and general

methodology in the field of computational chemistry. In the biological domain,

they have been successfully applied to the calculation of binding affinities of ligands

[15, 16], the study of enzymatic reactions [17], of molecular solvation [18, 19], and

of protein stability as a function of point mutations [20]. However, free energy

simulations are currently subject to a number of limitations. First, if the two end

states of the free energy difference of interest (denoted as 0 and 1, respectively) are

too different, unphysical intermediate states have to be introduced in order to achieve

convergence. Since such intermediate states are commonly realized by mixing the

potential energy functions (U) of both end states according to a mixing factor λ (i.e.,

Uλ = (1−λ) U0 +λ U1), they are also referred to as λ-states or λ-points. By adding

λ-states, the total simulation length is of course correspondingly multiplied, leading

to considerable computational costs. Up to 21 λ-points (or even more) are required

when using conventional thermodynamic integration free energy simulations.

Second, the exact computation of free energy differences requires adequate sam-

pling of all relevant low energy conformations of a state. Especially in biomolecular

systems, the energy landscape is characterized by local energy minima, which are
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frequently separated by very large energy barriers that are hardly ever crossed dur-

ing a normal simulation. Thus, molecular dynamics simulations often get trapped

in local minima, often requiring days or weeks of computing time even on modern

computer clusters to collect the necessary data, and it is never clear whether some

important information is still missing (a situation similar to traveling in a foreign

country with an ordinary car in very steep mountainous terrain —without a map—

trying to find the deepest river).

In this thesis, we try to address some of the issues mentioned above. In particular,

two chapters will focus on the advantages of the Bennett’s acceptance ratio method

(BAR) [9]. Although BAR was originally conceived in the mid-seventies, it was not

until the recent rise of non-equilibrium versions of free energy calculations [10, 11]

that its efficiency was systematically compared to the two traditional workhorses of

free energy calculations, i.e., thermodynamic integration (TI) [7] and the exponential

formula (EF, also known as thermodynamic perturbation) [8]. In a detailed study,

Shirts and Pande showed that BAR is more efficient than both TI and EF [21],

requiring significantly fewer λ-points to obtain correct results. This finding and the

fact that BAR is a minimum variance, maximum likelihood estimator of the free

energy difference resulted in an increased popularity of BAR.

In Chapter 3, we start by illustrating some applications of BAR to problems

where both TI and EF are not practical anymore. This study is based on the

observation that BAR can compute free energy differences with fewer λ-states than

TI and EF. For simple systems free energy differences can be calculated without

any intermediate states at all. This is demonstrated for several standard benchmark

systems (e.g., the free energy difference between ethane and methanol in aqueous

solution). Then, we show how BAR can be used to compute quite unorthodox free

energy differences directly, such as the free energy difference resulting from changing

the treatment of electrostatic interactions, from switching the force field, or from

using an implicit solvent model. Such calculations could prove advantageous for

force field development or the validation of implicit solvent methods.

The problem of insufficient sampling is addressed in Chapter 4. Our starting

point is the observation that simulations that do not adhere to the classical Boltz-

mann rule (so-called non-Boltzmann sampling) are able to enhance the exploration
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process (i.e., able to cross energy barriers faster), thus obtaining correct results

with simulation times that can be several times shorter than in normal simula-

tions [22–24]. This is usually achieved by adding a so-called biasing potential to the

normal simulation setup. However, to obtain correct free energy differences from

such biased simulations, it is necessary to account for the effects of the bias in the

(post-production) analysis. We demonstrate that this can be accomplished quite

simply with a slight modification of Bennett’s Acceptance Ratio method. Due to

its similarity to Non-Boltzmann Thermodynamic Integration (NBTI) [24] and in

honour of the Austrian physicist Ludwig Boltzmann, we refer to this technique as

Non-Boltzmann Bennett (NBB). We illustrate the method by several examples and

show how a creative choice of the biased state can also improve the efficiency of free

energy simulations.

However, the methodological aspects of free energy simulations are not restricted

to reducing the number of λ-states or improving the sampling during simulations. A

more fundamental problem is the employment of the additivity principle in macro-

molecular chemistry and biology [25]. This principle assumes that the components of

a molecule contribute independently to some process and, therefore, the total change

of the free energy of the molecule is given by the sum of its components. Thus, on

a system-theoretical level, “additivity” is the direct opposite of the aforementioned

“emergence” principle that dominates in biological phenomena.

In the context of solvation free energies, the use of additive methods is relatively

widespread since the solvation free energies of complex molecules, such as proteins

or even amino acids, cannot be measured experimentally [26]. Therefore, estimates

of these solvation free energies were obtained from small molecules by adding con-

tributions of model compounds. E.g., full amino acids were separated into a model

compound representing the backbone (e.g., N-methylacetamide) [27] and the amino

acid side chains (side chain analogs, e.g., methanol for Ser etc.) [28]. Fragment

based methods to determine the solvation free energy [29–31], as well as some hy-

drophobicity scales [32] can thus be regarded as special extensions of the additivity

principle. In particular, the side chain solvation free energies reported by Wolfenden

and co-workers [28] are widely used as model systems for amino acids and proteins.

In Chapter 5, we employ free energy simulations to compute relative solvation
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free energies for several pairs of amino acids with N-acetyl-methylamide blocking

groups and compare them with the corresponding results of side chain analogs.

This serves to test the assumption whether the solvation free energies of side chain

and protein backbone are additive. In particular, we focus on two effects. First the

reduction of solute–solvent interactions due to sterical occlusions, which is called

solvent exclusion. The second effect is the so-called self-solvation, which arises from

interactions between the backbone and the polar functional groups of the side chains.

Our approach is driven by the hypothesis that those two effects are most likely the

major causes of possible non-additivities of solvation free energies. Thus, the ac-

curacy of additive approaches will depend on the magnitude of these effects. If

the changes of the solvation free energy due to self-solvation and solvent exclusion

are significant, the correct prediction of solvation effects will depend on the ability

of a method to account for both. For this purpose, we complement the free en-

ergy simulations of amino acids and side chain analogs by simulations in which we

compute relative solvation free energy differences between unphysical systems, e.g.,

amino acids with all backbone and/or side chain charges set to zero. These data

make it possible to estimate the respective contributions from solvent exclusion and

self-solvation to the solvation free energy of amino acids of blocked amino acids. In

addition, we analyze interactions between side chain and backbone of polar amino

acids. Using Ser as a representative example of small, polar amino acids, we ex-

plore the influence of backbone conformation on solvent affinity. This test is also

employed for several implicit solvent models to explore their conformance with our

explicit solvent results.

Finally, in Chapter 6 we present absolute solvation free energies for blocked N-

acetyl-methylamide amino acids and compare them with results for non-zwitterionic

amino acids and side chain analogs. These calculations were motivated by a recent

study by Chang et al. [33]. On the one hand, Chang et al. found clear deviations

from the additivity principle for zwitterionic amino acids; on the other hand, they

postulated additive behavior for the non-zwitterionic amino acids. In this part of the

thesis we investigate the cause of this discrepancy and continue to assess errors that

may arise due to the employment of additivity principles for the determination of

solvation free energies. We close with a discussion of our findings and their potential
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impact on applications in the biological domain.

The remainder of this thesis is organized as follows. First, we briefly outline

the basic concepts of free energy simulations (Chapter 2). We then present a study

concerning the use of BAR in the context of rather unusual free energy differences

(Chapter 3), followed by a demonstration how a combination of BAR with the

employment of biased states can improve the efficiency of free energy simulations

(Chapter 4). In Chapter 5, we present results for relative solvation free energy

differences of blocked amino acids and their corresponding side chain analogs, de-

termining the effect of solvent exclusion and self-solvation. Finally (Chapter 6), we

compute absolute solvation free energies of blocked amino acids and compare our

results to other studies.
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Chapter 2

Basic concepts of free energy

simulations

For readers not familiar with the theoretical background of free energy simulations,

we outline the basic principles on the following pages. Since a full explanation of

the statistical mechanical foundation clearly lies outside the scope of this thesis,

we focus on a short (and, therefore, necessarily incomplete) introduction of most of

the technical terms and concepts that will be encountered during the rest of this

work. We restrict ourselves to classical mechanics since no quantum-mechanical

calculations are included in this thesis. More thorough treatments of the subject

can be found elsewhere [34–37].

2.1 Statistical mechanics and the free energy

The theoretical foundation of computer simulations of (bio)molecular systems lies

in statistical mechanics [34, 38]. Statistical mechanics describe how macroscopic

properties (such as pressure, viscosity or free energies) can be explained in terms of

molecular configurations. In this context, a central concept is the so-called phase

space. To illustrate what is meant by phase space, consider that for a system con-

sisting of N atoms, 6N values are required to determine the three components of

the coordinates and of the momenta of each atom. Each combination of the 3N

positions and 3N momenta defines a particular point, a so-called microstate, in the

6N-dimensional space, which is referred to as phase space. A microstate is a par-

9



ticular combination of all degrees of freedom of a state of a thermodynamic system

(every knowable aspect of every part of a specific configuration), e.g. a certain con-

formation of a molecule. To describe macroscopic phenomena, data from multiple

microstates that populate the macroscopic system has to be combined. In this con-

text, the number of useful microstates is restricted by the external constraints on the

system, e.g. whether the system is thermally isolated, kept at a fixed temperature

with a large heat reservoir, or open. Ensembles are sets of points in phase space

that fulfill such criteria. E.g., points in phase space whose momenta correspond to a

certain temperature belong to the canonical ensemble, while systems that are fully

isolated are restricted to parts of phase space that have exactly the same energy,

which corresponds to the microcanonical ensemble. To calculate the properties of

interest, molecular simulations generate a sequence of microstates from an ensemble,

which can be analyzed in detail.

The property of interest to us is the Helmholtz free energy (A) of a molecular

system. In the canonical ensemble A is given by

A = −kBT lnZ (2.1)

where kB is the Boltzmann constant, T is the absolute temperature in Kelvin and

Z is the so-called partition function. In the following, we will concentrate on the

configurational partition function, since in classical mechanics the kinetic energy

contributions to the partition function and, hence the the free energy can be taken

care of analytically. The partition function is a function of all microstates of a

system that fulfill the constraints of the ensemble (i.e., all imaginable combinations of

atomic coordinates for a given number of atoms N) and encodes the thermodynamic

properties of a system.

10



In the canonical ensemble, the partition function is given by a sum1 over all

microstates of the system

Z =
∑

i

exp

(

− Ui

kBT

)

(2.2)

where i denotes a particular microstate of the system, and Ui is the potential energy

of microstate i. The partition function thus represents a special summation (or, in

classical physics, integration) over parts of the phase space.

2.2 Force Fields

In the case of molecular simulations, Ui is usually calculated from all atomic coor-

dinates of the system with a so-called force field. For the development of a force

field the quantum mechanical interactions between all atoms in the system have

been reduced to classical terms. The quantum-physical basis for this approximation

is provided by the Hellmann-Feynman-Electrostatic-Theorem [38–41], which follows

from the Born-Oppenheimer-Approximation2. In classical force fields, the potential

energy consists of two groups of terms:

U = U bonded + Unonbonded (2.3)

Ubonded is a sum of special terms that mimic the chemical bonds between atoms. A

minimum set for the description of a molecule is given by bonds (which directly link

1We note that in a system that obeys the laws of classical physics (such as encountered in molec-

ular dynamics simulations) the states are not quantized, and, therefore, the sum in Equation 2.2

should be replaced by an integral over all degrees of freedom, i.e.

Z =

∫

. . .

∫

exp

(

−U (~r, ~q)

kBT

)

d~r d~q

where ~r denotes the atomic coordinates and ~q the associated momenta.

However, we think that the notation used above improves the readability and consistency of this

chapter. Besides, due to the finite precision of floating point numbers in computers, the states in

computer simulations are de facto quantized.
2The Born-Oppenheimer-Approximation [42] is based upon the fact that electrons move much

faster than the nuclei because of the difference in weight. Thus the electronic system can always

respond quickly to changes of the nuclei. This allows the decoupling of the motions of nuclei and

electrons.
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two atoms), bond angles (the angle between three atoms that are connected by two

consecutive bonds) and dihedrals (the relative rotational angle between two bonds,

which are separated by a third bond, which serves as axis of rotation):

Ubonded =
∑

bonds

Kb (l − l0)
2 +

∑

angles

Kθ (θ − θ0)
2 +

∑

dihedrals

Kφ [1 + cos (nφ− γ)] (2.4)

In Equation 2.4, K denotes the force constant for the respective harmonic potential, l

the bond length, l0 the equilibrium bond length , θ the bond angle, θ0 the equilibrium

bond angle, φ the dihedral angle, γ the phase shift, and n is the periodicity of the

dihedral term. These terms are necessary for the basic description of the geometry.

However, additional terms and crossterms can be introduced for a better description.

For larger distances the electron densities can be approximated by point charges

at the positions of the nuclei. Thus, the summation of the nucleic charges and

the electron charges leads to partial charges, which are used for the electrostatic

Coulomb interactions (Coul). However, two other terms are necessary for a proper

description of interactions between atoms that are not covalently bound: The repul-

sive interactions and the attractive van der Waals dispersion forces between atoms

at closer range. This is typically done with the Lennard Jones (LJ) term, where the

repulsion is described by a r−12 term, while the attraction is given by a r−6 term.

The non-bonded interactions are calculated over all pairs of atoms (j and k with

1 ≤ j < k ≤ N will in the following denote the indices of the atoms involved)

Unonb = UCoul + ULJ =
∑

j,k

qjqk
rjk

+
∑

j,k

(

Ajk

r12
jk

− Bjk

r6
jk

)

(2.5)

In the Coulomb term, q is the atomic partial charge, while in the Lennard-Jones term

the parameters A and B determine the point of minimal energy (A = ǫ r12
m , B =

2ǫ r6
m, with ǫ being the well depth and rm as the distance of minimum energy)

2.3 Molecular simulations

To determine the different microstates i in Equation 2.2, so-called molecular dy-

namics simulations [43–46], or, alternatively, Monte Carlo simulations [47] are em-

ployed. While molecular dynamics simulations solve Newton’s equations of motion
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for molecular structures, Monte Carlo simulations employ random moves, which are

accepted or rejected based on the Metropolis rule [47]. During such simulations, the

phase space of a molecular system is sampled. Molecular dynamics and Monte Carlo

simulations are devised to produce conformations according to their probability (as

given by their Boltzmann weight). Thus, these methods are sometimes referred to

as ”Boltzmann sampling”. The basis of this approach is the fact that low energy

conformations are preferred in nature; i.e., the potential energy Ui is directly linked

to the probability ρi of the corresponding state i according to

ρi =
ni

ntot

=
exp

(

− Ui

kBT

)

Z
(2.6)

where ni is the number of members of the ensemble residing in state i and ntot is

the total number of members.

Equation 2.6 makes clear that low energy regions are usually more important

than high energy regions, since they have higher probability. This is illustrated

when calculating the expectation value (or ensemble average) of any property Θ of

a system. Its expectation value is given by:

〈Θ〉 =
∑

i

Θi ρi (2.7)

Since molecular dynamics simulations already produce conformations according

to their probability ρi, it is quite easy to obtain estimates of the ensemble averages

from averages over the corresponding time series3, i.e.

〈Θ〉sim. =

∑

t Θt

nt

(2.8)

where 〈Θ〉sim. denotes the estimate of an ensemble average calculated in a molecular

dynamics or Monte Carlo simulation, t is the index of a conformation sampled

in the simulation and nt is the total number of conformations generated in the

corresponding simulation.

If the data collected in a molecular simulation does not reflect the correct proba-

bility distributions of all contributing states (e.g., if the simulations were too short),

3We would like to point out that in Monte Carlo simulations a time series means a sequence of

conformations generated by the computer based on random moves. Thus this sequence does not

reflect any real time behavior.
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the expectation values computed from it will most likely be erroneous. This is espe-

cially true if some of the dominant low energy regions of phase space were omitted.

Since the free energy of a system is also a property that depends on the whole

partition function (see Equation 2.1), correct sampling is crucial to obtain accurate

results.

2.4 Calculating free energy differences

Trying to calculate the free energy directly according to Equation 2.7 is quite im-

practical for most purposes since computing the partition function requires sampling

of all microstates of the system (see Equation 2.2). The dilemma of calculating the

partition function with molecular dynamics or Monte Carlo simulations becomes

clear when one recalls that such simulations generate conformations according to

their probability ρi, as given in Equation 2.6; i.e., they do not produce conforma-

tions randomly, but were designed to yield ensemble averages without weighting

each frame. Thus, simple averaging over the frames resulting from a simulation is

enough to obtain an ensemble average. However, if we express the free energy in

terms of such an ensemble average ( cf. 2.7), the following equation results:

A = kBT ln

〈

+
Ui

kBT

〉

= kBT ln
∑

i

exp

(

+
Ui

kBT

)

ρi (2.9)

While the probability ρi is large in case of low energy regions, the term to its left,
(

+ Ui

kBT

)

, is large in case of high energy regions. Thus, there is a conflict of the

two terms in the sum in Equation 2.9, leading to poor convergence. Consequently,

attempts to compute absolute free energies from molecular dynamics or Monte Carlo

simulations are usually inaccurate.

Fortunately, the absolute free energy of a system is not required for most ap-

plications in chemistry. More important is the free energy change associated with

chemical reactions or transfer processes. All such calculations have in common that

the initial state (0) is transformed to another (final) state (1). Based on Equa-

tion 2.1, the Helmholtz free energy difference (∆A) between two states 0 and 1 is

given by

∆A = −kBT ln
Z (1)

Z (0)
(2.10)
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By itself, Equation 2.10 appears to be without merit, since we now have to compute

two partition functions instead of just one. However, it is possible to reformulate

the equation above in terms of ensemble averages of either state 0 or state 1 (the

indices 0 and 1 indicate that the ensemble averages are calculated over all coordinate

frames generated for state 0 or 1, respectively) [8]:

∆A = −kBT ln

〈

exp

[

−U (1) − U (0)

kBT

]〉

0

or, equivalently

∆A = +kBT ln

〈

exp

[

−U (0) − U (1)

kBT

]〉

1

(2.11)

We now rewrite the formulation for the ensemble average of state 0 in Equation 2.11

to the form of Equation 2.9, thus obtaining

∆A = −kBT ln
∑

i

exp

[

−Ui (1) − Ui (0)

kBT

]

ρi (0) (2.12)

In contrast to Equation 2.9, the summation here is over the difference (U (1)−U (0))

of the potential energies of the respective end states instead of the potential energy

itself. Assuming that the overall shape of the potential energy surfaces are similar,

high energy conformations of one state will also be high energy conformations of the

other state (for completely nonsensical structures this will always be true), the two

large values U (1) and U (0) will more or less cancel each other out4. Thus, in most

cases, the ρi (0) term will dominate in the summation, which greatly increases the

convergence (and accuracy) relative to calculating the two associated free energies

individually according to Equation 2.9.

If the two end states involved are very dissimilar, the assumption made above is

not valid and the terms U (1) and U (0) will not cancel each other out, leading to

poor convergence. Thus, the larger the differences between the shapes of the energy

landscapes of states 0 and 1, the more difficult it becomes to compute free energy

4Similar considerations will also apply to low energy regions
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differences by molecular dynamics simulation. However, if the two end states are too

dissimilar, the free energy difference calculation can be broken down into multiple

smaller substeps. This approach improves the similarity (or phase space overlap)

of the two end states involved in each substep of the calculation, yielding a better

convergence of the free energy results. To do so, intermediate states between the

two end states 0 and 1 have to be simulated. Usually, such intermediate states are

created by mixing the energy parameters of the states 0 and 1. The mixture ratio is

given by the so-called coupling parameter λ. Customarily, values of λ range between

0 ≤ λ ≤ 1, with the initial state corresponding to λ = 0 and the final state to λ =

1. The simplest (but not necessarily the best5) combination of states 0 and 1 as a

function of λ is

U (λ) = λU (1) + (1 − λ)U (0) (2.13)

By using such a step-wise approach, the free energy difference of interest is obtained

as the sum of nλ smaller free energy simulations, i.e.

∆A =

nλ−1
∑

l=1

∆A (λl → λl+1) (2.14)

Based on this trick, multiple (formally exact) techniques have been derived from

Equation 2.14 to calculate free energy differences. The most prominent examples

are the Exponential Formula [8] (EF, also known as Thermodynamic Perturbation),

Bennett’s Acceptance Ratio method [9] (BAR) and Thermodynamic Integration [7]

(TI).

The Exponential Formula [8] (EF) is a direct application of Equation 2.11. Each

substep of a free energy difference calculation is usually based on a trajectory from

a single state.

