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ploited are very general and can be ap-

plied to other coherent spectroscopies as

well. Applications are conceivable in elec-

tron spin resonance, nuclear quadrupole

resonance, in microwave rotational spec-

troscopy, and possibly in laser infrared

spectroscopy.
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1
Introduction

1.1 How it all began

Spectroscopic methods are one of the most widely applied tools for studying the nuclear and

electronic structure and dynamics of atomic and molecular systems. The desired information is ob-

tained by the interaction of matter with electromagnetic waves of all possible wavelengths, covering

the range from radiowaves on the low frequency side to γ-rays on the high frequency side. Owing

to the multiple ways in which electromagnetic fields can be manipulated (e.g. duration, frequency,

polarization, shape, sequence, etc.) these methods have reached a high degree of complexity. To

account for these developments, a number of Nobel prizes in physics and chemistry have been

awarded [1], e.g. in 1952 to Felix Bloch and Edward Mills Purcell ”for their development of new

methods for nuclear magnetic precision measurements and discoveries in connection therewith”,

in 1981 to Nicolaas Bloembergen and Arthur Leonard Schwalow ”for their contribution to the

development of laser spectroscopy”, in 1991 to Richard Ernst ”for his contributions to the devel-

opment of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy”,

and in 1999 to Ahmed Zewail ”for his studies of the transition states of chemical reactions using

femtosecond spectroscopy”, to name only a few examples.

Depending on the characteristics of the excitation field, spectroscopic methods can be classified

as time- or frequency domain experiments. In frequency domain measurements, such as resonance

light scattering or high resolution absorption/emission spectroscopy, a narrowband light source is

typically used to excite a specific spectroscopic transition. For the investigation of dynamics in

atomic and molecular physics, time-resolved spectroscopies with a time resolution that is higher

than the time scale of the process under investigation are required [2]. Many important physical

and chemical processes, such as vibrational and electronic dephasing, rotational and vibrational

motion, solvent relaxation, intramolecular energy randomization, energy and electron transfer in

photosynthesis, and bond cleavage and formation occur on a femto- to picosecond timescale [3].

The progress in the field of ultrashort laser pulse generation enables to nowadays follow these

processes in real time. For measuring dynamics with a time resolution below ≈ 10−11 s, most
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CHAPTER 1. INTRODUCTION

detection electronics (except for streak cameras) are not fast enough. To overcome this problem,

many ultrafast spectroscopic techniques use multiple pulses and vary their delays to gate and

interrogate the system under investigation. In this case, the time resolution is limited only by the

duration of the excitation pulses, but not by the temporal resolution of the detecting device.

Besides providing the required time resolution, the high peak power of ultrashort laser pulses

has opened the door to the field of nonlinear spectroscopies. In some instances, especially for

few-atom molecules and simple polyatomics with their eigenstates well separated, linear molecular

spectroscopies, such as linear absorption and Raman scattering, give direct information on static

energy levels, absorption cross-sections, and line broadening mechanisms. However, in complex

molecules in the condensed phase with strongly congested electronic levels and various types of

transition broadening mechanisms, the microscopic information becomes highly averaged and to-

tally concealed by structure- and featureless line-shapes. These limitations can be overcome by

nonlinear spectroscopic methods. The ultimate goal of these techniques is to relate the experimen-

tally observed temporal and spectral response of the system to the microscopic nature of intra-

and intermolecular interactions and to reveal static and dynamic effects of the environment (e.g.

the solvent) on the system. Solvation effects influence chemical dynamics by providing sources and

sinks for energy, influencing molecular motion, inducing transport and relaxation dynamics, and

determining the potential energy surfaces on which reactions take place [3]. Since second-order

nonlinear signals are symmetry forbidden in isotropic media such as bulk liquids, the third-order

nonlinearity is the lowest nonlinear order at which system-bath interactions and solute dynamics

in liquids can be probed. The central quantity in third-order nonlinear spectroscopy is the third-

order nonlinear polarization P (3), which is induced in the sample by three interactions with pulsed

electromagnetic fields [4]. Including the radiated signal field E
(3)
s , four fields are involved in the

experiments, leading to the term four-wave mixing (FWM) spectroscopies.

A milestone in the development of nonlinear techniques in NMR spectroscopy has been the

first observation of a spin echo by Hahn in 1950 [5]. Fourteen years later the first photon echo, the

optical analogue to the spin echo, has been demonstrated by using short light pulses instead of radio

pulses [6]. To observe a photon echo three pulses interact with the sample. The first interaction

at t = 0 creates an electronic coherence where definite phase relations are established between the

excited atoms or molecules. However, if the individual atoms or molecules have slightly different

absorption frequencies, their phases evolve differently. The second interaction at time t = τ stops

this evolution by converting the electronic coherence into a population. A third laser pulse at t = T

restores the coherence but reverses the phase evolution for each atomic or molecular dipole. After

a time t = T + τ all atoms or molecules are in phase again and form what is called the photon echo

(i.e. a macroscopic polarization that can be detected as a pulse). Photon echo spectroscopy can be

used to measure population decay and homogeneous phase relaxation, two processes that decrease

the intensity of the echo signal. Inhomogeneous phase relaxation on the other hand impedes the

rephasing process only if the absorption frequency and thus the phase evolution of the atoms or

molecules changes in between the second and third interaction. Thus, photon echo spectroscopy

allows to measure homogeneous relaxation processes even in the presence of inhomogeneous line

2



1.2. BASIC PRINCIPLES

broadening mechanisms.

Starting from (one-dimensional) echo spectroscopy, a remarkable progress that took its origin

in NMR spectroscopy has been the implementation of multi-dimensional techniques. The term

multi-dimensional in this context refers to the spectroscopic observable being monitored as a func-

tion of two or more independently variable time-intervals or frequencies. As already contemplated

in a very early stage in the development of two-dimensional NMR spectroscopy [7] (see quotation

above), these techniques found application at increasingly shorter wavelengths. By the end of the

last century the first two-dimensional (2D) experiments were demonstrated at approximately the

same time in the mid- [8] and near-infrared [9] spectral region, probing vibrational and electronic

transitions, respectively. Even though conceptually similar, these two seminal papers featured

significant differences in the experimental realization of 2D spectroscopy. While a two-dimensional

pump-probe approach (with a narrowband pump pulse scanned in frequency-domain and a broad-

band probe pulse) was implemented in the former work, the approach adopted in the latter work

is the direct analog of 2D NMR experiments with a pulse delay scanned in time-domain and a

Fourier transform step from time- to frequency-domain at the heart of the experiment. This latter

approach was also pursued in 2D experiments at visible frequencies that were demonstrated for the

first time in 2004 [10, 11]. In the meantime, two-dimensional spectroscopies are well established

at infrared and visible frequencies (see e.g. Ref. [12] and references therein), and extensions to the

ultraviolet and X-ray region have been pondered [13, 14].

Although many basic ideas that are realized in two-dimensional electronic spectroscopy (2D-ES)

have been borrowed from its NMR counterpart, there exist nevertheless lots of technical and con-

ceptual differences [15, 16]. The most obvious difference is a consequence of the different frequency

ranges used in the excitation source - the radiowaves employed in NMR spectroscopy induce spin

transitions, whereas the visible frequencies in 2D-ES induce electronic transitions. The shortest

timescales that can be probed in NMR spectroscopy lie in the range of milliseconds, whereas time

resolutions of femtoseconds (fs) can be reached in the visible spectral range. Rather than being a

drawback, however, these differences enable complementary perceptions on the molecular structure

and dynamics of matter.

1.2 Basic Principles of Two-Dimensional Electronic Spectroscopy

Pump-probe (PP) spectroscopy is the most widely applied type of FWM spectroscopy. It relies

on exciting the system under investigation with a short, intense pump pulse and interrogating the

dynamical evolution with a weak probe pulse after a variable delay. The classification into the

category of FWM spectroscopies arises from the fact that the measured signal is generated by two

interactions with the pump and one interaction with the probe pulse. Despite its broad use, PP

spectroscopy bears a fundamental disadvantage that can be related to Heisenberg’s uncertainty

principle. In conjunction with ultrashort laser pulses the uncertainty principle states that the

product of the temporal and spectral bandwidths must exceed a certain value. This implies that

short pulses have a broad frequency spectrum and vice versa. Applied to PP spectroscopy, there

3



CHAPTER 1. INTRODUCTION

is always a tradeoff between temporal and spectral resolution - selective excitation results in loss

of temporal resolution and a high temporal resolution can only be achieved by broadband (i.e.

unselective) excitation. By temporally separating the first two interactions in a PP experiment,

which is equivalent to spectrally resolving the excitation frequency, two-dimensional electronic

spectroscopy allows to overcome this limitation.

2D-ES is based on the correlation of two electronic coherences evolving during two time intervals

[17]. To this end a sequence of three laser pulses with wave vectors k1, k2, and k3 and time delays t1

and t2 interact with the sample and stimulate the generation of a third-order nonlinear polarization

P (3)(ks, t1, t2, t3) that emits the signal field E
(3)
s (ks, t1, t2, t3) for a time t3. Since the wavelength

is much smaller than the sample size, phase-matching conditions yield directional responses and

signals only emerge in directions that are linear combinations of the wave vectors of the excitation

pulses, i.e. ks = ±k1 ± k2 ± k3. A negative sign in the wave vector thereby indicates interaction

with a complex conjugated field (cf. Eq. (2.6)). Out of the 23 possible linear combinations of

wave vectors only four (kI = −k1 + k2 + k3, kII = +k1 − k2 + k3, kIII = +k1 + k2 − k3, and

kIV = +k1+k2+k3) are independent. The remainder of this thesis will focus on the former three,

since detecting a signal in the phase-matching direction kIV would require the presence of at least

four electronic levels with energy spacings corresponding to the frequency of the excitation pulses.

The following nomenclature will be adopted in this work: signals detected along kI (kII) will be

denoted SI (SII) or rephasing (non-rephasing) single-quantum two-dimensional (1Q2D) spectra;

for signals detected along kIII the terms SIII or double-quantum two-dimensional (2Q2D) spectra

will be used. Most often, the sum of SI and SII spectra is measured, since this combination yields

purely absorptive real parts and purely dispersive imaginary parts [18, 19]. This type of spectrum

will be denoted 1Q2D spectrum. Fig. 1.1 illustrates the three different experimental techniques, a

representative spectrum calculated for a three-level system in the homogenous limit, and energy

ladder diagrams illustrating the contributions to the signals [20].

• In rephasing 1Q2D spectroscopy (SI) (Fig. 1.1a) the interaction of the system with the

first pulse (-k1) induces a single-quantum coherence between the ground- (g) and first-excited

state (e) that oscillates for a time t1. Interaction with the second pulse (+k2) converts this

coherence into a population or a vibrational wave packet in the ground or excited state. After

a time t2 interaction with the third pulse (+k3) restores a single-quantum coherence between

the ground- and the first-excited state or the first- and second-excited state. This single-

quantum coherence radiates the signal field for a time t3 in the phase matching direction

kI = −k1 + k2 + k3. The two-dimensional spectrum is depicted in frequency-frequency

domain by Fourier transforming t1 → ω1 and t3 → ω3 while keeping t2 fixed. Three Liouville

space pathways that can be represented graphically by the three energy ladder diagrams in

Fig. 1.1a contribute to SI spectra. In these diagrams time evolves from left to right. Black

arrows denote interactions with the electromagnetic field and red (blue) arrows indicate

positive (negative) signal fields. The three contributions to SI spectra can be classified into

ground state bleaching (GSB), stimulated emission (SE), and excited state absorption (ESA)

and yield positive (GSB, SE) and negative (ESA) absorptive signals. In these Liouville space

4



1.2. BASIC PRINCIPLES

pathways the system evolves in conjugate frequencies during t1 (ωeg) and t3 (ωge). This

allows for rephasing in an inhomogeneously broadened ensemble, resulting in the formation

of an ”echo” in case the system has kept some memory of its transition frequency over t2.

This rephasing effect manifests itself in the characteristic orientation parallel to the diagonal

in SI spectra.

• The pulse sequence for non-rephasing 1Q2D spectra (SII) (Fig. 1.1b) differs from the one

discussed above by an interchange in the sign of the first two interactions. As a consequence

the system evolves with the same frequency during t1 and t3 (ωeg) in the three Liouville space

pathways contributing to SII signals. Therefore, there is no rephasing effect and the system’s
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Figure 1.1: Schematic of the three two-dimensional methods SI (a), SII (b), and SIII (c).

An illustration of the coherence evolutions and the Fourier transforms used to construct the

correlation spectra is shown in the leftmost column. In the central column model calculations

of the real part of the SI, SII, and SIII signals based on the homogenous limit of a three-level

system with equal transition dipole moments and a red-shifted second excited state are shown.

Energy ladder diagrams contributing to each signal are depicted in the rightmost column. Here,

g, e, and f denote ground, first excited, and second excited state, respectively. Time runs from

left to right. Solid (dashed) arrows indicate interaction with the ket (bra) side of the density

matrix. Red (blue) signal arrows indicate positive (negative) signal contributions.
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CHAPTER 1. INTRODUCTION

response is close to a free induction decay. The peaks in non-rephasing 1Q2D spectra feature

a characteristic orientation perpendicular to the diagonal.

• In 2Q2D spectroscopy (SIII) (Fig. 1.1c) only two Liouville space pathways contribute to

the signal. These two contributions share the same evolution (single-quantum eg-coherence

during t1, double-quantum fg-coherence during t2) up to the interaction with the third pulse.

This last interaction determines the sign of the contribution, which is positive in case the third

pulse acts on the bra-side of the density matrix creating a eg-coherence, or negative in case it

acts on the ket-side and creates a fe-coherence. These two system-field interaction schemes

already indicate that the system under investigation must posses at least three electronic

levels with an energetic separation that lies within the spectral bandwidth of the excitation

pulses. The two-dimensional spectrum is obtained by Fourier transforming t2 → ω2 and

t3 → ω3 while keeping t1 fixed. Due to the non-rephasing character of 2Q2D spectroscopy,

the orientation of the SIII spectrum shows strong similarities with the non-rephasing 1Q2D

signal (SII). However, since the system evolves in a double-quantum coherence (fg) during

t2, that oscillates at approximately twice the frequency of a single-quantum coherence, the

peaks appear at approximately twice the frequency along ω2 in SIII than they do along ω1 in

SII.

Compared with related third-order nonlinear techniques, the procedure to obtain a two-dimen-

sional electronic spectrum might sound rather tedious and complicated. However, it bears a number

of unique advantages that justify its application. 2D-ES gathers the maximum amount of informa-

tion that can be inferred by any third-order nonlinear technique. Typical one-dimensional FWM

signals such as photon echo, transient grating, and pump-probe spectra can be recovered from a 2D

spectrum by projections or cuts. Two-dimensional electronic spectroscopy overcomes the trade-

off between time and frequency resolution that is imposed by the time-bandwidth product of the

excitation pulses to other techniques. This is due to the fact that the spectral resolution of a 2D

experiment is only limited by the maximal delay between the pulses, whereas the temporal resolu-

tion is given by the pulse duration. Therefore, selective excitation, competing with high temporal

resolution in one-dimensional experiments, is not an issue in 2D spectroscopy. Finally, spreading

the information content into two frequency dimensions facilitates the interpretation of congested

spectra. The merits of two-dimensional electronic spectroscopy are described more extensively in

the following section.

1.3 What Two-Dimensional Electronic Spectroscopy can do

Without claim for completeness, this section aims at highlighting some of the unique capabilities

of two-dimensional electronic spectroscopy. The examples are illustrated by model calculations or

examples from this thesis and related to the available literature.
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Dissect homogeneous and inhomogeneous line-shapes. In time domain, solvation dynam-

ics are characterized by the dephasing time of molecular transitions. In frequency domain the

spectral broadening of electronic transitions yields information about intra- and intermolecular

interactions. In traditional theories of spectral line-shapes a distinction is made between homoge-

neous and inhomogeneous contributions. The term homogeneous broadening is used to describe

the statistical loss of coherence that all molecules or atoms in the sample experience [21]. The

natural line broadening due to the finite lifetime of excited states and collisions of the system

with the surrounding bath contribute to the homogeneous spectral profile. In linear absorption a

Lorentzian line-shape is indicative of homogeneous broadening. Inhomogeneous broadening on the

other hand is the spectroscopic manifestation of the fact that every molecule or atom in the sample

may have a slightly different local environment, so that the probability for absorption or emission

of light at the frequency ω is not the same for all molecules or atoms. This static distribution of

transition frequencies manifests itself in a Gaussian line-shape in linear absorption [4].

Even though homogeneous and inhomogeneous contributions may not always be easily distin-

guishable in their linear absorption spectra, the 1Q2D spectra (SI + SII) show clear differences in

their shapes for homogeneously and inhomogeneously broadened systems (Fig. 1.2) [22, 23]. The

1Q2D spectrum of a two-level system with homogeneous broadening only features a 2D Lorentzian

star shape (Fig. 1.2a). Cuts taken along the diagonal and the anti-diagonal both yield Lorentzian

line-shapes of the same width. As the inhomogeneous width increases, the peak broadens along the

diagonal axis, while the antidiagonal remains unchanged. For large inhomogeneous broadening,

a pronounced elliptical peak shape is observed in the 1Q2D spectrum (Fig. 1.2b). Taking a cut

along the diagonal reveals a Gaussian line-shape whose width is determined by the inhomogeneous

width, whereas the antidiagonal axis preserves the homogeneous line-shape [24]. Thus, the degree

of ellipticity of the peak in the 1Q2D spectrum can be taken as an indicator for the amount of

inhomogeneity present in the system under investigation [25]. 2D spectroscopy is the only method

that allows to simultaneously measure homogeneous and inhomogeneous line-shapes directly.
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Figure 1.2: Calculated linear absorption spectrum (left) and 1Q2D absolute value spectrum

(right) of a homogeneously broadened (a) and an inhomogeneously broadened (b) two-level sys-

tem. Cuts along the diagonal and anti-diagonal are shown in the upper left and right corner of

the 2D spectrum, respectively.
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Probe spectral diffusion. With increasing waiting time t2 each initially excited subpopulation

in a dynamically inhomogeneous system will stochastically sample all available local environments

and therefore lose its initial correlation of transition frequencies [23]. This spectral diffusion process

manifests itself by a change in the line-shapes of a 1Q2D spectrum from elliptical to symmetrical

[19, 26] as shown in Fig. 1.3. The decay of asymmetry thereby provides a direct measure of spectral

diffusion.
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Figure 1.3: Calculated 1Q2D spectra of an inhomogeneously broadened two-level system for

t2 = 0 (a) and t2 ≫ 0 (b) revealing the effect of spectral diffusion. Cuts along the diagonal and

anti-diagonal are shown in the upper left and right corner, respectively.

Identify electronic couplings. Electronic couplings reshape the excited state manifolds of

many important systems such as molecular aggregates, polymers, semiconductor quantum wells,

and photosynthetic complexes. One of the most prominent advantages of 2D spectroscopy over

linear and 1D nonlinear techniques is its capability to directly reveal these couplings by the presence

or absence of cross peaks. Fig. 1.4a shows the absolute value 1Q2D spectrum of two uncoupled two-

level systems (TLS). Each of the two TLS gives rise to a single peak along the diagonal in the 1Q2D

spectrum. The absence of signals at ω1 ̸= ω3 indicates that the two TLS do not sense each others

presence. The linear absorption spectrum of two uncoupled TLS may not be distinguishable from

the linear absorption spectrum of a coupled three-level system. In the 1Q2D spectrum, however,

cross peaks at t2 = 0 provide an unbiased proof of electronic coupling as can be seen in Fig. 1.4b,

which shows the 1Q2D spectrum of a ”V”-type three-level system. The two diagonal peaks stem

from transitions from the ground state to each individual single-excited state, whereas the two

cross peaks indicate their coupling via the common ground state [27]. The intensity of a cross

peak is proportional to the square of the transition dipole moment of the two states involved (i.e.

∝ |µi|2|µj |2), whereas diagonal peaks scale as |µi|4. Cross peaks indicative of electronic couplings

have been measured in semiconductor quantum wells [28], cylindrical J-aggregates [29], potassium

vapor [30], and photosynthetic complexes [31].
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Figure 1.4: Calculated 1Q2D spectra of two uncoupled two-level systems (a) and two coupled

two-level systems (b) for t2 = 0. The coupling manifests itself in the appearance of cross peaks

in two-dimensional spectra.

Follow the pathways of energy transfer. A second source for cross peaks in 2D spectra, which

requires only weakly coupled electronic levels, is energy transfer in the excited state manifold. By

recording a series of 1Q2D spectra for increasing waiting times t2, the evolution of cross peaks

allows to directly reveal the pathways and timescales of energy transfer processes in real time.

Cross peaks evolving in the lower half triangle (ω1 > ω3) thereby monitor downhill transfer steps,

whereas uphill energy transfer can be followed by the evolution of cross peaks in the upper half

triangle (ω1 < ω3). The intensity ratio of a cross peak in the lower half triangle compared to

the corresponding peak in the upper half triangle is determined by the detailed balance condition

(∝ exp−∆E
kT ). By means of 1Q2D electronic spectroscopy energy transfer processes have been

monitored in a number of natural [31, 32] and artificial [29, 33] light harvesting complexes. An

example for the latter is shown in Fig. 1.5 and discussed in more detail in Chapter 6.
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Figure 1.5: Absolute value 1Q2D spectra of C8O3 (cf. Chapter 6) for waiting times t2 = 0, 50,

and 500 fs reveal the pathways of energy flow in these cylindrical aggregates.

Characterize vibronic coherences. The femtosecond laser pulses employed in 2D-ES are usu-

ally very broad in the spectral domain and therefore allow to coherently excite a number of vibra-

tional levels. The induced vibrational wave packet manifests itself in oscillating signal intensities

and line-shapes in the 1Q2D spectra. Distinct diagonal and cross peaks can be observed in case of
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CHAPTER 1. INTRODUCTION

high frequency vibrations [34, 35, 36], whereas only the evolution of a single peak can be followed

in case of low frequency vibrations [36, 37, 38]. An example for the latter case is shown in Fig. 1.6

and discussed in more detail in Chapter 4.
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Figure 1.6: Absolute value 1Q2D spectra of PERY (cf. Chapter 4) for waiting times t2 of 200,

300, 450, and 500 fs. The single peak oscillates with a period of 240 fs induced by coupling of

the electronic transition to a vibrational mode with a frequency of 140 cm−1.

Reveal electronic coherences. Recently, signatures of electronic coherences in 1Q2D spectra

have received considerable theoretical and experimental attention [39, 40, 41, 42, 43, 44]. Quantum

coherence during energy transport in natural photosynthetic complexes has been demonstrated and

suggested to increase the efficiency of the transfer process. Fig. 1.7 illustrates the effect of electronic

wave packet evolution for a model system of two coupled oscillators. During t2 the system evolves

in an electronic coherence that oscillates at a period determined by the energetic separation of the

two excited states involved (38 fs for the example shown in Fig. 1.7). The two cross peaks thereby

oscillate out of phase, i.e. the lower energy cross peak has its maxima at t2-times at which the

higher energy cross peak passes through its minima.

w1

-1
/ cm w1

-1
/ cm w1

-1
/ cm w1

-1
/ cm w1

-1
/ cm

w
3

-1
/ 

c
m

0 fs 9.5 fs 19 fs 28.5 fs 38 fs

Figure 1.7: Temporal evolution of the 1Q2D spectra of two coupled oscillators. The two excited

states are separated in energy by 875 cm−1 corresponding to a beating period of 38 fs.
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Characterize higher excited states. To accurately describe structural, spectroscopic, and re-

action parameters, information on double-excited states is required in addition to the one obtained

for single-excited states. In 1Q2D spectroscopy the signals arising from double-excited states are

buried under the intense contributions of ground- to single-excited state transitions. 2Q2D-ES

allows to characterize higher excited states by singling out excitation pathways that involve a

double-quantum coherence between the ground- and a double-excited state. Fig. 1.8 compares

the 1Q2D spectrum with the 2Q2D spectrum of C8S3 (cf. Chapter 8). By combining these two

methods detailed information on the single- and double-excited state manifolds can be obtained.

w1

-1
/ cm w2

-1
/ cm

w
3

-1
/ 

c
m

w
3

-1
/ 

c
m

(a) (b)

Figure 1.8: Representative absolute value 1Q2D (a) and 2Q2D (b) spectra of C8S3 (cf. Chap-

ter 8). Double-exited state information which is hidden in 1Q2D spectra can be extracted from

2Q2D spectra.

1.4 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 provides the basic equations necessary for understanding the principles of two-

dimensional electronic spectroscopy.

• The experimental spectra presented in this thesis have been recorded with two different

experimental design. Both of them are discussed in detail in Chapter 3.

• Presentation of the results obtained during my PhD studies together with a detailed discus-

sion starts in Chapter 4 with a monomeric dye (PERY) whose FWM signals are strongly

modulated by coupling to a low-frequency vibrational mode. The coupling of the electronic

transition to the vibrational mode induces a propagating vibrational wave packet that man-

ifests itself in oscillating signal intensities and line-shapes. In the 1Q2D electronic spectra

the wave packet motion induces a pronounced beating of the anti-diagonal absorptive peak

width, accompanied by orientational changes of the nodal line in the dispersive signal part.

The effects can be assigned to periodic alternations in the relative amplitudes of rephasing

and non-rephasing contributions to the spectrum. A theory of the time-dependent two-

dimensional spectral line-shapes is presented and shown to reproduce the observed effects.
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• In Chapter 5 we simultaneously monitor monomers and van-der-Waals bound dimers of

Pinacyanol in a single experiment and illustrate how 2D line-shapes are affected by exci-

ton delocalization induced by electronic intermolecular couplings. A quantitative line-shape

analysis of a sequence of 1Q2D spectra up to 10 ps reveals that the similarity of the two

peaks at t2 = 0 vanishes on a sub-100 fs time scale.

• Identifying the pathways and timescales of excitation energy transfer is a central goal in the

design of artificial light harvesting systems and energy transporting wires. In Chapter 6

we provide this information for molecular nanotubes formed by the dye C8O3 by correlat-

ing excitonic absorption and emission frequencies at various delay periods. In combination

with simulations based on a coupled electronic oscillator model the experiments reveal the

electronic coupling pattern and show the cascading-type energy transfer pathways.

• By detecting the signal in the phase-matching direction +k1+k2−k3, the recently developed

method of double-quantum two-dimensional electronic spectroscopy (2Q2D-ES) singles out

excitation pathways that involve a double-quantum coherence between the ground state (g)

and a double-excited state (f). Based on experimental results on the dye Rhodamine 6G, a

detailed discussion about the interpretation of 2Q2D spectra and the theory underlying this

method is presented in Chapter 7.

• In Chapter 8 we present 1Q2D and 2Q2D spectra of the double-wall cylindrical aggregates

formed by the carbocyanine dye C8S3. The narrow line-shapes of molecular aggregates fa-

vor the interpretation of 2Q2D spectra of these systems in comparison to monomers which

typically exhibit strong system-bath interactions and thus broad spectral shapes. The ex-

perimental spectra are reconstructed by employing a microscopic model and simulating the

third-order nonlinear response within the quasi-particle scattering approach. Our combined

experimental-theoretical study reveals detailed information on the single- and double-exciton

manifold.

• A summary of the results presented in this thesis together with some ideas for future research

directions are outlined in Chapter 9.
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Do not worry about your difficulties in

Mathematics. I can assure you mine are

still greater.

Albert Einstein (1879 - 1955) 2
Theory

2.1 Density Matrix Evolution

In Liouville space the system is described by a density matrix ρ instead of a wave function Ψ.

The density matrix of a pure state is defined as [4]

ρ(t) = |Ψ(t)⟩⟨Ψ(t)| (2.1)

and has the advantage of keeping track of the time-evolution of |ket⟩ and ⟨bra| simultaneously.

Moreover, it allows to write the density matrix of a statistical average as [45]

ρ(t) =
∑
k

pk(t)|Ψk(t)⟩⟨Ψk(t)|, (2.2)

where pk(t) is the probability of a system to be in a pure state |Ψk⟩. Such a description of statistical

ensembles is very important in condensed phase systems, since there are in general no pure states.

The time-evolution of the density matrix obeys the quantum Liouville equation

∂ρ(t)

∂t
= − i

~
[H(t), ρ(t)] = − i

~
L(t)ρ(t) (2.3)

where L is the Liouville operator. Since we are interested only in the time-dependent behavior of

the system, we can work in the reduced density matrix picture by eliminating the bath variables

via taking the trace over the bath [46]. The Hamilton operator H(t) then can be written as the

sum of three contributions [47]

H(t) = HS +HSB(t) +HSF (t) = H0 +HSF (t), (2.4)

where HS denotes the Hamiltonian of the unperturbed system, HSB(t) describes the interaction

between the system and the bath, and HSF (t) the coupling of the system with the electromagnetic

field.
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CHAPTER 2. THEORY

2.2 System-Field Interaction

For the interaction of the system with the electromagnetic field the semiclassical approximation

is usually invoked, whereby the field is treated classically and the system (atom, molecule, semi-

conductor, etc.) is treated quantum-mechanically. Furthermore, the dipole approximation, where

the system is represented as a point dipole as far as the field is concerned, is adopted [4]. With

these approximations, the system-field interaction term is written as [48]

HSF (t) = −E(r, t) · V, (2.5)

where E(r, t) denotes the (time-dependent) electric field and V the dipole operator. The electric

field is represented as a sum over all incoming fields

E(r, t) =
∑
j

(
Ej(t)e

−iωjt+ikjr + E∗
j (t)e

iωjt−ikjr
)
, (2.6)

where Ej(t) denotes the temporal field envelope, and ∗ indicates complex conjugation. Depending

on the number, timing, frequencies, and directions of the electric fields, different nonlinear optical

spectroscopies can be differentiated. If the interaction with the electromagnetic field is assumed to

be weak, the system-field interaction can be considered as a perturbation to an equilibrium density

matrix ρ(0). The density matrix can then be expanded in a series as [49]

ρ(t) = ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + ρ(3)(t) + . . . , (2.7)

where the superscript n denotes the order in the field. The nth-order term is given by

ρ(n)(t) =

(
i

~

)n ∫ ∞

0

dtn

∫ ∞

0

dtn−1 . . .

∫ ∞

0

dt1E(r, t− tn)E(r, t− tn − tn−1) . . .

×E(r, t− tn − tn−1 − . . .− t1)G(tn)VG(tn−1)V . . . G(t1)ρ(−∞). (2.8)

In this equation, tn indicate time-intervals between interactions. G(t) are Liouville space Green

functions defined as

G(t) = θ(t)e−
i
~L0t, (2.9)

where θ(t) denotes the Heaviside step-function. V is the Liouville space transition dipole moment

superoperator given by

Vρ = [V, ρ] (2.10)
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2.2. SYSTEM-FIELD INTERACTION

where [. . .] denotes the commutator.

The dipole operator V is connected to the macroscopic polarization P (t) by its expectation

value, i.e.

P (t) = ⟨⟨V |ρ(t)⟩⟩ = Tr[V ρ(t)], (2.11)

where ⟨⟨. . .⟩⟩ denotes the expectation value and Tr the trace of the matrix. By combining

Eqs. (2.11) and (2.7), also the polarization can be expanded in a power series as

P (t) = P (0)(t) + P (1)(t) + P (2)(t) + P (3)(t) + . . . . (2.12)

The third-order nonlinear polarization P (3)(t), which is the central quantity in third-order nonlinear

spectroscopy, can be written as

P (3)(r, t1, t2, t3) =

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1E(r, t− t3)

×E(r, t− t3 − t2)E(r, t− t3 − t2 − t1)R
(3)(t1, t2, t3). (2.13)

The so-called response functions R(3)(t1, t2, t3) are given by [50]

R(3)(t1, t2, t3) =

(
i

~

)3

⟨⟨V |G(t3)VG(t2)VG(t1)V|ρ(−∞)⟩⟩. (2.14)

The third-order response functions carry the complete microscopic information necessary for the

calculation of the optical signal. Basically, they constitute a sequence of interactions (indicated

by V) that are separated by periods in which the system evolves freely according to the Green

function G. Graphically, these response functions can be illustrated by double-sided Feynman

diagrams. Fig. 2.1 shows the contributions to SI, SII, and SIII spectra illustrated in this way. In
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Figure 2.1: Feynman diagrams contributing to SI (a), SII (b), and SIII (c) spectra. |g⟩, |e⟩, and
|f⟩ denote ground, first excited, and second excited state, respectively. Time runs from bottom

to top. Red (blue) signal arrows indicate positive (negative) signal contributions.
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these diagrams the left and right vertical lines indicate the evolution of the |ket⟩ and ⟨bra| of the
density matrix, respectively. Black arrows denote interactions with the electromagnetic field and

red (blue) arrows indicate positive (negative) signal fields. Arrows pointing towards (away from)

the vertical lines indicate excitation (deexcitation) and arrows pointing to the left (right) indicate

interaction with −ki (+ki). Time evolves from bottom to top. These Feynman diagrams carry

the same information as the energy ladder diagrams in Fig. 1.1 and are very useful tools to follow

the coherence and population evolution of the system.

2.3 Line-shape Function

Due to interactions of the system with the bath the energy gap between two levels a and b is

subject to a stochastic force. Expressed as a frequency, this time-dependent instantaneous energy

gap can be written as

ωab(t) = ⟨ωab⟩+ δωab(t), (2.15)

where ⟨ωab⟩ denotes the (time- or ensemble-) averaged frequency and δωab(t) the fluctuating part.

The time-evolution of an off-diagonal element of the density matrix is given by

∂ρab(t)

∂t
= −iωab(t)ρab (2.16)

which can be formally solved as

ρab(t) = e−i
∫ t
0
dτωab(τ)ρab(0) = e−i⟨ωab⟩t⟨e−i

∫ t
0
dτδωab(τ)⟩ρab(0). (2.17)

The exponential prefactor in Eq. (2.17) describes a phase that is related to the fluctuating frequency.

Assuming that the frequency fluctuations δωab(t) are small, the average of the exponential function

can be evaluated by a cumulant expansion [51]. By truncating at second order we obtain the so-

called line-shape function g(t)

g(t) =

∫ t

0

dτ2

∫ τ2

0

dτ1⟨δω(τ2)δω(τ1)⟩. (2.18)

Since the frequency-frequency correlation function ⟨δω(τ2)δω(τ1)⟩ in equilibrium depends only on

the time interval τ2 − τ1, it can be replaced by

C(t) = ⟨δω(t)δω(0)⟩. (2.19)

C(t) describes the fluctuations of the electronic transition due to its interaction with the degrees

of freedom of the surrounding. Often the normalized ensemble averaged product of transition
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2.3. LINE-SHAPE FUNCTION

frequency fluctuations δω is used to discuss the influence of the bath degrees of freedom onto the

spectrum. This function is defined as

M(t) =
⟨δω(t)δω(0)⟩

⟨δω2⟩
, (2.20)

and (for high temperatures) equals the real part of the correlation function C(t) normalized to 1

at t = 0 [36]. All linear and nonlinear response functions R(n) can now be expressed in terms of

the line-shape function g(t).

To model the line-shape function several approaches of different sophistication have been devel-

oped [52, 53]. In the simplest case of the optical Bloch model the dynamics are either infinitely

fast (homogeneous limit) or stationary (inhomogeneous limit). In the former case the correlation

function is a delta function (M(t) = δ(t)), in the latter case M(t) = 1 [52]. In this model the line-

shape function g(t) is always real implying that the center transition frequency does not change in

time.

In Kubo’s stochastic model the electronic transition is considered to be a stochastically

perturbed oscillator, making its transition frequency a stochastic function of time. The correlation

function is modeled as an exponentially decaying function [25, 54]

M(t) = ∆2e−
t
τc , (2.21)

where τc is a correlation time over which the system retains transition frequency information and

∆ is the modulation strength of the fluctuating electronic transition frequency [52]. The line-shape

function can then be written as

g(t) = ∆2τ2c [e
− t

τc +
t

τc
− 1], (2.22)

and it is always real, i.e. there is no Stokes shift. There exist two limiting cases in this model [25]

• In the fast modulation (homogeneous) limit ∆τc ≪ 1. In this limit the line-shape function

can be written simply as g(t) = t
T2

with T2 = (∆2τc)
−1. In linear absorption this limiting

case gives a Lorentzian line-shape with a width of T−1
2 .

• In the slow modulation (inhomogeneous) limit ∆τc ≫ 1. In this limit the line-shape function

can be written as g(t) = 1
2∆

2t2. In linear absorption this gives a Gaussian line-shape with a

width of ∆.

