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Introduction

Stochastic programming – or stochastic optimization, as it is often referred to
– is a framework for modelling optimization problems that involve uncertainty in
some way. From historic perspective, stochastic programming already appeared at
the very beginning of (linear) programming and it may be considered as one of the
main driving forces in the research and investigations on optimization in general,
even for particular problems in linear programming. In recent years then stochastic
optimization was employed for even more problems, among them for example financial
and economic applications.

Particularly in economic environments the stochastic nature is often intrinsic, as
for example economic cycles or stocks cannot be foreseen, they have to be modelled
in some way. – On the other side there is a strong wish and evident desire to better
understand,

(i) to model,

(ii) to measure and

(iii) to manage

economic changes and related risks. This holds true for private persons with a basic
interest in economics, thus not only for fund managers in the privileged and respon-
sible position to manage a certain portfolio.

This work is dedicated to stochastic optimization and investigates problems in
stochastic programming, which particularly arise in economic environments:

At the beginning a general framework is provided, which allows measuring un-
certainty in an appropriate and convenient way. Then risk functionals are introduced,
which allow to quantify risk, which go along with economic decisions. Risk function-
als have gained a lot of interest in recent years, as they have very strong regularizing
properties, which are of crucial interest in a stochastic environment, even leading
to robust optimization. It is the further purpose to measure these risks, which are
immanent to problems, where uncertainty plays a prominent role.

Some following sections then will investigate continuity properties and clarify
the question, how the probability distribution impacts the solution of the stochastic
problem in consideration. We will give conditions allowing controlling the impact of
the pertaining distributions on the decisions.

In the situation where stochastic information is not available at all or missing to
some extend, a kind of rule of thumb, which is intuitively clear, is proved, stating that
it is better to equally distribute ones funds than to expose oneself on single stocks.
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Some further investigations on approximating probability distributions complete
the work: The purpose of this last section then is to reduce the general, multidimen-
sional probability distributions to finite distributions, and to make them available for
computational investigations.

The three-step process mentioned above – to model, to measure and to manage –
was introduced by Prof. Pflug. It somehow reminds to Georg W. F. Hegel’s dialectic
(the triad) of thesis, antithesis and synthesis, the basis of getting to knowledge.

In this sense I feel deeply indebted to Prof. Pflug. I want to thank him for
fundamental discussions, for incitement and co-operation during the period where
the foundations of the first step in this tree-step-process – the thesis – were laid.

A. Pichler

Vienna, May 2010
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Acceptability Functionals
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In this section we shall address and elaborate the concept of distances, in par-
ticular distances of probability measures. Actually there exists a broad variety of
distance concepts, Rachev lists 76 metrics for probability spaces in [44]. We have
found that the concept of Wasserstein distances is adapted to the problems we have
in mind, and this is the reason why we will elaborate on this particular distance.

1.1. Metric Spaces

We consider a Polish space, i.e. a complete and separable space with metrizable
topology; the pair (Ω, d) denotes such a space Ω, equipped with its respective distance
function d.

1.1.1. Product Space

The product of finitely many Polish spaces
(

ΩT , d
)

:= ×t∈T (Ωt, dt) is a Polish
space as well, and several distance functions metrisize the same topology, for example

⊲ d (x, y) := dp (x, y) := (
∑

t wt · dt (xt, yt)
p)
1/p

(p ≥ 1) or

⊲ d (x, y) := d∞ (x, y) := maxt wt · dt (xt, yt);

the weights are strictly positive, wt > 0.

1.1.2. Wasserstein Distance

Given a Polish space we shall consider probability measures on its Borel sets.
The collection of all probability measures, which satisfy for some – and thus any –
ω0 ∈ Ω the moment-like condition

ˆ

Ω

d (ω0, ω)r P [dω] < ∞ (1.1)

is denoted by Pr (Ω; d).

On this space of probability measures define the function

dr (P1,P2; d) :=

(

inf

{
ˆ

Ω×Ω
d (ω1, ω2)

r π [dω1, dω2]

}) 1

r

, (1.2)
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where the infimum is taken over all (bivariate) probability measures π on Ω×Ω which
have respective marginals, that is

π [A × Ω] = P1 [A] and π [Ω × B] = P2 [B]

for all measurable sets A ⊆ Ω and B ⊆ Ω. We shall call such a measure π a transport
plan.

dr is called rth-Wasserstein distance. It is well-defined, as for example the prod-
uct measure1

π := P1 ⊗ P2
has the required marginals and whence

dr (P1,P2; d)
r ≤
ˆ

Ω

ˆ

Ω

d (ω1, ω2)
r P1 [dω1]P2 [dω2] .

A very comprehensive and beautiful discussion and treatment of this function
dr can be found in Villanis beautiful books ([56] and [57]), but we want to mention
the books by Rachev and Rüschendorf as well, [45]2 and [20].

We shall use the properties that the infimum in (1.2) is actually attained, and
dr (., . ; d) turns out to be a metric on the space Pr (Ω; d), so particularly satisfies the
triangle inequality

dr (P,Q; d) ≤ dr

(

P, Q̃; d
)

+ dr

(

Q̃,Q; d
)

.

Remark 1.1. We are using the symbol d for the distance in the original space Ω,
and dr (.; d) to account for the distance on probabilities in Pr (Ω; d). However, if no
confusion may occur in the given context, we will omit the additional argument in
the sequel and simply write dr (P,Q) = dr (P,Q; d) for the distance on Pr specified
by d.

In honor of G. Monge3 (cf. [34]) and Leonid Kantorovich4 (cf. [26]) the dis-
tance dr is sometimes called Monge-Kantorovich distance of order r, and d2 is called
quadratic Wasserstein distance as well. Moreover, the distance d1 is also called
Kantorovich-Rubinstein distance and sometimes denoted dKA := d1.

Lemma 1.2 (Monotonicity and convexity).

(i) Suppose that r1 ≤ r2, then dr1
(P,Q) ≤ dr2

(P,Q).
(ii) The Wasserstein distance is r-convex5 in any of its components, that is to say

for 0 ≤ λ ≤ 1 we have that

dr (P, ( 1 − λ)Q0 + λQ1)
r ≤ (1 − λ) dr (P,Q0)

r + λ dr (P,Q1)
r ,

1(P1 ⊗ P2) [A × B] := P1 [A] · P2 [B] defines a σ−additive measure due to the Hahn-Kolmogorov
theorem.

2For a different concept of distance in an actuarial context cf. [41].
3Gaspard Monge (1746 - 1818) investigated how to efficiently construct dugouts.
4L. Kantorovich was awarded the price in Economic Sciences in Memory of Alfred Nobel in 1975.
5For the notion of r-concavity (r-convexity) see [53].
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and

dr (P, ( 1 − λ)Q0 + λQ1)

≤ (1 − λ)
1

r dr (P,Q0) + λ
1

r dr (P,Q1)

≤ max {λ, 1 − λ} 1

r
−1 ((1 − λ) dr (P,Q0) + λ dr (P,Q1)) .

Remark 1.3. It should be noted that convexity in the traditional sense is actually
achieved for the Kantorovich distance (r = 1),

dKA (P, (1 − λ)Q0 + λQ1) ≤ (1 − λ) dKA (P,Q0) + λ dKA (P,Q1) ;

for the general Wasserstein distance (r > 1), however, a correction factor

max {λ, 1 − λ} 1

r
−1 > 1

has to be accepted.

Proof. Observe that 1
r2

r2−r1

+ 1
r2
r1

= 1. By use of Hölder’s inequality (cf. Proposition

10.1 in the Appendix)
ˆ

dr1dπ =

ˆ

1 · dr1dπ

≤
(
ˆ

1
r2

r2−r1 dπ

) r2−r1
r2

·
(
ˆ

d
r1

r2
r1 dπ

) r1
r2

=

(
ˆ

dr2dπ

) r1
r2

.

Thus,
(
´

dr1dπ
) 1

r1 ≤
(
´

dr2dπ
) 1

r2 for every measure π, which proves the first asser-
tion.

As for the second let π0 and π1 be measures chosen with adequate marginals in
such way that

dr (P,Q0)
r =

ˆ

d (x, y)r π0 [dx, dy] and dr (P,Q1)
r =

ˆ

d (x, y)r π1 [dx, dy] .

The probability measure πλ := (1 − λ)π0 + λπ1 then has the marginals P and Qλ :=
(1 − λ)Q0 + λQ1, and

dr(P, (1 − λ)Q0 + λQ1)r

≤
ˆ

d (x, y)r πλ [dx, dy]

= (1 − λ)

ˆ

d (x, y)r π0 [dx, dy] + λ

ˆ

d (x, y)r π1 [dx, dy]

= (1 − λ) dr (P,Q0)
r + λ dr (P,Q1)

r .

The other statements follow as x Ô→ x
1

r is concave and by employing Hölder’s
inequality.
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Remark 1.4. To note an important consequence: All evaluations are continuous with
respect to dr, provided they are continuous with respect to d1 = dKA, the Kantorovich-
distance. As an example consider the next lemma:

Lemma 1.5. Consider a linear space equipped with a norm (that is d (x, y) :=
‖x − y‖, for example (Ω, d) = (Rm, ‖.‖), then

‖µP1
− µP2

‖ ≤ dr (P1,P2)

where µP := EP [Id] is the barycentre with respect to the measure P – provided it exists6.

Proof. The proof for the Kantorovich distance (r = 1) is an application of Jensen’s
inequality as the norm is a convex function:

‖µP1
− µP2

‖ =

∥
∥
∥
∥
∥

ˆ

xP1 [dx] −
ˆ

y P2 [dy]

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

ˆ

(x − y) π [dx, dy]

∥
∥
∥
∥
∥

≤
ˆ

‖x − y‖ π [dx, dy] .

Taking the infimum over all measures π with appropriate marginals P1 and P2 gives
the assertion, as ‖µP1

− µP2
‖ ≤ d1 (P1,P2) ≤ dr (P1,P2).

Remark 1.6. This formula gives rise to the interpretation, that every particle has to
be transported – on average – at least the distance of the barycentres µP1

− µP2
.

1.2. Comparison Of Wasserstein With Weak*

Topology

A Polish space may be considered as a natural subspace of probability measures
on the same space. The embedding is elaborated in the next statement and involves

Dirac’s point measure δx [A] :=







1 if x ∈ A

0 else
.

Theorem 1.7 (Embedding). The mapping

i : (Ω, d) → (Pr (Ω; d) , dr)

ω Ô→ δω

is an isometric embedding for all 1 ≤ r < ∞.

6
Id (ω) := ω is the identity
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Proof. There is just one single measure with the marginals δω1
and δω2

, which is the
transport plan π = δω1

⊗ δω2
, that is π [A × B] = δω1

[A] · δω2
[B]. Thus

dr (δω1
, δω2

)r =

ˆ

d (ω, ω′)
r
δω1

[dω] ⊗ δω2
[dω′]

= d (ω1, ω2)
r .

Remark 1.8. It should be noted that Ω may be considered as a strict, closed subset
of Pr, Ω $ Pr, as one verifies straight forward that

dr (δx,P)r =

ˆ

d (x, ω)r P [dω] > 0,

whenever P Ó= δx: As above, there is just one unique transport plan, which is π =
δx ⊗ P.

For additional insight it may be mentioned that Ω is even uniformly bounded
away from simple convex combinations in the following sense:

inf
{

dr

(
1

2
(δx + δy) , δω

)

: ω ∈ Ω
}

≥ 1

2
d (x, y) :

This follows from the fact that there is again just a single transport plan to transport
1
2
(δx + δy) to δω, which is the measure π := 1

2
δx ⊗ δω + 1

2
δx ⊗ δω. Whence

dr

(
1

2
(δx + δy) , δω

)

≥ dKA

(
1

2
(δx + δy) , δω

)

=

ˆ

d (ω1, ω2)π [dω1, dω1]

=
1

2
d (x, ω) +

1

2
d (ω, y)

≥ 1

2
d (x, y)

due to Lemma 1.2 and the triangle inequality.

The Wasserstein distance dr induces a topology on Pr (Ω; d) which we want to
denote as τdr

here.

We may consider Pr (Ω; d) additionally as a subset of the dual of Cb (Ω), the
set of all bounded and continuous functions on Ω. We thus have the weak* topology
available, which we denote as σ

(

Pr (Ω; d) , Cb (Ω)
)

.

In comparing these two topologies there is a slight barrier: Note, that

Pr (Ω; d) =

{

P ∈ Cb (Ω)
∗ :

ˆ

1dP = 1 and

ˆ

ϕdP ≥ 0 for all ϕ ≥ 0

}

∩
{

P ∈ Cb (Ω)
∗ :

ˆ

d (ω, ω0)
r P [dω] < ∞

}

.
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The defining moment condition (1.1) imposed (the latter condition) indicates that

Pr (Ω; d) is possibly not closed in the topology σ
(

Pr (Ω; d) , Cb (Ω)
)

, unless ω Ô→
d (ω, ω0)

r is a bounded function itself.

To illustrate the key differences between the weak* topology

σ
(

Pr (Ω; d) , Cb (Ω)
)

and the topology induced by the Wasserstein distance on Pr (Ω) consider the sequence
of measures (with some mass disappearing to infinity)

Pn :=
(

1 − 1

nr

)

δ0 +
1

nr
δn

on the real line R:
(i) By definition, (Pn)n converges in weak* topology σ

(

Pr (Ω; d) , Cb (Ω)
)

to P if,

and only if, (iff) for all ϕ ∈ Cb (Ω) (ϕ bounded and continuous)
´

ϕdPn →
´

ϕdP. The sequence (Pn)n in consideration thus converges to δ0 in the weak*
sense, as

ˆ

ϕdPn =
(

1 − 1

nr

)

ϕ (0) +
1

nr
ϕ (n)

→ ϕ (0) =

ˆ

ϕdδ0,

that is to say:
Pn → δ0 σ

(

Pr (Ω; d) , Cb (Ω)
)

.

(ii) Employing the usual absolute value |.| as a distance on the real line we find that

dr (Pn, δ0; |.|)r =

ˆ

|ω|r Pn [dω]

=
(

1 − 1

nr

)

· 0 + 1

nr
· nr

= 1.

Whence,
Pn Ó→ δ0 τdr

.

(iii) On R, however, there is the equivalent metric |x|′ := min {|x| , 1}. Using this
metric to compute the Wasserstein distance one obtains

dr

(

Pn, δ0; |.|′
)r

=

ˆ

|ω|′r Pn [ω]

=
(

1 − 1

nr

)

· 0 + 1

nr
1

→ 0,
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and thus
Pn → δ0 τ

dr(.,||′).

Thus, starting even with an equivalent metric on Ω, the topologies on Pr (Ω; d)
are not necessarily equivalent.

(iv) One may understand measures as linear functionals of the form

P : Cb (Ω) → R

ϕ Ô→
ˆ

ϕdP

on the space of bounded, continuous function Cb (Ω) as well, and equip the
latter space as usual with the Banach-space norm

‖ϕ‖∞ := sup
ω∈Ω

|ϕ (ω)|

for ϕ ∈ Cb (Ω). In this situation

‖P‖ = sup
‖ϕ‖∞≤1

∣
∣
∣
∣
∣

ˆ

ϕdP

∣
∣
∣
∣
∣
,

which means for the measures in consideration

‖Pn − P‖ = sup
‖ϕ‖∞≤1

∣
∣
∣
∣ϕ (0)

(

1 − 1

nr

)

+ ϕ (n)
1

nr
− ϕ (0)

∣
∣
∣
∣

=
1

nr
sup

‖ϕ‖∞≤1
|ϕ (n) − ϕ (0)|

→ 0.

That is to say
Pn → δ0 τ‖.‖

in the strong (norm) topology.

Summarizing, we have weak* convergence and even strong convergence, but the
Wasserstein distance in general is something different.

The next theorem will elaborate the generalities of these peculiar patterns with
the result, that the weak* topology σ

(

Pr (Ω; d) , Cb (Ω)
)

is – in general and as its
name indicates – strictly weaker than the topology induced by the Wasserstein dis-
tance: τ ∗  τdr

; whenever d is bounded, then the topologies coincide,

τdr
= σ

(

Pr (Ω; d) , Cb (Ω)
)

.

A crucial tool to unify the topologies on subsets will be the uniform tightness
condition (1.3) below.

Theorem 1.9 (Wasserstein metrizes the weak* topology). Let (Pn)n be a sequence
of measures in Pr (Ω), and let P ∈ Pr (Ω). Then the following are equivalent:
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(i) dr (Pn,P) −−−→
n→∞

0,

(ii) Pn −−−→
n→∞ P in weak* sense, and Pn satisfies the following uniform tightness

condition: For some (and thus any) ω0 ∈ Ω,

lim sup
n→∞

ˆ

d(ω0,ω)≥R

d (ω0, ω)r Pn [dω] −−−→
R→∞

0. (1.3)

Proof. As for the proof we refer to Theorem 7.12 in Villani [56].

Notice, that one may – as we did in the exemplary introduction above – al-
ways replace d by the bounded distance, say, d′ (x, y) := d(x,y)

1+d(x,y)
or d′ (x, y) :=

min {1, d (x, y)}. So in this situation the uniform tightness condition is trivial, and
Wasserstein thus metrizes weak* convergence on the whole of Pr (Ω). In this situation

Pr (Ω) is closed in the topology σ
(

Pr (Ω; d) , Cb (Ω)
)

, the topologies coincide.

Essential for our intentions on quantization is to have simple approximations
available. The next theorem clarifies the role of quantizers to a sufficient extent.

Initial proofs of the statement involve the weaker Prohorov distance and deep
results of Kolmogorov in [1]; the following proof by elementary means is partially
adapted from [7].

Lemma 1.10 (Auxiliary lemma). Let w ≥ 0. Then

(xp + w yp)
1

p ≤






(xr + w yr)
1

r r ≤ p

(1 + w)
1

p
− 1

r (xr + w yr)
1

r r ≥ p
(1.4)

and

(x + y)r ≤ (1 + w)r−1 (

xr + w1−ryr
)

. (1.5)

Proof. To accept (1.4) notice, by differentiating,

0 =
∂

∂y

(xp + wyp)1/p

(xr + wyr)1/r

=
(xp + wyp)

1

p
−1

(xr + wyr)
1

r
+1

w

y
(xryp − xpyr)

implies that there is an extremum at x = y. Comparing with the value on the
boundary (x, y → 0, x, y → ∞) gives the first statement.

As for (1.5) substitute p ← 1, y ← y/w in (1.4).

Theorem 1.11. If (Ω, d) is separable, then (Pr (Ω) , dr) is separable and all finite,
discrete measures

∑

ω∈Q Pωδω (Q finite) are dense.
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Proof. Let P ∈ Pr (Ω) be any measure and choose ǫ > 0. Due to separability there is
a dense sequence ωn, and Ω =

⋃∞
n=1 Bǫ (ωn). Now successively define the partition

Ωn := Bǫ (ωn) \
n−1⋃

j=1

Ωj

covering Ω again, but these sets are pairwise disjoint. Set Pn := P [Ωn] and, due to
the σ-additivity of the measure,

∑∞
n=1 Pn = 1.

One verifies that the measure Pǫ :=
∑∞

n=1 Pnδωn
∈ Pr (Ω), because

(
ˆ

d (ω0, ω)r Pǫ [dω]

) 1

r

= dr (δω0
, Pǫ)

≤ dr (δω0
, P) + dr (P, Pǫ)

=

ˆ

d (ω0, ω)P [dω] + dr (P, Pǫ)

≤ K +

(
ˆ

d (ω, ω′)
r
πǫ [dω, dω]

) 1

r

≤ K + ǫ

when transporting Ωn to {ωn}, which is established by the transport plan πǫ [A × B] :=
∑

n=1 P [A ∩ Ωn] · δωn
[B]. Whence,

ˆ

d (ω, ω0)
r Pǫ [dω] =

∞∑

n=1

Pnd (ωn, ω0)
r < ∞

is finite and so
∑∞

n=1 Pnδωn
∈ Pr (Ω).

We thus may choose Nǫ big enough such that
∑∞

n=Nǫ+1 Pnd (ωn, ω0)
r < ǫr. The

discrete and finite measure

Nǫ∑

n=1

Pnδωn
+




∑

n=Nǫ+1

Pn



 · δω0

approximates P sufficiently good: choose the transport plan

π [A × B] =
Nǫ∑

n=1

P [A ∩ Ωn] · δωn
[B]

+ P

[

A\
Nǫ⋃

n=1

Ωn

]

· δω0
[B] ,
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then
ˆ

d (ω, ω′)
r
π [dω, dω′] =

=
Nǫ∑

n=1

ˆ

Ωn

d (ω, ωn)
r P [dω] +

∑

n=Nǫ+1

ˆ

Ωn

d (ω, ω0)
r P [dω]

≤
Nǫ∑

n=1

ˆ

Ωn

d (ω, ωn)
r P [dω] +

+
∑

n=Nǫ+1

ˆ

Ωn

(d (ω, ωn) + d (ωn, ω0))
r P [dω]

and further, using (1.5) from the auxiliary lemma with w = 1,

ˆ

d (ω, ω′)
r
π [dω, dω′] =

≤ 2r−1 ∑

n=1

ˆ

Ωn

d (ω, ωn)
r P [dω]

+ 2r−1 ∑

n=Nǫ+1

ˆ

Ωn

d (ωn, ω0)
r P [dω]

≤ 2r−1
ˆ

Ω

ǫrP [dω] + 2r−1 ∑

n=Nǫ+1

Pnd (ωn, ω0)
r

≤ 2r−1ǫr + 2r−1ǫr.

This establishes that all finite measures are dense.

Now choose rational numbers P̃k ∈ Q ∩ [0, 1] with
∣
∣
∣P̃k − Pk

∣
∣
∣ ≤ ǫ

2k maxNǫ
iÓ=j

d(ωi,ωj)
p

for k = 0, 1 . . . Nǫ having unit sum (0 is included here with P0 :=
∑

k=Nǫ+1 Pk). Then

dr

(
Nǫ∑

k=0

Pkδωk
,

Nǫ∑

k=0

P̃kδωk

)

< 2ǫ

This establishes separability, because all computations here are restricted to the se-
quence ωn, being dense in the entire Ω.

Theorem 1.12. Let (Ω, d) be a Polish space, then (Pr (Ω; d) , dr) is a Polish space
again.

Proof. The space is metrizable and we have established separability. The only ingre-
dient missing which makes (Pr (Ω; d) , dr) Polish is completeness, which is established
in [7]. We shall mention only that – interestingly – compactness and Prohorov’s the-
orem are required to derive the result.
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Discrete measures are dense with respect to the Wasserstein distance; we thus
shall investigate the distance of two discrete measures in some more detail, and ini-
tially in some more generality:

Consider the discrete measures P :=
∑

s Psδωs
and Q :=

∑

tQtδω′
t
and – within

this setting – the problem

minimize
(in π)

〈π, c〉 := ∑

s,t πs,tcs,t

subject to
∑

t πs,t = Ps,
∑

s πs,t = Qt,
πs,t ≥ 0,

(2.1)

where cs,t := c (ωs, ω′
t) is a matrix derived from the a general cost-function c, repre-

senting the costs related to the transportation of masses from ωs to ω′
t and 〈π, c〉 =

∑

s,t πs,tcs,t is the objective (we would like to point out the reference [6] for a similar
discretization and approach).

Notice that this is just (1.2) in the discrete setting for the particular cost-function

cs,t := d (ωs, ω′
t)

r
.

Observe further that

∑

s,t

πs,t =
∑

s

Ps =
∑

t

Qt = 1,

π thus is a probability measure, representing a transport plan from P to Q.

(2.1) is actually a linear program, one may thus compute the objective involving
the dual program as well – cf. subsection 10.3.3 in the Appendix. The respective
dual of problem (2.1) is

maximize
(in λ, µ)

∑

s Psλs +
∑

tQtµt

subject to λs + µt ≤ cs,t,
(2.2)

having the same objective value as (2.1) (cf. 10.3.3 in the Appendix).

It does not come as a big surprise that this result holds true in much more
generality:
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Theorem 2.1 (Kantorovich duality). Let X and Y be Polish spaces, P (Q, resp.) a
probability measure on X (Y , resp.), and c : X × Y → R≥0 be non-negative, lower
semi-continuous1 cost function. Then

inf
π

ˆ

X×Y

c (x, y)π [dx, dy] = sup
λ,µ

ˆ

X

λ (x)P [dx] +

ˆ

Y

µ (y)Q [dy] , (2.3)

where

(i) π [A × Y ] = P [A] and π [X × B] = Q [B] has adjusted marginals, and

(ii) λ ∈ L1 (X,P) and µ ∈ L1 (Y,Q) are such that

λ (x) + µ (y) ≤ c (x, y)

almost everywhere.

Proof. Again, the proof is contained in [56].

2.1. Maximal Kantorovich Potential

The dual variables in numerical computations appear very unhandy, as they are,
dependent on the actual solver, often unpredictable high or low. This subsection is
to better understand this pattern and to overcome this difficulty in a natural way.

Define the c-concave functions

λc
t := min

s
cs,t − λs, (2.4)

µc
s := min

t
cs,t − µt

and notice, that – given an optimal solution (λ, µ) of (2.2) – the pairs (λ, λc), (µc, µ)
and particularly (λcc, λc) maximize (2.2) as well.

The dual (2.2) thus rewrites in the simple form

maximize (in λ)
∑

s Psλ
cc
s +

∑

tQtλ
c
t .

This observation analogously holds true in a continuous environment as well,
the c−concave functions then are

λc (t) := min
s

c (s, t) − λ (s) ,

µc (t) := min
t

c (s, t) − µ (t) .

This gives rise to the following

1that is the sets {c > t} are open for all t, or equivalently, iff c (y0) ≤ lim infy→y0
c (y) whenever

y → y0.
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Definition 2.2 (maximal Kantorovich potential). A function λ ∈ L1 (Ω,P) is a maxi-
mal Kantorovich potential if (λ, λc) is a maximizing pair for (2.3) ((2.2), respectively).

It turns out that the maximal Kantorovich potential is not unique. However,
we will deduce some natural bounds for the maximal Kantorovich potential in the
sequel.

Indeed, for some fixed constant C, λs + C and µt − C are solutions of the dual
problem (2.2) as well with the same objective value, because P andQ are probabilities:
We may thus normalize the dual variables and assume for a moment – without loss
of generality – that maxt µt = 0.

With this fixing we obtain that

λs = min
t

cs,t − µt ≥ min
t

cs,t,

and further that

0 = max
t

µt

= max
t

min
s′

cs′,t − λs′

≤ min
s′

max
t

cs′,t − λs′ ,

≤ max
t

cs,t − λs,

which is combined
min

t
cs,t ≤ λs ≤ max

t
cs,t.