∆AEF−FW (λl → λl+1) = −kBT ln

〈

exp

[

−U (λl+1) − U (λl)

kBT

]〉

λl

(2.15)

Again, the index λl indicates that the ensemble average is calculated over all coor-

dinate frames generated for state λl. This illustrates a free energy simulation con-

5Usually, so-called soft core potentials [48] are employed to improve the stability of free energy

simulations. However, these potentials do not linearly depend on the λ value (dU(λ)/dλ).
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ducted in ”forward“ direction. The opposite (a free energy simulation conducted in

”backward“ direction) would be the case if the expectation value is calculated from

a trajectory of state λl+1. Here the free energy difference is given by

∆AEF−BW (λl → λl+1) = kBT ln

〈

exp

[

−U (λl) − U (λl+1)

kBT

]〉

λl+1

(2.16)

Bennett’s Acceptance Ratio method [9] (BAR) requires two simulations, one

generating a trajectory containing nλl
coordinate frames for the initial state λl (po-

tential energy function U (λl)), the other generating nλl+1
coordinate sets for the

final state λl+1 (potential energy function U (λl+1)). Bennett showed that the free

energy difference of a substep ∆ABAR (λl → λl+1) can formally be written as [9]

∆ABAR (λl → λl+1) = kBT

(

ln

∑

λl+1
f(U (λl) − U (λl+1) + C)

∑

λl
f(U (λl+1) − U (λl) − C)

− ln
nλl+1

nλl

)

+ C

(2.17)

where f is the Fermi function,

f(x) =
1

1 + exp( x
kBT

)
(2.18)

and

C = kBT ln
Zλl

nλl+1

Zλl+1
nλl

. (2.19)

Equation 2.17 by itself would be without merit since the unknown constant C is

essentially the sought after quantity (ratio of the partition functions of state λl and

λl+1). However, Bennett showed that C can be found through an iterative procedure

based on the condition

∑

1
f(U (λl) − U (λl+1) + C) =

∑

0
f(U (λl+1) − U (λl) − C), (2.20)
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Once C has been determined so that Equation 2.20 is satisfied, the free energy

difference is given by

∆ABAR (λl → λl+1) = −kBT ln
nλl+1

nλl

+ C (2.21)

The last method, Thermodynamic Integration [7] (TI), involves numerical quadra-

ture to determine the free energy difference. Contrary to the two methods men-

tioned before this method employs the coupling parameter λ directly. This is

motivated by considering λ as a continuous variable that can be used for differ-

entiation/integration. Using the fundamental theorem of calculus, the free energy

difference can be written as

∆A = A (1) − A (0) =

∫ 1

0

∂A (λ)

∂λ
dλ = −kBT

∫ 1

0

[

∂ lnZ (λ)

∂λ

]

dλ (2.22)

which immediately leads to the working equation for TI

∆ATI =

∫ 1

0

dλ

〈

∂U (λ)

∂λ

〉

λ

(2.23)

In practice, this integral is evaluated by conducting several simulations at dis-

crete values of λ to evaluate
〈

∂U(λ)
∂λ

〉

λ
and then employing numerical quadrature

to approximate the integral. Usually, this is done by using the simple trape-

zoidal rule; however, we want to point out that recent experiments by our co-

worker Stefan Bruckner indicate that other methods for numerical quadrature (e.g.,

Gauss-Legendre or Clenshaw-Curtis6) are far more efficient than the trapezoidal

rule [49,50], provided the integrand is relatively well-behaved7.

In closing, we would like to point out that, recently, non-equilibrium techniques

to compute free energy differences were discovered by Jarzynski [10] and Crooks [11].

6Which are equivalent to special polynomial-fitting approaches.
7The shape of the integrand depends on the simulation setup (e.g., the soft-core-scheme em-

ployed).
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2.5 Practical considerations concerning relative free

energy differences

Often one is interested in a direct comparison of the free energy differences of two

processes. This can be done by considering their relative free energy difference

(∆∆A). In such cases, clever use of thermodynamic cycles can help to find more

efficient ways to compute the required free energy changes [51]. Since the initial

and the final state are identical in a cyclic process, and since the free energy is a

state function, the total free energy change of going around a cycle has to be zero

according to the laws of thermodynamics. Notably, this feature is independent of

the number or kind of intermediate states involved in the cycle. Since free energy

differences only depend on the end points, we are at liberty to choose pathways

in between in any way it suits our purpose. Thus, thermodynamic cycles can be

employed to divide a relatively complex process into a number of substeps. Often,

these substeps are easier to compute than the original free energy of interest.

To illustrate this with an example, consider that we want to compare the sol-

vation free energies of two compounds, A and B (as, e.g., in Chapter 5). This

comparison normally involves the calculation of two absolute solvation free energies,

which is feasible today, but requires a considerable computational effort. However,

an alternative approach consists in determing the (relative) free energy difference

(∆∆Asolv) between the two states directly. The corresponding thermodynamic cycle

is depicted in Figure 2.1. Now, for the calculation of the total solvation free energy

difference (∆∆Asolv), we need the solvation free energies of compounds A and B,

denoted as ∆AA
solv and ∆AB

solv, which corresponds to −∆A1 and ∆A3 in Figure 2.1.

Thus, the relative solvation free energy difference ∆∆Asolv of interest is given by

∆∆Asolv = ∆AA
solv − ∆AB

solv = ∆A1 + ∆A3 (2.24)

These free energy differences correspond to the vertical arrows in Figure 2.1.

To form a thermodynamic cycle, we have to add horizontal arrows, which cor-

respond to so-called ”alchemical” free energy simulations. Such alchemical free
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Figure 2.1: Thermodynamic cycle for determing solvation free energy differences
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energy simulations transform compound A to compound B (e.g., turning lead to

gold). While this is a rather difficult task in the real world (to say the least), such

restrictions of physics do not apply to computer simulations. In silico, this corre-

sponds to simply substituting the force field parameters of A by the parameters of

B, which is quite trivial and can be done both in gas phase and solution ((∆A2) and

−∆A4 in Figure 2.1). Since the sum of a thermodynamic cycle is always zero,

∆A1 + ∆A2 + ∆A3 + ∆A4 = 0 (2.25)

the solvation free energy difference ∆∆Asolv can also be expressed in terms of the

two alchemical free energy differences

∆∆Asolv = ∆A1 + ∆A3 = −∆A2 − ∆A4 (2.26)

Equation 2.26 means that if the solutes are (somewhat) similar, only a relatively

simple mutation has to be carried out once in gas phase and once in solution (∆A2

and ∆A4) to compare of the solvent affinities of two compounds. Since the sim-

ulation in gas phase includes just the solute, the computational costs are reduced

considerably.

A more complex example of employing thermodynamic cycles is the analysis of

ligand binding. In drug development, one is often not interested in the absolute

binding free energy, but rather in a comparison of the relative binding affinity of

drug candidates. Such a process is illustrated in Figure 2.2. Let the ligands L1

and L2 be two putative inhibitors of a receptor R. In principle, the two binding

affinities (∆Abind) of the ligands L1 and L2 (horizontal arrows) could be determined

in separate free energy calculations and compared afterwards. This would require

the transfer of the ligand from a large distance into the binding pocket to form

the intermolecular complex LR [52] or a stepwise procedure referred to as double-

decoupling [53].

However, the relative binding affinity (∆∆Abind) can be determined more easily

by calculating the alchemical free energies indicated by vertical arrows in Figure 2.2.

The first free energy difference, ∆Aaqu.(L1 → L2), is the alchemical free energy differ-

ence between the two ligands in aqueous solution (this step corresponds to −∆A4 in
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Figure 2.2: Thermodynamic cycle for the determination of the relative free energies

of binding of two ligands, L1 and L2, to a receptor (R). While receptor and ligands

are infinitely far apart on the left side of the figure (and, therefore, can be treated

separately as indicated by the +), they form a complex LxR (x=1,2) on the right

side of the cycle by transferring the ligand into the binding pocket (∆Abind(Lx)).

Vertical arrows represent alchemical mutations.
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Figure 2.1)8. The second free energy difference, ∆Abound(L1 → L2), is the free energy

difference between the ligands in the bound state. It involves the transformation of

L1 to L2 while being located in the binding pocket. For the sake of completeness,

also the free energy difference ∆Aaqu.(R → R) is included in Figure 2.2, however,

the associated change of the free energy is zero. Since

∆∆Abind = ∆Abind(L2) − ∆Abind(L1) = ∆∆Abound(L1 → L2) − ∆∆Aaqu.(L1 → L2)

we can calculate the relative free energy difference of binding from non-physical

pathways that are more reliable than simulating the physical processes. This is

particularly so if the ligands involved have very similar binding modes.

8This highlights the importance of correct predictions of solvation effects in practical applica-

tions, since, in addition to the change of the intramolecular interactions, also the solvation free

energy difference plays a critical role in this process.
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Chapter 3

Unorthodox uses of Bennett’s

acceptance ratio method

We illustrate the application of Bennett’s acceptance ratio method (BAR) to prob-

lems where standard methods to compute free energy differences (thermodynamic

integration, exponential formula) are not practical. Our starting point is the obser-

vation that BAR can often compute the free energy difference between two states

without the need for intermediate states usually employed (and necessary) in al-

chemical free energy simulations. This is demonstrated first for the free energy

difference between ethane and methanol in aqueous solution. We then show how

BAR can be used to compute directly rather unusual free energy differences, such

as the free energy difference resulting from changing the treatment of electrostatic

interactions, from switching the force field, or from using an implicit solvent model.

Calculations of this kind should prove useful for force field development and the

validation of implicit solvent methods.

3.1 Introduction

Alchemical free energy simulations have become an important tool in the arsenal

of the computational chemist. Successful applications, but also continuing chal-

lenges are well documented by several reviews, e.g., 54–57 .The vast majority of

applications of free energy simulations reported to date used either thermodynamic

integration (TI) [7] or the exponential formula (EF), sometimes also referred to as
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thermodynamic perturbation [8]. Despite the availability of other methods, such as

Bennett’s acceptance ratio method (BAR) [9], TI and EF have been and still are the

workhorses of alchemical free energy simulation. The discovery of non-equilibrium

techniques to compute equilibrium free energy differences by Jarzynski [10] and

Crooks [11] renewed interest in the comparison of methods that can be used to com-

pute (alchemical) free energy differences; see, e.g., Refs. 58–60. Combined with the

demonstration that BAR is the equilibrium equivalent of Crook’s theorem [11, 61],

the results of these studies led to a rediscovery of BAR. In a detailed comparison

to TI and EF, Shirts and Pande showed that BAR was more efficient than either

of the two in typical applications of alchemical free energy simulations [21]. As a

result, the use of BAR is becoming more and more prevalent.

This paper is concerned with a facet of BAR related to the efficiency of the

method, which may open up the possibility of new types of alchemical free energy

simulations. Our starting point is the observation that BAR can compute an al-

chemical free energy difference between two states (systems) in a single step, using

only simulations of the end points (states of interest). This contravenes the common

wisdom that in most cases alchemical free energy calculations require not only simu-

lations of the two end states, 0 and 1, but also simulations of unphysical intermediate

states, formally characterized by the so-called coupling parameter λ. A λ-value of,

e.g., 0.6 indicates a hybrid state whose properties are a mixture of approximately

40 % state 0 and 60 % state 1 (the exact properties of this artificial intermediate

state depend on the detail of the hybrid potential energy function, see below). This

need for intermediate states has several ramifications. First, it is one important fac-

tor in making free energy simulations so expensive in terms of computer resources

(multiple, long simulations are required to obtain a single quantity). Equally impor-

tant, it complicates the computer code used to carry out the underlying molecular

dynamics (MD) or Monte Carlo (MC) simulations. Each simulation package han-

dles the details of accommodating hybrids differently, i.e., on the code level no two

implementations are completely equivalent. The code complexity to handle these

intermediate states often entails a (further) performance penalty. Moreover, only a

subset of features may be available compared to regular MD (or MC) in a particular

program package. Using CHARMM [62] as an example, when computing free energy
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differences with one of the three available modules (BLOCK, TSM, PERT), most of

the otherwise available implicit solvent models are not supported. The additional

code to make possible the use of Ewald summation in combination with the BLOCK

module was only added last year.

The need for intermediate states can even make certain interesting alchemical

free energy simulations impractical. Consider, e.g., the calculation of absolute sol-

vation free energies resulting from the use of an implicit solvent model. [63] Such

models typically consist of (at least) an additional energy term, but in most cases

they also require the use of a specific cut-off radius and/or specific options for the

calculations of the intramolecular electrostatic interactions. E.g., the computation of

electrostatic interactions in the EEF1 implicit solvent model [64] requires (i) scaled

charges for any charged moieties (e.g., N- and C-terminus, charged side chains), (ii)

use of a group based cut-off truncation scheme with a cut-off radius of 9 Å and (iii)

a distance dependent dielectric (ε(r) = 1/r). This should be contrasted with gas

phase calculations, where one employs the regular charges, no cut-off, and a constant

dielectric constant ε = 1. Since electrostatic interactions are computed completely

differently in the gas phase and with the EEF1 model, simulations of intermediate

states (0 < λ < 1), as are necessary in TI, are not practical. As we shall show,

BAR is capable of computing the free energy difference of adding an implicit sol-

vent model just using simulations in the gas phase and in implicit solvent, without

need for intermediate states. The utility of BAR in connection with implicit solvent

models was recently pointed out by Mobley et al. [65]

Quite generally, if one can compute a free energy difference of interest from

simulations of the physical end points alone, the complications and limitations of the

standard implementations of free energy simulations do not apply. In the remainder

of this manuscript we give examples of novel applications of alchemical free energy

calculations, which exploit exactly this “one-step capability” of BAR. In particular,

we studied the following four problems. (1) To demonstrate the “one-step capability”

of BAR compared to, e.g., EF, we computed the alchemical free energy difference

between ethane and methanol in water using just simulations of the physical end

states. (2) We calculated the free energy difference resulting from the use of two

different cut-off radii for phosphotyrosine (pTyr) mimetics, illustrating how BAR can
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be used to account for the free energy cost of changing the treatment of nonbonded

interactions. (3) We computed the difference in solvation free energies of capped

Ala and Ser (N-acetyl-methylamide amino acids) resulting from switching from the

CHARMM22 [66] to the AMBER Cornell et al. force field [67]. Finally, (4) we

calculated the free energies of solvation of capped Ala and Ser that one obtains with

the EEF1 [64] and FACTS [68] implicit solvent models, illustrating the utility of BAR

in connection with implicit solvent models. The remainder of this paper is organized

as follows: In Sect. 3.2 we briefly summarize the theory of BAR. Simulation details

are provided in Sect. 3.3, followed by the presentation of the results (Sect. 3.4).

We conclude with a short discussion concerning the usefulness of these types of

calculations.

3.2 Theory

BAR requires two simulations, one generating a trajectory containing n0 coordinate

frames for the initial state 0 (potential energy function U0), the other generating n1

coordinate sets for the final state 1 (potential energy function U1). Bennett showed

that the free energy difference ∆A0→1 can formally be written as [9]

∆A0→1 = kBT

(

ln

∑

1 f(U0 − U1 + C)
∑

0 f(U1 − U0 − C)
− ln

n1

n0

)

+ C (3.1)

where f is the Fermi function,

f(x) =
1

1 + exp(β x)
(3.2)

and

C = kBT ln
Q0n1

Q1n0

. (3.3)

The other symbols have their usual meaning; kB is Boltzmann’s constant, T is the

temperature, and Q is the (canonical) partition function. The summation indexes 0

and 1 indicate that the sums run over all coordinate frames generated for the initial

and final state. Equation 3.1 by itself would be without merit since the unknown

constant C is essentially the sought after quantity (ratio of the partition functions

of state 0 and 1). However, Bennett showed that C can found through an iterative

procedure based on the condition

∑

1
f(U0 − U1 + C) =

∑

0
f(U1 − U0 − C), (3.4)
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Once C has been determined so that Equation 3.4 is satisfied, the free energy dif-

ference is given by

∆A0→1 = −kBT ln
n1

n0

+ C (3.5)

Starting from Crooks’ theorem [11], Shirts et al. rederived BAR using maximum

likelihood techniques [61]. The demonstration that BAR can be obtained by a well

understood standard technique further increased the attractiveness of the method.

3.3 Methods

All calculations were carried out with CHARMM [62]. In connection with the EEF1

implicit solvent function [64] the CHARMM19 polar hydrogen potential energy func-

tion [69] was used as prescribed by the model; in all other calculations we employed

the CHARMM22 [66] or the AMBER Cornell et al. all-atom protein force field [67].

The model problems studied were (1) the alchemical free energy difference between

ethane and methanol in water, (2) the free energy difference resulting from a change

in cut-off radius in simulations of three pTyr mimetics, (3) the free energy difference

resulting from using the AMBER [67] rather than the CHARMM [66] force field in

calculations studying the solvent affinity of capped Ala and Ser, and (4) the free

energy of solvation of Ala and Ser resulting from the use of the EEF1 [64] and the

FACTS [68] implicit solvent models.

Free energy differences were computed with BAR, relying solely on simulations of

the respective end states. For the ethane to methanol simulations this means that we

conducted two MD simulations: one of ethane, one of methanol in aqueous solution.

A dual topology hybrid solute mimicking either ethane or methanol was used in both

calculations, cf. Ref. 70 for details. In the second test application, each pTyr mimetic

was simulated in the gas phase with the cut-off radius of 70 Å used in the original

study [71] and with a much longer cut-off radius of 998 Å; free energy differences were

obtained from these pairs of simulations. In the AMBER/CHARMM inter-force-

field calculations the respective amino acids (Ala, Ser) were simulated both in the gas

phase and in aqueous solution using the Cornell et al. [67] and the CHARMM22 [66]

force fields (the actual simulations were all carried out with CHARMM using the

residue topology and parameter files for the Cornell et al. force field made available
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Table 3.1: Overview of free energy calculations and some details of the simulation protocols used in the four model problems studied

BAR TI

Description Environmenta Repsb nsc Description Environmenta Repsb nsc

Ethane to methanol

short protocold wat 6 2 Reference calculation wat 6 21
long protocold wat 6 20

Change of cut-off radius

short to long cut-offe gas 5 168 short cut-offf gas 5 42
long cut-offf gas 5 42

Change of force field

CHARMM→AMBER,

for Ala and Ser

gas 4 168

Ala→Ser, CHARMM

and AMBER force field

gas 4 168 Ala→Ser, CHARMM

and AMBER force field

gas 10 84

CHARMM→AMBER,

for Ala and Ser

wat 4 20

Ala→Ser, CHARMM

and AMBER force field

wat 4 20 Ala→Ser, CHARMM

and AMBER force field

wat 10 42

Solvation free energies from implicit solvent models

Ala, Ser gas→EEF1 5 168
Ala, Ser gas→FACTS 5 168

aGas phase (gas), water (wat), or implicit solvent (EEF1 [64] or FACTS [68])
bNumber of independent free energy simulation carried out with different random seeds for the initial velocities
cTotal simulation length (in ns) used to obtain the free energy difference of interest. For the “one-step” BAR simulations two simulations at the respective

end states of half the length indicated were carried out. For TI the cumulative simulation length of all λ-values simulated, included (re)equilibration is given. A
time step of 2 fs was used, with the exception of the ethane to methanol calculations, where the time step was 1 fs

dSimulations at the two end states were also used to estimate the free energy difference using EF
efor each of the three compounds studied (PP, BP, F2BP, cf. main text)
fAlchemical free energy differences BP→F2BP, F2BP→PP, PP→BP;
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by Thomas E. Cheatham, III). The solvation free energies resulting from implicit

solvent models were calculated by an analogous procedure, i.e., from one trajectory

of the respective amino acid in the gas phase and another trajectory with the implicit

solvent model applied. All these simulations were plain MD simulations; none of

the CHARMM free energy modules were used.

In some cases, we also computed the free energy differences by TI (when this was

possible), or used TI to calculate additional free energy differences that could be used

to close thermodynamic cycles in order to verify the BAR results. TI calculations

were carried out with the PERT free energy module of CHARMM (see the documen-

tation at www.charmm.org), using 21 λ values (λ = 0.00, 0.025, 0.075, . . . , 0.975, 1.00).

An overview of all simulations and some additional details are given in Table 3.1.

The ethane to methanol simulations were set up as described in Ref. 70. Gas

phase as well as implicit solvent model simulations were carried out using Langevin

dynamics with a friction coefficient of 5 ps−1 on all atoms. Random forces were

applied according to the target temperature of 300 K. In the solvent simulations of

N-acetyl-methylamide Ala and Ser 243 TIP3P water molecules [69,72] were present,

and the temperature was maintained at about 300 K by a Nosé-Hoover thermo-

stat [73]. Lennard-Jones interactions were switched off between 9–10 Å, while elec-

trostatic interactions were computed with the Particle Mesh Ewald method [74].

The simulation box was a truncated octahedron, cut out of cube with side length

21.4 Å. In the gas phase (and the implicit solvent simulations) coordinates were

saved to disk every 100 steps, whereas trajectories were written every 10 steps in

aqueous solution. The standard deviations of the free energy results were determined

by repeating each simulation several times, starting from different initial random ve-

locities. The energies required for BAR1 were extracted from the trajectories using

the EAVG command of the BLOCK module of CHARMM and processed by a Perl

script.

1for ethane to methanol, we also attempted to compute the free energy difference with EF
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3.4 Results

3.4.1 Ethane to methanol

Table 3.2 summarizes the results obtained for the alchemical free energy difference

between ethane and methanol in aqueous solution based on just simulations of the

two endpoints (ethane, λ = 0, methanol, λ = 1). No TI results are given since any

numerical integration scheme requires values of 〈∂U/∂λ〉λ at intermediate states 0 <

λ < 1. We report the average value obtained from six independent simulations based

on shorter and longer trajectories (referred to as “short protocol” and “long protocol

in Table 3.2; see also Table 3.1). The results of Table 3.2 should be compared to

∆AE→M
H2O = −3.05 ± 0.05 kcal/mole, obtained by TI from six independent series

of simulations using 21 λ values each. As one sees immediately, the BAR results

agree excellently with this reference value, although the standard deviation for the

“short” results is somewhat high (±0.31 kcal/mole). By contrast, the “short” EF

results are completely wrong. For the “long” results, the backward EF (M→E)

result of +3.30 approaches the correct value, but the standard deviation remains

unacceptably high. The forward EF result of +0.08 kcal/mole remains completely

wrong, despite underlying simulations of in total 120 ns. The ease of Bennett to

arrive at the correct result in one step is all the more remarkable considering that

only 0.07 % of energy differences 〈U1 − U0〉0 and −〈U0 − U1〉1 overlap, explaining

the poor convergence of EF. We stress that the results of Table 3.2 should not be

interpreted as BAR being the superior method to compute this particular free energy

difference. The correct result for ∆AE→M
H2O can be obtained by both TI and EF using

relatively short protocols; however, only if simulations at intermediate values of λ are

used (data not shown). Only BAR is capable of calculating the correct free energy

difference from just simulations of the physical endpoints. We note in passing that

attempts to use WHAM [75,76] to calculate the free energy difference based on the

same raw data used for BAR did not converge.

3.4.2 Change of cut-off radius

Our second case study was motivated by the correction of a potential inconsistency

in the treatment of electrostatic interactions during the computation of alchemical

31



Table 3.2: Alchemical free energy difference (in kcal/mole) between ethane (E) and

methanol (M) in aqueous solution.

BAR (∆AE→M
H2O ) σa forward EF (∆AE→M

H2O ) σa backward EF (∆AM→E
H2O ) σa

short protocol -3.00 ±0.31 +0.95 ±0.61 +6.02 ±1.04

long protocol -3.03 ±0.04 +0.08 ±1.22 +3.30 ±0.90

aStandard deviation

Table 3.3: Free energy change resulting from the change of a 70 Å (“short c.o.”)

to a 998 Å (“long c.o.”) cut-off radius in combination with a shifting function

to calculate electrostatic interactions for PP, BP and F2BP in the gas phase. All

free energies are given in kcal/mole; standard deviations of all results were below

±0.04 kcal/mole.