One of the most common models for the line-shape function is the so called multimode Brow-

nian oscillator model, which enables to describe both solvent modes (by strongly overdamped

oscillators) as well as intramolecular vibrational modes (by underdamped oscillators). In this

model, the electronic states of the dissolved molecule are coupled to a set of Brownian oscillators,

which may be interpreted as the optically active intramolecular vibrations as well as some selected
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collective solvent modes [55]. Due to the displacement of the equilibrium positions of the oscillators

in the various electronic states, a nonequilibrium distribution of oscillator energy is created upon

optical excitation of a molecule. The subsequent relaxation toward the new equilibrium situation

can be directly interpreted in terms of solvation dynamics [53]. The line-shape function consists

of the sum of contributions from different Brownian oscillators (labeled j) [53]

g(t) =
∑
j

gj(t) =
∑
j

iλj

∫ t

0

dτMj(τ) + ∆2
j

∫ t

0

dτ1

∫ τ1

0

dτ2Mj(τ2), (2.23)

where M(τ) is the normalized transition frequency correlation function. The real part of g(t)

describes spectral broadening, whereas the imaginary part of g(t) determines the time-dependent

spectral diffusion, e.g. the fluorescence Stokes shift [56]. The reorganisation energy λj is a measure

for the relative displacement dj of the potential energy curves of the Brownian oscillator j in both

electronic states

λj =
ωjd

2
j

2
, (2.24)

with ωj being the vibrational frequency in both electronic surfaces. The magnitude of the Stokes

shift is obtained directly by two times the reorganization energy. The coupling strength ∆j is a

measure of the frequency range over which transition probability between the two electronic states

is allowed according to the Franck-Condon principle

∆2
j = ω2

jd
2
j

[
n(ωj) +

1

2

]
. (2.25)

It controls the width of the spectrum [22]. In the high temperature limit (kBT ≫ ~ωj) ∆j and λj

are directly related via

∆2
j =

2kBTλj

~
. (2.26)

2.4 From Time- to Frequency-Domain

In nonlinear spectroscopies the nonlinear polarization can not be measured directly. The ac-

cessible quantity is the electric signal field E
(3)
s that is radiated by the macroscopic polarization

P (3) and is related to it via

E(3)
s (ks, t1, t2, t3) ≈

i2πlω3

n(ω3)c
P (3)(ks, t1, t2, t3), (2.27)

where n(ω3) is the sample’s refractive index, l is the sample length, and c is the speed of light [57].

The two-dimensional spectrum in frequency-frequency domain is obtained by Fourier transforming

two of the three time-delays while keeping the third one fixed, i.e.
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SI(ω1, t2, ω3) =

∫ ∞

0

∫ ∞

0

dt1dt3E
(3)
I (kI, t1, t2, t3)e

−iω1t1+iω3t3 , (2.28)

SII(ω1, t2, ω3) =

∫ ∞

0

∫ ∞

0

dt1dt3E
(3)
II (kII, t1, t2, t3)e

+iω1t1+iω3t3 , (2.29)

SIII(t1, ω2, ω3) =

∫ ∞

0

∫ ∞

0

dt2dt3E
(3)
III (kIII, t1, t2, t3)e

+iω2t2+iω3t3 . (2.30)

EI, EII, and EIII thereby refer to the signal directions kI = −k1+k2+k3, kII = +k1−k2+k3, and

kIII = +k1+k2−k3, respectively. Experimentally, the Fourier transform involving t3 is performed

implicitly by the spectrometer if one spectrally resolves the emitted signal field. This procedure

directly yields the frequency axis ω3. The second frequency axis (ω1 for SI and SII and ω2 for SIII)

is obtained by scanning t1 respectively t2 over a certain range while keeping the remaining delay

fixed and performing a Fourier transform from time- to frequency-domain.

2.5 Heterodyne Detection

The third-order nonlinear signal can be homodyne or heterodyne detected. In the former case,

one measures the intensity of the signal field with a time- and/or frequency-integrating detector.

The measured intensity equals the square of the electric signal field

Ihom = |E(3)
s |2. (2.31)

A direct proportionality between the measured intensity and the signal field, an improved

sensitivity and an improved signal to noise ratio can be achieved by heterodyne detection. In this

scheme a new field denoted local oscillator (LO), which propagates in the same direction as the

signal field, is overlapped with the latter [58]. The frequency-resolving detector then measures the

square of the sum of the signal field and the LO field

Ihet(ω) = |E(3)
s (ω) + ELO(ω)|2 = |E(3)

s (ω)|2 + |ELO(ω)|2 + 2Re[E∗
LO(ω)E

(3)
s (ω)]

= |E(3)
s (ω)|2 + |ELO(ω)|2 + |ELO(ω)||E(3)

s (ω)|cos(ϕs − ϕLO + ω3∆t). (2.32)

Here, ϕs and ϕLO denote the phase of the signal and the local oscillator, respectively, and ∆t

indicates the time delay between the signal and the local oscillator. By Fourier transforming into

time-domain and zeroing the components at zero delay, the two components |E(3)
s (ω)|2+ |ELO(ω)|2

are eliminated. The remaining term is linearly proportional to the signal field and allows for a

complete characterization of the field’s amplitude and phase.
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I am among those who think that science

has great beauty. A scientist in his labo-

ratory is not only a technician: he is also

a child placed before natural phenomena

which impress him like a fairy tale.

Marie Curie (1867 - 1934) 3
Experimental Design

3.1 Ultrashort Pulse Generation

Fig. 3.1 shows a schematic of the components of our experimental design. Verdi V-18 is a

solid-state diode-pumped, frequency-doubled Nd:Vanadate (Nd:YVO4, neodymium-doped yttrium

orthovanadate) laser emitting 16 W of continuous wave light at 532 nm. The output of Verdi V-18

is split at a beamsplitter and used to pump Mira Seed (6 W) and RegA9050 (10 W).

Coherent

Verdi - V 18

Coherent MIRA SEED

Coherent REGA9050

Stretcher

Compressor

NOPA
Pulse

Compression

2D SETUPZAP- SPIDER

Figure 3.1: Schematic of the components of our experimental design. Pulse generation is

accomplished by a regenerative titanium-sapphire amplifier system operating at a repetition rate

of 200 kHz. Conversion into the visible spectral region is attained with a noncollinear optical

parametric amplifier (NOPA). Second-order dispersion is eliminated with a sequence of fused-

silica prisms, while chirped mirrors compensate for third-order dispersion. The pulse duration is

determined with zero-additional phase (ZAP) SPIDER.
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Mira Seed is a passively modelocked laser that uses Titanium:Sapphire as its gain medium [59].

The technique used to modelock Mira Seed is known as Kerr lens modelocking. The term optical

Kerr effect describes the alteration of the index of refraction of a material by the electric field of

light at sufficient high intensities. This change of refractive index reduces the beam diameter of

short light pulses compared to a continuous wave beam. By placing a slit at an appropriate position

within the laser cavity and adjusting its width, the pulse edges are cut and the pulse is shortened

in time. Mira Seed is tunable from 780 to 840 nm, in our laboratory it has been optimized for

operation at 800 nm. The pulse spectral width is 30 nm, the output power is 420 mW in mode-

locked operation mode. With a repetition rate of 76 MHz, this corresponds to a pulse energy of

5.5 nJ. Mira Seed has a built-in prism-compressor, that reduces the pulse length to approx. 30 fs.

Since these pulses would be too intense if they were amplified directly, they are sent to a

stretcher-compressor unit, where they are stretched to approximately 10 ps by a grating system

[60, 61]. A regenerative amplifier (RegA9050) [62] is then used to amplify the pulses. RegA9050 is

also pumped by part of the Verdi-V18 output, however, a Q-switch prevents it from lasing. When

saturation in the Ti:Sapphire crystal, constituting the active medium, is reached, a single pulse

from Mira Seed is injected by a cavity dumper (an acousto-optic modulator in case of RegA9050).

This pulse propagates in the cavity and is amplified at each round trip. When the pulse has reached

the maximum possible intensity, it is ejected by the same cavity dumper. Recompression is again

achieved in the stretcher-compressor unit. At this stage the output is still centered at 800 nm,

but now has a spectral width of 25 nm, a power of 1.05 mW, and a pulse length of 45 fs. The

repetition rate is lowered to 200 kHz, and the pulse energy is ≈ 5 µJ.

Tunable pulses in the visible spectral region are attained by a noncollinear optical parametric

amplifier (NOPA, Fig. 3.2) [63, 64, 65]. The 800 nm input from the amplifier is split at a 10:90

beamsplitter. 90 % of the energy are focused with a lens (f = 200 mm) onto a 300 µm thick

BBO crystal for second harmonic generation. The remaining 10 % are sent to a delay stage and

are focused onto a 1 mm thick sapphire crystal to generate white light continuum. The second

harmonic and the white light overlap on a 2 mm thick BBO crystal, where part of the white light is

amplified in a parametric amplification process. The important advantage of NOPA compared to

a collinear optical parametric amplifier (OPA) [66] is the improved compensation of group velocity

dispersion that can be achieved due to the noncollinear geometry. Therefore shorter pulses can be

obtained. In order to amplify a broader spectral region of the white light, the 400 nm pulses are

stretched prior to the parametric amplification step. The NOPA output can be tuned in the region

between 490 nm and 720 nm. At 600 nm the spectral width is 40 nm, the power reaches typically

45 mW (pulse energy 225 nJ), and the pulse length can be compressed to less than 20 fs.

Pulse compression in our experimental design is achieved in a two stage process (Fig. 3.3). In

a first step dispersion is compensated by a variable number (≈ 24) of reflections off two Brewster-

angled chirped mirrors [67, 68, 69]. The mirror coating consists of 58 alternating SiO2/TiO2 layers.

TiO2 has a high refractive index, SiO2 has a low one, which, when a pulse with higher order chirp

is reflected from the mirror, leads to compensation of higher order chirp. The second step is

a conventional prism compression [70]. The pulse travels twice through two fused silica prisms.
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L

A

A

A

M

M

M

M

M

M

L

LL

BS
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NLC
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Stretcher

S

Reference for

ZAP-SPIDER

Figure 3.2: Schematic of the noncollinear optical parametric amplifier (NOPA) employed for

tuning the pulses in the visible spectral region. A: aperture, M: mirror, BS: beamsplitter, L:

lens, D: delay stage, NLC: nonlinear crystal, S: sapphire plate, DM: dichroic mirror, P: pinhole.

Different wavelength components thereby experience different indices of refraction and thus pass

through different amounts of glass. By positioning the prisms at an appropriate distance, linear

chirp can be eliminated. The distance between the two prisms has to be adjusted when changing

the center wavelength of the pulse.

For full characterization of the pulses and to ensure the shortest possible pulse duration at the

location of the experiment we apply zero-additional phase spectral phase interferometry for direct

electric field reconstruction (ZAP-SPIDER) [71, 72]. To check the validity of our SPIDER traces

we further record the frequency-resolved second-harmonic intensity autocorrelation (SHG-FROG)

[73] by placing a 50 µm thick β-barium borate (BBO) crystal at the sample position.

M

M

FM1

M

M

M M

M

CM

P

P

NOPA

FM2
FM3

M

Set-up

Figure 3.3: Pulse compression is achieved by a combination of chirped mirrors and a prism

pair. FM: focusing mirror, M: mirror, CM: chirped mirror, P: prism. FM1 has a ROC of 100 cm,

FM2 of 30 cm, and FM3 of 20 cm.
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To reduce unwanted higher-order effects and non-resonant signals from the solvent and to

prevent the sample from too fast photodegradation the input beam is attenuated by a neutral

density filter after the NOPA to yield between 1 and 10 nJ of energy in each of the excitation

pulses.

For recording the two-dimensional electronic spectra presented in this thesis two experimental

designs have been employed. Our first approach closely followed the one pioneered by the groups of

Fleming and Miller [10, 11, 74] (cf. Sec. 3.2). This experimental design is based on a transmission

grating for creating two pairs of phase-stabilized pulses. It has a good phase-stability, but is limited

to recording SI and SII spectra since not all time delays can be Fourier transformed without loss

of phase information. In order to overcome this limitation we have built a compact setup that is

easy to implement and align yet provides passive phase stability between all four pulses involved

in the experiment (cf. Sec. 3.3). With this improved design single-quantum (SI and SII) as well as

double-quantum (SIII) two-dimensional electronic spectra can be recorded.

3.2 Setup of the First Generation

Our first approach for recording 2D electronic spectra has been based on a diffractive-optics

based setup following the experimental configuration reported in Ref. [11, 57, 74] (Fig. 3.4). A

50/50 beam splitter (BS) splits the pre-compressed (to compensate all dispersive elements of the

setup) NOPA output into two beams of equal intensity, one of which can be delayed with respect

to the other by a computer controlled delay stage to introduce delay t2 with a resolution of 0.65 fs.

Due to the phase stability requirements between pulses 1 and 2, and pulses 3 and LO, a diffractive

optical element (DOE, 125 lines/mm), optimized for diffraction into ±first order, is used to split

the two beams focused onto it into four beams [11]. Pulse k2 and the local oscillator (LO) are

diffracted downwards (dashed lines in Fig. 3.4) and k1 and k3 are diffracted upwards with respect

to the initial beam-height. From this point on, all four beams are reflected from common mirrors

to maintain the phase correlations [11, 74]. A spherical mirror (SM) after the transmission grating

parallelizes the four beams which are arranged to form the four corners of a square. Pulse k2 passes

through a pair of glass wedges (WP, thickness 0.9 mm, angle 2◦, fused silica) that are oriented in

an anti-parallel fashion [74] and mounted on a computer controlled delay stage. By moving one of

the wedges the amount of glass in the beam path and therefore the delay of the pulse is changed

without introducing lateral beam shifts. This configuration allows for precise delay movements

(5.3 as, range ±250 fs) without influencing the phase stability of the phase locked pulse pair or

introducing phase distortions (Fig. 3.5). This arrangement is used to introduce delay t1.

Pulses k1 and k3 pass through equivalent but static wedge pairs to balance the dispersion. The

LO does not pass through a wedge pair but is attenuated by a variable neutral density filter (ND) by

four to five orders of magnitude and precedes all other pulses by about 550 fs to yield high contrast

interferograms. All four beams are focused by a spherical mirror onto the sample to a common spot

size of ≈ 200 µm to generate the nonlinear signal. Due to the square geometry of the excitation

beams and the LO, the signal propagation direction is coincident with the propagation direction
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Figure 3.4: Scheme of the experimental setup of the first generation including the pump-probe

extension. BS: beam splitter, CP: compensation plate, DOE: diffractive optical element, SM:

spherical mirror, GP: gear pump.
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Figure 3.5: (a) ZAP-SPIDER traces for the three wedge positions of -200 fs (left), zero (middle),

and +200 fs (right). In all three cases the pulses have a duration of 16 fs and a flat temporal

phase. (b) The residuals of the phase differences for zero and -200 fs (dashed line), respectively

zero and +200 fs (solid line).
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of the LO allowing for heterodyne detection of the signal field with the LO. Data acquisition is

accomplished by means of a thermoelectrical cooled spectrometer. A 2400 lines/mm grating in

combination with a 1024 pixel photodiode array allows for a spectral resolution of ≈ 3.3 cm−1 in

ω3.

3.3 Setup of the Second Generation

In order to retain amplitude- and phase-information, the time delay which is Fourier trans-

formed in the data evaluation procedure needs to be precisely set and kept stable. In the first

realizations of 2D-ES (including our own work [cf. Sec. 3.2]) only pairs of pulses have been phase

stable, imposing limitations to the time-delays that could be Fourier transformed without loss of

phase information. With the use of a pulse shaper [75], by implementing active phase-stabilization

[76], and uncoupling of time-delays [77] this limitation has been overcome resulting in greater

kLO kLO kLO

SI SII SIII

k3

k3 k3

k1

k1k1

k2

k2k2

DOE

SM 1

SM 2

M 1

M 2

WP 1

WP 2

WP 3

Spectrometer

Sample
SM 3

kI 1 2 3= -k +k +k kII + 1 2 3= k -k +k kIII + 1 2 3= k +k -k

Figure 3.6: Experimental design for recording 1Q2D and 2Q2D electronic spectra. Four phase-

stable pulses are generated by a diffractive optical element (DOE). Three of them can be indi-

vidually delayed by pairs of glass wedges (WP1-3) mounted on computer controlled delay stages.

SM: spherical mirror, M: plane mirror. An assignment of the four pulses in the three different

methods is shown in the inset. Depending on the method, the labeling of the pulses differs and

does not correspond to the labeling of the wedge pairs.
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freedom in the design of experiments. In our laboratory, we have implemented a passively phase-

stabilized setup based on a diffractive optical element to achieve the required phase-stability be-

tween the three excitation pulses and the local oscillator used for heterodyne detection [20, 78]

(Fig. 3.6). With this versatile design pump-probe, homodyne and heterodyne transient grating,

two- and three-pulse photon echo, and 1Q2D and 2Q2D electronic spectroscopy experiments can

be performed. Since recording 1Q2D spectra and 2Q2D spectra requires different time-delays to be

Fourier transformed, the diffractive optical element (DOE) consists of two transmission gratings

with a groove spacing of 15 µm that are both optimized for diffraction into ±first order. By orient-

ing these two gratings perpendicular to each other, four phase-stable pulses in a boxcar geometry

are obtained [79]. The DOE is oriented at an angle of 45◦ with respect to the optical table so that

the square formed by the four pulses is also tilted by 45◦. The four pulses pass through a hole

in the spherical mirror (SM1) and are reflected from a plane mirror (M1) back onto SM1. This

arrangement allows to implement the spherical mirror under an angle of 0◦ which avoids chromatic

aberration effects. SM1 parallelizes the four beams which pass by M1 on the top, bottom, right,

and left side. Three pairs of glass wedges (WP1-3) mounted on computer controlled delay stages

allow to introduce delays with a precision of ≈5 attoseconds in all three excitation pulses [74]. Two

of these delay stages (WP2, WP3) are mounted on 90◦ angle brackets, i.e. perpendicular to the

optical table, which ensures that no wedge clips another beam during movements. The maximum

delay achievable with this configuration without introducing a notable amount of chirp is ±800 fs

as checked by a separate ZAP-SPIDER measurement (Fig. 3.7a). After the delay stages, an identi-

cal plane (M2) and spherical mirror (SM2) configuration focuses all four beams to a common spot

size of ≈200 µm in the sample.

The third-order nonlinear signal induced in the sample by the three excitation pulses propagates

collinearly with the local oscillator pulse, which is attenuated by a neutral density filter (not plotted

in Fig. 3.6) and passes through the sample ≈540 fs before the other pulses. This value is confirmed
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Figure 3.7: (a) Amplitude and temporal phase (black line) of an excitation pulse. The black,

dark gray, and light gray lines show the temporal phase at optical path delays of 0 fs, +500 fs,

and -500 fs, respectively. (b) Left panel: Short-time (20 min, which corresponds to the duration

of a scan) phase stability with a value of λ/90. Right panel: Long-time phase stability of the

setup which corresponds to λ/40.
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by an interferometric measurement involving a 25 µm pinhole (cf. Section 3.6). The signal and

the LO are spatially filtered from the excitation pulses and are focused by SM3 onto the entrance

slit of a spectrometer consisting of a grating as the dispersive element and a 1024 pixel photodiode

array.

The phase-stability of our setup, which amounts to λ/90 in short term and λ/40 in long term

measurements, is demonstrated in Fig. 3.7b. The measurement of the phase stability was performed

as outlined in Ref. [77]. To obtain the phase stability values, the interference fringes, recorded in

frequency domain, are analyzed via a complex Fourier transform. The components around zero

delay are filtered out and the phase value φ of the remaining fast component and its behavior in

time are plotted in Fig. 3.7b.

3.4 Sample Handling

In contrast to other experiments with typical repetition rates of 1 kHz, the high repetition

rate of our laser system (200 kHz) strongly facilitates averaging and data acquisition, while the

energy of a single pulse is still high enough for nonlinear frequency conversion and well sufficient

to induce a third-order nonlinear response in molecular samples. However, the high repetition

rate of our laser system also has some drawbacks. While we have not been able to observe any

triplet accumulation effects in our samples, we nevertheless observe the formation of a signal in

the window material of our flow cell. To eliminate this signal (which can be of the same order

of magnitude as the desired third-order nonlinear signals) we have implemented a gravity driven,

wire-guided drop jet [80, 81] for the circulation of the sample (Fig. 3.8). In this configuration a

stainless steel wire, with a diameter of 300 µm, is bent to form an inverse ”U” which is clamped

between two stainless steel plates. The liquid enters through a hole in one of the plates and leaves

Upper
Reservoir

Lower
Reservoir

Gear
Pump

Flow
Jet

Figure 3.8: Schematic of the flow jet implemented for sample handling. The liquid is pumped

by a gear pump from the lower to the upper reservoir, from where it flows between two wires

back to the lower reservoir.
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at the bottom between the two wires to form a thin film of approx. 200 µm thickness. A gear pump

is used to transfer the sample from the lower to the upper reservoir with a flow rate of ≈20 ml/min.

This configuration has the advantage (i) to avoid signals from cell windows, (ii) obliterating the

necessity to compensate the dispersion of the cell material, (iii) to avoid precipitation of the sample

on the cell windows, and (iv) to generate a stable and pulsation free sample film. All vessels, tubes,

and connectors are made of Teflonr to resist organic and corrosive solvents.

Due to the huge disparity in spatial dimensions, some of the samples discussed in this thesis

tend to align along the flow direction in thin liquid films even at relatively low flow speeds. This

point will be addressed further in the corresponding results chapters. If not indicated otherwise,

the three excitation beams are polarized perpendicular to the flow of the jet.

3.5 Calibration Procedures

The points of zero delay between the excitation pulses (i.e. t1 = 0, t2 = 0) are determined by

spectral interferometry on a daily basis. To this end a pinhole with a diameter of 25 µm is placed

at the sample position where all beams overlap. Two of the beams (1 and 2 for t1, 1 and 3 for
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Figure 3.9: Determination of zero-points by spectral interferometry. Panels (a1), (b1), and (c1)

show spectral interferograms for stage positions of -25000, -15000, and -10000 counts. Panels

(a2), (b2), and (c2) are the corresponding Fourier transforms. The delay τ is plotted in the

lowest panel as a function of motor position to extrapolate the zero-point. Values below ±50 fs

are neglected due to the impossibility to resolve the three peaks at t = 0,±τ .
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t2-delay) pass the pinhole while the other two are blocked. Since the diameter of the pinhole is

smaller than the focus of the beams (approx. 150 µm), diffraction generates two collinear plane

waves. By spectrally resolving these waves in a spectrometer, they show an interference pattern

in which the number and distance of the fringes is a function of the delay-stage position. Fourier

transform of these interferograms yields three peaks centered at t = 0 and t = ±τ , where τ is the

temporal separation between the pulses. For pulse separations above/below ±50 fs we plot the

delay versus stage position and extrapolate for τ = 0 to determine t1, t2 = 0. Fig. 3.9 illustrates

this procedure in an exemplary manner, where the solid points in the lowest panel correspond

to values of the interferograms and Fourier transforms for stage positions of -25000, -15000, and

-10000 counts of the motor position (all other points in the lowest panel are measured points but

not depicted explicitly).

Prior to each measurement series a calibration coefficient to convert the movement of the stage

(in motor steps) into the actually introduced delay has to be determined for each stage separately.

Accurate determination of this conversion factor is crucial in the evaluation procedure, since it

influences the position of the peaks along the frequency axis obtained from Fourier transform of

the scanned time delay (i.e. ω1 in 1Q2D and ω2 in 2Q2D spectroscopy). Determination of this

calibration coefficient is achieved by selecting a frequency-cut in the frequency resolved interfero-

grams obtained as described above (Fig. 3.10). The intensity of this cut oscillates in time-domain

(respectively as a function of stage position) and subsequent Fourier transform of this waveform

yields the inverse number of stage steps necessary for one full period at this frequency. Since the

period for a given frequency is well known (e.g. 2 fs at 500 THz), the calibration coefficient is

the product of the inverse number of steps times the period in femtoseconds. This procedure is

repeated for a number of frequency cuts to calculate an average calibration coefficient. To control

the validity of this calibration procedure we align the output of a He-Ne laser (with a precisely

known frequency) through our setup and perform the same calibration routine.

The spectrometers are calibrated with Neon lamps which posses a spectrum consisting of several

narrow lines with well defined wavelengths.
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Figure 3.10: Calibration of the stages by spectral interferometry. (a) Frequency resolved scan

with 3 frequency cuts at 500 (black), 507 (grey), and 513 THz (light-grey). Panel (b) shows the

waveforms of the corresponding frequency cuts and (c) shows the FFT of these, which give the

inverse number of counts for one period at the corresponding frequency.
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3.6 Data Acquisition and Evaluation

The scanning procedure for recording 2D spectra differs for the two experimental designs. The

following description refers to the setup of the second generation, as this design is more universal.

Since the signal and the LO have to coincide spatially in all three methods discussed in this thesis,

the assignment of the beams differs for SI, SII, and SIII as illustrated in Fig. 3.6 and does not

correspond to the labeling of the wedge pairs. The beam interacting with the negative sign is

thereby opposite to the LO in all three cases (i.e. k1 in SI, k2 in SII, and k3 in SIII, respectively).

To obtain purely absorptive real parts and purely dispersive imaginary parts in 1Q2D electronic

spectra, rephasing (SI) and non-rephasing (SII) signal parts have to be equally weighted [18, 19].

For collecting SI-spectra, t1 (i.e. the delay between the first two excitation pulses) is scanned

from 0 to usually 100 or 200 fs in steps of 0.5 fs by moving WP1. SII-spectra are recorded by

scanning WP3 and thereby delaying k1 from 0 to 100 fs. The delay between the second and third

excitation pulse (t2) is fixed to a certain value before each scan by moving WP2. For recording

2Q2D electronic spectra, pulses 1 and 2 are scanned simultaneously from 0 to -100 fs in steps

of 0.25 fs by moving WP2 and WP3 for a fixed value of t1. The step-size of 0.5 fs for 1Q2D

spectra and 0.25 fs for 2Q2D spectra, respectively, is sufficient for fulfilling the Nyquist sampling

criterion. The Nyquist sampling criterion requires that a time-dependent function in which the

highest contributing frequency is at x Hz needs to be sampled with a resolution better than 1
2x s

(in case one is not operating in the rotating frame [79]). For 1Q2D spectra, this implies that

the step-size must be no larger than ≈ 0.8 fs, whereas for 2Q2D spectra the step-size should be

smaller than 0.4 fs. Decreasing the step-size further does not improve the data quality [82]. This

is illustrated in Fig. 3.11 where we plot the phase of the SIII-signal of Rhodamine 6G as a function

of t2 for step-sizes of 0.25 fs and 0.1 fs evaluated in the peak maximum (18900 cm−1).

Prior to each scan, the scattering contribution of pulse 3 into the direction of ks is recorded
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Figure 3.11: Comparison of the phase of the third-order nonlinear signal of Rhodamine 6G

detected in the phase-matched direction +k1 + k2 − k3 as a function of t2 for stepsizes of 0.1 fs

(dashed line) and 0.25 fs (solid line) evaluated at 18900 cm−1.
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CHAPTER 3. EXPERIMENTAL DESIGN

by blocking pulses 1 and 2. This contribution has to be recorded and subtracted only once since

the delay between pulse 3 and the LO does not change in the course of one scan. The scattering

contribution of pulses 1 and 2 on the other hand, is recorded and subtracted from the spectral

interferogram for each measuring point by blocking pulse 3 with an automated shutter.

Data evaluation follows the procedure outlined in Ref. [10] and [83]. In a first step, the spec-

tral amplitude and phase of the signal field is extracted from the heterodyned signal by Fourier

transform, filtering of the signal components at zero and negative delays, back Fourier transform,

and division by the local oscillator spectrum. In a second step, the dataset is Fourier transformed

along t1 to yield the frequency axis ω1 in case of 1Q2D electronic spectroscopy or along t2 to yield

the frequency axis ω2 in case of 2Q2D electronic spectroscopy.

Finally, the absolute phase of the complex valued spectrum has to be determined. For 1Q2D

spectra this can be done by applying the projection slice theorem, which states that the projection

of the 1Q2D signal onto ω3 equals the spectrally resolved pump-probe spectrum recorded for the

same delay t2 [17]. The pump-probe spectrum is given by

SPP (t2, ω) =

(
Ipupr (ω)

Ipuref (ω)
−

I0pr(ω)

I0ref (ω)

)
Ipuref (ω) + I0ref (ω)

2
√
I0pr(ω)

, (3.1)

where Ipupr and I0pr denote the intensities if the probe beam with and without the action of the pump

beam, respectively. Ipuref and I0ref are the corresponding intensities of the reference beam which is

used to eliminate intensity fluctuations of the laser. Since the pump-probe signal is invariant to

constant phase shifts of either the pump or the probe beam, the absolute phase can be determined

in a procedure termed phasing. In this procedure the phase and delay between the signal and the

LO that minimizes the difference between the projection of the 1Q2D spectrum and the spectrally

resolved pump-probe signal is searched for.

Determining the absolute phase of 2Q2D spectra requires a different approach since no straight-

forward connection exists between the 2Q2D signal and an auxiliary measurement such as pump-

probe spectroscopy. This is immediately obvious from inspection of the relevant Feynman diagrams

(Fig. 2.1) for the different techniques. Bristow et al. therefore demonstrated an all-optical method,

which is a combination of spatial interference patterns and spectral interferometry, for the retrieval

of the absolute phase [84]. Backus et al. reported on a spectral interferometry based method in the

IR spectral region for obtaining the desired value [85]. Moran et al. [86] determine the LO-delay

by assuming that the heterodyne transient grating signal from the pure solvent has dispersive

properties only. With this method however more than one value can be found that minimizes the

contribution from the real part. We adopt a different approach which relies on the high phase

stability of our setup [78]. Immediately before or after recording a 2Q2D spectrum we measure a

1Q2D spectrum and determine its absolute phase by phasing with a pump-probe spectrum. This

value of the absolute phase and delay between the signal and LO is then applied to phase the

2Q2D spectrum (Fig. 3.12).

When applying this procedure care has to be taken in determining the precise delay between
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Figure 3.12: Illustration of error sources in the determination of the absolute phase of 1Q2D

spectra (a) and 2Q2D spectra (b). The real part of the 1Q2D spectrum (a) and 2Q2D spectrum

(b) is shown on the left, their projections onto ω3 (solid) together with a spectrally resolved pump-

probe spectrum (dashed) on the right. The upper panels show the spectra for ∆t = 542 fs, which

is the correct value also obtained via spectral interferometry. Phasing with a value of ∆t = 577 fs

is depicted in the lower panel.

the signal and the local oscillator. Two values can be found that yield a reasonable agreement

between the projection of the 1Q2D spectrum and the pump-probe signal (Fig 3.12a). In case it

is not obvious immediately from the inspection of the 1Q2D spectrum which value is the correct

one, the delay can be determined with femtosecond precision by Fourier transforming a spectral

interferogram and then fine-tuning this value by the phasing procedure outlined above. Taking

the incorrect value for the delay between the signal and the LO for phasing the 2Q2D dataset has

a huge impact on the spectrum (see Fig. 3.12b, bottom). The real part of the 2Q2D spectrum

retains its three-peak structure, however, the nodal line changes its orientation from parallel to the

anti-diagonal (as expected from a non-rephasing technique) to parallel to the diagonal line. The

latter spectrum would be tempting for interpretation for two reasons: first, all peaks appear at the

same frequency along ω2 as ideally expected from the two Feynman diagrams contributing to the

response (the system evolves in the same |f⟩⟨g|-coherence in both pathways). Second, one could

think of extracting the shift of the double-excited state energy from twice the energy of the single-

excited state directly from the frequency difference of the positive and negative peaks along ω3.

However, the delay between the signal and the LO deviates from the one determined by spectral

interferometry by ≈35 fs in this case, which is well outside experimental errors. Furthermore,

theory supports the notion of the anti-diagonal orientation of the 2Q2D spectrum as depicted in

the top panel of Fig. 3.12b (cf. Chapter 7).
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In science one tries to tell people, in such

a way as to be understood by everyone,

something that no one ever knew before.

But in poetry, it’s the exact opposite.

Paul Dirac (1902 - 1984) 4
PERY

In this chapter the effect of electron-phonon coupling in two-dimensional Fourier transformed elec-

tronic spectroscopy is investigated. We present a series of one- and two-dimensional nonlinear

spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation

of an electronic transition coupled to vibrational modes induces a propagating vibrational wave

packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional

electronic spectra we can attribute the observed modulations to periodic enhancement and decre-

ment of the relative amplitudes of rephasing and non-rephasing contributions to the total response.

Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency cor-

relation function which provides the connection between experimentally accessible observations and

the underlying microscopic molecular dynamics. The effects are reproduced well by simulations

based on a Brownian oscillator model.

This chapter is based on

• A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling.

Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chem. Phys. Lett.

459, 94 (2008)

• A. Nemeth, F. Milota, T. Mančal, V. Lukeš, J. Hauer, H. F. Kauffmann, and

J. Sperling. Vibrational wave packet induced oscillations in two-dimensional electronic

spectra. I. Experiments. J. Chem. Phys. 132, 184514 (2010)

• T. Mančal, A. Nemeth, F. Milota, V. Lukeš, H. F. Kauffmann, and J. Sper-

ling. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II.

Theory. J. Chem. Phys. 132, 184515 (2010)

35



CHAPTER 4. PERY

4.1 Introduction

Coherent wave packet generation in the manifolds of molecular exited states takes place if

the excitation pulses are spectrally broad enough to coherently excite a number of vibrational

or electronic levels. Femtosecond (fs) laser pulses meet this criterion in a number of molecular

systems and experiments employing such pulses often show signatures of wave packet motion.

Modulations of signal intensities induced by vibrational wave packet motion have been observed

in a number of nonlinear spectroscopic experiments, including pump-probe [87, 88, 89], transient

grating [90], and a variety of photon-echo spectroscopies [90, 91, 92, 93, 94]. A number of theoretical

investigations supported the conclusions drawn in these experiments [95, 96, 97, 98, 99]. The

influence of intramolecular vibrations should be expected consequently also in two-dimensional

electronic spectroscopy which is based on the correlation of electronic coherences evolving during

two time periods.

Recent theoretical works on model dimer [41, 44] and trimer [100] systems, and experimental

investigations on excitonic complexes [42, 101] and conjugated polymers [102] reported on signa-

tures of electronic wave packets in 1Q2D electronic spectra resulting from coherent excitation of

several electronic levels. Possible enhancement of the energy transfer efficiency in photosynthetic

light harvesting complexes, due to the presence of excitonic wave packets, was suggested by Engel

et al. [42]. An assignment of the observed spectral modulations to an excitonic wave packet motion

was made, based on a good agreement of the experiment with the predictions of an excitonic model

[42, 44]. In the general case, however, contributions of vibrational wave packet motion cannot be

excluded and it is therefore of high importance to study the vibrational case separately.

To study the effect of vibrational coherence without perturbations from additional electronic

levels, a two-level system is preferential. Quantum-chemistry calculations (cf. Section 4.2) indicate

that N,N’-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylicdiimide (PERY), when excited

at 20000 cm−1, can be approximated as a two-level electronic system with a number of vibrational

modes coupled to the electronic transition [103]. In the linear absorption spectrum of PERY

in solution four well resolved vibrational peaks with a frequency separation of ≈1400 cm−1 can

be discerned (Fig. 4.1a). In contrast to a recent work by Tekavec et al. [34], in which white

light pulses where used to probe the vibronic dynamics, this progression can not be covered with

the bandwidth of our laser pulses (900 cm−1). However, by tuning the central excitation energy

approximately to the center of the lowest energy peak, nonlinear spectroscopic signals such as

transient grating (TG) and three-pulse photon echo peak shift (3PEPS) have been shown to be

modulated by a low frequency (140 cm−1) vibrational mode [103]. The associated beating period of

240 fs allows to compare 2D spectra at well-separated maxima, minima, rising and trailing edges of

the oscillating nonlinear signal, which minimizes obstructions due to the finite temporal resolution

in the experiment.

In this chapter we investigate experimentally and theoretically how coherent excitation of sev-

eral vibrational levels influences 1Q2D electronic correlation and relaxation spectra. To this end

1Q2D electronic spectra of PERY have been recorded for 20 waiting times t2 ranging from 0 to
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Figure 4.1: (a) Linear absorption spectrum of PERY in toluene (black solid line) and spectrum

of the excitation pulses (green dashed line). The red line indicates the position of the lowest

energy transition obtained from ZINDO/S calculations. The inset shows the chemical structure

of PERY. (b) Huang-Rhys factors determined from semiemprical AM1 calculations. Only modes

that posses Huang-Rhys factors larger than 0.005 are plotted.

800 fs covering several periods of pronounced vibrational modulations of the spectra. We show

that this low frequency mode induces a periodic change in the ellipticity of the real (absorptive)

part and in the slope of the nodal line separating the positive and negative contribution of the

imaginary (dispersive) part [38]. Building up on these qualitative observations, we assign these

modulations to periodic enhancement and decrement of the rephasing (SI) and non-rephasing (SII)

signal parts and establish connections to the frequency-frequency correlation function M(t).

For the theoretical description of nonlinear spectroscopic signals of simple few electronic level

systems with negligible relaxation between the levels, the nonlinear response functions derived

in the second order cumulant approximation (see e.g. [4]) provide a framework of unprecedented

utility. The nonlinear optical response of such a system can be expressed in terms of line-broadening

functions, which are related to the electronic energy gap correlation function (cf. Section 2.3) [4].

Few electronic level systems provide models which enable to disentangle the content of experimental

data otherwise difficult to interpret. For example, three pulse photon echo peakshift was identified

by Cho et al. [104] to reveal the energy gap correlation function. Two-color photon echo peakshift

has been found to measure excitonic coupling in a dimer [105] or differences between energy gap

correlation functions of two chromophores [106]. Basic 2D spectral line-shapes were classified

by Tokmakoff [24] based on a two-level system, and finally, the relation between the nonlinear

spectroscopic signals and the normalized energy gap correlation function was studied by de Boeij

et al. [94] and for 1Q2D spectra by Lazonder et al. [107], to name but a few examples.