These bounds are easier to handle in a linear program than the initial fixing,
we thus replace the fixing maxt µt = 0 by mint cs,t ≤ λs ≤ maxt cs,t in the sequel to
control the dual variable and helping to avoid any losses in significance for the dual
variable in the numerical application. This is a relaxation, however, it will turn out
to be almost equivalent.

Those bounds may be incorporated in the initial problem by adding two new
variables (vectors) ρ(1) and ρ(2): The modified problem is

minimize
(in π, ρ(1) and ρ(2))

∑

s,t πs,tcs,t +
∑

s ρ(1)s maxt cs,t − ∑

s ρ(2)s mint cs,t

subject to
∑

t πs,t + ρ(1)s − ρ(2)s = Ps,
∑

s πs,t = Qt,
πs,t ≥ 0, ρ(1)s ≥ 0, ρ(2)s ≥ 0.

This augmented problem now has the desired dual

maximize
(in λ, µ)

∑

s Psλs +
∑

tQtµt

subject to λs + µt ≤ cs,t,
mint cs,t ≤ λs ≤ maxt cs,t

(2.5)
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and it follows further that

µt = min
s

cs,t − λs

≤ min
s

cs,t − min
t′

cs,t′

≤ 0,

when employing this particular index s which minimizes mint cs,t; moreover,

µt = min
s

cs,t − λs

≥ min
s

cs,t − max
t′

cs,t′

≥ min
s,t

cs,t − max
s,t

cs,t.

Summarizing, we may – without loss of generality – require the dual variables
to satisfy the relations

min
s,t

cs,t ≤ λs ≤ max
s,t

cs,t

and
min

s,t
cs,t − max

s,t
cs,t ≤ µt ≤ 0,

recovering almost the initial fixing.

The costs for numerical accuracy of the dual variable within this approach, how-
ever, are two additional vectors in the optimization problem, which is not increasing
the problem’s dimensions, and not significantly increasing the problem’s size.

As some numerical solvers always require lower and upper bounds for the vari-
ables, the modified problem (2.5) is just appropriate for those solvers.

2.2. The Kantorovich-Rubinstein Theorem

Consider the particular situation of a cost function c being induced by a distance
d,

c (ω, ω′) := d (ω, ω′)

and assume – without loss of generality – that the supporting points of P and Q
coincide (otherwise one may simply add missing points with mass zero). Due to the
reverse triangle inequality (d (ωs, ω) − d (ωs, ω′) ≤ d (ω, ω′)) the map

ω Ô→ d (ωs, ω) − λs

is continuous with Lipschitz constant 1. The function

λd (ω′) := inf
s

d (ωs, ω′) − λs

thus is a Lipschitz-1-function as well, and particularly thus

λd (ω′) − λd (ω) ≤ d (ω′, ω) .
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Whence,

−λd (ω) ≤ inf
ω′

d (ω′, ω) − λd (ω′) ≤ −λd (ω)

(choose ω′ = ω in the infimum), which in turn means that

λdd (ω) = −λd (ω) (2.6)

for the function λdd (ω) := infω′ d (ω′, ω) − λd (ω′).

Notice now, that λd (ωt) = λc
t and λdd (ωs) = λcc

s in the setting of (2.4), and λcc
s

satisfies

sup
ωs Ó=ωs′

|λcc
s − λcc

s′ |
d (ωs, ωs′)

≤ 1.

In this situation (c a distance) and using (2.6) the dual problem thus rewrites

maximize
(in λ)

∑

s Psλs − ∑

sQsλs

subject to λs − λs′ ≤ d (ωs, ωs′) ,

or
maximize
(in λ)

EP [λ] − EQ [λ]
subject to L (λ) ≤ 1,

where L (λ) := sups Ó=s′
|λs−λs′ |
d(ωs,ωs′ )

is the Lipschitz constant.

Again it does not come as a big surprise that this statement holds in more
generality as well, as the discrete measures are dense with respect to the Wasserstein
distance. This is the content of the Kantorovich-Rubinstein theorem:

Theorem 2.3 (Kantorovich-Rubinstein Theorem). Let X = Y be a Polish space and
c = d a lsc. metric. Then

inf
π

ˆ

X×X

d (x, y)π [dx, dy] = sup
λ

ˆ

X

λ (x)P [dx] −
ˆ

X

λ (x)Q [dx] ,

where

(i) π has the adjusted marginals P and Q, and

(ii) λ ∈ L1 (d |P−Q|) with Lipschitz constant bounded by 1,

L (λ) := sup
λ (x) − λ (y)

d (x, y)
≤ 1.

Remark 2.4. To put it in different words: The pair
(

λdd, −λd
)

is a maximal Kan-
torovich potential for the cost function induced by a distance.
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2.3. Subdifferential, And Derivative Of The Norm

In order to investigate the problems in mind and to properly formalize the desired
results we need to extend the notion of derivatives, which is usually accomplished by
subgradients in the context of convex (or concave) functions – and this is the content
of this section.

Definition 2.5. Given a normed vector space X with dual X∗, the sub-differential
of a R-valued function f : X → R is the collection of all sub-gradients, that is to say

∂f (x) = {u∗ ∈ X∗ : f (z) − f (x) ≥ u∗ (z − x) for all z ∈ X} .

The most prominent convex function in the context of normed spaces is of course
the norm itself, and we will investigate its derivative in particular: According to the
famous theorem of Hahn-Banach there is, for every x ∈ X in a normed space (Banach
space) X a continuous, linear functional HBx ∈ X∗ in its dual such that

|HBx (h)| ≤ ‖h‖ and HBx (x) = ‖x‖ (2.7)

for all h ∈ X (that is to say the norm in the dual is one, ‖HBx‖ = 1, where the norm
is the Lipschitz constant

‖λ‖ := sup
h Ó=0

|λ (h)|
‖h‖ = L (λ)

for the linear functional λ). This functional HBx may be found on a constructive
basis for finite dimensional Banach spaces by induction on the dimension of the space;
in an infinite dimensional space the existence is based on the axiom of choice (original
work of the theorem guaranteeing existence may be found in [5] and [22]).

The norm is a convex function and has a subdifferential, and HBx is a potential
derivative: The next statement clarifies this topic in a bit more detail:

Theorem 2.6. Let HBx be the Hahn-Banach functional in x, then the following
holds true:

(i) HBx is a subgradient of the norm at x, HBx ∈ ∂ ‖.‖ (x)2.

(ii) Suppose that x Ô→ HBx is weak* continuous (i.e. in continuous in the topology
σ (X∗, X)) in a neighbourhood of x, then HBx is the derivative of the norm in
x, that is

lim
t→0, t∈R

‖x + th‖ − ‖x‖
t

= HBx (h)

for any h ∈ X – the sub-differential is a singleton;

(iii) For any h ∈ X∗

HBHBx
(h) = h

(

x

‖x‖

)

. (2.8)

2In the sequel we will sometimes abuse notation and write HBx for a functional, but for the entire
subgradient ∂ ‖.‖ (x) as well.
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Figure 2.1.: Ball of the norm with radius ‖x‖ and the sub-gradient HBx (left);
ball of the dual and HBx with sub-gradient x

‖x‖ (right).

The respective vectors are parallel.

Proof. Observe that

‖z‖ ≥ HBx (z)

= HBx (x) + HBx (z − x)

= ‖x‖ + HBx (z − x)

for any z ∈ X, which is the defining equation for an element (sub-gradient) to qualify
for the sub-differential ∂ ‖.‖ (x) of the norm.

Let t ∈ R, then

HBx (h) =
HBx (x + th) − HBx (x)

t

≤ ‖x + th‖ − ‖x‖
t

≤ HBx+th (x + th) − HBx+th (x)

t
= HBx+th (h)

−−→
t→0

HBx (h) ,

establishing the second assertion.

The latter statement is obvious as

‖x‖ = sup
‖f∗‖≤1

f ∗ (x)

and equality is obtained for the particular choice f ∗ = HBx.



28 Chapter 2. Kantorovich Duality

Remark 2.7. In the space Rm we will adopt the usual notation and write f ∗ (x) =
f⊤x = 〈f, x〉 similarly, depending on the given context. Given x, the Hahn-Banach
statement gives an element ωx such that 〈ωx, h〉 ≤ ‖ωx‖·‖h‖ and 〈ωx, x〉 = ‖ωx‖·‖x‖.

Example 2.8 (Derivative of the lp-norm). Consider the norm

‖x‖p :=
(∑

wt · |xt|p
) 1

p

on X = Rm for some positive weights wt > 0. One verifies that

HBx =



wt ·
∣
∣
∣
∣
∣

xt

‖x‖p

∣
∣
∣
∣
∣

p−1
· sign xt





t

,

that is HBx (h) =
∑

t wt

∣
∣
∣
∣

xt

‖x‖p

∣
∣
∣
∣

p−1
· sign (xt) · ht.

For the all-one-vector 1 one particularly finds that

HB1 =
w⊤

‖1‖p−1
p

=
w⊤

(
∑

t wt)
1− 1

p

∈ ∂ ‖.‖ (1) ,

which is the unique subgradient if 1 ≤ p < ∞. This rewrites as

HB1

‖1‖p

=
w⊤

∑

t wt

=
w⊤

w⊤1
,

and this functional corresponds to weighting its arguments with weights w.

For the usual weights wt = 1 the observation further simplifies to

HB1

‖1‖p

=
1

⊤

m
, (2.9)

where m is the dimension of the space – this will turn out to be essential in a subse-
quent result.

Another noteworthy special case is p = 2: In this situation

HBx =

(

wtxt

‖x‖2

)

t

,

which further reduces to

HBx =
x∗

‖x‖2
for the usual weights wt = 1, which is the same as HBx (h) =

x⊤h
‖x‖

2

=
∑ xtht

‖x‖
2

.
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Remark 2.9. (The sub-differential is possibly empty in the predual). Recall that the
dual of c0 (the set of sequences a : N → R which tend to zero, an → 0) is c∗

0 := l1 (the
set of sequences summable in absolute values), whose dual in turn is c∗∗

0 = l∞ (the
set of bounded sequences).

Choose x :=
∑

n∈N 2
−nen ∈ l1 and observe that HBx := (sign xn)n∈N satisfies

(2.7), that is HBx (x) =
∑

n |xn| = ‖x‖l1 , HBx (y) ≤ ∑

n |yn| = ‖y‖l1 for any other
vector y ∈ l1 and HBx ∈ l∞\c0.

It is easy to observe that HBx ∈ l∞\c0, whenever the support {n : xn Ó= 0} is
not finite; moreover, no such vector exists such that HBx /∈ l∞\c0, provided infinite
support of x.

In this situation thus

(i) ∂ ‖.‖ (x) Ó= ∅, because (HBx ∈ ∂ ‖.‖ (x) Ó= ∅), but
(ii) ∂ ‖.‖ (x) ∩ c0 = ∅ in the predual c0 of l1.

Similar examples can be given for the non-reflexive space L1, which is isometrically
embedded in the strictly larger space of finite (but not σ-finite) measures ba = (L∞)∗,
although a bit more involving.



30 Chapter 2. Kantorovich Duality



3. Different Representations Of The
Acceptability Functional

In this section we shall elaborate the concept of acceptability functionals, which
is a concept still in actual research. Acceptability functionals will allow quantifying
risk and to base an investor’s decision, whether or not a risk is acceptable.

3.1. Definitions

We recall the definition of the distribution function for consistency reasons:

Definition 3.1. (Cumulative distribution function)

(i) The function GY (x) := P [Y ≤ x] is the cumulative distribution function (cdf.)
of a random variable Y , and

(ii) G−1
Y (α) := inf {x : GY (x) ≥ α} is the quantile function, the generalized inverse

of Y ’s cdf..

The function GY is continuous from the right, and G−1
Y is continuous from the left.

Some authors (cf. [53]) use the term left α-quantile for G−1
Y (α).

Often we shall suppress the index Y accounting for the random variable if the
random variable in consideration is obvious from the context.

The next, useful statement follows Pflug and Römisch [39], but rather dates
back to [17].

Proposition 3.2. The following assertions hold true:

(i) For all 0 < α < 1 and x ∈ R

G
(

G−1 (α)
)

≥ α and G−1 (G (x)) ≤ x.

(ii) Let U be uniform on the same probability space (that is P [U ∈ [a, b]] = b − a
for all 0 ≤ a ≤ b ≤ 1) and independent from Y . Then the augmented random
variable

F (Y, U) := (1 − U) · GY (Y −) + U · GY (Y ) (3.1)

is uniformly distributed as well and

Y = G−1
Y (F (Y, U)) (3.2)

a.s.
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Figure 3.1.: M. C. Escher (1898 - 1972): Ascending and descending. Not monotone,
non acceptable staircase.
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Here,
G (x−) := lim

x′→x, x′≤x
G (x′)

is the left-sided limit of G at x. In general

G (x−) ≤ G (x) ,

with equality (exactly) in all points of continuity of G.

Remark 3.3. In the latter proposition it is sufficient to require U to be uniform on
the (countable) set

⋃

{t∈R : G(t−)<G(t)}
G−1 ({t}) ,

which can possibly be achieved easier than independence.

The next definition of an acceptability functional basically follows Pflug and
Römisch [39], in the notion of convex risk measures it can be found in Föllmer [18]
as well. This notion generalizes the concept of coherent risk measures, which was
introduced in Artzner et al., [3, 2].

Definition 3.4 (Acceptability Functional). An acceptability functional is a R ∪
{−∞}-valued mapping defined on a linear space Y of random variables on a proba-
bility space (Ω, Σ,P) if the following defining properties hold true:

(i) Translation equivariance: A (Y + c) = A (Y )+c for all random variables Y ∈ Y
and constant random variables c (c (ω) ≡ c);

(ii) Concavity: A ((1 − λ) Y0 + λY1) ≥ (1 − λ) A (Y0)+λA (Y1) for all random vari-
ables Y0, Y1 and 0 ≤ λ ≤ 1;

(iii) Monotonicity: A (Y1) ≤ A (Y2) whenever Y1 ≤ Y2 almost surely.

Remark 3.5. In the literature A is sometimes referred to as monetary utility function,
and the monotonicity property is frequently referred to in stating A is non-decreasing.

Remark 3.6. It is sufficient to require translation equivariance for just one single
Y0 ∈ Y , as the property translation equivariance then can be proved to hold for any
Y ∈ Y . This follows from a statement, which Prof. T. Rockafellar mentioned in a
recent private communication he had with Prof. G. Pflug – cf. Proposition 10.3 in
the Appendix.

Definition 3.7. A functional A on random variables is said to be version independent
if it is defined for both, Z and Z̃, and additionally A (Z) = A

(

Z̃
)

, whenever Z and

Z̃ have the same cumulative distribution function.

Remark 3.8. A term, which is frequently used likewise to express version indepen-
dence, is law invariance.
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An outstanding example of a version independent acceptability functional is the
average value at risk at level α denoted AV@Rα

1.

Definition 3.9 (Average value at risk). Let Y denote a random variable.

(i) The average value at risk at level α > 0 is defined via the random variable’s
distribution function GY (quantile function G−1

Y ) as

AV@Rα (Y ) :=
1

α

ˆ α

0

G−1
Y (u) du.

(ii) The average value at risk at level α = 0 is

AV@R0 (Y ) := ess inf (Y ) .

This functional is obviously version independent. It is moreover just a special
case of the distortion acceptability functional AH :

Definition 3.10 (Distortion Acceptability Functional). The distortion acceptability
functional is the Stieltjes integral of the form

AH (Y ) =

ˆ 1

0

G−1
Y (u) dH (u) ,

for some H which we assume to be bounded, right continuous and increasing on [0, 1].

Usually we shall assume in addition that H obeys the representation

H (u) =

ˆ u

0

h (u′) du′

for some non-increasing h (.) (H thus is concave).

Remark 3.11. As indicated, the AV@Rα is a distortion acceptability functional as well,
it is obtained by the particular choice Hα (u) := min

{
u
α
, 1

}

and the respective density

hα (u′) := 1
α
1[0,α] (u

′) (cf. Figure 3.2).

1The

⊲ Average Value at Risk

is sometimes also called

⊲ conditional value at risk (for the additional representation AV@Rα (Y ) =
E [Y : Y ≤ V@Rα (Y )]),

⊲ expected shortfall,

⊲ tail value-at-risk or newly

⊲ super-quantile (of course sub-quantile could be justified as well by simply changing the sign).

⊲ Actuaries tend to use the term Conditional Tail Expectation (CTE).
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Figure 3.2.: Distortion function H and density h for the average value at risk at level
α = 30%.

Definition 3.12 (Coupling and Fréchet bounds). Let Y1 and Y2 denote random
variables.

(i) Y1 and Y2 are coupled in a comonotone2 way (with respect to P) if

P [Y1 ≤ y1, Y2 ≤ y2] = min {P [Y1 ≤ y1] , P [Y1 ≤ y2]} ;

(ii) Y1 and Y2 are coupled in an antimonotone3 way (with respect to P) if

P [Y1 ≤ y1, Y2 ≤ y2] = max {0, P [Y1 ≤ y1] + P [Y1 ≤ y2] − 1} .

The next lemma will be essential in further investigations, a similar statement
is included in [25]; for copulas in general we refer to [35].4

Lemma 3.13 (Extension of Hoeffding’s Lemma). Let X be a random variable and
π have identical marginals, π1 = π2 = P.

(i) Assume that Y c is coupled in a comonotone way with X (with respect to P).
Then for any random variable Y which has the same distribution as Y c

ˆ

X (x) · Y (x)P [dx] ≤
ˆ

X (x) · Y c (x)P [dx] (3.3)

and
ˆ

X (x) · Y (y) π [dx, dy] ≤
ˆ

X (x) · Y c (x)P [dx] ;

(ii) If Y a is coupled in an antimonotone way with X (with respect to P), then for
any random variable Y which has the same distribution as Y a

ˆ

X (x) · Y a (x)P [dx] ≤
ˆ

X (x) · Y (x)P [dx] (3.4)

2Sometimes also called maximum copula.
3Sometimes also called minimum copula or anti-comonotone instead.
4For an actuarial application to combined annuities cf. [42].
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and
ˆ

X (x) · Y a (x)P [dx] ≤
ˆ

X (x) · Y (y) π [dx, dy] .

Moreover, for any Y there is a random variable Y c (Y a, resp.) on the same probability
space, coupled in a comonotone (antimonotone, resp.) way with X, which has the
same distribution as Y .

Proof. (For completeness we include the proof here – cf. [23])

Let Y be any other random variable and choose an independent copy X ′ (Y ′,
resp.) of X (Y , resp.). Recall that

CoV (X, Y ) =
1

2
EP [(X − X ′) (Y − Y ′)]

and observe that
ˆ ∞

−∞
1{X′≤u} (ω) − 1{X≤u} (ω) du = X ′ (ω) − X (ω) .

Thus

CoV (X, Y ) =
1

2

ˆ ˆ ∞

−∞

ˆ ∞

−∞

(

1{X≤u} − 1{X′≤u}
) (

1{Y ≤v} − 1{Y ′≤v}
)

dudvdP

=
1

2

ˆ ˆ ∞

−∞

ˆ ∞

−∞
1{X≤u}1{Y ≤v} − 1{X′≤u}1{Y ≤v}

− 1{X≤u}1{Y ′≤v} + 1{X′≤u}1{Y ′≤v}dudvdP

=
1

2

ˆ ∞

−∞

ˆ ∞

−∞
2G (u, v) − 2G (u) G (v) dudv

=

ˆ ∞

−∞

ˆ ∞

−∞
G (u, v) − G (u) G (v) dudv,

where G (u, v) = P [X ≤ u, Y ≤ v] is the bivariate distribution function of the pair
(X, Y )5. Choosing the Fréchet bounds, that is

max {0, G (u) + G (v) − 1} ≤ G (u, v) ≤ min {G (u) , G (v)} ,

establishes that
ˆ ∞

−∞

ˆ ∞

−∞
max {0, G (u) + G (v) − 1} − G (u) G (v) dudv

≤
ˆ ∞

−∞

ˆ ∞

−∞
G (u, v) − G (u) G (v) dudv

≤
ˆ ∞

−∞

ˆ ∞

−∞
min {G (u) , G (v)} − G (u) G (v) dudv,

5It is worth mentioning that neither
´

G (u, v) dudv nor
´

G (u)G (v) dudv converge on its own.
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and thus
EP [X · Y ] ≤ EP [X · Y c] (3.5)

for the comonotone coupling, and

EP [X · Y a] ≤ EP [X · Y ]

for the antimonotone coupling.

Consider now the extended space Ω × Ω and extend the random variables by
X̃ (x, y) := X (x) and Ỹ c (x, y) := Y c (x). The cumulative distribution function stays
unchanged, as

π
[

X̃ ≤ u
]

= π [{X ≤ u} × Ω] = P [X ≤ u]

and
π

[

Ỹ c ≤ u
]

= π [{Y c ≤ u} × Ω] = P [Y c ≤ u] .

Moreover
(

X̃, Ỹ c
)

are coupled in a comonotone way with respect to π as well, because

π
[

X̃ ≤ u, Ỹ c ≤ v
]

= π [{X ≤ u, Y c ≤ v} × Ω]

= P [X ≤ u, Y c ≤ v]

= min {P [X ≤ u] , P [Y c ≤ v]}
= min

{

π
[

X̃ ≤ u
]

, π
[

Ỹ c ≤ v
]}

by definition of X̃ and Ỹ c.

Now let Y be any random variable on Ω with the same cdf. as Y c and define
the extension via Ỹ (x, y) := Y (y). Apply (3.5) with π replaced by P to obtain that

ˆ ˆ

X (x) Y (y) π [dx, dy] = Eπ

[

X̃ · Ỹ
]

≤ Eπ

[

X̃ · Ỹ c
]

=

ˆ ˆ

X (x) Y c (x) π [dx, dy]

=

ˆ ˆ

X (x) Y c (x)P [dx] ,

which is the desired result.

The result for the antimonotone coupling is analogous.

As regards the existence of a coupling which is extremal for the inequalities in
consideration just observe that

Y c := G−1
Y (F (X, U))

and
Y a := G−1

Y (1 − F (X, U))

do the required job (cf. (3.1)).
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Corollary 3.14 (Separation Of Variables). Let A be a version independent functional
on random variables (all defined on the same space Ω) such that whenever A (Y ) >

−∞ and GỸ = GY , then A (Y ) = A
(

Ỹ
)

. Then

sup
A(Y )>−∞

ˆ

X (x) · Y (y) π [dx, dy] + A (Y ) ≤ sup
A(Y )>−∞

ˆ

X (x) · Y (x)P [dx] + A (Y )

and

inf
A(Y )>−∞

ˆ

X (x) · Y (x)P [dx] + A (Y ) ≤ inf
A(Y )>−∞

ˆ

X (x) · Y (y) π [dx, dy] + A (Y ) ,

where π is any bi-variate measure with identical marginals, π1 = π2 = P.

Proof. Let Y be any random variable with A (Y ) > −∞. Consider the random
variable Y c, which is coupled in a comonotone way with X. From Lemma 3.13 and
version independence we deduce that

sup
Ỹ ∼Y

ˆ

X (x) · Ỹ (x)P [dx] + A
(

Ỹ
)

=

ˆ

X (x) · Y c (x)P [dx] + A (Y c) ,

where the supremum is over all random variables Ỹ which have the same distribution
as Y – that is to say the supremum is attained by Y c.

From the extension of Lemma 3.13 we deduce further that

sup
Ỹ ∼Y

ˆ

X (x) · Ỹ (y) π [dx, dy] + A
(

Ỹ
)

≤
ˆ

X (x) · Y c (x)P [dx] + A (Y c) .

Taking the supremum of all respective random variables Y s finally establishes the
result.

The other inequality is analogous by choosing the corresponding antimonotone
coupling.

3.2. Rearrangement And Ordering

We will see in the sequel that the AV@R-functional is very central in the theory
of acceptability functionals and it appears from different angles. We will establish
here a first, very useful and powerful representation for the AV@R.

Definition 3.15. Let q be a bounded and measurable function on [0, 1], q : [0, 1] → R.
The h-distorted quantile of q is the function

qh : [0, 1] → R

x Ô→ min argmax
t∈R

x · t −
ˆ 1

0

(t − q (u))+ h (u) du, (3.6)
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Figure 3.3.: Exemplary function q and its ordered rearrangement qh.

where t – for consistency reasons – is restricted to ess infh q ≤ t ≤ ess suph q (if those
bounds exist)6, 7.

Remark 3.16. There might be more t-s qualifying for the argmax in (3.6), however,
the minimum ensures that qh will be continuous from the left.

Remark 3.17. The term distorted quantile (reordering) qh of the initial function q is
motivated by equation (3.8) and the statements (i) and (v) in the next proposition.
In Figure 3.3 we have depicted an exemplary function q and the related rearrangement
qh for the function h (t) = 1 to illustrate the relation.

Proposition 3.18. Suppose h is positive and measurable. The h-distorted quantile
qh then obeys these following properties:

(i) qh is non-decreasing and continuous from the left (lower semi-continuous);

(ii) ess infh q ≤ qh ≤ ess suph q;

(iii) The supremum in (3.6) is attained at t = qh (x) satisfying

x =

ˆ

{q≤qh(x)}
h (u) du; (3.7)

(iv) The relations

x · qh (x) =

ˆ x

0

qh (u) du +

ˆ 1

0

(qh (x) − q (u))+ h (u) du

and the rearrangement property
ˆ x

0

qh (u) du =

ˆ

{q≤qh(x)}
q (u)h (u) du (3.8)

hold true for all x ∈ [0, 1].

6The positive part is defined as x+ := max {x, 0}.
7Essential infimum (supremum, resp.) with respect to the measure hdλ having h as density with
respect to the Lebesgue measure λ.
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(v) If q is non-decreasing and h (x) = 1, then q = qh except on (countable many)
points where q is not continuous.

Remark. q : [0, 1] Ô→ R may be considered itself to be a random variable on [0, 1]
or the quantile function of a random variable: Assume that h is a density8 for the
Lebesgue measure on [0, 1]. From (3.7) the particular interpretation derives that
Ph [q ≤ t] :=

´

{q≤t} h (u) du = q−1
h (t) is the cumulative distribution function of q, but

measured with density h instead.

Proof. Observe first that qh (0) = ess infh q and qh (1) = ess suph q (if they exist).

Then, for x fixed, the function

F (t; x) := t · x −
ˆ 1

0

(t − q (u))+ h (u) du (3.9)

is continuous in t, so the supremum is attained at, say, t∗ (x) = qh (x).

