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Chapter 1

Introduction

For an in�nite cardinal κ, a κ-tree is a tree T of height κ such that every
level of T has size less than κ. A tree T is a κ-Aronszajn tree if T is a κ-tree
which has no co�nal branches. We say that the tree property holds at κ, or
TP(κ) holds, if every κ-tree has a co�nal branch, i.e. a branch of length κ
through it. Thus, TP(κ) holds i� there is no κ-Aronszajn tree.

For example, TP(ℵ0) holds in ZFC, and it is actually exactly the state-
ment of the well-known König's lemma. Aronszajn showed also in ZFC that
there is an ℵ1-Aronszajn tree. Hence, TP(ℵ1) fails in ZFC.

Large cardinals are needed once we consider trees of height greater than
ℵ1. For example, Silver proved that for κ > ℵ1 TP(κ) implies κ is weakly
compact in L, and Mitchell proved that given a weakly compact cardinal λ
above a regular cardinal κ, one can make λ into κ+ so that in the extension,
κ+ has the tree property. Moreover, if κ is the successor of a regular cardinal,
then this can be done preserving cardinals up to and including κ. Thus,
TP(ℵ2) is equiconsistent with the existence of a weakly compact cardinal.

Natasha Dobrinen and Sy-D. Friedman [1] used a generalization of Sacks
forcing to reduce the large cardinal strength required to obtain the tree prop-
erty at the double successor of a measurable cardinal from a supercompact
to a weakly compact hypermeasurable cardinal (see De�nition 17).

In this thesis we extend the method of [1] to obtain improved upper
bounds on the consistency strength of the tree property at the double suc-
cessor of singular cardinals.

The thesis is organised as follows. Chapter 2 is reserved for preliminaries
which roughly prepare even a nonlogician for understanding later chapters (or
at least the basic statements). In Chapter 3 we give a systematic overview of
the most signi�cant theorems which have been proven about the tree property
in the past, and thus prepare the contextual ground for the main theorem of
this thesis. The main theorem is found in Chapter 4:



2 Introduction

Theorem. Assume that V is a model of ZFC and κ is a weakly compact
hypermeasurable cardinal in V . Then there exists a forcing extension of V in
which ℵω+2 has the tree property, ℵω strong limit.

Chapter 5 discusses some variations of the tree property. It also contains
several remarks and open problems.



Chapter 2

Preliminaries

2.1 Some basic set theory for nonlogicians

2.1.1 Sets and numbers

The founder of set theory, Georg Cantor, de�ned sets to be collections of any
objects (that can be thought of). However, the words any and every turned
out to be relative. Russell's paradox∗ was a clear sign that a formal approach
to set theory demands more precise de�nitions. One way to avoid troubles
was to start with axioms and only consider 'worlds of objects' (also called
models) in which these axioms are true. The most famous system of axioms
for set theory is called ZFC†.

We �x a model of ZFC which becomes our universe. By a set we un-
derstand any object in that universe. (If an object is (possibly) not in the
universe, we use the word class for it.) The set of all subsets of a set A is
called the powerset of A and is denoted by P (A). A set A is countable if
there exists an injective function f : A→ N, otherwise it is uncountable.

Relations on sets

Let A be a set. Any subset R of P (A × A) = {(a, b) : a ∈ A, b ∈ A} is
called a (binary) relation on A. We usually write a R b instead of (a, b) ∈ R.

∗Consider the collection of all objects which do not contain themselves. Is it contained
in itself?

†Zermelo-Fraenkel axioms with the axiom of choice: there exists an empty set ∅ (can
be thought of as a unit); there exists an in�nite set; pairs, unions, powersets and certain
subsets of sets exist (are sets); images of sets (under any function) are sets; two sets are
same if and only if they have the same elements; every nonempty set has a ∈-minimal
element; every family of nonempty sets has a choice function. We refer to [8, Chapter 1]
for a complete and formal description of ZFC axioms.
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A relation R is said to be

re�exive if a R a for every a ∈ A;

irre�exive if a 6R a for every a ∈ A;

symmetric if a R b implies b R a for every a, b ∈ R;

transitive if a R b ∧ b R c implies a R c; and

total if either a R b or b R a or a = b for every a, b ∈ A.

De�nition 1.

1. A binary relation ≤P on a set P is called a quasi ordering of P if it is
re�exive and transitive.

2. A binary relation <P on a set P is called a strict partial ordering of P
if it is irre�exive and transitive.

3. A total strict partial ordering on a set P is called a linear ordering of
P .

4. A binary relation on a set P is called an equivalence relation on P if it
is re�exive, symmetric and transitive.

There can be at the same time both a quasi ordering ≤P and a strict
partial ordering <P on a set P ; we identify P with (P ,≤P ,<P ).