In some of these works, insightful information was obtained by expanding the line-shape func-

tions (or energy gap correlation functions) in terms of a suitable parameter, e.g. the time delay

between two interactions. In this study, we follow the same general approach and expand the line-

shape correlation functions (describing the interaction of an electronic transition with an intra-
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molecular vibrational mode) in terms of another suitable parameter, the Huang-Rhys factor λ/ω.

Here, λ is the reorganization energy and ω the frequency of the mode. The applicability of a low

order expansion of the response functions in terms of the Huang-Rhys factor to the description of

the 2D experiment is obviously system-dependent but for the dye molecule studied here the results

of the theory presented are confirmed by a full response function simulation of the 1Q2D spectra

[38].

4.2 Quantum-Chemical Calculations

This section characterizes PERY theoretically and spectroscopically with respect to its two-

dimensional π-conjugation by means of quantum-chemical calculations. The electronic ground

state geometry of PERY has been optimized using Density Functional Theory (DFT) [108] based on

the Becke’s three parameter hybrid functional using the Lee, Yang and Parr correlation functional

(B3LYP) [109]. The polarized split-valence SV(P) basis set [110] has been used. The obtained

optimal structures have been checked by normal mode analysis (no imaginary frequencies for

all optimal geometries). Based on the optimized geometry, the vertical transition energies and

oscillator strengths between the initial and final states have been calculated using the Configuration

Interaction Singles (CIS) method [111] based on the semiempirical ZINDO/S (Zerner’s Intermediate

Neglect of Differential Overlap) Hamiltonian [112]. For the ZINDO/S calculations, the single

excitations from the 10 highest occupied to the 10 lowest unoccupied molecular orbitals have been

considered. The DFT calculations have been done using the Turbomole 5.7 package [113] and

the optical transitions have been computed using the Argus Lab software [114]. The evaluated

theoretical values are used for the interpretation of experimental spectroscopic measurements.

The optimal geometry of D2 symmetry exhibits a planar central part (Fig. 4.2a). The orienta-

tion of the lateral aromatic rings and the core skeleton is nearly perpendicular (dihedral angles of

81.2◦) causing a negligible π-conjugation between these molecular fragments. The lateral rings are

sterically hindered due to the presence of methyl groups in ortho-position. The opposite mutual

arrangement of the neighboring lateral rings is not parallel as can be perceived from the right part

of Fig. 4.2a.

The photophysical properties of PERY are primarily determined by the planar geometry of

the central part and the related size of the π-conjugation. The experimental absorption spectrum

of PERY in toluene (Fig. 4.1a) can be characterized by an intense absorption band with four

peaks which are detected in the spectral range of 18000 to 24000 cm−1. The equidistant energy

difference (1400 cm−1) between the four peaks indicates a harmonic character of the vibrational

progression. The calculated vertical ZINDO/S excitation energies and the oscillator strengths

are in good agreement with the experimental absorption spectrum. The ZINDO/S method was

parametrized for spectroscopic properties of the π-conjugated aromatic systems and gives transition

energies of 18725 cm−1 with an oscillator strength f= 1.7814, 28631 cm−1 (f= 0.0001), 31929 cm−1

(f= 0.0002), and 34536 cm−1 (f= 0.8228). The lowest energy transition is depicted as red line in

Fig. 4.1a. The absence of other intensive electronic transitions in the region between 18000 and
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(a) (b)

98.8°

Figure 4.2: (a) Side and front views on the B3LYP/SV(P) optimal structure of PERY in the

electronic ground state. (b) Visualization of the HOMO (bottom) and LUMO (top) obtained

from ZINDO/S//B3LYP/SV(P) calculations.

24000 cm−1 indicates the vibronic origin of the progression observed in the experimental absorption

spectrum. Therefore, the first and most intensive peak in the experimental record can be attributed

to the 0 → 0 vibronic transition. In this context it is useful to examine the ZINDO/S HOMO and

LUMO of the molecule. The HOMO-LUMO excitation plays a dominant role in this energetically

lowest optical transition according to the frontier molecular orbital theory, with its contribution

being more than 30%. These selected ZINDO/S orbitals are visualized in Fig. 4.2b, demonstrating

that both orbitals are delocalized over the center of the core part only. The lobes of the LUMO are

oriented more or less perpendicular to the lobes of the HOMO. The shape of the LUMO compared

to those of the HOMO indicates that the optical excitation is spread from the central atoms of the

core towards the nitrogen atoms.

In order to determine the origin of the vibronic motion reflected in the linear and nonlinear

spectroscopic experiments, vibrational line spectra have been calculated. For determining the

Huang-Rhys factors semiemprical AM1 calculations were performed using the Mopac program

package 2002 [115]. The calculated vibrational spectrum possesses 210 fundamentals between 13

and 3243 cm−1. With the limited bandwidth of our excitation pulses we can only cover modes up to

frequencies of approximately 900 cm−1. From Fig. 4.1b, in which modes with a Huang-Rhys factor

larger than 0.005 are plotted, it becomes obvious that only a few modes contribute significantly to

the observed spectroscopic response.

4.3 Experimental Details

PERY has been purchased from Sigma-Aldrich and used without further purification. Solutions

with a concentration of 3 ·10−4 M have been prepared by dissolving PERY in toluene (spectropho-

tometric grade, Merck), sonication for ≈10 minutes, and filtration to remove undissolved residues.

The central excitation energy of our pulses was set to 18800 cm−1 (FWHM 920 cm−1, pulse dura-

tion 16 fs) and the pulses were attenuated to 10 nJ per pulse at the sample position. For recording

1Q2D electronic spectra, t2 has been fixed at a certain value and t1 has been scanned over ±100 fs

with a step size of 0.65 fs to fulfill the Nyquist sampling criterion for this frequency regime. The
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experimental 1Q2D spectra have a frequency resolution of 26 cm−1 for ω1, respectively 3.3 cm−1

for ω3.

4.4 Results and Discussion

4.4.1 Two-Dimensional Electronic Spectra

Complex signals can be represented either by their real and imaginary parts or by their am-

plitude and phase. These two representation schemes are displayed for PERY in Figs. 4.3 and 4.4

for t2-times of 100, 200, 300, 450, 550, 650, and 800 fs. The real part of a 1Q2D spectrum (first

column in Fig. 4.3a) is the product of absorptive line-shapes in ω1 and in ω3. In agreement with

approximating PERY as a two-level electronic system, where ground state bleaching and stimu-

lated emission are the only two contributions, it shows a single positive feature. The maximum

of the peak is centered slightly below the diagonal (|ω1| > ω3), indicative of a small Stokes shift.

The peak experiences periodic modulations in its shape with a period of 240 fs (a detailed analysis

is presented in Fig. 4.5). For t2-times of 200, 450, and 650 fs, the shape of the absorptive peak

is strongly elliptical with the major axis of the ellipse oriented along the diagonal. Contrarily, for

t2 = 100, 300, 550, and 800 fs the absorptive peak adopts a more circular shape and the major

axis is oriented nearly parallel to the ω3-axis. The changes in the ellipticity of the real part can

be quantified by determining the diagonal and anti-diagonal widths at a 1/e peak-height [42]. As

seen by comparing Fig. 4.5a and b, the diagonal widths generally exceed the anti-diagonal ones,

and show only a weak dependence on the t2-delay. In contrast, the anti-diagonal peak widths are

sharply decreased at t2-delays of 200, 450, and 650 fs. This counter-evolution is mainly responsible

for the strong modulation of the peak shape in the real part of the 1Q2D signal.

The imaginary part of a 1Q2D spectrum is the product of an absorptive line-shape in ω1

and a dispersive line-shape in ω3. In case of a two-level system the imaginary part features two

contributions of opposite sign (first column in Fig. 4.3b). Similar to the real part, the imaginary

part too exhibits oscillations with a period of 240 fs. The most obvious oscillation is seen in the

nodal line separating the positive and negative feature. The angle of this nodal line with respect

to the ω1-axis changes from being positive for t2 = 200, 450, and 650 fs, to zero or even negative

values for t2 = 100, 300, 550, and 800 fs (cf. Fig. 4.5 for a detailed evaluation). In addition to

this oscillation of the nodal line, the width of both contributions periodically changes from being

narrow for t2 = 200, 450, and 650 fs, to being broad for t2 = 100, 300, 550, and 800 fs.

In Fig. 4.4 we show amplitude and phase representations of the 1Q2D spectra of PERY for t2-

delays of 100, 200, 300, 450, 550, 650, and 800 fs. The amplitude spectra (first column in Fig. 4.4a)

resemble the real part spectra shown in Fig. 4.3a, with a single feature centered slightly below the

diagonal. Similar to the real part spectra this positive peak features oscillations in its orientation

and shape. For t2 = 200, 450, and 650 fs the peak shape is highly elliptical and its major axis is

oriented along the diagonal. For t2 = 100, 300, 550, and 800 fs the peak acquires a more circular

shape and is oriented nearly parallel to the ω3-axis.
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Figure 4.3: (a) Real and (b) imaginary part of the 1Q2D spectra of PERY in toluene for t2-

delays of 100, 200, 300, 450, 550, 650, and 800 fs. The first, second, and third column of each panel

display the corresponding total signal (SI + SII), the rephasing (SI), and the non-rephasing (SII)

part, respectively. All total spectra are normalized to their absolute maximum value, whereas

the rephasing and non-rephasing parts are plotted with their respective contribution to the total

signal. Contour lines are drawn at 5% intervals starting at ±10%. Red lines indicate positive

signals, blue lines negative ones. The solid line in the real part indicates the diagonal, whereas

the black lines in the imaginary part are drawn at the zero crossings between the positive and

negative features.
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Figure 4.4: (a) Amplitude and (b) phase representation of the 1Q2D spectra of PERY in

toluene recorded at t2-delays of 100, 200, 300, 450, 550, 650, and 800 fs. The first, second, and

third column of each panel display the corresponding total signal (SI + SII), the rephasing (SI)

and the non-rephasing (SII) part, respectively. The amplitude part total spectra are normalized

to their absolute maximum value, whereas the rephasing and non-rephasing parts are plotted

with their respective contribution to the total signal. Contour lines are drawn at 5% intervals

starting at ±10% in the amplitude part spectra and at ± π
12

intervals in the phase spectra. The

zero-phase line is indicated in each phase spectrum. Note the different spectral range in the

representation of the phase spectra.
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In the phase spectra (first column in Fig. 4.4b) the lines of constant phase exhibit oscillations

in their orientation. For t2 = 200, 450, and 650 fs the lines of constant phase are oriented along

the diagonal, whereas they turn to become horizontal at t2 = 100, 300, 550, and 800 fs. Note that

the phase spectra are shown for a narrower range than the real, imaginary, and amplitude part

spectra. All the observed line-shape modulations will be assigned below to periodic modulations

in the strength of the rephasing (SI) and non-rephasing (SII) contributions to the total (SI + SII)

signal.

4.4.2 Rephasing and Non-Rephasing Signal Parts

The third-order nonlinear polarization P (3)(t1, t2, t3), which underlies all FWM signals, can be

expressed as a convolution of the appropriate response functions Ri(t1, t2, t3) with the electric fields

of the excitation pulses (cf. Eq. (2.13)) [4]. Since PERY can be approximated as a two-level system

when excited at 20 000 cm−1, only four Feynman diagrams graphically illustrating four response

functions within the rotating wave approximation contribute to the signal (cf. Fig. 2.1). The

four Feynman-diagrams can be classified as ground state bleaching (GSB) and stimulated emission

(SE), depending on whether the system evolves in the ground state (R3, R4) or in the excited

state (R1, R2) during t2, respectively. A different classification of the four diagrams arises from

the ordering of the first two interactions. In diagrams R2 and R3 the first interaction takes place

with pulse −k1, whereas in diagrams R1 and R4 the first interaction takes place with positive sign

(+k1). As a consequence the system evolves in conjugate frequencies during t1 (ωge) and t3 (ωeg)

in diagrams R2 and R3. This allows for rephasing in an inhomogeneously broadened ensemble,

resulting in the formation of an ”echo” in case the system has kept some memory of its transition

frequency over t2. These diagrams therefore contribute to the rephasing signal part. In contrast,

the system evolves with the same frequency during t1 and t3 (ωeg) in diagrams R1 and R4. These

two diagrams are denoted non-rephasing and the systems’s response is close to a free induction

decay. In addition to these four diagrams there are diagrams that contribute to the signal only

if the pulse separation is shorter than the pulse duration, i.e. when the excitation pulses overlap.

These diagrams will not be taken into account in this discussion.

Scanning t1 over positive and negative values equally weights rephasing and non-rephasing

1Q2D pathways. This scanning procedure has been shown to produce purely absorptive real parts

and purely dispersive imaginary parts, that are linked via the Kramers-Kronig relation [18, 19].

The rephasing and non-rephasing 1Q2D spectra on their own exhibit phase-twisted line-shapes

resulting from mixing of dispersive and absorptive features. The dissection of the total 1Q2D

spectrum into its corresponding rephasing and non-rephasing parts is shown in the second and third

row of Figs. 4.3 and 4.4 for the real part, imaginary part, amplitude, and phase, respectively. The

decomposition was performed by recording the full scan and evaluating only positive t1-values for

the rephasing part and only negative t1-values for the non-rephasing part [116]. Strictly speaking,

rephasing signals show up at {−ω1,+ω3} according to the conjugate frequency evolution during t1

and t3. Non-rephasing signals on the other hand appear at {+ω1,+ω3}, since the system evolves

with the same frequency during t1 and t3. However, to facilitate comparison of the rephasing,
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non-rephasing, and total 1Q2D spectra, we plot all signals along {−ω1,+ω3} [117, 118].

From the inspection of Fig. 4.3a, one can immediately see that both rephasing and non-

rephasing parts of the real part 1Q2D spectra are of a pronounced elliptical shape. However,

the major axis of the ellipse in case of the rephasing part is oriented along the diagonal, whereas

it is oriented along the anti-diagonal in case of the non-rephasing part. Each part on its own

exhibits oscillations of its amplitude without significant line-shape modulations. The amplitude

oscillations, however, are out of phase by π, i.e. the rephasing part has its maxima at t2-times

of 200, 450 and 650 fs, whereas the non-rephasing part has its maximal amplitude at t2 = 100,

300, 550, and 800 fs. Therefore, for t2-times of 200, 450, and 650 fs the major contribution to

the total signal stems from the rephasing part, whereas for t2-times of 100, 300, 550, and 800 fs

the non-rephasing part contributes more strongly to the total spectrum. In Fig. 4.5 we present a

quantitative evaluation of the respective contributions.

An analogous situation is encountered in the imaginary part as shown in Fig. 4.3b. The nodal

line of the rephasing part is oriented along the diagonal, whereas the one of the non-rephasing

part is oriented along the anti-diagonal. As a consequence of the out-of-phase oscillations of

the amplitudes of the two contributions, the nodal line of the total signal experiences a periodic

modulation of its orientation. Similar to the real part, the rephasing and non-rephasing imaginary

peak shapes do not change significantly with increasing t2-time, it is only their relative contribution

to the total signal that varies with t2. From inspection of the dispersive part it becomes most

obvious how the phase-twisted line-shapes in the rephasing and non-rephasing signal parts cancel

upon summation to yield a purely dispersive imaginary part. In Ref. [36] the oscillations of the

rephasing, non-rephasing, and sum spectra are explained based on an expansion of the frequency-

frequency correlation function in terms of Huang-Rhys factors.

The dissection into rephasing and non-rephasing parts was also performed for the amplitude

and phase spectra (Fig. 4.4). For these representations, however, simple addition of the two

contributions to yield the total spectrum is not possible. Nevertheless, the oscillations in the total

spectra can be assigned to oscillating features in the rephasing and non-rephasing signal parts. In

the amplitude part 1Q2D spectra (Fig. 4.4a), we observe a stronger contribution of the rephasing

part for t2-delays of 200, 450, and 650 fs, and a reverse situation (i.e. an intensity gain of the

non-rephasing contribution) for t2-delays of 100, 300, 550, and 800 fs. Therefore, the total signal

is elliptical and line-narrowed along the anti-diagonal in the former case, and more circular in the

latter. In the phase spectra (Fig. 4.4b), the lines of constant phase are oriented along the diagonal

in the rephasing part and along the anti-diagonal in the non-rephasing part. This behavior reflects

the different sign of the phase accumulated during the two time-intervals t1 and t3 according to

the different coherence evolution in the rephasing and non-rephasing Feynman diagrams [119].

Depending on the relative strength of the rephasing and non-rephasing contributions, lines of

constant phase in the total phase spectrum are either oriented along the diagonal (t2=200, 450,

and 650 fs), or they rotate down to become approximately parallel to the ω1-axis (t2=100, 300,

550, and 800 fs). In the next section we discuss relations of the line-shape evolutions in 1Q2D

electronic spectra to the frequency-frequency correlation function.
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4.4.3 Frequency-Frequency Correlation Function

For electronic spectra in the condensed phase, where transition energy fluctuations are non-

Markovian in nature, homogeneous and inhomogenous timescales are not readily separable. There-

fore, such systems are usually described by a frequency-frequency correlation function (FFCF)

M(t), defined as

M(t) =
⟨δωeg(t)δωeg(0)⟩

⟨δω2
eg⟩

. (4.1)

M(t) is a normalized ensemble averaged product of transition frequency fluctuations (δωeg) sepa-

rated by time t. For high temperatures it is equal to the real part of the correlation function C(t)

(Eq. (2.19)) normalized to 1 at t = 0. Since the correlation function in principle carries all relevant

information on intramolecular and system-bath dynamics, considerable attention has been drawn

over the last decade on how to sample the FFCF by experimentally feasible methods [52, 55, 93].

Once M(t) is known, all linear and nonlinear spectroscopic signals can be calculated via the line-

shape function g(t) with knowledge of the reorganization energy λ and the temperature dependent

coupling parameter ∆2, which reduces to 2λkBT
~ at high temperatures (cf. Section 2.3). Such com-

plete information about the transition frequency fluctuations due to intramolecular and system

bath coupling is used in Ref. [36] to derive a detailed line-shape theory. Here, we concentrate on

the intramolecular part of the M(t)-function which is responsible for the oscillatory dynamics of

the line-shapes.

Correlations between line-shape evolutions and the frequency-frequency correlation function

have been revealed in 1Q2D spectroscopy by model calculations and experiments in the IR and

VIS spectral region [22, 107, 118, 119, 120, 121, 122]. Two quantities extracted from the real part

of 1Q2D electronic spectra were shown to be directly proportional to the FFCF: the ellipticity of

the peak shape [107] and the center line slope [123, 124]. The ellipticity of the peak as a function

of t2 is defined as [107, 122]

E(t2) =
D2 −A2

D2 +A2
, (4.2)

where D and A denote the diagonal and anti-diagonal peak widths, respectively. In Fig. 4.5c we

plot this ratio for 0 < t2 < 800 fs, with the diagonal and anti-diagonal peak widths evaluated

at 1
e -height. Oscillations with a period of 240 fs are clearly recovered. In Fig. 4.5a and b it is

shown that these oscillations arise mainly from modulations of the anti-diagonal width, whereas

the diagonal width stays nearly constant over the time-range explored in our experiments [38]. The

center line slope (CLS) is extracted by taking cuts parallel to the ω3-axis and finding the maximum

of the peak. The resulting data points as a function of ω1 are fit to a first order polynomial. The

slope of this line is the center line slope (Fig. 4.5d). Note that in the work by Kwak et al. [123]

cuts are taken parallel to the ω1-axis and the CLS is defined as the inverse of the slope of the line

connecting the maxima of the slices. Both the ellipticity and the CLS can vary between 1 and 0

and directly reflect the t2-dependent part of the FFCF [107, 123] . The limiting value of 1 can be

reached for t2 = 0 and in the absence of a homogeneous component. The deviation from the initial
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value of 1 can thereby be related to the magnitude of the homogeneous component, as was shown in

Ref. [123]. Relaxation and spectral diffusion processes during t2 lead to a decrease of the ellipticity

and the CLS, until in the long time limit both quantities approach the value of zero, indicative

of equal widths along the diagonal and anti-diagonal directions and a slope of the center line that

is parallel to the ω1-axis. In a previous work it was argued that the CLS has the advantage over

the ellipticity of being independent of factors influencing the line-shape (e.g. finite pulse duration,

apodization, etc.) [123]. As can be seen in Figs. 4.5c and d we do not observe significant differences

between these two quantities. Closely related to the ellipticity of the peak shape is the eccentricity,

which is defined as Ec =
√
1− A2

D2 and which has been proposed in earlier works as a measure for

the FFCF [125]. Even though the eccentricity takes the same limiting values as the ellipticity, i.e.

1 if D≫A and 0 if D=A (which is the case for a circle), the two quantities differ for intermediate

cases and therefore cannot be compared directly.

As discussed above, a periodic modulation of the rephasing and non-rephasing contribution to

the total 1Q2D spectrum induces the observed changes in the real and imaginary parts. In Fig. 4.5e

we plot the relative amplitudes of the rephasing (SI) and non-rephasing (SII) part of the real part

1Q2D spectra. We clearly observe out-of-phase oscillations of these two contributions, with the

rephasing part exhibiting its maxima at t2-times of 200, 450, and 650 fs and its minima at t2 =

100, 300, 550, and 800 fs, and the non-rephasing part showing the opposite behavior, i.e. having

its maxima at t2-times corresponding to minima in the rephasing part and vice versa. Tokmakoff

et al. [119, 122] defined an inhomogeneity index I(t2) as

I(t2) =
AR −ANR

AR +ANR
, (4.3)

with AR being the relative amplitude of the rephasing, and ANR the relative amplitude of the

non-rephasing part. This quantity was shown to directly relate to M(t) via M(t2) = sin (πI2 ).

From the inspection of the inhomogeneity index (Fig. 4.5f) one can notice, that the non-rephasing

part exceeds the rephasing part in signal strength around t2-delays of 300 and 550 fs. For these

delays the inhomogeneity index adopts negative values, which is consistent with negative peak shift

values observed in Fig. 4.6a.

In the imaginary part of 1Q2D spectra it is the slope of the nodal line separating the positive

and negative contribution that is related to M(t) [121]. We extract this slope from our 1Q2D

spectra by finding the zero crossing between the positive and negative contribution in the range

−18700 cm−1 < ω1 < −19200 cm−1 and fitting of the resulting data points with a first order

polynomial. The slope of the nodal line oscillates with a period of 240 fs (Fig. 4.5g). Note

that also the slope takes negative values around t2 = 300 and 550 fs. This agrees well with the

observation of negative values of the inhomogeneity index (Fig. 4.5f) and the peak shift (Fig. 4.6a).

In case of a three-level system it is the real part that features two peaks of opposite sign, with

the positive one stemming from ground state bleaching and stimulated emission and the negative

feature arising from excited state absorption. In this case the slope of the nodal line is extracted

from the real part spectra [22, 119, 126].

Extracting the frequency-frequency correlation function from the phase spectra (Fig. 4.4h) is
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Figure 4.5: Oscillating features extracted from the 1Q2D spectra of PERY in toluene solution.

Full symbols refer to experimental data, open symbols to simulations. t2-dependence of the (a)

diagonal and (b) anti-diagonal width of the real part 1Q2D spectra. (c) Ellipticity of the peak

in the real part 1Q2D spectra. (d) Center line slope of the peak in the real part 1Q2D spectra.

(e) Relative amplitudes of the rephasing (circles) and the non-rephasing (squares) part of the

real part 1Q2D spectra. (f) Inhomogeneity index extracted from the real part 1Q2D spectra. (g)

Slope of the nodal line separating the positive and negative feature in the imaginary part 1Q2D

spectra. (h) Slope of the ϕ = 0 phase line in the phase of the 1Q2D spectra.

done by evaluating the slope of lines of constant phase [119, 122]. In Fig. 4.5h we plot this slope for

ϕ = 0 evaluated in the frequency range −18500cm−1 < ω1 < −19250 cm−1. Again, the oscillating

pattern exhibits a period of 240 fs with maxima at t2-delays of 200, 450, and 650 fs and minima

around t2 =100, 300, 550, and 800 fs. Around 300 and 550 fs the slope of lines of constant phase

adopts negative values indicative of a tilt towards the anti-diagonal axis.
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4.4.4 Comparison to Related Four-Wave Mixing Signals

Heterodyned two-dimensional electronic spectroscopy gathers the maximum amount of infor-

mation that can be inferred by any third-order nonlinear technique. Nevertheless it is instructive

to cross-check our findings against results that are obtained with alternative detection schemes,

shown in Fig. 4.6. From the experimental point of view, these signals may be differentiated by the

required measuring (scanning) time and setup complexity, while, on the other hand, all of them

are related to the functional form of M(t) [52, 93, 94].

The three-pulse photon echo peak-shift (3PEPS) method is a variant of homodyned photon

echo spectroscopy, in which the time-integrated nonlinear signal

S3PE(t1, t2) =

∫ ∞

0

|P (3)(t1, t2, t3)|2dt3 (4.4)

is recorded in a wavevector architecture equivalent to 1Q2D-ES. In each step of a 3PEPS sequence,

the delay t1 is scanned at a fixed delay t2, and the position of the (time- and frequency-integrated)

signal maximum evaluated along the t1-axis. The magnitude of this peak-shift (deviation from

t1 = 0) is recorded for a range of t2-delays, to give the peak-shift decay. In essence, a finite photon

echo peak-shift value indicates the system’s ability to rephase a macroscopic coherence (i.e. to cause

an echo) after having spent a certain time t2 in an intermediate state. Fig. 4.6a shows the photon

echo peak-shift decay for PERY in toluene, along with a two-dimensional plot of S3PE(t1, t2). Both

data representations clearly reveal how the photon echo signal maximum oscillates (along t1) as

a function of t2, the oscillation being observable for t2-delays well beyond one picosecond. In the

context of our analysis of the 1Q2D electronic spectra of PERY, it is interesting to note that the

peak-shift acquires negative values around the minima of the peak-shift trace (located at t2-delays

around 100, 350, and 600 fs). In other words, the integrated photon echo (recorded as a function of

t1) may peak at negative t1-delays, if non-rephasing signal contributions dominate over rephasing

contributions to the total signal. We point out that this finding is consistent with the negative

value for the inhomogeneity index and a negative slope of the nodal line in the dispersive 1Q2D

signal part, observed at the corresponding t2-delays.

For the sake of completeness, Fig. 4.6b and c show the transient grating (TG) and the pump-

probe (PP) signals of PERY, in both frequency integrated and frequency resolved representation.

The former method records S3PE as a function of t2 for delay t1 set to zero (descriptively, the first

two excitation pulses form a spatial transmission grating from which the third pulse is scattered

off). Note that unlike 3PEPS, TG measurements are sensitive to population decay during t2. Time

delays are scanned in a similar way in PP measurements (i.e. scanning t2 for t1 = 0), however,

only two pulses are involved in the experiment, the signal being recorded along the direction of

the second pulse. Since the PP signal is generated by two interactions with the first pulse (pump),

followed by one interaction with the second pulse (probe), t1 is intrinsically zero. Overall, also

our TG and PP data-sets do well align with previously published data [90, 103] and our 1Q2D

electronic spectra. In both types of signals, strong intensity oscillations with a period of 240 fs

(140 cm−1) can be discerned. The slow decay of the TG signal confirms the absence of any fast
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Figure 4.6: One-dimensional four-wave mixing signals of PERY in toluene. Top and bottom

panels share the same abscissa, color scales are shown as insets in the bottom panels. (a) Three-

pulse photon echo peak-shift trace (top) and the corresponding frequency integrated three-pulse

photon echo signal as a function of delay t1 and t2. (b) Frequency integrated (top) and frequency

resolved (bottom) transient grating signal. (c) Frequency integrated (top) and frequency resolved

(bottom) pump-probe signal.

population decay channels. In line with the discussion above, the PP signal is dominated by

(positive) stimulated emission and ground state bleaching contributions, indicating excited state

absorption effects to be negligible on the picosecond timescale investigated here.

4.5 Simulations

Overall, the oscillation of the 2D line-shape is qualitatively similar to the one observed for

the coherent evolution of electronic states [35, 44], but follows the low-frequency vibrational beats

in our case. To substantiate our interpretation of the data, theoretical simulations of the 1Q2D

spectra of PERY were performed in the impulsive limit, applying standard semi-classical second

order cumulant expansion treatment of the electron-phonon interaction. PERY is treated as an

electronic two-level system interacting with intramolecular as well as solvent vibrational modes.

Both the overdamped solvent modes and the underdamped oscillatory modes of PERY were treated

within the Brownian oscillator model [4].Expressions for the third order response functions that

we use to calculate nonlinear signals can be found in a standard textbook [4]. The total response

function of the two-level electronic system is composed of four different response functions, usually

denoted as R1, R2, R3, andR4, that are functions of the delays between three successive interactions

of the system with an incident electric field. This incident field enters the total nonlinear signal

via triple convolution with the response functions. Full expressions for the third order nonlinear

signal can be found, e.g., in Ref. [10].
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In the impulsive limit the 1Q2D spectrum is formally composed of two parts: one contribution

where the first interaction takes place with negative sign (−k1), and another contribution where

the first interaction occurs with positive sign (+k1). In the first case, the signal electric field is

proportional to the sum of the response functions EI(t1, t2, t3) ∝ R2(t1, t2, t3)+R3(t1, t2, t3), while

in the second case, the signal field reads EII(t1, t2, t3) ∝ R1(t1, t2, t3) + R4(t1, t2, t3). The signal

EI(t1, t2, t3) has the well-known rephasing capability of the photon echo, i.e. its phase evolves with

mutually opposite signs during delays t1 and t3. This part of the signal is denoted as rephasing

part. In EII(t1, t2, t3), on the other hand, the phase evolves with the same sign during both delays

and the signal has consequently no rephasing capability. Based on the rephasing and non-rephasing

part of the signal, reconstructed in the experiment by heterodyne detection, the 1Q2D spectrum

is defined as

S(ω1, t2, ω3) = SI(ω1, t2, ω3) + SII(ω1, t2, ω3), (4.5)

where

SI(ω1, t2, ω3) =

∞∫
0

∞∫
0

dt1dt3EI(t1, t2, t3)e
−iω1t1+iω3t3 , (4.6)

and

SII(ω1, t2, ω3) =

∞∫
0

∞∫
0

dt1dt3EII(t1, t2, t3)e
+iω1t1+iω3t3 . (4.7)

Since the spectral and temporal width are Fourier related quantities, the observable spectral

window in a 2D-ES experiment is inversely proportional to the pulse duration. To account for this

effect, one can use the fact that the 2D spectrum is a double Fourier transform of the third order

signal, which in turn is a triple convolution of the response function with the electric fields of the

pulse sequence. Utilizing the fact that the Fourier transform of a convolution of two functions

results in a product of their respective Fourier transforms, the effect of the finite bandwidth can

be incorporated. Assuming the response functions vary only slowly with t2, a correcting factor

f(ω1, ω3) = [A(ω1 − Ω)]2A(ω3 − Ω), (4.8)

which multiplies the impulsive spectrum can be introduced. A(ω) is the Fourier transform of the

slowly varying temporal envelope of the laser pulse, and Ω is the central frequency of the pulses.

The apparent asymmetry of Eq. (4.8) in frequencies ω1 and ω3 mirrors the fact that two interactions

of the system with the electric field are needed to reach the population period of the experiment,

whereas the photon echo signal is stimulated by a single interaction. In our simulations, we assume

Gaussian pulses with durations of 21 fs, corresponding to the experimental pulse lengths.

The parameters used for the simulations are obtained by fitting the diagonal and the anti-

diagonal width of the absorptive, and the tilt of the nodal line of the dispersive parts of the 1Q2D

spectrum for times t2 = 200, 300, 450, and 550 fs. Although we fit only these four points (using
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Figure 4.7: Simulated 1Q2D electronic spectra of PERY. The upper (lower) panels show the

absorptive (dispersive) signal part at t2-delays of 200, 300, 450, and 550 fs. All spectra are

normalized to the respective maximum absolute value, contour lines are drawn at 5% intervals,

starting at ±10% of the signal intensity. Diagonal lines are shown in the real part spectra; black

lines in the imaginary part spectra indicate the zero-crossings between positive and negative

contributions.

the least square nonlinear minimization algorithm from the Matlabr optimization toolbox), a

good qualitative agreement at all waiting times t2 is achieved. In order to restrict the number

of minimization parameters, only reorganization energies of two overdamped solvent modes with

correlation times of τ
(1)
c = 150 fs and τ

(2)
c = 650 fs, and the two slowest modes of underdamped

oscillations with frequencies of ω
(1)
osc = 143 cm−1 and ω

(2)
osc = 575 cm−1 are varied. All other modes

are neglected in this calculation. In particular, the fast oscillatory modes of PERY do not contribute

to the 1Q2D spectrum, because their spectral features lie outside the observation window set by

the laser pulse spectrum. The correlation times τ
(1)
c , and τ

(2)
c are taken from Ref. [99], while

the oscillator frequencies ω
(1)
osc, and ω

(2)
osc are extracted from our TG measurement. Within these

limitations, we obtain best results with solvent reorganization energies of λ
(1)
solv = 39 cm−1 and

λ
(2)
solv = 106 cm−1, and reorganization energies of the intramolecular modes of λ

(1)
osc = 110 cm−1

and λ
(2)
osc = 84 cm−1. In Fig. 4.7 we present the results of the numerical simulations of the 1Q2D

spectra. Close inspection of the figures reveals very good congruity with the experimental spectra.

A detailed comparison of experimental and simulated values is presented in Fig. 4.5. We reproduce

the positions of the beating maxima and minima, the magnitude of both the diagonal (Fig. 4.5a)

and anti-diagonal (Fig. 4.5b) widths, the relative amplitudes of their oscillations, and the trend of

the tilt angle (Fig. 4.5g), including the negative sign of the angle at certain waiting times t2. The

good correspondence of theoretical and experimental results strongly suggests that the observed

modulation of the 1Q2D spectra is dominated by the slowest vibrational mode only.

Having obtained good qualitative agreement between experiment and theory on the basis of

numerical simulations, we proceed to an analytical analysis that yields further understanding of
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the nature of the vibrational effects in 1Q2D electronic spectra. To this end, we study a two-

level electronic system interacting with a single underdamped oscillatory mode with frequency

ωosc = 140 cm−1 and reorganization energy λosc = 80 cm−1 and a single solvent mode with

correlation time τc = 150 fs and reorganization energy λsolv = 100 cm−1. These values are of the

same characteristic magnitude as in the calculations above. Starting from the same theoretical

point as in the numerical calculations (the third order response functions) we perform a separation

of the vibrational part of the response from the one of the overdamped solvent mode. Because

the response functions Rn have the form of an exponential function of a sum of g(t) functions

of different time arguments (see e.g. [4]), the separation can be performed considering the line

broadening function g(t) as the sum of vibrational and solvent contributions

g(t) = gsolv(t) + gvib(t). (4.9)

Each response function Rn (n = 1, . . . , 4) then can be written as a product of two contributions

Rn(t1, t2, t3) = Rsolv
n (t1, t2, t3)R

vib
n (t1, t2, t3)e

−iωeg(t1±t3)−iλvib(t1±t3), where the plus sign in the

exponent corresponds to the non-rephasing and the minus sign to the rephasing part of the 1Q2D

spectrum. If the time t2 is longer than the solvent correlation time τc, the solvent response becomes

t2-independent and can be written as Rsolv
n (t1, t2, t3) = R

(0)
n (t1, t3). We further assume that gvib(t)

of the underdamped vibrational mode can be approximated as

gvib(t) = iλt+ i
λ

ω
sinωt+

λ

ω
Ξ(T )[1− cosωt], (4.10)

where Ξ(T ) = coth(~ωvib/2kBT ), and T is the temperature [4]. In Eq. (4.10) we assume that the

damping of the vibrational mode is negligible. Using again the properties of the response functions

Rn, we can expand Rn in terms of the Huang–Rhys factors λ
ω . This leads to

Rvib
n (t1, t2, t3) ≈ 1 +

λ

ω
Fn(t1, t2, t3), (4.11)

where F is a function containing only sines and cosines of the arguments t1, t2, t3, t1 + t2, t2 + t3,

t1 + t3, and t1 + t2 + t3. Using trigonometric transformations F can be written as

Fn(t1, t2, t3) = Kn(t1, t3) +Hn(t1, t3) cos(t2) +Gn(t1, t3) sin(t2), (4.12)

where the complete t2-dependence is condensed into the sine and cosine functions. The first,

t2-independent part, Kn(t1, t3), is given by

K1(t1, t3) = −i[sinωt1 − sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (4.13)

K2(t1,t3) = i[sinωt1 + sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (4.14)

K3(t1, t3) = i[sinωt1 − sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (4.15)

K4(t1, t3) = −i[sinωt1 + sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] . (4.16)

The second, cosine-oscillating part, Hn(t1, t3) cosωt2, reads
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H1(t1, t3) = Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 − sinωt3 − sinω(t1 + t3)] (4.17)

H2(t1, t3) = −Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 − sinωt3 − sinω(t1 + t3)] (4.18)

H3(t1, t3) = −Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 + sinωt3 − sinω(t1 + t3)] (4.19)

H4(t1, t3) = Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 + sinωt3 − sinω(t1 + t3)] . (4.20)

The third, sine-oscillating part, Gn(t1, t3) sinωt2, is given by

G1(t1, t3) = Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

+i[1− cosωt3 + cosωt1 − cosω(t1 + t3)] (4.21)

G2(t1, t3) = −Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

+i[1− cosωt3 + cosωt1 − cosω(t1 + t3)] (4.22)

G3(t1, t3) = −Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

−i[1− cosωt3 − cosωt1 + cosω(t1 + t3)] (4.23)

G4(t1, t3) = Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

−i[1− cosωt3 − cosωt1 + cosω(t1 + t3)] . (4.24)

The total response can therefore be separated into stationary, cosine-oscillating, and sine-

oscillating contributions. The derivation of the functions Kn(t1, t3), Hn(t1, t3), and Gn(t1, t3) is

straightforward, and results in expressions which are sums of sine and cosine terms of the arguments

ωt1, ωt3, and ω(t1 + t3). Thus, the total response function Rn can be written as

Rn(t1, t2, t3) = R(0)
n (t1, t3) +R(0)

n (t1, t3)Kn(t1, t3)

+R(0)
n (t1, t3)Hn(t1, t3) cos(t2) +R(0)

n (t1, t3)Gn(t1, t3) sin(t2). (4.25)

Combining Eqs. (4.25), (4.5), (4.6),and (4.7) we can write for the 1Q2D spectrum
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Figure 4.8: Components of the two-dimensional spectrum of an electronic two-level system

interacting with a single overdamped and a single underdamped Brownian mode at room tem-

perature. The parameters for the simulation are given in the text. The first column (a) shows

the stationary rephasing and non-rephasing components, the second column (b) illustrates the

rephasing and non-rephasing prefactors of cosωt2 (see Eq. (4.26)). The last column (c) presents

the sum of the stationary and cosine contributions for cosωt2 = 1 (upper), respectively −1

(lower). Every figure is normalized to the maximum of the absolute value (0.5 for stationary,

0.19 for cosine, and 1.0 for the sum).