This function (3.9) is moreover concave in t and thus there is a subdifferential.
For this argument we necessarily have that x =

´

{q≤t∗} h (u) du (derivative of (3.9)

with respect to t, cf. [46]) – otherwise, there would be a strictly negative or positive
slope in (3.6), and t∗ (x) would not be optimal. This shows that x Ô→ t∗ (x) is a
non-decreasing function as well. Whence, qh is non-decreasing and we have that

x =

ˆ

{q≤qh(x)}
h (u) du. (3.10)

Replacing x by the (right continuous) inverse x ← q−1
h (t) this rewrites

q−1
h (t) =

ˆ

{q≤t}
h (u) du. (3.11)

To evaluate the function (3.9) at its optimal point qh (x) we get

x · qh (x)−
ˆ 1

0

(qh (x) − q (u))+ h (u) du =

=x · qh (x) −
ˆ

{q≤qh(x)}
(qh (x) − q (u))h (u) du

=x · qh (x) − qh (x) ·
ˆ

{q≤qh(x)}
h (u) du

+

ˆ

{q≤qh(x)}
q (u)h (u) du

=x · qh (x) − qh (x) · x +

ˆ

{q≤qh(x)}
q (u)h (u) du

=

ˆ

{q≤qh(x)}
q (u)h (u) du

8To guarantee the measure to be a probability measure it might be necessary to rescale by
´

hdλ
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by virtue of (3.10).

An equivalent expression for what just was derived is9

ˆ x

0

qh (u) du = x · qh (x) −
ˆ qh(x)

0

q−1
h (t) dt

= x · qh (x) −
ˆ qh(x)

0

ˆ

{q≤t}
h (u) dudt

according to (3.11).10 By Fubini’s theorem thus

ˆ x

0

qh (u) du = x · qh (x) −
ˆ 1

0

(qh (x) − q (u))+ h (u) du,

which proves the statement.

The next statement builds on a dual representation which was developed by
Dana in [13], the dual has been established by Pflug in [37].

Corollary 3.19. Let AH (Y ) =
´

G−1dH be a distortion acceptability functional.
Then

AH (Y ) = max
t∈R

t − E
[

(t − Y )+ h (G (Y ) − UY )
]

, (3.12)

= max
t∈R, U uniform

t − E
[

(t − Y )+ h (U)
]

where UY = F (Y, U) is the augmented random variable11 as defined in (3.2).

Proof. We know from Theorem 3.18 that

max
t

t · x −
ˆ 1

0

(t − q (u))+ h (u) du =

ˆ

{q≤qh(x)}
q (u)h (u) du,

9Young’s inequality
´ x

0
f (u) du+

´ y

0
f−1 (t) dt ≥ x · y is an equality for y = f (x) and increasing f .

10Assuming differentiability we could proceed straight forward and differentiate to get

d

dx
x · qh (x)−

ˆ 1

0

(qh (x)− q (u))
+

h (u) du =

=qh (x) + x · q′
h (x)−

ˆ

{q≤qh(x)}
h (u) du · q′

h (x)

=qh (x) + x · q′
h (x)− x · q′

h (x)

=qh (x) .

Integrating again establishes the remaining relations.
11Notice that UY = 0 for a probability space without atoms. For this reasons we will sometimes in

the sequel consider non-atomic probability spaces solely, without stating this explicitly.
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or

max
t

t − 1

x

ˆ 1

0

(t − q (u))+h (u) du =

=
1

x

ˆ

{q≤qh(x)}
q (u)h (u) du

=

´

{q≤qh(x)} q (u)h (u) du
´

{q≤qh(x)} h (u) du
.

Now choose q := G−1
Y and x := 1 to get

max
t

t −
ˆ 1

0

(

t − G−1
Y (u)

)+
h (u) du =

ˆ

G−1
Y (u)h (u) du,

which may be restated as
ˆ

uhG (u) dGY (u) = max
t

t −
ˆ 1

0

(t − u)+ hG (u) dGY (u)

using the function hG (u) =







h (G (u)) if G (u−) = G (u)
H(G(u))−H(G(u−))

G(u)−G(u−) if G (u−) < G (u) .

Whence,

AH (Y ) = E
[

Y hG (G (Y ) − UY )
]

= max
t

t − E
[

(t − Y )+ hG (G (Y ) − UY )
]

.

Recall, that G (Y ) − UY is uniformly distributed, and hG (G (Y ) − UY ) and Y are
coupled in an antimonotone way, as h is decreasing. In view of (3.4) this establishes
the result.

As a corollary we have the following representation of the expected shortfall:

Corollary 3.20 (Concave representation of AV@R). The average value at risk obeys
the representation

AV@Rα (Y ) = max
t

t − 1

α
E

[

(t − Y )+
]

, (3.13)

and

V@Rα (Y ) ∈ argmax
t

t − 1

α
E

[

(t − Y )+
]

.

Proof. Choose the function hα (x) :=







1
α

if x ≤ α

0 if x > α
and observe that the infimum

in (3.6) is attained at qhα
(1) = ess suphα

G−1
Y for the function q = G−1

Y , that is

V@Rα (Y ) = ess sup
hα

G−1
Y

= qhα
(1) .
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But in the situation {Y ≤ qhα
(1)} we have that hG (Y ) = 1

α
, and thus (3.12) simplifies

to

AV@Rα (Y ) = max
t

t − 1

α
E

[

(t − Y )+
]

,

which completes the proof.

For additional insight we offer this alternative proof:

Proof.

AV@Rα (Y ) =
1

α

ˆ α

0

G−1 (u) du

=
1

α

(
ˆ α

0

G−1 (u) du +

ˆ 1

α

G−1 (α) du − (1 − α)G−1 (α)

)

= G−1 (α) +
1

α

(
ˆ 1

0

min
{

G−1 (u) , G−1 (α)
}

du − G−1 (α)

)

= G−1 (α) +
1

α

ˆ 1

0

min
{

G−1 (u) − G−1 (α) , 0
}

du

=
1

α

(

G−1 (α) · α −
ˆ 1

0

max
{

G−1 (α) − G−1 (u) , 0
}

du

)

.

The function α Ô→ G−1 (α) is non-decreasing, in view of (3.6) we thus find that

G−1 (α) ∈ argmax
t

t · α −
ˆ 1

0

(

t − G−1 (u)
)+

du.

Whence,

AV@Rα (Y ) =
1

α
max

t
t · α −

ˆ 1

0

(

t − G−1 (u)
)+

du

= max
t

t − 1

α
E

[

(t − Y )+
]

.

3.3. A Rockafellar-and-Uryasev Type Representation

The representation (3.13) for the AV@R and its importance for linear program-
ming was realized by Rockafellar and Uryasev in the original paper [48], as well in
Pflug’s [36]. We have elaborated the following generalization for distortions.
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Theorem 3.21. Let AH {G} =
´ 1

0
G−1 (p) dH (p) be as above with h non-decreasing

and the corresponding measure non-atomic. Then the representation

AH (Y ) = sup
y∈R

y − E
[

(µH (y) − µH (Y ))+
]

= sup
y∈R

y − E
[
ˆ y

min(y,Y )

H (G (u))

G (u)
du

]

holds true, where µH (y) =
´ y

p
H(G(u))

G(u)
du.

The supremum is attained at argmin {y : H (G (y)) = 1}.

Proof. For future reference recall the general identities to compute the expectation

E [f (X)] =

ˆ 1

0

f
(

G−1 (p)
)

dp

=

ˆ

f (x) dG (x)

=

ˆ

f (x)G′ (x) dx

= f (a) +

ˆ ∞

a

f ′ (x) (1 − G (x)) dx if P [f (X) ≥ f (a)] = 1

= f (b) −
ˆ b

−∞
f ′ (x)G (x) dx if P [f (X) ≤ f (b)] = 1, (3.14)

where the latter two identities are applications of the product rule.

Define

f ∗ (p) :=

ˆ H−1(p)

0

G−1 (x)h (x) dx (3.15)

=

ˆ G−1(H−1(p))

−∞
u · h (G (u)) G′ (u) du

= p · G−1
(

H−1 (p)
)

−
ˆ G−1(H−1(p))

−∞
H (G (u)) du

and µ (y) :=
´ y

p
H(G(u))

G(u)
du, thus µ′ (y) = H(G(y))

G(y)
. As

P [min {µ (Y ) , µ (p)} ≤ µ (p)] = 1,

we may apply (3.14) to get

E [min {µ (Y ) , µ (p)}] = µ (p) −
ˆ p

−∞

H (G (y))

G (y)
G (y) dy

= µ (p) −
ˆ p

−∞
H (G (y)) dy.
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Whence,

f ∗ (p) = p · G−1
(

H−1 (p)
)

+ E
[

min
{

µ (Y ) , µ
(

G−1
(

H−1 (p)
))}]

− µ
(

G−1
(

H−1 (p)
))

= p · G−1
(

H−1 (p)
)

+ E
[

min
{

µ (Y ) − µ
(

G−1
(

H−1 (p)
))

, 0
}]

= p · G−1
(

H−1 (p)
)

− E
[

max
{

µ
(

G−1
(

H−1 (p)
))

− µ (Y ) , 0
}]

.

Notice that f ∗ is convex (because both, G−1 and h are non-decreasing in (3.15))
and f ∗′ (p) = G−1 (H−1 (p)); the function f (y) := supp y · p − f ∗ (p) thus attains its
maximum at

p∗ = H (G (y)) . (3.16)

This means

f (y) = y · H (G (y)) − H (G (y)) · G−1
(

H−1 (H (G (y)))
)

+ E
[

max
{

µ
(

G−1
(

H−1 (H (G (y)))
))

− µ (Y ) , 0
}]

= E [max {µ (y) − µ (Y ) , 0}]
= µ (y) + E [max {−µ (Y ) , −µ (y)}]
= µ (y) − E [min {µ (Y ) , µ (y)}] .

From the elementary Fenchel-Moreau-Rockafellar theorem (cf. [47]) we get in addition
that

f ∗ (p) = sup
y

y · p − f (y) .

The distortion acceptability function may be stated as

AH (Y ) =

ˆ 1

0

G−1
Y (p) dH (p)

=

ˆ 1

0

G−1
Y (p)h (p) dp

= f ∗ (1) ,

and therefore

AH (G) = sup
y

y − f (y)

= sup
y

y − µ (y) + E [min {µ (Y ) , µ (y)}]

= sup
y

y + E [min {µ (Y ) − µ (y) , 0}]

= sup
y

y − E [max {µ (y) − µ (Y ) , 0}]

= sup
y

y − E
[

(µ (y) − µ (Y ))+
]

.
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The supremum may be restricted to H (G (y)) < 1 due to continuity of both, H and
G, and (3.16).

The representation

AV@Rα {G} = sup
y

y − 1

α
E

[

(y − Y )+
]

(3.17)

though (cf. Rockafellar and Uryasev, [48]) is an immediate consequence of Theorem
3.21, as

ˆ y

min(y,Y )

H (G (u))

G (u)
du =

1

α
(y − min {y, Y })

=
1

α
(y +max {−y, −Y })

=
1

α
max {0, y − Y }

=
1

α
(y − Y )+

whenever y ≤ G−1 (α).

The representation (3.17) exposes the AV@R functional again, because this rep-
resentation does not depend explicitly on GY , whereas in contrast to other functions
H, µH does depend on GY .

Corollary 3.22. Suppose AH has the representation

AH (Y ) =

ˆ 1

0

G−1
Y (p) dH (p)

for some non-decreasing H with H (0) = 0 and H (1) = 1, then

AV@Rα (Y ) ≤ AH (Y )

whenever α ≤ 1
L(H)

.

Proof. Note first, that H ≤ H̄ := − (−H)∗∗ (for the bi-conjugate see section 10.3.2
on the Fenchel-transform) with equality in the points {0, 1} (equality holds always,

if H is concave). Apply the previous theorem to H̄ and observe that H̄(G(x))
G(x)

=
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H̄(G(x))−H̄(0)
G(x)−0

≤ L
(

H̄
)

. Thus

sup
y∈R

y−E
[
ˆ y

min(y,Y )

H (G (u))

G (u)
du

]

≥ sup
y∈R

y − E
[
ˆ y

min(y,Y )

L
(

H̄
)

du

]

= sup
y∈R

y − L
(

H̄
)

· E [y −min (y, Y )]

= sup
y∈R

y − 1

1/L
(

H̄
) · E [max (0, y − Y )]

= AV@R 1

L(H̄)
{G}

≥ AV@Rα {G}
whenever α ≤ 1

L(H̄)
; this, however, holds particularly true for α ≤ 1

L(H)
, because

L (H) ≥ L
(

H̄
)

and AV@Rα is increasing in α.

3.4. Dual Representation

In the discussion so far we had a strong focus on distortion acceptability func-
tionals.

We shall investigate dual representations for general, concave acceptability func-
tional in the sequel. This is a more general concept, which applies for distortions in
particular, as we will elaborate.

To continue the investigations let us introduce some terms:

Definition 3.23 (Dual pairing and conceptually related terms). Let Y and Z be
locally convex vector spaces.

(i) A dual pair is a triple (Y , Z, 〈.|.〉) consisting of two vector spaces Y and Z and
a bi-linear form

〈.|.〉 : Y × Z → R;

(ii) A function h : Y → R ∪ {−∞, ∞} is called proper if

⊲ its domain dom (h) := {h < +∞} is not empty and

⊲ {h = −∞} is empty;

(iii) A R ∪ {+∞}-valued (R ∪ {−∞}-valued, respectively) function h is said to be
lower semi-continuous (lsc.) (upper semi-continuous, usc., resp.) provided that
all sets

{h > t} ({h < t} , resp.)

are open for any t ∈ R12;

12Equivalently, iff h (y0) ≤ lim infy→y0
h (y) (lim supy→y0

h (y) ≤ h (y0), resp.) whenever y → y0.



48Chapter 3. Different Representations Of The Acceptability Functional

(iv) The largest lsc. function which is less than f is denoted lscf (the smallest usc.
function which is bigger than f is uscf , resp.);

(v) The conjugate h∗ of h is the (convex and lsc.) function

h∗ (z) := sup
y∈Y

〈y|z〉 − h (y)

with range R ∪ {+∞};
(vi) The bi-conjugate h∗∗ of h is the (convex and lsc.) function

h∗∗ (y) := sup
z∈Z

〈y|z〉 − h∗ (z) ,

again with range R ∪ {+∞}.

Theorem 3.24 (Fenchel-Moreau-Rockafellar). Let f be proper and convex, then

f ∗∗ = lsc f.

(See, e.g., Rockafellar [47, Theorem 5] or Aubin and Ekeland [4, Theorem 4.4.2]
for a proof.)

Example 3.25. A Banach space Y := X, together with its dual Z := X∗ and the
natural bi-linear form

〈y|z∗〉 := z∗ (y)

is a dual pair.

Given this setting one computes the conjugate of the norm, which is the lsc.-
function

‖.‖∗ (z∗) = sup
x∈X

〈x|z∗〉 − ‖x‖

=







0 if ‖z∗‖ ≤ 1

+∞ if ‖z∗‖ > 1.

As the norm is continuous and thus lsc. the Fenchel-Moreau-Rockafellar Theorem
3.24 now states that

‖y‖ = sup
‖z∗‖≤1

z∗ (y) = s{z∗ : ‖z∗‖≤1} (y) ,

where sB (y) := supz∗∈B z∗ (y) is often called support function of the set B.

Example 3.26. For a sample space Ω with a probability measure P the spaces
Lp (Ω,P) and Lp′

(Ω,P) (1
p
+ 1

p′ = 1 and 1 ≤ p < ∞) again form a natural dual
pair, when employing the natural bi-linear form

〈Z|Y 〉 := E [Y · Z] .
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Recall that an acceptability functional is concave, due to the Fenchel-Moreau
Theorem 3.24 it may be represented via its dual. In a general situation we will find
that the bi-dual dominates the original functional A, and they coincide for upper
lower semi-continuous (usc.) functionals. The general form is

A (Y ) = inf {E [Y · Z]− A (Z) : A (Z) > −∞} .

Definition 3.27 (Dual Representation). We shall use the following terms:

(i) A representation of form

A (Y ) = inf {E [Y · Z]− A (Z) : Z ∈ Z}

is called a dual representation of A.

(ii) For a functional A on random variables the set

ZA := {Z ∈ Z : A (Z) > −∞}

is called supergradient set of A, or risk envelope.

(iii) A is said to be version independent, if for any Z and Z̃ having the same distri-

bution then A (Z) = A
(

Z̃
)

and either both or none is in ZA.

Remark. As explicitly outlined in [24] A is version independent iff A is version inde-
pendent.

3.5. Derivative Of The Acceptability Functional

The dual representations imposed for the acceptability functional allow to char-
acterize the derivative.

Theorem 3.28. Let A be a lower semi-continuous (lsc.) and concave acceptability
functional on a normed, linear space with range R. Then ∂A (Y ) is not empty13.

Proof. Consider the hypo-graph of A,

hyp (A) = {(Y ′, α′) : α′ < A (Y ′)} ,

which obeys these following properties:

(i) hyp (A) is convex, because A is concave;

(ii) hyp (A) is open, because

hyp (A) =
⋃

t∈R
{A > t} × (−∞, t)

and A is lsc.

13Note that A is finitely valued, its range is R̄\ {−∞}.
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For fixed Y there is – due to the separating hyperplane theorem (a geometric version
of the Hahn-Banach theorem) – a closed hyperplane separating the point (Y, A (Y ))
from the open set hyp (A), that is there is a pair (u∗, υ∗) with the property

u∗ (Y − Y ′) + υ∗ · (A (Y )− α′) > 0

for all (Y ′, α′) ∈ hyp (A): υ∗ is a number, and u∗ is continuous, as the hyperplane is
closed.

Notice that υ∗ > 0, because

u∗ (Y − Y ) + υ∗ · (A (Y )− α′)
︸ ︷︷ ︸

>0

> 0

for the particular choice (Y, α′) ∈ hyp (A). Whence,

ũ∗ (Y ′ − Y ) +A (Y )− α′ > 0

for ũ∗ := − 1
υ∗ u∗ and α′ < A (Y ′).

Let α′ tend to A (Y ′), α′ → A (Y ′) to establish that

ũ∗ (Y ′ − Y ) +A (Y )− A (Y ′) ≥ 0:

this rewrites as

A (Y ′) ≤ A (Y ) + ũ∗ (Y ′ − Y ) ,

which is the defining equation for ũ∗ to qualify for the subdifferential ∂A (Y ). The
subdifferential therefore is non-empty.

Ruszczyński and Shapiro have derived the following more general result for the
special case of Banach-lattices in [52, Proposition 3.1]; see as well [53, page 264 and
Theorem 7.79] for a more detailed elaboration of the proof. Their result is based
on the classical Baire Category Theorem and the Klee-Nachbin-Namioka Theorem.
The latter states that positive linear functionals are continuous (cf. Borwein’s14

paper Automatic continuity and openness of convex relations in [8] for an additional
reference).

For an extension to multivariate risk mappings it is rewarding, indeed, to consult
Ruszczyński and Shapiro in [51, 50].

Theorem 3.29. Suppose that A : Y → R̄ is a proper acceptability functional on the
Banach-lattice Y. Then A is continuous and subdifferentiable on the interior of its
domain.

14Jonathan M. Borwein, together with his brother Peter Borwein, is rather well-known for some
compelling algorithms to compute π and their contribution to the Riemann zeta function ζ (s) =
∑

n=1
1

ns . They were rewarded the Chauvent and Hasse prizes during their collaboration at
Dalhousie University in Halifax (Canada).
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It is made evident now that the subgradient of a concave lsc. functional A is
not empty. But what about the sub-differential of A? The set ∂A (z) is obviously
non-empty neither, whenever we may identify X with X∗∗, that is for reflexive spaces.

This may not hold true, however, for other spaces: To this end recall Remark
2.9: given 0 Ó= z∗ ∈ l1 with non-finite support, HBz∗ /∈ c0, and we further will not
find any vector x̃ ∈ c0 such that

‖z∗‖ = sup
x∈c0

z∗ (x)− ‖.‖∗ (x)

= sup
‖x‖≤1

z∗ (x)

= z∗ (x̃) ,

the supremum is not attained and – in view of the next theorem – the subdifferential
in the pre-dual is empty.

It is the content of the next theorem to further characterize the sub-differential
for reflexive spaces (1 < r < ∞), although the statement is valid for r = 1 as well
(but not for r = ∞ in general):

Theorem 3.30. Let A be usc. with values in R and dual to A on Lr for some
1 ≤ r < ∞ and ZA ⊆ Lr′

(1
r
+ 1

r′ = 1), then

∂A (Y ) = argmin {E [Y · Z]− A (Z) : Z ∈ ZA} .

The linear mapping A′ (Y ) (h) := E [h · ZY ] is a subdifferential of A if ZY ∈ ∂A (Y ),
and A′ (Y ) ∈ ∂A (Y ) is a subgradient of the acceptability function A.

Proof. Consider ZY ∈ argmin {E [Y · Z]− A (Z) : Z ∈ ZA}. By linearity of A′ (Y )

A (Y ) +A′ (Y )
(

Ỹ − Y
)

= E [Y · ZY ]− A (ZY ) + E
[(

Ỹ − Y
)

· ZY

]

= E
[

Ỹ · ZY

]

− A (ZY ) .

As A
(

Ỹ
)

is the infimum over all such Z thus

A (Y ) +A′ (Y )
(

Ỹ − Y
)

≥ A
(

Ỹ
)

,

that is

A′ (Y ) ∈ ∂A (Y )

for the concave function A.

Conversely, let Z̃Y ∈ ∂A (Y ), that is Z̃Y ∈ (Lr)∗ = Lr′

for 1 ≤ r < ∞, and
hence there is a function ZY ∈ Lr′

such that

A (Y ) + E
[

ZY

(

Ỹ − Y
)]

≥ A
(

Ỹ
)
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for all Ỹ ∈ Lr. Equivalently,

E [ZY Y ]− A (Y ) ≤ inf
Ỹ
E

[

ZY Ỹ
]

− A
(

Ỹ
)

= A (ZY ) ,

and thus
A (Y ) ≥ E [ZY · Y ]− A (ZY ) ,

which in turn means that ZY ∈ argmin {E [Y · Z]− A (Z) : Z ∈ ZA}.

A proof by different means is contained in Ruszczyński and Shapiro [52, page
437].

Theorem 3.31. Given a usc. functional A with dual A on a reflexive space, then

Y ∈ ∂A (∂A (Y )) and Z ∈ ∂A (∂A (Z)) .

Proof. This is immediate, as E [Y · Z] = A (Y ) + A (Z).

3.6. Kusuoka’s Representation

The AV@R-functionals are extreme points among all distortion acceptability
functionals, this is another remarkable fact exposing AV@R. The corresponding Cho-
quet representation is

AH (Y ) =

ˆ 1

0

G−1
Y (u) dH (u)

=

ˆ 1

0

AV@Rα (Y ) dM (α) ,

where M is monotonically increasing, satisfying M (0) = 0 and M (1) = H (1).

Kusuoka (cf. [30]) was able to reveal a general representation in the form

A (Y ) = inf

{
ˆ 1

0

AV@Rα (Y ) dmG (α) : G ∈ G
}

,

where {mG : G ∈ G} is a family of measures (not necessarily probability measures).
His results were brought later in a more general context in [24] and the supplementary
note [55].

We shall state the theorem as it is contained in [24] without proof. However,
Kusuoka already obtained the essential ingredient, which is the transition from the
dual representation to Kusuoka’s presentation – and vice versa. We will demonstrate
how this transition works in general, the rest then are non-trivial technicalities, to
which we take our hat off.

The Kusuoka representation links the dual representation to a representation
of a convex-combination involving the AV@Rα at all levels α by using the fact that
α Ô→ AV@Rα (Y ) is an increasing function, as is made obvious by (3.17).
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Theorem 3.32 (Kusuoka’s Representation). Suppose that (Ω,Σ,P) is a standard
probability space, and let A : L∞ (Ω,Σ,P) → R be a version independent acceptability
functional. The following then are equivalent:

(i) There is a version independent, usc. and concave functional A : L1 (Ω,Σ,P) →
R such that A (Y ) > −∞ whenever Y ≥ 0 and E [Y ] = 115, and

A (Y ) = inf
Z∈L1

{E [Y · Z] − A (Z)} for Y ∈ L∞;

(ii) There is a convex function v : P ([0, 1]) → [0, ∞] such that

A (Y ) = inf
m∈P([0,1])

{
ˆ 1

0

AV@Rα (Y ) dm (α) + v (m)

}

for Y ∈ L∞.

Sketch of the Proof. To establish the relation between the first and second assertion
consider the set Dց of non-increasing, right-continuous, R-valued functions on ]0, 1]

such that f (1) = 0 and ‖f‖1 =
´ 1

0
f (x) dx = 1. Define the map

T : Dց (]0, 1]) → M (]0, 1])

f Ô→ mf

where the measure mf is defined by dmf (x) = −xdf (x). Using integration by parts
one verifies that

‖mf‖1 = mf (]0, 1])

=

ˆ

dmf

= −
ˆ

xdf (x)

= x · f (x)|10 +
ˆ 1

0

f (x) dx

= 1;

notice in addition that T (hα) = δα on ]0, 1], where hα (x) = 1
α
1]0,α[ (x), moving the

AV@R a bit closer.

The relation then is established by

A (Y ) :=







−v
(

T
(

−G−1
−Y

))

if Y ≥ 0 and E [Y ] = 1,

−∞ else.

Conversely let v (m) := V (T −1 (m)), where V
(

−G−1
−Y

)

:= −A (Y ).

This is a bijection, allowing to pass from A to v and backwards – but this is not
more than a motivation for the proof of Kusuoka’s representation. The proof further
incorporates antimonotone couplings, as elaborated in Lemma 3.13, in an essential
way.

15i.e. A is well-defined on densities.
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4. Continuity

This section is dedicated to the investigation of continuity properties of the
acceptability function.

In an initial stage usual continuity properties of the acceptability functional are
investigated.

Further, as the acceptability functional is defined on a probability space, the
question how the underlying probability measure influences the returning result of
the acceptability functional is of interest as well; the other chapter will investigate
this question then in detail.

4.1. Continuity Of The Acceptability Functional

Monotonicity and translation equivariance in the definition of the acceptabil-
ity functional are already strong regularizing properties, as the following immediate
lemma reveals.

Lemma 4.1. Suppose that Y = Lp (Ω, Σ,P) and there is one almost surely bounded

random variable Ỹ ∈ L∞ (Ω, Σ,P) such that A
(

Ỹ
)

> −∞. Then A (Y ) > −∞ for

any Y ∈ L∞ (Ω, Σ,P) and A is Lipschitz-1 on this subspace, that is

|A (Y1) − A (Y2)| ≤ ‖Y1 − Y2‖∞ .

Proof. Observe that Ỹ ≤ c̃ for some c̃ < ∞. Whence −∞ < A
(

Ỹ
)

≤ A (c̃) by mono-

tonicity, thus further −∞ < A (c) for any real number c by translation equivariance.

Next choose c ≤ Y a.s., therefore −∞ < A (c) ≤ A (Y ), so A is R-valued for
any Y ∈ L∞.