BAR TI

BP F2BP PP BP→F2BP F2BP→PP PP→BP

short→long c.o.a −0.29 −1.31 −0.23 short c.ob 280.22 −271.12 −9.13

BP→F2BP F2BP→PP PP→BP long c.o.b 281.26 −272.21 −9.08

Correctionc -1.03 1.09 -0.06 Differenced -1.04 1.09 -0.05

aFree energy difference resulting from change in cut-off radius

bAlchemical free energy difference obtained at indicated cut-off radius

cChange in alchemical free energy difference resulting from increase of cut-off radius, obtained from “short→long

c.o. results

dChange in alchemical free energy difference resulting from increase of cut-off radius, obtained as difference of “long

c.o.” and “short c.o.” results
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free energy differences between phenol phosphate (PP), benzyl phosphonate (BP)

and difluorobenzyl phosphonate (F2BP) in the gas phase. PP is the side chain

analog of pTyr, whereas BP and F2BP are the side chain analogs of important pTyr

mimetics. In particular F2BP is an important model compound when trying to

understand the role of selective fluorination on the potency of potential inhibitors

of pTyr binding to protein tyrosine phosphatases and SH2 domains [71].

In Ref. 71 we computed electrostatic interactions using a cut-off of 70 Å in com-

bination with a shifting function (Equation 16 in Ref. 62). Since intramolecular

electrostatic interactions in these dianions are extremely strong and vary consider-

ably depending on the system (e.g., the polarity of the CH2 moiety of BP is the

opposite of that of the CF2 group of F2BP), this choice of cut-off radius in combi-

nation with a shifted potential may have been too short. Using BAR, we computed

the effect of extending the short 70 Å radius to the safe value of 998 Å for each

of the three compounds; the results are listed in the first row of the left half of

Table 3.3. The corresponding corrections for the alchemical free energy differences

between respective pairs are given in the last row of the left half of Table 3.3. While

the influence of cut-off radius is negligible for ∆ABP→PP
gas , one sees that both free

energy differences involving F2BP (∆ABP→F2BP
gas and ∆AF2BP→PP

gas ) incur an error of

≈ 1 kcal/mole as a result of the too short cut-off radius.

The same corrections can of course also be obtained by repeating the alchemical

free energy difference calculations with the longer cut-off radius; the influence of cut-

off radius is then obtained as the difference between the free energies found with the

two cut-off radii. Results of such calculations, using regular TI, are presented in the

right half of Table 3.3. As can be seen by comparing the results in the last line of the

left and right half of the table, the agreement between the direct calculation using

BAR and the indirect calculation using TI is excellent, illustrating the correctness

of our use of BAR.

We note that although we found errors of ≈ 1 kcal/mole, the conclusions of

Ref. 71 are not affected since the solvation free energy differences between the three

compounds (the physical relevant quantities) are on the order of 10 kcal/mole and

more.
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3.4.3 Change of force field

The choice of the remaining case studies was motivated by the observation that

the solvation free energy of (capped) amino acids and their corresponding side chain

analogs (methane for alanine, methanol for serine etc.) can differ significantly [33,77,

78]. E.g., the relative solvation free energy difference between methane and methanol

is −7.39 kcal/mole, whereas that between Ala and Ser is only −2.46 kcal/mole [78].

Using capped Ala and Ser as prototypical examples, we utilized BAR to compute

the change in solvation free energy resulting from changing the CHARMM force

field [66] to the AMBER Cornell et al. force field [67]. In the next section, we report

the solvation free energies of the two amino acids that one finds using two implicit

solvent methods.

The diagrams in the top and bottom sides of the “cube” shown in Figure 3.1a

represent the standard thermodynamic cycles to compute solvation free energies [51].

Results for the CHARMM force field are shown in the top cycle, the AMBER results

are listed in the cycle on the bottom. These free energy differences can be calculated

with any of the standard techniques (TI, EF, BAR etc.); the results shown here were

obtained with “one-step” BAR, but results of TI calculations led to extremely similar

results (differences to BAR results reported here below 0.1 kcal/mole, data not

shown). In addition, we used BAR to compute the free energy differences resulting

from switching the force fields (thick vertical arrows in Figure 3.1a) for all states

involved in the calculation of the solvation free energy difference between Ala and

Ser. The most striking aspect of Figure 3.1a is the magnitude of the “vertical” free

energy differences between the force fields, which surpass the “horizontal” differences

between the apolar Ala and the polar Ser. This finding highlights the arbitrariness

of absolute free energies. The picture becomes clearer when one focuses on the

differences between relative solvation free energy differences (∆∆AAA
solv = ∆AAA

H2O −
∆AAA

gas ) in Figure 3.1b instead of on the absolute effects in Figure 3.1a. Again, the

horizontal arrows designate the relative solvation free energy differences (∆∆AAA
solv)

obtained with the CHARMM (top) and the AMBER force fields (bottom), whereas

the vertical arrows denote the inter-force-field free energy differences between the

solvation free energies of Ala and Ser obtained when replacing the CHARMM by

the AMBER force field, respectively. The two force fields give almost identical
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Figure 3.1: Free energy differences resulting from switching from the CHARMM [66]

to the AMBER force field [67] for capped Ala and Ser. a) Inter-force field free energy

differences, as well as individual free energy differences in gas phase and solution.

b) Difference in relative solvation free energies as a consequence of switching force

fields, as well as the relative solvation free energy differences (∆∆AAA
solv) between the

two amino acids.
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Figure 3.2: Solvation free energies differences (in kcal/mole) between capped Ala

and Ser obtained with two implicit solvent methods, EEF1 and FACTS. The explicit

solvent results and the side chain analog results (methane–methanol) are also shown.

results for the solvation free energy of Ser; whereas for Ala we find a difference of

+0.68 kcal/mole (left vertical arrow in Figure 3.1b). Thus, interestingly, most of the

differences in solvation free energies ∆∆AAMBER
solv −∆∆ACHARMM

solv = −0.73 kcal/mole

have their origin in the Ala results. Clearly, calculations of this kind can help

elucidate the effect which differences in parametrization have on thermodynamic

properties, separating intramolecular effects from interactions with solvent.

The results summarized in Figure 3.1b can also be used to gauge the accu-

racy and precision of our calculations. Summing the four free energy differences

(taking into account changes of sign where appropriate!), one finds a cycle closing

error of only 0.01 kcal/mole. This negligible error demonstrates the correctness of

our CHARMM→AMBER calculations. Also, in Ref. 78 we reported the relative

solvation free energy differences between Ala and Ser obtained from standard TI;

the values of −2.46 kcal/mole and −3.20 kcal/mole for CHARMM and AMBER,

respectively, agree excellently with the present results.

3.4.4 Solvation free energies from implicit solvent models

Using BAR, we directly computed the (absolute) solvation free energies of (capped)

Ala and Ser when using the EEF1 and the FACTS implicit solvent models. To

compare the results with those obtained with explicit solvent, as well as to the

solvent affinity of the respective side chain analogs, we show the relative solvation
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free energy between Ala and Ser in Figure 3.2. One sees immediately that there are

huge differences between the models. While the FACTS result (−2.96 kcal/mole) is

relatively close to the explicit solvent value of −2.46 kcal/mole [78], the EEF1 result

is off by more than −3.5 kcal/mole and resembles the side chain analog rather than

the amino acid result.

As discussed in the Introduction, for most implicit solvent models it would be

rather involved to compute the energy and forces at intermediate values of the cou-

pling parameter λ; hence, the possibility of computing the free energy difference in

one step is extremely useful. We found that in some cases EF sufficed to compute the

solvation free energy of implicit solvent models (using the average of a forward (gas

phase → implicit solvent) and backward (implicit solvent → gas phase) calculation),

but BAR turned out to be more precise and reliable (data not shown).

The EEF1 implicit solvent model is one of the few implicit solvent methods

that is supported by conventional free energy modules in CHARMM; hence, we

used the standard thermodynamic cycle [51] and computed ∆∆AAA
solv = ∆AEEF −

∆AAA
gas , where ∆AEEF denotes the free energy change between Ala and Ser using

EEF1 and ∆AAA
gas is the corresponding free energy difference in the gas phase. With

∆AEEF = −6.49 kcal/mole and ∆AAA
gas = 0.46 kcal/mole, we obtain ∆∆AAA

solv =

−6.95 kcal/mole, in excellent agreement with the value reported in Figure 3.2 and,

thus, verifying the correctness of the direct approach.

3.5 Concluding Discussion

Several studies found that BAR is frequently more efficient than TI and EF in al-

chemical free energy simulations [21,58–60]. In this work we presented three exam-

ples of calculations that would either have been much more difficult or not possible

at all without BAR. E.g., calculating the free energy resulting from the change of

cut-off radius (cf. Table 3.3) directly would not be possible in the framework of

traditional free energy methods. Admittedly, for the specific system, simply repeat-

ing the calculations with a longer cut-off would have been equally quick. However,

corrections of this kind may well be advantageous for larger systems; in particular,

since already existing trajectories can be reused. The other two examples are of
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even greater practical relevance. BAR is extremely useful in connection with im-

plicit solvent models, see also Ref. 65. The method makes it possible to calculate and

compare solvation free energies resulting from the use of different implicit solvent

models, which should prove useful in comparing the quality of such approaches.

The calculation of free energy differences resulting from swapping the underlying

force field, is relevant for parametrization in general. As an example, suppose that

one has modified an existing force field and that free energy calculations on model

compounds were carried out to validate the original parameters. Therefore, upon

each modification of the force field, these calculations should be repeated, a tedious

and expensive exercise. On the other hand, it is much more likely that regular

MD simulations of the systems of interest with the original and the modified force

field have been carried out to compare a variety of properties. Using BAR in the

manner described here, the trajectories written during these MD simulations can

be used to quantify the free energy cost of the force field modification. In other

words, BAR permits one to relate relatively cheaply the effect which force field

modifications have on thermodynamic properties and to identify the changes which

have the largest effect.

At least in connection with CHARMM, “one-step” free energy simulations with

BAR have a potential additional benefit not discussed so far. As mentioned in the

Introduction, the need for intermediate steps in alchemical free energy calculations

adds a layer of complexity to the underlying MD (or MC) code used in free energy

simulations, which also impacts performance. E.g., the new fast lookup code of

CHARMM [79] cannot be used if either of the three free energy modules is used

(BLOCK, TSM, PERT). Further, several usage scenarios of these modules effec-

tively necessitate the use of the generic slow energy routines, as well as the slow

nonbonded list routines. The loss in performance is considerable and can be as

large as a factor of four. As illustrated by the ethane–methanol example, BAR can

compute an alchemical free energy difference in a single step. The required trajec-

tories of ethane and methanol in water (solutes suitably modified by attaching a

dummy group representing methanol and ethane, respectively) were obtained with

the fastest routines available in CHARMM (lookup table energy routines plus fast

nonbonded list generator). While in this simple case (and small system) the shorter
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simulation times compared to the slow energy routines are rather irrelevant, the po-

tential performance gain is certainly of interest in large(r), real world applications.

We are presently exploring further this aspect of using BAR rather than TI or EF.

Even before its recent rediscovery, BAR proved to be a valuable tool. Already

some twenty five years ago, Ferguson pointed out the superiority of BAR in situa-

tions of poor overlap between states [80]. In a study on the hydration free energy

of water, Hummer et al. exploited the efficiency of BAR to illustrate the theoretical

considerations with a large number of free energy data, which most likely would have

been prohibitively costly to calculate with other methods (such as TI or EF) [81].

Similarly, a more recent work on water conduction through hydrophobic channels is

an interesting example of the use of BAR in an unusual context [82]. We hope that

the examples presented here show that BAR can facilitate the calculation of free

energy differences in non-traditional situations. Quite generally, whenever one has

trajectories of two states 0 and 1 and when there is any overlap between 〈U1 − U0〉0
and −〈U0 − U1〉1, one can rely on BAR to compute the free energy difference be-

tween the two states. Thus, we suspect that there are many more “unorthodox”

uses of BAR waiting to be explored.
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Chapter 4

Non-Boltzmann Sampling and

Bennett’s Acceptance Ratio

Method: How free energy

simulations can profit from

bending the rules.

The exact computation of free energy differences requires adequate sampling of

all relevant low energy conformations. Especially in systems with rugged energy

surfaces, adequate sampling can only be achieved by biasing the exploration process,

thus yielding non-Boltzmann probability distributions. To obtain correct free energy

differences from such simulations, it is necessary to account for the effects of the bias

in the post-production analysis. We demonstrate that this can be accomplished quite

simply with a slight modification of Bennett’s Acceptance Ratio method, referring

to this technique as Non-Boltzmann Bennett. We illustrate the method by several

examples and show how a creative choice of the biased state(s) used during sampling

can also improve the efficiency of free energy simulations.
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4.1 Introduction

The calculation of free energy differences is one of the most promising applications

of computational chemistry. It bridges the gap between the microscopic world of

molecular simulation and one of the most fundamental macroscopic thermodynamic

properties, the free energy. Thus, free energy simulations provide direct means

to address a wide range of biologically relevant questions. Successful applications

include the calculation of binding affinities of ligands [15,16], the study of enzymatic

reactions [17], of molecular solvation [18, 19], and of protein stability as a function

of point mutations [20].

The vast majority of free energy simulations reported to date were carried out

by two families of methods: Thermodynamic Integration (TI) [7] and (several vari-

ants of) the Exponential Formula (EF), often also referred to as Thermodynamic

Perturbation, Free Energy Perturbation or Exponential Averaging [8]. Recently,

however, the use of Bennett’s acceptance ratio method (BAR) [9] has become more

and more prevalent. Although first described in 1976, it was practically never used

in free energy simulations until seven or eight years ago. Several studies have found

BAR to be superior in terms of efficiency to TI and EF in alchemical free energy

simulations [21, 58–60]. Fewer intermediate states and, hence, shorter total simu-

lation lengths suffice to calculate a free energy difference accurately and precisely

compared to other methods, notably TI and EF. In addition, the overlap criterion

of BAR [9] provides a rational measure for gauging the quality of a free energy sim-

ulation. We note that depending on one’s point of view BAR may also be regarded

as a sophisticated variant of EF, an equilibrium version of Crook’s theorem [11], or

even as a non-discretized weighted histogram analysis method (WHAM) conducted

on just two states [75,83].

A major challenge for any computer simulation based method (not just free en-

ergy simulations) is the need for adequate sampling. If relevant parts of phase space

are not visited during a simulation, any results derived from it are of dubious quality.

This problem has been addressed by multiple techniques including, e.g., umbrella

sampling [22, 23], Hamiltonian replica exchange [84, 85], accelerated molecular dy-

namics (AMD) [86], conformational flooding [87] etc. Since all these techniques go

beyond the Boltzmann sampling of conventional molecular dynamics (MD) or Monte
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Carlo simulations, we subsume them by the term “non-Boltzmann sampling”. Often

they can speed up the convergence of simulations significantly. E.g., for the mean

field Ising model on N sites theoretical considerations demonstrate that with non-

Boltzmann sampling one can obtain estimates in a time which is polynomial in N ,

whereas time would be exponential in N if conventional Boltzmann sampling were

used. [88]. Thus, though the computational cost can still be considerable, an efficient

non-Boltzmann sampling technique is by far the better choice for large systems.

Focusing on free energy simulations, it has been found that even the rather

trivial case of a side chain being trapped in a conformational minimum can lead

to incorrect results or at least to very slow convergence of the calculations. Several

groups observed this effect for the case of solvation free energies [24,89–91], and even

more so in the context of binding free energy calculations [92,93]. Since in some cases

even very long simulations are not enough to escape from such local minima, special

techniques have to be applied. Woods et al. suggested replica exchange TI (RETI)

in coupling parameter space (λ-space). This special variant of Hamiltonian replica

exchange does not involve non-Boltzmann sampling since the system only switches

between λ-states at which simulations would be carried out anyways. While RETI

enhances configurational sampling (e.g., of the solvent) it is less clear whether this

type of exchange moves may help escape from conformational substates. Therefore,

other (Hamiltonian) replica exchange schemes have been proposed in the context

of TI [94, 95]. A rather different approach is the “Confine-and-release method”

by Mobley et al. [93], which relies on the use of constraints; see also Refs. 24, 96,

97. However, the most straightforward approach appears to be applying biasing

potentials to the problematic degree(s) of freedom; for TI and EF this has already

been investigated [24, 98], and the use of biasing potentials is of course central to

WHAM [75,99].

Here we show that non-Boltzmann sampling can be used equally easily together

with BAR. We will refer to this modification of BAR as non-Boltzmann Bennett

(NBB), thus reflecting its methodological similarity to non-Boltzmann Thermody-

namic Integration (NBTI) [24]. Similarly to NBTI and WHAM, NBB is an extension

of umbrella sampling [22]. In addition to demonstrating the utility of NBB for a

straightforward task (overcoming hindered rotation of amino acid side chains), we
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explore additional uses of non-Boltzmann sampling in connection with free energy

simulations. We note that a similar application of WHAM in a non-standard context

was described recently [100]. In an earlier study [101] we demonstrated ”unortho-

dox” applications of BAR, which are based on the observation that in some situ-

ations BAR can compute free energy differences using just the physical end states

(which is not possible with, e.g., TI and EF). By exploiting this strength of BAR

in combination with ”creative” biasing potentials or, rather, biased states, further

”unorthodox” uses of BAR/NBB can be devised, which are able to improve the

efficiency of free energy simulations.

To emphasize the versatility and usability of NBB, we restrict ourselves to biased

states that do not require any specialized computer code. Thus, the calculations de-

scribed in this work should be repeatable with any simulation package or force field.

In particular, we consider the following model tasks/problems: (1) We use a simple

biasing potential to overcome hindered rotation of amino acid side chains about the

χ1 angle (Sects. 4.3.1, 4.4.1). (2) For a small toy system we show that the free

energy difference between two states with significantly different energy landscapes

can be calculated based on simulations of a third state which includes the relevant

phase space regions of the systems of interest (Sects. 4.3.2, 4.4.2). (3) We show that

NBB can correct small errors in free energy simulations without having to repeat all

simulations. Specifically, we use simulations in which a force field term was “forgot-

ten” and show that by appropriate re-weighting the correct free energy difference is

obtained as if the full (correct) force field had been used during the underlying MD

simulations (Sects. 4.3.3, 4.4.3). Finally, (4) by an analogous approach simulations

with a fast implicit solvent model can be utilized to obtain results that correspond to

the use of a high quality implicit solvent model (which would be much slower). This

last example illustrates in particular how the separation of production and analysis

can be exploited to gain efficiency (Sects. 4.3.4, 4.4.4).

We note that there is some potential for confusion concerning nomencla-

ture/terminology. The trajectories obtained during the simulations of the various

biased states employed in this work constitute standard Boltzmann sampling for

these modified states; yet, sampling is of the non-Boltzmann type for the physical

states of interest. Thus, our choice of terminology for the method, non-Boltzmann
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Bennett, reflects the point of view of the physical system. Further, the list of example

applications just given indicates that the utility of NBB goes beyond straightforward

biasing of selected degrees of freedom. In fact, there often is no biasing potential

in the traditional sense, i.e., a single potential energy term favoring specific regions

of phase space. Instead, the full potential energy function is altered more or less

subtly to achieve a specific purpose. A related situation is found, e.g., when employ-

ing WHAM to analyze data from generalized ensemble simulations [99]. In cases

where speaking of a biasing potential might be misleading, we refer to the simulated

system as biased state or sampled state, and to the the system of interest as target

state.

The remainder of this paper is organized as follows. First, we outline the theory

of NBB (Sect. 4.2.1) and describe the types of biased (or sampled) states that we use

(Sect. 4.2.2). Methodological details of the simulations are presented in Section 4.3.

We then present the results for the four model problems outlined above (Sect. 4.4)

and conclude with a short discussion concerning the usefulness of these types of

calculations in Section 4.5.

4.2 Theory

4.2.1 The Non-Boltzmann Bennett Method

To compute the free energy difference between two states 0 and 1, BAR utilizes the

information obtained from simulations of both states simultaneously [9]. The free

energy difference between states 0 (potential energy function U0) and 1 (potential

energy function U1) is given by

∆A0→1 = β−1

(

ln
〈f(U0 − U1 + C)〉1
〈f(U1 − U0 − C)〉0

)

+ C (4.1)

The subscripts 0 and 1 in Equation 4.1 indicate that the ensemble averages 〈 〉 are

calculated from the trajectories of the initial (0) and final state (1), respectively.

The symbol f denotes the Fermi function,

f(x) =
1

1 + exp(β x)
(4.2)

and

C = β−1 ln
Q0n1

Q1n0

(4.3)
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where Q denotes the respective partition function, β has the usual meaning of 1/kBT ,

and n0 and n1 are the number of configurations of state 0 and 1 from which the

ensemble averages are evaluated. The unknown constant C, which corresponds

essentially to the free energy difference of interest, is found iteratively. Starting

from an initial guess, one searches for the value of C so that the argument of the

logarithm in Equation 4.1 equals unity since in this case the free energy difference

is given by

∆A0→1 = −β−1 ln
n1

n0

+ C (4.4)

In NBB, simulations are carried out for a biased (sampled) state (potential energy

function U biased) with special properties instead of the target state (the physical

system) with the regular potential energy function U . Such states are generated by

applying a biasing potential (V bias) to the original system (i.e., U biased = U +V bias);

however, to remain completely general in the choice of the biased state, we define

the biasing potential as

V bias = U biased − U (4.5)

Torrie and Valleau [22] showed how to obtain an unbiased ensemble average 〈X〉 of

some property X from simulations of a biased state:

〈X〉 =

〈

X exp
(

βV bias
)〉

b

〈exp (βV bias)〉b
(4.6)

where we use the notation 〈 〉b to indicate that the ensemble averages on the right

hand side of Equation 4.6 are evaluated from simulations of the biased state. The

working equation of NBB is thus easily found by applying Equation 4.6 to the two

ensemble averages in Equation 4.1 (with X being f(U0−U1+C) and f(U1−U0−C),

respectively), i.e.