S(ω1, t2, ω3) = SI
0(ω1, ω3) + SII

0(ω1, ω3)

+ [SI
cos(ω1, ω3) + SII

cos(ω1, ω3)] cosωt2 +
[
SI

sin(ω1, ω3) + SII
sin(ω1, ω3)

]
sinωt2. (4.26)

Fig. 4.8 illustrates the characteristic shapes for t2 = nπ
ω of the contributions of Eq. (4.26) to the

absorptive part of the 1Q2D spectra, i.e. where sinωt2 = 0. The first column (Fig. 4.8a) presents

the stationary contributions, SI
0 and SII

0, the second column (Fig. 4.8b) shows the prefactors of

the cosine term in Eq. (4.26), and the third column (Fig. 4.8c) presents the sum of the two for times

t2 when cosωt2 = 1 (upper) and cosωt2 = −1 (lower), respectively. One can immediately notice

that all rephasing contributions are elongated along the diagonal of the 2D spectrum, whereas

the non-rephasing features are elongated along the anti-diagonal. One striking feature of these

partial 1Q2D spectra is the complete sign inversion of the non-rephasing cosine contribution SII
cos

with respect to the corresponding stationary non-rephasing contribution SII
0. For cosωt2 = 1 the

summation results in an enhancement of the rephasing part and a decrease of the non-rephasing

part of the spectrum, causing an overall elongation along the diagonal. For the cosωt2 = −1 case

we observe enhancement of the non-rephasing part and thus elongation along the anti-diagonal.

For parameters relevant for our system, the amplitude of the contributions oscillating with a cosine
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function are found to be approximately two times larger than the sine functions, and they both are

significantly smaller than the stationary contributions. We can therefore expect the most significant

changes in the 2D line-shape to oscillate with the cosine of the waiting time t2. Evaluation of

the rephasing and non-rephasing parts of the absorptive part of our experimental 1Q2D spectra

confirms our analysis [37]. The relative amplitudes of the rephasing and non-rephasing parts at

waiting times t2 = nπ/ω vary without significant changes of their line-shape. Rather, the oscillation

of the diagonal and anti-diagonal width is a result of the periodic enhancement and suppression of

rephasing and non-rephasing parts with respect to each other.

4.6 Conclusions

Intramolecular and system-bath (solvation) dynamics can be studied either in time-domain

by the frequency-frequency correlation function M(t), or, equivalently, in frequency-domain by

the spectral density ρ(ω). In this chapter we have concentrated on time-domain measures, by

presenting different metrics that can be extracted from two-dimensional electronic spectra and

that follow the functional form of the frequency-frequency correlation function. These metrics are

the ellipticity, the center line slope, and the inhomogeneity index extracted from the real part

spectra, the slope of the nodal line in the imaginary part spectra, and the slope of lines of constant

phase in the phase spectra. Peak shift curves of PERY measured in solvents of different polarity

(nonpolar, polar, and weakly polar) featured similar timescales [103], thus pointing to weak solute-

solvent interactions. The observed oscillations in the frequency-frequency correlation function can

thus be assumed to be dominated by intramolecular dynamics. The observed beating pattern stems

from the fact that during t2 the density matrix does not only evolve in a population state (ground

or excited state), but vibrational coherences can be excited as well. These coherences evolve with a

frequency that is given by the difference in frequency of the two states involved. In theoretical works

on vibrational effects in 1Q2D-ES, the vibrational sub-levels could be resolved as a consequence of

the customized input parameters [35, 127]. Under experimentally feasible conditions effects such

as finite pulse durations and finite temperature erode the multipeak structure. In such a situation,

vibrational dynamics can not be followed by the evolution of diagonal and cross peaks, but by

the evolution of line-shapes and signal intensities, as has been done in the present study. The

experimental two-dimensional spectra can be fitted by including two overdamped solvent modes

and two underdamped intramolecular modes. Expansion of the vibrational part of the third-order

response in terms of the Huang-Rhys factor λ
ω shows that these enhancements and suppressions

are caused by the coherent motion of the vibrational degrees of freedom of the molecule.
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Not only is the universe stranger than we

imagine, it is stranger than we can imag-

ine.

Sir Arthur Eddington (1882 - 1944) 5
Pinacyanol

In this chapter we present a sequence of two-dimensional electronic spectra of a prototypical cya-

nine dye, whose spectral properties in aqueous solution are determined by the formation of a

monomer-dimer equilibrium. Quantum-chemical methods are utilized to calculate the structure

and absorption properties of the two species involved. Our spectroscopic results simultaneously

characterize the spectral line-shapes of the two species in terms of underlying dynamic and static

disorder, and demonstrate how the two-dimensional technique allows to exploit high spectral and

temporal resolution in one and the same experiment. The distinctly different spectral relaxation

dynamics are quantified in a two-dimensional line-shape analysis, by extracting the time depen-

dent ratios of the diagonal and anti-diagonal peak-widths. Our findings are in line with theoretical

considerations, that predict the fluctuational dynamics of an excitonic dimer state to be exchange-

narrowed by excitation delocalization.

This chapter is based on

• A. Nemeth, V. Lukeš, J. Sperling, F. Milota, H. F. Kauffmann, and T. Mančal.

Two-dimensional electronic spectra of an aggregating dye: simultaneous measurement of

monomeric and dimeric line-shapes. Phys. Chem. Chem. Phys. 11, 5986 (2009)
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5.1 Introduction

Several nonlinear spectroscopic techniques have been designed to selectively probe only homo-

geneous dynamics by eliminating inhomogeneous contributions [4, 128, 129]. These methods can be

classified into frequency- and time-domain techniques. The most prominent method operating in

frequency domain is spectral hole burning [130, 131], where an intense narrow-band laser is used to

selectively excite a small group of molecules from an inhomogeneously broadened ensemble. These

excited molecules subsequently undergo a photochemical transformation with the photoproduct

absorbing at a different frequency. The homogeneous linewidth can be extracted from the width of

the hole, remaining in the absorption spectrum and being probed by a low intensity, narrow-band

laser.

A completely different approach is adopted in photon echo spectroscopy, a time domain tech-

nique, in which the elimination of inhomogeneous broadening is based upon the rephasing of the

coherence decay caused by the diverse transition frequencies of different molecules in two time

intervals [93]. For that purpose an ultrashort and thus broad-band laser pulse excites all molecules

within its bandwidth into a coherence between the ground and excited state. Differences in the

transition frequencies of the excited chromophores causes this coherence to rapidly dephase. Ap-

plication of a second laser pulse after a certain time delay t = τ acts as a time reversal, provoking

the dephasing coherence to rephase and emit a photon echo signal after t = 2τ . The decay of

the photon echo signal is thus solely due to irreversible dephasing brought about by the limited

excited state lifetime and phonon-induced pure dephasing.

Two-dimensional electronic spectroscopy allows for the simultaneous observation of homoge-

neous and inhomogeneous dynamics by spreading the information content into two frequency di-

mensions. Thereby, line-broadening mechanisms that are static on the timescale of t2 (time sepa-

rating the second and third excitation pulse) are projected into the diagonal part of the spectrum,

whereas dynamic line-broadening mechanisms can be followed by the evolution of the anti-diagonal

width. A sequence of 1Q2D plots therefore gives an intuitive picture on which kind of disorder

dominates the electronic transition. In this chapter we will demonstrate the capability of 2D-ES

to simultaneously follow the evolution of two distinct species (monomers and dimers of a cyanine

dye) that show completely different temporal evolutions of their line-shapes.

For this purpose we have chosen the dye Pinacyanol chloride (1,1’-diethyl-2,2’-carbocyanine

chloride) that belongs to the class of cyanine dyes. Due to strong dispersion forces associated

with the high polarizability of the chromophore, cyanine dyes tend to form aggregates in aqueous

solution at higher concentrations [133], a phenomenon that has first been reported in 1936 by

Scheibe and Jelley [134, 135]. Aggregation manifests itself by a new band appearing in the linear

absorption spectrum that, depending on the angle α between the transition dipoles of the monomers

forming the aggregate and the centers-of-masses joint, is either red- (0◦ ≤ α < 54.7◦) or blue-

shifted (54.7◦ < α ≤ 90◦) with respect to the monomer absorption. The former case is termed

J- or Scheibe-aggregate, whereas the latter type of aggregate is named H-aggregate. Fig. 5.1a

schematically depicts the dependence of the interaction energy V on the angle α for the case of a
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Figure 5.1: (a) Schematic illustration of the dependence of the interaction energy V between

two monomers on the angle α between their transition dipoles and the line connecting their

centers of mass (Figure adapted from [132]). The solid and dashed line represent the two one-

exciton states, with the solid line indicating the allowed and the dashed line the forbidden

transition. For the magic angle of 54.7◦ there is no splitting of the one-exciton states. For

angles below this value (α < 54.7◦) the transition to the lower one-exciton state is allowed (red-

shifted J-band), whereas for α > 54.7◦ a blue-shift of the dimer peak (H-band) is observed. (b)

Linear absorption spectrum of Pinacyanol (c = 1.5 · 10−4 M) in water/methanol solution (37.5%

v/v) (solid line). The low energy peak (M) stems from monomers, dimers (D) absorb at higher

frequencies. From concentration-dependent linear absorption spectra, the blue shoulder can be

attributed to absorption from trimers and higher aggregates [133]. The absorption spectrum

of monomers in methanol is shown for comparison as dashed line. The dashed-dotted lines

indicate the simulated absorption bands of Pinacyanol monomer and dimer based on the MD

ZINDO/DFTB+ geometries depicted in Fig. 5.4. The chemical structure of Pinacyanol chloride

is shown in the inset.

dimer, these two quantities being related by V ∝ 1− 3 cos2 α [132].

The degree of aggregation can be controlled by both solute concentration and addition of less

polar solvents, thus monomer-dimer equilibria are adjusted as done in the present contribution.

This permits effects of excitation delocalization to be studied at the lowest level of aggregation, by

direct comparison of monomeric and dimeric line-shapes in 1Q2D-ES spectra. The linear absorption

spectrum of Pinacyanol in water/methanol (37.5% v/v) solution at room temperature is shown in

Fig. 5.1b. The linear absorption spectrum of Pinacyanol monomers is dominated by a vibrational

progression of a 1300 cm−1 mode. As expected from the geometry of the dimer discussed in Sec. 5.4,

the dimer absorption maximum is blue-shifted with respect to that of the monomer. Upon further

increase of the concentration, additional peaks grow in on the blue side of the dimer peak. These

peaks can be attributed to trimers and higher aggregates [133]. In the linear absorption spectrum

homogeneous and inhomogeneous line-broadening mechanisms both contribute to the resulting line-

shape, making it impossible to quantify either the former or the latter. The present contribution
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intends to demonstrate how 1Q2D-ES can be used to distinguish and simultaneously characterize

spectral line-shapes of distinct physical origin, thereby fully exploiting the broad bandwidth and

ultrashort duration of femtosecond laser pulses.

5.2 Experimental Details

1Q2D spectra have been obtained by scanning t1 for a fixed value of t2 from −100 to +100 fs

in steps of 0.65 fs (thus fulfilling the Nyquist sampling theorem). Pinacyanol chloride has been

purchased from Sigma Aldrich and used as received. Solutions with c = 1.5 · 10−4 M have been

prepared in a mixture of water and methanol (37.5 % v/v) giving a maximum absorption of 0.3.

The excitation frequency of our laser pulses has been tuned to 17500 cm−1, covering both the

monomer and dimer absorption bands. The excitation intensity in these experiments was 10 nJ

per pulse. Comparison to spectra recorded with excitation intensities of 4 nJ per pulse revealed no

changes in the spectral features, which lead us to the conclusion that higher order and saturation

effects do not affect the dynamics under investigation.

5.3 Computational Details

The ground state geometries of the possible conformations of Pinacyanol monomers have been

optimized using the DFT and the semiempirical DFTB+ method [136]. For the DFT calculations

the SV(P) basis set [137] and the B3LYP [109] and PBE [138] functionals have been employed. Due

to numerical problems connected with the geometry optimization of Pinacyanol dimers, the possible

van-der-Waals structures have been calculated only using the DFTB+ method, where dispersion

interactions have been included. On the basis of the optimized geometries, the vertical electronic

absorption and fluorescence transitions have been calculated at the ZINDO level of theory. DFT

calculations have been performed using the Turbomol program [113], for the semiempirical DFTB+

calculations the procedure outlined by Aradi et al. [136] was followed, whereas the Gaussian03

package was used for ZINDO calculations [139].

Classical on-the-fly MD calculations have been performed with molecular energies and energy

gradients computed by the DFTB+ method. In the on-the-fly techniques any precomputation

of energy surfaces is avoided and only those data, which are needed at each given point of the

trajectory, are computed. The Velocity-Verlet integration scheme [140, 141] has been used to

integrate Newton’s equations of motion with a 1 fs time step. The dynamics has been equilibrated

for 10 ps and has then been continued for 30 ps. Temperature has been set to 300 K and has been

controlled by Andersen thermostat [142].

Electronic absorption spectra for Pinacyanol monomer and dimer have been simulated in the

gas phase. These simulations have been performed by first sampling the configuration space with

an ensemble of thermally equilibrated nuclear geometries, that have been generated by the dynam-

ics simulations described above. For these samples, 25 vertical transition energies and oscillator

strengths from the ground to the excited state have been computed. These quantities have been
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used to compute the appropriate Einstein coefficients [143]. A Gaussian broadening function has

been attributed to each transition having as its height the respective Einstein coefficient and as its

width a phenomenological broadening constant of 403 cm−1. The sum of all Gaussian functions

plotted against the transition energy gives a post Franck-Condon semi-classical approximation to

the spectrum [144].

For the calculations of the 2D spectra we use the well-known third order response function

theory [4]. The Hamiltonian of a monomeric system is assumed in the form of

H(mon) = [ϵg + Vg(Q)]|g⟩⟨g|+ [ϵe + Ve(Q)]|e⟩⟨e|, (5.1)

where ϵg and ϵe are pure electronic excitation energies, and Vg(Q) and Ve(Q) are nuclear poten-

tial energy surfaces in the electronic ground- and excited states, respectively. Electron-phonon

interaction, which is of utmost importance for the time evolution of the 2D spectrum of the stud-

ied system, can be identified by splitting this Hamiltonian into pure bath, pure electronic, and

interaction terms as H(mon) = HB +Hel +Hel−ph. This yields

Hel−ph = ∆V (Q)|e⟩⟨e|, (5.2)

where ∆V (Q) = Ve(Q) − Vg(Q) − ⟨Ve(Q) − Vg(Q)⟩. Here, the averaging over reservoir degrees

of freedom is denoted by ⟨. . . ⟩. In the third-order response function theory, the influence of the

vibrational and other bath modes on the 2D spectrum is comprised in the so-called line-broadening

function

g(t) =
1

~2

t∫
0

dτ

τ∫
0

dτ ′⟨∆V (Q, τ ′)∆V (Q)⟩, (5.3)

where the time-dependence of ∆V (Q, τ ′) is due to the interaction picture with respect to the bath

Hamiltonian HB . In this work we use the Brownian oscillator model according to Ref. [4] with

three parameters, λ (reorganization energy), ω (vibrational frequency) and τc (dephasing time) for

the g(t) function. The electronic transition energy obtained from the quantum chemical calculation

corresponds to the value ϵe + λ− ϵg.

The dimer peak of the 2D spectrum is assumed to be the result of excitonic interaction between

two Pinacyanol molecules. In comparison to the quantum-chemical calculation, this is a significant

simplification, as the excitonic model completely neglects any possible overlap of the electronic

wavefunctions. The corresponding Hamiltonian reads

H(dim) = H
(mon)
1 ⊗ 12 + 11 ⊗H

(mon)
2 + J (|g1⟩|e2⟩⟨e1|⟨g2|+ h.c.) , (5.4)

where J is the excitonic resonance coupling and ⊗ denotes the direct product of a monomeric

Hamiltonian with the unity operator 1n = |gn⟩⟨gn| + |en⟩⟨en| defined on the Hilbert space of the

other monomer. Such a Hamiltonian naturally contains doubly excited states that are responsible

for excited state absorption. The eigenstates of the Hamiltonian in Eq. (5.4), the so-called excitonic
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states |α⟩, are formed as linear combinations of the excited states |n⟩ localized on individual

monomers

|α⟩ =
2∑

n=1

cαn|n⟩, (5.5)

where the coefficients cαn are obtained from the diagonalization of the electronic Hamiltonian.

The unitary transformation of the whole problem from the basis of local states to the basis of the

electronic eigenstates significantly affects the form of the electron-phonon interaction Hamiltonian.

If the fluctuations of different site energies due to electron-phonon interaction are independent,

the line-shape of the allowed dimer transition is predicted to be narrowed by the mixing of the

original monomeric electronic states. The line-shape function then transforms into the excitonic

basis according to [145]

gα(t) =

2∑
n=1

|cαn|4gn(t). (5.6)

Here, the g(t)-functions are defined according to Eq. (5.3) and indices n and α refer to states

localized on individual monomers and excitonic states, respectively, as in Eq. (5.5).

5.4 Results and Discussion

5.4.1 Experimental Two-Dimensional Electronic Spectra

1Q2D amplitude spectra of Pinacyanol are displayed in Fig. 5.2a for t2 times of 0, 20, 70,

2500, and 10000 fs, where we observe clearly distinct behavior of the two species, monomers and

dimers. As expected from the linear absorption spectrum we can distinguish two peaks in the

1Q2D amplitude part spectra, the low energy peak corresponds to the monomer absorption and

the high energy peak is attributed to dimers. For t2 = 0 fs both peaks exhibit approximately

the same line-shapes, with the diagonal width (D) being nearly twice as large as the anti-diagonal

width (A) (Fig. 5.2b). Line-shapes in two-dimensional vibrational and electronic spectra have been

thoroughly investigated by the groups of Tokmakoff and Jonas [22, 24, 25, 35] for different model

systems. From these and related studies it has been concluded that the width along the diagonal

is related to inhomogeneous broadening, whereas the width along the anti-diagonal reflects homo-

geneous dynamics. Finite pulse lengths (implying a limited spectral excitation width) influence

more strongly the diagonal width by acting as a spectral filter. The anti-diagonal width, related

to the width of the homogenous absorption line, is less disturbed [35] and its time evolution in the

2D spectrum is therefore an interesting source of information about electron-phonon interactions.

Our excitation pulses are not broad enough to cover the whole absorption spectrum, therefore

the 1Q2D spectra presented in Fig. 5.2a have to be understood as the linear absorption spectrum

dressed by the pulse excitation spectrum. In this respect the diagonal widths shown in Fig. 5.2b

can only be taken as relative values, limited by the finite spectral bandwidth, which becomes evi-

dent by comparison to the 1Q2D spectra simulated in the impulsive limit (Fig. 5.3b). Nevertheless
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we can draw conclusions concerning the different behavior of monomers and dimers. While both

species feature similar characteristics for t2 = 0 fs, i.e. a ratio of diagonal to anti-diagonal width

(D/A) that starts from the same initial value of 1.7 (Fig. 5.2c), their temporal evolution strongly

differs. For the monomer the diagonal width stays nearly constant over the timescale explored

in our experiments. On the other hand, the anti-diagonal width quickly increases and after 70 fs

reaches a plateau with a maximum value that is now approximately as large as the diagonal width.

Accordingly, the ratio of the diagonal to anti-diagonal width decreases from 1.7 to 1.1 within 70 fs,

resulting in a circular peak shape and indicating no residual inhomogeneity. After 70 fs the shape

of the monomer peak can be considered to be invariant and the signal only decreases in intensity.

On the other hand, the dimer peak exhibits a completely different behavior. Within the first

20 fs the dimer peak, that has been slightly twisted off the diagonal at zero delay, rotates clockwise

so that its long axis becomes parallel to the diagonal. This, as will be shown below, is due to

interferences between positive and negative signals in the absorptive part. In accordance with this

clockwise rotation, the diagonal width of the dimer peak increases, whereas the anti-diagonal width

slightly decreases. At 70 fs the anti-diagonal width of the dimer peak has reached its minimum.
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Figure 5.2: (a) 1Q2D amplitude spectra of Pinacyanol for t2-times of 0, 20, 70, 2500, and

10000 fs. Contour lines are drawn in 5 % intervals, starting at 10 % signal intensity. All

spectra are normalized to the respective signal maximum. (b) 2D line-shape analysis of the

amplitude part of Pinacyanol 1Q2D spectra, showing the diagonal (squares) and anti-diagonal

(circles) widths of the monomer (filled symbols) and dimer (open symbols) peak. The ratio of

the diagonal to anti-diagonal width is depicted in panel (c).
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Accordingly the ratio of the diagonal to anti-diagonal width increases from 1.7 to 2.4 within 70 fs.

For increasing t2-delays the width along the diagonal slightly decreases, leveling off at a value

that is approximately twice as large as the anti-diagonal width, as indicated by a diagonal to anti-

diagonal width ratio of 1.9. This high value for the ratio D/A, corresponding to a strongly elliptical

peak shape, indicates a high degree of inhomogeneity present in the dimers. One possible reason

for this inhomogeneity is a broad distribution of monomer distances in the dimers, that leads to a

broad distribution of coupling strengths, which in turn implies a broad distribution of transition

energies. In contrast, as predicted by exciton theory, fluctuational dynamics that contribute to

homogeneous broadening and therefore act on the anti-diagonal width, are reduced in excitonic

dimers and higher aggregates as a consequence of excitation delocalization. This is the well-known

effect of exchange narrowing [146].

Additionally to the differences in line-shapes, the lifetimes of the two species greatly differ

from each other. For zero delay t2, due to the stronger overlap of the excitation pulses with the

monomer absorption peak, the monomer peak in the 1Q2D spectrum is stronger than the dimer

peak. However, in contrast to the dimer that only slowly decays on the timescale of our experiment,

the monomer signal quickly decays due to strong non-radiative decay channels [147]. After 10 ps

the monomer signal has vanished nearly completely, which is in good agreement with previously

determined fluorescence lifetimes from picosecond time-resolved fluorescence measurements [148,

149]. These fast non-radiative decay channels via torsional motion are not open to dimers, which

explains their much slower decay rate. The remaining slow decay of the dimer is not apparent

from the 1Q2D spectra, as all presented spectra are normalized to their maximum absolute value.

It is, however, included in the numerical simulations of the 2D spectra discussed in Sec. 5.4.3.

Turning now to the absorptive (real) part of the 1Q2D spectra (left column in Fig. 5.3a),

we find a behavior similar to the amplitude part, except for very short t2-delays. In this pulse

overlap region additional Liouville space pathways, that do not maintain the correct pulse ordering,

contribute to the signal and can produce negative features even for a two-level system where theory

predicts only positive signals in the absorptive part [35]. These negative contributions, observed in

the absorptive part for both monomer and dimer, are responsible for the distorted peak shapes in

the amplitude part at t2 = 0 fs. Except for these differences, the line-shapes and peak amplitudes

evolve similar to the amplitude spectra, with the dimer peak keeping its diagonal elongation and

signal strength up to at least 10 ps, and the monomer peak quickly acquiring a circular shape

within 70 fs and decaying on the timescale of 10 ps.

In the dispersive (imaginary) part of the 1Q2D spectra shown in Fig. 5.3a (right column) we

observe a positive and a negative feature for the monomer and the dimer. In analogy to the ratio

D/A in the absorptive spectra, the slope of the nodal line, separating the positive and negative

contributions, reflects the different behavior of the monomer and dimer in the dispersive spectra.

Fig. 5.3a displays this different evolution of the nodal line for the monomer/dimer peaks. For

the monomer the angle of the nodal line with respect to ω1 has a value of 30◦ for t2 = 0 fs and

becomes parallel to the ω1-axis within the first 20 fs. For longer t2-delays this angle assumes

negative values until the monomer signal completely vanishes for t2 = 10 ps. Contrarily, the nodal
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Figure 5.3: Experimental (a) and simulated (b) 1Q2D spectra of Pinacyanol for t2-times of

0, 20, 70, 100, 2500, and 10000 fs dissected into absorptive (left column) and dispersive part

(right column). Red (blue) lines indicate positive (negative) features. Contour lines are drawn

in ±5 % intervals, starting at 10 % signal intensity. All spectra are normalized to the respective

maximum absolute value. Simulations have been performed in the impulsive limit.
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line separating the positive and negative contribution of the dimer peak and the ω1-axis draw an

angle of approximately 30◦ for all t2-times covered in our experiments.

5.4.2 Quantum Chemistry Calculations

To support our experimental findings and provide a basis for the simulation of the 2D spectra,

we have performed quantum-chemical calculations on the structure and absorption properties of

Pinacyanol monomers and dimers. The computational method most frequently used is Density

Functional Theory (DFT), that has been successfully applied to interpret the structure and optical

spectra of various π-conjugated systems. However, the application of this approach is limited by

the number of atoms. Semiempirical methods offer a reasonable compromise between the reliability

of results and hardware requirements.

The optimized DFTB+ geometries of the monomer reveal the existence of eight possible confor-

mations, two of them (Mcis,Mtrans) are depicted in Fig. 5.4. The two most stable conformations

have cis-orientation of the two nitrogen atoms carrying the ethyl chains and the molecule is al-

most planar. These two conformations differ only in the mutual orientation of the alkyl groups

and they are twisted by approx. 8-11◦ with respect to the central bridge which is nearly planar.

The energy difference of 11 cm−1 between the two structures is practically negligible. The two

trans-conformations are about 1539 cm−1 higher in energy with respect to the most stable cis-

conformation. Similar results are obtained also by DFT calculations employing B3LYP and PBE

functionals.

Mcis

Mtrans

D1

D2

Figure 5.4: Optimal DFTB+ structures of two out of eight possible monomer structures with

cis- and trans-conformation of the two nitrogen atoms, Mcis and Mtrans, respectively, and two

out of four possible van-der-Waals dimer structures D1 and D2.

In order to characterize the optical transitions, which have predominantly π − π∗ character,

it is useful to examine the occupied and unoccupied molecular orbitals contributing to the lowest

energy electronic transition. The lowest theoretical ZINDO vertical electronic transition for the
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Mcis conformation is located at 17123 cm−1 and carries an oscillator strength of f = 1.692. 92% of

this oscillator strength is associated with the HOMO to LUMO transition depicted in Fig. 5.5. The

HOMO orbital is localized predominantly on the molecular bridge with its lobes being oriented

perpendicular to the aromatic chain. The LUMO nicely shows the inter-ring bonding character,

its orbitals are spread over the atoms connecting the pyrazine units with the molecular bridge.

This dominant transition, broadened by a Gaussian function with a width of 403 cm−1, is plotted

in Fig. 5.1b for comparison with the experimental linear absorption spectrum. The values for the

other stable monomer conformations do not deviate substantially from these results.

LUMO

HOMO

w = 17 123 cm
-1

f = 1.692

Figure 5.5: ZINDO orbitals based on the optimal DFTB+ geometry Mcis depicting the domi-

nating HOMO to LUMO transition.

Due to the large variability of possible orientations of two interacting monomers, the set of start-

ing geometries for dimer geometry calculations have been generated only for the cis-conformations.

On the basis of DFTB+ calculations we have found four stable van-der-Waals structures, two of

them are depicted in Fig. 5.4. Structure D1 has a T-shape orientation, where the shortest distance

between the nitrogen atoms of the two interacting molecules is 6.2 Å. The sandwich structure

D2 exhibits the highest π-stacking. The interacting molecules in this conformation are practically

co-planar and their distance is ca. 3.5 Å. The remaining two conformations have half-slip sandwich

structures with similar parallel orientations of the interacting systems. It seems that the mutual

orientation of the alkyl groups plays a significant role in the space separation of the van-der-Waals

structures and they determine the equilibrium distance between the interacting monomers.

As expected for a sandwich-type dimer, where the angle between the transition dipole moments

of the monomers and the line connecting their centers of mass is 90◦, the allowed electronic tran-

sition to the first exciton state is blue-shifted with respect to the respective monomer absorption.

For the dimer structure D2 in Fig. 5.4, this allowed transition is located at 18727 cm−1. As pre-

dicted from theoretical considerations, the oscillator strength of this transition is about twice the

oscillator strength of the corresponding monomer transition and amounts to f = 3.395. Fig. 5.6 de-

picts the HOMO and LUMO making the dominant contribution to this electronic transition, with
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HOMO-1→LUMO accounting for 48 % and HOMO→LUMO-1 for 42 % of the oscillator strength.

This transition is also plotted in Fig. 5.1b for comparison with the experimentally observed ab-

sorption spectrum. In accordance with exciton theory, that predicts an additional red-shifted,

forbidden transition for sandwich-type dimers, our quantum-chemical calculations reveal a transi-

tion at 14115 cm−1 carrying zero oscillator strength. In the three other stable dimer conformations

the electronic excitation is localized on one of the two monomers only. Therefore, the excitation

energy coincides with the one of the monomer, and we observe no shift of the absorption peak.

LUMO

HOMO

w = 18 727 cm
-1

f = 3.395

HOMO-1

LUMO+1

48 % 42 %

Figure 5.6: ZINDO orbitals based on the optimal DFTB+ geometry D2 depicting the main

contributions to the observed transition at 18 727 cm−1.

Extracting the dimer absorption spectrum from a solution containing both monomers and

dimers so far has been accomplished mostly following the iterative procedure outlined by West

and Pearce [133]. Essentially, it relies on the additivity of monomer and dimer spectra in case

both species are in equilibrium. Applying this procedure to Pinacyanol and its lower vinylogue

Pseudoisocyanine leads to a dimer spectrum featuring two main peaks, one coinciding with the

monomer absorption maximum and the other being blue-shifted by approx. 1650 cm−1 [150, 151,

152, 153]. The former usually is attributed to transitions to the lower one-exciton state, whereas

the latter is claimed to stem from transitions to the higher one-exciton state. This picture neither

holds with our 2D spectroscopy observations nor with our quantum-chemical calculations. From

geometrical considerations it is correct to assign these two peaks to dimers. However, from the

spectroscopic point of view, only the higher energy peak can be attributed to dimer absorption,

since our calculations suggest that only this peak corresponds to dimeric conformations in which

the excitation energy is delocalized over both monomers. According to our calculations the dimer

peak detected in literature that coincides with the monomer absorption peak can be associated

with dimeric conformations where the electronic excitation energy is still localized on only one
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monomer. These two situations can not be distinguished by the procedure described in [133]. The

second point substantiating our interpretation is the fact that in case the lower one-exciton state

would coincide with the monomer absorption peak, one would expect to see a cross-peak in the

1Q2D spectrum, indicative of coupling between the two one-exciton states due to the common

ground state and of relaxation from the higher to the lower one-exciton state. Rather, the absence

of such a cross-peak (cf. Figs. 5.2 and 5.3) points towards the fact, that the lower one-exciton

transition lies outside the spectral window of our excitation pulses.

5.4.3 Numerical Simulations of 2D Spectra

In order to assign the features of the experimental 1Q2D spectra, we perform a qualitative

simulation of the 2D spectra of Pinacyanol in the impulsive limit. To this end we apply third-order

response function theory [4] in conjunction with essential ideas of excitonic theory [154] and results

of quantum-chemical calculations as discussed in the previous section.

The quantum-chemical calculations have confirmed that in the spectral window of our experi-

ment, the Pinacyanol monomers can be represented by a two-level electronic system. It was argued

above that this transition is modulated by nuclear vibrational modes. In our model we therefore

introduce a fast vibrational mode of about 1300 cm−1 that is clearly distinguishable in the linear

absorption spectrum of Pinacyanol monomers (cf. Fig. 5.1b). The frequency of this fast mode cor-

responds to a period of approx. 25 fs, which is clearly in competition with the temporal width of

the laser pulses in our experiment. In the impulsive limit simulations we expect vibrational cross-

peaks to be present in the 1Q2D spectrum. These cross-peaks change their magnitude and phase

with the oscillator frequency, and consequently, due to the finite pulse-width in the experiments,

they are nearly averaged out in the course of integration over the laser pulse envelope. However,

one can still expect some weak remnants of these features and certain influences of the fast mode

on the time-dependent line-shapes of the 1Q2D peaks to be present. Additional slow underdamped

and overdamped vibrational modes are postulated in our model in order to explain the pronounced

time evolution of the 1Q2D spectra on a sub-hundred-femtosecond time scale. This spectroscopic

model of a monomer is also valid for the dimer configurations, in which the electronic transitions

are localized on their component molecules, as discussed in the previous section.

In Ref. [38] we have corrected the impulsive 2D spectra by applying to it the spectrum of the

excitation laser pulse. The validity of this procedure relies on a weak dependence of the nonlinear

response on the delay t2. In Ref. [38] this dependence was sufficiently weak in the spectral region we

were investigating, and we could ignore the fast mode completely. In the present situation, however,

the cross-peak originating from the 1300 cm−1 mode is not well spectrally separated from the rest

of the spectrum and its fast oscillations lead to a strong t2 dependence of the response function.

We therefore decided to present only a qualitative theory in the impulsive limit.

Quantum-chemical calculations suggest that one of the four stable structures of such an aggre-

gate is a parallel dimer. Both exciton theory and our quantum-chemical calculations then predict

that the upper excitonic level will be optically allowed. Previous studies [150, 151, 152, 153] sug-

gested the presence of an allowed lower exciton transition in the spectral region of the monomer

69



CHAPTER 5. PINACYANOL

transition, resulting from a different than parallel geometry of the dimer. In case the dimer had

an allowed transition overlapping with the monomer peak, one would expect a cross-peak resulting

from the common ground state and from upper to lower exciton level relaxation, and/or excited

state absorption, all within our experimental spectral window. Such a relaxation cross-peak does

not oscillate with the transition frequency and should therefore, if present, be visible in the mea-

sured 1Q2D spectrum (see e.g. the case in Ref. [155]). As such a cross-peak does not appear in

our experimental 2D spectra, we assume that the lower excitonic transition is out of our spectral

window. The quantum-chemical calculations put the forbidden lower excitonic level much lower

than the monomeric transitions and we can therefore, for our purposes, treat the dimer as a two

level system, too.

The experimental 1Q2D spectrum confirms the line narrowing predicted in Eq. (5.6) by ex-

hibiting a distinctly narrower anti-diagonal line-shape of the dimeric peak than can be seen in the

monomeric peak. Also the fact that changes of the 2D line-shape with delay time t2 in both the

absorptive and dispersive parts of the dimer peak are very weak, suggests that the dimer transition

interacts much less with the vibrational modes than the corresponding transition of the monomer.

As the linear absorption analysis suggests (cf. Fig. 5.1b), the dimer peak also exhibits a spectral

structure that goes beyond a single electronic transition. It is likely that this structure results from

an excitonic interaction between vibrational levels on different monomers. Such a case goes beyond

the applicability of a simple linear semiclassical description of the system-bath coupling that we

apply in this study. The excitonic interaction between vibrational levels will have an impact on the

quantitative aspects of the studied 2D spectrum. Nevertheless, impulsive limit calculations that

we present below still agree rather well with the qualitative features of the experimental spectra,

suggesting that this type of excitonic effects does not play a significant role in the spectral region

covered by our laser pulse.

Fig. 5.3b presents a simulation of 1Q2D spectra at t2 = 0, 20, 70, 100, 2500, and 10000 fs, all

within the impulsive limit. The model was limited to one fast (1350 cm−1) vibrational mode

already identified above and one slow (200 cm−1) vibrational mode that is responsible for the

short time evolution of the 2D spectra. One overdamped Brownian oscillator mode representing

the solvent contribution is added to adjust the line-shapes. After extensive search in the parameter

space we have arrived at a set of parameters that qualitatively explains the observed temporal

evolution of the 1Q2D spectra in both the short (≤ 100 fs) and long time regime. The fastest

mode was assigned a reorganization energy of 500 cm−1 and a dephasing time of 1 ps. These

parameters lead to a characteristic vibrational progression in the monomeric absorption spectrum,

and to a vibrational cross-peaks in the impulsive 2D spectrum. The slow mode with a frequency

of 200 cm−1 has been assigned a reorganization energy of 100 cm−1 and a dephasing time of 1 ps.