To observe continuity choose c1 and c2 such that c1 ≤ Y1 − Y2 ≤ c2 a.s.. From
monotonicity and translation equivariance then follows that

A (Y1) = A (Y2 + Y1 − Y2)

≤ A (Y2 + c2)

= A (Y2) + c2,

and

A (Y2) = A (Y1 + Y2 − Y1)

≤ A (Y1 − c1)

= A (Y1) − c1,
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combined thus

c1 ≤ A (Y1) − A (Y2) ≤ c2.

Changing the role of Y1 and Y2 reveals the assertion.

Remark 4.2. Notice that the latter lemma does not imply that A is continuous with
respect to the norm ‖.‖p for p < ∞: It is correct that ‖.‖p1

≤ ‖.‖p2
whenever p1 ≤ p2,

but the identity is not a continuous embedding.

Not as immediate as the latter Lemma, but an immediate corollary to Theorem
3.29 is the following

Corollary 4.3. Let A : Lp → R (1 ≤ p < ∞) be a real-valued acceptability functional.
Then A is continuous and subdifferentiable on the entire Lp.

This justifies the next stability statement:

Theorem 4.4. Let A be an acceptability functional on Lp (Ω, Σ,P), 1 ≤ p < ∞.
Then

∣
∣
∣A (Y ) − A

(

Ỹ
)∣

∣
∣ ≤

∥
∥
∥Y − Ỹ

∥
∥
∥

p
· max






inf

Z∈∂A(Y )
‖Z‖p′ , inf

Z∈∂A(Ỹ )
‖Z‖p′






;

in particular ∣
∣
∣A (Y ) − A

(

Ỹ
)∣

∣
∣ ≤

∥
∥
∥Y − Ỹ

∥
∥
∥

p
· sup

A(Z)>−∞
‖Z‖p′ ,

where 1
p

+ 1
p′ = 1.

Proof. Let Z ∈ ∂A (Y ) be chosen, that is

A (Y ) ≤ A
(

Ỹ
)

+ E
[

Z ·
(

Y − Ỹ
)]

.

By Hölder’s inequality thus

A (Y ) − A
(

Ỹ
)

≤ E
[

Z ·
(

Y − Ỹ
)]

≤ ‖Z‖p ·
∥
∥
∥Y − Ỹ

∥
∥
∥

p′
.

Interchanging the role of Y and Ỹ gives the assertion.

4.2. Continuity With Respect To Changing The

Measure

Theorem 4.5 (The average value at risk is continuous with respect to the Was-
serstein-metric - I.). Let Y be a R-valued random variable which is Hölder continuous
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with constant Lβ (Y ) on some Polish space. Then AV@R is Hölder-continuous with

constant
Lβ(Y )

α
β
r

, that is

|AV@Rα,P (Y ) − AV@Rα,Q (Y )| ≤ Lβ (Y )

α
β

r

· dr (P,Q)β

for any 1 ≤ r < ∞.

Proof. Recall that

AV@Rα,P (Y ) = max
{

a − 1

α
EP

[

(a − Y )+
]

: a ∈ R
}

(4.1)

and the maximum is attained at a∗ ∈ V@Rα (Y ) and so satisfies P [Y ≤ a∗] ≤ α1.
Then choose a measure π minimizing dr (P,Q) and a∗ maximizing (4.1). With this
choice

AV@Rα,P (Y ) − AV@Rα,Q (Y )

= a∗ − 1

α
EP

[

(a∗ − Y )+
]

− max
a

a − 1

α
EQ

[

(a − Y )+
]

≤ a∗ − 1

α
EP

[

(a∗ − Y )+
]

− a∗ +
1

α
EQ

[

(a∗ − Y )+
]

=
1

α
EQ

[

(a∗ − Y )+
]

− 1

α
EP

[

(a∗ − Y )+
]

=
1

α

ˆ

(

(a∗ − Y (ω1))
+ − (a∗ − Y (ω2))

+
)

·

· 1{(ω1,ω2):Y (ω1)≤a∗, Y (ω2)≤a∗}π [dω1, dω2] .

Observe now that x Ô→ (a∗ − x)+ is Lipschitz-continuous with Lipschitz-constant 1,
so (a∗ − x)+ − (a∗ − y)+ ≤ |x − y|. Thus,

AV@Rα,P (Y ) − AV@Rα,Q (Y )

≤ 1

α

ˆ

|Y (ω1) − Y (ω2)| ·

· 1{(ω1,ω2):Y (ω1)≤a∗, Y (ω2)≤a∗}π [dω1, dω2]

≤ 1

α

ˆ

Lβ (Y ) · d (ω1, ω2)
β · 1{(ω1,ω2):Y (ω1)≤a∗, Y (ω2)≤a∗}π [dω1, dω2] .

1For atomic probability spaces the augmented random variable F (Y, U) has to be involved.
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Now one may apply Hölder’s inequality with 1
r
β

+ 1
r

r−β

= 1 to get

AV@Rα,P (Y ) − AV@Rα,Q (Y )

≤ Lβ (Y )

α
·

(
ˆ

d (ω1, ω2)
r π [dω1, dω2]

) β

r

·

·
(
ˆ

1
r

r−β

{(ω1,ω2):Y (ω1)≤a∗, Y (ω2)≤a∗}π [dω1, dω2]

) r−β

r

≤ Lβ (Y )

α
·

(
ˆ

d (ω1, ω2)
r π [dω1, dω2]

) β

r

·

·
(
ˆ

1{(ω1,ω2):Y (ω1)≤a∗}π [dω1, dω2]

) r−β

r

=
Lβ (Y )

α
· dr (P,Q)β · P [Y ≤ a∗]

r−β

r

≤ Lβ (Y )

α
· dr (P,Q)β · α1− β

r

=
Lβ (Y )

α
β

r

· dr (P,Q)β .

Reversing the role of P and Q finally establishes the result.

Corollary 4.6 (Continuity of the acceptability functional with respect to the Wasser-
stein distance – II). Suppose A is an acceptability functional with Kusuoka-representation

AP (Y ) = inf
G∈G

ˆ 1

0

AV@Rα,P (Y ) dmG (α) ,

where G is a set of positive measures.

Then A is continuous with respect to the Wasserstein distance, provided that

K := sup
G∈G

ˆ 1

0

1

α
β

r

dmG (α) < ∞

is finite:

|AP (Y ) − AQ (Y )| ≤ dr (P,Q)β · Lβ (Y ) · sup
G∈G

ˆ 1

0

1

α
β

r

dmG (α) . (4.2)

Proof. The proof is straight forward: choose Gε ∈ G such that

ˆ 1

0

AV@Rα,Q (Y ) dmGε (α) < AQ (Y ) + ε.
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Then

AP (Y ) − AQ (Y ) =

≤
ˆ 1

0

AV@Rα,P (Y ) dmGε (α) −
ˆ 1

0

AV@Rα,Q (Y ) dmGε (α) + ε

≤
ˆ 1

0

AV@Rα,P (Y ) − AV@Rα,Q (Y ) dmGε (α) + ε

≤ Lβ (Y ) · dr (P,Q)β ·
ˆ

1

α
β

r

dmGε (α) + ε

≤ K · Lβ (Y ) · dr (P,Q)β + ε.

Let ε → 0 and interchange the role of P and Q to observe the desired assertion.

Remark 4.7. This next example demonstrates that it is necessary to somehow bound
α away from 0, because

P Ô→ AV@R0,P

is not continuous in general: Define the measure Pn :=
(

1 − 1
nr+1

)

δ0 + 1
nr+1 δ−n and

observe that

dr (δ0, Pn) =
(

1

nr+1
nr

) 1

r

= n− 1

r → 0

but, however, for the simple random variable Y (ω) = ω,

AV@R0;δ0
(Y ) − AV@R0;Pn

(Y ) = 0 + n = n.

P → AV@R0,P thus is far from being continuous with respect to dr for 1 ≤ r < ∞.

The next theorem elaborates the geometry of a general acceptability functional
in sufficient detail.

Theorem 4.8 (The acceptability functional is continuous with respect to the Was-
serstein-metric – III). Let A be version independent, and let Y be a R-valued random
variable which is Hölder continuous, that is |Y (ω) − Y (ω′)| ≤ Lβ (Y ) · d (ω, ω′)β

for some β ≤ 1. Then A is Hölder-continuous as well with respect to changing the
measure, precisely

AQ (Y ) − AP (Y ) ≤ Lβ (Y ) · dr (P,Q)β · inf
Z∈∂AP(Y )

‖Z‖r′
β

(4.3)

whenever 1 ≤ r < ∞ and r′
β ≥ r

r−β
.2

In particular

|AP (Y ) − AQ (Y )| ≤ Lβ (Y ) · dr (P,Q) · sup
A(Z)>−∞

‖Z‖r′
β

.

2r′
β satisfies β

r
+ 1

r′

β

≤ 1 and is just the usual Hölder-conjugate exponent for β = 1.



60 Chapter 4. Continuity

Remark 4.9. It should be noticed that the norm ‖Z‖q is version independent, as

‖Z‖q
q = E [|Z|q]

= q ·
ˆ ∞

0

tq−1P [|Z| ≥ t] dt

= q ·
ˆ ∞

0

tq−1 (1 − P [Z ≤ t] + P [Z ≤ −t]) dt

by integration by parts. Due to the assumption that A is version independent it
follows that

sup
A(Z)>−∞

‖Z‖pβ

is symmetric in P and Q, and for convenience we thus may suppress the index in
AQ (Z) > −∞.

Before we prove the latter theorem we want to mention the following essential
corollary:

Corollary 4.10 (The acceptability functional is continuous with respect to the
Wasserstein-metric – IV). Let A be version independent on a Polish space, Y a
R-valued random variable which is Hölder continuous, that is |Y (ω) − Y (ω′)| ≤
Lβ (Y ) · d (ω, ω′)β for some β ≤ 1. Then the map

P Ô→ AP (Y )

is τdr
-continuous provided that supA(Z)>−∞ ‖Z‖r′

β
< ∞.

Proof of Theorem 4.8. Recall the dual representation

AP (Y ) = inf {EP [Y · Z] − AP (Z) : Z in ZA}

and recall that there is an optimal ZY ∈ ∂AP (Y ) such that

EP [Y · ZY ] − AP (ZY ) ≥ AP (Y ) .

For any other dual variable Z ∈ ZAQ
thus

AQ (Y ) −AP (Y )

≤ EQ [Y · Z] − AQ (Z) − EP [Y · ZY ] + AP (ZY )

=

ˆ

Y (ω2) · Z (ω2)Q [dω2] −
ˆ

Y (ω1) ZY (ω1)P [dω1] − AQ (Z) + AP (ZY )

= inf
π

ˆ

Y (ω2) · Z (ω2) − Y (ω1) ZY (ω1) π [dω1, dω2] − Aπ2
(Z) + Aπ1

(ZY ) ,

where the infimum is over all measure π with marginals π1 = P and π2 = Q.
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Taking the infimum over all random variables Z ∈ ZAQ
one obtains

AQ (Y ) −AP (Y )

≤ inf
Z∈ZA

inf
π

ˆ

Y (ω2) · Z (ω2) − Y (ω1) ZY (ω1) π [dω1, dω2]

Aπ2
(Z) + Aπ1

(ZY ) .

The Corollary 3.14 to Hoeffding’s Lemma (cf. Lemma 3.13) allows to separate the
second variable Z (ω2). We may rephrase the latter inequality accordingly as

AQ (Y ) −AP (Y )

≤ inf
π̃

inf
Z∈ZA

ˆ

Y (ω2) · Z (ω3) − Y (ω1) ZY (ω1) π̃ [dω1, dω2, dω3] +

− Aπ̃2
(Z) + Aπ̃1

(ZY ) ,

where π̃ has the additional, third marginal π̃3 = Q, together with the other marginals
π̃1 = P and π̃2 = Q.

Let GY (z) := P [ZY ≤ z] and G (z) := Q [Z ≤ z] be the respective cumulative
distribution functions of ZY and Z. Let U be independent of Z and define the random
variable

F (Z, U) := (1 − U) · G (Z−) + U · G (Z) ,

which is uniformly distributed, and moreover G−1 (F (Z, U)) = Z a.s. by Proposition
3.2.

Further define the R-valued random variable

Z ′ := G−1
Y (F (Z, U)) ,

as above G−1
Y (p) := inf {u : GY (u) ≥ p} (G−1 (p) := inf {u : G (u) ≥ p} , resp.) and

recall that GY

(

G−1
Y (p)

)

≥ p and G−1
Y (GY (z)) ≤ z. Thus

Q [Z ′ ≤ z] = Q
[

G−1
Y (F (Z, U)) ≤ z

]

= Q [F (Z, U) ≤ GY (z)]

= GY (z)

= P [ZY ≤ z] .

It follows that ZY and Z ′ have the same distribution given their respective
measures, that is

Q [Z ′ ≤ z] = P [ZY ≤ z] .

From this observation and due to the assumption of version-independence one
deduces first that

Aπ̃2
(Z ′) = Aπ̃1

(ZY ) ,
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and further, by restricting to random variables of the particular form Z ′ and by
choosing the appropriate coupled measure (we link the third marginal (dy) with the
first marginal (dz)), that

AQ (Y ) −AP (Y )

≤ inf
π̃

inf
Z

ˆ

Y (ω2) · Z ′ (ω3) − Y (ω1) ZY (ω1) π̃ [dω1, dω2, dω3]

≤ inf
π̃

ˆ

Y (ω2) · ZY (ω1) − Y (ω1) ZY (ω1) π̃ [dω1, dω2, dω3]

= inf
π

ˆ

Y (ω2) · ZY (ω1) − Y (ω1) ZY (ω1) π [dω1, dω2] .

Now note that 1
r
β

+ 1
r

r−β

= 1, we thus may apply Hölder’s inequality to get

AQ (Y ) − AP (Y )

≤ inf
π

ˆ

(Y (ω2) − Y (ω1)) · ZY (ω1) π [dω1, dω2]

≤ inf
π

(
ˆ

|Y (ω2) − Y (ω1)|
r
β π [dω1, dω2]

) β

r
(
ˆ

|ZY (ω1)|
r

r−β π [dω1, dω2]

) r−β

r

,

the infimum being computed over all measures with marginals π1 = P and π2 = Q.
Utilizing Hölder’s continuity and taking the infimum over all measures with the

respective marginals finally establishes that

AQ (Y ) − AP (Y )

≤ inf
π

Lβ (Y ) ·
(
ˆ

d (ω2, ω1)
r π [dω1, dω2]

) β

r
(
ˆ

|ZY | r
r−β dP

) r−β

r

≤ Lβ (Y ) · dr (P,Q)β · ‖ZY ‖r′
β

because ‖Z‖r′
β

≥ ‖Z‖ r−β

r

as r′
β ≥ r

r−β
.

As we may accept any random variables ZY ∈ ∂A (Y ) one thus obtains

AQ (Y ) − AP (Y )

≤ Lβ (Y ) · dr (P,Q)β · inf
Z∈∂A(Y )

‖Z‖r′
β

.

Interchanging the role of P and Q finally establish the other result, that is

|AQ (Y ) − AP (Y )| ≤ Lβ (Y ) · dr (P,Q)β · sup
A(Z)>−∞

‖Z‖r′
β

holds in particular.
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Using the latter result the continuity of theAV@R functional follows by a straight-
forward computation:

Corollary 4.11 (The average value at risk is continuous with respect to the Wasser-
stein-metric). Let Y be a R-valued random variable which is Hölder continuous for

some β ≤ 1. Then AV@Rα is Hölder-continuous with constant
Lβ(Y )

α
β
r

with respect to

changing the measure, that is

|AV@Rα,P (Y ) − AV@Rα,Q (Y )| ≤ Lβ (Y )

α
β

r

· dr (P,Q)

for any 1 ≤ r < ∞.

Proof. The proof consists of evaluating ‖h‖r′
β
for the function hα, because

‖Z‖r′
β

= ‖hα (U)‖ r
r−β

=

(
ˆ α

0

1

α
r

r−β

dx

) r−β

r

=
(

α1− r
r−β

) r−β

r

= α
r−β

r
−1

= α− β

r .

Remark 4.12. Notice that we get in particular

|AV@Rα,P (Y ) − AV@Rα,Q (Y )| ≤ L (Y )

α
· dKA (P,Q)

for the AV@R and the Kantorovich metric (r = 1; cf. Pflug and Wozabal, [40]).
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5. Modulus Of Continuity

In order to better understand the behaviour of the acceptability functional we
shall further determine the driving constants in (4.3), which are

inf
Z∈∂A(Y )

‖Z‖r′
β

, (5.1)

sup
A(Z)>−∞

‖Z‖r′
β

. (5.2)

and (4.2). For some exemplary, but typical and relevant acceptability functionals we
will compute these numbers in the sequel. Moreover, we will discuss cases in which
the bounds found are sharp.

5.1. Distortion Risk Functional

Recall that AH is called a distortion acceptability functional, provided it can be
stated as a Stieltjes integral of the form

AH {G} =

ˆ 1

0

G−1 (u) dH (u)

for some H which we assume to be bounded, right continuous and increasing on [0, 1].

Usually we shall assume that H has the representation H (u) =
´ u

0
h (u′) du′

for some non-increasing h (u) (H thus is convex), and the AV@Rα is obtained by the
particular choice Hα (g) := min

{
g
α
, 1

}

and its respective density hα (u) := 1
α
1[0,α] (u).

The dual representation of the distortion acceptability functional1 is

AH (Y ) = inf {E [Y · h (U)] : U uniform in [0, 1]} .

It is straight forward that for Z = h (U) ,

‖Z‖r′ = ‖h (U)‖r′

=

(
ˆ 1

0

h (u)r′

du

) 1

r′

= ‖h‖r′

1U : Ω → R is uniform iff P [U ∈ [a, b]] = b − a.
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is a constant for any uniform U , and thus supA(Z)>−∞ ‖Z‖r′ = ‖h‖r′ .

As the AV@R is a distortion acceptability functional as well for the particular
function h (u) = 1

α
1[0,α] (u), thus

‖h‖r′ =

(
ˆ α

0

(
1

α

)r′

du

) 1

r′

=
(

α1−r′
) 1

r′

=
1

α
1

r

,

as was already elaborated.

5.2. The AV@R At Level 0

The average value at risk at level 0 is by definition

AV@R0 (Y ) := ess inf (Y ) .

The dual of this functional is well know, and given as

AV@R0 (Y ) = inf {E [Y · ZY ] : E [ZY ] = 1, ZY ≥ 0 a.s.}
= s{ZY : E[ZY ]=1, ZY ≥0 a.s.} (Y )

where the infimum is not attained in general2 (see [39] and [24] for further treatment
of this functional):

This functional is of particular interest for Y ∈ L∞ (Ω,P) ⊆ Lp (Ω,P), be-
cause otherwise AV@R0 might not even be defined. ZY thus is in the space ZY ∈
L∞ (Ω,P)∗ = ba (Ω, Σ,P), the space of bounded and finitely-additive3 measures on Ω,
which are absolutely continuous with respect to P. But our duality theory requires
ZY ∈ L1 (Ω,P) anyhow.

Put

ZY (ω) :=
1{Y =ess inf Y } (ω)

P [{Y = ess inf Y }]

2The dual representation of AV@Rα is AV@Rα (Y ) = inf
{
E [Y · ZY ] : E [ZY ] = 1, 0 ≤ ZY ≤ 1

α
a.s.

}
=

sCα
(Y ), where Cα =

{
ZY ∈ L∞ : E [ZY ] = 1, 0 ≤ ZY ≤ 1

α
a.s.

}
is weak* compact by Alaoglu’s

Theorem. This is in significant contrast to AV@R0, as {ZY ∈ L∞ : E [ZY ] = 1, ZY ≥ 0 a.s.} is
not weak* compact, particularly not bounded.

3Recall that finitely-additive is weaker than countably-additive: The Theorem of Radon-Nikodym
identifies countably-additive, P-absolutely continuous measures with L1 (Ω,P), which is the pre-
dual space in the given environment.
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(if this makes sense at all) and observe that

AV@R0
(

Ỹ
)

= ess inf
(

Ỹ
)

≤ E
[

Ỹ · ZY

]

= E
[(

Ỹ − Y
)

· ZY

]

+ ess inf (Y )

= E
[(

Ỹ − Y
)

· ZY

]

+ AV@R0 (Y ) ,

the defining equation for the subgradient and in this situation ZY ∈ ∂AV@R0 (Y ).

Recall that Theorem 4.8 requires the quantity ‖ZY ‖r′ , which evaluates to

‖ZY ‖r′ =

(

P [{Y = ess inf (Y )}]
P [{Y = ess inf (Y )}]r′

) 1

r′

=
1

P [{Y = ess inf (Y )}] 1

r

.

This bound is of course useless except for the particular situation

P [{Y = ess inf (Y )}] > 0.

More, however, cannot be expected, because P Ô→ AV@R0;P is not continuous, as
we have already observed in Remark 4.7.

5.3. Deviation Risk Functional

Intimately connected with acceptability functionals A are deviation risk func-
tionals, they appear in some situations a bit more natural to handle. Often they are
called pure risk functional, or simply deviation functional as well.

As regards the notation we shall follow basically Pflug and Römisch [38] here.

Definition 5.1 (Deviation risk functional). A real valued mapping D on random
variables Y ∈ Y is a deviation risk functional provided that E− D is an acceptability
functional. Equivalently,

⊲ (Translation invariance) D (Y + c) = D (Y ) for all random variables Y and real
numbers c ∈ R,

⊲ (Convexity) D ((1 − λ)Y0 + λY1) ≤ (1 − λ)D (Y0) + λD (Y1) for 0 ≤ λ ≤ 1 and
Y0, Y1 ∈ Y , and

⊲ (Monotonicity) E [Y0] − D (Y0) ≤ E [Y1] − D (Y1) provided that Y0 ≤ Y1 almost
everywhere.

Remark 5.2. One verifies that ρ · D is a deviation risk functional as well, provided
that 0 ≤ ρ ≤ 1.
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function h (u) Fenchel conjugate h∗ (v) = supu∈R u · v − h (u)

h (u) = b · u+ − a · (−u)+ h∗ (v) =







0 if a ≤ v ≤ b

+∞ else

h (u) = |u| h∗ (v) =







0 if |v| ≤ 1

+∞ else

h (u) = 1
p

|u|p, (p > 1) h∗ (v) = 1
q

|v|q for 1
p
+ 1

q
= 1

h (u) = 1
p

(

(−u)+
)p
, (p > 1) h∗ (v) = 1

q

(

(−u)+
)q

h (u) = α + βu + γ · f (δu + ǫ) h∗ (v) = −α − ǫv−β
δ

+ γ · f ∗
(

v−β
δγ

)

for γ > 0

h (u) = u + 1
γ
(e−γu − 1) h∗ (v) =







v
γ
+ 1−v

γ
ln (1 − v) if v ≤ 1

+∞ else

Table 5.1.: List of exemplary convex functions and their Fenchel conjugates.

Remark 5.3. The deviation risk functional obeys a dual representation, which comes
along with the dual representation of acceptability functionals:

Given the representation

D (Y ) = sup
D(Z)<∞

{E [Y · Z] − D (Z)} ,

where D (Z) := D∗ (Z) = sup {E [Y · Z] − D (Y ) : Y ∈ Y} is the respective Fenchel-
Moreau dual, and A := E− ρ · D4, then

A (Y ) = inf
D( 1−Z

ρ )<∞

{

E [Y · Z] + ρD

(

1 − Z

ρ

)}

,

that is to say the relation A (Z) = −ρD
(
1−Z

ρ

)

for the dual variables holds true (cf.
Pflug and Römisch, [39, Section 2.5]).

In this setting the interesting quantity, the modulus of continuity thus rewrites

sup
A(Z)>−∞

‖Z‖r′ = sup
D(Z)<∞

‖1 − ρZ‖r′ . (5.3)

In the following discussion we will use the dual representations elaborated by
Pflug in [38] and use these representations then to determine if changing the measure
is continuous with respect to the Wasserstein distance for a few selected acceptability
functionals.

The Deviation Functional D (Y ) = E [h (Y − E [Y ])]

Let h denote a non-negative convex function satisfying h (0) = 0. The deviation
risk functional

D (Y ) := E [h (Y − E [Y ])]

4Compositing the objective functional in this described way is sometimes called scalarization.
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was investigated by Markowitz first for the particular situation h (u) = |u|p and p = 2
in [31].

Its dual representation is given by

D (Y ) = E [h (Y − E [Y ])]

= sup
E[Z]=0

E [Y · Z] − Dh∗ (Z) ,

the convex dual of D thus takes the particular form

D (Z) =







infa∈R E [h∗ (Z − a)] if E [Z] = 0

∞ else,

where h∗ is the Fenchel-dual of h (cf. [39]), h∗ (v) = sup {u · v − h (u) : u ∈ R}, and
Dh∗ (Z) = infa∈R E [h∗ (Z − a)].

To investigate the continuity of the related acceptability functional consider first
the random variables

Zn :=
n

P [A]
1A − n

P [AC]
1AC ,

which satisfy E [Zn] = 0 and thus are feasible for any measurable set A satisfying
0 < P [A] < 1. Notice that

‖1 − ρZn‖r′ ≥ ‖1 − ρZn‖1
≥ 2nρ − 1.

In order to keep
sup

D(Z)<∞
‖1 − ρZ‖r′

bounded (cf. (5.3)) these random variables Zn have to be excluded, which in turn
means that necessarily D (Zn) = ∞ has to hold for large n, that is Dh∗ (Zn) = ∞.
As

D (Zn) = Dh∗ (Zn)

= inf
a∈R
E [h∗ (Zn − a)]

= inf
a∈R

h∗
(

n

P [A]
− a

)

P [A] + h∗
(

− n

P [AC]
− a

)

P
[

AC
]

we necessarily conclude that {h∗ < ∞} has to stay bounded, i.e. compact.
We may conclude that if the deviation risk functional E [h (Y − E [Y ])] is con-

tinuous with respect to changing the measure for the Wasserstein distance, then
necessarily {h∗ < ∞} is bounded.

This latter requirement particularly excludes the variance (h (u) = u2) and all
functionals of the form D (Y ) = E [|Y − E [Y ]|p] for any p > 1.

Remark 5.4. For completeness we shall give an additional word to the variance in the
sequel.
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Figure 5.1.: The random variables Zn (left) and ‖Z1‖2 as a function of P [A] (right).

D (Y ) :=Mad (Y ) Is Continuous

The mean average deviation is defined as Mad [Y ] := E [|Y − E [Y ]|], which is
the latter situation for h (u) := |u|. Note, that

h∗ (u) =







0 if − 1 ≤ u ≤ 1

∞ else

satisfies {h∗ < ∞} = [−1, 1] and thus is bounded, thus hope raises that E− ρ ·Mad
is continuous.