∆A0→1 = β−1 ln

(〈

f(U0 − U1 + C) exp
(

βV bias
1

)〉

1,b
〈

f(U1 − U0 − C) exp
(

βV bias
0

)〉

0,b

〈

exp
(

βV bias
0

)〉

0,b
〈

exp
(

βV bias
1

)〉

1,b

)

+ C. (4.7)

To use Equation 4.7 one has to evaluate three quantities for each frame of the

trajectories: For the biased trajectory of state 0, it is necessary to compute U0, U1

and V bias
0 , while for state 1, U0, U1 and V bias

1 are required. Since U0 and U1 would

have to be also calculated for regular BAR, the computational overhead due to the

costs of determining V bias is quite low (except for the case of extremely complicated
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sampling states, where it is more straightforward to calculate V bias directly according

to Equation 4.5).

4.2.2 Applications of NBB

Before turning to specific examples, we briefly discuss some types of sampled (biased)

states that should prove useful in free energy simulations. The most straightforward

application of classical biasing potentials consists in overcoming a known barrier,

such as hindered rotation about a dihedral angle. However, employing specially

designed sampled states can enhance sampling in general (instead of just a selected

degree of freedom). This can be pivotal in free energy simulations since a free energy

difference between two states can only be calculated if their phase spaces overlap;

otherwise, intermediate states have to be introduced. By extending the phase spaces

of both end states by employing suitable sampled states, the overlap region between

them can be enlarged. This can enhance the efficiency of the free energy simulation

and decrease the number of necessary intermediate steps [102, 103]. In fact, if the

phase space of the sampled state is large enough to envelop both end states, a single

trajectory may be sufficient to compute the free energy difference.

As an example of a rather untypical sampled state we consider the case where

you detect a (small) error in your simulation setup after you have generated the

trajectories which you plan to evaluate with BAR. Normally, one has to rerun all

simulations, but depending on the system studied the computational cost may be

significant. Instead, provided the relevant regions of phase space were still sampled

during the defective simulations, one can regard the sampled state as simulations in

the presence of a (admittedly, rather peculiar) biasing potential, V bias = U faulty −
U correct. The faulty trajectories can be analyzed using NBB instead of regular BAR,

leading to the correct free energy difference. Using WHAM, Shirts et al. used an

analogous approach to correct for missing dispersion interactions because of (too)

short cut-off radii in MD simulations [100].

The idea underlying the approach just described can be utilized to enhance

the computational efficiency of free energy simulations by using different levels of

accuracy during the production of trajectories and their analysis. A computationally

cheap(er), approximate potential energy function is used in the sampled state for the
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exploration of phase space, followed by an analysis of the trajectories with an exact,

but computationally expensive potential function. This corresponds to NBB with a

biasing potential V bias = Uapproximate − U exact. Since coordinates are usually saved

only at every tenth or even hundredth step of the MD simulation, the expensive

energy terms are computed only for a small fraction of the total simulation steps,

thus reducing computational cost.

4.3 Methods

All calculations were carried out with CHARMM [62, 104], using the CHARMM22

all-atom force field [66]. The gas phase and implicit solvent model simulations were

conducted with Langevin dynamics, using a friction coefficient of 5 ps−1 on all atoms

and random forces according to a target temperature of 300 K. To justify a time

step of 2 fs, hydrogen masses were set to 10 amu. Trajectories were usually written

every 100 steps (exceptions will be stated explicitly). Details of explicit solvent

simulations are given when describing the respective system.

The standard deviations reported were determined by repeating each free energy

simulation four times, starting with different initial random velocities. The ener-

gies of the respective states required for BAR and NBB were extracted from the

trajectories using the EAVG command of the BLOCK module of CHARMM; the

BAR/NBB analysis was carried out by a Perl program.

4.3.1 Leucine–Asparagine

The potentials of mean force (PMF) of blocked asparagine (Asp) and leucine (Leu)

with respect to χ1 and χ2 differ substantially, particularly in the gas phase. For

this reason, the calculation of the relative solvation free energy difference between

these two amino acids was chosen in Ref. 24 as a model problem to investigate the

effect of conformational substates and rotational barriers on the convergence of free

energy simulations. Since the effect is particularly pronounced in the gas phase, we

calculate the alchemical free energy difference between Asp and Leu in the gas phase

using regular BAR and NBB.

The alchemical mutation was set up in the single topology framework [105] as
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described in Ref. 24. Eleven λ-states (λ = 0.0, 0.1, . . . , 1.0) were used. At each

λ-state simulations of 10 ns length were carried out. The regular BAR calculations

(no biasing potential present) were carried out thrice, starting from different sets

of initial χ1/χ2 values. In the non-Boltzmann TI (NBTI) calculations described in

Ref. 24 an adaptive umbrella potential was used in combination with TI to compute

this free energy difference. Here, we used a much simpler, static biasing potential

instead: the dihedral energy terms for χ1 and χ2 were deleted (which is equivalent

to adding a biasing potential that counteracts the dihedral energy terms exactly).

4.3.2 Five-atomic systems

Leitgeb et al. also reported results of several free energy simulations carried out for

five-atomic model systems [24]. Because of the smallness of the systems, the free

energy differences between them can be calculated by numerical integration of the

partition function; i.e., one can obtain reference results independent of free energy

simulations. The three model systems (cf. also Ref. 24) are unbranched, nonlinear

five-atomic molecules. The equilibrium bond lengths were 1.53 Å, all bond angles

were 111◦. Two dihedral angle terms (φ1, φ2) were present in each system.

• In system I, the same threefold torsional potential (multiplicity n1 = 3, force

constant k1 = 2.5 kcal/mol; n2 = 3, k2 = 2.5 kcal/mol) was applied to both

φ1 and φ2, resulting in nine equivalent minima.

• In system II the sum of two potentials was applied simultaneously to each

dihedral (n1,1 = 3, k1,1 = 2 kcal/mol, n1,2 = 1, k1,2 = 2 kcal/mol; n2,1 = 3,

k2,1 = 2 kcal/mol, n2,2 = 1, k2,2 = 2 kcal/mol ), resulting in a single global

minimum. In addition, there are four local minima that can be potentially

reached in a normal MD simulation.

• In system III, the dihedral potentials were the same as in system II, but the

dihedral force constants were raised (n1,1 = 3, k1,1 = 3.5 kcal/mol, n1,2 = 1,

k1,2 = 3 kcal/mol; n2,1 = 3, k2,1 = 3.5 kcal/mol, n2,2 = 1, k2,2 = 3 kcal/mol).

In addition, intramolecular electrostatic and Lennard Jones interactions were

present. This results in two equivalent global minima and one local minimum
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that is in principle accessible. However, these three minima are separated by

high energy barriers.

We attempted to compute the free energy differences between systems I, II and

III in two ways. First, BAR was used based on 84 ns simulations of the respective

end states. In addition, since the nine minima of I include all relevant minima of

II and III, we used NBB to compute the free energy differences of interest based

on the simulations of just state I. To obtain the ensemble averages of systems II

and III from system I, we employed the biasing potentials V bias
II = UI − UII and

V bias
III = UI − UIII , respectively.

4.3.3 Pseudoglycine–Glycine

In a recent study of relative solvation free energy differences between blocked amino

acids [78], we utilized a glycine-like molecule as intermediate state, to which we refer

as pseudoglycine (PG). PG differs from normal glycine (Gly) only by the force field

type of the Cα carbon. Obviously, it is useful to know the relative solvation free

energy difference between PG and Gly. The exact value of this free energy difference

depends on the force field used, e.g., whether the backbone cross term map (CMAP)

correction [106] is applied or not.

We computed the free energy differences between between PG and Gly in aqueous

solution with and without the CMAP term. The solutes were placed in a truncated

octahedron (cut out of a cube with a side length of 37.25 Å); 862 TIP3P water

molecules [69,72] were present. The temperature was maintained at about 300 K by a

Nosé-Hoover thermostat [73]. Lennard-Jones interactions were switched off between

10 and 12 Å, while electrostatic interactions were computed with the Particle Mesh

Ewald method [74]. Free energy differences were computed with BAR based on

simulations of just the physical endpoints (no intermediate λ-values were simulated).

The total simulation length for each state was 10 ns. Trajectories were saved to disk

every tenth step.

We then assume that we only have simulations without CMAP correction avail-

able, but are interested in the free energy differences that would be obtained in the

presence of the CMAP correction. To do so, we regard the simulations without

49



CMAP as simulations with CMAP plus a biasing potential that completely coun-

teracts CMAP, i.e., V bias = −UCMAP . Thus, using NBB we can compute the free

energy difference between PG and Gly as if the CMAP correction had been applied

during the simulations.

4.3.4 Implicit solvent

A related strategy can also help increase computational efficiency. In Ref. 78 we

compared free energy differences obtained in explicit solvent and implicit solvent

simulations. The most accurate implicit solvent model, GBMV [107] gave results

in good agreement with explicit solvent. This contrasts, e.g., with the FACTS [68]

model, which for some amino acids led to solvation free energies which deviated

considerably from the reference results. The higher accuracy of GBMV, however,

has a price: GBMV is (at least) ten times slower than FACTS.

Because of this huge disparity in performance, we tried the following approach:

Trajectories of the blocked amino acids in implicit solvent were generated with

FACTS, but during post-processing (evaluation of the ensemble averages needed

for Equation 4.7) GBMV was used. The simulations were set up as described in

Ref. 78; in particular, we considered the amino acids alanine (Ala), serine (Ser),

valine (Val), threonine (Thr), leucine (Leu), asparagine (Asp), phenylalanine (Phe)

and tyrosine (Tyr). Simulation lengths were 200 ns. In addition, the dihedral poten-

tial terms for χ1 and χ2 were removed during the simulation to facilitate sampling

(as described in the first example). This is equivalent to the presence of a second

biasing potential. Overall, we therefore employed a biasing potential consisting of

several terms, V bias = V bias,1+V bias,2, where V bias,1 = UFACTS−UGBMV accounts for

the faster implicit solvent model and V bias,2 = −Udihe(χ1, χ2) lowers the rotational

barriers about the side chain dihedral degrees of freedom.
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4.4 Results

4.4.1 Leucine-Asparagine

Our first application of NBB is the computation of the alchemical free energy differ-

ence between Leu and Asn in the gas phase (∆ALeu→Asn
gas ). As reported by Leitgeb

et al. [24], TI free energy simulations based on normal MD simulations were very

imprecise, with results ranging from −59.7 to −68.8 kcal/mol (which constitutes a

difference of ≈9 kcal/mol). The underlying sampling problems were overcome by

two approaches: Using NBTI, a free energy difference of −61.7± 0.47 kcal/mol was

found; using an approach originally suggested by Straatsma and McCammon [96],

free energy differences ranging from −61.6 to −62.1 kcal/mol were obtained.

In the sampled state of the NBB simulations reported here, we used a much

simpler biasing potential compared to Ref. 24; i.e., we simply suppressed the dihedral

angle potential energy term for the χ1 and χ2 degrees of freedom. In contrast

to the adaptive umbrella potential used in earlier work [24], such a static biasing

potential does not flatten the PMF since intramolecular nonbonded interactions are

not countered. In Figure 4.1 we show the PMF about χ1 for Leu (left hand side)

and Asn (right hand side) before (solid line) and after (dotted line) removing the

two dihedral energy terms. One sees that the barriers are lowered by approximately

3 kcal/mol; at the same time the overall shape of the PMF is retained.

To test whether this trivial modification of the potential energy function in com-

bination with NBB suffices to yield correct free energy differences for ∆ALeu→Asn
gas ,

we compared results obtained with BAR (based on regular, unbiased trajectories)

and NBB (with the biasing potential described above). The results are summa-

rized in Table 4.1. We report results for three sets of simulations, started from

different initial combinations of χ1 and χ2; the starting conformations are listed in

the leftmost column of Table 4.1. The BAR results (second column from the left)

suggest problems similar to those encountered in the earlier TI simulations [24]. De-

pending on the starting conformation of the side chain, results range from −61.3 to

−65.2 kcal/mol. The NBB results, on the other hand, vary only between −62.0 and

−62.3 kcal/mol, which agrees reasonably with the results of Ref. 24. The example

demonstrates that a simple, “conventional” biasing potential can facilitate sufficient
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Figure 4.1: Comparison of the potentials of mean force (in kcal/mol) of leucine and

asparagine in gas phase before and after deleting the dihedral potentials of χ1 and

χ2. The arrows indicate the reduction of the respective energy barriers due to the

removal of the dihedral potential.
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Table 4.1: Comparison of relative free energy calculations (in kcal/mol) between

leucine and asparagine in gas phase as calculated with normal BAR and NBB em-

ploying biasing potentials on χ1 and χ2.

χ1/χ2
a BAR NBB

-180/-180 -61.28 ± 0.35 -62.03 ± 0.29

60/-180 -62.32 ± 0.49 -62.33 ± 0.47

60/-80 -65.15 ± 0.44 -62.07 ± 0.16

a Initial conformation of side chain dihedrals
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sampling of the rotational substates to obtain converged free energy differences.

4.4.2 Five-atomic systems

The PMFs about the two dihedral angles of the three five-atomic model systems I –

III are displayed in Figure 4.2. The dark areas mark energy minima; the accessible

phase space about the minima is indicated by dotted lines. All regions beyond the

dotted lines are so high in energy that they will not be sampled during normal MD

simulations. From the comparison of the PMFs of system II and III, it should be

clear that computing the free energy difference between these two systems will be

somewhat of a challenge. Not only are the minima of the two systems completely

different, but the minimum of II is also a high energy region of III and vice versa.

Results of BAR and NBB calculations of the free energy differences between the

three systems are listed in Table 4.2. Calculating free energy differences between

I and II, or I and III is unproblematic; the BAR results are in good agreement

with the quasi-analytical reference results of Ref. 24. Since the respective minima

of II and III are also minima of I (cf. Figure 4.2) and since the energy barriers

separating the nine minima of I are relatively low (4 kcal/mol), phase space overlap

is guaranteed. By contrast, a regular BAR free energy simulation for the free energy

difference between II and III did not converge because of lack of phase space overlap.

This agrees with failure of earlier attempts to compute this free energy difference

with TI [24].

However, the observation that in terms of relevant minima I is a superset of II

and III suggests to use simulations of I to compute the free energy difference between

II and III. Defining system I as the sampled state contrasts with the conventional

conception of biasing potentials. Typically, V bias is given by a specific potential

energy term (e.g., in the Asn–Leu example the biasing potential is the sum of two

dihedral energy terms). By contrast, here the biasing potential is literally the en-

ergy difference between the full potential energy function of II (or III) and I. The

result of the NBB calculation for the free energy difference between II and III (to-

gether with the unproblematic cases I→II and I→III) is shown in the third column

of Table 4.2. The value of −14.38 ± 0.20 kcal/mol is in excellent agreement with

the quasi-analytical reference result. One may argue that the free energy difference
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Figure 4.2: Potentials of mean force of the five-atomic systems I, II and III as a

function of the dihedral angles φ1 and φ2. Dark areas represent important regions

of phase space with energy levels below 2 kcal/mol, while dotted lines encircle the

accessible phase space with energy levels below 5 kcal/mol.
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Table 4.2: Free energy differences between the five-atomic systems I, II, and III.

Mutation BAR NBBa Referenceb

I→II 1.23 ± 0.09 1.24 ± 0.03 1.22

I→III -13.18 ± 0.09 -13.15 ± 0.11 -13.06

II→III no convergence -14.38 ± 0.20 -14.28

aBased on re-weighted trajectories of system I only

bReference free energy difference obtained by numerical integration of the partition

functions [24]
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II→III could also have been obtained by intermediate λ-states. Note, however, that

this was attempted without success (albeit with TI instead of BAR) in Ref. 24. The

large difference between the end states makes finding suitable alchemical intermedi-

ates difficult; biasing the system to enhance sampling is more efficient.

4.4.3 Pseudoglycine – glycine

It is, alas, all too common to discover after concluding a long series of simulations

that some small error has crept in. We mimic this scenario for the case of the al-

chemical free energy difference between PG and Gly in aqueous solution by assuming

that the CMAP correction [106] was forgotten during the MD simulations of PG

and Gly. We consider the trajectories generated without CMAP as biased states

obtained with a biasing potential that counteracted CMAP.

The results for this application of NBB are summarized in Figure 4.3. The

vertical arrows correspond to the reference calculations, in which the free energy

differences between PG and Gly were obtained with regular BAR from simulations

with (BAR∆APG→Gly
CMAP ) and without CMAP (BAR∆APG→Gly). The two results are not

devoid of interest since the free energy difference between PG and Gly changes sign

when CMAP is applied. The curved arrows in Figure 4.3 indicate the use of NBB to

obtain ∆APG→Gly
CMAP from the simulations carried out without CMAP; we label this free

energy difference NBB∆APG→Gly
CMAP . As one sees, BAR∆APG→Gly

CMAP = 0.70 kcal/mol and

NBB∆APG→Gly
CMAP = 0.68 kcal/mol agree excellently. The computational overhead of

this correction is minimal; all we had to do was to compute the CMAP energy term

for each frame of the trajectories of PG and Gly obtained without CMAP. With-

out NBB, all simulations would have to be repeated. Therefore, NBB may reduce

computational cost significantly if free energy differences need to be re-determined

under slightly modified simulation conditions or small changes in the force field (e.g.,

during parametrization).
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Figure 4.3: Free energy differences (kcal/mol) in solution between PG and Gly. The

two straight arrows indicate the reference results calculated with BAR with (left)

and without (right) the CMAP correction. The bold, curved arrows symbolize the

use of NBB to compute the free energy difference between PG and Gly with CMAP

from simulations without CMAP.

GlyCMAP
solv Glysolv

PGCMAP
solv PGsolv

NBB∆APG→Gly
CMAP = 0.68 kcal/mole

BAR∆APG→Gly =
-0.60 kcal/mole
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4.4.4 Implicit solvent

Instead of just correcting results, separating the production and the analysis phase

of free energy calculations makes possible additional applications. In a recent publi-

cation, we compared relative solvation free energies between several blocked amino

acids obtained with various implicit solvent models to the free energy differences

from explicit solvent simulations. The so-called FACTS implicit solvent model [68]

gave good results for some pairs (e.g., Ala–Ser), but failed completely for others

(e.g., Asn–Leu). Other implicit solvent models (e.g., GBMV [107]) gave results in

much better agreement with explicit solvent simulations; however, at the price of

much higher computational cost.

In Table 4.3 we compare the results obtained with explicit solvent (second col-

umn), FACTS (third column), GBMV (fourth column) and NBB using FACTS as

the sampled state and GBMV as the target state (rightmost column). The results

in columns 2–4 were already presented in Ref. 78; the root mean square deviation

from the explicit solvent values (last line in Table 4.3) of the free energy differ-

ences obtained with FACTS (2.7 kcal/mol) is significantly larger than that of those

obtained with GBMV (0.5 kcal/mol). By contrast, the NBB results obtained by

post-processing trajectories generated with FACTS by GBMV are of comparable

quality (root mean square deviation of 0.5 kcal/mol) to those directly obtained with

GBMV. The computational overhead compared with the regular FACTS/BAR cal-

culations is negligible given the increased accuracy, whereas the gain in efficiency

compared to GBMV/BAR is dramatic. Since an energy and force calculation using

GBMV is at least ten times slower than using FACTS, and since only every 100th

frame was saved during the MD simulations and, hence, needed to be recalculated,

the NBB calculations were 11 times faster than the GBMV/BAR simulations, and

only 30% slower than the FACTS/BAR simulations.

4.5 Conclusions

We demonstrated the utility of BAR in combination with simulations of suitably

biased states (sampled states). Theoretically, the NBB method is based on the re-

weighting of biased trajectories as first described by Torrie and Valleau [22]. If free
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Table 4.3: Comparison of solvation free energy differences between selected amino

acids pairs obtained with explicit solvent, FACTS [68], GBMV [107], and NBB

based on simulations with FACTS and post-processing with GBMV. All free energy

differences are in kcal/mol

Explicita FACTSa GBMVa NBBb

Ala-Ser -2.5 -3.0 -2.8 -2.9

Val-Thr -2.4 -1.4 -2.1 -2.3

Leu-Asn -6.1 -1.4 -6.5 -7.1

Phe-Tyr -4.7 -3.1 -3.9 -4.9

Val-Ala -1.0 -1.8 -0.5 -0.7

Thr-Ser -1.3 -3.4 -0.5 -1.4

Phe-Ala 0.0 -2.1 0.2 -0.1

Tyr-Ser 2.5 -2.0 2.1 1.9

RMSDa 2.7 0.5 0.5

a see Ref. 78

b FACTS trajectories were reanalyzed with NBB using GBMV
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energy differences using BAR/NBB are calculated in a post-processing step as was

done here, no special code is required for NBB. In particular; it should be possible to

reproduce all examples presented here with any simulation program for biomolecular

systems, e.g., CHARMM [104], AMBER [108], GROMACS [109], NAMD [110] etc.

Given the theoretical and practical simplicity, it is astonishing that approaches like

NBB are not already widely used. It has only recently come to our attention that a

related combination of AMD [86] and BAR has been developed independently from

our research [111].

When we started to test NBB, we decided to keep biasing potentials extremely

simple. This can be seen particularly in the Asn–Leu example. In an earlier study an

involved and computationally expensive adaptive umbrella potential was used [24].

However, as demonstrated by the results of Sect. 4.4.1, the same effect can be

achieved by the deletion of two dihedral angle terms. The attempts to compute

this alchemical free energy difference without the employment of a better sampled

state also demonstrate that BAR is as susceptible to insufficient sampling as TI

or other methods to compute free energy differences. In all regular BAR results

reported in the Table 4.1 there was sufficient overlap (≥ 10%) between forward

and backward perturbations; yet, the resulting free energy differences differed by

almost 4 kcal/mol depending on the starting conformation. Thus, as useful as it

is (since no comparable gauge exists, e.g., in TI) the overlap criterion (or overlap

integral) of BAR should be viewed as a necessary, but not a sufficient criterion for

the correctness of a free energy simulation. More specifically, the overlap integral

is a tremendous help in choosing the necessary number of λ-states, but it cannot

prevent errors from insufficient sampling of phase space because of conformational

substates, high energy barriers etc.