This mode is responsible for the very fast initial dynamics of the 1Q2D spectrum, characterized

by oscillations of its amplitude, and diagonal and anti-diagonal widths of the monomer peak.

Finally, the overdamped mode was assigned a reorganization energy of 150 cm−1 and a dephasing

time of 1 ps. In addition, the monomer signal was damped by a relaxation factor e−Kt2 , where

K = 0.2 ps−1 to describe the finite lifetime of the monomer excited state and to qualitatively
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reproduce the disappearance of the lower energy peak. In order to describe the dimer peak and

its lack of evolution during t2 we included one overdamped Brownian mode with a reorganization

energy of 50 cm−1 and an inhomogeneous broadening of the excitonic line with FWHM ∆ of

600 cm−1. This accounts for the rather small anti-diagonal and high inhomogeneous widths and

for an increase of the homogeneous width at longer t2-times. The inhomogeneous broadening was

simulated by adding a term αt2, where α = ∆2/(16 ln 2), to the line broadening function.

The linear absorption spectrum has been calculated (not shown here) and the concentration

of the dimers (i.e. the ratio of the monomer and dimer contributions in the spectrum) has been

adjusted to correspond to the experimental absorption maxima. Using these parameters and the

impulsive limit, the 1Q2D spectrum is completely dominated by the dimer peak, and we therefore

scaled down the dimer peak amplitude by a factor of 0.3 in order to make both peaks distinguishable

in the 2D spectrum. In the experiment, similar changes of the magnitude of the peaks naturally

occur due to the limited bandwidth of the laser spectrum.

The absorptive part of the simulated 1Q2D spectra (left column in Fig. 5.3b) reproduces the

fast change of the monomer peak anti-diagonal width, which is in our simulations a combined

effect of the influence of the slow (200 cm−1) vibrational mode, and the change of the shape and

magnitude of the vibrational cross-peak. The vibrational cross-peak partially influences the shape

of the diagonal peak due to its finite width. The negative features in the short time experimental

spectrum appear also in the calculated impulsive 2D spectrum. For the specific parameters used

here they persists only for 0 < t2 < 20 fs (not shown). In the experimental spectrum an additional

negative contribution exists due to the pulse overlap effects. These negative features are not a result

of excited state absorption, but are rather an intrinsic feature of a 2D spectrum of an electronic

system modulated by electron-phonon interaction. The anti-diagonal width of the monomer peak

in the absorptive part increases rapidly between 0 and 70 fs and it is completely round at t2 = 2.5 ps

where t2 > τc, with τc denoting the dephasing time of the oscillator mode. For t2-times of 2.5 ps

and 10 ps one can notice the decay of the monomer peak due to relaxation.

For a qualitative comparison, the dispersive part of the 1Q2D spectrum (right column in

Fig. 5.3b) is even more interesting. The nodal line of the monomer peak is oriented along the

diagonal at t2 = 0 fs in our simulation and it turns rapidly to be parallel to the ω1-axis of the

spectrum as t2 increases. At times t2 =70 and 100 fs, the nodal line is tilted more along the

anti-diagonal and the vibrational cross-peak contributes with another nodal line oriented along the

diagonal. This feature is visible also in the experimental 1Q2D spectrum at t2 =70 and 100 fs,

and it is therefore possible to conclude that the experimental dispersive part exhibits traces of the

vibrational cross-peak.

Comparing the simulated and measured 1Q2D spectra, the following conclusions can be drawn.

The short time dynamics of the monomer 2D line-shapes is dictated by the combined effect of a

slow vibrational mode with vibrational energy around 200 cm−1 and a fast vibrational mode with

vibrational energy around 1300 cm−1. In the lower right corner of the dispersive part of the 1Q2D

spectrum (|ω1| > ω3) we can distinguish contributions of a vibrational cross-peak. In contrast to

the monomeric peak, the dimer contribution to the 1Q2D spectrum exhibits a remarkable absence
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of dynamics, lacking all the characteristic traces of electron-phonon interaction. This can be a result

of exciton exchange narrowing, or/and a more significant change of the vibrational mode spectrum

due to the formation of the dimer. The latter hypothesis is also supported by the increased life

time of the dimer with respect to the monomer, which is clearly observed in the 1Q2D spectrum.

In summary, the calculations in the impulsive limit allow for a qualitative analysis of the 2D

spectra and are in good agreement with the experimental data. Although we observe a strong

vibrational cross peak due to the unlimited spectral bandwidth of the laser pulse in the impulsive

limit calculations, which can be perceived only very weakly in the experimental spectra, we are

confident that our qualitative conclusions are valid.

5.5 Conclusions

The present study combines quantum-chemical calculations on the structure, geometry, and

transition energies of Pinacyanol monomers and dimers, with experimental and simulated 1Q2D

spectra revealing dynamical information on the line-broadening mechanisms of these two species.

Our quantum-chemical calculations reproduce the peak positions of monomers and dimers in linear

absorption spectra, revealing the existence of a blue-shifted absorption band for sandwich-type

dimer conformations, which is in accordance with exciton theory [154]. The temporal evolution

of monomeric and dimeric peak shapes is tracked by 2D electronic spectroscopy. The monomer

peak exhibits a very fast loss of inhomogeneity that can be followed by the evolution of the ratio

D/A in the absorptive part and the slope of the nodal line in the dispersive part. On the other

hand, the dimer peak lacks nearly all evolution of its line-shape on the timescales explored in

our experiments. These findings are in contrast to transient grating and photon echo studies on

a polyphenylenevinylene-based oligomer and its paracyclophane-linked dimer, where the authors

find that the homogeneous and inhomogeneous line-broadening processes of these two species are

indistinguishable within experimental errors [57].

Since 2D spectroscopy overcomes the boundaries of limited simultaneously high spectral and

temporal resolution inherent to one-dimensional techniques, by exploiting the mathematical prop-

erties of Fourier transforms, i.e. the frequency resolution being determined by the scanned time

range and vice versa, it is the ideal method for simultaneously studying several species in real

time. In contrast to the popularity of simple dimer systems in theoretical studies of 2D electronic

spectroscopy [41, 43, 44, 156], most experimental studies on molecular systems so far focused on

either dilute solutions of non-interacting dye molecules [9, 11, 28, 38, 157] or large complexes,

like natural or artificial light harvesters [29, 31]. This discrepancy is somewhat surprising and we

regard the present contribution as a first step towards closing this gap.
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In this chapter we investigate the first steps of exciton dynamics in the course of band-to-band

energy transfer in the bi-tubular J-aggregate C8O3 by employing two-dimensional coherent elec-

tronic spectroscopy. The sub-20 fs measurements provide a direct look into the details of ele-

mentary electronic couplings by spreading spectroscopic transition information into two frequency

axes. Coupled exciton states are mapped as typical off-diagonal signals in 2D frequency-frequency

correlation spectra. Spectral streaking of cross peaks directly reveals inter-band dephasing and

exciton population relaxation without making recourse to an a-priori model. The experiments

enable to look beneath conventional incoherent population transfer by directly probing the early

100 fs regime. Theory and simulations, based on an effective multi-level scheme and a quantum-

dissipative model with experimental pulse envelopes, explain the origin of the cross peaks, reveal

the underlying sequences of electronic transitions, recover the streaking patterns of relaxing cross

peaks along ω1, and reconstruct the space-energy pathways of electronic excitation flow.

This chapter is based on

• A. Nemeth, F. Milota, J. Sperling, H. F. Kauffmann, D. Abramavicius, and

S. Mukamel. Tracing exciton dynamics in molecular nanotubes with 2D electronic spec-

troscopy. Chem. Phys. Lett. 469, 130 (2009)

• F. Milota, J. Sperling, A. Nemeth, D. Abramavicius, S. Mukamel, and H. F.

Kauffmann. Excitonic couplings and interband energy transfer in a double-wall molecular

aggregate imaged by coherent two-dimensional electronic spectroscopy. J. Chem. Phys. 131,

054510 (2009)
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6.1 Introduction

One of the challenges in supra-molecular chemistry and molecular nano-engineering is the iden-

tification of distinct molecular features and functions that derive from naturally occurring bio-

macromolecular systems and to use these properties in bio-mimeting, technical applications. An

example is the imitation of the optimized energy flow in the biological light harvesting pigment

complex by tailor-made, artificial molecular ensembles. Such molecular architectures, devised to

mimic migrational energy trapping and charge separation, must comprise photo-antennae, storage

rings, and a non-statistical energy gradient, where the photon absorbed is guided without substan-

tial losses as a molecular exciton on a selective, highly directional space-energy pathway to the

exit-channel of chemical conversion [158, 159]. One appealing synthetic route is the potential of

certain dye molecules to self-assemble to molecular aggregates [134, 135].

In molecular aggregates, the spatial proximity of molecular transition dipole moments leads to

site-to-site coupling (V ) and the formation of Frenkel excitons that are shared by many molecules

and whose spectroscopic properties have been continuously attracting theoretical [160, 161, 162,

163] and experimental interest [164, 165]. The sharp linear absorption (LA) band of one-dimensional

structures, e.g. the J-band of pseudoisocyanine dye aggregates [166, 167], is well-known to be domi-

nated by a few one-exciton states only, lying close in energy, and is spectrally narrowed by excitation

delocalization. J-aggregates are the closest molecular analogue of inorganic semiconductors, their

unique excitonic structure and high energy transfer efficiency are relevant to many applications

such as artificial photosynthesis, polariton science, and sensitized chemical dynamics [168].

J-aggregate-forming dyes usually self-assemble into linear chains, however, recent progress in

fabrication enabled the synthesis of cylindrical structures out of carbocyanine dyes [169]. Tubular

shapes are commonly encountered structural motifs for naturally occurring and synthetically pre-

pared nanomaterials. Examples range from chlorosomes of green bacteria [170], over viral capsid

proteins [171], to carbon nanotubes [172]. The bottom-up approach for double-wall cylindrical

aggregates is based on a delicate balance between intermolecular forces, including dispersion forces

of the cyanine backbone, and hydrophobic and hydrophilic interactions of the substituents. Es-

sentially, the simultaneous linking of both hydrophobic and hydrophilic substituents to a single

chromophore induces self-assembly into double-walled tubules in aqueous solutions. Their architec-

ture is similar to the rod elements in light-harvesting chlorosomes of green photosynthetic bacteria

and plants where thousands of bacteriochlorophyll (BChl) molecules self-assemble to a rod-shaped

supra-molecular antenna system [173, 174].

A scheme for the self-assembling mechanism of the carbocyanine dye C8O3 is shown in Fig. 6.1a.

In aqueous solution, hydrophobic interactions of the octyl-sidechains facilitate the formation of

bilayer sheets, which self-assemble into several µm long cylindrical double-wall structures with

typical diameters of approx. 10 nm [175]. The double-walled strands further build up helices

in which up to five tubules twist around each other forming a chiral suprastructure. Possible

application of these chiral systems as building blocks for artificial light harvesting devices [176]

or nanometer-scale wires for energy transport [177] renders the characterization of energy flow
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pathways and timescales a topic of high interest.

Femtosecond four-wave mixing (FWM) techniques, such as three-pulse photon-echo spectroscopy

in conjunction with theoretical treatments [105, 162, 178, 179] have led to progressively deeper un-

derstanding of the microscopic dynamics of aggregates for some time past [166, 180, 181, 182].

These excitation-probing configurations, however, measure time-integrated and phase-averaged

signal-intensities (∝ |P (3)(t1, t2, t3)|2), and thus interrogate the loss of the squared polarization by

one-dimensional projections on distinct delay-times ti. While exciton dynamics and relaxation in

population space can be verified with little difficulty almost routinely, it is hard to extract infor-

mation about the nature of electronic and nuclear couplings which are the underpinnings of spatial

optical femtosecond dynamics from conventional four-wave-mixing experiments.

Coherent two-dimensional electronic spectroscopy is the only technique that directly reveals

electronic couplings and energy transfer pathways in real time. This method overcomes the trade-

off between spectral and temporal resolution inherent to nonlinear one-dimensional techniques by

mapping coupled exciton states onto off-diagonal signals. The cross peak pattern and its variation

with t2 shows the detailed energy transfer pathways, as was first experimentally demonstrated

by Brixner et al. for the photosynthetic FMO complex in the near-infrared spectral region [31].

For a single J-band aggregate 1Q2D-ES has been demonstrated to visualize the intra-band, het-

erogeneous dephasing dynamics of closely spaced, delocalized exciton states [183]. In the course

of our studies, we have expanded the applicability of the method on the family of cyanine-based

multi-band aggregates, with the objective to experimentally trace inter-band excitonic coupling,

exciton population relaxation, and energy-transfer, without the necessity to infer a biased model

to our experimental data.
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Figure 6.1: (a) Schematic of the self-assembling mechanism for building-up the double-wall

tubular system C8O3 and its chiral suprastructure. The chromophore is depicted in orange,

hydrophilic (hydrophobic) sidechains are colored red (blue). (b) The experimental linear absorp-

tion spectrum (black line) can be satisfactorily described by four electronic oscillators (dashed

red lines indicate their individual contributions, solid red line shows their sum). The laser pulse

spectrum is shown as the green envelope.
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6.2 Experimental Details

The bandwidth of our 16 fs pulses (approx. 1000 cm−1) is broad enough (solid green line in

Fig. 6.1b) to entirely cover the absorption spectrum of C8O3 when tuned by the NOPA to a center

frequency of 17500 cm−1. To avoid undesired higher-order effects, excitation beams are attenuated

to yield less than 3 nJ of energy in each of the excitation pulses. This excitation density has

been shown to be low enough to exclude annihilation effects from contributing to the detected

signal [184]. t1-delays (recorded over positive and negative delays (±200 fs) for capturing both

rephasing and non-rephasing contributions) are sampled above the Nyquist-frequency dictated

by the electronic resonances. The carbocyanine dye C8O3 was purchased from FEW Chemicals

(Wolfen, Germany) and has been used as received. The aggregate solution has been prepared

according to literature [185] with a dye concentration in aqueous solution of 1 · 10−4 mol/l. With

a beam diameter of 5 mm at the focusing mirror (SM3 in Fig. 3.4), this corresponds to a fluence

of 3.6·1014 photons/cm2, leading to the excitation of 1.7% of the molecules in the focal volume.

6.3 Linear Absorption

In the absence of disorder, i.e. assuming lattice periodicity, excitons are described by Bloch-

type (k-space) wavefunctions. The cylindrical geometry splits the linear absorption of an isolated

tubule into a longitudinal (coinciding with the cylinder axis) and two energy-degenerate transversal

transition (perpendicular to the cylinder axis) [186] (Fig. 6.2a). The splitting is inversely propor-

tional to the tube diameter, while the red-shift with respect to the monomer transition is a measure

for inter-chromophore coupling strengths (Fig. 6.2b). For a double wall system with typical tube-

in-tube architecture (inner tube i, outer tube o), with electronic transitions ∥i, ∥o parallel to the

long cylinder axis and ⊥i, ⊥o perpendicular to them (Fig. 6.2c), the naturally arising question

is to which extent the spectrum of the bi-tubule molecular nanosystem can be thought of as a

simple superposition of two single-tube contributions. In the absence of ground-state interaction,

the longitudinal electronic transition ∥o of the outer tubule (with a larger diameter do and higher

self-energy of its ring-unit) is expected to shift to the blue, whereas the splitting ∆ω between

transitions ∥o and ⊥o (inversely dependent on do) will be smaller, such that the spectral positions

of the perpendicular bands ⊥i and ⊥o tend to coincide.

The linear absorption spectrum of C8O3 in water (Fig. 6.1b) exhibits four excitonic bands

(I-IV). Polarized light measurements identify the transitions I and II as polarized parallel to the

long cylinder axes with center positions of 16670 cm−1 and 17170 cm−1 [184]. Changes in the

absorption spectrum through the addition of diverse surfactants led to the conclusion that bands

I and II correspond to the longitudinally polarized transitions of the inner and the outer cylinder,

respectively [187]. The blue-shift of band II with respect to band I in combination with a larger

diameter of the outer tube leads to a merging of the two perpendicular transitions associated with

the two cylinders into one band (III), showing up as a weak shoulder at 17380 cm−1. Band IV at

17860 cm−1 presumably originates from electronic excitations sharing several closely lying tubules
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Figure 6.2: (a) Schematic spatial arrangement of monomer transition moments in a ho-

mogeneous cylindrical molecular aggregate, resulting in a longitudinal (µ∥) and two (energy-

degenerate) transversal transitions (µ′
⊥, µ

′′
⊥). (b) The corresponding linear absorption spectrum

of the single-wall structure. The splitting ∆ω between bands ∥ and ⊥ is inversely proportional

to the diameter of the tubule. The spectral red-shift δ with respect to the monomer transition

(ω0) reflects inter-chromophore coupling strengths. (c) Situation for a double walled system with

the broadened transition ∥o and the coincident transitions ⊥i and ⊥o.

[170] in the helical architecture, similar to the collective excitations in chlorosomal stacks.

The experimental linear absorption and linear dichroism (not shown) spectra can be well re-

constructed by a four effective electronic oscillator model, as shown by the red line in Fig. 6.1b.

Clearly, information about inter- and intra-band electronic couplings, energy transfer mechanism,

or its time-scales cannot be extracted from the linear spectrum. The absence of this kind of infor-

mation requires the application of nonlinear techniques. So far, the excitonic effects of inter-band

coupling have been treated theoretically for closely spaced linear aggregates [188], which have

shown that Förster energy transfer mechanism is not valid anymore if the separation of the two

chromophores is smaller than the exciton delocalization length. For the case of the similar ag-

gregate C8S3 [189] the microscopic model leads to the conclusion that the inner and outer tube

cannot be considered as electronically decoupled but as weakly coupling excitonic manifolds (cf.

Chapter 8). Based on recent advances in the field of 2D-ES it is clear that this technique is the

instrumentation of choice in the study of molecular fs-couplings. By employing coherent 1Q2D-ES,

we demonstrate measurements of off-diagonal peaks in frequency-frequency correlation plots and

thus directly probe electronic coupling and electron-phonon scattering. The latter elementary pro-

cesses are the underpinnings of exciton dynamics allowing the entire state-to-state energy transfer

pathways in C8O3 to be imaged in real time.

6.4 Results and Discussion

6.4.1 Correlation Spectra (t2 = 0 fs)

The amplitude of the experimental 1Q2D electronic correlation spectrum (t2 = 0 fs) is depicted

in Fig. 6.3a. By comparing the diagonal (|ω1| = ω3) amplitude maxima of the nonlinear signal

to the linear absorption (shown along ω1) we can identify the spectral positions of bands I-IV, as

defined in Fig. 6.1b. The relative intensities of the diagonal peaks are different from the absorption
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spectrum, since they scale as |µi|4 with the transition dipole, rather than |µi|2 as in LA. In addition,

the pulse power spectrum, optimized to cover the entire region of transitions, gives rise to different

center-frequency detunings for each of the four transitions and thus affects the relative excitation

intensities of the bands. Overall, peak IV is therefore less intense in the 1Q2D spectrum than in

1D LA.

The observation of cross peaks of varying intensities in the off-diagonal |ω1| > ω3 triangular

part of the spectrum at t2 = 0 fs indicates coupling between bands. The most prominent cross

peak at this delay stems from strong correlations between bands I and III, corresponding to the

parallel and perpendicular transitions of the inner cylinder, as well as from couplings between band

II and IV. Further, a lower intensity cross peak is indicative of weak coupling between I/IV and

I/II. The correlation spectrum is strongly asymmetric and favors cross peaks in the low-energy

(|ω1| > ω3) triangle. This is accompanied by the untypical spectral orientations of the off-diagonal

peaks which are closely related to the asymmetry of the correlation matrix. They are no longer

parallel to the main diagonal as expected for a positive motional correlation at t2 = 0 fs [190], but

rather horizontally aligned, i.e. parallel to the ω1-axis. This tendency towards early relaxation

of cross peaks is mainly caused by the finite width of the excitation pulses. The experimental

1Q2D data are sub-20 fs pulse convolutions and are not corrected by numerical inversion. Fast

coherence loss thus breaks the symmetry of the excitation correlation-matrix where the spectral

contour of the cross peaks rotates from an alignment originally parallel to the main diagonal into

an orientation parallel to the ω1-axis. The stretching of the off-diagonal intensities along ω1 reflects
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Figure 6.3: Amplitude (a) and absorptive part (b) of the 1Q2D electronic correlation (t2 = 0 fs)

spectrum of C8O3. Both spectra are normalized to their respective maximum absolute value.

The linear absorption spectrum is plotted along ω1 in panel (a), whereas the spectrally resolved

pump-probe spectrum (red and blue dots) together with the projection of the absorptive part

onto ω3 (black line) is plotted in panel (b). White dotted lines mark the positions of peak

maxima in the linear absorption spectrum.
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a distribution of inter-band coupling strengths between exciton states that share a common ground

state.

Upon examination of the absorptive part of the 1Q2D signal shown in Fig. 6.3b, we can dissect

the various pathways which interfere to form the observed 2D pattern. Excitonic intermolecular

couplings reshape an aggregate’s electronic structure to a manifold of single-and double-excited

states, referred to as the one- and the two-exciton manifold, respectively. The two-exciton manifold

essentially distinguishes the optical response of an excitonic aggregate from that of an electronic

two-level system. As a consequence of the repulsive interactions between excitons, transitions

between successively higher excitonic manifolds are blue-shifted with respect to each other. Positive

contributions to the absorptive part can thus be assigned to ground state bleaching (GSB) and

stimulated emission from one-exciton states (SE), negative contributions arise from excited state

absorption (ESA) into the two-exciton manifold [4] (cf. Fig. 1.1). These two contributions are

of equal strength for the diagonal peaks of bands I, II, and III, whereas band IV only shows a

weak positive feature. The projection of the absorptive part onto the ω3-axis agrees very well with

the spectrally resolved pump-probe signal as shown on the right side of Fig. 6.3b. Similar to the

amplitude spectrum, off-diagonal features are present in the |ω1| > ω3 region of the absorptive part.

We observe predominant cross peaks from strongly coupled bands I/III and II/IV, respectively.

The observed off-diagonal features are dominated by positive GSB and SE contributions, with ESA

signals only having a marginal contribution.

6.4.2 Relaxation Spectra (t2 > 0 fs)

Recording 1Q2D spectra for t2 > 0 fs allows us to directly follow the excitation transfer path-

ways (Fig. 6.4). The relaxation can be divided thereby into three dynamical regimes. Within the

first 50 fs the onset of inter-band dephasing and exciton population relaxation leads to the disap-

pearance of the weak signal of band IV. This loss in intensity is paralleled by (i) a relative increase

of the off-diagonal one-exciton signal intensities (positive signals) among all bands in |ω1| > ω3

space, and (ii) the appearance of bi-exciton couplings (negative off-diagonal signals). At t2 times

between 50 and 200 fs, ongoing population relaxation transforms the initial pattern of cross peaks

into streak-like shapes, thus mapping out the most efficient relaxation channels. In this regime, the

optical dynamics are mainly controlled by the irreversibility of relaxations from doorway-states in

the vicinity of band II and III seeded by band IV via IV/III and IV/II off-diagonal traces. After

200 fs the 2D spectrum is mainly governed by relaxation from states in the vicinity of band III.

This causes streaking of band II along ω1 resolving the coupling between band III and II originally

hidden under the intense diagonal peak. Furthermore, the cross peak intensities tend to converge

to those of the diagonal signals because growing delays t2 of the analyzing third pulse (k3) cause

increasing inter-band dephasing. After 500 fs we observe relaxation from band II into band I, a

process that completes the cascade of exciton funneling into the lowest accessible state. Thus it

is striking that population of I via the II/I coupling pathway between outer and inner cylinder

coordinates is strongly delayed compared to the cross peak gain of I via direct III/I coupling.

Quite obviously, the initial (delocalized) coherence tries to find the optimum coordinates for the
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Figure 6.4: (a, b) Amplitude and (c, d) absorptive part representation of 1Q2D spectra of

C8O3 for t2-delays of 0, 20, 50, 100, 200, and 500 fs (from top to bottom). Panels (a) and (c)

show experimental data, panels (b) and (d) display simulated data. All spectra are normalized

to their respective maximum absolute value. White dotted lines indicate the peak positions in

linear absorption. White arrows mark the main energy transfer pathways.
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outer to inner tube population transfer, and this reorganization of excitations must proceed via

the migrational, multi-step mechanism which costs time.

The 1Q2D spectra shown in Fig. 6.4 demonstrate that the excitonic energy transfer across

the space-energy landscape of bands I-IV is a network of delicately balanced intra-band mixing,

single-step energy transfer, and migrational band-to-band processes, that overall determine the

distinct signature of excitation energy flow in C8O3 aggregates. The basic steps of exciton path-

ways and transfer are immediately comprehensible in 2D coherent electronic spectra, without any

preconceived bias. White arrows drawn in the 2D spectra (Fig. 6.4) illustrate the predominant

band-to-band couplings and population transfer pathways. One fast route to population gain in

band I stems from band III and IV via couplings III/I and IV/I in parallel, single-step transfers.

The second source term for the population of I proceeding from IV via couplings IV/III, III/II,

and II/I is a migrational multi-step process, with the actual tube-to-tube spatial electronic transfer

substantially delayed. 2D spectroscopy thus reveals that the dynamics of the downhill energy flow

in C8O3 is no trivial irreversible funneling process, but quite obviously complicated by single-step

source terms that make the kinetics more complex. Particularly in the proximity of bands II and

III, spatio-energetic factors seem to create a kinetic bottle-neck with a significant increase of the

exciton dwell-time and population density numbers in bands II/III prior to the final event of II→I

outer- to inner-tube transfer.

These particulars and details impressively illustrate why 2D-ES is superior to other third-

order techniques. Energy-selective excitation in pump-probe experiments [184] bears a trade-off

in time-resolution, whereas the 2D-ES technique allows to exploit broad spectral bandwidths and

short temporal widths of ultrafast excitation pulses in one and the same experiment. Moreover,

additional insights into the nature of the high-energy, diagonal absorber IV and its unique role as a

powerful mediator of optical funneling can be gained in such a study. Quite obviously, its ultrafast

deactivation has decisive impact on the early relaxation regime (t2 < 50 fs) which dramatically

affects the patterns of initial cross peaks in the subsequent optical dynamics. Despite its short-lived

(50 fs) correlation lifetime, the electronic communication of band IV is far-reaching and persistent,

and its huge coupling efficiency creates a network of exciton source terms in the fore-front of band

II to band I transfer as discussed above. 2D spectra show that the molecular organization of

transition IV must differ from those in I, II, and III, i.e. band IV is less compact and more exposed

to environmental bath-dynamics which may explain its short correlation survival time.

6.4.3 Rephasing and Non-Rephasing Spectra

The time reversal in the scanning procedure of coherence time t1, from negative to positive

time-delays, produces both SI and SII time-domain signals that contribute into the phase-matched

directions kI and kII to make up the total signal, i.e. a superposition of the photon echo (SI)

and optical free induction decay (SII) profiles. The absorptive 1Q2D spectrum is the sum of the

two signals. Based on the third order response function theory, each of the two contributions is

given by the Fourier transform of its corresponding response functions [191]. Following a previous

theoretical treatment [122], one expects two limiting cases for the evolution of SI and SII data. For
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Figure 6.5: (a, b) Rephasing and (c, d) non-rephasing real part representation of 1Q2D spectra

of C8O3 for t2-delays of 0, 20, 50, 100, 200, and 500 fs (from top to bottom). Panels (a) and

(c) show experimental data, panels (b) and (d) display simulated data. All spectra are displayed

with their relative contribution to the absorptive spectra shown in Fig. 6.4. White dotted lines

indicate the peak positions in linear absorption.
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early t2-times, shorter than the correlation time τc (in this limit the frequency correlation function

C(t) has not decayed much), the SI signal is much more intense than the SII one. For longer

t2-times the intensity of the SII signal increases. The ratio of the rephasing/non-rephasing signal

intensities are controlled then by the loss of correlation memory of the echo signal [192].

Fig. 6.5a and c display the experimental SI and SII spectra for t2 =0, 20, 50, 100, 200, and

500 fs, respectively. Both the SI and SII signals show their typical line-shapes: while the former

are elongated along the diagonal, due to density matrix rephasing, the latter are oriented into

the direction of the anti-diagonal axis [18, 117, 118]. Their sum is thus oriented horizontally for

uncorrelated exciton states. For waiting times up to 200 fs, the experimental SI signal is much

stronger than the non-rephasing one (SI/SII ≈ 3). Conversely, for longer waiting times t2 > 200 fs,

the intensity of the SII signal grows and both contributions nearly equalize in intensity in the

asymptotic regime.

Comparison of decomposed rephasing and non-rephasing 1Q2D spectra reveals details of inter-

band couplings and their different contributions to the absorptive (SI + SII) 1Q2D spectra (Fig. 6.4b).

Accordingly, one perceives that the early coupling between IV and II and its powerful streaking

is mainly accessible to the rephasing wave-vector architecture. On the other hand, the effect

of rephasing and non-rephasing pulse sequences is less pronounced for couplings IV/I and III/I.

Each of the IV/I and III/I cross peak streakings from SI and SII data simply differ by tiny posi-

tive/negative slopes of equal size whose orientations (angle) relative to the ω1 axis average-out in

the SI + SII experimental spectra to yield the horizontal streak spectrum.

The phase-twisted line-shapes may be used to disentangle the spectral convolution of band

transitions II and III and thus to characterize the spectroscopic features of these bands. Since

diagonal line-widths of individual transitions are narrower in the non-rephasing spectrum, they

have the potential to spectrally resolve closely spaced diagonal and off-diagonal peaks usually

concealed along the main diagonal trace of photon echo data [193]. Quite obviously, the intense

and inhomogeneously broadened peak II overlapping peak III in LA (Fig. 6.1b) becomes spectrally

resolved in the SII spectra. For t2 ≥50 fs a negative feature at the location of the cross peak IV/III,

indicative of coupling between IV and III can be observed. Due to oppositely signed contributions

(positive SE and GSB from IV/III and negative ESA from III/II) only the weak ESA contributions

of IV/III coupling and the positive contributions of SE and GSB of III/II are visible.

6.5 Numerical Simulations

The third-order nonlinear signal E
(3)
s (t1, t2, t3) and its double Fourier transform E

(3)
s (ω1, t2, ω3)

analog are reconstructed by theory and computational simulation [191]. The procedures aim at

recovering inter-band electronic couplings, exciton relaxation, and population transfer and rely

on the calculation of the third-order optical response function, that reflect the system properties

relevant for the specific experiment through all possible system Liouville space pathways [4]. A

microscopic calculation of the response functions, however, requires explicit information about the

precise architecture of C8O3 and the nature of its single- and double-excited eigenstates. The
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mesoscopic tubular aggregates dealt with in this contribution contain a huge number of molecules.

A microscopic model that incorporates monomeric site-disorder needs to contain at least roughly

several thousands of coupled chromophores for a double-wall cylindrical structure with converged

spectral properties (i.e. the spectra are independent of the length of the cylinder). For instance, for

1000 two-level molecules we obtain 1000 single-exciton states and ≈500000 double-exciton states.

The signal calculation would then have to involve three-fold summation over these states. This

rough estimate already precludes any atomistic-type approach for calculating nonlinear signals,

thus being far beyond the currently available computational resources.

However, the linear absorption spectrum (Fig. 6.1b) suggests that only few optically active

single-exciton bands are relevant. In order to represent the observed features and to quantify

relaxation pathways and timescales, we therefore create an effective exciton model containing

single- and double-excited states. These states represent the whole excitonic bands of the tubule,

which show up in the absorption spectrum. The bands can be single- or double-excited, thus each

band is represented by an anharmonic oscillator. This allows to implement an iterative fitting

procedure of effective model parameters and reveals the physical basis of the underlying processes.

The system is represented by the Hamiltonian

ĤS = ~
4∑

e=1

εeB̂
†
eB̂e +

1

2
~

4∑
e,e′=1

∆ee′B̂
†
eB̂

†
e′B̂eB̂e′ (6.1)

where B̂†
e is the Bosonic creation operator of the eth band exciton. The Hamiltonian parameters

are: εe is the energy of the eth one-exciton band (determined from LA), 2εe +∆ee its bi-exciton

energy and εe + εe′ + ∆ee′ is the energy of the state if the double-exciton is distributed between

the exciton bands e and e′. The quantity ∆ gives the binding energies of two-exciton bands and

thus is the representation of exciton couplings: if all off-diagonal elements of the matrix ∆ee′ are

zero, the Hamiltonian represents uncoupled oscillators and the two-dimensional spectrum at zero

delay time t2 will have no inter-exciton cross peaks. Thus fitting of the 2D spectrum provides a

handle to determine the matrix ∆ee′ .

This system is coupled to the laser field through the system-field interaction Hamiltonian

ĤSF (t) = −
4∑

e=1

µe ·Et(t)B̂
†
e +

1√
2
µ(2)
e ·Et(t)B̂

†2
e B̂†

e + h.c., (6.2)

where µe is the transition dipole from the ground state to the single-exciton e and µ
(2)
e is its

correction for the transition from the single- to the double-exciton state. Et(t) represents the total

laser field. In the simulations we have assumed the same polarization for all pulses.

The relaxation dynamics originates from the system-bath coupling, represented by

ĤSB = ~
4∑

e=1

∑
α

deαB̂
†
eB̂e(â

†
α + âα) (6.3)
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where â†α and âα are the harmonic bath excitation creation and annihilation operators for the mode

α and deα is the coupling strength between the mode α and exciton band e. For the infinite number

of bath modes, we use the continuous bath spectral density reflecting uncorrelated fluctuations of

transition energies

C ′′
e (ω) = π

∑
α

d2eα[δ(ω − wα)− δ(ω + wα)], (6.4)

where wα is the characteristic frequency of the αth harmonic bath mode. The specific choice of the

spectral density reflecting the multi-mode overdamped Brownian oscillator bath model uniquely

defines the line-shapes of both single- and double-exciton states. We then have

C ′′
e (ω) ≡

M∑
α

2λe,α
ωΛα

ω2 + Λ2
α

. (6.5)

Here the αth Brownian mode is characterized by the relaxation timescale of the bath correlations

Λ−1
α and the coupling strength between the eth oscillator and αth bath mode λe,α.

To account for correlated spectral line-broadening, each effective oscillator is coupled to an over-

damped Brownian oscillator given by Eq. (6.3). This results in fluctuations of system Hamiltonian

parameters. Fluctuations of eigenstate energies induce spectral broadenings. For the whole system

this results in the matrix of the line-shape functions gab, which characterize correlated fluctuation

of transition energies of a and b global states. The line-shape function is related to the fluctuation

correlation function as described in Ref. [4]. For our model of a set of Brownian coordinates (see

Eq. (6.5)) the line-shape function is given by

gab(t) =
M∑
α

λab,α

Λα

(2kBT
~Λα

− i
)
(exp[−Λαt] + Λαt− 1). (6.6)

In the present model, we have assumed that the bath-induced fluctuations of the single- and double-

excited state of each effective oscillator are fully correlated, whereas for different oscillators the

fluctuations of levels are uncorrelated. Within these assumptions, the line-shape functions for the

double-excited states can be uniquely deduced from the line-shape functions of the single-excited

states.

As a starting point, by examining the linear absorption spectrum and identifying the four

observed peaks I, II, III, and IV, we postulate four single-exciton bands and represent them by

four single-exciton states. Their transition energies and transition dipole moments (transition

amplitudes) are deduced by using the decomposition of the experimental absorption spectrum into

four Gaussian peaks by a least-square fitting procedure, which provide a starting set of parameters.

To cover the spectral line-shapes we couple each single-exciton state to two over-damped Brownian

oscillator coordinates (M = 2) [47]. The first (fast) will be responsible for the homogeneous line-

width (Lorentzian line-shape), while the second (static) will be responsible for the inhomogeneous

line-width (Gaussian line-shape).
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Table 6.1: One-exciton state energies (εe), their transition dipoles [µ =(x, y, z); y = 0 so we

give just (x, z)], and system-bath coupling strengths (λ) for the two bath Brownian modes (the

corresponding bath timescales Λ−1
fast = 50 fs, Λ−1

slow = ∞). Bi-exciton diagonal binding energies

(∆ee), bi-exciton state energies (εf = 2εe + ∆ee), and their transition dipoles (no combination

states) are given as well. Note that here µef =
√
2µe + µ

(2)
e .