In fact, choose p = 1, with dual parameter p′ = ∞, and thus −2 ≤ Z ≤ 2, as
E [Z] = 0 and Dh∗ (Z) < ∞. Whence

sup
D(Z)<∞

‖1 − ρZ‖∞ ≤ 1 + 2ρ.

To summarize:

|AP (Y ) − AQ (Y )| ≤ L (Y ) · (1 + 2ρ) · d1 (P,Q)

≤ L (Y ) · (1 + 2ρ) · dr (P,Q) ,

where

A (Y ) = E [Y ] − ρ ·Mad [Y ] .

We conclude that E − ρ · Mad is continuous with respect to changing the measure
when employing the Wasserstein distance.

D (Y ) := E |Y − EY |p Is Not Continuous
Define the measures Pn := 1

2
δ−n + 1

2
δn and Q := δ0 on the simple space (R, |.|)

and observe that

dr (Pn,Q) =
(
1

2
nr +

1

2
nr

) 1

r

= n.
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Consider the random variable Y = Id. Then EPn
[Y ] = 0. For h (u) := |u|p, however,

EQ [Y ] − ρ · EQ [|Y − EQ [Y ]|p] − EPn
[Y ] + ρ · EPn

[|Y − EPn
[Y ]|p]

= 0 − 0 − 0 + ρ · np

= ρ · np

≥ ρ · np−1 · dr (Pn,Q) ,

and thus the functional

A (Y ) := E [Y ] − ρ · E [|Y − E [Y ]|p]

in general is not Lipschitz-continuous for p > 1 with respect to changing the measure.

D (Y ) := Var (Y ) Is Not Continuous

This is just a special case of the previous situation for p = 2 > 1: The functional

A (Y ) := E [Y ] − ρ · Var [Y ]

is not continuous with respect to changing the measure.

The Central Deviation D (Y ) := ‖Y − E [Y ]‖p Is Continuous

The functional D (Y ) := ‖Y − E [Y ]‖p is convex as well, the dual is

D (Y ) = sup {E [Y · Z] : E [Z] = 0, Dp′ (Z) ≤ 1}
= sup {E [Y · Z] : D (Z) < ∞} ,

where
Dp′ (Z) = inf

a∈R
‖Z − a‖r′ (5.4)

and thus

D (Z) =







0 if E [Z] = 0 and infa∈R ‖Z − a‖p′ ≤ 1

∞ else.

Now notice that E [Z] = 0 and ‖Z − a∗‖p′ = infa∈R ‖Z − a‖p′ ≤ 1 imply that

0 = E [Z]

≤ |E [Z − a∗]| = |E [Z] − a∗|
≤ E [|Z − a∗|]
= ‖Z − a∗‖1
≤ ‖Z − a∗‖p′

≤ 1,
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and thus |a∗| ≤ 1 + |E [Z]| = 1 for the optimal a∗ in (5.4). Moreover,

‖Z‖p′ ≤ |a∗| + ‖Z − a∗‖p′

≤ 1 + 1

= 2,

and it follows that

sup
D(Z)<∞

‖1 − ρZ‖p′ ≤ 1 + 2ρ.

To summarize,

|AP (Y ) − AQ (Y )| ≤ L (Y ) · (1 + 2ρ) · d1 (P,Q)

≤ L (Y ) · (1 + 2ρ) · dr (P,Q) ,

for the acceptability functional A (Y ) = E [Y ] − ρ · ‖Y − E [Y ]‖p.

Improved Bound For The Standard Deviation
D (Y ) := ‖Y − E [Y ]‖2

The latter bound, however, can be improved in the situation p = p′ = 2, as

inf
a∈R

‖Z − a‖2 = ‖Z‖2

(that is a∗ = E [Z] = 0) and whence

‖1 − ρZ‖22 = E
[

(1 − ρZ)2
]

= 1 − 2ρE [Z] + ρ2E
[

Z2
]

≤ 1 + ρ2,

and therefore

sup
D(Z)<∞

‖1 − ρZ‖2 ≤
√

1 + ρ2.

Given Y , the random variable minimizing

A (Y ) := E [Y ] − ρ
√

Var [Y ]

= inf
{

E [Y · Z] : E [Z] = 1,E
[

Z2
]

≤ 1 + ρ2
}

may be given explicitly as ZY = 1− ρ√
Var[Y ]

(Y − E [Y ]); moreover, ‖ZY ‖2 =
√
1 + ρ2.
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The Lower Central Semideviation D (Y ) :=
∥
∥
∥(E [Y ] − Y )+

∥
∥
∥
p

Consider the functional D (Y ) :=
∥
∥
∥(E [Y ] − Y )+

∥
∥
∥

p
. In this situation we have

that
∥
∥
∥(E [Y ] − Y )+

∥
∥
∥

p
= sup

{

E [Y · Z] : Z = E [V ] − V, V ≥ 0 and ‖V ‖p′ ≤ 1
}

and

D (Z) =







0 if Z = E [V ] − V, V ≥ 0 and ‖V ‖p′ ≤ 1

∞ else.

It is comparably easy thus to establish that

sup
D(Z)<∞

‖1 − ρZ‖r′ ≤ 1 + ρ · ‖V − E [V ]‖r′

≤ 1 + ρ · (‖V ‖r′ + E [V ])

≤ 1 + 2ρ · ‖V ‖p′

whenever r ≥ p and again we have continuity for the acceptability functional of the
particular form

A (Y ) = E [Y ] − ρ ·
∥
∥
∥(Y − E [Y ])−

∥
∥
∥

p
.

Minimal Loss Functional

Consider the deviation risk functional (with dual representation) of the form
(with dual representation)

D (Y ) : = min
a∈R

E [h (Y − a)]

= sup {E [Y · Z] − E [h∗ (Z)] : E [Z] = 0} ,

that is

D (Z) =







E [h∗ (Z)] if E [Z] = 0

∞ else.

Again and as above consider the random variables Zn := n
P[A]1A − n

P[AC]
1AC which has

E [Zn] = 0, but ‖1 − ρZ‖p′ > 2nρ − 1. In order to keep

sup
D(Z)<∞

‖1 − ρZ‖p′
β

bounded we necessarily have to exclude those variables Zn, that is to say {h∗ < ∞}
has to stay bounded from at least one side. This again excludes all function of the
form h (u) = |u|p.
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Entropic Acceptability Functional A (Y ) = − 1
γ
lnE

[

e−γY
]

Figure 5.2.: Ludwig Boltzmann’s epitaph.

The entropic acceptability func-
tional is a special case of the previ-
ous section for the choice h (u) = u +
1
γ
(e−γu − 1).

In this situation

D (Y ) = min
a∈R

h (Y − a)

= E [Y ] +
1

γ
lnE

[

e−γY
]

,

the minimum is attained for a∗ =
− 1

γ
lnE

[

e−γY
]

. The dual representation
is

D (Y ) = sup
E[Z]=0

E [Y · Z] − h∗ (Z)

= supE [Y · Z] − D (Z)

for D (Z) =







E [h∗ (Z)] if E [Z] = 0

∞ else.

Now we learn from table 5.1 that
h∗ (v) = ∞ for v > 1, and thus

sup
D(Z)<∞

‖1 − ρZ‖r′ = sup
E[Z]=0, Z≤1

‖1 − ρZ‖r′ .

Choose any measurable set A and consider the random variable ZA = 1A − P[A]
1−P[A]1A∁

satisfying ZA ≤ 1 and E [ZA] = 0.

Then

‖1 − ρ · ZA‖r′ =



(1 − ρ)P [A] +

(

1 + ρ
P [A]

1 − P [A]

)r′

(1 − P [A])





1

r′

;

this quantity evaluates as

‖1 − ρ · ZA‖r′ =







1 if r′ = 1

unbounded else,

an indicator for the acceptability functional not to be Lipschitz with respect to chang-
ing the measure.
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Indeed, let Pn :=
(

1 − 1
nr

)

δ0 +
1

nr δ−n. Then

dr (Pn, δ0) =

(
ˆ

|ω − 0|r Pn [dω]

) 1

r

=
(

0 + nr 1

nr

) 1

r

= 1.

However,

Aδ0
(Id) = −1

γ
lnEδ0

[

e−γId
]

= 0,

but

APn
(Id) = −1

γ
lnEPn

[

e−γId
]

= −1

γ
ln

((

1 − 1

nr

)

e0 +
1

nr
eγn

)

= −n +
r

γ
lnn + o (1) ,

so we do not have continuity for any r ≥ 1.

Summary

This following table summarizes the particular results established above:

Acceptability Functional Modulus of Continuity

AV @Rα (Y ) α− 1

r

Ah (Y ) ‖h‖r

A (Y ) = − 1
γ
lnE

[

e−γY
]

not continuous

A = E− ρ · D for Deviation D
D (Y ) =Mad (Y ) 1 + 2ρ
D (Y ) = E [h (Y − E [Y ])] necessary condition: {h∗ < ∞} bounded
D (Y ) = E [(Y − E [Y ])p] not continuous for p > 1
D (Y ) = Var (Y ) not continuous
D (Y ) = ‖Y − E [Y ]‖p 1 + 2ρ

D (Y ) = ‖Y − E [Y ]‖2
√
1 + ρ2

D (Y ) =
∥
∥
∥(E [Y ] − Y )+

∥
∥
∥

p
1 + 2ρ if p ≤ r

D (Y ) = mina∈R E [h (Y − a)] necessary condition: {h∗ < ∞}
bounded from left or right
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6. Ambiguity

In the investigations above we have discussed the problem

minimize
(in Q)

AQ (Y )

subject to dr (Q,P) ≤ K.
(6.1)

and found a lower bound, which was of the form

AP (Y ) − L (Y ) · K · inf
Z∈∂AP(Y )

‖Z‖r′ .

We shall drive the investigations further now and give some very general situ-
ations, for which the bounds achieved are sharp. Further, we shall characterize the
measure, such that the problem in consideration attains its minimal value. It will
turn out that these measures have an interesting description as a transport plan.

Moreover, situations will occur where the bounds are not attained. For some of
them we will prove, that no such bound exists in general, the problem thus is not
continuous.

Before turning to the general situation, however, we shall start with the simpler
problem

minimize
(in Q)

EQ [Y ]

subject to dr (P,Q) ≤ K
Q ∈ Pr (Ω)

(6.2)

to develop the strategy and the notion.

As above, let (Ω, Σ,P) denote a probability triple. We shall assume in addition
that Ω is a linear space, for example (Rm, ‖.‖), equipped with an appropriate norm
function ‖.‖.

On this space there is the usual notion of a dual Ω∗, collecting all linear, con-
tinuous functionals on Ω. Notice, that any linear functional Y : Ω → R is a random
variable itself, and Y ∈ Ω∗.

Given a linear random variable Y on Rm, Y (ω) then represents an inner product
like evaluation for an atom ω ∈ Ω: Y may be represented as Y (ω) =

∑m
s=1 Ysωs =

Y ⊤ω for the vector Y = (Y1, Y2, . . . Ym) ∈ Rm.
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It is obvious that for any such Y there is a vector

ωY ∈ argmax
‖ω‖=1

Y (ω)

‖ω‖ ⊆ Rm;

in full generality, to break a fly on the wheel, this is the Hahn-Banach Theorem for
the reflexive Rm, whose unit ball is compact.

Theorem 6.1. If Ω is linear, equipped with a norm and Y a linear functional, then,
for all 1 ≤ r < ∞, the bound

EP [Y ] − K · L (Y )

is sharp, the minimizing measure is the push-forward (image measure of P)1

Q∗ := T∗ (P) = P ◦ T −1

for the (affine linear) transport map T (ω) := ω − K · ωY .

Proof. By Kantorovich’s famous duality theorem

|EP [Y ] − EQ [Y ]| ≤ L (Y ) · dKA (P,Q)

= L (Y ) · d1 (P,Q) (6.3)

≤ L (Y ) · dr (P,Q) (6.4)

for r ≥ 1, establishing that EQ [Y ] ≥ EP [Y ] − L (Y ) · dr (P,Q) ≥ EP [Y ] − L (Y ) · K.

To observe that this bound is sharp indeed let Ω and Y be linear,

Q∗ := T∗ (P) = P ◦ T −1

and define the transport plan

π := (Id × T )∗ (P) ,

that is π [A × B] = P [A ∩ T −1 (B)], where

(Id × T ) (ω) := (ω, T (ω)) .

The Wasserstein distance of P and Q∗ is bounded by K, because

dr (P,Q∗)r ≤
ˆ

d (ω1, ω2)
r π [dω1, dω2]

=

ˆ

d (ω, T (ω))r P [dω]

=

ˆ

‖K · ωY ‖r P [dω]

= Kr ‖ωY ‖r

= Kr.

1Villani rather uses the notation T#P := T∗ (P) for the push-forward measure. We, however, have
the impression that T∗ (P) is more convenient, the notation PT is in frequent use as well.
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Given this measure Q∗ the objective of the primal function is

EQ∗ [Y ] =

ˆ

Y (ω)P ◦ T −1 [dω]

=

ˆ

Y (T (ω)) · P [dω]

=

ˆ

Y (ω − K · ωY )P [dω]

= EP [Y ] − K · Y (ωY )

= EP [Y ] − K · L (Y ) ,

which is the minimum value we can achieve in view of (6.4).

We shall now turn to the general situation.

Theorem 6.2 (Optimal transport plan). Let Y be linear on a linear space equipped
with a norm.

(i) Consider the problem

minimize
(in Q)

AQ (Y )

subject to dr (Q,P) ≤ K.

Then the minimal value is AP (Y ) − K · L (Y ) · minZ∈∂A(Y ) ‖Z‖r′.

(ii) For 1 < r < ∞ the minimizing measure is given by the push-forward

Q* := T∗ (P) = P ◦ T −1,

where T is the transport map

T (ω) : = ω − K ·
∣
∣
∣
∣
∣
∣

ZY (ω)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· sign ZY (ω) · ωY (6.5)

= ω − K

‖ZY ‖
1

r−1
r

r−1

· |ZY (ω)| r
r−1

−2 · ZY (ω) · ωY

(the random variable ZY ∈ argmin
{

‖Z‖ r
r−1

: Z ∈ ∂AP (Y )
}

is the smallest (in

norm), and optimal dual variable (Lagrange multiplier)).

(iii) For r = 1 the optimal transport map is

T (ω) := ω − K · 1{|ZY |=‖ZY ‖} (ω)

P [|ZY | = ‖ZY ‖]
· sign ZY (ω) · ωY .
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Figure 6.1.: Distortions in M. C. Escher’s (1898 - 1972) drawing “Gallery”.
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Proof. Again consider the transport plan

π := (Id × T )∗ (P)

with the marginals P and Q∗; observe that

dr (P,Q∗)r ≤
ˆ

‖ω − ω′‖r
π [dω, dω′]

=

ˆ

‖ω − T (ω)‖r P [dω]

=

ˆ

∥
∥
∥
∥
∥
∥
∥

K ·
∣
∣
∣
∣
∣
∣

ZY (ω)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· ωY

∥
∥
∥
∥
∥
∥
∥

r

P [dω]

=
Kr

‖ZY ‖
r

r−1
r

r−1

·
ˆ

|ZY | r
r−1 dP

= Kr,

that is to say Q∗ has an accepted distance from P.
We shall observe now that the transport map T is injective:

Choose ω1 and ω2 and note that

T (ω1) − T (ω2) =

= ω1 − ω2+

− K · ωY






∣
∣
∣
∣
∣
∣

ZY (ω1)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· sign ZY (ω1) −
∣
∣
∣
∣
∣
∣

ZY (ω2)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· sign ZY (ω2)




 .

One may assume – without loss of generality – that ZY (ω1) ≤ ZY (ω2) (otherwise
reverse them) and distinguish the following two situations:

(i) If ZY (ω1) = ZY (ω2), then T (ω1) − T (ω2) = ω1 − ω2 and T thus is injective on
this subset.

(ii) If ZY (ω1) < ZY (ω2), then Y (ω1) ≥ Y (ω2) a.s., because Y and ZY are coupled
in an antimonotone way. In this situation

Y (T (ω1) − T (ω2)) =

= Y (ω1 − ω2) +

− K ‖Y ‖






∣
∣
∣
∣
∣
∣

ZY (ω1)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· sign ZY (ω1) −
∣
∣
∣
∣
∣
∣

ZY (ω2)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· sign ZY (ω2)






> Y (ω1 − ω2)

≥ 0,

because the map x Ô→ sign (x) · |x| 1

r−1 is increasing.
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Whence, T (ω1) Ó= T (ω2) unless ω1 = ω2.

Define the random variable

ZT
Y := E [ZY | T ]

by conditional expectation (conditioning as factorization, a by-product of the Radon-
Nikodym theorem), which is a nice way to circumvent discussions about subsets,
which are not contained in T ’s image set. Due to its definition ZT

Y obeys the defining
property

ˆ

T −1(B)

ZY dP =

ˆ

T −1(B)

E [ZY | T ] ◦ TdP

=

ˆ

B

E [ZY | T ] dT∗ (P)

=

ˆ

B

ZT
Y dQ

∗ (6.6)

for all measurable sets B (cf. [58]). Notice, that
ˆ

T −1(B)

ZY dP =

ˆ

B

ZT
Y dQ

∗

=

ˆ

B

ZT
Y dT∗ (P)

=

ˆ

T −1(B)

ZT
Y ◦ TdP

by the change of variable formula again and for all measurable sets B, thus

ZY = ZT
Y ◦ T

P-a.e., and
ZT

Y = ZY ◦ T −1

Q∗-a.e as T is injective.

One deduces from (6.6) further that

EP
[

ZY · 1{ZY ≤t}
]

=

ˆ

T −1T {ZY ≤t}
ZY dP

=

ˆ

T {ZY ≤t}
ZT

Y dQ
∗

= EQ∗

[

ZT
Y · 1{ZT

Y
≤t}

]

,

and whence

t − 1

α
EP

[

(t − ZY )
+

]

= t − 1

α
EQ∗

[(

t − ZT
Y

)+
]

,
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which is a well-known identity – cf. Corollary 3.20. Taking the maximum with respect
to t, it will be attained for the same t at the left and at the right:

G−1
ZY

(α) = argmax
t

t − 1

α
EP

[

(t − ZY )
+

]

= argmax
t

t − 1

α
EQ∗

[(

t − ZT
Y

)+
]

= G−1
ZT

Y

(α) ,

(a.e.) and so it follows that ZY and ZT
Y have the same cumulative distribution function

under their respective measures, P [ZY ≤ z] = Q∗
[

ZT
Y ≤ z

]

, so finally AQ∗

(

ZT
Y

)

=

AP (ZY ) (there are obviously easier ways to introduce ZT
Y and to show that the dis-

tributions coincide, but we consider this as elegant).

As ZY is optimal, AP (Y ) = EP [Y · ZY ] − AP (ZY ) and thus further

AQ∗ (Y )−AP (Y ) =

≤ EQ∗

[

Y · ZT
Y

]

− AQ∗

(

ZT
Y

)

− EP [Y · ZY ] + AP (ZY )

= EQ∗

[

Y · ZT
Y

]

− EP [Y · ZY ]

= EP [(Y ◦ T ) · ZY ] − EP [Y · ZY ]

= EP [(Y (T − Id)) · ZY ] ,

by linearity of Y . Using ωY (Y ) = ‖Y ‖ = L (Y ) one finds further that

AQ∗ (Y )−AP (Y ) =

≤ EP




Y




−K ·

∣
∣
∣
∣
∣
∣

ZY (ω)

‖ZY ‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

signZY (ω) · ωY




 · ZY






= − K

‖ZY ‖
1

r−1
r

r−1

‖Y ‖ · EP
[

|ZY (ω)| 1

r−1 · |ZY |
]

= − K

‖ZY ‖
1

r−1
r

r−1

‖Y ‖ · EP
[

|ZY | r
r−1

]

= − K

‖ZY ‖
1

r−1
r

r−1

· L (Y ) · ‖ZY ‖
r

r−1
r

r−1

≤ −K · L (Y ) · min
Z∈∂A(Y )

‖ZY ‖ r
r−1

,

whence
AQ∗ (Y ) − AP (Y ) ≤ −K · L (Y ) · min

Z∈∂A(Y )
‖ZY ‖ r

r−1

.

In view of (4.3) this is smallest difference achievable.
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For the Kantorovich distance (r = 1) the proof needs a slight modification, it
may read as follows:

dKA (P,Q∗) ≤
ˆ

‖ω − T (ω)‖P [dω]

=

ˆ

∥
∥
∥
∥
∥
K · 1{|ZY |=‖ZY ‖} (ω)

signZY (ω)

P [|ZY | = ‖ZY ‖] · ωY

∥
∥
∥
∥
∥
P [dω]

= K ·
ˆ

1{|ZY |=‖ZY ‖} (ω)

P [|ZY | = ‖ZY ‖]P [dω]

= K.

On the other side,

AQ∗ (Y )−AP (Y ) =

= EP

[

Y

(

−K · 1{|ZY |=‖ZY ‖} (ω)
signZY (ω)

P [|ZY | = ‖ZY ‖] · ωY

)

· ZY

]

= −K · ‖Y ‖ ·
ˆ

1{|ZY |=‖ZY ‖} |ZY |
P [|ZY | = ‖ZY ‖] dP

= −K · L (Y ) · ‖ZY ‖∞
≤ −K · L (Y ) · min

ZY ∈∂A(Y )
‖ZY ‖∞ ,

which establishes the result in this particular case.

6.1. Interpretation And Further Discussion

6.1.1. Similarity And Relation With Optimal Transport Maps In
Rm.

The optimal transport map T in (6.7) – at least to some extent – strikingly
reminds to the following result in the context of optimal transportation. We cite the
theorem from [1] in a laxly way to make the key ingredients apparent.

Theorem 6.3 (Optimal transport maps in Rm). Let P and Q denote probability
measures on Rm and assume the distance function of the particular form

c (x, y) = ϕ (x − y)

for some strictly convex function ϕ : Rm → [0, ∞). Then the optimal measure for the
Kantorovich problem (2.3) takes the particular form π = (Id × T )∗ (P), where

T (x) = x − (∇ϕ)−1 (∇λ (x)) (6.7)

and λ is the respective maximal Kantorovich potential (cf. section 2.1).
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Before we proceed to sketching the proof let us point out the similarities with
(6.5): Choose

ϕ (x) :=
‖ZY ‖ 1

r−1

r · Kr−1 · ‖x‖r
r ,

thus

∇ϕ (x) =
‖ZY ‖ 1

r−1

Kr−1 · ‖x‖r−1
r





∣
∣
∣
∣
∣

xt

‖x‖r

∣
∣
∣
∣
∣

r−1
· xt

|xt|





t

=
‖ZY ‖ 1

r−1

Kr−1 ·
(

|xt|r−2 · xt

)

t

by Example 2.8. Whence,

(∇ϕ)−1 (y) =
K

‖ZY ‖
1

r−1

1

r−1

· |y| 1

r−1
−1 · y

=
K

‖ZY ‖
1

r−1

1

r−1

· |y| r
r−1

−2 · y,

and the optimal transport map according (6.7) thus is given as

T (x) = x − K

‖ZY ‖
1

r−1

1

r−1

· |∇λ (x)| r
r−1

−2 · ∇λ (x) .

Our result in (6.5) is completely similar, but the dual variable ZY taking the role of
∇λ (x) instead, the gradient of the maximal Kantorovich potential. Notice, that λ
itself is the dual variable of the problem (2.3).

Problem 6.4. As a consequence we would appreciate to have the maximal Kan-
torovich potential in the particular form

λ (x) =

ˆ x

x0

HBY (ṙ (t)) ZY (r (t)) dt

=

ˆ x

x0

ZY (r) HBY (dr) ,

where t Ô→ r (t) is a proper parametrisation of any path connecting x and some fixed
initial point x0. It is open – to our knowledge – to characterize the Kantorovich
potential accordingly.

Sketch of the proof of Theorem 6.3. Recall that

λ (x) + λc (y) ≤ c (x, y)

= h (x − y)
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and x′ Ô→ h (x′ − y) − λ (x′) attains its minimum (which is equal to λc (y)) at x. By
differentiating both sides we obtain that

∇λ (x) = h′ (x − y) · Id,

which immediately reveals that

y = x − (∇h)−1 (∇λ (x)) ,

which in turn is (6.7).

It remains to be shown that the push-forward equation Q = T∗ (P) holds true.
This is non-trivial, however, some mystery is revealed by writing π [dx, dy] = P [dx] ·
δ{y=T (x)} [dy].

A complete proof may be found, as mentioned, in [56] and [1].

Remark 6.5 (Q∗’s density). Let Ω = Rm, P (Q∗, resp.) have Lebesgue density fP
(fQ∗ , resp.) and let g be any random variable. Then

EQ∗ [g] =

ˆ

gdQ∗

=

ˆ

gdP ◦ T−1

=

ˆ

g (T ) dP

=

ˆ

g (T (x)) fP (x) dx

=

ˆ

g (x)
fP (T −1x)

|det T ′ (T −1 (x))|dx,

(det T ′ is the volume of the Jacobian) and on the other side

EQ∗ [g] =

ˆ

gdQ∗

=

ˆ

g (x) fQ∗ (x) dx

for all measurable functions g; we conclude that the respective densities coincide, that
is

fQ∗ (x) =
fP (T −1 (x))

|det T ′ (T −1 (x))| . (6.8)

This is the bases to display distributions via their density in the sequel.

This observation exposes that the construction is in line with transforming a
Rm- valued random variable X, say, to T ◦ X.
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Figure 6.2.: For the expectation, the worst measure is a simple translate. Here,
Y (ω1, ω2) = ω1 + ω2 and whence the direction of the translation is
−ωY = − 1√

2
(1, 1) for the Euclidean distance.

6.1.2. Expectation

Recall that the expectation is a concave functional as well, A := E, so it is
included as well in Theorem 6.2. This was already established earlier, but the latter
theorem expresses the optimal transport map in terms of ZY . The subgradient of the
expectation is the simple function ZY (ω) := 1, because obviously

A
(

Ỹ
)

≤ A (Y ) + E
[

ZY

(

Ỹ − Y
)]

.

The transport map reduces to the simple translation T (ω) := ω − K · ωY in this
situation for all 1 ≤ r < ∞, which is exemplary depicted in Figure 6.2.

6.1.3. Distortions

Figure 6.3.: Distortion function h.

For distortions we have elaborated
so far that ZY is coupled in an antimono-
tone way with Y and moreover ZY =
h (U): We thus can give the dual variable
as ZY = h (GY (Y ))2, and the transport
map rewrites

2Recall that h is decreasing.
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Figure 6.4.: Initial and distorted probability measure for h as in Fig. 6.3: 50 % stay
at the same place, 25% of the mass is simply being shifted in direction
−ωY , and the remaining 25% are brutally distorted in between (Y as in
the previous example).