In contrast to the situation found in the Asn–Leu example, the five-atomic model

systems illustrate situations where a straightforward biasing potential is not possi-

ble. The special situation that the simulation of a single system sufficed to compute

the free energy difference between the two (different) systems of interest bears some

resemblance to techniques explored by van Gunsteren and co-workers to obtain mul-

tiple free energy differences from the simulation of a single state [15,112]. However,

in contrast to, e.g., the enveloping distribution sampling (EDS) method, we are pri-
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marily interested in the free energy difference between two states and not a family

of similar states. In the particular situation found in the model problem, sampling

(of both end states) needed to be enhanced to achieve overlap in the first place

(i.e., without the biased state the free energy results do not converge). One possi-

ble generalization of such situations does indeed lead to EDS and related methods.

However, another potentially even more troublesome variant is that despite overlap

an important region of phase space of the initial and/or the final state is sampled

insufficiently. Consider, e.g., alchemical free energy simulations involving (short)

peptides. To ensure that the phase space of the peptide(s) is sampled sufficiently at

each λ-state one can remove (or counteract) the dihedral energy terms of the peptide

backbone [113]. Similarly, in ligand binding calculations biasing potentials could be

used to enhance sampling of side chains near the binding site. Such an approach

was recently proposed by McCammon and co-workers [111]. In general, different

biasing potentials may be required for the two end states (systems of interest).

The PG/Gly and FACTS/GBMV examples reported in Sects. 4.4.3 and 4.4.4

are conceptually quite similar. Simulations are carried out with the potential en-

ergy function of the sampled state; the analysis is carried out with the potential

energy function appropriate for the target state; the difference between the two is

viewed as the biasing potential. Obviously, before adopting such an approach, one

has to be reasonably sure that similar regions of phase space would be sampled with

either potential energy functions. The model problem of a “forgotten” energy term

is definitely no advocacy for sloppy simulations. The approach may, however, be

handy during force field development. If free energy simulations with a force field

are part of the parametrization / optimization process, then an approach analogous

to what was done in the PG/Gly example can be used to obtain free energy differ-

ences corresponding to the use of the latest version of a force field based on already

available simulations carried out with some earlier version of the force field. Particu-

larly for polarizable force fields, such an incremental approach may save considerable

computer time.

The primary motivation for the last example, use of the (fast) FACTS implicit

solvent model to obtain free energy differences of similar quality as if the (much)

slower GBMV model had been employed, is speeding up the underlying MD sim-
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ulations, i.e., the generation of the trajectories. Given the computational cost of

free energy simulations, several related applications of this idea come to mind: It

has been noted for quite some time now that the short cut-off radii (10Å, 8Å or

even shorter) made possible by the particle mesh Ewald summation [74] can lead

to errors in the calculation of Lennard-Jones potentials since in many programs the

same cut-off radius is used for the truncation of Lennard-Jones interactions and the

real space part of Ewald summation [100]. This suggests to generate trajectories

with a short(er) cut-off radius (e.g., 8 or 10Å), but evaluating the trajectories with

BAR/NBB using a more appropriate cut-off radius, such as 14 or 16Å. Provided

that at most every tenth simulation step is saved to disk, this would still result in

a significant saving of computer time for large systems. In fact, correcting for too

short Lennard-Jones cut-off radii as just outlined was described recently by Shirts

et al. using WHAM instead of BAR/NBB [100]. Another potential application are

free energy simulations in combination with a polarizable force field. E.g., in the

recent overview of the AMOEBA polarizable force field, several results of free energy

simulations were reported [114]. During the MD simulations in solution, induced

dipoles were converged only to 10−2 D, but during calculation of energies for use

in BAR, induced dipoles were evaluated with a convergence criterion of 10−5 D. In

principle, one ought to use NBB in this situation, with the change in potential en-

ergy resulting from the difference in convergence criterion as the ’biasing’ potential.

Given the small size of the correction, the use of plain BAR is permissible, but NBB

would be the theoretically correct approach.

In our opinion one of the greatest strengths of BAR is its flexibility. In Ref. 101

we presented several unusual applications of BAR. We used the term “unorthodox”

since most calculations of free energy differences would not be feasible with other

approaches (e.g., TI). Augmenting BAR by employing special sampled states as

done in NBB is another step to enhance the flexibility of the method. Thus, we

are confident that clever choices of sampled (biased) states will lead to many more

“unorthodox” applications of BAR/NBB.
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Chapter 5

Hydration free energies of amino

acids: Why side chain analog data

are not enough

Using molecular dynamics based free energy simulations, we computed relative solva-

tion free energies for pairs of N-acetyl-methylamide amino acids (Ala–Ser, Val–Thr,

Phe–Tyr, Val–Ala, Thr–Ser, Phe–Ala, and Tyr–Ser) and compared the results with

the relative solvation free energies of the corresponding pairs of side chain analogs.

We observed differences in (relative) solvent affinity ∆∆∆A between amino acids and

side chain analogs of up to sixty six percent, or, in absolute numbers, 4.9 kcal/mole

(Ala–Ser). To rationalize these findings, we estimated separately contributions from

what we refer to as solvent exclusion and self-solvation. While the former accounts

for the reduction in solute–solvent interactions as one part of the solute occludes

other parts of the solute, the latter turned out to be the determining contribution

for small polar amino acids and could be shown to arise from interactions between

the polar backbone and the polar functional group of the respective side chain in

the gas phase. Consequently, the solvent affinity of small polar amino acids depends

strongly on the backbone conformation. Our results indicate that the still widely

used group additivity – solvent exclusion assumption to estimate solvation free en-

ergies for large(r) molecules (such as peptides and proteins) from model compound

data (such as side chain analogs) is insufficient. To illustrate practical consequences,

we compare the explicit solvent results with those of implicit solvent models. While
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approaches based on the Generalized Born model give results in (mostly) good agree-

ment with explicit solvent, approaches relying (primarily) on the group additivity

– solvent exclusion assumption fail to reproduce ∆∆∆A. Finally, we briefly discuss

the implications of our results for hydrophobicity scales.

5.1 Introduction

Since proteins perform their function in aqueous solution, understanding the contri-

bution of solvent to protein stability, protein association and protein–ligand binding

is of great theoretical and practical importance. However, while solvation free en-

ergies of small molecules can be measured with high accuracy and precision, the

same is not the case for macromolecules, such as proteins. One, therefore, estimates

these solvation free energies of interest from data obtained for small molecules. In the

case of proteins, one typically uses experimentally determined solvation free energies

of model compounds representing the peptide bond (e.g., N-methylacetamide) [27]

and the amino acid side chains (side chain analogs, e.g., methanol for Ser etc.) [28].

One then assumes that the solvation free energy is additive (group additivity (GA)

assumption). [115, 116] While there is no theoretical justification, in the case of

proteins the GA assumption is considered adequate. In a recent review Wolfenden

states: “There appears to be no reason to suppose that such effects are likely to

alter the relative solvation properties of the different amino acid side chains sig-

nificantly, as compared with the relative solvation properties of the corresponding

amino acid residues”, with “such effects” referring to cooperativity or anticooper-

ativity between functional groups [116]. The GA assumption underlies fragment

based methods [29–31], as well as so-called hydrophobicity scales [32]. In particular,

the side chain solvation free energies reported by Wolfenden and co-workers [28] are

one of the foundations of the widely used scale by Kyte and Doolittle. [117]

One widely used refinement of the GA assumption results from the observation

that amino acids in the interior of proteins will obviously contribute very little

to its solvent affinity. We refer to such steric effects as solvent exclusion (SE).

One frequently used approach [118–120] to account for SE consists in scaling the

solvation free energy contribution of a fragment by its solvent accessible surface
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area (SASA) [121]. We shall refer to GA refined by accounting for SE (e.g., by

scaling with the SASA) as group additivity – solvent exclusion (GA-SE) assumption.

Among its many applications, it formed and forms the basis of many implicit solvent

models [64, 118, 119, 122, 123]. For example, the atomic solvation parameter (ASP)

model [119] approximates the solvation free energy of a protein by multiplying the

SASA of each atom with a solvation parameter for this atom type (which in turn is

derived from the side chain analog data by Wolfenden and co-workers [28]).

There are a number of well-documented limitations of the GA-SE assumption.

While for apolar groups (atoms) the proportionality to the SASA (as expressed in

cal/Å2) fluctuates within a relatively narrow range, values for polar groups (atoms)

vary much more strongly (as pointed out, e.g., by Karplus [124]). Already some

twenty years ago Yunger and Cramer [125], as well as Roseman [126], studied lim-

itations of the GA assumption in connection with hydrophobicity scales of amino

acids. Such scales are typically based on the relative solubility of model compounds

in different phases (usually water and an apolar phase, such as n-octanol or even vac-

uum) [127]. Roseman [126], as well as Yunger and Cramer [125] compared directly

measured partition coefficients between water and n-octanol for blocked and zwitte-

rionic amino acids, respectively, with estimates obtained from the GA assumption.

For polar and charged amino acids they observed large deviations and suggested in-

tramolecular interactions between the backbone and the polar/charged side chains

in the apolar phase as the likely cause, fittingly calling this effect self-solvation (SS).

Data by White and Wimley for short peptides indicate that transfer free energies

measured using N-acetyl-methylamide amino acids are not always representative

for longer peptides [128]. In an elegant thought experiment Lazaridis and Karplus

demonstrated that the GA-SE approximation breaks down for polar and charged

groups [129].

Despite these caveats, applications relying at least to some degree on the GA

and GA-SE approximations are ubiquitous. The calculation of Kyte and Doolittle

hydropathy plots is a routine procedure on the ExPASy Server [130]. GA-SE based

estimates were used to estimate the contribution of the solvation free energy to

protein folding [120], and the GA-SE approximation is a central element of some

widely used implicit solvent models [64, 123]. It is, therefore, of interest to probe
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the accuracy of estimates of solvation free energies obtained by the GA or GA-

SE approximations. Approaches to estimate the solvation free energy of peptides

and proteins based on model compound data, could, in principle, be tested by

comparing the solvation free energies of increasingly larger systems (e.g., amino

acids, di-, tri-, tetra-peptides etc.) with estimates based on model compounds.

However, experimental solvation free energies of peptides are not available, and may

well be impossible to obtain, given experimental constraints; cf. the discussion in

Ref. 26. This leaves computer simulations as the only possibility. There exist several

systematic molecular dynamics based free energy simulation (MDFE) studies of

hydration free energies of amino acid side chain analogs, e.g., Refs. 33, 89, 131, 132.

However, very few computational data are available for (blocked) amino acids, let

alone larger peptides [24, 90, 133–135]. Very recently, Chang et al. [33] published a

complete comparison of hydration free energies of uncharged and zwitterionic amino

acids and their corresponding side chain analogs and found noticeable differences,

particularly for charged and polar amino acids.

In this work we apply MDFE to the simplest possible system with biological

relevance for which limitations of model compound based estimates are expected.

We compare solvation free energy differences of N-acetyl-methylamide amino acids

(blocked amino acids) to the solvation free energy differences of the corresponding

side chain analogs, which represent a broad range of distinct physicochemical prop-

erties (e.g. polarity and size). The goal of the present study is twofold. First, while

from a theoretical point of view it is clear that differences must exist, it is not known

how large these deviations are. Second, we want to determine the molecular origin

of any deviations from the GA and from the GA-SE assumptions. To investigate

the influence of SE and SS on the hydration affinity of amino acids, we comple-

ment the MDFE of amino acids and side chain analogs by simulations in which we

compute relative solvation free energy differences between unphysical systems, e.g.,

amino acid with all backbone and/or side chain charges set to zero. These data

make it possible to estimate the respective contributions from SE and SS to ∆Asolv

of blocked amino acids. In addition, we analyze interactions between side chain and

backbone of polar amino acids. Using Ser as a representative example of small, polar

amino acids, we explore the influence of backbone conformation on solvent affinity.
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Finally, we report ∆∆AAA
solv for the pair Ala–Ser with restrained backbone conforma-

tions using a variety of implicit solvent models (ASP [119], EEF1 [64], SASA [123],

GBMV [107], GBSW [136] and FACTS [68]), as well as ∆∆AAA
solv of all amino acid

pairs studied in this work (without backbone restraints).

5.2 Methods

The CHARMM22 all-atom protein force field was used. [137]. ∆∆AAA
solv between Ala

and Ser was also calculated with the AMBER Cornell et al. force field [67]. All

calculations were carried out using CHARMM [138]; free energy differences in ex-

plicit solvent were computed by thermodynamic integration (TI) [7] with the PERT

module of CHARMM [138]. A brief description of PERT’s functionality (origi-

nally written by B. Brooks) can be found in Ref. 139; see also the documentation of

CHARMM at www.charmm.org. To overcome slow sampling of side chain rotamers,

we used Non-Boltzmann Thermodynamic Integration (NBTI) where necessary [24].

Solvation free energy differences with implicit solvent models were calculated using

Bennett’s acceptance ratio method [9].

All relative solvation free energy differences in explicit solvent were computed

using the standard thermodynamic cycle [51], which entails the calculation of al-

chemical free energy differences between the two physical systems in the gas phase

and in solution. For the blocked amino acids, these were calculated in two ways.

Following the usual approach, one side chain was transformed into the other, e.g.,

for the transmutation of Ala→Ser a methyl group was changed into a CH2OH group.

In addition, we also employed a two-step protocol. First, the side chain of the re-

spective first amino acid was mutated into a single hydrogen. In a second step, this

intermediate was transmuted into the respective second amino acid. The intermedi-

ate state resembles glycine; however, (in the CHARMM force field) the atom type of

the Cα carbon differs from that found in glycine; we, therefore, refer to it as pseudo-

glycine (PG). In the two-step approach, the ∆∆AAA
solv of interest is obtained as the

combination of two solvation free energy differences relative to the PG intermediate

state; i.e., ∆∆AAla→Ser
solv = ∆∆APG→Ser

solv − ∆∆APG→Ala
solv .

To understand the physical origin of differences in solvation free energies of amino
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acids compared to their side chain analogs, we computed various sets of (relative)

solvation free energy differences with unphysical endpoints, such as uncharged back-

bones or uncharged side chains. In addition, we calculated solvation free energy

differences between Ala and Ser with the “backbone” of the blocked amino acids

restrained to four conformations: An extended conformation (φ: 180.0◦, ψ: 180.0◦),

a helical conformation (φ: -57.8◦, ψ: -47.0◦), a β-sheet conformation (φ: -119.0◦, ψ:

+113.0◦) and a left-handed helix (φ: 57.8◦, ψ: 47.0◦). For this purpose, harmonic

dihedral restraint terms with a force constant of 100 kcal/(mole radian2) were ap-

plied to the φ and ψ torsion angles. These calculations allowed us to study the

dependence of self-solvation effects on the conformation of the backbone. To differ-

entiate between contributions from Ala and Ser to the relative solvation free energy

difference in the presence of backbone restraints, we also conducted MDFE simu-

lations to calculate the solvation free energy difference associated with the change

of restraints for the extended conformation to restrains for the sheet conformation.

This was accomplished by turning on/off the two sets of restraint potentials as a

function of the coupling parameter λ.

Gas phase free energy differences ∆AAA
gas were calculated using Langevin dynamics

simulations with a friction coefficient of 5 ps−1 on all atoms. Random forces were

applied according to the target temperature of 300 K. To justify a time step of 2

ps, hydrogen masses were set to 10 amu. The alchemical mutation was split into 21

intermediate steps, using soft core Lennard Jones and electrostatic interactions. The

simulation length at each λ value was 4 ns, the first 60 ps of which were discarded

as equilibration. Thus, all gas phase simulations had an overall length of 84 ns and

were repeated at least five times in the forward and the backward direction (e.g., in

the case of Ala–Ser, directing the transformation five times from Ala to Ser and five

times from Ser to Ala), starting from different initial random velocities.

In all solvent simulations 243 TIP3P water molecules [140, 141] were present.

The simulation box was a truncated octahedron with constant volume. The side

length L of the cube from which the octahedron was generated was L ≈ 24.6 Å,

the exact value depending on the solute. Integration of the equations of motion was

carried out with the leapfrog algorithm; the time step was 2 fs. The temperature was

maintained at about 300 K by a Nosé-Hoover thermostat [73]. SHAKE [142] was
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used to keep the water geometry rigid. Lennard-Jones interactions were switched

off between 9–10 Å, while electrostatic interactions were computed with the Particle

Mesh Ewald method [74]. Coordinates obtained after 400 ps of equilibration (which

included 200 ps of constant pressure MD, resulting in the final system size for a given

solute) served as the starting configuration for the actual MDFE. In addition, each

system was equilibrated for 60 ps at every λ-value. The same 21 λ-values as in the

gas phase were used. A total simulation length of 54.6 ns was used for the calculation

of the solvation free energy differences between capped amino acids ∆AAA
H2O . For the

calculations involving unphysical endpoints shorter protocols (ranging from 2.1 to

25.2 ns of total simulation length) were used. Free energy difference calculations were

repeated at least three times starting from different initial random velocities both in

the forward and the backward direction. In the calculations employing NBTI [24] an

adaptive umbrella potential was applied to the χ1 angle. This potential was updated

every 60 ps, discarding 12 ps of equilibration in each iteration. At each of the 21

λ steps 1 ns was used for the buildup of the biasing potential function, followed

by 1 ns of data accumulation in the gas phase and 400 ps of data accumulation in

solution.

Solvation free energies with implicit solvent models (ASP [119], EEF1 [64], SASA

[123], GBMV [107], GBSW [136] and FACTS [68]) were calculated as described in

Refs. 65 and 78, based on simulations of 72 to 158 ns length in the gas phase and

with the respective implicit solvent model. The results reported are the average

of at least five such simulation pairs. Parameters for the EEF1, SASA, GBMV

and GBSW implicit solvent models were selected based on scripts generated by the

CHARMM-GUI website [143]. The parameters for FACTS [68] were obtained from

the example in the CHARMM documentation at www.charmm.org.

5.3 Results

5.3.1 Side chain analog and amino acid results

We calculated the relative solvation free energy differences ∆∆Asolv for selected

pairs of N-acetyl-X-methylamide amino acids (∆∆AAA
solv of Ala–Ser, Val–Thr, Phe–

Tyr, Val–Ala, Thr–Ser, Phe–Ala, and Tyr–Ser) and for pairs of the correspond-
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ing side chain analogs (∆∆ASC
solv of methane(Me)–methanol(MeOH), propane(Pr)–

ethanol(EtOH), toluene(Tol)–p-cresol(p-Cre), Pr–Me, EtOH–MeOH, Tol–Me and

p-Cre–MeOH). The results are summarized in 5.1. ∆∆AAA
solv is reported in the first

column; the corresponding side chain results ∆∆ASC
solv in the second column can

be compared to the experimental values reported by Wolfenden and co-workers

[28], which are shown in the third column. We also include pertinent results

for Leu-Asn from Ref. 24. In the rightmost column of 5.1 we list the deviation

∆∆∆A = ∆∆AAA
solv − ∆∆ASC

solv between side chain and amino acid results. One can

see immediately that the differences are large in several cases. The amino acids

forming the pairs studied differ (primarily) either in polarity (Ala–Ser, Val–Thr,

Leu–Asn, Phe–Tyr) or size (Val–Ala, Phe–Ala, Thr–Ser, Tyr–Ser). With the no-

table exception of Phe–Tyr, the largest deviations ∆∆∆A from the respective side

chain results (in absolute numbers) are observed for the solvation free energy differ-

ences of apolar relative to polar amino acids, i.e., Ala–Ser, Val–Thr and Leu–Asn. In

the most extreme case (Ala–Ser), the solvation free energy difference of the blocked

amino acids differs by almost 5 kcal/mole from the solvation free energy difference of

the corresponding side chain analogs. For amino acid pairs of like polarity and rela-

tively similar size (Val–Ala, Thr–Ser), the differences of approximately 1 kcal/mole

between side chain analog and amino acid results are statistically significant, but

much smaller than those obtained for the apolar–polar pairs. As the difference in

size between two amino acids of similar polarity increases, so does the deviation

from the respective side chain analog results (Phe–Ala, Tyr–Ser). The results of 5.1

clearly suggest that the relative solvation free energy differences of amino acid pairs

cannot be estimated from the solvation free energy differences of the respective side

chain analogs. In other words, the contribution from the backbone to the solvent

affinities of amino acids is not uniform, and, thus, side chain data are not sufficient

to estimate the solvation free energy of amino acids.

Especially considering the size of the deviations observed in some cases, it is im-

portant to validate the correctness of our calculations. For the selected pairs of side

chain analogs the root mean square deviation (RMSD) of the computed solvation

free energy differences from the experimental data by Wolfenden and co-workers [28]

(third column in 5.1) is 0.58 kcal/mole; similarly, the RMSD with respect to the
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Table 5.1: Solvation free energy differences of amino acids and their corresponding

side chain analogs in kcal/mole

∆∆AAA
solv

a ∆∆ASC
solv

b ∆∆AExp
solv

c ∆∆∆A d

Ala-Ser -2.46 -7.39 -7.00 4.93

Val-Thr -2.44 -7.09 -6.87 4.65

Leu-Asne -6.10 -11.02 -11.96 4.92

Phe-Tyr -4.72 -4.64 -5.35 -0.08

Val-Ala -0.97 -0.04 -0.05 -0.93

Thr-Ser -1.29 -0.23 -0.18 -1.06

Phe-Ala 0.01 2.05 2.70 -2.06

Tyr-Ser 2.46 -0.15 1.05 2.61
a Standard deviations ≤ 0.30 kcal/mole

b Standard deviations ≤ 0.16 kcal/mole

c Experimental side chain analog data from Ref. 28

d ∆∆∆A = ∆∆AAA
solv -∆∆ASC

solv

e Data taken from Ref. 24
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solvation free energy energy differences of Shirts et al. [89] (the computationally

most elaborate study reported to date) is 0.56 kcal/mole. There are no reference

data for blocked amino acids; however, Spichty and Karplus recently obtained very

similar results for Val–Thr (−2.74 kcal/mole vs. our −2.44 kcal/mole) [144]. Our

results agree qualitatively with the values reported by Chang et al. [33] for zwitteri-

onic amino acids and the OPLS-AA force field [145]. Since we used the CHARMM

force field [137], it is unlikely that the differences in solvent affinity of side chain

analogs and amino acids are an artifact of a particular force field. To investigate this

issue further, we computed the solvation free energy difference for the amino acid

pair Ala–Ser with the Cornell et al. AMBER force field [67]. We obtained ∆∆AAA
solv

= −3.12 kcal/mole, a value which also deviates considerably from the side chain

analog result of −7.30 kcal/mole [89].