Band I II III IV

εe/cm
−1 16705 17170 17400 17890

µe, (x, z)/a.u. (0, 110) (0, 136) (66, 95) (90, 148)

λfast/cm
−1 20 40 40 40

λslow/cm
−1 0 30 60 140

∆ee/cm
−1 150 250 50 0

εf/cm
−1 33560 34590 34850 35780

µ
(2)
e , (x, z)/a.u. (0, 40) (0, 20) (0, 10) (−9,−15)

µef , (x, z)/a.u. (0, 196) (0, 212) (93, 144) (118, 194)

The linear absorption spectrum is obtained by

κA(ω) ∝ ωIm

∫ ∞

0

dt exp(iωt)R(1)(t) (6.7)

where

R(1)(t) =
i

3

∑
e

|µeg|2 exp(−iεet− γegt− gee(t)) (6.8)

is the linear response function. g(t) is the complex line-shape function originating from the system-

bath interaction and is computed from the bath spectral densities. Note that system-bath couplings

λeα induce the shifts of resonant absorption frequencies through g(t). Additionally, we have tuned

the transition dipole directions away from all-parallel alignment using linear dichroism data (not

shown). This adjustment improves the fit of the 1Q2D correlation signals described later. The

adjusted parameters (transition energies, transition dipole amplitudes, and system-bath coupling

constants) are listed in Tab. 6.1. The resulting calculated linear absorption being depicted in

Fig. 6.1b gives a quite satisfactory fit to the experimental data.

Expressions of the R
(3)
I and R

(3)
II response functions can be written for an excitonic aggregate

model with the ground state g, a single-exciton manifold e, and a double-exciton manifold f of the

system eigenstates. We then have for the kI response function [191]:

R
(3)
I,SE(t1, t2, t3) =

∑
e4e3e2e1

⟨(µge4 ·E4(ω̄4 + ωge4)(µe3g ·E3(ω̄3 − ωe3g)(µe2g ·E2(ω̄2 − ωe2g)

×(µge1 ·E1(ω̄1 + ωge1)⟩ exp(−iξe4gt3 − iξge1t1 − φ
(I)
E (t3, t2, t1))Ge4e3,e2e1(t2), (6.9)
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R
(3)
I,GSB(t1, t2, t3) =

∑
e4,e1

⟨(µge4 ·E4(ω̄4 + ωge4)(µe4g ·E3(ω̄3 − ωe4g)(µe1g ·E2(ω̄2 − ωe1g)

×(µge1 ·E1(ω̄1 + ωge1)⟩ exp(−iξe4gt3 − iξge1t1 − φ
(I)
B (t3, t2, t1)), (6.10)

R
(3)
I,ESA(t1, t2, t3) = −

∑
fe4e3e2e1

⟨(µe3f ·E4(ω̄4 + ωe3f )(µfe4 ·E3(ω̄3 − ωfe4)(µe2g ·E2(ω̄2 − ωe2g)

×(µge1 ·E1(ω̄1 + ωge1)⟩ exp(−iξfe3t3 − iξge1t1 − φ
(I)
A (t3, t2, t1))Ge4e3,e2e1(t2), (6.11)

where we have introduced the complex frequencies ξab ≡ εa − εb − iγab, (ab) density matrix

coherence damping γab, transition dipoles µab between exciton states a and b, zero-centered laser

pulse spectral envelopes Ej(ω) of pulses j = 1, 2, 3, 4, the pulse carrier frequencies ω̄j , orientational

averaging of scalar products ⟨...⟩, time dependent correlation-damping phase functions φ as well

as single-exciton propagation Green’s functions G.
For the kII response functions we similarly get

R
(3)
II,SE(t1, t2, t3) =

∑
e4e3e2e1

⟨(µge4 ·E4(ω̄4 + ωge4)(µe3g ·E3(ω̄3 − ωe3g)(µge1 ·E2(ω̄2 + ωge1)

×(µe2g ·E1(ω̄1 − ωe2g)⟩ exp(−iξe4gt3 − iξe2gt1 − φ
(II)
E (t3, t2, t1))Ge4e3,e2e1(t2), (6.12)

R
(3)
II,GSB(t1, t2, t3) =

∑
e4e2

⟨(µge4 ·E4(ω̄4 + ωge4)(µe4g ·E3(ω̄3 − ωe4g)(µge2 ·E2(ω̄2 + ωge2)

×(µe2g ·E1(ω̄1 − ωe2g)⟩ exp(−iξe4gt3 − iξe2gt1 − φ
(II)
B (t3, t2, t1)), (6.13)

R
(3)
II,ESA(t1, t2, t3) = −

∑
fe4e3e2e1

⟨(µe3f ·E4(ω̄4 + ωe3f )(µfe4 ·E3(ω̄3 − ωfe4)(µge1 ·E2(ω̄2 + ωge1)

×(µe2g ·E1(ω̄1 − ωe2g)⟩ exp(−iξfe3t3 − iξe2gt1 − φ
(II)
A (t3, t2, t1))Ge4e3,e2e1(t2). (6.14)

The fluctuation-induced line-shape functions φ for each pathway in Eqs. (6.9-6.14) account for

their correlated dephasing and relaxation. Based upon the results of previous work [191, 194] we use

cumulant expansion techniques, where we properly account for coherent and population dynamics

and take care of correlated bath fluctuations between various time intervals. Thus we obtain the
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respective fluctuation induced line-shapes. The spectral broadening correlation functions for the

third order response in Eqs. (6.9-6.14) are given in terms of the line broadening functions g(t).

A single-exciton propagation Green’s functions G describes free-field density matrix dynamics

in the singly-excited manifold due to fluctuations of inter-band couplings. Various levels of theory

have been developed to describe system excited state dynamics with fluctuations. Using the second

order perturbation theory within the Markovian approximation, the Green’s function satisfies the

Redfield equation

d

dt
Ge4e3,e2e1 = −iδe4e2δe3e1ωe2e1Ge2e1,e2e1 +

∑
e′′e′

K
(R)
e4e3,e′′e′

Ge′′e′,e2e1 . (6.15)

HereK(R) is the Redfield relaxation superoperator. This type of equation may lead to non-physical,

negative or larger than 1 exciton probabilities for specific choices of K(R). We therefore use the

secular approximation which decouples the density matrix populations and coherences. In the

secular approximation we have

K(R)
e4e3,e2e1 = (1− δe4e3)δe4e2δe3e1γe4e3 + δe4e3δe2e1Ke4e2 . (6.16)

The Green’s function is then given by

Ge4e3,e2e1(t) = (1− δe4e3)δe4e2δe3e1e
−iξe4e3 t + δe4e3δe2e1 [e

−Kt]e4e2 , (6.17)

whereK is the population transport rate matrix: its elementKe4e2 denotes the exciton transfer rate

from state e2 to e4, while the diagonal elements satisfy Kee = −
∑

e′ Ke′e. Population relaxation

has been incorporated by specifying the transport rates between the single-excited states of the

effective electronic oscillators, thus giving rise to lifetime broadening.

In our simulations we use the Markovian approximation for the off-diagonal fluctuations. All di-

agonal fluctuations are included into the spectral broadening functions. Only life-time-broadenings

are then included in the dephasing parameters γ which gives γab = (Kaa+Kbb)
2 . While the relax-

ation parameters can be calculated using a microscopic bath model of the off-diagonal Hamiltonian

fluctuations [191], we have fitted the rate matrix directly for our phenomenological model.

The nonlinear signals are then calculated using Eqs. (6.9-6.14) [194], which allows to properly

treat bath correlations and exciton transport, respectively. The fast mode of the Brownian oscilla-

tor is the main source of exciton transport. The static mode induces spectral diffusion and is thus

responsible for Gaussian spectral line-shapes. The dephasing rates γ have been used to include

only finite lifetime contributions to the dephasings. All other dephasing-correlation contributions

enter through the line-shape functions φ and g(t).

The calculation of the third order nonlinear response functions requires knowledge of bi-exciton

states f , and population transport rates. These are unavailable from the linear spectrum and

there is no straightforward procedure to deduce bi-exciton states. However, the bi-exciton bands
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participate in shaping the two-dimensional spectrum as their signals contribute as convolutions of

single-exciton bands. Thus, we proceed with the model of coupled oscillators which is equivalent

to our primary estimate of four single-exciton states. The doubly-excited states can be separated

into two groups. (i) Double-excitations of the eth oscillator, f ≡ (ee), with energy 2εe + ∆ee.

(ii) Doubly-excited inter-mode state of the whole system, when two oscillators e and e′ are single

excited (so-called combination state), f = (ee′), e ̸= e′. Such states have energy εe + εe′ + ∆ee′ .

Each oscillator can be excited to its own doubly-excited state f = (ee) only from its single-excited

state e, with the amplitude of this transition being the dipole µe,(ee) =
√
2µe+µ

(2)
e . The transition

dipole from the single excited state of the oscillator e into the combination state f = (e′e′′),

e′ ̸= e′′ is given by µe,(e′e′′) = δee′µe′′ + δee′′µe′ . These spectroscopic parameters are sufficient

for the characterization of nonlinear properties of the coupled oscillator model. The spectral peak

positions and amplitudes are now determined by ε, µ (these affect the linear absorption and the

2D spectra), and ∆, µ(2) (which affect only 2D spectra).

In Fig. 6.6 the complete 14-level scheme (4 one-exciton levels of optically active excitonic bands,

4 bi-exciton levels representing intra-band double-excitations, and 6 additional bi-exciton levels

representing inter-band double-excitations) which has been used to model the data is illustrated.

This model is fully consistent with the Hamiltonian in Eq. (6.1). The fitting procedure of the bi-

exciton manifold was performed using experimental 2D signals as follows: First, we consider t2 = 0

delay so that exciton transport does not enter and keep all off-diagonal ∆ee′ = 0 but vary only the

diagonal elements ∆ee to account for the intra-band one- to two-band transitions associated with

each of the bands I to IV. In this way the corresponding energetic positions and intensities are

mge1

| >e1

mge2

mge3

mge4

| >e2

| >g

| >f1

| >e3

| >e4

| >f2

| >f3

| >f4

me f1 1

me f2 2

me f3 3

me f4 4

| >e e1 2

| >e e1 3

| >e e1 4
| >e e2 3

| >e e2 4

| >e e3 4

Figure 6.6: Fourteen-level scheme consisting of four one-exciton states (e), four intra-band

two-exciton states (f), and six inter-band combination states (ee′) to model the experimental

data. Blue horizontal lines mark the combination transitions I-III and II-III at which an energy

off-set needs to be introduced for satisfactorily recovering the experimentally observed coupling

pattern.
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Table 6.2: Energies of combination bands (ϵee′) and their energetic off-sets (∆ee′).

Combination-Band I-II I-III I-IV II-III II-IV III-IV

ϵee′/cm
−1 33875 34155 34595 34820 35060 35290

∆ee′/cm
−1 0 50 0 250 0 0

adjusted for best match of positive and negative contributions to the diagonal peaks in the 1Q2D

signal (cf. Tab. 6.1). In a second step, to model the off-diagonal signal intensities induced by

electronic inter-band couplings, we additionally tune the off-diagonal elements of ∆ee′ (Tab. 6.2).

This allows to uniquely determine the inter-band coupling strengths. The simulation procedure is

summarized graphically in Fig. 6.7.

Iterative readjustment of population transfer rates among all of the bands I to IV involved in

energy transfer is taken into consideration for best numerical agreement with the experimental

data at various delay times, i.e. optimum reconstruction of electronic couplings, relaxation rates,

population streaking, and energy flow in terms of the various Liouville space pathways of the

density matrix trajectory and their corresponding optical response functions. In all calculations

the theoretical response functions have been convoluted with the experimental Gaussian pulses to

account for the finite width of the sub-20 fs pulse envelope taken from the experiment. Overall, the

quality of the computational spectra compared to their experimental counter-parts (Fig. 6.4b and

d, Fig. 6.5b and d) is good and comparable with the trends described in literature [18, 117, 118].

The fit recovers the dynamical line-shapes of diagonal and cross peaks quite adequately. The

distinct line-shapes of SI, SII and absorptive SI + SII signals have been reproduced as well.

A survival probability of an exciton state, given it is prepared in the initial state e is given by

Gee,ee(t). Alternatively the survival time can be estimated using the population transport matrix

(Tab. 6.3). Its diagonal elements are the rates at which the exciton population is depleted from

these states. Due to detailed balance the diagonal rate corresponding to state e is equal to the sum

of all rates (along a column in Tab. 6.3) at which an exciton is transferred to all other states e′. For

instance the rate KIV,IV of band IV covers a sum of exciton population loss-times responsible for

the population gain of bands III, II, and I. In Tab. 6.3 we present inverse rates which correspond

to the exciton survival times. We thus get τIV of 50 fs, τIII of 174 fs, τII of 403 fs. The 8.5 ps

timescale of band I in our model is related to the thermally activated uphill energy transfer. This

is because we do not include exciton relaxation to the ground state. The calculated rates presented

in Tab. 6.3 demonstrate the downward energy transport IV→III, III→II, and II→I. The fastest

pathway, with a rate of 50 fs, is associated with IV→III, where energy transfers from the peripheral

excitons to the excitonic band of the tube core. This equilibrates in approx. 200 fs through the

III→II pathway. The final relaxation into band I (≈400 fs) is the slowest step. For this reason it

is legitimate to state that the balance between bands III and II remains intact even with the II→I

transfer process.

As shown in Fig. 6.4b and d, and Fig. 6.5b and d the dynamic line-shapes can be captured
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Figure 6.7: Stepwise strategy for iterative fitting of the experimental 2D data. (1) Construction

of the linear absorption spectrum by assigning transition energies, transition dipole moments, and

line-shapes (system-bath coupling strengths) to four single-excited states individually coupled to

overdamped Brownian oscillators. This gives an absorptive part 1Q2D spectrum with positive

diagonal peaks (lower panel). (2) Four double-excited states are introduced into the effective

level scheme, to account for intra-band one- to two-exciton transitions associated with each of the

bands I to IV. (3) Six combination transitions are superimposed on the assembled level structure

(schematically depicted for bands I and III in the upper panel) to model off-diagonal signal

intensities induced by electronic inter-band couplings. The shift of a particular combination band

(blue horizontal solid line) with respect to the sum of the two single-excitation energies involved

(blue dotted line), provides a good measure of inter-band coupling strengths. (4) Assignment of

inter-band exciton relaxation rates in an iterative fitting procedure. The lower panel shows the

calculated 1Q2D spectrum for t2 = 500 fs.

satisfactorily with our simulation procedure. The simulation of the relaxation spectra recovers

the off-diagonal peaks and their streaking features. Moreover, the decay of diagonal intensities

is adequately reconstructed for longer times t2. The effective level scheme (Fig. 6.6) immediately

explains band-to-band coupling and its origin due to inter-band combination transitions. From this

point-of-view, fields can act on two different single-excited states (say |e1⟩ and |e2⟩), which can

be seen as a double-excited combination transition |e1e2⟩. The contributions of these combination

transitions exactly cancel in the case of non-interacting single-excited states, i.e. when (i) the

transition moments are kept (i.e. µge2 connects |e1⟩ → |e1e2⟩ and µge1 connects |e2⟩ → |e1e2⟩)
and (ii) the energy of the double-excited (combination) state matches the sum of the two states

involved. By shifting the combination transition energy, one can eliminate this cancelation and

induce a cross peak. This corresponds to ”exciton-repelling/attracting” interactions [195]. The

1Q2D spectra calculated this way are very sensitive to the shift and thus provide a good test for

the coupling pattern between the aggregate bands.
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Table 6.3: Inter-band exciton population transfer rates (in ps−1) as derived from a four band

model and an iterative fitting procedure of the experimental two-dimensional spectra. To facil-

itate intuitive comparison, the arrangement of the relaxation rate matrix follows the frequency

coordinates of the diagonal and off-diagonal peaks in the experimental spectra. An off-diagonal

element of the shown matrix thus corresponds to the population transfer rate from a state in-

dicated by the column into a state indicated by the row. According to the principle of detailed

balance, the rates for up-hill and down-hill transfer (forward and backward rates) between two

states are related by the Boltzmann condition (room temperature). Inverse lifetimes are given

on the diagonal.

I II III IV

I 0.117 -1.20 0 0

II -0.117 2.48 -4.03 0

III 0 -1.28 5.76 -20.0

IV 0 0 -1.73 20.0

While the simulation recovers the off-diagonal features and their streak-like shapes quite sat-

isfactorily, their intensities deviate from experimental data for longer t2-delays, particularly in

the high energy spectral region which will require a moderate re-adjustment of the model. This

difference can be explained by considering that the density of exciton states steeply rises with

increasing energies as predicted from microscopic models of linear spectral properties of cylindrical

J-aggregates [196]. Consequently the assignment of a single effective electronic oscillator to a par-

ticular exciton band is only justified in the low energy region where the level density is sparse. At

higher energies the average oscillator-strength per state will increasingly differ from the effectively

observed transition moment. Furthermore, disorder-induced fluctuations of oscillator-strengths can

be expected to lead to an increasing number of weakly absorbing states whose overall contribution

to the dynamics cannot be neglected. Finally, this tendency is further enhanced as 2D cross peaks

are proportional to the product of the squared transition dipole magnitudes of both of the states

involved in energy transfer (∝ |µi|2|µj |2). As observed in our experiments, this leads to an increase

of cross peak intensity as long as one of the states (in our case band I) is a strong absorber, even

if the transition moment of the corresponding diagonal signal of the other state is weak.

6.6 Conclusions

In this work, 1Q2D coherent electronic spectroscopy has been applied to study the excitonic

energy transfer in the double-wall cylindrical aggregate C8O3. Correlation measurements of exciton

absorption (ω1) and emission (ω3) frequencies have experienced a new dimension in the perception

of the underpinnings that cause exciton scattering and population transfer. Cross peak signals

predominantly emerging in the low-energy off-diagonals (|ω1| > ω3) of the (asymmetric) correlation

matrix provide a direct image of electronic coupling and early dissipation dynamics, model-free and
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without any preconceived bias. The cross peaks for snap-shots at early waiting times t2 illustrate

the first steps of inter-band exciton dynamics smoothed by finite pulse spectral convolution and

very early electron-phonon dephasing. With increasing waiting time t2 and ongoing population

relaxation, the off-diagonal peaks translate into characteristic streaking patterns which become

oriented parallel to the ω1-axis. Taking into consideration that the excitation energy transfer rates

vary over roughly an order of magnitude, it can be concluded that cascading pathways play a

substantial role in the downhill energy transfer of high energy excitons into the lowest energy band

I with intermediate states in the vicinity of band II.

Our measurements have shown that coherent 2D electronic spectroscopy produces a novel

quality of molecular inter-band spectroscopy in the visible optical transition regime. We have

demonstrated how 1Q2D-ES can be used to trace electronic coupling, single-step and sequential

band-to-band energy transfer and, combined with model simulations, reveal transfer rates for the

energy-space excitation flow in a multi-band aggregate. This study is the first rigorous, experimen-

tal/theoretical work applied to the puzzle of ultrafast correlations in the tubular aggregate C8O3,

in aqueous solution and at room temperature, for cross peaks measured at the shortest wavelength

reported so far.

These experiments are superior to spectrally resolved pump-probe (PP) spectroscopy. One

advantage is that 2D-ES as a phase-locked and time-resolved heterodyne FWM technique uses

three excitation pulses, so that a clear timing axis for the coherence time t1 exists along which

the time ordering of the first two pulses can be interchanged. This leads to rephasing photon-

echo spectra SI and non-rephasing oFID spectra SII. Both spectra yield inter- and intra-band

couplings, but the SI spectra eliminate inhomogeneous broadening. On the other hand, the SII

data with their orientation along the anti-diagonal have narrower diagonal line-widths which helps

to identify band III (congested in the SI data) as a (low-intense) disentangled absorber on the main

diagonal. Furthermore, spectrally resolved PP spectroscopy interrogates the intensity dynamics

of the exciton bands and measures the tube-to-tube transfer via population transfer [197]. Thus

the technique reflects the incoherent, downhill population flow from band IV to band I along the

main diagonal trace as it was shown by pump-probe simulations for directed energy transfer in a

two exciton manifold [198]. 1Q2D-ES, however, spans-up the entirety of diagonal and off-diagonal

signals of the correlation matrix and thus measures time-dependent correlations not only along the

diagonal (|ω1| = ω3), but also the cross peaks at |ω1| ̸= ω3.

In summary, we have demonstrated highly directed exciton transfer mediated by electronic

interactions in molecular nanotubes at room temperature. Our study shows how coherent 1Q2D

electronic spectroscopy can be used to trace electronic coupling, single-step and sequential band-

to-band energy transfer, simultaneously employing high spectral and temporal resolution. The

efficient funneling into a single exciton band makes the system an obvious candidate for an artificial

light-harvesting device.
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The important thing in science is not so

much to obtain new facts as to discover

new ways of thinking about them.

Sir William Bragg (1862 - 1942) 7
Rhodamine 6G

This chapter aims at providing a detailed understanding of double-quantum coherence two-dimen-

sional (2Q2D) electronic spectroscopy. The method is utilized to probe the dynamic fluctuations of

electronic states in a solvated molecule at approximately twice the energy of the ground state bleach

transition. The 2Q2D spectrum gives insight into the energetic position and spectral fluctuations

(system-bath interaction) of the probed excited states. Combining it with single-quantum two-

dimensional (1Q2D) electronic spectroscopy enables to determine the strength of the excited state

absorption transition, the relative detuning of electronic states, as well as the dynamics of the single-

quantum coherence. To investigate the correlation of spectral fluctuations in different electronically

excited states we have carried out experiments on a solvated dye (Rhodamine 6G) with 23 fs

pulses centered at the maximum of the linear absorption spectrum. The 2Q2D spectrum reveals

three peaks of alternating signs with the major negative peak located at higher frequencies along

the emission axis compared to the single positive peak. The 1Q2D spectrum on the other hand

shows a negative peak stemming from excited state absorption at lower frequencies along the

emission axis. Analysis of the signal in the homogenous limit fails to account for this observation

as well as the number of peaks in the 2Q2D spectrum. Employing a three-level model in which all

time correlations of the third-order response function are accounted for via second-order cumulant

expansion gives good agreement with both the 1Q2D and 2Q2D data. The analysis furthermore

shows that the fluctuations of the probed electronic states are highly correlated reflecting the

modulation by a common nuclear bath and similarities in the nature of the electronic transitions.

This chapter is based on

• A. Nemeth, F. Milota T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F.

Kauffmann, and N. Christensson. Double-quantum two-dimensional electronic spec-

troscopy of a three-level system: Experiments and Simulations. J. Chem. Phys. 133,

094505 (2010)
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7.1 Introduction

In contrast to SI and SII experiments, which have been discussed up to now, signals along kIII

can only be observed for systems with at least three electronic levels, thus being predestined for

probing electron correlation effects [199]. The three-level system required for the observation of

the 2Q2D signal arises naturally in the spectroscopy of vibrational modes in the IR spectral region,

where 2Q2D spectroscopy has been employed to measure diagonal and off-diagonal anharmonicities

[200]. For electronic transitions one should expect that higher lying electronic states are accessible

within the bandwidth of the excitation pulses (i.e with an energy of ≈ 2ωeg with respect to the

ground state). In mean field models of electronic structure, like Hartree-Fock, there is a state at

twice the HOMO-LUMO energy with a wave function that is given by a double HOMO-LUMO

excitation [199, 201]. We will refer to this type of state as a doubly excited state in this chapter.

Neglecting the coupling to a nuclear bath (see Section 7.4.2), the mean field model predicts that

the signal vanishes due to destructive interference of the two Feynman pathways contributing to

the signal (cf. Fig. 2.1) [199]. Going beyond mean field models, electron correlation and exchange

effects will shift the electronic states, thereby lifting the cancelation of the signal [13, 199, 202].

In systems where electron correlation and exchange effects are small, such as semiconductors or

molecular aggregates, the shift of the second excited state relative to the first gives information

about the bi-exciton binding energy, i.e. the binding energy of the two-electron-hole pair quasi-

particle. The binding energy and the dynamics of the non-radiative two-exciton states have been

investigated in GaAs quantum wells [75, 203].

Recently, 2Q2D electronic spectroscopy has been applied to molecules in solution [204, 205].

In contrast to semiconductors [206], quantum wells [75, 202, 203, 207], and molecular aggregates

[208], molecules often display large electron correlation and exchange effects (of the order of eV)

[209, 210]. The changes of the energy levels due to these effects can thus easily shift the doubly

excited state out of the bandwidth of the laser pulses used in the experiments [13]. However, in

molecules there is usually a large number of electronically excited states in the vicinity of 2ωeg and

some of these states may give rise to a 2Q2D signal. Due to the strong electron correlation and

exchange effects, the interpretation of the frequency shift of the probed excited state relative to 2ωeg

is less clear for molecules than in semiconductors or molecular aggregates. Despite the uncertainty

about the origin of the second excited state, 2Q2D spectroscopy supplies valuable information

about the properties of these excited state transitions including the relevant correlation functions

and state energies. This information is important for the proper interpretation of other nonlinear

spectroscopic experiments as these transitions will modulate any four-wave mixing signal due to the

presence of excited state absorption (ESA). One particularly interesting question is the correlation

of the transition frequency fluctuations of different electronic states.

An area where 2Q2D electronic spectroscopy shows great potential lies in the field of molecular

aggregates. For these systems one usually employs the two-level Frenkel exciton model to describe

the electronic structure [201]. According to this model, the coupled chromophores give rise to an

excited state with a wave function that can be written as a product of single excitations of the
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monomer. This model readily explains the strong ESA feature slightly blue-shifted relative to the

ground state bleach (GSB) in light harvesting complexes [155, 211], whereas the monomer only

shows a broad, weak, and featureless ESA [212, 213]. Theoretical studies in a protein-pigment

complex using the two-level Frenkel exciton model have shown that the 2Q2D spectrum is dom-

inated by signals originating from two-exciton states with a large delocalisation length and thus

can be used to probe the correlation between excited states [208].

However, describing the monomer by a three-level system, i.e. including an excited state with

a transition energy close to twice the GSB, has important consequences for the electronic structure

of the aggregate. In the two-level Frenkel exciton model there is no relaxation between the two-

and one-exciton manifolds since the two-exciton states are formed as products of single excitations

in the site basis [155, 201] (i.e. the two-exciton state will decay with the single exciton lifetime).

The presence of a state with twice the energy of the first excited state in the monomer alters

the two-exciton wavefunction of the aggregate by mixing in of the doubly excited molecular wave

function. This opens up a relaxation pathway via internal conversion from the two-exciton band

down to the first exciton manifold [214] and the spectral position and degree of mixing will control

the rate of annihilation in these systems. It is thus important to characterize electronic states with

approximately twice the energy of the GSB for the constituent pigments, in order to understand

the dynamics of molecular aggregates .

Similar to experiments in inorganic semiconductors, 2Q2D spectroscopy is a promising tool for

the determination of the two-exciton binding energy and the delocalization of the two-exciton states

in molecular aggregates. However, from the discussion above it is clear that detailed information

about the electronic structure of the constituent pigments is needed for such studies. Accordingly,

it is important to experimentally and theoretically investigate the basic properties of this technique

using a simple molecule and study how to extract the energies of the probed excited states from

experiments. By further analyzing the line-shape of the 2Q2D spectrum it becomes possible to

address the correlation of the transition frequency fluctuation of the participating transitions. It

becomes evident from the above considerations that several hitherto unknown problems, including

the choice of two- versus three-level monomer excitation schemes, electron-phonon couplings, and

the nature of excitation dipole fluctuations dramatically affect electron-electron correlations of

molecular double-excitations or two-exciton band structures in molecular aggregates. The special

signatures imprinted onto the coherent signal in 2Q2D spectroscopy by the above mentioned effects

are puzzling and are the key issue to be studied in this chapter.

7.2 Experimental Details

For collecting SI and SII spectra, t1 (i.e. the delay between the first two excitation pulses) is

scanned from -100 to 100 fs in steps of 0.5 fs. For recording 2Q2D electronic spectra, pulses 1 and

2 are scanned simultaneously from 0 to -100 fs in steps of 0.25 fs for a fixed value of t1. Rhodamine

6G solutions with a concentration of 1.7·10−4 M have been prepared with spectrophotometric grade

ethanol (Sigma-Aldrich). No photo-degradation was observed during the course of the measure-
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ments for the employed pulse energy of 3 nJ, corresponding to a fluence of 1.44 · 1014 photons/cm2

or an excitation of 2.24% of the molecules in the sample volume.

7.3 Experimental Results

Figs. 7.1a and b displays rephasing (SI) and non-rephasing (SII) 1Q2D electronic spectra for

Rhodamine 6G. The real and imaginary parts show the typical characteristics of rephasing and

non-rephasing 1Q2D spectra of a simple chromophore. The peaks and the nodal lines are directed

along the diagonal (anti-diagonal) for the rephasing (non-rephasing) spectrum. In the real part

of the total 1Q2D spectrum (SI + SII, Fig. 7.1c) we find a strong positive feature stemming from

ground state bleaching (GSB) and stimulated emission (SE) and a weak, red-shifted negative

feature arising from ESA at ω3 = 18200 cm−1. The elongation of the total 1Q2D spectrum

along the diagonal indicates spectral inhomogenity on the timescale of the experiment [107, 122].

Extending the measurement to longer t2 values reveals the presence of spectral diffusion as the

spectrum acquires a more circular shape (data not shown).
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Figure 7.1: 1Q2D spectra of Rhodamine 6G for t2 = 0 separated into real (upper row) and

imaginary (lower row) part. (a) SI-technique (rephasing 1Q2D). (b) SII-technique (non-rephasing

1Q2D). (c) The sum of these two spectra yields an absorptive real part and a dispersive imaginary

part. Contour lines are drawn in steps of ±5%, starting at 10% signal intensity. Positive

(negative) features are drawn in red (blue). The SI and SII spectra are drawn with their relative

contributions to the 1Q2D (SI + SII) spectra, which are normalized to their respective maximum

absolute value.

The 2Q2D electronic spectrum of Rhodamine 6G, separated into real and imaginary parts, is

plotted in Fig. 7.2. Since the system evolves in a double-quantum coherence during t2, the features
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Figure 7.2: (a) Real and (b) imaginary part of the 2Q2D spectrum of Rhodamine 6G for t1 = 0.

Contour lines are drawn in steps of ±5%, starting at 10% signal intensity. Positive (negative)

features are drawn in red (blue). The spectra are normalized to their respective maximum

absolute value. (c) Projections of the real part of the 1Q2D spectrum (solid) and the 2Q2D

spectrum (dashed) onto the ω3-axis as compared to a spectrally resolved pump-probe spectrum

(circles).

appear at approximately twice the single-quantum frequency ωeg along ω2. The 2Q2D technique

probes non-rephasing Feynman pathways (Fig. 2.1c) and the real part of the 2Q2D signal shows

similarities to the SII technique with respect to the direction of the spectrum (compare to Fig. 7.1b).

For the 2Q2D technique, causality ensures that no signal is generated in the +k1+k2−k3 direction

for t2 < 0 and t3 < 0. This implies that the 2Q2D spectrum only involves a half-sided Fourier

transform, which results in phase-twisted line-shapes (cf. Section 7.4.1). Causality also affects the

SI and SII techniques, and it is firmly established that the real parts of SI and SII spectra display

negative components already for a two-level system [18]. These stem from the dispersive parts of

the optical response and they cancel when SI and SII spectra are added together giving absorptive

line-shapes for the real part of 1Q2D measurements (SI +SII) [18]. Beyond the homogenous limit,

a balancing of SI and SII spectra is not sufficient to ensure absorptive signals since strong system-

bath interactions and a finite Stokes shift also give rise to negative components in 1Q2D spectra

[22]. Our experimental results reveal strong negative features in our SI and SII spectra (Fig. 7.1a

and b) that almost disappear in the total 1Q2D spectrum (Fig. 7.1c). This illustrates the danger of

techniques involving half-sided Fourier transforms. In these techniques it is not generally possible

to use the sign of a specific feature to assign it to a specific Feynman pathway as can be done for

1Q2D spectra [215]. Even in the homogenous limit there is no possibility to construct absorptive

line-shapes for 2Q2D spectra within third-order nonlinear spectroscopy, and there is consequently

no unique connection between the sign of a feature in the 2Q2D spectrum and the sign of the

response function. We argue that the presence of more than two peaks in the 2Q2D spectrum

reflects the phase-twisted line-shapes of the signals in this experiment. Neglecting the weaker

negative feature for a moment, the main negative peak in the real part 2Q2D spectrum is located

at higher frequencies along ω3 compared to the positive one. Using a simplistic interpretation
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based on the Feynman diagrams (Fig. 2.1c) one would interpret this as a blue shift of the ESA

relative to GSB. This is in contradiction with the results obtained by the 1Q2D spectra, where the

ESA contribution is red-shifted compared to GSB and SE, and additional theoretical investigations

are needed to interpret the 2Q2D spectrum.

7.4 Theory

To understand the appearance of 2Q2D spectra, and the relation to 1Q2D spectra, we con-

sider an electronic three-level system coupled to a heat bath. The central quantity in third-order

nonlinear spectroscopy is the third-order polarization [4]

P (3)(r, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dt3dt2dt1E(r, t− t1)E(r, t− t1 − t2)E(r, t− t1 − t2 − t3)R

(3)(t1, t2, t3),

(7.1)

where the response functions are given by

R(3) =

(
i

~

)3

⟨⟨µ|G(t3)VG(t2)VG(t1)V|ρ(−∞)⟩⟩ . (7.2)

Here, µ is the transition dipole moment operator, V is the Liouville space transition dipole moment

superoperator, and G(t) are Liouville space Green functions. Both, the (time independent) transi-

tion dipole moment (super-) operator and the Green functions depend on the particular model and

level structure. For the remainder of this paper we will consider a three-level system with energy

levels |g⟩, |e⟩, and |f⟩, where the |g⟩ → |e⟩ and |e⟩ → |f⟩ transitions have comparable energies.

The potential energy surfaces along an effective nuclear coordinate q for this system are shown

in Fig. 7.3. For this model there are only two unique pathways that are accessible in the 2Q2D

experiment. The corresponding Feynman diagrams are shown in Fig. 2.1c, and the corresponding

four point correlation functions read

R(2Q2D) = R4f −R∗
3f = ⟨⟨µeg|Geg(t3)Veg,fgGfg(t2)Vfg,egGeg(t1)Veg,gg|ρgg(−∞)⟩⟩

−⟨⟨µfe|Gfe(t3)Vfe,fgGfg(t2)Vfg,egGeg(t1)Veg,gg|ρgg(−∞)⟩⟩

= |µeg|2|µfg|2
[
⟨⟨Geg(t3)Gfg(t2)Geg(t1)|ρgg(−∞)⟩⟩ − ⟨⟨Gfe(t3)Gfg(t2)Geg(t1)|ρgg(−∞)⟩⟩

]
. (7.3)

7.4.1 Double-Quantum Two-Dimensional Signals in the Homogeneous

Limit

To illustrate the spectral line-shapes obtained in the 2Q2D experiment, we derive closed form

expressions for the response function R(2Q2D) in Eq. (7.3). If the bath has a short correlation time,
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Figure 7.3: Potential energy surfaces for the |g⟩, |e⟩, and |f⟩ states. The dimensionless dis-

placements along the effective nuclear coordinate q are denoted by de and df . The corresponding

reorganisation energies (λe and λf ) are indicated in the figure. The energies of the levels (denoted

by Ee and Ef ) refer to the vertical transition energies.

we can apply the homogenous (motional narrowing) limit where the average over the four point

correlation function factorizes into averages over the individual propagators [4]. For R4f we obtain

⟨⟨Geg(t3)Gfg(t2)Geg(t1)|ρ(−∞)⟩⟩ ≈ ⟨⟨Geg(t3)|ρ(−∞)⟩⟩ ⟨⟨Gfg(t2)|ρ(−∞)⟩⟩ ⟨⟨Geg(t1)|ρ(−∞)⟩⟩ .
(7.4)

The averaged Green function in the Bloch approximation reads [4]

⟨⟨Gmn(t)|ρ(−∞)⟩⟩ = θ(t) exp (−Γmn) exp (−iωmnt), (7.5)

where ωmn = 1
~ (Em−En), Γmn is a relaxation rate constant, and θ(t) is the step function reflecting

the causality of the response. The propagator and Eq. (7.5) can be Fourier transformed using

standard formulas. Applying the homogenous limit to R4f and R∗
3f (Eq. (7.4)) and taking the

Fourier transform of the propagators in Eq. (7.5) along ω2 and ω3, we obtain the real part of the

2Q2D spectrum in the impulsive limit as

S(2Q2D)(ω2, ω3) =
µ2
feµ

2
eg

(ω2 − ωfg)2 + Γ2
fg

×

{
ΓegΓfg − (ω3 − ωeg)(ω2 − ωfg)

(ω3 − ωeg)2 + Γ2
eg

− ΓfeΓfg − (ω3 − ωfe)(ω2 − ωfg)

(ω3 − ωfe)2 + Γ2
fe

}
. (7.6)

Eq. (7.6) highlights some of the properties of the 2Q2D spectrum in the homogeneous limit. Assum-

ing that all relaxation rates are identical, the signal in the homogeneous limit vanishes if ωeg = ωfe.

101



CHAPTER 7. RHODAMINE 6G

Furthermore, it is clear from Eq. (7.6) that the term corresponding to R4f (R∗
3f ) is not strictly

positive (negative). This is directly analogous to the phase-twisted line-shapes in rephasing (SI)

and non-rephasing (SII) 1Q2D spectra [18]. From the Feynman diagrams in Fig. 2.1c it is obvious

that 2Q2D spectroscopy is a non-rephasing technique, and Eq. (7.6) predicts a spectrum that is

elongated along the anti-diagonal [18, 200, 216]. Fig. 1.1 compares the real parts of the SI, SII,

and SIII techniques for the model discussed above, highlighting the strong similarities between the

SII and SIII techniques originating in the non-rephasing character of these experiments. Neither

the direction of the spectrum nor the phase-twisted line-shapes are related to our particular choice

of Green functions or the application of the homogeneous limit discussed above, but reflect the

properties of the four point correlation functions and causality of the optical response.