T (ω) = ω − K ·
∣
∣
∣
∣
∣
∣

h (1 − GY (Y (ω)))

‖h‖ r
r−1

∣
∣
∣
∣
∣
∣

1

r−1

· ωY

for non-negative distortion functions h. Together with (6.8) in Remark 6.5 this enables
us to illustrate the geometry by plotting some densities, which we want to do here in
providing some examples.3

6.1.4. The AV@R

As for AV@Rα the optimal dual variable basically is ZY = 1{Y ≤G−1

Y
α}. The

transport map, again for all 1 ≤ r < ∞, is

T (ω) = ω − K

α
· ωY · 1{Y <G−1

Y
(α)} (ω) ,

3Let P denote a multivariate normal probability measure with mean µ and covariance ma-
trix Σ (P ∼ N (µ,Σ)) and Y a linear functional of the form Y (ω) = Y ⊤ω =

∑

i Yiωi,

then PY ∼ N
(
Y ⊤µ, Y ⊤ΣY

)
, that is PY ∼ N

(
∑

i Yiµi,
∑

i,j YiΣi,jYj

)

; whence, GY (y) =

1√
2πY ⊤ΣY

´ y

−∞ e
− 1

2

(x−Y ⊤µ)
2

Y ⊤ΣY dx and GY (Y (ω)) =
1√

2πY ⊤ΣY

´ Y ⊤ω

−∞ e
− 1

2

(x−Y ⊤µ)
2

Y ⊤ΣY dx is a R-valued
random variable.
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Figure 6.5.: Resulting probability distribution for the distortion function indicated in
the second plot.

Figure 6.6.: Initial and split probability measure (with two modes), as it is worst with
respect to the AV@R. Displayed from different perspectives.

which again includes the expectation for α = 1. And the particular case r = 1 is
included here naturally.

This transport map simply splits the sample space according the α-quantile:
Those samples, which do not contribute to the computation of AV@Rα (which have

quantile (
{

Y > G−1
Y (α)

}

), are left unchanged on their place, while all other samples,

which do contribute to the AV@Rα (
{

Y (ω) < G−1
Y (α)

}

), are being simply worsened

by shifting them the distance K
α
; moreover, all of them are being shifted

⊲ in parallel

⊲ in the same direction −ωY and

⊲ the same distance K
α
.
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j

Figure 6.7.: Exemplary shape for a bounded, and an unbounded distortion h. The
area under both charts is one.

6.2. The Distorted Functional AH

The optimal transport map is given by Theorem 6.2, provided that r > 1: that
is to say to give the worst measure is not a difficulty at all, provided we compare the
respective functionals in the Wasserstein metric.

As we have seen already the situation changes for the Kantorovich metric, as we
have to require that

P [|ZY | = ‖ZY ‖∞] > 0

in this situation. We shall continue the discussion at this point and elaborate the
continuity properties for the Kantorovich distance further.

Recall that ZY = h (U) for some uniform distribution U for the distorted ac-
ceptability functional. The latter condition P [{|ZY | = ‖ZY ‖∞}] > 0 thus holds iff

λ {|h| = ‖h‖∞} > 0,

where λ is the Lebesgue measure on [0, 1]: this, as we have seen above, is particularly
true for AV@R’s distortion function ha = 1

α
1[0,α], and the optimal measure can be

given in this situation as indicated.

We shall now further discuss the properties in the situation where h is

(i) unbounded, or

(ii) h is bounded, but not flat at its top.

It will turn out that the first problem is pretty easy, whereas the second involves
tough mathematical results.
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6.2.1. Unbounded Distortions

Theorem 6.6. Suppose that h is not bounded and Y is linear on a linear space. Then
the problem

minimize
(in Q)

AH;Q (Y )

subject to dKA (Q,P) ≤ K

is not bounded neither, i. e. the solution is −∞.

Proof. Consider the measures

Qn := Tn#P,

where the transport plans

Tn (ω) := ω − K · 1{|ZY |≥n} (ω)

P [|ZY | ≥ n]
· sign ZY (ω) · ωY

are given by cutting the (possibly sub-optimal) dual variable ZY .

As above notice that dKA (Qn,P) = K, but

AH,Qn
(Y ) − AH,P (Y ) ≤ −K · L (Y ) ·

ˆ

|ZY | · 1{|ZY |≥n} (ω)

P [|ZY | ≥ n]
P [dω]

≤ −K · L (Y ) · n,

and the problem thus does not allow a bounded (real) solution.

6.2.2. Bounded Distortions

Theorem 6.7. Let Y be a (continuous) linear functional on (Rm, ‖.‖). Moreover
assume that h is bounded, but λ {|h| = ‖h‖∞} = 0 (cf. Figure 6.7). Then the problem

minimize
(in Q)

AH;Q (Y )

subject to dKA (Q,P) ≤ K
(6.9)

is bounded, but there does not exist a measure Q with dKA (P,Q) ≤ K attaining the
minimum in (6.9), that is to say the respective argmin-set is empty.

Remark 6.8. Notice, that the latter statement holds true on finite dimensional spaces,
so there is no chance on infinite dimensional spaces neither to find a minimizing
measure.

Proof. Define the set

C := argmin {AH;Q (Y ) : dKA (Q,P) ≤ K} ,
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which is the argmin-set, consisting of all measures minimizing the problem (cf. (6.1))

minimize
(in Q)

AH;Q (Y )

subject to dKA (Q,P) ≤ K

in consideration.

In order to prove the statement by contradiction suppose that C were not empty.
As we already know the minimum value of the problem precisely we may write

C = {Q : AH;Q (Y ) − AH;P (Y ) = −K · L (Y ) · ‖h‖∞ , dKA (Q,P) ≤ K} .

Further one may write
C =

⋂

n>1

Cn,

where the sets Cn originate from the relaxed problem

Cn =
{

Q : AH;Q (Y ) − AH;P (Y ) ≤ −K · L (Y ) ·
(

‖h‖∞ − 1

n

)

, dKA (Q,P) ≤ K
}

;

those sets Cn are certainly non-empty.

Consider the measures
Qn := (Tn)∗ (P) ,

defined via the transport maps

Tn (ω) := ω − K ·
1{|ZY |>‖ZY ‖∞− 1

n} (ω)

P
[

|ZY | > ‖ZY ‖∞ − 1
n

] · sign ZY (ω) · ωY

by appropriately cutting the dual variable ZY at its top.

By the same reasoning as above they satisfy dKA (Qn,P) = K by construction,
and

AH,Qn
(Y ) − AH,P (Y ) ≤ −K · L (Y ) ·

ˆ

|ZY | ·
1{|ZY |>‖ZY ‖∞− 1

n} (ω)

P
[

|ZY | > ‖ZY ‖∞ − 1
n

]P [dω]

≤ −K · L (Y ) ·
(

‖ZY ‖∞ − 1

n

)

,

and thus Qn ∈ Cn.

As (Rm, ‖.‖) is locally compact the space of continuous functions vanishing at
infinity C0 (Rm, ‖.‖) is a Banach space, which Riesz’ theorem identifies with the space
of regular Borel measures.

The probability measures Qn may be considered themselves as elements of this
dual via the setting

Qn : C (Rm) → R

ϕ Ô→
ˆ

ϕdQn,
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but moreover

|Qn (ϕ)| ≤
ˆ

‖ϕ‖∞ dQn = ‖ϕ‖∞

for any function ϕ ∈ C0 (Rm, ‖.‖), and thus ‖Qn‖ ≤ 1: That is to say all those
measures Qn are within the unit ball B1 (0) of the dual of C0 (Rm, ‖.‖).

Alaoglu’s theorem states that the closed unit ball B1 (0) in the dual is weakly*
compact, thus there is an accumulation point Q ∈ B1 (0) such that

Qnk
→ Q

in the weak* topology for some sub-sequence (nk)k. Again by Riesz’ theorem Q has
a representation as a measure, although not necessarily as a probability measure.

We shall prove next that C is convex. This holds true, because

(i) the distance dKA is convex for the situation r = 1 (cf. Lemma 1.2 and its
subsequent remark), and

(ii) Q Ô→ AH,Q (Y ) is convex: to accept this consider Q0 ∈ C, Q1 ∈ C, define
Qλ := (1 − λ)Q0 + λQ1 and observe that the distribution functions

GY,λ (z) : = Qλ [Y ≤ z]

= (1 − λ)Q0 [Y ≤ z] + λQ1 [Y ≤ z]

= (1 − λ) GY,0 (z) + λGY,1 (z)

are convex-combinations. Whence

AH,Qλ
(Y ) =

ˆ

GY,λ (z) dH (z)

=

ˆ

(1 − λ) GY,0 (z) + λGY,1 (z) dH (z)

= (1 − λ)

ˆ

GY,0 (z) dH (z) + λ

ˆ

GY,1 (z) dH (z)

= (1 − λ) AH,Q0
(Y ) + λAH,Q0

(Y )

is a convex combination as well.

So C is convex. By Mazur’s theorem the norm-closure and its weak* closure coincide
for convex sets,

Q ∈ C
weak*

= C
‖.‖

,

we thus deduce in particular that

‖Q‖ = 1,

and the limiting measure Q thus is a probability measure.
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Now define the increasing sets Ωn :=
{

|ZY | ≤ ‖ZY ‖∞ − 1
n

}

. Observe that

Qn




⋃

j

Ωj



 ≥ Qn [Ωn] ,

≥ P
[{

|ZY | ≤ ‖ZY ‖∞ − 1

n

}]

= λ
{

|h| ≤ ‖h‖∞ − 1

n

}

→ 1

due to our assumptions, and particularly because ZY = h (U). Whence Qn

[
⋃

j Ωj

]

=

1, and consequently Q
[
⋃

j Ωj

]

= 1, because

Qnk
→ Q

in the weak* topology. By construction (recall the definition of the transport map
Tn), Qn and P coincide on any Ωn, so Q and P coincide on every set A ⊆ ⋃

k Ωk. This,
however, means Q = P, because

Q




⋃

j

Ωj



 = P




⋃

j

Ωj



 = 1.

This is a contradiction, because the measure P certainly is not optimal for the problem
(6.9).

Whence, C is the empty set,
C = ∅,

and there is no optimal measure Q for the problem (6.9).

Remark 6.9. As in the examples above we have again found measures such that

Qnk
→ P

in the weak* topology and in norm, but

Qnk
Ó→ P

in the Wasserstein dr distance. In particular

dr (Qn,P) = 1,

and

AH,Qn
(Y ) − AH,P (Y ) ≤ −K · L (Y ) ·

(

‖h‖∞ − 1

n

)

< 0

and Q Ô→ AH;Q (Y ) is dr-continuous.
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6.3. Implications For Investment Strategies

We have elaborated in previous sections that the quantity

inf
Z∈AH(Y )

‖Z‖r′

does not depend on Y in a lot of situations, for example for all distortion acceptability
functionals, as

inf
Z∈A(Y )

‖Z‖r′ = ‖h‖r′

(including the AV@R).

This fact is quite remarkable for portfolio optimization as we want to elaborate
now.

To this end consider again a linear space Ω = Rm, where any ω ∈ Ω may be
interpreted as a return-vector

ω = (ωs)
m
s=1 =









ω1
ω2
...

ωm









of m stocks. Any subset of potential returns is assigned a probability by the measure
P on Ω.

A random variable Y ∈ Ω∗ (Y linear) is just an investment strategy, as

Y (ω) =
m∑

s=1

Ys · ωs

represents the return of the portfolio, any of the stocks s being weighted with the
respective exposure Ys according the portfolio decomposition. A usual budget con-
straint then is given as

Y (1) = 1,

which means that the total investment in the set of m stocks represents 100 % of the
budget available.

In case short-selling has to be excluded as well, then the additional conditions
read

Y (es) ≥ 0 (s ∈ {1, 2, . . . m}) ,

where es is the sth-unit vector in Rm, representing stock s.

Notice, that within this setting a typical portfolio optimization problem reads

maximize
(in Y )

E [Y ]

subject to Y ∈ Ω∗ linear,
A (Y ) ≥ q,
Y (1) = 100%,
(Y (es) ≥ 0)
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where no more risk than q is accepted, and risk is being measured by A.

In a typical situation the measure P can be observed from the past, and it is
available as an empirical measure (for a convex approximation approach of this or
similar problems (chance constraints) we would like to refer the reader to Campi [12]:
work, which is built – at least partially – on [11]). To base an investment decision
only on this measure would be somewhat myopic, because close deviations or similar
observations could have appeared as likely as the observations themselves (cf. [27]).
For this it is evident that measures, which are close, should be taken into account as
well.

The next theorem elaborates, that accepting more measures will finally lead to
a simple investment decision, which consists of equally weighting all exposures in the
portfolio. This is contained in the next corollary for the choice

e = 1,

as in this situation
HB1

‖1‖ =
1

⊤

m

due to (2.9) in the introductory example. But the assignment 1
⊤

m
just means equal

weights for any of the stocks.

In preparation it should be mentioned that HB1

‖1‖ is the solution of the following
optimization problem:

Lemma 6.10. For e Ó= 0 the problem

minimize
(in Y )

‖Y ‖
subject to Y ∈ Ω∗ linear,

Y (e) = 1

has objective value 1
‖e‖ , which is attained at Ỹ = HBe

‖e‖ .

Proof. Notice, that
1 = Y (e) ≤ ‖Y ‖ ‖e‖ ,

and whence ‖Y ‖ ≥ 1
‖e‖ .

However,
∥
∥
∥Ỹ

∥
∥
∥ =

∥
∥
∥

HBe

‖e‖

∥
∥
∥ = 1

‖e‖ , and so the assertion is immediate.

Corollary 6.11 (It is asymptotically optimal to equally invest in all available as-

sets). Consider Rm, equipped with the norm ‖x‖ := (
∑m

s=1 |xs|p)
1

p , let x Ô→ HBx be
continuous in a neighbourhood of 1 and suppose that

inf
Z∈A(Y )

‖Z‖r′
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is independent of Y . Then

lim
K→∞

argmax
Y (1)=1

min
dr(P,Q)≤K

AQ (Y ) =
1

⊤

m
,

where the maximum is over all linear functionals Y satisfying Y (1) = 1.

We shall prove the statement in slightly some more generality:

Corollary 6.12. Let x Ô→ HBx be continuous in a neighbourhood of 0 Ó= e ∈ Ω and
suppose that

inf
Z∈A(Y )

‖Z‖r′

is independent of Y . Then

lim
K→∞

argmax
Y (e)=1

min
dr(P,Q)≤K

AQ (Y ) =
HBe

‖e‖ ,

where the maximum is over all linear functionals Y satisfying Y (e) = 1.

Proof. Recall first that the inner problem

min
dr(P,Q)≤K

AQ (Y )

has the (finite) solution

AP (Y )− K · L (Y ) · inf
Z∈∂A(Y )

‖Z‖r′ = AP (Y )− K ′ · L (Y )

for some constant K ′ := K · infZ∈∂A(Y ) ‖Z‖r′ . The outer problem

max
Y (e)=1

min
dr(P,Q)≤K

AQ (Y ) = max
Y (e)=1

AP (Y )− K ′ · L (Y )

has Lagrangian

L (Y, λ) = AP (Y )− K ′ · L (Y )− λ (1− Y (e)) ;

In the saddle point
(

Ỹ , λ̃
)

necessarily the derivative of the Lagrangian with respect
to any direction h has to vanish, that is the equations

0 = L′
(

Ỹ , λ̃
)

(h)

= A′
P

(

Ỹ
)

(h)− K ′ · HBỸ (h) + λ̃ · h (e)

= E [h · ZỸ ]− K ′ · HBỸ (h) + λ̃ · h (e) ,

1 = Ỹ (e)

have to hold simultaneously for all directions h, where Ỹ denotes any optimal solution
and ZỸ the random variable minimizing the dual problem

AP

(

Ỹ
)

= inf
A(Z)>−∞

E
[

Ỹ · Z
]

− A (Z)

for this optimal choice Ỹ .

Then define the ZỸ -barycenter of P, µZỸ
:= EP [Id · ZỸ ], and observe that
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(i) µZỸ
exists, as

∥
∥
∥µZỸ

∥
∥
∥ = ‖EP [Id · ZỸ ]‖

≤
(
ˆ

‖x‖r P [dx]

) 1
r

(
ˆ

|ZỸ | r
r−1

) r−1

r

=

(
ˆ

d (0, x)r P [dx]

) 1
r

· ‖ZỸ ‖ r
r−1

< ∞,

independently of Y .

(ii) Moreover notice that
EP [h · ZỸ ] = h

(

µZỸ

)

,

as h is linear.

Then choose λK > 0 so that K = ‖µZY
+ λK · e‖ (which is certainly possible if K is

big enough, say K > ‖µZY
‖) and define

Y ∗
K :=

HBµZY
+λK ·e

HBµZY
+λK ·e (e)

.

The pair (Y ∗
K , λK) solves the Lagrangian as well, it has the desired properties, because

EP [h · ZY ]− K·HBY ∗
K
(h) + λK · h (e) =

= h (µZY
)− K · h (µZY

+ λK · e)

‖µZY
+ λK · e‖ + λK · h (e)

= h (µZY
+ λK · e)− K · h (µZY

+ λK · e)

‖µZY
+ λK · e‖

= 0,

where we have used that HBHBx
(h) = h(x)

‖x‖ (cf. (2.8)).

Letting K → ∞ finally gives that λK → ∞, and

HBµZY
+λK ·e

HBµZY
+λK ·e (e)

=
HBµZY

λK
+e

HBµZY
λK

+e
(e)

−−−→
K→∞

HBe

HBe (e)

=
HBe

‖e‖ ,

because we assume x Ô→ HBx continuous in a neighbourhood of e.



7. Optimal Transport, Revisited

We have seen in previous sections that discrete measures are dense with re-
spect to the Wasserstein metric. So it is intuitively clear that mass-points cannot
be shifted to an arbitrary place without significantly increasing the distance to the
initial measure.

The next theorem reveals that in the modified measure, there will be again a
mass-point close to another mass-point in the original distribution, and its maximal
transportation distance is given. The result is a by-product of previous investigations
in this work.

Theorem 7.1. Consider the discrete measures P :=
∑

s Ps · δωs
and Q =

∑

t Qt · δω̃t
.

Then, for every s with Ps > 0 there exists t with Qt > 0 such that

d (ωs, ω̃t) ≤ dr (P,Q)
r
√
Ps

.

Proof. Problem (6.2) may be restated as

minimize
(in π)

∑

t Qt · Y (ω̃t) (= EQ [Y ])

subject to
∑

s,t πs,td (ωs, ω̃t)
r ≤ Kr,

∑

s,t πs,t = 1,
∑

s πs,t = Qt,
∑

t πs,t = Ps,
πs,t ≥ 0.

The marginal measure Qt is given by the transport plan, the problem thus rewrites

minimize
(in π)

∑

s,t πs,t · Y (ω̃t)

subject to
∑

s,t πs,t = 1,
∑

t πs,t = Ps,
∑

s,t πs,td (ωs, ω̃t)
r ≤ Kr,

πs,t ≥ 0.

This is a linear program in π, its dual thus is

maximize
(in γ, λs, µ)

γ +
∑

s Psλs − µKr

subject to γ + λs − µd (ωs, ω̃t)
r ≤ Y (ω̃t) ,

µ ≥ 0.
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Notice, that both, γ and λs are completely free, and as
∑

s Ps = 1 we may replace
γ ← γ − c and at the same time all λs ← λs + c without affecting the constraints,
nor changing the objective for any arbitrary constant c. So we may in particular
eliminate γ and simplify the dual as

maximize
(in λs, µ)

∑

s Psλs − µKr

subject to λs − µd (ωs, ω̃t)
r ≤ Y (ω̃t) ,

µ ≥ 0.

(7.1)

Now note that the constraints force

µ ≥ max
ωs Ó=ω̃t

λs − Y (ω̃t)

d (ωs, ω̃t)
r

for any index s.

We may fix an index s0 now and at the same time choose λs0
big enough, such

that equality is obtained for this particular index, that is

µ = max
ωs0

Ó=ω̃t

λs0
− Y (ω̃t)

d (ωs0
, ω̃t)

r ,

and moreover such that µ is feasible, that is µ ≥ 0.

Recall the objective

∑

s

Psλs − µKr ≥
∑

s

Psλs − Kr max
ω̃s0

Ó=ωt

λs0
− Y (ω̃t)

d (ωs0
, ω̃t)

r

≥ λs0

(

Ps0
− Kr max

ω̃s0
Ó=ωt

λs0
− Y (ωt)

d (ω̃s0
, ωt)

r

)

.

Letting λs0
→ ∞, the objective is growing with slope

Ps0
− max

ωs0
Ó=ω̃t

Kr

d (ωs0
, ω̃t)

r .

If this latter quantity were positive, then the objective tends to +∞ as well – this,
however, is impossible, as the objective is bound (for example) by EP [Y ]. The quan-
tity thus is non-positive, that is

Ps0
− max

ωs Ó=ω̃t

Kr

d (ωs0
, ω̃t)

r ≤ 0.

To put this in different words: For any s0

min
ωs0

Ó=ω̃t

d (ωs0
, ω̃t)

r ≤ Kr

Ps0

,

whence there is an index t such that

d (ωs0
, ω̃t) ≤ K

r

√

Ps0

,

which is the desired assertion.
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8. Asymptotic Quantizers

The initial chapters of this theses have been dedicated to elaborating that dis-
crete measures are dense in the Wasserstein metric. Then very concrete continuity
properties have been investigated, in particular continuity properties of acceptability
functionals with respect to the Wasserstein distance.

For potential computational purposes we want to combine these efforts now and
elaborate further on the distances of a given measure and a discrete approximation.
We want to know, how many mass-points are needed, and the appropriate weights
assigned to these points in order to get a sufficiently good approximation of the
probability measure in consideration. As the quality of the approximation increases,
the required mass-points will increase as well – in this situation we are of course
interested in the asymptotics and clarify for example, how many mass-points are
asymptotically necessary to obtain a desired approximation quality.

To this end we will judge some concrete results from the literature, and add
some further results.

8.1. Quantization Preliminaries

Quantization has been studied in detail by Graf and Luschgy in [21]; another
very compelling reference is the book by Rachev and Rüschendorf, [45].

Definition 8.1 (Terminology). Tessellation and Voronoi1-Tessellation.

⊲ A finite collection of measurable sets (Ωω)ω∈Q is a P-tessellation of Ω, provided
that

(i) P [
⋃

ω∈QΩω] = 1 and

(ii) P [Ωω ∩ Ωω′ ] = 0 for ω Ó= ω′.

⊲ A P-tessellation (Ωω)ω is a Voronoi-tessellation provided that d (x, ω) ≤ d (x, ω′)
for all x ∈ Ωω and ω′ ∈ Q.

⊲ A finite measure PQ :=
∑

ω∈Q pωδω is called a quantizer.

Remark 8.2. As already anticipated in the notation just introduced we usually con-
sider the index set Q itself a finite collection of samples from Ω, Q ⊆ Ω; and moreover
we shall assume ω ∈ Ωω, that is to say the set Q simply collects some representative
elements of any of the fragments Ωω.

1Georgi Feodosjewitsch Woronoi (1868 - 1908) was a Russian mathematician, born in Ukrain.
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Figure 8.1.: M. C. Escher (1898 - 1972): Metamorphose II. Quantizers with the am-
bition for higher dimensions.

Remark 8.3. Particularly in situations where

PQ =
∑

ω∈Q
pωδω =

∑

ω∈Q
P [Ωω] δω

for an appropriate tessellation (Ωω)ω∈Q, then Q and PQ are simultaneously called a
quantizer.

Lemma 8.4. Let Q ⊆ Ω be a finite set and consider the measure PQ :=
∑

ω∈Q pωδω

(with
∑

q∈Q pq = 1 ). Then the following holds true:

(i) Let (Ωq)q∈Q be a tessellation of Ω and pq := P [Ωq], then

dr

(

P,PQ
)r ≤

∑

q∈Q

ˆ

Ωq

d (ω, q)r P [dω] ;

(ii) If (Ωq)q is a Voronoi-tessellation and pq = P [Ωq], then

dr (P,PQ)
r =

ˆ

min
q∈Q

d (ω, q)r P [dω] . (8.1)
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Remark 8.5. Given a finite number of support points Q, then the weights pq = P [Ωq] –
(Ωq)q the corresponding Voronoi tessellation – are the optimal choice to approximate
P by a finite measure with respect to the Wasserstein distance dr for any r ≥ 1; the
latter Lemma states moreover, that the minimal distance may be evaluated explicitly
by computing (8.1).

Notice that the problem of finding good approximations thus reduces to finding
good locations, that is to minimize

(zs)
n
s=1 Ô→

ˆ

min
s

d (ω, zs)
r P [dω] .

This problem, however, is not convex and not trivial in general.

Proof. Let π be any probability measure on Ω× Ω with marginals P and PQ. Then
ˆ

Ω×Ω

d (ω, ω̃)rπ [dω, dω̃]

=

ˆ

Ω×Q

d (ω, ω̃)r π [dω, dω̃]

≥
ˆ

Ω×Q

min
q∈Q

d (ω, q)r π [dω, dω̃]

=

ˆ

Ω

min
q∈Q

d (ω, q)r P [dω] .

To prove the 1st assertion define the transport plan

π [A × B] :=
∑

q∈Q∩B

P [A ∩ Ωq] =
∑

q∈Q
P [A ∩ Ωq] δq [B]

and observe the marginals

π [Ω× B] =
∑

q∈Q
P [Ωq] δq [B] =

∑

q∈Q
pqδq [B] = PQ [B]

and

π [A × Ω] =
∑

q∈Q
P [A ∩ Ωq] = P [A] ,

as Ωq form a tessellation. Moreover, π [dx × {q}] =






P [dx ∩ Ωq] if q ∈ Q
0 if q /∈ Q . Thus,

dr

(

P,PQ
)r ≤

ˆ ˆ

Ω×Ω

d (x, q)r π [dx, dq]

=
∑

q∈Q

ˆ

Ω

d (x, q)r P [dx ∩ Ωq]

=
∑

q∈Q

ˆ

Ωq

d (x, q)r P [dx] .
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The proof of the latter lemma considerably simplifies in case r = 1, as the
function x Ô→ minq∈Q d (x, q) is Lipschitz-continuous with Lipschitz constant 1. In this
situation the Theorem of Kantorovich-Rubinstein provides a significant simplification
(cf. [44]).

8.2. Asymptotic Quantizers

The notation in the literature – probably for historical changes – is not unique,
different authors sometimes use even conflicting notations. However, there seems to be
a certain trend, or let’s say tendency, to unify the notation and we adopt the symbols
used here to comply with recent works in the area. For the sake of completeness and
to simplify further reading we give the symbols used in different occurrences as well.