5.3.2 Estimating contributions from SE and SS to ∆∆∆A

Our approach to estimate SE and SS contributions relies on the computation of sol-

vation free energy differences between blocked amino acids with some or all partial

atomic charges set to zero. This allows us to selectively deactivate interactions of the

fragment with its surroundings while keeping its steric properties intact. To illus-

trate the various types of calculations, we adopt the following pictorial notation. A

filled square � denotes the backbone (with blocking groups), a filled triangle N and

diamond � denote two types of side chains, e.g., Ala and Ser. Thus, we represent a

blocked amino acid (e.g., Ala) as N

�
. Used by itself, � denotes the pseudo-glycine

(PG) intermediate state used in the two-step calculations (cf. Methods). Similarly,

N or � by themselves refer to the respective side chain analog. Unfilled symbols

indicate that the partial charges of the respective part of the system were set to

zero, e.g., N

�
indicates an amino acid without partial charges on the backbone.

Solvent exclusion: To estimate contributions from SE (∆∆∆ASE
solv) to ∆∆∆A, we

computed relative free energy differences of hydration between hypothetical blocked

amino acid pairs with (i) the backbone charges set to zero (∆∆Aunch.BB
solv , N

�
→ �

�
), (ii)

the side chain charges set to zero (∆∆Aunch.SC
solv , △

�
→ ♦

�
), and (iii) all charges set to
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zero (∆∆ALJ
solv ,

△

�
→ ♦

�
). The difference between ∆∆Aunch.BB

solv and the corresponding

side chain analog solvation free energy difference (∆∆ASC
solv , N → �, see 5.1) provides

an estimate of the free energy cost resulting from the incomplete solvation of the

side chain (compared to the side chain analog case) because of the presence of the

backbone (SE of the side chain by the backbone). The apolar interactions of the

uncharged backbone with the side chain and the surrounding water are expected to

be small and mostly independent of the side chain; i.e., they are expected to cancel

from ∆∆Aunch.BB
solv . Similarly, ∆∆Aunch.SC

solv provides estimates of SE effects on the

backbone resulting from the presence of the side chain. Thus, ∆∆Aunch.BB
solv and

∆∆Aunch.SC
solv contain the two possible contributions from SE to ∆∆∆A. However,

by adding ∆∆Aunch.BB
solv and ∆∆Aunch.SC

solv , one would count twice the free energy

contribution resulting from the change in apolar interactions of the two side chains

with the backbone and the water (i.e., the Lennard-Jones contribution to ∆∆AAA
solv ,

which corresponds to ∆∆ALJ
solv). This suggests to estimate ∆∆∆ASE

solv as

∆∆∆ASE
solv =











�

�

♦

�

♦

�

↑ + ↑ − ↑
N

�

△

�

△

�











−
�

↑
N

=

=
[

∆∆Aunch.BB
solv + ∆∆Aunch.SC

solv − ∆∆ALJ
solv

]

− ∆∆ASC
solv . (5.1)

The results for ∆∆Aunch.BB
solv , ∆∆Aunch.SC

solv and ∆∆ALJ
solv can be found in Table 1 of

Supporting Information.

Self-solvation: To understand SS in the case of amino acids, one has to quantify

the free energy contribution resulting from intramolecular interactions between side

chain and backbone. We obtained an estimate of the SS contribution (∆∆∆ASS
solv) to

∆∆∆A based on the calculations of relative solvation free energies with the two-step

protocol, in which we computed ∆∆AAA
solv between the amino acid of interest and a

glycine-like intermediate state (PG, see Methods); i.e., in our pictorial notation we

studied
�
→ N

�
. In addition, we computed solvation free energy differences between

the following hypothetical systems: (i) uncharged PG to a completely uncharged

amino acid (∆∆APGunch.→AAunch.

solv ,
�
→ △

�
), (ii) uncharged PG to an amino acid with

uncharged backbone (∆∆APGunch.→AAunch. BB

solv ,
�
→ N

�
), and (iii) PG to an amino acid

with uncharged side chain (∆∆APG→AAunch. SC

solv ,
�

→ △

�
). Detailed results for all
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these free energy differences are provided in Table 2 of Supporting Information.

If free energies were additive, the following equation would hold

N

�

△

�

N

�

△

�

↑ + ↑ = ↑ + ↑
� � � �

∆∆APG→AA
solv + ∆∆APGunch.→AAunch.

solv = ∆∆APGunch.→AAunch. BB

solv + ∆∆APG→AAunch. SC

solv

(5.2)

since, as one sees from the pictorial representation, both sides contain the same

molecular fragments, as well as the same number of charged and uncharged atoms.

Deviations from Equation 5.2 because of SE are likely to be negligible since by

definition SE is a result of the occlusion of one part of the system by the presence of

neighboring groups, which are identical in all four steps of Equation 5.2. Therefore,

the difference between left and right hand side of Equation 5.2 should yield a measure

for the contribution of SS to ∆∆∆A, i.e.,

∆∆∆ASS
solv = (∆∆APG→AA

solv + ∆∆APGunch.→AAunch.

solv )

− (∆∆APGunch.→AAunch. BB

solv + ∆∆APG→AAunch. SC

solv )
(5.3)

Summary: The results of our estimates of ∆∆∆ASE
solv and ∆∆∆ASS

solv are sum-

marized in 5.1 (detailed data are provided in Table 3 in Supporting Information).

For each pair of amino acids studied, 5.1 shows the total deviation between amino

acid and side chain analog solvation free energy differences (∆∆∆A, see 5.1) as the

white background bar, overlayed by bars representing ∆∆∆ASE
solv (light gray) and

∆∆∆ASS
solv (dark gray). The RMSD of the side chain analog data from the amino

acid data is 2.33 kcal/mole. If we include our estimates of SE and SS, this RMSD

drops to 0.08 kcal/mole. If, on the other hand, only SE is taken into account, the

RMSD of the side chain analog data from the amino acid remains at 1.99 kcal/mole.

This clearly indicates that SE alone is insufficient to explain ∆∆∆A.
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Figure 5.1: Contributions to the solvation free energy differences of amino acids (in

kcal/mole). ∆∆∆A is the deviation of the ∆∆AAA
solv of amino acids relative to the

side chain analogs results, while SE and SS refer to the estimates of free energy

contributions from solvent exclusion and self-solvation, respectively.
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5.3.3 Molecular origin of self-solvation and its conformation-

dependence

The analysis summarized in 5.1 clearly demonstrates the quantitative importance

of SS. It is of obvious interest to identify the underlying molecular processes. For

Ala–Ser, Val–Thr and Tyr-Ser, SS is, in fact, the dominant contribution, account-

ing for 3.5 — 4.5 kcal/mole of ∆∆∆A. This value suggests the involvement of a

(strong) hydrogen bond [146]. We, therefore, studied side chain – backbone hy-

drogen bonding patterns in Ser in the gas phase and in solution. Using a rather

loose criterion for the presence of a hydrogen bond (donor(D)–acceptor(A) distance

< 3.1 Å, ∠(D-H-A) > 100◦), we observed a hydrogen bond between the side chain

hydroxyl oxygen and donors in the backbone in 84.3% of the conformations in the

gas phase, compared with 32.3% in solution. Also, in water the side chain alternates

between two hydrogen bonding partners, whereas in the gas phase interactions be-

tween side chain and backbone are mediated by a single (strong) hydrogen bond

(see Figure 1 in Supporting Information). Clearly, the presence of water weakens

intramolecular backbone – side chain hydrogen bonds.

The above analysis strongly suggests that intramolecular hydrogen bond forma-

tion between the side chain functional group and the polar moieties of the backbone

is a major contributor to SS in amino acids. If this is the case, then the solvation free

energy of amino acids will depend on backbone conformation since it determines the

shortest possible distances between backbone and side chain atoms. To explore this

conformation dependence, we carried out MDFE for the amino acid pair Ala–Ser

during which the solute was restrained to four different backbone conformations, an

extended chain, an α-helical, a β-sheet, and a left-handed helix conformation. Since

the SE contribution to ∆∆AAA
solv for Ala→Ser is quite small (see 5.1), Ala–Ser is an

excellent model system to study the conformation dependence of SS.

As can be seen in 5.2, the smallest solvation free energy difference is obtained

for the extended conformation. The relative solvation free energy difference between

Ala and Ser drops to −1.49 kcal/mole in this case, i.e. just two thirds of the solva-

tion free energy difference obtained for the unrestrained amino acids. A hydrogen

bond between side chain and backbone is easily formed in this conformation since

the amide hydrogen and the hydroxyl oxygen of the side chain are only ≈ 2 Å
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Table 5.2: ∆∆AAA
solv for Ala–Ser with restrained backbone conformations in kcal/mole

φ/ψ a ∆Arest .
H2O

b ∆Arest .
Gas

c ∆∆Arest .
solv

d

extended: 180.0/180.0 3.94 5.43 -1.49

α-helix: -57.8/-47.0 4.44 6.95 -2.51

β-sheet: -119.0/+113.0 3.70 8.73 -5.03

l. h. helix: +57.8/+47.0 3.68 5.79 -2.10
aBackbone conformation and target values for restraints on backbone dihedral

angles

bFree energy change in aqueous solution

cFree energy change in the gas phase

dSolvation free energy difference
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apart. The opposite extreme is found in the β-sheet conformation, where the amide

hydrogen points away from the side chain almost at a right angle, resulting in a

distance of about 3.6 Å. Clearly, no hydrogen bond formation can take place under

these circumstances. Indeed, the relative solvation free energy difference between

Ala and Ser in the sheet conformation is −5.03 kcal/mole, a value that approaches

the solvation free energy difference between the side chain analogs. The helical con-

formations, on the other hand, give results which lie in the range of the unrestrained

amino acids.

To check the origin of the −3.54 kcal/mole difference in ∆∆AAA
solv between Ala

and Ser when restrained to the extended and the sheet conformation, we carried out

some additional MDFE simulations. Rather than computing the relative solvation

free energy difference between Ala and Ser in the presence of backbone restraints

(as for the results reported in 5.2), we computed for Ala and Ser separately the

relative solvation free energy of the respective amino acid in the extended and in the

sheet conformation. These two (relative) free energy differences are −0.66 kcal/mole

and −4.18 kcal/mole for Ala and Ser (given for the direction extended chain →
sheet conformation). By taking the difference between Ala and Ser, one obtains

−3.52 kcal/mole, in excellent agreement with the data of 5.2. Thus, as expected, the

major SS contribution is obtained for Ser. These results demonstrate unambiguously

and directly (i.e., in terms of the resulting solvation free energy itself) the influence

which formation (or non-formation) of intramolecular hydrogen bonds has on self-

solvation.

Since we computed relative free energy differences, we have available separately

the respective free energy differences in the gas phase (∆Arest
gas ) and in solution

(∆Arest
H2O), which are listed in 5.2 as well. While the free energy differences in solu-

tion are quite similar (ranging from 3.68 to 4.44 kcal/mole), the gas phase results

vary considerably (between 5.43 and 8.73 kcal/mole). Thus, the conformation de-

pendence of the solvation free energy difference, and, hence, the SS contribution

originate primarily in the gas phase, and not in solution. Because of the lack of

suitable interaction partners in the gas phase, intramolecular stabilization is maxi-

mized by forming strong hydrogen bonds between the backbone and the side chain

(unless this is prevented by restraining the system to backbone conformations where
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this is not possible, e.g., a sheet-like conformation). This finding / observation in

in disagreement with the conclusions by Chang et al. [33]. While their results (for

zwitterionic amino acids) agree qualitatively with the present work, they concluded

that the presence of intramolecular backbone – side chain hydrogen bonds in solu-

tion led to weaker solvation of the side chains in the amino acids compared to the

corresponding side chain analogs; similarly, the backbone was solvated more weakly

than glycine. The data reported in 5.2 contradicts this interpretation. Chang et

al. [33] compared radial distribution functions and the number of hydrogen bonds

between water and the functional groups for both side chain analogs and amino

acids. Despite the differences found, this is indirect evidence which is difficult to

quantify in terms of a corresponding free energy cost. Since we computed relative

solvation free energy differences, we obtained the gas phase and aqueous phase free

energy differences directly, and these data suggest unambiguously that most of the

SS contribution arises in the gas phase.

5.3.4 Some comments on specific results

As can be seen in 5.1, accounting for SE does suffice in some cases (Val–Ala, Thr–

Ser). For apolar side chains (Val–Ala), small SS contributions are expected, but

the almost negligible SS result of the polar-polar mutation Thr–Ser is surprising.

The apparent lack of SS contributions in this case turns out to result from the

cancellation of two large, similar terms. The individual SS estimates for Ser and

Thr based on Equation 5.3 are +4.12 kcal/mole and +3.70 kcal/mole, respectively

(cf. Table 2 of Supporting Information).

Phe–Tyr is the only apolar–polar pair for which side chain analog and amino

acid solvation free energies are virtually identical (∆∆∆A < 0.1 kcal/mole). This

is a consequence of the size of the side chains. While the oxygen of the side chain

hydroxyl groups in, e.g., Ser and Thr is on average < 2.5 Å away from the respective

Cα carbon, the mean distance to Cα in Tyr is 6.21 Å. Since no intramolecular

hydrogen bonds can be formed, SS contributions are negligible. Further, because of

the similar size of the two side chains, SE contributions for the two solutes cancel

from ∆∆AAA
solv .

For the amino acid pairs Ala–Ser, Val–Thr, Tyr–Ser, SS is the dominant contri-
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bution. In fact, for the first two pairs the SS contribution from the two small polar

amino acid accounts almost completely for the observed ∆∆∆A. For Tyr–Ser the

SS contribution is 3.40 kcal/mole (resulting almost exclusively from Ser (cf. Table 2

in Supporting Information)), but the SE contribution (−1.17 kcal/mole) has the

opposite sign and is non-negligible. Finally, while the larger contribution to ∆∆∆A

for Phe–Ala comes from SE, there is also a SS contribution of ≈ 0.9 kcal/mole. This

value shows that even for apolar molecules (groups) intramolecular interactions can

lead to deviations from the GA approximation.

5.3.5 Implicit solvent results

Given the large deviations between side chain and blocked amino acid hydration

affinities, we decided to test how well a variety of implicit solvent models can re-

produce the blocked amino acid results. The implicit solvent models considered,

ASP [119], EEF1 [64], SASA [123], GBMV [107], GBSW [136] and FACTS [68],

can be loosely grouped into three classes. ASP is a first generation implicit solvent

model, purely based on the GA-SE approximation. EEF1 and SASA combine the

GA-SE approximation with modified electrostatic interactions (distance dependent

dielectric constant, neutralized ionic side chains) to account for dielectric screen-

ing. FACTS, GBSW and GBMV, on the other hand, employ the generalized Born

model of solvation, supplemented by an additional term for apolar solvation. The

following comparison is biased in so far as we compare to a specific water model,

TIP3P [140,141], which itself may be subject to error. However, although one of the

simplest water models in widespread use, TIP3P was found to give excellent results

for side chain analog solvation free energies in a recent comparison of several water

models [147].

Our test consisted of two steps. First, we repeated the Ala–Ser calculations

with backbone restraints on several backbone conformations (cf. 5.2) using the var-

ious implicit solvent models; the respective solvation free energy differences are

reported in 5.3. The last two lines of 5.3 give the respective RMSD deviation from

the explicit solvent results, as well as the difference between the solvation free en-

ergy difference of the amino acids restrained to the β-sheet and the extended chain

conformation (∆∆∆Aconf
ext→β). Extended and β-sheet conformation are particularly
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Table 5.3: Comparison of ∆∆AAA
solv for Ala–Ser with and without restraints on differ-

ent backbone conformations using explicit solvent and a variety of implicit solvent

models. All free energy differences are in kcal/mole

Conformation Explicit ASP EEF1 SASA FACTS GBSW GBMV

unrestrained -2.46 -3.00 -7.20 -2.87 -2.99 -2.06 -2.78

extended -1.49 -3.02 -8.30 -2.92 -2.22 -1.47 -1.82

α-helix -2.51 -3.47 -6.67 -2.10 -2.92 -1.95 -2.86

β-sheet -5.03 -3.98 -7.46 -3.82 -5.32 -4.45 -5.11

l. h. helix -2.10 -4.04 -6.23 -2.06 -2.37 -1.58 -2.24

RMSDa N/A 1.22 4.67 0.88 0.48 0.46 0.27

∆∆∆Aconf
ext→β

b -3.54 -0.96 0.84 -0.90 -3.10 -2.98 -3.29
a Root mean square deviation from explicit solvent results

b Difference between β-sheet and extended chain result
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interesting, since they show the highest variation in terms of solvation free energy

differences (-3.54 kcal/mole with explicit solvent, cf. 5.2). The overall worst perfor-

mance was obtained for EEF1. All other implicit solvent models lead to a ∆∆AAA
solv

of Ala–Ser without backbone restraints that agrees well with the explicit solvent

value of −2.46 kcal/mole (entry “unrestrained” in 5.3). Much larger differences

were obtained, however, in the calculations with restrained backbone conformations.

Casting aside EEF1, the other two implicit solvent models not based on the gener-

alized Born model, ASP and SASA, are in acceptable agreement as far as RMSD

deviation is concerned (1.22 and 0.88 kcal/mole, respectively). The conformation

dependence of ∆∆AAA
solv , as quantified by ∆∆∆Aconf

ext→β, on the other hand, is signif-

icantly underestimated (−0.96 and −0.90 kcal/mole for ASP and SASA compared

to −3.54 kcal/mole for explicit solvent). By contrast, the generalized Born based

models, FACTS, GBSW and GBMV, are all in good agreement with explicit sol-

vent, both in terms of overall RMSD as well as of ∆∆∆Aconf
ext→β. These more complex

models clearly give better results than the (primarily) GA-SE based approaches.

In a second step we focused on the three generalized Born based implicit solvent

models and used them to calculate the relative solvation free energies for all (unre-

strained) amino acid pairs reported in 5.1. The results are summarized in 5.4. Here,

noticeable differences between the methods become apparent. While the GBSW

and GBMV results are overall in good agreement with explicit solvent simulations

(RMSD of 0.51 and 0.41 kcal/mole, respectively), the results obtained with FACTS

have a RMSD of 2.67 kcal/mole. The deviations are not uniform and range from

acceptable (e.g., Ala–Ser, Val-Ala) to huge (> 5 kcal/mole for Leu–Asn). Also,

the large aromatic amino acids (Phe, Tyr) seem to be troublesome, e.g., for the pair

Tyr–Ser the FACTS result has the opposite sign compared to explicit solvent calcula-

tions. 5.4 suggests that computationally (much) more expensive methods (GBSW,

GBMV) lead to significantly better results compared to FACTS (for the capped

amino acids studied here the computational cost of FACTS relative to GBSW and

GBMV was approximately as 1 : 5 : 15).
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Table 5.4: Comparison of ∆∆AAA
solv between selected amino acids pairs obtained with

explicit solvent and three Generalized Born based implicit solvent models. All free

energy differences are in kcal/mole

Explicit FACTS GBSW GBMV

Ala-Ser -2.46 -2.99 -2.06 -2.78

Val-Thr -2.44 -1.41 -2.03 -2.12

Leu-Asn -6.10 -1.26 -6.99 -6.47

Phe-Tyr -4.72 -3.10 -4.80 -3.93

Val-Ala -0.97 -1.80 -0.68 -0.49

Thr-Ser -1.29 -3.38 -1.34 -0.52

Phe-Ala 0.01 -2.11 -0.08 0.20

Tyr-Ser 2.46 -2.00 1.94 2.07

RMSDa 2.67 0.51 0.41
a Root mean square deviation from explicit solvent results
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5.4 Concluding Discussion

We demonstrated and analyzed the contributions from solvent exclusion and self-

solvation to the hydration affinity of blocked amino acids, and showed how these

contributions change solvation free energies of amino acids relative to those of their

side chain analogs. Our results highlight the importance of self-solvation (being the

dominant contribution in polar amino acids). Furthermore, in accord with earlier

interpretations by Roseman [126], as well as Yunger and Cramer [125], we showed

unambiguously that the self-solvation contribution arises primarily in the gas phase

(apolar phase) because of the formation of intramolecular hydrogen bonds between

the polar functional group of the side chain and the backbone. This finding entails

that the strength of the self-solvation contribution depends on the conformation of

the backbone. In the context of larger systems, such as proteins, various intramolec-

ular interactions can lead to self-solvation. A polar side chain in the protein interior

could be stabilized by a hydrogen bond (or at least favorable electrostatic interac-

tions) with its own backbone, the backbone or side chain of amino acids in spatial

proximity or with other polar compounds nearby (e.g., ligands or co-factors). Fur-

thermore, in a study concerning the partitioning of amino acids and peptides in

aqueous two-phase systems Chu and Chen reported marked deviations from the

group additivity assumption for peptides that seem to result from intramolecular

interactions between hydrophobic residues [148]. Due to the abundance of possi-

ble interaction partners, it will be much more difficult to understand self-solvation

(and related) effects in larger systems, let alone to quantify them. Furthermore,

since self-solvation is a highly local effect, strongly depending on the details of the

environment, general rules are difficult to devise.

Our results clearly show that particularly for small to medium sized polar amino

acids (Ser, Thr, Asn) side chain data do not suffice to estimate the solvation free

energy. Ideally, our results should be verified by experimental solvation free energies.

However, solvation free energies can be only measured in the range of +4 kcal/mole

to −11 kcal/mole [26]. From our two-step protocols, we know solvation free ener-

gies relative to what we refer to as pseudo-glycine. The solvation free energy of

this hypothetical reference state with the CHARMM force field is approximately

−10.5 kcal/mole (unpublished data); combined with the two-step data our esti-
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mate of the (absolute solvation) free energies of, e.g., Ala and Ser is −11.3 and

−13.6 kcal/mole. Thus, even blocked Ala appears to be outside the accessible ex-

perimental range.