Fig. 7.4a shows the 2Q2D spectrum calculated via Eq. (7.6) for the case where |∆ω| > Γ

(∆ω = ωeg−ωfe). The signal is elongated along the anti-diagonal and shows two peaks of different

signs corresponding to the two response functions R4f and R∗
3f . The two peaks are centered at

the same ω2 and displaced by ∆ω along ω3. This case corresponds to the narrow line width limit

where the line width of each transition is much smaller that the splitting between them. In this

narrow line width limit the 2Q2D spectrum can be interpreted with simple arguments related to

the double-sided Feynman diagrams shown in Fig. 2.1c. Turning to the opposite case (|∆ω| < Γ,

cf. Fig. 7.4b) we find that the 2Q2D spectrum changes its appearance substantially. The two main

peaks are no longer aligned at the same ω2 and they move further apart as Γ increases. The same

trend holds for the position of the peaks along ω3. In case the line width is comparable to or larger

than the splitting of the states, the energy difference between the positive and negative peak in

the 2Q2D spectrum is no longer a good indicator of ∆ω.
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Figure 7.4: 2Q2D spectra in the impulsive limit invoking the homogeneous limit and the Bloch

approximation. (a) ∆ω = 100 cm−1, Γ = 25 cm−1. (b) ∆ω = 100 cm−1, Γ = 125 cm−1. Contour

lines are drawn on a linear scale with 5% increments. Red (blue) lines refer to positive (negative)

contributions.

This example shows that the overlap of the two contributing pathways can drastically change

the appearance of the 2Q2D spectrum. Electronic transitions of molecules in solution typically

exhibit a strong coupling to the environmental modes and the total reorganization energy is of
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the order of 500-1000 cm−1. It is clear that the narrow line width limit is never valid for solvated

molecules and we expect that the influence of the overlap of the two response functions is critical for

understanding the 2Q2D spectrum. However, comparing the experimental results (Fig. 7.2) with

the simulations in Fig. 7.4 it is obvious that the homogeneous limit cannot explain the experimental

results even for an arbitrary line-shape function. The simulations in the homogenous limit fail to

account for the number of peaks in the 2Q2D spectrum as well as the different appearance of the

negative feature in 1Q2D and 2Q2D spectra.

7.4.2 Double-Quantum Two-Dimensional Signals within the Cumulant

Expansion

The homogenous limit does not allow for any correlation of bath fluctuations for different time

periods. This level of theory can thus not account for the Stokes shift. In order to incorporate

correlations of transition frequency fluctuations between different periods and for an arbitrary line-

shape as well as finite Stokes shift we use the second-order cumulant expansion [4] to express the

four point correlation functions in terms of line shape functions. The relevant response functions

have been derived elsewhere [10, 47, 217], so we quote the results important for the double-quantum

coherence response functions in our analysis, namely

R4f =(|µeg||µfe|)2 exp {i(ωegt1 + ωfgt2 + ωegt3)}

× exp


−gee(t1) + gef (t1)− gee(t2) + 2gef (t2)− gff (t2)

−gee(t3) + gef (t3) + gee(t1 + t2)− gef (t1 + t2)

+gee(t2 + t3)− gef (t2 + t3)− gee(t1 + t2 + t3)

 (7.7)

and

R∗
3f =(|µeg||µfe|)2 exp {i(ωegt1 + ωfgt2 + ωfet3)}

× exp


−gee(t1) + gef (t1) + gee(t2)− gef (t2)− g∗ee(t3)

+g∗ef (t3)− gee(t1 + t2)− gee(t2 + t3) + 2gef (t2 + t3)

−gff (t2 + t3) + gee(t1 + t2 + t3)− gef (t1 + t2 + t3)

. (7.8)

Here, gab(t) are complex line-shape functions defined as

gab(t) =

∫ t

0

dτ1

∫ τ1

0

dτ2Cab(τ2) (7.9)

Cab(t) =
1

~2
⟨∆Wag(t)∆Wbg(0)⟩ (7.10)

where Cab(t) is the energy gap correlation function and ∆Wag = Wa(q)−Wg(q)−⟨Wa(q)−Wg(q)⟩ is
the energy gap operator. The response functions involving the |f⟩-level depend on three correlation
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functions since we have chosen to set the ground state as a reference potential energy surface. Their

mutual relations depend on the particular character of the bath. In a single Brownian mode model

depicted in Fig. 7.3 rather strict relations apply. The bath interacts with the electronic transition

through a single effective coordinate q which couples to both the rest of the bath and the electronic

transition. The displacement of the effective mode in the electronic state a (a = e, f) is da. The

time evolution of the energy gap operator is given by [4]

∆Wag(t) = U∗
g (t)∆WagUg(t) = ~ωadaU

∗
g (t)qUg(t), (7.11)

where Ug(t) is the nuclear time evolution operator corresponding to the electronic ground state.

Here we elaborate on the simplest case where the bath can be described by a single Brownian

oscillator mode.

For a single harmonic nuclear coordinate the three energy gap correlation functions read

Cab(t) = ωaωbdadb⟨q(t)q⟩. (7.12)

Here ⟨q(t)q⟩ is the autocorrelation function of the generalized coordinate q. The experimentally

accessible quantity is the reorganization energy given by

λa = Saωa =
1

2
ωad

2
a, (7.13)

where S is the Huang-Rhys factor. Assuming that the frequency of the mode is the same in all

states, we arrive at

Cab(t) = dadbc(t), (7.14)

with

c(t) = ω2⟨q(t)q⟩. (7.15)

The three correlation functions (Cee(t), Cff (t), Cef (t)) are not independent but related to the

bath induced fluctuations of the same coordinate. The magnitude of the diagonal correlation

functions Cee(t) and Cff (t) depends on the displacement of the involved state (relative to the

ground state) in direct analogy with the results for a two-level system. The magnitude of the

cross-correlation function Cef (t) depends on the displacement associated with both transitions

|g⟩ → |e⟩ and |g⟩ → |f⟩. Because the displacement can be negative, an anti-correlation is also

allowed.

Extending the above relation to a multimode bath of independent Brownian oscillators one

finds that
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Cab =
∑
j

d(j)a d
(j)
b ω2

j ⟨qj(t)qj⟩ =
∑
j

d(j)a d
(j)
b c(j)(t). (7.16)

In the multimode picture the cross correlation function is determined by the overlap of the dis-

placement vectors da = (d
(1)
a , . . . , d

(N)
a ) corresponding to the two excited electronic states. A cross

correlation function Cef (t) of a multi-component bath is therefore rather freely related to the

self-correlation functions associated with the two transitions.

7.5 Simulations

For our simulations we use a simple parametrization of the different correlation functions.

We use a correlation function Cee(t) with vibrational modes obtained from resonance Raman

experiments [218] (
∑

j λj = 353 cm−1) and three over-damped modes reflecting fast (τG = 40 fs,

λG = 150 cm−1 and τE1 = 100 fs, λE1 = 150 cm−1) and slow (τE2 = 1 ps, λE2 = 100 cm−1)

bath fluctuations, where E and G refer to Gaussian and exponential modes respectively. This

correlation function gives good agreement with the linear absorption spectrum of the |g⟩ → |e⟩
transition. In the next step we assume that the shape of the normalized correlation function is

the same for Cee(t) and Cff (t) and use the displacement of the |g⟩ → |f⟩ transition (df ) as a free

parameter. For a multi-component bath, Eq. (7.16) shows that the form of Cef (t) is only loosely

related to those of Cee(t) and Cff (t). We thus start with a single component bath model, i.e. with

Eq. (7.14), and relax its strict prescription for Cef (t) if it conflicts with experimental evidence.

The remaining parameters of the model are the energy of the |g⟩ → |f⟩ transition, ωfg = ωeg+ωfe,

and the relative transition dipole moment µfe/µeg. The latter cannot be obtained from the 2Q2D

experiment since both pathways depend on the same transition dipole moments (see Eq. (7.6)).

To estimate the magnitude of the transition dipole moments we complement the simulations of the

2Q2D spectrum with simulations of the 1Q2D experiment at t2 = 0.

Figs. 7.5 and 7.6 summarize the simulations of the 2Q2D and 1Q2D experiments on Rhodamine

6G in solution. These simulations employ the finite pulse envelopes used in the experiments and

the cumulant expansion expression for the response functions. The simulations of the 2Q2D spectra

in Fig. 7.5 are in good agreement with the experimental data in Fig. 7.2 and accurately capture

the number of peaks, their signs, energetic positions, and relative intensities. As a consequence of

the phase-twisted line shapes in 2Q2D spectra we observe three peaks even though there are only

two Feynman pathways contributing to the signal. This effect is smaller in the homogenous limit

(Fig. 7.4) and we find that the number of peaks and their relative intensities depend sensitively on

the bath description as well as the difference between ωeg and ωfe. Fig. 7.6 depicts the simulations

of the real and imaginary part of the 1Q2D spectrum in which all pulse overlap effects and the

contributions from the double-quantum coherence pathways have been included. The simulations

reproduce the negative contribution at low ω3 in the real part and the two approximately equally

strong features of opposite sign in the imaginary part. Finally, the simulations reproduce the
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Figure 7.5: (a) Real and (b) imaginary part of the simulated 2Q2D spectrum. Contour lines

are drawn on a linear scale with ±5% increments starting from the 10% level. Red (blue) lines

refer to positive (negative) contributions. (c) Projection of the 1Q2D spectrum (solid) and 2Q2D

spectrum (dashed) onto the ω3-axis.
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Figure 7.6: (a) Real and (b) imaginary part of the simulated 1Q2D spectrum of Rhodamine

6G for t2 = 0. Contour lines are drawn on a linear scale with ±5% increments starting from the

10% level. Red (blue) lines refer to positive (negative) contributions.

energy difference between the peaks of the projection of the 1Q2D and 2Q2D spectrum onto ω3

(cf. Fig. 7.5c).

The simulations clearly reveal that the correlation functions Cee(t) and Cff (t) have to be

very similar in order to match the width of the 2Q2D spectrum. For a single component bath

this corresponds to the case where the displacements in |e⟩ and |f⟩ are almost the same (i.e.

df ≈ de). For the simulations of the 2Q2D spectrum alone we find a good fit using Cff (t) =

0.9·Cee(t) if Eq. (7.14) is applied to obtain the cross correlation function i.e. Cef (t) =
√
0.9·Cee(t).

Contradictory to experimental results, this choice of correlation functions gives rise to a very

narrow ESA contribution in the 1Q2D spectrum. This is not surprising since the ESA pump-probe

spectrum approaches a δ-function as Cff (t) → Cee(t) [219]. Relaxing the single bath component

prescription, but keeping the overall shape of Cef (t) we find a more realistic line width of the ESA

contribution in the 1Q2D experiment with Cef (t) = Cff (t) = 0.9 · Cee(t). The minor change in

the magnitude of the cross-correlation function Cef (t) has a limited impact on the line-shapes in
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the 2Q2D experiment and illustrates the sensitivity of different experiments to different correlation

functions. The simulations thus show that the spectral distribution of the displacements de(ω) and

df (ω) are similar but the average displacement is slightly less in state |f⟩.

Besides the different correlation functions and their relations, an important parameter deter-

mining the appearance of the 2Q2D spectrum is the energy of the |g⟩ → |f⟩ transition. This value
has a profound impact on the 2Q2D spectrum with our realistic choice of correlation functions.

Using Eq. (7.6) and Fig. 7.5, it is tempting to erroneously conclude that the |e⟩ → |f⟩ transition is

blue-shifted relative to the GSB contribution since the strongest negative component in the 2Q2D

spectrum is at high ω3. However, this is in contrast to the 1Q2D spectrum (Fig. 7.6) where the ESA

contribution is seen at lower ω3. It is difficult to understand this apparent contradiction within

the homogeneous limit. The simulations in Fig. 7.4 with a red-shifted |e⟩ → |f⟩ transition also

display a red-shifted negative component in the 2Q2D spectrum (and a red shift in the absorptive

1Q2D spectrum, data not shown). Comparing to the simulations within the cumulant expansion

(Fig. 7.5) it is clear that a red-shifted |e⟩ → |f⟩ transition can also give rise to a negative component

at high energy in the 2Q2D spectrum and a red-shifted negative component in the 1Q2D spectrum.

In our simulations we accommodate these findings by a choice of ∆ω = 500 cm−1, corresponding

to a red shift of the |e⟩ → |f⟩ transition relative to the GSB contribution. In general it is not

possible to extract ∆ω directly from the 2Q2D spectrum if the system-bath interaction is strong

as in the case of electronic transitions in molecules in solution.

The last parameter of the model is the relative strength of the transition dipole moments µfe

and µeg. This value is difficult to estimate from experiments due to the finite bandwidth of the

pulses, pulse overlap effects, and the overlap of positive and negative contributions in the 2Q2D

signal. After determining the correlation functions and ∆ω from the 2Q2D experiments we used

µfe/µeg as a parameter in the simulation of the 1Q2D spectrum. Weak negative features in the

1Q2D spectrum can result from pulse overlap effects, inertial motions, and finite Stokes shift

[22]. We find that these effects, accounted for in our model, are too weak to explain the negative

feature in the 1Q2D spectrum. Rather, the amplitude of the negative feature is controlled by

the |e⟩ → |f⟩ transition dipole moment. To account for the relatively weak ESA feature seen in

the experiments we conclude that µfe/µeg ≤ 0.2. The full analysis of our experiments puts our

results in good agreement with the estimation of the ESA cross section made by Hammond [220],

showing an excited state with an energy of 36000 − 37000 cm−1. These studies also have shown

that the ESA transition has a different polarization compared to the GSB contribution. This could

affect our estimation of the strength of the transition dipole moment. The mutual orientation of

the transition dipole moments will be important for the interpretation of pump-probe anisotropy

experiments [221], but this issue is beyond the scope of the present study.

Fig. 7.5c shows the projection of the simulated 1Q2D and 2Q2D spectra onto the ω3 axis.

The 2Q2D projection shows a clear red-shift relative to the pump-probe signal (which equals the

projection of the 1Q2D spectrum) and a stronger negative contribution. This also reflects the

difference between the two signals seen in the experiment (Fig. 7.2c). Considering the Liouville

pathways underlying these signals (Fig. 2.1) there is no basis for an equivalence of these two

107



CHAPTER 7. RHODAMINE 6G

projections. For instance, the 2Q2D projection lacks a GSB contribution and the positive (R4f )

and negative (R∗
3f ) response functions always have the same magnitude in contrast to the SE and

ESA contributions in pump-probe spectroscopy. This projection can only match the pump-probe

spectrum if one employs the homogenous limit, assumes that all dephasing rates are equal, neglects

the Stokes shift, and supposes that the ratio of the transition dipole moments is µfe/µeg =
√
2.

Using pump-probe spectra in order to phase 2Q2D spectra thus lacks theoretical foundation and

alternative methods must be used as discussed in Section 3.6.

7.6 Discussion

The presence of a 2Q2D signal is unambiguous experimental evidence for the presence of a state

at roughly twice the energy of the optically allowed |g⟩ → |e⟩ transition. Analyzing the line-shapes

gives information about the coupling of the |g⟩ → |e⟩ and |g⟩ → |f⟩ transitions to the bath, their

energies, and the transition dipole moments. However, this analysis does not give any information

about the nature of the electronic excitation. For mean field models, where electron-electron

correlation and exchange effects are neglected, there should be a state at twice the HOMO-LUMO

energy, which can be written as the product of single excitations [201]. However, it is well known

that the exchange and correlation terms can significantly alter the energy of electronic states in

molecules. The exchange term raises the first excited state while having little impact on the

doubly excited state, which is a closed shell excitation [204, 205]. This term, estimated as the

singlet-triplet splitting, is on the order of 2200 cm−1 for Rhodamine B [210] and we expect it to

be of the same magnitude for Rhodamine 6G. Moreover, the electron-electron correlation term in

molecular systems can be substantial [222]. Typically this lowers the energy of the doubly excited

state relative to that of the singly excited state. This effect is particularly strong in polyenes and

carotenoids where the doubly excited state is lowered below the singly excited state upon inclusion

of electron correlations [209]. In our experiment we find that the |e⟩ → |f⟩ transition is red shifted

compared to the |g⟩ → |e⟩ transition by about 500 cm−1. Using a simple estimation of the singlet

triplet splitting, ωS−T = 2200 cm−1 [210], we find that already this value is large enough to shift

the doubly excited state outside the bandwidth of our laser pulses. Additionally, electron-electron

correlation should further lower the doubly excited state, shifting the |e⟩ → |f⟩ transition even

further. Consequently, the state we observe (|f⟩) has little to do with the doubly excited state of

the mean field model, and the energy of the |e⟩ → |f⟩ transition relative to the |g⟩ → |e⟩ transition
should not be interpreted as the interaction (i.e. exchange and correlation) energy in this case, as

has been done in previous publications [204, 205].

The presence of an excited state at roughly twice the energy of the |g⟩ → |e⟩ transition is

important for the interpretation of spectroscopic signals. The presence of an ESA contribution in

the region of the GSB contribution is known for many important molecules such as chlorophylls

[213], bacteriochlorophylls [212], and carotenoids [215, 219] and has also been shown in a large

number of dyes [204, 205]. Depending on the strength, spectral position, and dynamics, these

states may play a role in the analysis of the experiments of these pigments. Unless this transition
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is weak, the analysis of any optical experiment should take into consideration the three-level nature

of the pigment when explaining the ultrafast dynamics. Recently it was shown that to accurately

account for the fast dynamics of the 1Q2D spectrum in β-carotene it is necessary to include an ESA

transition from S2 [215, 219]. The presence of such a transition also has impact on the analysis of

intensity dependence studies involving pump-probe spectroscopy [223, 224].

We have demonstrated in the previous section that it is possible to use the 2Q2D experiment

to obtain the displacement of the excited state |g⟩ → |f⟩ transition (df ), and we found that it

was very similar to the displacement of the |g⟩ → |e⟩ transition (de). Even though the 2Q2D

pathways are of little relevance to experiments like pump-probe outside the pulse overlap region,

the correlation functions and state energies derived from this experiment determine the response

functions relevant to the pump-probe ESA contribution too. These pathways generate signals

with different appearance depending on df . If df = 0, the ESA pump-probe signal will mirror

the SE signal and shift to the blue as t2 increases. If df = de, the pump-probe signal results

in a δ-function ESA spectrum. Beyond the homogenous limit, the dynamics of the bath give

rise to different dynamics of SE and ESA for an arbitrary displacement of state |f⟩. This type

of information is difficult to extract directly from pump-probe spectra for two reasons. First,

the overlap of three pathways contributes to the pump-probe sequence, while only two pathways

contribute to the 2Q2D signal (Fig. 2.1). Second, the information about the energy gap correlation

functions are contained both in the relaxed spectral line-shape and in the change of the line-shape

with waiting time t2. Pump-probe spectra are typically analyzed in the homogenous limit where

the spectral line-shape is independent of t2. As such, the fitting algorithms can only accurately

quantify the relaxed line-shape, and this information is not sufficient to unambiguously determine

the energy gap correlation functions [225].

Our study indicates that the interpretation of the spectra is greatly simplified if the line-shapes

of the individual transitions are featureless, narrow, and display a small Stokes shift. In contrast to

molecules, excitons typically interact less strongly with the bath due to their delocalized excitations

and therefore they show rather narrow spectral line-shapes [146, 226]. This situation is typically

encountered in molecular dimers [227] and aggregates [33, 101, 228]. For molecular aggregates, the

presence of an excited state in the monomer at twice the HOMO-LUMO energy has consequences

for the electronic structure and relaxation pathways in the aggregates. In the two-level Frenkel

exciton model, used to interpret spectroscopy on natural and bacterial light harvesting complexes

[155], the two-exciton state wave functions are formed by a product of single excitations in the

site basis. At high flux, more than one excitation can be present in the aggregate at once. As

the excitons diffuse over the aggregate they may encounter each other and annihilate. Such a

process is only possible if a state |f⟩ absorbing the energy of the two excitons exists. Its presence

may open a new decay channel between two- and one-exciton bands introduced by the |f⟩ → |e⟩
internal conversion, which may be much faster than the one mediated by the |e⟩ → |g⟩ transition.
The spectral position of the |e⟩ → |f⟩ transition in the site basis will thus tune the decay rate

of the two-exciton state and thereby the annihilation rate. This effect has been shown to control

the temperature dependence of annihilation in the LH2 complex [214] illustrating the importance
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of the spectral properties of higher excited states in these biologically relevant pigments. Clearly,

2Q2D spectroscopy could be used to select molecules with an appropriate excited state energy

structure to tune the annihilation dynamics in aggregates.

7.7 Conclusion

The ability of multidimensional spectroscopy to select specific excitation pathways by changing

the order and direction of the excitation pulses makes it a versatile tool for investigation of dynamics

in the condensed phase. Our newly developed setup [78] allows for phase stable experiments

for any time ordering of the excitation pulses. As such we have demonstrated three different

experimental techniques SI (rephasing 1Q2D), SII (non-rephasing 1Q2D), and SIII (2Q2D) on

Rhodamine 6G in solution. Unlike 1Q2D (i.e. SI + SII) spectroscopy, the 2Q2D experiment only

involves pathways that propagate in a double-quantum coherence during t2 and no direct link to

auxiliary measurements such as pump-probe spectroscopy exists. To obtain the correct absolute

phase of the 2Q2D spectrum we exploit the high phase stability of the setup and use the absolute

phase obtained from a 1Q2D measurement carried out directly before or after the measurement of

the 2Q2D signal [78].

The implementation of the double-quantum coherence technique enables direct probing of ex-

cited states at twice the energy of the first optically allowed transition. Detecting a signal in

this experiment provides unambiguous experimental proof for the presence of an ESA transition

within the bandwidth of the excitation pulses. This property of a 2Q2D signal is highly useful in

molecules with congested electronic spectra, where the interpretation of pump-probe results can be

cumbersome [215]. The 2Q2D spectrum reveals two main features of opposite sign directed along

the anti-diagonal. In addition the spectrum reveals a second weak negative peak at lower energy.

The strong positive peak is located at slightly lower frequencies than the GSB contribution (as

seen in pump-probe) and the strongest negative feature is located at higher frequencies. This is

found to be in contrast to the real part of the total 1Q2D spectrum where we find a weak ESA

feature located at lower frequencies than the GSB signal along ω3. Analyzing the results in the

homogenous limit we are able to correctly predict the direction of the spectrum but not the number

of peaks nor the different appearance of the negative feature (ESA) in 1Q- and 2Q2D spectra. To

reconcile these observations it is necessary to go beyond the homogenous limit in the analysis of the

experiments. Employing the cumulant expansion on a three-level system coupled to a heat bath, we

obtain a good fit to both the 1Q2D and 2Q2D spectrum with a model including a red-shifted ESA

transition. Our model correctly reproduces the three peaks seen in the 2Q2D spectrum as well as

their relative intensities, signs, and spectral positions. Our experiments show that the fluctuations

of the two probed states (|e⟩ and |f⟩) relative to the ground state are strongly correlated, reflecting

the modulation by a common nuclear bath and a similar nature of the electronic transitions.

Due to the strong electron-interaction (correlation and exchange) effects in this type of dye, we

find that it is not possible to interpret the shift of the observed higher excited state in terms of a

two-exciton binding energy. Furthermore, our results highlight the complexity of a 2Q2D spectrum
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for samples with strong system-bath interaction, where the overlap between the two contributing

pathways has a strong impact on the spectra and leads to difficulties in their interpretation. How-

ever we show that with proper analysis, 2Q2D spectra provide information about the energies,

system-bath interactions, as well as the transition dipole moments of the probed transition. This

information is needed to account for ESA contributions in other four-wave mixing experiments.

Furthermore, quantifying such states may be important in molecular aggregates where they open

up fast relaxation channels between the one- and two-exciton manifolds.
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All truths are easy to understand once

they are discovered; the point is to dis-

cover them.

Galileo Galilei (1564 - 1642) 8
C8S3

The efficiency of natural light-harvesting complexes relies on delocalization and directed transfer

of excitation energy on spatially well-defined arrangements of molecular absorbers. Coherent exci-

tation delocalization and long-range molecular order are also central prerequisites for engineering

energy flows in bio-inspired devices. Double-wall cylindrical aggregates have emerged as excel-

lent candidates that meet these criteria. So far, the experimental signatures of exciton relaxation

in these tubular supra-molecules could not be linked to models encompassing their entire spatial

structure. Based on the power of two-dimensional electronic spectroscopy, we characterize the

motion of excitons in the three-fold band structure of the bi-tubular aggregate C8S3 through tem-

poral, energetic, and spatial attributes. The double-quantum two-dimensional electronic spectra

of C8S3 aggregates show well-resolved two-exciton resonances of weakly scattering exciton pairs.

The narrow spectral line widths of the two-excitons imply that two excitons scatter elastically and

conserve their populations. Accounting for intra- as well as inter-wall electronic interactions in the

framework of a Frenkel exciton basis, we employ numerical computations using a homogeneous

microscopic model. The combination of 1Q2D and 2Q2D experimental spectra together with sim-

ulations in the framework of the nonlinear exciton equations enables us to characterize the exciton

and two-exciton band structure. Our results suggest that the investigated molecular nanotubes

are an attractive candidate for excitation energy accumulation.

This chapter is based on

• J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauff-

mann, and F. Milota. Excitons and Disorder in Molecular Nanotubes: A 2D Electronic

Spectroscopy Study and First Comparison to a Microscopic Model. J. Phys. Chem. A 114,

8179 (2010)
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8.1 Introduction

A novel ansatz in the development of artificial light harvesters is the transfer of the self-

organization tendency of organic surfactants to molecular dyes [229]. The approach relies on

linking hydrophobic and hydrophilic substituents to aggregate forming molecular dyes with effi-

cient excitonic couplings. Among such amphiphilic (hydrophilic and hydrophobic) chromophores,

the class of cyanine derivatives has the outstanding ability to self-organize into tubular structures

that result from the interplay between the hydrophobic effect and the dispersive interactions be-

tween π-electrons of the cyanine backbone [230]. As illustrated in Fig. 8.1a for a tubular aggregate

formed by the dye 3,3’-bis(3-sulfopropyl)-5,5’,6,6’-tetrachloro-1,1’-dioctylbenzimidacarbocyanine

(C8S3), the spatial structure of the supramolecules can be well characterized on a mesoscopic scale

[189]. In a motif that is typical for molecular nanotubes, the C8S3-chromophores are wrapped

into a double-wall cylinder, with an inner diameter of ≈10 nm, a wall-to-wall distance of ≈4 nm,

and lengths approaching the micrometer scale. The complexes thereby strongly resemble the

rod elements in light-harvesting chlorosomes of green bacteria, which contain a huge number of

bacteriochlorophylls in cylindrical arrangements of comparable diameters and serve to supply the

bacterial reaction center with excitation energy [170, 231].

Even though the idea to use self-assembled tubules for building artificial light-harvesting com-

plexes or to combine them as energy transport wires with photochemical reaction partners is

tantalizing, up to now, experimental and theoretical studies addressing inter-wall exciton trans-

port have not been clearly linked. As in linear aggregates, the spectroscopic properties (like e.g.

narrow linear absorption line-shapes) of cylindrical aggregates are determined by the close spatial

proximity of coupled molecular transition dipoles and the consequent formation of Frenkel-excitons

[160]. However, in contrast to one-dimensional structures, the linear absorption (LA) of a periodic

lattice with cylindrical symmetry splits into a longitudinal (coinciding with the cylinder axis) and

two energy-degenerate transversal transitions (perpendicular to the cylinder axis, cf. Fig. 6.1)

[186, 189]. The isotropic LA spectrum of C8S3 in aqueous solution (Fig. 8.1b) shows two well-

resolved peaks of bands e1 and e2 (located at 16530 cm−1 and 16860 cm−1) and a broad shoulder

at higher energies (band e3). Bands e1 and e2 have been assigned to longitudinal transitions of the

inner and outer cylinder, respectively, with their transversal transitions energetically coinciding

in a high energy wing (band e3). The question arises to which extent this spectral shape can be

regarded as an additive superposition of two single-wall contributions. In contrast to simple dimer

systems, which can be easily classified into weak, intermediate, and strong coupling regimes by

looking at the ratio of coupling strength to dephasing constant [102], this categorization is not that

straightforward in large systems, where non-nearest neighbor couplings have to be considered as

well.

There exist some discrepancies in the available literature dealing with the treatment of band-

mixing effects due to inter-wall electronic couplings. In a combined experimental and theoretical

analysis of C8S3 the inter-wall interactions have been assumed to be weak and treated pertur-

batively [189]. Recently, by looking into the slightly different derivative C8O3 and employing
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systematic experimental two-dimensional electronic spectroscopy studies, our group [29, 33] and

Womick et al. [232, 233] identified off-diagonal peaks in 1Q2D correlation spectra (t2 = 0), in favor

of a non-perturbative nature of electronic inter-wall interactions. Since these partly controversial

results have been claimed for two morphologically slightly different derivatives, the extent of com-

parability is not clearly defined so far, as detailed experimental work on the bi-tubular system

formed by C8S3 that might clarify the conflicting results is missing up-to now. The morphology of

C8S3 is less complicated as compared to the supra-molecular structure formed by the dye C8O3

[29]. The supra-molecular helical structure found in C8O3, which manifests itself by an additional

electronic transition, is absent in the thio-analog C8S3. Thus, the coupling patterns including

diagonal and off-diagonal peaks in 2D correlation and relaxation spectra can be expected to be less

congested and more clearly arranged. This makes the simulation of the two-dimensional response

feasible on the basis of an atomistic model for the first time.

The information that can be obtained from linear absorption spectra is restricted to line-shapes

and energetic positions of single-exciton states. To access higher exciton manifolds, one has to resort

to nonlinear methods such as 2D-ES. The spectroscopy of doubly-excited states allows to access

specific geometric and dynamic parameters and yields information about correlations and distinct

relaxation patterns. The most prominent example in this context are the fast relaxation pathways

of doubly-excited DNA optimized to avoid genetic damage even under high levels of sunlight

radiation [234]. This phenomenon is also very important for the photoprotection of photosynthetic

reaction centers (RC) [235]. In photosynthetic antenna chlorosomes, however, the opposite case is

beneficial: two or more excitations must have weak scattering and relaxation in order to accumulate

the energy, which is transferred later to the RCs, within the antennae. These antennae would be

very inefficient, if only one excitation per ≈ 100000 molecules survived.

The accurate characterization of excitation transport and relaxation is central in the search for
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Figure 8.1: (a) Chemical structure of the monomer and a cryogenic transmission microscopy

image of the aggregated sample C8S3. The curve on the right side shows the horizontally

integrated image gray tone. (b) Experimental (solid black) and simulated (blue) linear absorption

spectrum, together with the stick spectrum of the double-wall (blue), the inner (red), and outer

(green) cylinder. The experimental excitation spectrum is shown as black dashed line.
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efficient synthetic molecular photon energy conversion devices. Tightly bound molecular aggregates

are promising candidates for primary photon harvesters. In molecular aggregates, intermolecular

interactions create collective excitations termed excitons, that can be grouped in bands according

to the number of excitations (i.e. (one-) exciton band e, two-exciton band f , etc.). Strongly

bound aggregates feature narrow spectral line shapes as a consequence of excitation delocalization

leading to averaging over individual fluctuations [226]. Due to molecular flexibility the phonon

degrees of freedom on the other hand are limited to intramolecular vibrations, which are localized

on individual molecules. Therefore, the non-radiative exciton decay is inhibited by the weak overlap

of exciton and phonon wave functions.

In this chapter, detailed 1Q2D and 2Q2D experiments on the three-fold band structure of

C8S3 aggregates are presented in conjunction with a novel theoretical-numerical simulation. A

key point of the present work is to explore the nature of excitonic inter-wall couplings and wave-

function mixing that determine the particulars and details of the optical exciton dynamics in

C8S3. We find evidence for electronic inter-wall interactions and their spectroscopic signatures

from an atomistic computational analysis of 1Q2D electronic correlation and relaxation spectra.

By applying 2Q2D-ES signatures of exciton correlations in C8S3 aggregates are investigated. The

third-order nonlinear signals are reconstructed by a microscopic model employing a double-wall

cylindrical structure [189]. The experiments in combination with the microscopic cylindrical model

simulations specifically trace spatio-temporal excitonic transfer and are therefore a realistic exten-

sion of previous simulations performed on single-wall cylinders and linear spectroscopic properties

[186, 196, 197, 236]. In addition, the model is superior to the coupled multi-level energy scheme

employed in previous works [29, 33], that used experimental input quantities from 1D and 2D

spectroscopy in the absence of structural information and energy-space relations.

8.2 Experimental Details

For all experiments, C8S3 was dissolved in water and gently stirred for one week under ex-

clusion of light. This stock solution (c= 5 · 10−4 mol/l) was diluted with water (1:1) before the

measurements to yield an absorption of ≈0.4 in the maximum. As can be seen by comparison with

the spectrum of our excitation pulses (Fig. 8.1b), the spectral bandwidth allows to cover each of

the three absorption bands with at least 80 % of the maximal spectral pulse intensity. Due to the

huge disparity in spatial dimensions, tubular aggregates tend to align along the flow direction in

thin liquid films even at relatively low flow speeds. By switching the light polarization between

parallel and vertical to the jet, this allows preferential excitation of either longitudinal or transver-

sal transition moments (for which we use the terminology parallel respectively vertical excitation

in the following).

For the two-dimensional experiments, the output of the NOPA was tuned to 17100 cm−1

(∆ωFWHM = 1500 cm−1, ∆t = 17 fs). To reduce unwanted higher-order effects and non-resonant

signals from the solvent and to prevent the sample from too fast photodegradation the input beam

is attenuated by a ND filter (after the NOPA) to yield not more than 0.5 nJ of energy in each
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of the excitation pulses. This energy corresponds to a fluence of 2.2·1013 photons/cm2 for each

excitation pulse, which results in excitation of 0.08% of the molecules. 1Q2D spectra have been

recorded by scanning the t1-delay from -200 fs to +200 fs in 0.5 fs steps, while t2 is stepped from

0 to 100 fs in steps of 0.25 fs for recording 2Q2D spectra.

8.3 Computational Details

8.3.1 Construction of a Microscopic Model

Essential aspects of the relaxation dynamics in tubular aggregates may be presumed to origi-

nate from site disorder and the consequent variation of the spatio-energetic exciton characteristics

across the spectrum. In contrast to the assessable number of coupled pigments in most of the

natural antennas currently studied in nonlinear experiments [237, 238, 239], molecular nanotubes

are huge with respect to their building-blocks. The sheer number of molecules building up the

tubular structure is an obstacle in any theoretical approach that aims to account for individual

site-properties, like site-orientation or static site-disorder.

In C8S3, roughly one hundred sites fill a tubular volume of one nanometer length [189, 230],

so that roughly 104 sites would be needed to set up a reasonably converged structure with a

length to diameter ratio of approx. 10:1. An atomistic calculation of the nonlinear response of N

excitonically coupled sites requires explicit information of the N single- and the N(N-1)/2 double-

excited eigenstates [47]. Even though we clearly perceive disorder effects from the streaking of

the diagonal and off-diagonal peaks in the experimental two-dimensional electronic spectra, a

simulation of nonlinear spectra within a microscopic model that includes disorder effects is too

expensive. Therefore, in order to keep the computational expenses manageable, we employ an

infinite model in the homogeneous limit.

To recover the structural motif of the nanotubes in our simulations we employ a one-dimensional

periodic infinite system with a unit cell containing two rings of sites. Each site represents a

monomer building up the cylindrical aggregate. The inner (outer) cylinder has a diameter of

10.8 nm (15.6 nm) and contains 2 (4) sites per ring. Subsequent rings are rotated by 9◦ (18◦)

and translated along the cylinder axis by 0.0585 nm (0.065 nm) in the inner (outer) cylinder. The

monomers are modeled as two-level quantum systems with a transition frequency of 18840 cm−1

and are characterized by a dipole moment represented by two charges (q = ±0.34 e) separated

by 0.7 nm [189]. The angle between the cylinder axis and the transition dipole is 46.2◦ (36.2◦)

in the inner (outer) cylinder. Each site is coupled to a harmonic bath (an overdamped Brownian

oscillator with a timescale of 50 fs) by a strength of 500 cm−1 [4]. To simulate the infinite system

we apply periodic boundary conditions along the cylinder axis, which gives Bloch-type exciton

states with a lattice wave vector κ [240]. Since the optical wavelength is usually much larger than

the exciton spatial coherence length, only excitons with near-zero lattice wave vector κ = 0 carry

non-zero transition amplitude.

One unit-cell of the double-wall cylindrical structure in our model contains 112 sites, leading
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to 112 exciton sub-bands in the whole exciton band. However, the cylindrical symmetry limits

the number of optically relevant excitons. For a single cylinder only three excitons from different

sub-bands are optically active. The lowest-energy κ = 0 exciton is polarized parallel (∥) and

the two degenerate higher-energy κ = 0 excitons are polarized perpendicular (⊥) to the cylinder

axis (Fig. 8.1b). The splitting between these transitions is inversely proportional to the cylinder

diameter. Accordingly, the longitudinal and transversal transitions of the inner cylinder (∥i and
⊥i) are separated further in energy than the respective transitions of the outer cylinder (∥o and

⊥o). Upon combining the two cylinders to a double-wall structure the two parallel sub-bands (∥i
and ∥o) retain their positions and intensities, whereas the two perpendicular sub-bands (⊥i and

⊥o) mix and can no longer be attributed to individual cylinders. The optical intensity of the

lower energy perpendicular sub-band thereby tends to zero, justifying its neglect for the remainder

of this chapter. Overall, only three peaks, corresponding to the longitudinal transitions of the

inner and outer cylinder and a transversal transition stemming from both walls can be discerned

in the linear absorption spectrum. We will refer to them by excitons e1, e2, and e3, respectively.