Definition 8.6 (Quantization). The following characteristics will be essential:

⊲ en,r (P) := inf |Q|≤n dr

(

P,PQ
)

, the infimum being computed over all quantizers

PQ with not more than n atoms, |Q| ≤ n (other authors use the term nth-
quantization error for P of order r and the definition Vn,r(P) := en,r(P)r.)

⊲ Jr,m := infn≥1 n
r
m · en,r (U [0, 1]

m)
r
, where U ([0, 1]m) is the m-dimensional, uni-

form distribution on the unit cube;

⊲ Qr (P) := limn→∞ n
r
d ·en,r (P)

r is called rth-quantization coefficient of the proba-
bility measure P; notice, that Jr,m ≤ Qr (U [0, 1]

m); however, below both quan-
tities will be found to coincide.

The following stability result holds:

Lemma 8.7. |en,r (P1)− en,r (P2)| ≤ dr (P1,P2) .

Proof. Choose an optimal Q minimizing dr

(

P2,PQ
)

and let π denote the respective
optimal, bi-variate measure. Then

en,r (P1)− en,r (P2) = en,r (P1)− dr

(

P2,PQ
)

≤ dr

(

P1,PQ
)

− dr

(

P2,PQ
)

≤ dr (P1,P2)

by the triangle inequality. Revering the role of P1 and P2 proves the Lemma.

Some first results on the speed of convergence have been achieved by [15]. In
the center of quantization, however, is Zador’s result, which is contained in [60]:
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Theorem 8.8 (Zador-Gersho formula). Let P satisfy the moment-like condition
´

‖x‖r+η P [dx] for some η > 0. Then

Qr (P) = Jr,m ·
∥
∥
∥
∥
∥

dPa

dλm

∥
∥
∥
∥
∥

m
m+r

,

where Pa denotes the absolutely continuous part of P with respect to the Lebesgue
measure λm on Rm.

Proof. A proof in six steps of this fundamental result on the asymptotic quantization
error is provided in [21], Theorem 6.2.

Remark 8.9. Some remarks seem to be appropriate:

(i) The theorem links the quantization of an arbitrary, m-dimensional distribution
P with the problem of quantization of the uniform distribution on the unit cube
[0, 1]m;

(ii) The norm of the initial space finds its way into Jr,m, but it is not reflected in

the quantity
∥
∥
∥
dPa

dλm

∥
∥
∥

m
m+r

.

(iii) In particular notice that the theorem provides that

Qr ([0, 1]
m) := lim

n→∞
n

r
m · en,r ([0, 1]

m)
r

= inf
n≥1

n
r
m · en,r (U [0, 1]

m)
r

=: Jr,m.

(iv) Moreover, m
m+r

< 1 – contrary to the notation – ‖.‖ m
m+r

does not represent a

norm, because it does not satisfy the triangle inequality; however, this provides
a comprehensive and convenient notation.

Theorem 8.10. The rth-quantization coefficient satisfies

1 ≤ Qr ([0, 1]
m)

Mr (B (0, 1))
≤ Γ

(

2 +
r

m

)

, (8.2)

where B (0, 1) is the unit ball of the underlying norm, and

Mr (B (0, 1)) =
m

(m+ r)λm (B (0, 1))
r
m

.

Proof. As for the proof we refer again to [21], Proposition 8.3 and Proposition 9.3.

Remark 8.11 (Volume of the unit cube). "

⊲ The Lebesgue-volume of the d-dimensional unit ball with respect to the equally-

weighted lp-norm x Ô→ (
∑ |xi|p)

1
p is λ (B (0, 1)) =

(2Γ(1+ 1
p))

m

Γ(1+m
p )

(cf. Pisier, [43]).

⊲ Recall that Γ
(

2 + r
m

)

= 1+O
(

1
m

)

, so in high dimensions m ≫ 1 (8.2) provides
a very sharp bound for Jr,m, which is usually sufficiently good – good enough
for numerical evaluations.
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8.3. Scenario generation

What the latter theorem provides is an upper and a lower bound for the optimal
quantizing measure. To find such an optimal measure is, as discussed, difficult, and
the theorem, nor its proof reveal a strategy how to obtain such a measure, that is the
quantizing points.

Thus it is still of fundamental interest how to obtain such optimal quantizing
points, or to find – at least – an approximation which is acceptably good, in a sense
which needs to be specified.

The procedure to find quantizers is often called scenario generation (a sample
point ω ∈ Q ⊆ Ω in the sample space then is called a scenario).

We will give in the sequel a constructive upper bound for an approximation by
unit cubes for the uniform distribution in m dimensions, and we will show that this
upper bound for typical applications is acceptably good. Then we will generalize the
procedure to other measures, keeping the quality of the approximation, and so finally
we have established then a procedure to generate scenarios.

Theorem 8.12 (Quantization by unit cubes). Let ‖x‖p denote the weighted lp-norm

‖x‖p := (
∑m

i=1 wi |xi|p)
1
p on Rm and w̄ :=

∏m
j=1 w

1
m
j the geometric mean of the weights.

Then

Jr,m ≤ 1

2r

(

m · w̄

1 + p

) r
p

(

1 +O
(
1

m

))

;

more explicitly and precisely

Jr,m ≤ 1

2r

(

mw̄

1 + p

) r
p

+
m

r
p

−1

2r (2p+ 1)







0, r ≤ p

(r − p) p
(

w̄
1+p

) r
p , p ≤ r ≤ 2p

1− (1 + r)
(

w̄
1+p

) r
p , 2p ≤ r.

Remark 8.13. Recall, that Jr,m = Qr ([0, 1]
m). We thus may compare the upper bound

in the latter theorem with the bounds obtained by Graf and Luschgy, (8.2). The main
difference, however, is given by the fact that the bound in the latter theorem relies
on an immediate decomposition of the unit cube [0, 1]m.

In the charts below we have depicted

1, Γ
(

2 +
r

m

)

in purple and blue, and the upper bound from the latter theorem

J̄r ([0, 1]
m)

Mr (B (0, 1))

(i.e. the right hand side) in red and dashed.
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Figure 8.2.: p = 1: l1-distance
∑ |xi|: Upper and lower bound of the real quantization

coefficient and the unit cube approximation (red and dashed; r = 1 left,
r = 2 right) for increasing dimension m (ordinate).
Unit cube approximation requires up to 60% more quantization points.

Figure 8.3.: p = 2: l2-distance
(

∑ |xi|2
) 1

2 : Upper and lower bound of the real quan-

tization coefficient and the unit cube approximation (right and dashed;
r = 1 left, r = 2 right).
Unit cube approximation requires up to 20% more quantization points.
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Figure 8.4.: p = ∞: l∞-distance max |xi|: Upper and lower bound of the real quan-
tization coefficient and the unit cube approximation (right and dashed;
r = 1 left, r = 2 right).
Unit cube approximation is basically the best choice.

Remark 8.14. In many situations the weights wi have a natural interpretation as
time steps, that is wi = ∆ti = ti − ti−1. Involving the inequality of arithmetic and
geometric means observe that

m · w̄ ≤ m · 1
m

m∑

i=1

wi =
m∑

i=1

ti − ti−1 = tm − t0 =: T,

the constant thus stays bounded on finite time horizons when improving (i.e. de-
creasing) the discretisation steps: we find, notably irrespective of the discretisation
chosen,

Jr,m ≤ 1

2r

(

T

1 + p

) r
p

(

1 +O
(
1

m

))

.

Proof. First define the numbers ni :=







n
1
m

w
1
p
i

∏

j
w

1
mp
j







and observe that n ≤ ∏m
i=1 ni

2.

The unit cube [0, 1]m can be covered by n̄ =
∏

i ni translates of the cube

×m
i=1

[

0, 1
ni

]

, all of them anchored at the center points
(

i1− 1
2

n1
,

i2− 1
2

n2
, . . .

im− 1
2

nm

)

. Thus,

2⌈ . ⌉ is the integer-valued ceiling function satisfying x ≤ ⌈x⌉ < x+ 1
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Jr,m = inf
n

n
r
m · en,r (U [0, 1]

m)
r

≤ n̄
r
m · en̄,r (U [0, 1]

m)
r

≤ n̄
r
m · n̄ ·

ˆ 1
n1

0

. . .

ˆ 1
nm

0

∥
∥
∥
∥x −

(
1

2n1

,
1

2n2

, . . .
1

2nm

)∥
∥
∥
∥

r

p

dx1 . . . dxm

= n̄
r
m · n̄ · 2m ·

ˆ 1
2n1

0

. . .

ˆ 1
2nm

0

‖x‖r
p dx1 . . . dxm

= n̄
r
m · n̄ · 2m ·

ˆ 1
2n1

0

. . .

ˆ 1
2nm

0

(
m∑

i=1

wi |xi|p
) r

p

dx1 . . . dxm.

Now substitute xi ← xi

2ni
on each of all m axis to transform integration to the unit

cube again,

Jr,m ≤ n̄
r
m · n̄ · 2m · 1

2mn̄
·
ˆ 1

0

. . .

ˆ 1

0

(
m∑

i=1

wi

∣
∣
∣
∣

xi

2ni

∣
∣
∣
∣

p
) r

p

dx1 . . . dxm

=
n̄

r
m

2r
·
ˆ 1

0

. . .

ˆ 1

0

(
m∑

i=1

wi

∣
∣
∣
∣

xi

ni

∣
∣
∣
∣

p
) r

p

dx1 . . . dxm

=
1

2r
·
ˆ 1

0

. . .

ˆ 1

0

(
d∑

i=1

wi

np
i

n̄
p

m |xi|p
) r

p

dx1 . . . dxm

Now observe, that

wi

np
i

n̄
p

m ≤ wi

n
p

m wi

n̄
p

m ·
∏

j

w
1
m
j

=
(

n̄

n

) p

m

·
∏

j

w
1
m
j

→
∏

j

w
1
m
j = w̄,

because n̄
n

→ 1, as n tends towards infinity. Using the geometric mean w̄ =
∏m

j=1 w
1
m
j

we may thus continue with the observation

Jr,m ≤ w̄
r
p

2r
·
ˆ 1

0

. . .

ˆ 1

0

(
m∑

i=1

|xi|p
) r

p

dx1 . . . dxm.

To give a sufficiently good proxy for this integral we deduce a useful upper bound

ϕ(x) := x
r
p ≤ ϕ̃ (x) , (8.3)
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where

ϕ̃ (x) :=

(

1

1 + p

) r
p

+
r

p

(

1

1 + p

) r
p

−1 (

x − 1

1 + p

)

+

+max






0,

r − p

p

(

1

1 + p

) r
p

−2

,

(

1 + p

p

)2

− 1 + r

p2

(

1

1 + p

) r
p

−2






(

x − 1

1 + p

)2

.

By Taylor series expansion at the point x0 :=
1

1+p
,

ϕ (x) =

(

1

1 + p

) r
p

+
r

p

(

1

1 + p

) r
p

−1 (

x − 1

1 + p

)

+ R1 (x) ,

the remaining term taking the explicit and exact form

R1(x) =

ˆ x

1
1+p

r

p

(

r

p
− 1

)

t
r
p

−2 (x − t) dt.

⊲ 1 ≤ r ≤ p: In this case it is obvious that R1(x) ≤ 0, the function ϕ is concave
and the above inequality (8.3) holds true;

⊲ r = p: here, ϕ(x) = ϕ̃(x);

⊲ 1 ≤ p ≤ r ≤ 2p: Using integration by parts the remainder term rewrites as

R1(x) =

ˆ x

1
1+p

r

p

(

r

p
− 1

)

t
r
p

−2 (x − t) dt

=
r

p

(

r

p
− 1

) (

1

1 + p

) r
p

−2
(

x − 1
1+p

)2

2

+

ˆ x

1
1+p

r

p

(

r

p
− 1

) (

r

p
− 2

)

t
r
p

−3 (x − t)2

2
dt

≤
(

r

p
− 1

) (

1

1 + p

) r
p

−2 (

x − 1

1 + p

)2

,

the desired inequality;

⊲ r = 2p: again, ϕ(x) = ϕ̃(x);

⊲ 2p < r: The remainder for the 2nd term isR2(x) =
1
2

´ x
1

1+p

r
p

(
r
p

− 1
) (

r
p

− 2
)

t
r
p

−3 (x − t)2 dt,

and R2(x)

(x− 1
1+p)

3 is strictly positive. Subtracting α
(

x − 1
1+p

)2
thus turns R2 nega-

tive in a neighbourhood of 1
1+p
, and as α increases, this neighbourhood increases

as well. Choosing α big enough, such that R2(1) + α
(

1 − 1
1+p

)2
= 0, gives the

result.
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This at hand we turn back to the original statements we are interested in.

Let (Ui)i=1 denote independent, uniformly distributed random variables, and
Zm := 1

m

∑m
i=1 Up

i . We thus may rewrite

Jr,m ≤ w̄
r
p

2r
·
ˆ 1

0

. . .

ˆ 1

0

(
m∑

i=1

|xi|p
) r

p

dx1 . . . dxm

=
(w̄ m)

r
p

2r
·
ˆ 1

0

. . .

ˆ 1

0

(

1

m

m∑

i=1

xp
i

) r
p

dx1 . . . dxm

=
(w̄ m)

r
p

2r
· E

[

Z
r
p
m

]

≤ (w̄ m)
r
p

2r
· E [ϕ̃ (Zm)] .

Some straight forward computations show that

E [Zm] = E [Up
i ] =

1

p + 1
,

E
[

(Zm − µp)
2
]

=
1

m
E

[

(Up
i − µp)

2
]

=
1

m
· 1

2p + 1

(

p

p + 1

)2

.

As ϕ̃ is a function involving exactly these two moments the desired result follows.

8.4. Caught In The Curse Of Dimensionality3

The theorem in the latter section gives the upper bound of the unit cube approx-
imation for U ([0, 1]m). We shall elaborate now how this may be expanded naturally
to any non-atomic distribution on Rm by involving the Zador-Gersho formula.

For m = 1 it seems likely (and this is proved in [21]) that the asymptotically
optimal quantizers are the quantiles of the distribution Pr with density

fr :=
f

m
m+r

‖f‖
m

m+r
m

m+r

,

where f = dP
dλm is the m-dimensional Lebesgue density of P. To obtain the (asymp-

totically) optimal quantizers thus the equations

ˆ ωi

−∞
f

1
1+r (ω) dω =

2i + 1

2n

ˆ ∞

−∞
f

1
1+r (ω) dω

3Cf. [29] on a recent survey on the Curse Of Dimensionality.
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Algorithm 8.1 Quantization Algorithm
As for higher dimensions the quantization algorithm generalizes as follows:

(i) Consider the projection onto the first dimension P1 [A] := Pr [A × Rm−1]. This
problem has dimension one and we may proceed as described to obtain points
ω1

i1
and a Voronoi tessellation Ω;1

i1
of R.

(ii) Next consider the measures Pi1

2 [A] := Pr

[

Ω;1
i1

× A × Rm−2
]

for any of i1 ∈
{1, . . . n1}. Again we may obtain quantization points ωi1;2

i2
and a Voronoi tes-

sellation Ωi1;2
i2
of R.

(iii) Repeat step 2 dimension after dimension.

(iv) The measure (n = n1 · . . . nm)

Pn :=
∑

i1,i2,...in

P
[

Ω;1
i1

× Ωi1;2
i2

× . . .Ω
i1,...im−1;m
im

]

· δ(

ω;1

i1
,ω

i1;2

i2
,...ω

i1,...im−1;m

im

)

does the required job in Rd and is an approximation for P.

have to be solved to obtain the quantizers ωi. Together with the Voronoi-weights

pi :=

ˆ 1
2
(ωi+1+ωi+1)

1
2
(ωi−1+ωi)

f (ω) dω

the measures

Pn :=
n∑

i=1

piδωi

then are asymptotically optimal.

To transfer this procedure to higher dimensions Algorithm 8.1 is just adequate,
as it respects the findings of Theorem 8.12 and its proof.

8.5. The Zador-Gersho Density

The latter procedure already brings the other quantity in Zador’s Theorem (8.8)
∥
∥
∥

dP
dλm

∥
∥
∥

m
m+r

to light, which involves the density function of the (absolutely continuous

part of the) initial probability measure P. We try to investigate this quantity now in
various dimensions further.

To this end we split the space Rm = Rm1 × Rm2 into two subspaces (m =
m1 + m2) and the multivariate probability measure accordingly. This is reflected in
the distributions

⊲ P1 [A1] := P [A1 × Rm2 ] and P2 [A2|x1].
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The following density functions account for the distributions involved:

⊲ f := dP
dλm , thus P [A] =

´

A
f(x)λm [dx]

⊲ f1 (x1) :=
´

f (x1, x2) dx2, that is P1 [A1] = P [A1 × Rm2 ] =
´

A1
f1(x1)λ

m1 [dx1]

⊲ f2|1 (x2|x1) :=
f(x1,x2)
f1(x1)

, or P2 [A2| x1] =
´

A2
f2|1 (x2| x1)λm2 [dx2].

The following proposition clarifies the quantity
∥
∥
∥

dP
dλm

∥
∥
∥

m
m+r

in Zador’s theorem (8.8) in

higher dimensions:

Proposition 8.15. Let 0 < r ≤ r′, then

∥
∥
∥
∥
∥

dP
dλm

∥
∥
∥
∥
∥

1
r

m
m+r

≤
∥
∥
∥
∥
∥

dP
dλm

∥
∥
∥
∥
∥

1

r′

m

m+r′

,

and
∥
∥
∥
∥
∥

dP
dλd

∥
∥
∥
∥
∥

− 1
m

∞
≤

∥
∥
∥
∥
∥

dP
dλm

∥
∥
∥
∥
∥

1
r

m
m+r

.

Remark. It is worth mentioning that the presumption 1 ≤
∥
∥
∥

dP
dλm

∥
∥
∥

1
r

m
m+r

somehow seems

likely, but the statement is not correct.

Remark. Notice, that r Ô→
∥
∥
∥

dP
dλm

∥
∥
∥

1
r

m
m+r

is an increasing function (in r). If in addition-

ally the support of P is unbounded, then we will find r > 0 big enough such that∥
∥
∥

dP
dλm

∥
∥
∥

m
m+r

> cr > 1. Hence,
∥
∥
∥

dP
dλm

∥
∥
∥

m

m+r′

> cr′

, which shows that tails get a high

attention.

Proof. The proof relies on an application of Hölder’s inequality (cf. Proposition 10.1

in the Appendix) in its interpolation form with θ = r
r′ : Notice, that

1
m

m+r

=
1− r

r′

1
+

r

r′
m

m+r′
,

thus
∥
∥
∥
∥
∥

dP
dλd

∥
∥
∥
∥
∥

m
m+r

≤
∥
∥
∥
∥
∥

dP
dλm

∥
∥
∥
∥
∥

1− r

r′

1

·
∥
∥
∥
∥
∥

dP
dλm

∥
∥
∥
∥
∥

r

r′

m

m+r′

.

Since dP
dλm is a density function,

∥
∥
∥

dP
dλm

∥
∥
∥
1
= 1 and the second inequality follows.

As for the other statement notice that

1 =

ˆ

f− r
r+m · f

r
r+mdP

≤
ˆ

f− r
r+mdP · sup f

r
r+m

=

ˆ

f 1− r
r+mdλ · sup f

r
r+m

= ‖f‖
m

m+r
m

m+r
· sup ‖f‖ r

r+m ,

and so the statement is immediate.
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Example 8.16. To get a better understanding of this quantity here is the math for
some selected distributions:

⊲ 1-dimensional exponential distribution with inverse scale λ:
∥
∥
∥x Ô→ λe−λx

∥
∥
∥

1
1+r

=

λ ·
(
1+r

λ

)r+1
,

⊲ d-dimensional Gaussian distribution with covariance matrix Σ and density func-

tion 1√
(2π)m detΣ

e− 1
2

x⊤Σ−1x:
∥
∥
∥
dP
dλ

∥
∥
∥

m
m+r

= (2π)
r
2 (detΣ)

r
2m

(
m+r

m

) m+r
2 – this quan-

tity grows rapidly, as r or m increase.

⊲ The distribution with symmetric density f(x) =
α sin π

α

2π
1

1+(x2)
α
2
has heavy tails,

particularly for small α > 1. The coefficient, which has the closed form ‖f‖ 1
1+r

=

α sin π
α

2π






2α
α−1−r

(
1

1+r
1
α

)






r+1

, has a pole at α − 1 as r approaches from below and tends

to infinity.

Proposition 8.17. Let the density functions be dissected as above, so they satisfy

ˆ

A1×A2

f (x1, x2)λm [dx1, dx1] =

ˆ

A1

f1 (x1)

ˆ

A2

f2|1 (x2| x1)λm1 [dx2]λ
m1 [dx1] .

Then,

‖f‖m
m

m+r
≤ ‖f1‖m1

m1
m1+r

· sup
x1

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m2

m2
m2+r

and

‖f‖m
m

m+r
≤ ‖f1‖m1

m1
m1+r

·
(
ˆ

f1 (x1) · f2|1 (x2| x1)
m2

m2+r dx2dx1

)m2

.

The proof relays on some applications of generalizations of Hölder’s inequality (cf.
proposition (10.1)).
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Proof. We apply Hölder’s inequality to the triple 1
1

m+r

= 1
1

m1+r

+ 1
1

m2

:

‖f‖m
m

m+r
=

(
ˆ

f
m

m+r

)m+r

= ‖fm‖ 1
m+r

=

∥
∥
∥
∥
∥
fm1

1 f
m

m1+r

m+r

2|1 fm2

1 f
m

m2
m+r

2|1

∥
∥
∥
∥
∥

1
d+r

≤
∥
∥
∥
∥
∥
fm1

1 f
m

m1+r

m+r

2|1

∥
∥
∥
∥
∥

1
m1+r

·
∥
∥
∥
∥fm2

1 f
m

m2
m+r

2|1

∥
∥
∥
∥

1
m2

=

(
ˆ

f
m1

m1+r

1

ˆ

f
m

m+r

2|1 dλ2dλ1

)m1+r

·
(
ˆ

f1

ˆ

f
m

m+r

2|1 dλ2dλ1

)m2

≤
(
ˆ

f
m1

m1+r

1 dλ1 · sup
x1

ˆ

f
m

m+r

2|1 dλ2

)m1+r

·
(
ˆ

f1dλ1 · sup
x1

ˆ

f
m

m+r

2|1 dλ2

)m2

= ‖f1‖m1
m1

m1+r

sup
x1

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m
m1+r

m+r

m
m+r

· 1 · sup
x1

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m
m2

m+r

m
m+r

= ‖f1‖m1
m1

m1+r

sup
x1

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m

m
m+r

.

Now notice, that 1
m

m+r

=
1− m1

m
m2

m2+r

+
m1
m

1
. Thus, using Hölder’s interpolation formula

(cf. appendix, θ = m1

m
),

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m

m
m+r

≤
∥
∥
∥f2|1 (.|x1)

∥
∥
∥
(1− m1

m )m

m2
m2+r

∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m1
m

m

1
,

and as x2 → f (x2| x1) is a density function,
∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m

m
m+r

≤
∥
∥
∥f2|1 (.|x1)

∥
∥
∥

m2

m2
m2+r

.

This completes the proof of the first assertion.

As for the 2nd notice, that 1
m

m+r

= 1
m

m1

+ 1
m

m2+r

, whence

‖f‖m
m

m+r
≤

∥
∥
∥
∥f q
1f

m1
m

2|1

∥
∥
∥
∥

m

m
m1

·
∥
∥
∥
∥f 1−q
1 f

m2
m

2|1

∥
∥
∥
∥

m

m
m2+r

=

(
ˆ ˆ

f
q m

m1

1 f2|1dx2dx1

)m1

·
(
ˆ ˆ

f
(1−q) m

m2+r

1 f
m2

m2+r

2|1 dx2dx1

)m2+r

for every choice of q.

From the definition of f2|1 it follows that
´

f2|1 (x2| x1) dx2 = 1 for every x1 and
f1 does not depend on x2, we thus may continue

=

(
ˆ

f
q m

m1

1 dx1

)m1

·
(
ˆ

f
(1−q) m

m2+r

1

∥
∥
∥f2|1 (.| x1)

∥
∥
∥

m2
m2+r

d2
d2+r

dx1

)m2+r

= ‖f1‖qm
q m

m1

·
(
ˆ

f
r

m2+r

m1
m1+r

1 · f
(1−q) m

m2+r
− r

m2+r

m1
m1+r

1

∥
∥
∥f2|1 (.| x1)

∥
∥
∥

m2
m2+r

m2
m2+r

dx1

)m2+r
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Next we fix q := m1

m
m1

m1+r
and apply Hölder’s inequality again for the pair 1 = 1

m2+r

r

+

1
m2+r

m2

, thus

= ‖f1‖qm
q m

m1

·
(
ˆ

f
r

m2+r

m1
m1+r

1 (x1) · f
m2

m2+r

1 (x1)
∥
∥
∥f2|1 (.| x1)

∥
∥
∥

m2
m2+r

m2
m2+r

dx1

)m2+r

≤ ‖f1‖qm
q m

m1

·






∥
∥
∥
∥f

r
m2+r

m1
m1+r

1

∥
∥
∥
∥ m2+r

r

·
∥
∥
∥
∥
∥
f

m2
m2+r

1

∥
∥
∥f2|1

∥
∥
∥

m2
m2+r

m2
m2+r

∥
∥
∥
∥
∥ m2+r

m2






m2+r

= ‖f1‖qm
q m

m1

· ‖f1‖
m1

m1+r
r

m2+r
(m2+r)

d1
d1+r

·
(
ˆ

f1 (x1)
∥
∥
∥f2|1

∥
∥
∥ m2

m2+r

dx1

)m2+r

= ‖f1‖qm
m1

m1+r

· ‖f1‖
m1r

m1+r
m1

m1+r

(
ˆ

f1 (x1)
∥
∥
∥f2|1 (.| x1) dx1

∥
∥
∥ m2

m2+r

)m2+r

= ‖f1‖m1
m1

m1+r

·
(
ˆ

f1 (x1)
∥
∥
∥f2|1 (.| x1)

∥
∥
∥ m2

m2+r

dx1

)m2+r

.

Now observe that ϕ (x) := x
m2+r

m2 is convex, and Jensen’s inequality may be rewritten
as ϕ

(
´

f (x) g (x) dx
)

≤
´

f (x)ϕ (g (x)) dx. To continue,

‖f‖m
m

m+r
≤ ‖f1‖m1

m1
m1+r

·
(
ˆ

f1 (x1)
∥
∥
∥f2|1 (.| x1)

∥
∥
∥

m2+r
m2
m2

m2+r

dx1

)m2

= ‖f1‖m1
m1

d1+r

·
(
ˆ

f1 (x1) · f2|1 (x2| x1)
m2

m2+r dx2dx1

)m2

,

which finally is the desired assertion.

8.6. Impact On Multistage Scenarios

As a closing remark we want to exhibit the reverse Young inequality, which is of
use as well to estimate the Zador-Gersho density, applicable for convoluted densities

(f1 ∗ f2) (x) :=

ˆ

Rm

f1 (y) f2 (x − y) dy.