De�nition 2. Fix a set P and let ≤P and <P be a quasi ordering and a
strict partial ordering of P , respectively. For nonempty sets X, Y ⊆ P , and
p ∈ P , we say that

p is a maximal element of X if p ∈ X and p ≮P x for every x ∈ X;

p is a minimal element of X if p ∈ X and there is no q ∈ X such that
q ≤P p and p �P q;

p is a least element of X (in the relation ≤P ) if p ∈ X and p ≤P x for
every x ∈ X;

p is an upper bound of X (or p bounds X) if x ≤P p for every x ∈ X;

p is a <P -upper bound of X (or p <P -bounds X) if x <P p for every
x ∈ X;
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X is co�nal in Y in the relation <P (resp. ≤P ) if for every b ∈ Y there
is some a ∈ X such that b <P a (resp. b ≤P a) [we also say 'co�nal in
(Y,<P )' instead of co�nal in the relation <P ];

X is bounded in Y if there is an upper bound for X in Y ;

p is an exact upper bound of X if p is a least upper bound of X and X
is co�nal in {q ∈ P : q <P p} in the relation ≤P .

So p is a minimal upper bound of X if p is an upper bound of X and
there is no upper bound q of X such that q ≤P p and p �P q; and p is a least
upper bound of X if p is an upper bound of X and p ≤P q for every upper
bound q of X (p is then also called a supremum of X (supX)).

Suppose that R is an equivalence relation on a set P . For each p ∈ P , we
de�ne the equivalence class [p] := {q ∈ P : p R q} of p. Every element of P
is then in some equivalence class (p ∈ [p]), and no element is in two di�erent
classes. The quotient P/R of P modulo R is the collection of all equivalence
classes.

Ordinal numbers

A linearly ordered set (P,<P ) is well-ordered if every nonempty subset
of it has a least element (in the linear ordering). By an initial segment of
a well-ordered set P we mean a subset of the form {x ∈ P : x <P r} for
some r ∈ P . It holds‡ that any two well-ordered sets are comparible in the
following sense; either they are isomorphic (with respect to the relation <P )
to each other, or one of them is isomorphic to an initial segment of the other
one. If we de�ne equivalence classes on the collection of all well-ordered sets
by putting isomorphic well-ordered sets into the same class, we can think
of ordinal numbers as the collection of the nicest representatives of these
equivalence classes.

De�nition 3. A set A is an ordinal number (an ordinal) if it is well-ordered
by the relation ∈ (is an element of), and if a ⊆ A for every a ∈ A (transi-
tiveness).

Ordinals are usually denoted by lowercase greek letters α, β, etc., and the
class (collection) of all ordinal numbers is denoted by Ord. A function f is
called an ordinal function if range(f) ⊆ Ord. For ordinals α and β we also
write α < β instead of α ∈ β. We list some of the basic facts about ordinals
without proving them. The proofs can be found in [8].

‡See [8] for a proof.
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Proposition 1. The following hold for any ordinal number α:

1. The empty set ∅ is an ordinal;

2. if β ∈ α, then β is also an ordinal;

3. α = {β : β ∈ α};

4. α+ 1 := α ∪ {α} is also an ordinal;

5. If X is a nonempty set of ordinals, then
⋃
X is also an ordinal;

6. < is a linear ordering of the class Ord;

7. each well-ordering P is isomorphic to exactly one ordinal, this ordinal
is then called the order-type of P .

Ordinals of the form α ∪ {α} are called successor ordinals. All other
ordinals are called limit ordinals. Finite ordinals are also known as natural
numbers and are written as follows

0 = ∅,
1 = 0 + 1 = ∅ ∪ {∅} = {∅} ,
2 = 1 + 1 = {∅} ∪

{
{∅}

}
=

{
∅, {∅}

}
,

etc.

Cardinal numbers

De�nition 4. An ordinal number α is a cardinal number (a cardinal) if there
is no bijection between α and any β < α.

We usually use κ, λ, µ... to denote cardinals. By the cardinality |X| of a
set X we mean the unique cardinal number κ for which there is a bijection
f : κ → X. (The existence of such a bijection is not trivial; it relies on the
axiom of choice.) Note that each natural number is a cardinal number; the
cardinality of a �nite set is simply the natural number of its elements.

The in�nite cardinals are called alephs. Since cardinals are linearly or-
dered by <, we can enumerate them by ordinal numbers; ℵ0 (or ω) denotes
the �rst in�nite cardinal (the set of natural numbers), and ℵα denotes the
α-th in�nite cardinal. If α is a successor (limit) ordinal, then we say that ℵα

is a successor (limit) cardinal. We also write ℵ+
α for ℵα+1.

The arithmetic operations on cardinals are de�ned as follows:

κ+ λ := |A ∪B|, κ · λ := |A×B|,
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κλ := |AB|= |{f : f is a function from B into A}|,

where A and B are any disjoint sets with cardinalities |A|= κ and |B|= λ.