The large deviations between side chain and amino acid solvation free energies,

at least for polar amino acids, immediately raise questions concerning the validity

and applicability of hydrophobicity scales. Given the multitude of such scales, deter-

mined by a variety of methods [127], one cannot give a generic answer. One widely

used scale is the so-called hydropathy scale by Kyte and Doolittle [117], which was

constructed using Wolfenden’s side chain analog solvation free energies as one of the

input parameters. Our results suggest that the side chain data are misleading for

small to medium sized polar amino acids, whereas they are sufficient for apolar and

large, polar amino acids (e.g., Tyr). Kyte and Doolittle stressed and demonstrated

the robustness of their scale against variation / choice of raw data (parameters) [117].

Thus, the overall impact of the deviations between side chain and amino acid sol-

vation free energies described here on the Kyte and Doolittle scale may not bee too

dramatic, in particular when one is primarily interested in properties such as the

GRAVY [117] values of proteins. By contrast, if one were to use the Kyte Doolittle

scale (or, for that matter, the actual side chain data by Wolfenden and co-workers)

to estimate the solvation contribution of a specific Ser or Thr, then these values

would significantly be in error. In addition, use of hydrophobicity scales to estimate

solvation contributions of individual amino acids completely neglects the effect of

the conformation on the solvent affinity (cf. 5.2).

As reflected by the results reported in 5.3 and 5.4, our model systems also pose

challenges for implicit solvent models. Calculating the solvation free energy of, e.g.,

Ser correctly requires that the implicit solvent model offsets the strong intramolecu-

lar interactions between backbone and side chain, i.e., that it weakens the backbone

– side chain hydrogen bonds to the same degree as would happen in explicit sol-

vent. As pointed out in a recent review, achieving this delicate balance remains

an issue even with the latest generation of continuum electrostatics based implicit

solvent models [149]. In our tests, the two methods implementing the Generalized

Born model rigorously (GBSW, GBMV) successfully reproduce the explicit solvent

results. Since the Generalized Born approach goes beyond the group additivity-
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solvent exclusion approximation, this is not surprising. Similarly, the failure of

models that exclusively or to a large extent rely on the group additivity-solvent

exclusion approximation (ASP, EEF1, SASA) was to be expected. The most sur-

prising and mixed result was obtained for a recent model, FACTS, which is based on

the Generalized Born model, but attempts to reduce the computational effort by a

number of approximations. While FACTS reproduces the conformation dependence

of ∆∆AAA
solv for the pair Ala-Ser well, it fails for a number of other amino acids.

Clearly, capped amino acids (and related solutes) should prove useful as benchmark

systems for implicit solvent models.

5.5 Supporting Information

The first three tables present the detailed results of MDFE of (partially) uncharged

systems. Table 5.5 summarizes the results used to estimate ∆∆∆ASE
solv (cf. Equa-

tion 5.3.2 of the main manuscript). Similarly, Table 5.6 lists the raw data for in-

dividual amino acids relative to the PG intermediate state used to estimate SS

contributions (cf. Equation 5.3 of the main manuscript). The resulting values of

∆∆∆ASE
solv and ∆∆∆ASS

solv are compiled in Table 5.7, which forms the basis of Fig-

ure 5.1 in the main text. In Figure 5.2 histograms of the intramolecular distances

of possible hydrogen bonding partners between side chain and backbone are shown

for both gas phase and solution.
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Table 5.5: Estimating ∆∆∆ASE
solv : Relative solvation free energy differences of

(partially) uncharged amino acids. All free energies are in kcal/mole. The average

standard deviations for ∆∆Aunch.BB
solv , ∆∆Aunch.SC

solv and ∆∆ALJ
solv are 0.37, 0.41 and

0.33 kcal/mole, respectively. The side chain results ∆∆ASC
solv are included for ease

of comparison

∆∆ASC
solv

a ∆∆Aunch. BB
solv

b ∆∆Aunch. SC
solv

c ∆∆ALJ

solv
d ∆∆∆ASE

solv
e

Ala-Ser −7.39 −6.65 −0.01 0.08 0.65

Val-Thr −7.09 −6.70 −0.40 −0.19 0.18

Phe-Tyr −4.64 −4.55 −0.30 −0.01 −0.20

Val-Ala −0.04 −0.96 −0.89 −0.56 −1.25

Thr-Ser −0.23 −1.09 −1.36 −0.77 −1.45

Phe-Ala 2.05 0.85 −0.53 −0.56 −1.17

Tyr-Ser −0.15 −0.92 −0.52 −0.45 −0.83

aSide chain analog results from Table 5.1 of the main text

bRelative solvation free energy difference between pairs of amino acids with backbone charges set to zero

cRelative solvation free energy difference between pairs of amino acids with side chain charges set to zero

dRelative solvation free energy difference between pairs of amino acids with all charges set to zero

eEstimate of the free energy contribution resulting from SE, cf. Equation 5.3.2 of the main text
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Table 5.6: Estimating ∆ASS
solv : Relative solvation free energy differences of (par-

tially) uncharged amino acids relative to pseudo-glycine (PG). All free energies are in

kcal/mole. The average standard deviations for ∆∆APG→AA
solv , ∆∆APGunch.→AAunch. BB

solv ,

∆∆APG→AAunch. SC

solv and ∆∆APGunch.→AAunch.

solv are 0.18, 0.16, 0.23 and 0.25 kcal/mole,

respectively.

∆∆APG→AA
solv

a ∆∆A
PGunch.

→AAunch. BB
solv

b ∆∆A
PG→AAunch. SC
solv

c ∆∆A
PGunch.

→AAunch.

solv
d ∆∆∆ASS

solv
e

Ala −0.81 0.27 −0.58 0.22 −0.28

Ser −3.14 −6.31 −0.64 0.31 4.12

Val 0.16 1.23 0.31 0.78 −0.60

Thr −1.88 −5.22 0.73 1.09 3.70

Phe −0.83 −0.58 −0.05 0.78 0.58

Tyr −5.57 −5.40 −0.12 0.77 0.72

aRelative solvation free energy difference between PG and the respective amino acid

bRelative solvation free energy difference between an uncharged PG and an amino acid with uncharged backbone

cRelative solvation free energy difference between PG and the respective amino acid with side chain charges set to

zero

dRelative solvation free energy difference between an uncharged PG and a completely uncharged amino acid

eEstimate of the free energy contribution resulting from self-solvation, cf. Equation 5.3 of the main text
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Table 5.7: SE and SS contributions to the relative solvation free energy

differences between pairs of amino acids: All free energies are in kcal/mole.

The results listed in the second (∆∆∆ASE
solv) and the third (∆∆∆ASS

solv) column are

visualized in Figure 5.1 of the main text.

∆∆ASC
solv

a ∆∆∆ASE
solv

b ∆∆∆ASS
solv

c ∆∆Aest.
solv

d ∆∆AAA
solv

e Unacct.f

Ala-Ser −7.39 0.65 4.40 −2.34 −2.46 0.12

Val-Thr −7.09 0.18 4.30 −2.61 −2.44 −0.17

Phe-Tyr −4.64 −0.20 0.14 −4.70 −4.72 0.02

Val-Ala −0.04 −1.25 0.32 −0.97 −0.97 0.00

Thr-Ser −0.23 −1.45 0.42 −1.26 −1.29 0.03

Phe-Ala 2.05 −1.17 −0.86 0.02 0.01 0.03

Tyr-Ser −0.15 −0.83 3.40 2.42 2.46 −0.04

aSide chain analog results from Table 5.1 of the main manuscript

bSE contribution according to Table 5.5

cSS contribution according to Table 5.6

dEstimate of the relative solvation free energy, ∆∆Aest.
solv

= ∆∆ASC
solv

+ ∆∆∆ASE
solv

+ ∆∆∆ASS
solv

eActual solvation free energy difference between the respective pair of amino acids

f Deviation ∆∆Aest.
solv

− ∆∆AAA
solv

between the estimated and the directly calculated relative solvation free energy

difference.
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Figure 5.2: Histograms of the intramolecular distances between the side chain

oxygen (O) of Ser and potential hydrogen bonding partners on the backbone (H(N)

and H(NT) of the blocking groups, together with their corresponding heavy atoms

N and NT) in both gas phase (A) and solution (B). The plots were generated from

a 480 ns MD simulation in the gas phase and a 68 ns simulation in solution.
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Chapter 6

Absolute hydration free energies

of blocked amino acids: Are

current estimates of protein

solvation overvalued ?

Due to experimental restrictions there are no experimental solvation free energies

available for amino acids. Therefore, side chain analog data are often used as model

systems in biomolecular studies. This approach basically relies on the assumption

that the solvation free energies of the side chain and the backbone are additive.

However, in a recent study significant nonadditivities were found for relative solva-

tion free energies of side chain analogs and blocked amino acids, thus casting doubt

on this assumption [J. Phys. Chem. B, 113, 8967 (2009)]. To evaluate the additivity

of side chain and backbone contributions, we present absolute solvation free energies

for blocked N-acetyl-methylamide amino acids which were calculated with molecu-

lar dynamics based free energy simulations. By comparing our results for blocked

amino acids with solvation free energies for non-zwitterionic amino acids and side

chain analogs, we demonstrate that side chain analog data are clearly insufficient

for the description of amino acids. We briefly discuss the implications of our results

for the field of protein science.
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6.1 Introduction

No theory of biomolecular systems can be complete without understanding the role

of water in one of its central paradigms, the hydrophobic effect [150]. With respect to

proteins, water influences a wide spectrum of processes, including folding [151,152],

stability [153] and dynamics [154]. Furthermore, it represents one of the main actors

in ligand binding [155] and the selectivity of interactions [156]. From a biophysical

point of view, it is, therefore, essential to understand the functional role of the

solvent for complex environments such as biomolecules. Thus, it is not surprising

that considerable effort has been invested in the study of protein solvation, especially

in form of countless hydrophobicity scales [127]. In such scales, the hydrophobicity

of a compound is commonly determined by the partitioning between an apolar phase

and an aqueous phase, thus providing a ranking of the relative affinities for water.

From an experimental point of view, the vapor phase can be regarded as the simplest

and most rigorous apolar solvent since there are no interactions with the solute.

Formally, the transfer of a solute from an ideal gas phase reference state into aqueous

solution is quantified by its solvation free energy.

However, the solvation free energy of proteins or even amino acids cannot be mea-

sured experimentally [26]. Therefore, estimates of these solvation free energies were

obtained from small molecules by adding contributions of model compounds. E.g.,

full amino acids were separated into a model compound representing the backbone

(e.g., N-methylacetamide) [27] and the amino acid side chains (side chain analogs,

e.g., methanol for Ser etc.) [28]. These estimates are based on the hypothesis that

the solvation free energy is mostly additive. We note that the additivity assumption

is inherently present in any hydrophobicity scale and also forms the basis of fragment

based methods [29–31]. In particular, the side chain analog solvation free energies

reported by Wolfenden and co-workers [28] are widely used as model systems to

understand solvation properties of amino acids and proteins.

Obviously, the approach just outlined is a rather inadequate approximation of

the solvation of a protein since amino acids in the interior will likely not make a

significant contribution to its solvent affinity. We refer to this steric effect as solvent

exclusion. Several techniques account for solvent exclusion by scaling the solvation

free energy contribution of an atom or fragment by its solvent accessible surface area
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[118–121], and also some implicit solvent models rely on this approximation [64,118,

119,122,123], often in conjunction with the side chain analog data by Wolfenden et

al. [28]. However, even the consideration of the solvent accessible surface may not be

enough to obtain satisfactory results since the side chains of polar and charged amino

acids can form intramolecular interactions with the backbone or other polar groups in

spatial proximity, thus reducing the effective solvation free energy [124–126,128,129].

This effect is called self-solvation.

In a recent publication [78], we computed relative solvation free energies for

several pairs of N-acetyl-methylamide amino acids and compared them with the

corresponding results for side chain analogs. The observed differences between side

chain analog and amino acid solvation free energy differences were up to 66 percent

(or, in absolute numbers, 4.9 kcal/mol) for the pair Ala–Ser. The major part of

these non-additive effects was traced back to self-solvation. Thus, we concluded that

side chain data do not suffice to estimate the solvation free energy in proteins, even

accounting for the steric effect of solvent exclusion. However, this conclusion slightly

contradicts recent computational experiments conducted by Chang et al. [33], who

published a complete comparison of hydration free energies of non-zwitterionic and

zwitterionic amino acids, as well as their corresponding side chain analogs. Although

significant non-additivity was found for the zwitterionic form of some polar amino

acids (Figure 3 in Ref. 33), the data of the non-zwitterionic amino acids (Figure 4

ibid.) correlates well with the side chain analog data. Therefore, Chang et al.

concluded that “the hydration free energies of neutral (i.e. non-zwitterionic) amino

acids can be reasonably approximated by adding the contributions of their side

chains to that of the hydration of glycine”.

The peculiar finding that zwitterionic amino acids show a high degree of non-

additivity, while in non-zwitterionic amino acids side chain and backbone contribu-

tions are more or less additive stimulated further analysis on our side. In particular,

the question whether solvation free energies can be considered to be additive for

practical purposes is of fundamental importance for the evaluation of current sim-

ulation methods since the employment of additive approaches the computation of

simplifies free energy differences considerably. However, aside from any principal

reservations one may have, the usefulness of the additivity assumption is restricted
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by the error that can be tolerated. We will illustrate this with some thoughts based

on Ref. 25. One minimum requirement for any computational method in biomolecu-

lar simulation is the ability to discriminate between meaningful and nonsensical pro-

tein structures. Therefore, the maximum error should be well below the free energy

difference between the native and denaturated state, which is about 10 kcal/mol.

Let us assume for arguments sake that an error of 10 kcal/mol is admissible. When

considering a full protein consisting of 100 amino acids, random errors grow with the

square root of the number of amino acids (
√

100 = 10), which leads to an acceptable

error of ∼ 1 kcal/mol per residue. On the other hand, if the errors are not random

but systematic, they do not compensate but simply add up. In such a case non-

additivities should not be higher than 0.1 kcal/mol per monomer unit, otherwise

our predictions would be useless for protein science. Thus, two questions follow: a.)

What is the magnitude of potential errors when applying additivity principles to

the computation of solvation free energies of amino acids by relying on side chain

analog data ? b.) Are the associated errors systematic or random ?

In this work we present absolute solvation free energies for amino acids with

N-acetyl-methylamide blocking groups. In contrast to the pure amino acids used by

Chang et al., these blocking groups add peptide bonds to the two ends of the amino

acid, thus resolving two problems: a.) While the zwitterionic amino acids of Chang

et al. are representative for the situation found in solution, one is rather unlikely to

encounter the zwitterionic form in the gas phase. The opposite is true for neutral

amino acids, which reflect the most likely state in the gas phase, but are not the most

favorable form for solution. Thus, the two kinds of simulations conducted separately

by Chang et al. do not correspond to a real transfer process (with zwitterions in

solution and the non-zwitterionic form in gas phase). However, since the occurrence

of (de-)protonation processes can be ruled out in blocked amino acids, this issue is

completely avoided in our study b.) Another benefit of the blocking groups is that

the solutes start to resemble peptides, with the core of a peptide backbone present.

Thus, the simulation results can account for possible interactions between the side

chain and its backbone.

The remainder of this paper is organized as follows: First, we outline the methods

(Sect. 6.2) employed in this study. We then present the results for the absolute
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solvation free energies of blocked amino acids (Sect. 6.3) and compare them with

the results provided by Chang et al. for non-zwitterionic amino acids, as well as

with the solvation free energies of the corresponding side chain analogs. In addition,

we report some computational aspects which can influence the absolute solvation

free energy, using the example of Gly. We conclude with a short discussion of our

findings and their possible biological relevance in Section 6.4. A short comparison

of absolute solvation free energies derived from several implicit solvent models with

our explicit solvent results can be found in the Appendix.

6.2 Methods

We calculated the solvation free energies of all canonical neutral amino acids (Ala,

Val, Leu, Ile, Ser, Thr, Cys, Met, Asn, Gln, His, Phe, Tyr, Trp) with N-acetyl-

methylamide blocking groups attached. We did not include simulations of charged

amino acids (Arg, Asp, Lys, Glu) since they require complex corrections for the

finite-range treatment of electrostatic interactions [89]. Besides, we also omitted

the simulation of the imino acid proline since there is no corresponding side chain

analog. However, the two tautomeric states of neutral histidine were considered

(referred to as Hid and Hie, where the proton is attached to the δ and ǫ nitrogen,

respectively). To save computational costs, we first calculated relative solvation free

energy differences of all amino acids to a pseudo Gly intermediate state (PG). This

intermediate state resembles Gly, except for the atom type of the Cα carbon. In

a second step, we calculated the absolute solvation free energy of PG. Thus, the

absolute solvation free energy of each amino acid is the sum of one absolute and one

relative solvation free energy difference (i.e., ∆Asolv
aa = ∆Asolv

PG + ∆∆Asolv
PG→aa).

Each relative solvation free energy was calculated with the standard thermody-

namic cycle, which includes four kinds of calculations: 1.) Turning off the charges

of the side chain in explicit solvent (∆AH2O
aa→unch.aa) and 2.) mutating the uncharged

side chains to PG (∆AH2O
unch.aa→PG). Since CHARMM does not offer the separation

of the nonbonded energies into solute-solute and solute-solvent interactions, also

the corresponding gas phase corrections had to be computed (∆Agas
aa→unch.aa and
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∆Agas
unch.aa→PG). Thus, the relative solvation free energy can be calculated by:

∆∆Asolv
PG→aa = ∆AH2O

aa→unch.aa + ∆AH2O
unch.aa→PG − ∆Agas

aa→unch.aa − ∆Agas
unch.aa→PG

For the absolute solvation free energy of PG, three simulations were conducted:

a.) turning off all charges of PG in solution (∆AH2O
PG,unch) b.) turning off the van-der-

Waals interactions between PG and water (∆AH2O
PG,vdw) c.) the gas phase correction

for turning off the intramolecular interactions of PG (∆Agas
PG). Thus, the absolute

solvation free energy of PG is given by:

∆Asolv
PG = ∆AH2O

PG,unch + ∆AH2O
PG,vdw − ∆Agas

PG

All free energy calculations were conducted with CHARMM [62,104], using the

CHARMM27 force field that includes the backbone cross term map (CMAP) cor-

rection [66, 106]. Most free energy differences were computed with the Bennett’s

Acceptance ratio method [9]. Only the gas phase corrections, ∆Agas
unch.aa→PG and

∆Agas
PGunch were computed by thermodynamic integration (TI) [7] with the PERT

module of CHARMM. In Table 6.1, we list the respective number of λ-points (sec-

ond column) and simulation times (the third column shows the simulation time in

nanoseconds per λ-point, and the fourth column the total simulation length of the

respective free energy simulation) for each type of calculation.

Gas phase free energy differences were calculated using Langevin dynamics simu-

lations with a friction coefficient of 5 ps−1 on all atoms. Random forces were applied

according to the target temperature of 300 K, and hydrogen masses were set to 10

amu to justify a time step of 2 fs. For the BAR analysis, trajectories were written

every 100 steps.

In all solvent simulations 862 TIP3P water molecules [140, 141] were present.

The simulation box was a truncated octahedron. The side length L of the cube

from which the octahedron was generated was L = 37.25 Å, which was the average

boxsize over all selected amino acids (the optimal boxsize of each amino acid was

determined from a 1 ns constant pressure simulation). For the determination of

∆AH2O
PG,vdw we used constant pressure simulations. Integration of the equations of

motion was carried out with the velocity-Verlet algorithm as implemented in the

TPCNTRL module of CHARMM [157]; the time step was 2 fs. The temperature

was maintained at about 300 K using two separate Nosé-Hoover thermostats [73]
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Table 6.1: Overview of the simulation protocols

Type of mutation # λa ns/λb Total time (ns)

∆AH2O
aa→unch.aa 3 10 30

∆AH2O
unch.aa→PG 5-7 10 50-70

∆Agas
aa→unch.aa 3 84 252

∆Agas
unch.aa→PG 21 4 84

Total (∆∆Asolv
PG→aa) 32-34 416-436

∆AH2O
PG,unch 3 10 30

∆AH2O
PG,vdw 9 10 90

∆Agas
PG 21 4 84

Total (∆Asolv
PG ) 33 204

a Number of λ intermediate states

b Simulation time per λ-point
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for solute and solvent. SHAKE [142] was used to keep the water geometry rigid.

Lennard-Jones interactions were switched off between 10–12 Å, while electrostatic

interactions were computed with the Particle Mesh Ewald method [74]. Coordinates

obtained after 1 ns of equilibration served as the starting configuration for the free

energy simulation. In addition, each system was equilibrated for 100 ps at every

λ-value.

To overcome slow sampling of side chain rotamers when computing ∆AH2O
aa→unch.aa

and ∆Agas
aa→unch aa, we lowered the energy barriers of χ1 and χ2 by deleting the

corresponding dihedral potentials. To obtain correct free energies the data was

reweighted with Non-Boltzmann Bennett (NBB) [158] according to the value of the

dihedral potential.

Simulation lengths of all free energy protocols are given in Table 6.1. The stan-

dard deviations reported were determined by repeating each free energy simulation

four times, starting with different initial random velocities. The energies of the

respective states required for BAR and NBB were extracted from the trajectories

using the EAVG command of the BLOCK module of CHARMM; the BAR/NBB

analysis was carried out by a Perl program.

6.3 Results and Discussion

Absolute solvation free energies of the 15 blocked amino acids using the CHARMM27

[66, 106] force field are given in Table 6.2. Since the solvation free energies of side

chain analogs and other small compounds often serve as a gauge for the accuracy of

force fields [18, 89, 131, 132, 159], extensive data is available on the error margins of

such free energy simulations. For example, in a blind test for 17 small molecules, free

energy simulations yielded root mean square errors between 1.3 and 1.7 kcal/mol

[18]. Shirts et al. [89] obtained a root mean square deviation of 1.3 kcal/mol for

all amino acid side chain analogs, using the CHARMM force field (notably, also

AMBER and OPLS-AA were employed in their study, yielding overall very similar

results). Given the acute lack of experimental data for verification, we assume that

our error margins will be comparable to the deviations found in these studies. The

standard deviations of the absolute solvation free energies presented in this study
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range between 0.1 and 0.6 kcal/mol, which is comparable to the values reported

by Chang et al. for calculations with full amino acids (their standard deviations lie

between 0.2 and 1.0 kcal/mol).