Recall that the convolution describes the density of a sum X1 + X2 of random vari-
ables, this inequality thus can be applied in situations which allow an accordant
decomposition.

Theorem 8.18 (Reverse Young inequality). Let 0 < p, q, r ≤ 1 satisfy 1
p
+ 1

q
= 1+ 1

r

(and f1 and f2 be non-negative). Then

‖f1 ∗ f2‖r ≥ Cm · ‖f1‖ · ‖f2‖ ,

where C = CpCq

Cr
for C2

s = |s| 1
s

|s′|
1

s′
.
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As for a proof we refer to [10].

It should be mentioned as well that other inequalities, which might be appropri-
ate in a given, very concrete situation, are contained [19], especially some Sobolev-
type inequalities.

We shall now close with a slightly modified problem, which derives from multi-
stage scenarios, and involve the time component more explicitly.

Notation

Consider the distance dt (x, y)p :=
∑

t′≤t wt′ · dt′ (ut′ , vt′)p on the space (Ωt, dt) :=
×t′≤t (Ωt, dt), let Pt be a probability measure on Ωt such that Pt′

[A] = Pt [A × Ωt′ × . . .Ωt].
Then let Pt denote the conditional measure on Ωt such that

Pti+1

[

Ati × Bti+1

]

=

ˆ

Ati

Pti+1

[

Bti+1
| uti

]

Pti

[

duti

]

.

Such a decomposition exists according to the disintegration theorem (cf. [14], or [16]).

Then the following holds true (cf. Mirkov, Pflug [33, 32] for an initial result in
a similar direction):

Theorem 8.19. Let P and Q be measures on Ωt such that

dp

(

Pt

[

.|ut−1
]

,Qt

[

.|vt−1
])

≤ τt + κt · dt−1
(

ut−1, vt−1
)

.

Then

dp

(

Pt,Qt
)

≤ dp

(

Pt1 ,Qt1

)

·
∏

t′≤t

(1 + wt′κt′)+

+
∑

t′≤t

τt′wt′

∏

t′′>t′

(1 + wt′′κt′′) .

Proof. Let πt denote the optimal measure for dp (Pt,Qt) and moreover πt+1 [.|u, v] the
optimal measure for dp (Pt+1 [.|u] ,Qt+1 [.|v]) and define

πt+1
[

At × Bt, Ct × Dt
]

:=

ˆ

At×Ct

πt

[

Bt × Dt|ut, vt
]

πt
[

dut, dvt
]

.
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Then

dp

(

Pt+1,Qt+1
)p ≤

ˆ

dt+1
(

ut+1, vt+1
)p

πt+1
[

dut+1, dvt+1
]

=

ˆ

(

dt
(

ut, vt
)p

+ wt+1dt+1 (ut+1, vt+1)
p
)

πt

[

dut+1, dvt+1|ut, vt
]

πt
[

dut, dvt
]

=

ˆ

dt
(

ut, vt
)p

πt
[

dut, dvt
]

+

+ wt+1

ˆ

dt+1 (ut+1, vt+1)
p πt

[

dut+1, dvt+1|ut, vt
]

πt
[

dut, dvt
]

=

ˆ

dt
(

ut, vt
)p

πt
[

dut, dvt
]

+

+ wt+1

ˆ

dp

(

Pt+1

[

.|ut
]

,Qt+1

[

.|vt
])p

πt
[

dut, dvt
]

≤
ˆ

dt
(

ut, vt
)p

πt
[

dut, dvt
]

+

+ wt+1

ˆ

τt+1 + κt+1d
t
(

ut, vt
)p

πt
[

dut, dvt
]

=dp

(

Pt,Qt
)p

+ wt+1

(

τt+1 + κt+1dp

(

Pt,Qt
)p)

=wt+1τt+1 + (1 + wt+1κt+1) dp

(

Pt,Qt
)p

The assertion of the statement then follows.

Notice, that the quantities in the latter theorem are often available, and they
are not too strict. We thus consider this result as well-adapted for the approximation
of multistage problems.



9. Summary and Acknowledgment

In this work we try to investigate features and properties, as they appear natural
in the context of stochastic programming. A special focus is given to study the
influence of the underlying probability measure to the solution of the problem.

It turns out that the Wasserstein metric is well-adapted for the problems in
consideration, and we can give very precise bounds when employing the Wasserstein
distance.

The theory developed then is applied to acceptability functions, and precise
Lipschitz-bounds can be given for this situation. As acceptability functions are in the
center of recent investigations, the continuity properties developed justify the impor-
tance and relevance of these functionals and their deployment for financial manage-
ment.

In this context we prove for example, that a uniform investment – as already
propose by Markowitz in contrast to his own model – is optimal, whenever we allow
the underlying probability measure to take all potential deviations within a given
radius.

The second part addresses the problem of giving good, and well-adapted ap-
proximations of a given measure.

As the best approximation quality is known since a few years and their asymp-
totics as well, we provide a useful and constructive way to find approximations of a
given measure, especially for higher dimensions. This is the basis for scenario gener-
ation, which is an essential tool in stochastic programming. In this context I we are
able to give quantitative results which justify a bundle of methods, as they are often
used in stochastic programming intuitively.

Last, but not least, I want to repeat what I mentioned already in the introduction
and address two essential words to Prof. Plug:

Thank You.

Remark. All charts have been produced by use of Mathematica.
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10. Appendices

10.1. Hölder’s Inequality

Hölder’s inequality is used in to a high extend, particularly in a generalized
framework. As we require Hölder’s inequality for non-standard indexes as well we
give a proof of the generalized inequality.

Proposition 10.1 (Hölder’s inequality). Let f and g be measurable functions on a
measure space. Then

‖f · g‖p ≤ ‖f‖p1
· ‖g‖p2

,

provided that 1
p
= 1

p1
+ 1

p2
and 0 < p, p1, p2 < ∞. Equality holds, if |g| ∝ |f |

p1
p2 almost

everywhere.

Moreover (interpolation),

‖f‖pθ
≤ ‖f‖1−θ

p0
· ‖f‖θ

p1
, (10.1)

provided that 1
pθ

= 1−θ
p0

+ θ
p1

and 0 < p0, pθ, p1 < ∞.

Remark 10.2. The interpolation result – equation (10.1) – is sometimes called Lya-
punov inequality.

Proof. Hölder’s inequality is well-known for the case p = 1 (see, for instance, [59])
and we reduce the general assertion to this particular one. Set p̃1 :=

p1

p
and p̃2 :=

p2

p

and notice that p̃1 ≥ 1, p̃2 ≥ 1 and 1
p̃1

+ 1
p̃2

= 1. Then,

‖fg‖p
p = ‖fp · gp‖1

≤ ‖fp‖p̃1
· ‖gp‖p̃2

= ‖f‖p
p1

· ‖gp‖p
p2

.

Raising to the power 1
p
gives the statement.

To prove the 2nd assertion we apply the 1st one to f ← f 1−θ and g ← f θ. That
is

‖f‖pθ
=

∥
∥
∥f 1−θ · f θ

∥
∥
∥

pθ

≤
∥
∥
∥f 1−θ

∥
∥
∥ p0

1−θ

·
∥
∥
∥f θ

∥
∥
∥ p1

θ

= ‖f‖1−θ
p0

· ‖f‖θ
p1

,

because 1
pθ

= 1
p0

1−θ

+ 1
p1
θ

.
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Figure 10.1.: A is affine linear on any parallel subspace and A′
x (d) = e.

10.2. Translation Equivariance

When introducing the property translation equivariance it was stated in Remark
3.6 that this property holds true, if just one single element has the accordant property.
Here we shall justify this statement:

Proposition 10.3. Let Y be convex, A : Y → R̄ concave and A (Y0 + µ · d) ≥
A (Y0) + µ · e for some Y0 and any µ ∈ R. Then

A (Y + µ · d) = A (Y ) + µ · e

for all Y in the interior of A’s domain, Y ∈ int dom (A).

Proof. As Y is in the interior there is Y1 ∈ Y such that Y = (1− λ′)Y0 + λ′Y1 for
some λ′ ∈ (0, 1). For any µ ∈ R and 0 < λ ≤ 1 thus

A (Y + µ · d) = A
(

(1− λ)Y + λ
(

Y +
µ

λ
d

))

≥ (1− λ)A (Y ) + λA
(

Y +
µ

λ
d

)

= (1− λ)A (Y ) + λA
(

(1− λ′)Y0 + λ′Y1 +
µ

λ
d

)

= (1− λ)A (Y ) + λA
(

(1− λ′)

(

Y0 +
µ

λ (1− λ′)
d

)

+ λ′Y1

)

≥ (1− λ)A (Y ) + λ (1− λ′)A
(

Y0 +
µ

λ (1− λ′)
d

)

+ λλ′A (Y1)

≥ (1− λ)A (Y ) + λ (1− λ′)

(

A (Y0) +
µ

λ (1− λ′)
e

)

+ λλ′A (Y1)

= (1− λ)A (Y ) + λ (1− λ′)A (x0) + µ · e+ λλ′A (Y1) .

Now let λ → 0 to obtain

A (Y + µd) ≥ A (Y ) + µ · e (10.2)

for any µ ∈ R and Y ∈ int dom (A).
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By convexity and (10.2) moreover

A (Y ) = A
(

(1− λ) (Y + µd) + λ

(

Y − 1− λ

λ
µd

))

≥ (1− λ)A (Y + µd) + λA
(

Y − (1− λ)µ

λ
d

)

≥ (1− λ)A (Y + µd) + λ

(

A (Y )− (1− λ)µ

λ
e

)

,

that is

A (Y ) ≥ (1− λ)A (Y + µd) + λA (Y )− (1− λ)µ · e.

Now again let λ → 0 and thus

A (Y ) ≥ A (Y + µd)− µ · e,

that is
A (Y + µd) ≤ A (Y ) + µ · e.

Together with (10.2) this gives

A (Y + µd) = A (x) + µ · e,

which is the assertion.

10.3. Duality In Optimization

This is a very comprehensive exposition of materials collected in various docu-
ments, among them is the (modern) book [9].

Any real-valued function L on D × Λ satisfies the max-min-inequality

sup
λ∈Λ

inf
x∈D

L (x; λ)
︸ ︷︷ ︸

d(λ)
︸ ︷︷ ︸

d∗

≤ inf
x∈D

sup
λ∈Λ

L (x; λ)

︸ ︷︷ ︸

p∗

.

⊲ the inequality d∗ ≤ p∗ is called weak duality, and

⊲ p∗ − d∗ ≥ 0 is the duality gap;

⊲ in case of d∗ = p∗ L is said to have the strong max-min property, strong duality
or saddle-point property;

⊲ the function
d (λ) := inf

x∈D
L (x; λ) (10.3)

is called dual function. Obviously d (λ) ≤ d∗ ≤ p∗.
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A point (x∗, λ∗) is a saddle-point if

L (x∗; λ) ≤ L (x; λ∗)

for all x and λ (in this case L (x∗; λ) ≤ L (x∗; λ∗) ≤ L (x; λ∗)).

The existence of a saddle-point implies the strong max-min property and d∗ =
d (λ∗) = L (x∗; λ∗) = p∗, because

p∗ = inf
x∈D

sup
λ∈Λ

L (x; λ)

≤ sup
λ∈Λ

L (x∗; λ)

≤ inf
x∈D

L (x; λ∗) = d (λ∗) (10.4)

≤ sup
λ∈Λ

inf
x∈D

L (x; λ) = d∗

(By convention, inf {} = +∞, sup {} = −∞, resp.)
Theorem 10.4 (Sion’s Minimax Theorem, cf. [54]). Let

(i) D and Λ be convex and (at least) one of these sets be compact,

(ii) x Ô→ L (x, λ) (quasi-)convex1 and lsc. for any λ ∈ Λ and

(iii) λ Ô→ L (x, λ) (quasi-)concave and usc. for any x ∈ D,

then L has the strong max-min property.

10.3.1. Lagrangian

To investigate the primal problem

(P)

minimize (in x) f (x)
subject to gj (x) ≤ 0

hi (x) = 0
x ∈ D

define the Lagrange-function on D × {λi ∈ R} × {µj ≥ 0} as

L (x; λ, µ) := f (x) +
∑

i

λihi (x) +
∑

j

µjgj (x) .

The Lagrange dual function, as defined in (10.3), is the concave function

d (λ, µ) := inf
x∈D

L (x; λ, µ) .

The (unconstrained) Lagrange dual problem is the concave problem

(D)
maximize (in λ, µ) d (λ, µ)
subject to µj ≥ 0.

1f is quasi-convex iff f ((1− λ)x0 + λx1) ≤ max {f (x0) , f (x1)}
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Theorem 10.5. (x∗, λ∗, µ∗) is a saddle point for the Lagrangian L iff

(i) x∗ is primal optimal,

(ii) (λ∗, µ∗) is dual optimal and

(iii) strong duality is obtained.

In addition, d∗ = d (λ∗, µ∗) = L (x∗; λ∗, µ∗) = f (x∗) = p∗ and µ∗⊤

j gj (x∗) = 0 (com-
plementary slackness).

Corollary. Let x∗ be primal optimal and (λ∗, µ∗) dual optimal, but with strictly pos-
itive duality gap. Then there does not exist any saddle-point, but the following in-
equalities hold:

d∗ = d (λ∗, µ∗) ≤ L (x∗; λ∗, µ∗) = L (x∗; 0, µ∗) ≤ f (x∗) = p∗,

and consequently 0 ≤ −µ∗⊤

g (x∗) ≤ p∗ − d∗. The saddle point inequality rewrites

L (x∗; λ, µ) − f (x∗) ≤ 0 ≤ L (x; λ∗, µ∗) − d (λ∗, µ∗)

for all x, λ and µ ≥ 0.

Proof. Let (x∗, λ∗, µ∗) be a saddle point, then

d (λ, µ) ≤ L (x∗; λ, µ)

≤ inf
x∈D

L (x; λ∗, µ∗)

= d (λ∗, µ∗) ,

which shows that (λ∗, µ∗) is optimal for the dual.

Strong duality follows via (10.4) since we assume a saddle-point.

In addition

f (x∗) + λ⊤h (x∗) + µ⊤g (x∗) = L (x∗; λ, µ)

≤ L (x∗; λ∗, µ∗)

= f (x∗) + λ∗⊤h (x∗) + µ∗⊤g (x∗)

for all λ and µ ≥ 0, whence h (x∗) = 0 and g (x∗) ≤ 0, which shows that x∗ is feasible
for the primal problem. Consequently µ⊤g (x∗) ≤ µ⊤∗g (x∗) ≤ 0 for all µ ≥0, so we
deduce µ∗

jgj (x∗) = 0 (complementary slackness).

Again from the saddle-point-property

f (x∗) = L (x∗; λ∗, µ∗)

≤ L (x; λ∗, µ∗)

= f (x) + λ∗⊤ h (x)
︸ ︷︷ ︸

=0

+ µ∗⊤g (x)
︸ ︷︷ ︸

≤0

and so it follows that x∗ is indeed optimal for the primal problem.
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Conversely, observe that

sup
λ,µ≥0

f (x) + λ⊤h (x) + µ⊤g (x)
︸ ︷︷ ︸

L(x;λ,µ)

=

{

f (x) if hi (x) = 0 and gj (x) ≤ 0,
∞ else.

Thus, as x∗ is primal optimal and (λ∗, µ∗) dual optimal, d∗ = d (λ∗, µ∗) ≤ L (x∗; λ∗, µ∗) ≤
f (x∗) = p∗, and consequently 0 ≤ −µ∗⊤

g (x∗) ≤ p∗ − d∗.

Moreover,

L (x∗; λ, µ) ≤ sup
λ,µ≥0

L (x∗; λ, µ)

= inf
x∈D

sup
λ,µ≥0

L (x; λ, µ)

= sup
λ,µ≥0

inf
x∈D

L (x; λ, µ) + p∗ − d∗

= sup
λ,µ≥0

d (λ, µ) + p∗ − d∗

= d (λ∗, µ∗) + p∗ − d∗

≤ L (x, λ∗, µ∗) + p∗ − d∗

for all x, λ and µ ≥ 0, establishing the saddle-point inequality.

10.3.2. Fenchel-Transform

It is useful here to naturally extend the (concave) Lagrange-dual function by

d (λ, µ) =







d (λ, µ) if µj ≥ 0

−∞ else.

We may state the dual problem (D) equivalently as

minimize (in λ, µ) −d (λ, µ)
subject to −µj ≤ 0,

(the same form as (P) without h, but g (µ) = −µ) and start from this problem as
initial problem: The Lagrangian is L̃ (λ, µ; y) = −d (λ, µ) − y⊤µ, the corresponding
concave dual function is

d̃ (y) = inf
λ,µ≥0

L̃ (λ, µ; y)

= inf
λ,µ

−y⊤µ − d (λ, µ)

= − sup
λ,µ

(0, y)⊤
(

λ
µ

)

+ d (λ, µ)

= − (−d)∗ (0, y) ,
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where
f ∗ (y) := sup

x
y⊤x − f (x)

(cf. [49]) is f ’s convex conjugate function (f ∗ is always convex and lsc.; other names
are Fenchel transform, Legendre-Fenchel transform; note the Fenchel-Young inequal-
ity x⊤y ≤ f (x) + f ∗ (y); we shall call − (−f)∗ concave conjugate).

The dual-dual problem, in view of (D), thus is

(DD)
maximize (in y) d̃ (y)
subject to yj ≥ 0.

We may start here again with the Lagrangian ˜̃L (y; µ̃) = −d̃ (y) − µ̃⊤y, the

corresponding dual function thus is ˜̃d (µ̃) = infy≥0 −d̃ (y)−µ̃⊤y = − supy µ̃⊤y+d̃ (y) =

−
(

−d̃
)∗

(µ̃), and the dual-dual-dual thus is

(DDD)
maximize (in µ̃) −

(

−d̃
)∗

(µ̃)

subject to µ̃j ≥ 0.

This is the same as (DD), but d̃ replaced by its concave conjugate −
(

−d̃
)∗
. The

difference to the dual (D) is that we finally got rid of λ.

Repeating the procedure will lead us back to the (DD), as for convex (lsc.) func-

tions
(

−d̃
)∗∗

= −d̃. Note the optimal values d∗ = d (λ∗, µ∗) = d̃ (y∗) = −
(

−d̃
)∗

(µ̃∗)
etc..

10.3.3. Linear Program

These following linear programs are dual – in the sense described – to each other:

Linear Program (primal) Dual Program

minimize (in x) c⊤x
subject to Ax ≥ b

x ≥ 0

maximize (in µ) µ⊤b
subject to µ⊤A ≤ c⊤

µ ≥ 0,
minimize (in x) c⊤x
subject to Ax = b

x ≥ 0

maximize (in λ) λ⊤b
subject to λ⊤A ≤ c⊤,

minimize (in x) c⊤x
subject to Ax ≥ b

maximize (in µ) µ⊤b
subject to µ⊤A = c⊤

µ ≥ 0,
minimize (in x) c⊤x
subject to A1x = b1

A2x ≥ b2

maximize (in λ,µ) λ⊤b1 + µ⊤b2

subject to λ⊤A1 + µ⊤A2 = c⊤

µ ≥ 0,
minimize (in x) c⊤x
subject to A1x = b1

A2x ≥ b2

x ≥ 0

maximize (in λ,µ) λ⊤b1 + µ⊤b2

subject to λ⊤A1 + µ⊤A2 ≤ c⊤

µ ≥ 0.
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10.3.4. Karush–Kuhn–Tucker (KKT)

Let L be differentiable in the saddle point (x∗, λ∗, µ∗), then ∇L (x∗, λ∗, µ∗) = 0
(notice the simultaneous differentiation with respect to all 3 variables).

From Theorem 10.5 we deduce: For any optimization problem with differentiable
objective and constraint functions for which strong duality obtains, any pair of primal
and dual optimal points must satisfy the conditions (KKT; cf. [28])

(i) Stationarity: 0 ∈ ∂f (x∗) +
∑

i λ∗
i · ∂hi (x

∗) +
∑

j µ∗
j · ∂gj (x

∗) (0 = ∇xL),

(ii) Primal feasibility: hi (x
∗) = 0, gj (x

∗) ≤ 0 (∇λL = 0, ∇µL = 0),

(iii) Dual feasibility: µ∗
j ≥ 0 and

(iv) Complementary slackness: µ∗
j · gj (x

∗) ≥ 0.

An element u∗ out of the (locally convex) linear space’s dual is called sub-gradient, iff
the sub-gradient inequality u∗ ∈ ∂f (x) :⇐⇒ f (z) ≥ f (x)+u∗ (z − x) holds for all z.

∂f (x), the (convex and closed) set of all sub-gradients in x, is called sub-
differential.

Theorem. Let x∗ be primal optimal for the primal (P) (plus some regularity condi-
tions), then there exist λ∗ and µ∗ such that (KKT).

Remark. If the primal problem is convex, then (KKT) are also sufficient conditions
for optimality of x∗, (λ∗, µ∗).

For differentiable f , g and h the problem

(WD)
maximize (in λ, µ) L (x;λ, µ)
subject to µj ≥ 0,

∇xL (x;λ, µ) = 0

is called Wolfe dual problem.

10.3.5. Derivative

Theorem 10.6. Consider the function

f (x) := min {f (x, y) : g (x, y) ≤ 0 and h (x, y) = 0}

with minimizing argument y (x) satisfying (KKT) for any x. Let f , g, h and y ∈ C1,
then

f ′ (x) = fx (x, y (x)) + λ (x)⊤ hx (x, y (x)) + µ (x)⊤ gx (x, y (x))

with respective Lagrange multipliers (dependent on x).

Proof. As for the proof notice first that h (x, y (x)) = 0, thus hx + hyy′ (x) = 0.
Then we find either gi (x, y (x)) = 0 or gi (x, y (x)) < 0 ∧ µi = 0 by complementary
slackness, that is again µi (gi,x + gi,yy′ (x)) = 0 and µ⊤ (gx + gyy′ (x)) = 0.
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Now recall that f (x) = f (x, y (x)) and fy + λ⊤hy + µ⊤gy = 0 (KKT ). Thus

f ′ (x) = fx + fyy′ (x)

= fx − λ⊤hyy′ (x) − µ⊤gyy′ (x)

= fx + λ⊤hx + µ⊤gx.
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Abstract

Acceptability Functionals

Acceptability Functionals – or likewise Risk Functionals – have gained and at-
tracted interest since they have been introduced a decade ago approximately. Their
key properties, which are set in an axiomatic way, are intuitively straightforward and
very natural; therefore it does not come as a big surprise that various compelling
properties can be derived to hold in such an environment.

Applications

Acceptability functionals have found their way in many industry applications,
particularly in the financial sector. They may be used – for example – to base an
investment decision. And recently US and Canadian insurance supervisory authorities
are employing risk functionals as well to measure the risk within a given company, so
they have become an element of the actuarial profession as well.

Properties

Various key properties relay on the fact that these functionals are convex (con-
cave). So the entire and well developed theory of convex functions and convex opti-
mization can be applied here to derive general results, and this has been exploited in
the past to a high extent.

The convexity property, however, often does not touch the fact that acceptability
functionals are typically defined in some probabilistic environment, so they obey
stochastic properties as well. So the question arises, if those acceptability functionals
are continuous with respect to these underlying probability measures?

Results

To answer this question is a key driver of the present work. Continuity is
proven for adequate and fitting distances of probability measures, and even Lipschitz-
continuity is established: so acceptability functionals obey quite strong continuity
properties.

This is good news: As the probability distribution often is available just from
observations as an empirical measure, we may thus trust that evaluating the risk
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functionals, based on some observations, is a good proxy for the same risk functional,
but evaluated in its original distribution.

An additional result is rather curious: it states that it is optimal to equally
distribute ones funds in all available assets, if the objective is to maximize the return,
given that the risk has to be accepted by an enlarging class of distributions.



Kurzbeschreibung

Bewertung von Risiko

Funktionale, die Risiko bewerten, haben in der Dekade seit ihrer Einführung
große Aufmerksamkeit erreicht. Ihre axiomatischen Haupteigenschaften sind sehr
natürlich, aus denen sich dann weitere, sehr schöne und überzeugende mathematische
Eigenschaften ableiten lassen.

Anwendungen

Risikofunktionale haben ihr weitestes Anwendungsgebiet in der Finanzbranche,
weil sie sehr leicht zur Beurteilung von finanziellen Risiken eingesetzt werden können.
Allerdings nicht nur zum Fondsmanagement, denn kürzlich haben die amerikanische
sowie die kanadische Versicherungsaufsicht begonnen, gleichfalls Risikofunktionale zur
Bewertung von Versicherungsportefeuilles einzusetzen, und spätestens damit wurden
Risikofunktionale ein wichtiges Element auch der aktuariellen Zunft.

Eigenschaften

Eine der wichtigsten Eigenschaft eines Risikofunktionals ist natürlich die Kon-
vexität, mit der zugehörigen Dualitätstheorie lassen sich viele weitere Eigenschaften
gut beschreiben.

Eine zusätzliche Eigenschaft ist aber ihr aleatorischer Charakter, denn ein Risiko-
funktional quantifiziert eben das Risiko, das es einem Wahrscheinlichkeitsmaß zu-
misst. Damit drängt sich die Frage auf, wie denn die Resultate eines Risikofunktionals
variieren, wenn sich das zu Grunde liegende Maß ändert?

Ergebnisse

Diese Frage ist zentral in der vorliegenden Arbeit. Es wird gezeigt, dass die
Ergebnisse tatsächlich stetig vomMaß abhängen, wenn die Distanz richtig und passend
gewählt wird. Ja es gilt sogar Lipschitz-Stetigkeit, und die entsprechende Konstante
wird für gängige Risikofunktionale auch konkret angegeben.

In einer umgekehrten Untersuchung wird jenes Wahrscheinlichkeitsmaß eruiert,
das, ein gewisses Risiko tolerierend, vom ursprünglichen Maß möglichst weit entfernt
liegt. Die Ergebnisse haben eine frappierende Ähnlichkeit zu anderen Ergebnissen in
der Transporttheorie.
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Diese Fragen sind deshalb interessant, weil das zu Grunde liegende Wahrschein-
lichkeitsmaß in aller Regel nicht bekannt ist, weil es beispielsweise nur als Näherung,
oder als empirisches Maß aus konkreten Beobachtungen zur Verfügung steht.

Ein weiteres Ergebnis befasst sich mit einer Frage der robusten Optimierung,
wie nämlich eine Investmententscheidung aussieht, wenn man weitere Maß zulässt.
Das Ergebnis bestätigt die Intuition, dass in diesem Fall eine gleichmäßige Aufteilung
der Mittel auf alle bestehenden Investitionstitel optimal ist.
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