Inhomogeneous broadening was accounted for in the simulations by convoluting the homogeneous

spectrum with a Gaussian function in time domain with a frequency-dependent width of the form

exp (0.0019(ω − 14700)). The simulated linear absorption spectrum agrees well with experiment

(Fig. 8.1b).

8.3.2 Modeling Spectral Properties in the Homogenous Limit

To reconstruct the linear as well as nonlinear signals of C8S3 within a microscopic (homogenous)

model, we employ a one-dimensional periodic lattice (structural parameters as described above),

whose unit cell contains two circular arrangements of transition dipoles. In the following, we label

the sites inside a single unit cell by indices m and identify each cell by its position vector R.

Each chromophore is treated as an identical two-level system. Due to translational invariance, the

chromophore coupling Jmm′(R−R′) is a function of the distance between the cells R and R′.

The real-space Hamiltonian is [50]:

Ĥ =
∑
RR′

∑
mn

Jmn(R−R′)B̂†
RmB̂R′n +

∆

2

∑
R

∑
m

B̂†2
RmB̂2

Rm, (8.1)

where B̂†
Rm is the exciton creation operator on the mth chromophore in the Rth cell, and B̂Rm is

the conjugate annihilation operator. We use Boson statistics for the excitons with commutation

relations [B̂Rm, B̂†
R′n] = δmnδRR′ . This model is called soft-core boson model. The first term in

the Hamiltonian represents one-exciton site energies ϵ = Jmm(0) and resonant interactions, while

the second term is a double-exciton binding parameter: taking ∆ → ∞ we recover the two-level

chromophore model.

The one-exciton states of this system are the Bloch states with wavefunctions

Ψqλ
Rm =

1√
L
e−iqRϕmλ(q), (8.2)
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where L is the number of unit cells. Each eigenstate has a pair of quantum numbers qλ where

λ denotes different Davydov’s subbands in the one-exciton band, and q = π
L [−1, 1], with a step

δq = 2π
L , is the momentum. ϕ are the one-exciton states of a unit cell:

∑
n

Jmn(q)ϕnλ(q) = ϵλ(q)ϕmλ(q), (8.3)

where

Jmn(q) =
∑
R

eiqRJmn(R), (8.4)

and ϵλ(q) is the exciton energy at λ Davydov’s subband.

Exciton response to the optical fields is given in terms of many-exciton propagators - the

exciton Green’s functions. The single-exciton Green’s function is Gqλ(t) = θ(t)e−iϵλ(q)t−γλ(q)t,

where γλ(q) is the exciton dephasing. The linear response function essential for calculating the

linear absorption and linear dichroism spectra is given by [4]

R(1) =
∑
λ

|µλ|2Gλ(t), (8.5)

where µλ = L
∑

m µmϕmλ is the single-exciton transition dipole (the summation is over a single-

cell). Note that we assumed La ≪ λ̄, where a is the lattice constant and λ̄ is the optical wavelength.

Thus only zero-momentum exciton states contribute to the response and the q = 0 parameter can

be neglected.

The third order response also depends on the double-exciton states. An explicit calculation of

the doubly-excited states of an infinite system would require introducing an additional lattice wave

vector corresponding to the translational symmetry of an exciton pair. The alternative quasiparticle

picture allows to avoid this extension by considering the excitons as interacting particles [50, 191].

This is accomplished by using the Heisenberg representation for the exciton polarization operator

and expanding the Heisenberg equation of motion for the polarization in the incoming optical field.

The solution of the equation allows to calculate the third order response functions and to express

the two-exciton resonances using the exciton scattering matrix Γ via the Dyson equation. Using the

quasi-particle representation, the third order response can be calculated from the Green’s function

solution of the Nonlinear Exciton Equations (NEE) [50, 241]. For the phase-matching direction

kI = −k1 + k2 + k3 we find

R
(3)
I (t1, t2, t3) =

∑
λ4λ3λ2λ1

∑
λ′′
2 λ

′
3λ

′
2λ

′
1

µλ4µλ3µλ2µλ1

×
∫ ∞

0

dτGλ4(t3 − τ)Vλ4λ′
1λ

′
2λ

′
3
G∗

λ′
1
(τ)G

(Y )
λ′
2λ

′
3,λ

′′
2 λ3

(τ)G
(N)
λ′′
2 λ

′
1,λ2λ1

(t2)G
∗
λ1
(t1). (8.6)

Here V is the ”scattering potential” obtained by transforming the second term in the Hamiltonian

to the single-exciton eigenstate basis, G(Y ) is the double-exciton Green’s function, and G(N) is the

119



CHAPTER 8. C8S3

single-exciton density-matrix Green’s function; both in the single-exciton basis. This expression

reflects the interaction and propagation sequence in third order response, i.e. the first interaction

generates one exciton which propagates according to G∗, the second interaction generates a density

matrix in single-exciton space that propagates according to G(N). After the third-interaction we

have factorized the propagation into G∗
λ′
1
and G

(Y )
λ′
2λ

′
3,λ

′′
2 λ3

to account for double-exciton states.

These particles finally interact through the scattering potential and generate the signal at λ4.

Similar to the linear response, we included only the zero-momentum states which do interact with

the field.

To avoid the explicit calculation of G(Y ) , which involves finding all double-exciton states, we

describe their resonances using the exciton scattering matrix Γλ4λ3λ2λ1 . In the frequency domain

we have

G(Y )(ω) = G(0)(ω) +G(0)(ω)Γ(ω)G(0)(ω), (8.7)

where G
(0)
λ4λ3,λ2λ1

(ω) = δλ4λ2δλ3λ1Iλ2λ1(ω) is the free-double-exciton Green’s function (when exci-

tons do not interact) with Iλ2λ1(ω) = (ω − ϵλ2 − ϵλ1 + iγλ2 + iγλ1)
−1.

The response function using this scattering matrix after applying double Fourier transform is

R
(3)
I (ω1, t2, ω3) =

∑
λ4λ3λ2λ1

∑
λ′
2λ

′
1

µλ4µλ3µλ2µλ1Gλ4(ω3)

×Γλ4λ′
1λ

′
2λ3

(ω3 + ϵλ′
1
+ iγλ′

1
)Iλ′

2λ3
(ω3 + ϵλ′

1
+ iγλ′

1
)G

(N)
λ′
2λ

′
1,λ2λ1

(t2)G
∗
λ1
(ω1). (8.8)

The scattering matrix is calculated using the Dyson equation and its final form for two-level

molecules is:

Γλ4λ3λ2λ1(ω) =
∑
mn

ϕmλ4ϕmλ3ϕnλ2ϕnλ1 [D
−1(ω)]mn (8.9)

and

Dmn(ω) =
1

L

∑
q

∑
λ2λ1

ϕmλ2(q)ϕmλ1(−q)ϕ∗
nλ2

(−q)ϕ∗
nλ1

(q)

ω − ϵλ2(q)− ϵλ1(−q) + iγλ2(q) + iγλ1(−q)
. (8.10)

The exciton density matrix Green’s function is obtained from the Redfield equation for the density

matrix [191]:

d

dt
ρλλ′ = −i(ϵλ − ϵλ′)ρλλ′ −

∑
λ′′λ′′′

Kλλ′,λ′′λ′′′ρλ′′λ′′′ , (8.11)

where K is the Redfield relaxation rate matrix. We use the secular approximation for the density

matrix, so that the populations (diagonal elements in the density matrix) and the coherences (off

diagonal elements in the scattering matrix) evolve independently. The populations follow the Pauli

master equation and the coherences show exponentially damped oscillations. The Redfield rate

matrix then attains the form:
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Kλλ′,λ′′λ′′′ = δλλ′δλ′′λ′′′Kλλ,λ′′λ′′ + δλλ′′δλ′λ′′′(1− δλλ′)γ
(N)
λλ′ . (8.12)

Kλλ,λ′′λ′′ is the population transport rate from exciton state λ′′ to λ and γ
(N)
λλ′ is the dephasing

rate for inter-band coherence (i.e., coherence between single exciton states).

The final signal is obtained by convoluting the response function with the envelopes of the

optical fields (semi-impulsive limit). The signal expressions become very simple if pulse overlapping

regions can be neglected. We then have

SI
(3)(ω1, t2, ω3) =

∑
λ4λ3λ2λ1

∑
λ′
2λ

′
1

µλ4µλ3µλ2µλ1 × E∗
4 (ϵλ4 − ω4)E3(ω3 − ϵλ3)E2(ω2 − ϵλ2)E

∗
1 (ϵλ1 − ω1)

×Gλ4(ω3)Γλ4λ′
1λ

′
2λ3

(ω3 + ϵλ′
1
+ iγλ′

1
)Iλ′

2λ3
(ω3 + ϵλ′

1
+ iγλ′

1
)G

(N)
λ′
2λ

′
1,λ2λ1

(t2)G
∗
λ1
(ω1).

(8.13)

Similar expressions can be derived for SII and SIII. Calculation of the signal requires knowledge

of the relaxation parameters. These are calculated assuming that each chromophore is coupled

to a statistically independent bath represented by a single overdamped Brownian oscillator. It is

characterized by a spectral density of transition energy fluctuations, ϵ̃(t) [178]:

C ′′(ω) =
1

2

∫
dteiωτ ⟨[ϵ̃(t), ϵ̃(0)]⟩ = 2l

ωΛ

ω2 + Λ2
. (8.14)

The relaxation rates in real space then can be calculated using the second-order perturbation

theory in fluctuations and taking the Markovian (fast fluctuation) limit. For our system, using the

auxiliary function [191]

M (±)(ω) =

∫ ∞

0

dteiωt

∫
dω

2π
C ′′(ω)

[
coth

(
β~ω
2

)
cos(ωt)∓ i sin(ωt)

]
, (8.15)

we obtain

γλ =
∑
λ′

M (+)(ϵλ − ϵλ′)ϕλλ′ , (8.16)

Kλ′λ′,λλ = 2ReM (+)(ϵλ − ϵλ′)ϕλλ′ , (8.17)

where ϕλλ′ = η
∑

n ϕ
2
nλϕ

2
nλ′ . For the inter-band coherences we neglect the pure dephasing and use

γ
(N)
λλ′ = 1

2 (Kλλ,λλ + Kλ′λ′,λ′λ′). The parameter η = L−1 vanishes for the limit L → ∞. This is

physically justified since relaxation in infinite systems reflects a coherent act over the whole infinite

set of molecules with the probability vanishing for such an event. However, realistic systems with

moderate disorder are characterized by some coherence length κ, where the realistic wavefunctions

are delocalized. We thus use η = κ−1 and leave this number as a fitting parameter.

The approach presented here bears considerable advances compared to the effective model of

coupled oscillators used in the analysis of 1Q2D electronic spectra of C8O3 [29, 33] (cf. Chapter 6).

On the one hand, the new treatment uses the Green’s function solution of the nonlinear exciton
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equations (NEE) and the exciton scattering matrix for the description of the double-exciton reso-

nances. On the other hand, the bi-tubular architecture of C8S3 and its energy-space coordinates

are taken into account explicitly in this simulation which yields solutions for 1Q2D and 2Q2D

spectra in the limit of periodic boundary conditions.

8.4 Results and Discussion

8.4.1 1Q2D Correlation and Relaxation Patterns

Fig. 8.2 shows the real part of the complex 1Q2D signals recorded for both parallel and vertical

excitation. The linear absorption spectrum is reflected for t2 = 0 in the signals along the diagonal

(|ω1| = ω3), which divides the plots into two triangular parts (|ω1| > ω3 and |ω1| < ω3). Note

however, that signals in 2D spectra scale differently with the transition dipole moment than those

in LA spectra (|µi|4 vs. |µi|2). Additionally, the intensities of the 2D signals are reshaped by the

finite pulse spectrum. Depending on whether the system evolves in a one-exciton coherence or a

coherence between a one- and a two-exciton state during t3, absorptive 1Q2D-ES signals of coupled

absorbers feature both positive and negative contributions [10, 48, 183]. In the language of pump-

probe spectroscopy, 1Q2D peaks with negative sign are related to excited-state absorption (ESA)

from the one- into the two-exciton band, whereas positive features can be assigned to ground state

bleaching (GSB) and stimulated emission (SE) [48, 191]. Since transitions between successively

higher exciton manifolds are blue-shifted with respect to each other, ESA contributions to the

1Q2D signal become shifted off of the diagonal into |ω1| < ω3. The 1Q2D absorptive correlation

spectra shown in Fig. 8.2, show this effect for all three bands e1, e2, and e3.

The most striking 1Q2D signals are the off-diagonal peaks being indubitable fingerprints of

electronic couplings [29, 31, 33]. Due to these off-diagonal cross-intensities, the correlation spectra

(t2 = 0) in Fig. 8.2 are asymmetric with respect to the diagonal. For parallel excitation (Fig. 8.2a),

the two strong peaks e1 and e2 of the LA are recovered along the diagonal, and we observe around

10% of the maximal intensity at the band e1/band e2 off-diagonal coordinate in |ω1| > ω3. Peak

e3 can not be seen as diagonal peak in 1Q2D-ES under parallel excitation, it is however directly

detectable from the cross peak signal between bands e2 and e3 whose intensity is proportional to

|µe2 |2|µe3 |2. Also for vertical excitation (Fig. 8.2b), the cross-intensities for e1/e2 and e2/e3 in

|ω1| > ω3 are non-zero. The diagonal signal of band e3 is clearly seen in Fig. 8.2b, although its

intensity is substantially weaker than one would expect from its corresponding peak intensity in

linear absorption. Generally, off-diagonal intensities reveal electronic couplings between the bands

in the aggregate, the variation in the coupling patterns reflecting the dominant orientations of

transition dipole moments. Vertical excitation increases the relative contribution of band e3 and

highlights its correlation mostly with the longitudinal transition of the outer cylinder (band e2).

Apart from the differences in the correlation plots (t2 = 0) for parallel and vertical excitation,

the temporal evolution of the relaxation spectra (t2 = 50, 200, and 500 fs) is governed by compa-

rable tendencies. A striking feature is the growing-in of an intense cross peak in |ω1| > ω3, that
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Figure 8.2: Absorptive parts of 1Q2D electronic spectra recorded with excitation pulses polar-

ized (a) parallel and (b) vertical to the flow direction. The upper row displays experimental data,

whereas simulations are shown in the lower row of each panel. From left to right each row shows

the 1Q2D correlation spectrum (t2 = 0 fs) and relaxation spectra recorded for t2-delays of 50,

200, and 500 fs, respectively. Contour lines are drawn in ±5% intervals, starting at 10% signal

intensity. Red (blue) contours indicate positive (negative) features. All spectra are normalized

to their maximum absolute value.

arises via exciton relaxation from band e2 into band e1 (cf. Fig. 8.2). At increasing t2-delays, the

off-diagonal signals grow in intensity and acquire a more and more elliptic shape with the long

axis parallel to the ω1-axis, thereby extending from the |ω1|-coordinate of bands e1 and e2 far

into higher frequencies. Because of simultaneous energy uphill transfer from e1 to e2 at longer

waiting times (i.e. on a slower timescale), a much weaker off-diagonal feature appears at reversed
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coordinates (|ω1| < ω3). At the same time, the relative intensity of band e2 decreases, while the

relative diagonal peak intensity of band e1 steadily increases. Within 500 fs, the motion of relax-

ing excitons thus reshapes the diagonal signals of band e1 and band e2 into peaks of almost equal

intensity. This is an unbiased observation and a convincing proof of concurrent inter-tube exciton

transfer driven by electronic coupling and relaxation, thereby conveniently illustrating the gain in

information content by spreading the system’s response into two dimensions.

Our experimental findings prompt us to draw the following conclusions. First, 2D electronic

spectra prove that all of the excitonic bands of C8S3 are coupled. Second, intensity growth of cross

peaks with increasing waiting time t2 images ongoing exciton population relaxation. Third, since a

cross peak imaging exciton transfer in a 1Q2D relaxation spectrum is proportional to the product

of the squared transition dipole magnitudes of both of the states involved (∝ |µi|2|µj |2), it permits

to observe the process as long as at least one of the states absorbs strong enough. In our case, the

formation of streaked profiles, despite the only weak diagonal intensities at high frequencies, reflects

the characteristics of excitonic states to substantially change across the spectrum of eigenstates

[228].

As illustrated in Fig. 8.2 the key spectral properties of the experimental 1Q2D signals can be

reasonably reproduced in the homogeneous limit. We recover the asymmetry of the two trian-

gular 2D signal parts. Though the diagonal signal of band e3 is missing for parallel excitation

conditions, its cross-correlation with band e2 is readily perceived. Similar is true for the intensity

rearrangements in the sequence of 1Q2D relaxation spectra.

8.4.2 2Q2D Correlation Spectra

Double-quantum two-dimensional electronic spectroscopy (2Q2D-ES) has been designed specif-

ically to probe correlated dynamics of double-excitations. The properties of the two-exciton band

of molecular aggregates are influenced by exciton-exciton correlations/scattering, which shift them

with respect to the sum of the two contributing excitons. 2Q2D-ES is sensitive to these corre-

lations by yielding a signal only in case the parameters of an exciton pair are not additive for a

two-exciton state, i.e. ϵf ̸= ϵe + ϵe′ and/or µfe ̸= µe′g and µfe′ ̸= µeg [13]. If these conditions

are not met, the two system-field interaction configurations describing 2Q2D-ES (Fig. 2.1c) are

of equal strength and opposite sign, and they exactly cancel. Three types of two-excitons can be

distinguished: (i) Strongly bound biexcitons have non-additive energies resulting in isolated peaks

in 2Q2D-ES. (ii) Weakly scattering two-excitons have negligible shifts from the sum of the energies

of the two excitons involved showing a peak correlated with the energies of the two excitons in

2Q2D-ES. (iii) Non-interacting two-excitons do not show up in 2Q2D-ES.

In the exciton scattering representation of 2Q2D-ES, the first two pulses (delayed by t1) create

two excitons, which propagate and scatter during the second delay time t2. A third pulse then

annihilates one exciton and the last exciton is detected after some delay t3. The third and fourth

excitons are not limited to eigen-excitons due to particle scattering: they may be given by exciton

superpositions. The two-dimensional frequency domain signal SIII(t1, ω2, ω3) is depicted by Fourier

transforming t2 → ω2 and t3 → ω3 while keeping t1 fixed. The spectrum maps doubly-excited
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Figure 8.3: (a) Experimental and (b) simulated real part 2Q2D spectra of C8S3 aggregates for

vertical excitation. Contour lines are drawn in ±5% intervals, starting at 10% signal intensity.

Red (blue) contours indicate positive (negative) features. Both spectra are normalized to their

absolute maximum value. The experimental and simulated linear absorption spectra are plotted

for comparison on the right side of panel (a) and (b), respectively. Dashed horizontal lines mark

the peak maxima in the linear absorption spectra.

resonances along ω2 and both unperturbed and perturbed exciton resonances along ω3.

2Q2D-ES has demonstrated its merits in application to semiconductor quantum wells revealing

detailed information about the energetic positions and dynamics of bound biexcitons and unbound

two-excitons [203, 207]. Generally, the method is most promising for systems featuring weak

system-bath interactions and narrow line-shapes, a situation typically encountered in molecular

aggregates and nanostructured semiconductors. As the system-bath interactions grow stronger

and the line-shapes become broader, the interpretation of 2Q2D signals complicates as outlined in

detail in Chapter 7 [20].

The experimental 2Q2D spectrum of C8S3 aggregates (Fig. 8.3a) reveals exciton resonances and

scattering-induced energy shifts (∆) of exciton pairs from the additive energy values. The direction

of the shift (sign of ∆) can be determined from the relative position of the positive and negative

contributions. The negative contribution appears at higher (lower) frequencies along ω3 than the

positive contribution if ∆ > 0 (∆ < 0), corresponding to exciton-exciton repulsion (attraction).

The blue-shift of the negative signals observed in the 2Q2D spectrum is consistent with earlier

experiments on linear J-aggregates [166]. A remarkable feature in the 2Q2D spectrum of C8S3

aggregates is the similarity in the peak line widths along ω2 and ω3, which map the dephasings of

two-excitons and excitons, respectively. The similar line widths along the two axes imply that the

exciton pairs have the same relaxation pathways as the contributing excitons. Thus, putting more

excitons into the nanotubes does not raise new relaxation channels.

The simulated 2Q2D spectrum is presented in Fig. 8.3b. Comparison with experiment reveals

a good overall agreement of the peak positions, relative intensities, and line shapes. For assigning

the observed peak pattern we resort to narrow homogeneous spectra obtained by reducing the

system-bath coupling strength by a factor of five (Fig. 8.4). All peaks correlate well with the
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Figure 8.4: Simulated 2Q2D spectra of C8S3 aggregates with system-bath coupling set to

100 cm−1 and no Gaussian broadening. Contour lines are drawn in ±5% intervals, starting at

5% signal intensity. Red (blue) contours indicate positive (negative) features. The simulated

linear absorption spectrum is plotted for comparison. Dashed horizontal lines mark the peak

maxima in the linear absorption spectrum.

energies of exciton pairs along ω2, indicating that we do not observe bound biexcitons. Rather,

the observed 2Q2D spectrum signifies weakly scattering excitons, which form distinct two-exciton

sub-bands. The observed two-excitons are composed of two types of sub-bands: ”overtones”, where

the same exciton is doubly excited, and ”combinations”, where two different excitons are excited.

Having three types of excitons (e1, e2, e3), the two-exciton band of these aggregates consists of

six two-exciton sub-bands: three overtone sub-bands, fjj ≈ 2ej (j = 1, 2, 3), and three combination

sub-bands (f12, f13, f23). The three overtone sub-bands appear along the ”diagonal” ω2 = 2ω3.

The remaining four peaks can be assigned to two combination sub-bands. A combination sub-band

yields two peaks that share the same frequency along ω2, but appear at the two corresponding

frequencies along ω3. With this information, we can assign the four peaks to the combination

sub-bands f13 and f23. From the fact that no signals show up between f11 and f22 along ω2, we

can conclude that the combination sub-band f12 is not accessible. This is a direct consequence of

the spatial delocalization of these excitons on the cylindrical structure. Excitons e1 and e2 belong

exclusively to the inner and outer cylinder, respectively, whereas exciton e3 is delocalized between

both cylinders. Therefore, the two-exciton sub-bands including e3 (f13 and f23) are accessible from

the longitudinal exciton sub-bands of both cylinders (e1 and e2). The f12 combination sub-band

thus behaves as coupled harmonic oscillators - it carries no nonlinear signature.

Our microscopic model demonstrates how exciton and two-exciton sub-bands build-up and how

they are mapped in the 2Q2D spectrum. The retrieved properties of the exciton bands allow us to

conclude that these molecular nanotubes may be very efficient energy accumulators. All observed

exciton peaks are related to weak scattering of excitons; no bound biexciton are observed. The

narrow spectral line widths of the peaks in ω2 indicate weak dephasing and decay of exciton pairs,

i.e. their dephasing is of the same order of magnitude as for the constituting excitons. This implies
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that the main exciton scattering mechanism is elastic inter-exciton scattering. For efficient light

harvesting, it is very important that exciton pairs experience repulsion-like interactions. In this

case the decay of interacting exciton pairs into non-interacting excitons of the same energies is

energetically preferable. This is achieved via weak exciton-phonon coupling and implies that the

system is a weakly anharmonic multimode oscillator with respect to excitons.

The interaction with phonons is the main source of relaxation between exciton sub-bands and

exciton decay. In a microscopic description exciton-phonon coupling leads to thermal fluctuations

of the molecular parameters on a multitude of timescales. Fast fluctuations, which are described

in the Markovian limit, are the driving force for energy dissipation. The rate of dissipation is

proportional to the square of the exciton-phonon coupling amplitude. DNA has an efficient pho-

toprotection, since each DNA excitation is only weakly delocalized and may be associated with an

independent DNA unit. Each unit possesses a set of vibrational modes which efficiently dissipate

excitation energy. In large molecular aggregates like chlorosomes or C8S3 aggregates, excitons

are highly delocalized and thus have small overlap with the localized molecular vibrations. Two-

exciton bands representing weak exciton scattering are expected to retain all properties of the

contributing excitons, including their spatial delocalization and, thus, the weak non-radiative de-

cay. Such scattering does not provide new mechanism for exciton decay and completely differs

from photoprotection in DNA. Bound biexcitons on the other hand might be trapping centers for

propagating exciton pairs. The photosynthetic complex LHC-II has strong non-radiative decay

pathways for exciton pairs, which are associated with the bound carotenoid molecules. Thus the

bound biexcitons in LHC-II may be associated with a specific molecule. Due to its distinct na-

ture such a state acquires specific pathways of relaxation and is involved in the photoprotection

processes. The absence of bound biexcitons in C8S3 aggregates is preferable for efficient energy

accumulation.

Slow (static) fluctuations on the other hand reflect equilibrium inhomogeneities. In small ag-

gregates they can be modeled using statistical sampling of diagonal disorder. In periodic systems it

is impossible to include spatially uncorrelated diagonal disorder. Spatially correlated slow fluctu-

ations lead to convolution expressions of spectroscopic signals. This model is reasonable for cylin-

drical nanotubes, since the molecular geometry is very compact and cylinder squeezing, stretching,

or bending results in spatially correlated effects that only weakly perturb exciton transport and

decay. Spatially uncorrelated static fluctuations lead to contraction of the exciton delocalization

length and contribute to an increase in the effective exciton-phonon coupling. This may lead to

formation of deep defects and exciton traps, which in return reduces the energy accumulation

efficiency.

8.5 Conclusions

The present sample is only one out of the available tubular supramolecules. Nevertheless, we

expect our key conclusions to be general, and to hold also for structures that are either spatially

even more complex (like interwoven tubules [29, 101, 233]), or whose detailed microscopic structure
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is tuned toward new morphologies by the admixture of surfactants [101, 242]. In particular, a

simple translation of spectral (energetic) band positions into spatial properties will generally fail

in these huge systems (≈ 104 chromophores as compared to, e.g., 7 chromophores in the intensively

studied Fenna-Matthews-Olson protein [31, 193]), due to the delocalization of excitons induced by

both intra- and inter-wall couplings. It is the consideration of all electronic interactions, in the

framework of an excitonic Hamiltonian basis, which provides an appropriate description of the

experimental data.

Because of intra- and inter-wall electronic interactions, all bands share at least part of their

wavefunction on the inner cylindrical assembly [244]. As band e1 is dominated by (site-) localized

transitions located on the inner tubule, the energy downhill motion of relaxing excitons is associated

with an overall spatial transfer towards the inner wall and, simultaneously, a localization on a

decreasing number of molecular sites. Even for quite large tubular segments, the lower energy

parts of the absorption spectrum are determined by a handful of states only. Thus, the essential

spectral signatures of exciton motion can be fitted either into phenomenological schemes of effective

levels (cf. Chapter 6) [29, 33, 101, 232], or, as demonstrated in this chapter, recovered in the infinite

limit of a microscopic model.

The picture we draw can be readily connected to the recently reported correlated fluctuation of

excitonic bands in a related tubular aggregate [233]. Since we find all exciton wavefunctions to be at

least partly located on one and the same wall, and to consequently overlap in space (i.e. to involve

common molecular chromophores), also their fluctuations share a certain degree of correlation.

Notably, the effect does not necessarily implicate correlated fluctuations of individual molecular

sites. We further note, that even in the presence of disorder, only a relatively small number of

states governs the aggregate’s spectroscopic properties. Combined with the notion that fluctuation

amplitudes become exchange-narrowed for delocalized (excitonic) states, our considerations are

thus in line with experimentally observed inter-band coherences [101, 232], as a consequence of a

slowly dephasing, small ensemble of excitons. In a broader context, our results indicate that for

large excitonic systems, inter-band coherences result from the physics that governs the evolution

of highly delocalized electronic states, and do not necessitate a surrounding protein matrix like in

small natural photosynthetic complexes [42].

This contribution provides a guideline of how excitons in supramolecular systems can be stud-

ied, despite the limits currently set for connecting experimental and theoretical state-of-the-art

methodologies. Though we report on an artificial light harvester that self-assembles in aqueous

solution, it is inspiring to think about likely functional analogies to tubular complexes occurring

in nature [231, 243], which, similarly, do not require any structural templates. Many optical prop-

erties of molecular and atomic systems are solely determined by transitions between the ground

and single-excited states. An accurate description of geometric, spectroscopic, and reaction pa-

rameters, however, requires knowledge on higher excited states as well. Investigating the single-

and double-excited state manifold in a synthetic light-harvesting complex as is done in the present

study can serve as a first step towards a deeper understanding of exciton dynamics, motion, and

relaxation.
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Science may set limits to knowledge, but

should not set limits to imagination.

Bertrand Russell (1872 - 1970)

9
Summary and

Outlook

During the last decade multi-dimensional ultrafast spectroscopies have shown great potential

by opening an increasingly broad experimental window into the structure and dynamics of atomic

and molecular systems on femtosecond and picosecond timescales. The versatility and significance

of two-dimensional electronic spectroscopy relies on the gain of additional information obtained

by spreading the spectra into two frequency dimensions. Important experimental insights have

been obtained by studying line-broadening dynamics in solution [19, 107, 227], revealing electronic

couplings and pathways of energy transfer in natural [31, 239] and artificial [29, 33] light harvesting

complexes, investigating electronic and vibronic coherences [37, 38, 40, 42], and probing exciton-

exciton interactions in semiconductors [27, 28], to name only a few examples. Interpretation to this

rich source of information has been partly provided from close connection of these experimental

achievements with theoretical efforts [36, 43, 48, 145, 191].

The present work summarizes part of our efforts in the field of 2D-ES. The progress thereby ran

parallel on two tracks: on the one hand, improvements in the instrumentation have led to a broader

applicability of the method. By implementing a compact, easy to align, and passively phase-

stabilized setup for recording 2D electronic spectra in three different phase-matching directions

[78], it has become possible to study not only single-quantum but also double-quantum coherences

[20]. On the other hand, the existing methods have been applied to study the electronic and

vibronic dynamics of molecular systems of varying complexity. An electronic two-level system

whose electronic transition is coupled to a low-frequency vibrational mode has served as a starting

point in our investigations. The vibrational wave packet that is induced by excitation with a

femtosecond laser pulse manifests itself in oscillating line-shapes in the 1Q2D spectra [38]. The

observed beating pattern can be attributed to out-of-phase oscillations in the intensities of the

rephasing and non-rephasing signal contributions [37]. In a second step, the line-shape dynamics

of a monomer-dimer system in equilibrium have been investigated [227]. It was found, that exciton
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delocalization effects in the dimer strongly influence the timescale of spectral diffusion. The degree

of complexity reached its maximum in the investigation of pathways and timescales of energy

transfer in double-wall cylindrical J-aggregates [29, 33, 244]. Exciton dynamics in these molecular

nanotubes have been characterized by temporal, energetic, and spatial properties. In addition, the

double-exciton manifold of C8S3 aggregates has been studied by 2Q2D-ES with the goal to gain a

deeper understanding of the electronic structure and dynamics in this class of systems.

New ideas for future directions of research are provided partly from theory and partly from

multi-dimensional techniques in nuclear magnetic resonance and infrared spectroscopies. Due to

difficulties in the experimental realization in connection with the short wavelengths applied, the

realization of new concepts in 2D-ES lags behind comparable developments at longer wavelengths.

The polarization of the excitation pulses is a degree of freedom that has not been fully exploited

yet in the design of 2D experiments. First results have been obtained for light harvesting complexes

[193, 245, 246] and semiconductor quantum wells [247, 248, 249]. In a step towards employing

shaped excitation pulses in 2D experiments, several groups recently developed experimental designs

on the basis of a pulse shaper [77, 250, 251, 252]. Of particular interest will be the combination of

polarization pulse shaping with genetic algorithms to amplify or suppress specific diagonal and/or

cross peaks in 2D spectra [253, 254].

Additional structural and dynamical information can be gained by performing transient 2D

electronic spectroscopy, as has been demonstrated successfully in the infrared spectral region [255,

256]. In these experiments a prepulse induces a non-equilibrium configuration in the system whose

evolution is probed with conventional 2D spectroscopy.

The third-order nonlinear polarization which is probed in four-wave mixing experiments is a

function of three time delays (t1, t2, and t3) or their corresponding frequencies (ω1, ω2, and ω3).

In this study we have restricted ourselves to two-dimensional measurements in which one of the

three variables is held constant while the other two are varied. In principle, however, it is also

possible to vary all three parameters and thereby create a three-dimensional contour map. First

proof-of-principle experiments and calculations have been performed in the visible and infrared

spectral region [257, 258, 259, 260].

Regarding the evolution of multi-dimensional spectroscopies from NMR over infrared to vis-

ible wavelengths, it seems only natural that the development will proceed towards even shorter

wavelengths in the UV and X-ray range. However, a number of experimental barriers have to be

overcome first, so that up to now these considerations exist only in theory [13, 14]. Since many

interesting classes of molecules such as nucleic acids, DNA, amino acids, and proteins, however,

absorb in this spectral region it is definitely worth the effort.
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Zusammenfassung

Während des letzten Jahrzehntes haben multi-dimensionale ultraschnelle Spektroskopien großes

Potential gezeigt, indem sie ein zunehmend breiteres experimentelles Fenster zur Struktur und

den Dynamiken von atomaren und molekularen Systemen auf Femtosekunden- und Pikosekunden-

Zeitskalen öffneten. Die Vielseitigkeit und Bedeutung von zwei-dimensionaler elektronischer Spek-

troskopie beruht auf dem Gewinn an zusätzlicher Information, die man durch Ausweitung der

Spektren in zwei Frequenz-Dimensionen erhält. Wichtige experimentelle Einsichten wurden durch

die Studie von Linienverbreiterungsmechanismen in Lösung, durch die Aufdeckung von elektron-

ischen Kopplungen und Energietransferpfaden in natürlichen und synthetischen Lichtsammelkom-

plexen, die Untersuchung von elektronischen und vibronischen Kohärenzen und die Erforschung

von Exziton-Exziton-Wechselwirkungen in Halbleitern gewonnen, um nur einige wenige Beispiele

zu nennen. Eine Interpretation dieser reichhaltigen Quelle an Information wurde teilweise durch die

enge Anbindung dieser experimentellen Errungenschaften an theoretische Bemühungen erreicht.

Die vorliegende Dissertation fasst Teile unserer Anstrengungen im Bereich der zwei-dimen-

sionalen elektronischen Spektroskopie zusammen. Der Fortschritt verlief dabei parallel auf zwei

Schienen: einerseits führten Verbesserungen in der Instrumentation zu einer breiteren Anwend-

barkeit der Methode. Durch die Umsetzung eines kompakten, einfach einzurichtenden und passiv

Phasen-stabilisierten Aufbaus zur Messung von zwei-dimensionalen elektronischen Spektren in drei

verschiedenen Phasen-angepassten Geometrien wurde es möglich nicht nur Einzelquanten- son-

dern auch Doppelquanten-Kohärenzen zu studieren. Auf der anderen Seite wurden die existieren-

den Methoden angewandt um die elektronischen und vibronischen Dynamiken von molekularen

Systemen unterschiedlicher Komplexität zu erforschen. Ein elektronisches Zwei-Level-System,

dessen elektronischer Übergang an eine niederfrequente Schwingung gekoppelt ist, diente als Aus-

gangspunkt in unseren Untersuchungen. Das vibrationelle Wellenpaket, welches durch die Anre-

gung mit einem Femtosekunden-Laserpuls erzeugt wird, manifestiert sich in oszillierenden Linien-

formen in zwei-dimensionalen Spektren. Das zu beobachtende Schwingungsmuster kann den gegen-

phasig verlaufenden Oszillationen in den Intensitäten der rephasierenden und nicht-rephasierenden

Signalbeiträge zugeordnet werden. In einem nächsten Schritt wurden die Dynamiken der Linien-

formen eines Monomer-Dimer-Systems im Gleichgewicht untersucht. Es wurde gefunden, dass

Exziton-Delokalisations-Effekte im Dimer die Zeitskala der spektralen Diffusion stark beeinflussen.

Der Grad an Komplexität erreichte seinen Höhepunkt in der Untersuchung von Pfaden und Zeit-

skalen des Energietransfers in doppelwandigen zylindrischen J-Aggregaten. Die Dynamiken der

Exzitonen in diesen molekularen Nanoröhrchen wurden mittels zeitlicher, energetischer und örtlicher

Attribute charakterisiert. Zusätzlich wurde das Zweiexzitonen-Band von C8S3-Aggregaten mittels

Doppelquanten-Kohärenz zwei-dimensionaler elektronischer Spektroskopie erforscht, mit dem Ziel

ein tieferes Verständnis der elektronischen Struktur und Dynamiken in dieser Klasse von Sub-

stanzen zu gewinnen.
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• A. Nemeth, V. Lukeš, J. Sperling, F. Milota, H. F. Kauffmann, and T. Mančal.
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