In a recent study [78], we employed a less sophisticated protocol (using CHARMM22

with shorter simulation lengths, fewer water molecules and a shorter cut-off com-

pared to the simulations conducted here) for the calculation of relative solvation

free energy differences of blocked amino acids and their corresponding side chain

analogs. In this earlier work, the results for the side chain analog solvation free

energy differences were in good agreement with the experimental values, obtaining

a root mean square deviation of 0.6 kcal/mol (which is a good check of our proto-

cols). The absolute solvation free energies reported here agree well with the relative

solvation free energy differences for blocked amino acids reported in Ref. 78 (see

Table 6.3). In total, the root mean square deviation from the old results is just

0.3 kcal/mol, which can probably be traced back to the differences of the simulation

protocols.

In Figure6.1, we compare the solvation free energy results for N-acetyl-methylamide

amino acids (the dashed line represents a regression line of the data; individual data

points are marked by crosses and the corresponding one-letter amino acid code) from

our study with the results for non-zwitterionic amino acids as reported by Chang

et al. [33](dotted regression line), as well as the side chain analog data, as calcu-

lated by Shirts et al. [89] with the CHARMM force field (continuous regression line).

The computational results (ordinate) are plotted against the experimental data by

Wolfenden et al. [28] (abscissa). Since the aim of this study is the assessment of

the additivity hypothesis for solvation free energies, we show all results relative to

the respective Gly reference state (i.e. a blocked Gly for the blocked amino acids, a

pure Gly for the neutral amino acids and H2 in the case of side chain analogs).

If solvation free energies were truly additive, all three lines should be identical

and, in an ideal setting, form a perfect diagonal (i.e, for a regression line f(x) =

ax + b, we should find a slope a = 1.0 and an axis intercept b = 0.0). However,

as can be seen in Figure6.1, both the slopes and the axis intercepts of the three

regression lines deviate from these ideal values. The steepest slope was found for

the side chain analogs (a = 0.95), but the slope of the blocked amino acids is only
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Table 6.2: Absolute solvation free energies of amino acids in kcal/mol

Mutation ∆∆Asolv
PG→aa

a ∆Asolv
aa

b σc

Ala 2.9 -12.0 0.1

Asn -2.6 -17.5 0.3

Cys 1.8 -13.1 0.2

Gln -3.0 -17.9 0.1

Gly 0.4 -14.5 0.1

Hid -6.2 -21.1 0.2

Hie -3.3 -18.2 0.2

Ile 4.0 -10.9 0.5

Leu 3.6 -11.3 0.6

Met 2.4 -12.5 0.2

Phe 2.6 -12.3 0.4

Ser 0.1 -14.8 0.3

Thr 1.3 -13.6 0.5

Trp -0.3 -15.2 0.2

Tyr -2.0 -16.9 0.1

Val 3.3 -11.6 0.2

a Relative solvation free energies to Pseudo-Glycine (PG, ∆Asolv
PG = −14.9 kcal/mol)

b Absolute solvation free energies derived from relative solvation free energies to PG

c Standard deviations
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Table 6.3: Comparison of relative solvation free energy differences of blocked amino

acids in kcal/mol with previous works

∆∆Asolv
abs

a ∆∆Asolv
rel

b Differencec

Ala-Ser -2.8 -2.5 -0.3

Val-Thr -2.0 -2.4 0.4

Leu-Asn -6.2 -6.1 -0.1

Phe-Tyr -4.6 -4.7 0.1

Val-Ala -0.5 -1.0 0.5

Thr-Ser -1.2 -1.3 0.1

Phe-Ala 0.3 0.0 0.3

Tyr-Ser 2.1 2.5 0.4

RMSDd 0.3

a Difference between absolute solvation free energies reported in Table 6.2

b Relative solvation free energy differences reported in Ref. 78

c Difference ∆∆Aabs
solv − ∆∆Arel

solv

d Root mean square deviation of ∆∆Aabs
solv from ∆∆Arel

solv
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a = 0.54, and the slope of the non-zwitterionic amino acids is in the middle between

the two (a = 0.78). Since the abscissa denotes experimental solvation free energies

for the side chain analogs, while the ordinate shows computational results, the small

deviation (0.05) of the slope of the side chain analog data from the ideal slope can be

attributed to imperfections of the force field. Such deviations can be expected for all

regression lines, so this value gives us an idea of the acceptable incongruities between

the three slopes; i.e. if the slopes of the three regression lines differ significantly more

than by 0.05, the differences are unlikely to be caused by errors of the force field.

However, the slopes of the non-zwitterionic and blocked amino acids deviate by 0.17

and 0.41 from the side chain analog data.

The slopes in Figure6.1 can be seen as a measure for the differing magnitude of

group contributions of functional groups (e.g., an hydroxyl group) to the total solva-

tion free energy. If the slope is very steep, adding functional groups to the molecule

will change the solvation free energy drastically. On the other hand, if the slope were

completely flat, the solvent affinity of the molecule would not be affected by the ad-

dition of functional groups. The different slopes in Figure6.1 clearly demonstrate

that the solvation free energy difference associated with the addition of a functional

group depends on the “scaffold“ it is attached to. For example, adding a hydroxyl

group to methane (the side chain analog of alanine) changes the solvation free en-

ergy by −7.0 kcal/mol. If a hydroxyl group is attached to a non-zwitterionic alanine,

its contribution is −3.1 kcal/mol. Finally, for the blocked alanine, the associated

change of the solvation free energy by adding a hydroxyl is only −2.8 kcal/mol.

This reduction of the relative solvation free energy differences corresponds exactly

to what one would expect if interactions with the backbone weaken the solvent affin-

ity of the side chain (and vice versa). Thus, the results presented here are in perfect

agreement with the predictions made in our previous publication [78]. In addition,

this comparison demonstrates, that even in the data for the non-zwitterionic amino

acids by Chang et al. one can find considerable non-additivities.

Another interesting aspect in Figure6.1 are the different axis intercepts of the

regression lines. The blocked amino acid results appear to be shifted to more positive

solvation free energies. This effect can be explained by a change of the relative

ranking of Gly in the list of solvation free energies. Since Gly (or its side chain analog
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Figure 6.1: Comparison of computational results relative to Gly or its corresponding

side chain analog (H2). The abscissa denotes the experimental solvation free energies

reported by Wolfenden et al. The dashed line represents a regression of the results

for amino acids with blocking groups calculated in this paper. The corresponding

individual results are indicated by crosses and the one-letter code for the amino

acid. To avoid cluttering the figure, only linear regressions of the amino acids and

side chain analog data are shown. The dotted line shows a linear regression of the

solvation free energies of non-zwitterionic forms of amino acids as calculated by

Chang et al. The continuous line represents a linear regression of the results for side

chain analogs by Shirts et al.
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H2) was the reference state for all data points in the plot, this has a tremendous

effect on the origin of the regression line. Though the relative rankings of most

amino acids are changed only by one rank when side chain analogs, neutral amino

acids and blocked amino acids are compared, the position of Gly differs dramatically:

According to our blocked amino acid results, Gly is more hydrophilic than 8 out of

15 amino acids. In case of the non-zwitterionic amino acids data, four compounds

(Ala, Leu, Ile and Val) are more hydrophobic than Gly. According to the side chain

analog data, however, the analog of Gly (H2) is most hydrophobic. Although the

relative insolubility of such a volatile gas in water stands to reason, inferring the

same for Gly is rather counterintuitive. We, therefore, are rather surprised to find

that this notion (in conjunction with the very convenient assumption that solvation

free energies are additive) has remained unchecked in the literature for almost 30

years. Our data (as well as the data provided by Chang et al.) clearly shows that H2

(as well as all other side chain analogs) are adequate model systems for full amino

acids.

Finally, we want to discuss the conformation dependency of solvation free en-

ergies. Most of the additive methods today simply ignore the conformation of the

molecule when calculating solvation free energies (this is particularly the case for

techniques based on atomic contributions). However, several studies indicate that

the solvation free energy depends on the conformation of the molecule [24,33,65,91,

158]. In a previous work [78] we could demonstrate that the solvent affinity of amino

acids is directly influenced by the conformation of the backbone since the solvation

free energy depends on the distance between the functional groups of backbone and

side chain. To illustrate the implications of this effect, we calculated the absolute

solvation free energy of Gly without the backbone cross term map (CMAP) correc-

tion [106]. CMAP corrects the potentials of the φ and ψ backbone dihedrals in order

to reproduce quantum mechanical potential energy surfaces. Since it only affects the

dihedral potentials, but not the charges and Lennard-Jones parameters, one might

expect its impact on the solvation free energy to be marginal. However, the removal

of the CMAP potential actually reduces the solvent affinity of Gly by 1.9 kcal/mol

(which is almost the same as the relative solvation free energy difference between

Thr and Val). The finding that absolute solvation free energies do depend on the
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backbone conformation illustrates why molecular solvation is far too complex for a

simple additive approach.

6.4 Conclusions

To evaluate whether solvation free energies are additive, we calculated absolute sol-

vation free energies for 15 blocked amino acids. The results range between −11.3 and

−21.5 kcal/mol, which is outside of the experimental detection range (+4 kcal/mol

to −11 kcal/mol [26]). Thus, solvation free energies of these systems are currently

only quantifiable by theoretical means. The presented results agree well with previ-

ously published relative solvation free energy differences [78] and, methodologically,

free energy calculations in connection with present force fields have been demon-

strated to yield root mean square errors < 2 kcal/mol [18, 89], depending on the

simulation setup.

Using just the least complex amino acid, Gly, as an example, the supposed

additivity of solvation free energies is easily refuted. We will illustrate this for a

naive fragment based approach, which calculates the solvation free energy by adding

the solvation free energies of small molecules that correspond to fragments of the

molecule of interest. This is the most direct application of the additivity hypothesis,

but it is rarely used anymore in this crude form without any correction terms. We

readily admit that our comparison is not very sportive; however, it is motivated

by Wolfenden, who recently asserted that “the few cases” of non-additivity can

be explained in terms of electronic effects, which are unlikely “to alter the relative

solvation properties of the different amino acid side chains significantly, as compared

with the relative solvation properties of the corresponding amino acid residues“ [116].

So just for the sake of the argument, let us assume that N-acetyl-methylamide

Gly (CH3−CO−NH−CH2−CO−NH−CH3) can be divided into two groups: a.)

an acetamide group (CH3−CO−NH2, representing the N terminal blocking group)

and b.) an N-methylacetamide group (CH3 − CO − NH − CH3 representing the

C terminal rest). According to Wolfenden et al. [27, 28], the solvation free energies

of acetamide and N-methylacetamide are −9.7 and −10.1 kcal/mol, respectively.

The corresponding sum of the solvation free energies of the two fragments of Gly
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would be −19.8 kcal/mol. Compared to our Gly result of −14.5 kcal/mol, this would

overestimate the solvation free energy by 5.3 kcal/mol (or ∼ 35%). (Theoretically,

we still would have to subtract the effect of the two excessive hydrogen atoms in

our calculation, which, in an atomistic fragment based approach, can be merged to

H2. However, since the hydration free energy of H2 is +2.4 kcal/mol, the result of

the additive fragment based approach would become −22.2 kcal/mol, which is even

worse)

Since there is no side chain in Gly, this fragment based result does not even

include any complications from the presence of the side chain, thus posing a best case

scenario. Therefore, we will also consider a more complex system. As reported both

by Chang et al. [33] and in our previous study [78], the non-additivity is strongest in

polar amino acids. We will exemplify this with the most extreme case encountered

in our work, Asn. The side chain analog of Asn is acetamide. Thus, by adding

the solvation free energy of yet another acetamide (−9.7) to the fragment based

solvation free energy of Gly we obtain an estimated solvation free energy for Asn

of −29.5 kcal/mol. This result overestimates the Asn result obtained in our study

(−17.5 kcal/mol) by 12 kcal/mol (or ∼ 70%), which is a distinctively higher error

than in the Gly case. Generally, the root mean square error of the fragment based

method over all amino acids would be 9.3 kcal/mol (data not shown). Although there

are reported cases where the addition of a hyrophobic group can actually increase

the solvent affinity [160], our data shows that the estimates of solvation free energies

of amino acids based on side chain analog data were always overestimated if using

a naive fragment based approach; thus, the errors are clearly systematic.

We note that this problem is (partly) known in the fragment-based community,

where empirical “correction factors” are often employed to rectify the results for

polyfunctional groups. However, there are several indications that even corrected

fragment based approaches are inadequate. Fragment based methods are often em-

ployed in medicinal chemistry to determine the lipophilicity of a compound in form

of its partition coefficient between n-1-octanol and water, the so-called log P. Since

it is a common descriptor in the development of quantitative structure-activity rela-

tionships for drug candidates, there has been some interest in assessing the accuracy

of methods to determine the log P. In a study of eight fragment based prediction
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programs, 340 peptides (varying in length from two to sixteen amino acids) were

used to evaluate their accuracy [161]. While the correlation coefficients R2 of most

programs ranged between 0.1 and 0.5 (correlations < 0.5 are generally considered

as weak), only one neural-network-based program achieved a relatively good R2 of

0.8. This weak correlation of fragment based approaches with real log P’s further

supports our case that the additivity assumption is not valid for free energies.

Another example for the breakdown of the simple additivity hypothesis is the

dependency of the solvation free energy on the conformation of the backbone. We

illustrated this by calculating the solvation free energy of Gly once with the CMAP

correction on the backbone and once without CMAP. Though all other parameters

were equal and CMAP only affects the dihedral potentials of the backbone, the

solvation free energies obtained in the free energy simulations differed by almost

2 kcal/mol. In our previous paper, we also described this conformation dependency

for the solvation free energy difference between serine and alanine [78], tracing its ori-

gin back to self-solvation (i.e., interactions between the backbone and the sidechain,

that weaken the interactions with water and stabilize the molecule in gas phase). If

free energies were additive, the contribution of the backbone ought to cancel in such

relative calculations. However, the results deviated by 3.5 kcal/mol, depending on

the backbone conformation.

In macromolecular systems, such as proteins, several intra- and intermolecular

interactions can lead to self-solvation. Especially polar amino acids can be stabilized

by their own backbone, neighboring amino acids or other polar groups nearby, thus

lowering their effective solvent affinity. However, methods based on the additivity

hypothesis, such as fragment based methods, hydrophobicity scales (or, as shown in

recent studies [78,162], even methods based solely on the solvent accessible surface)

are not able to account for self-solvation effects in polar amino acids. Our results

highlight that just the interactions with the backbone alone can reduce the solva-

tion free energy per amino acid considerably and this effect can be amplified by

backbone conformations that facilitate self-solvation (see results without CMAP).

For a single amino acid, it may be tempting to accept such error margins, given the

computational simplicity of the additivity hypothesis. However, since the resulting

errors for each amino acid are systematic, they would simply add up in case of a
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hypothetical protein. Given that 10 kcal/mol are approximately the difference be-

tween the native and denaturated state in proteins, errors as outlined for Gly and

Asn are clearly unacceptable [25].

Even a casual scan of the literature reveals that side chain analog results are

still widely considered to be representative for full amino acids (a notion, which is

closely intermingled with the additivity hypothesis) [116]. In particular, they are

used to study the solvation of amino acids or trans-membrane helices in membranes.

One widely used hydrophobicity scale in this context is the so-called hydropathy

scale by Kyte and Doolittle [117], which was constructed using Wolfenden’s side

chain analog solvation free energies as one of the input parameters. However, even

contemporary works concerning membrane proteins often rely on side chain analogs

as model systems for full amino acids [163]. As we have shown, side chain analog

data considerably overestimate the solvent affinity of most amino acids and even

the relative ranking of some amino acids (such as Gly) is still a matter of debate.

Thus, some modifications of prediction algorithms for transmembrane helices may

be required.

Another field relying heavily on hydration free energies are the energetics of pro-

tein folding and stability, were intimate relationships with water play an significant

role. Most studies concerning the contributions of solvation to folding were con-

ducted in the early nineties and basically relied on group additivity or area based

models to determine the effect of solvation [164]. Not surprisingly, they found strong

correlations of the energy of unfolding with the surface areas of polar and nonpolar

amino acids. However, since the number of experimental observables in proteins is

miniscule in comparison to the number of constituents and interactions, it is rela-

tively easy to find an interpretation that is consistent with the thermodynamic data.

Therefore, critique of the additivity hypothesis followed swiftly, however relatively

unheeded. E.g., in 1995, Lazaridis and Karplus demonstrated by theoretical means

that the accessible surface area approximation breaks down for polar and charged

groups [129]. In 1997, Robertson and Murphy [165] named the “non-additivity of

energetic contributions from the various groups that make up polar and nonpolar

surfaces“ as the number one culprit for the deviation of 57% to 182% between cal-

culated and experimental results for the ∆Cp of unfolding. However, concerning the
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supposed non-additivity they lamented that ”no straightforward approach is avail-

able yet for evaluating its role”. The results of our simulations now clearly make up

for this lack of data, at least as far as hydration free energies are concerned.

Though our solvation free energy results themselves may be useful in other con-

texts, we want to stress that we are not advocating to use our results as yet another

hydrophobicity scale or data for an improved fragment based approach. Except

when dealing with casual qualitative comparisons (e.g., in bioinformatics), employ-

ing an additive approach would not be advisable (especially in biophysics). To

borrow an analogy from Wittgenstein [166], our results concerning hydrophobicity

scales should be regarded to be like a ladder that must be thrown away after one

has climbed it. They are mainly to be used in order to recognize the relative use-

lessness of hydrophobicity scales in a macromolecular world with a broad range of

possible interactions. Instead, given the availability of modern computer resources,

the use of free energy simulations with explicit or, alternatively, Generalized Born

based implicit solvent models [167, 168] (see the pertaining discussion in the Ap-

pendix) should be considered when dealing with solvation effects in biomolecules.

Since preliminary results can be obtained even with normal desktop computers; and

free software packages for biomolecular simulations are readily available, there is

no excuse anymore for using hydrophobicity scales or side chain analog data for

quantitative studies.

6.5 Some comments concerning implicit solvent

models

In a previous study [78], we compared the relative solvent affinities of several amino

acids both for explicit solvent as well as for the implicit solvent models ASP [119],

EEF1 [64], SASA [123], GBMV [107], GBSW [136] and FACTS [68]. Our results

demonstrated that several implicit solvent models are not able to account for self-

solvation, with the notable exception of methods implementing the Generalized Born

model (GBMV, GBSW, and, to some extend, also FACTS). Here, we compare ex-

plicit solvent results for the absolute solvation free energies (see Table 6.2) with

results obtained from implicit solvent simulations in our recent study [78] (The
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data was not shown in Ref. 78, since we were only interested in relative solvation

free energy differences at that time). The results of this comparison are shown in

Table 6.4.

Notably, while the relative solvation free energy differences were quite similar

for the three implicit solvent models [78], the absolute solvation free energies differ

considerably. FACTS consistently underestimates the solvent affinity of the blocked

amino acids and the GBSW results show a tendency to be too hydrophilic. The

GBMV results, on the other hand, agree exceedingly well with our explicit solvent

results (with a root mean square deviation of just 0.3 kcal/mol). Since GBMV is the

most rigorous (and computationally expensive) method tested here, this is not very

suprising. Thus, we conclude that implicit solvent models can indeed be a valuable

tool for determing absolute solvation free energies.
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Table 6.4: Comparison of absolute solvation free energies of blocked amino acids in

kcal/mol with implicit solvent results from previous studies

Explicit FACTS GBMV GBSW

Ala -12.0 -7.7 -11.9 -13.4

Asn -17.5 -5.6 -18.2 -19.2

Leu -11.3 -4.4 -11.2 -12.7

Phe -12.3 -5.6 -11.9 -13.6

Ser -14.8 -10.7 -14.7 -15.5

Thr -13.6 -7.3 -13.4 -14.9

Tyr -16.9 -8.7 -16.7 -17.5

Val -11.6 -5.9 -11.3 -12.9

RMSDa 7.2 0.3 1.3

a Root mean square deviation from explicit solvent results
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Final discussion

In this dissertation, we evaluated different methodological aspects of free energy

simulations:

• We have applied Bennett’s Acceptance Ratio method (BAR) to problems

where standard methods to compute free energy differences such as TI or

EF are not feasible. This was first demonstrated for the calculation of the

free energy difference between ethane and methanol in aqueous solution, us-

ing the physical endpoints only. We then showed how BAR can be used to

compute the free energy difference resulting from changing the cut-off, from

switching the force field, or from using an implicit solvent model. Calculations

of this kind should prove useful for force field development and the validation

of implicit solvent methods.

• We demonstrated how Non-Boltzmann Sampling can be employed in connec-

tion with Bennett’s Acceptance Ratio method. We refer to this technique as

Non-Boltzmann Bennett. In particular, we illustrated how specially designed

sampling states can be employed in connection with NBB to improve sampling,

correct small errors in free energy simulations, or speed up the computation.

All of these aspects can improve the efficiency of free energy simulations.

• We used free energy simulations to compute relative solvation free energies

for pairs of N-acetyl-methylamide amino acids (Ala–Ser, Val–Thr, Phe–Tyr,

Val–Ala, Thr–Ser, Phe–Ala, and Tyr–Ser) and compared the results with the

relative solvation free energies of the corresponding pairs of side chain analogs.

Our results showed that there are distinct discrepancies between the solvation

free energy differences of blocked amino acids and side chain analogs. To ra-

tionalize these findings, we estimated separately contributions from what we

refer to as solvent exclusion and self-solvation. While the former accounts for

the reduction in solute–solvent interactions as one part of the solute occludes

other parts of the solute, the latter turned out to be the determining contribu-

tion for small polar amino acids and could be shown to arise from interactions

between the polar backbone and the polar functional group of the respective
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side chains. Our results indicate that the still widely used group additivity–

solvent exclusion assumption to estimate solvation free energies for molecules

such as peptides and proteins from model compound data is insufficient.

• To evaluate the additivity of side chain and backbone contributions, we calcu-

lated absolute solvation free energies for blocked N-acetyl-methylamide amino

acids. By comparing our free energy results for blocked amino acids with sol-

vation free energies for non-zwitterionic amino acids and side chain analogs,

we demonstrate that methods which employ the additivity hypothesis clearly

overestimate the solvation free energy of amino acids. We briefly discuss the

implications of our results for the field of protein science, with a particular

focus on the energetics of protein folding and stability.
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