Proposition 2. The following hold for any cardinals κ, λ:

1. If κ and λ are in�nite cardinals, then κ+ λ = κ · λ = max {κ, λ};

2. + and · are associative, commutative and distributive;

3. (κ · λ)µ = κµ · λµ, κλ+µ = κλ · κµ, (κλ)µ = κλ·µ;

4. κ ≤ λ implies κµ ≤ λµ, and 0 < λ ≤ µ implies κλ ≤ κµ;

5. Cantor : κ < 2κ. (If a set A has the cardinality κ = |A|, then 2κ =
|{f : f is a function from A into 2}|= |P (A)| is the cardinality of the
powerset of A.)

For a proof see [8].

We say that a set of ordinals A is co�nal in a set of ordinals B if for
every β ∈ B there is an α ∈ A such that β < α. For any ordinal α de�ne
the co�nality of α, denoted as cf(α), to be the least cardinality of a subset
of α which is co�nal in α. If α is a cardinal number and cf(α) = α, then α
is called a regular cardinal. Otherwise, (that is, if cf(α) < α), α is called a
singular cardinal. (We denote the class of regular cardinals by Reg.) One can
show that for every α, cf(cf(α)) = cf(α). Thus, cf(α) is always a regular
cardinal.

The exponentiation of cardinal numbers, unlike addition and multiplica-
tion, which are trivial, is one of the main topics in set theory. In the following
proposition we state some of the basic properties of the cardinal arithmetic.§

Proposition 3. The following hold for any cardinals κ, λ:

1. If λ is in�nite and 2 ≤ κ ≤ λ, then κλ = 2λ;

2. if λ ≥ cf(κ), then κ < κλ;

3. if I is any index set and κi < λi for every i ∈ I, then
∑

i∈I κi <
∏

i∈I λi;

4. (κ+)λ = κλ · κ+ (Hausdor� formula).

§For a proof of the proposition we refer the reader to [8, page 51]. In chapter 5 there
are deeper results regarding cardinal arithmetic.
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If κ is a cardinal and 2α < κ for every α < κ, then κ is said to be an
(strongly) inaccessible cardinal.

Closed unbounded sets

Let κ be a limit ordinal, and let C ⊆ κ. Any limit ordinal α < κ with sup
C ∩ α = α is called a limit point of C. We say that C is closed unbounded
(in κ) if it contains all its limit points and is co�nal in κ. For example, the
set of all limit ordinals in κ is a closed unbounded set. The intersection of
two closed unbounded sets is also closed unbounded.

Suppose that κ is a regular uncountable cardinal. A set S ⊆ κ is said to
be stationary (in κ) if S ∩ C 6= ∅, for every closed unbounded set C in κ.

Filters and ultra�lters

De�nition 5. A family F ⊆ P (A) of subsets of a set A is called a �lter on
A if it satis�es the following conditions:

1. ∅ /∈ F and A ∈ F ;

2. if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ;

3. if X, Y ⊆ A, X ∈ F , and X ⊆ Y , then Y ∈ F .

We say that that a set H ⊆ P (A) generates a �lter F , if F is the closure
of H under supersets and �nite intersections.

A �lter F is an ultra�lter if for every X ⊆ A, either X ∈ F , or A\X ∈ F ,
where A\X = {a ∈ A : a /∈ X} denotes the complement of X in A. It holds
that every �lter can be extended to an ultra�lter.

Measurable cardinals

Let κ be a cardinal number. An ultra�lter U on κ is said to be κ-complete
i� it is closed under intersections of fewer than κ elements. A principal
ultra�lter on κ is a �lter of the form {X ⊆ κ|α ∈ X}, α ∈ κ.

De�nition 6. An uncountable cardinal κ is measurable if there exists a
κ-complete nonprincipal ultra�lter U on κ.

The word measurable comes from the fact that an ultra�lter on κ induces
a function called measure on the power set of κ:

De�nition 7 ([8]). Let S be an in�nite set. A (nontrivial σ-additive) mea-
sure on S is a real-valued function µ on P (S) such that

1. µ(∅) = 0 and µ(S) = 1,
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2. if X ⊂ Y , then µ(X) ≤ µ(Y ),

3. µ({a}) = 0 for all a ∈ S (nontriviality), and

4. if Xn, n ∈ ω, are pairwise disjoint, then

µ(
⋃

n∈ω Xn) =
∑

n∈ω µ(Xn) (additivity).

If U is an ultra�lter on κ then the function µ : P (κ) → {0, 1} de�ned by
µ(X) = 1 if X ∈ U and µ(X) = 0 if X /∈ U is actually a two-valued measure
on κ.

A cardinal number on which there is a nontrivial κ-additive (not necces-
sarily two-valued) measure is called real-valued measurable.

2.1.2 Structures and embeddings

At the beginning we mentioned 'worlds of objects' in which certain axioms
hold. We say that these 'worlds of objects' are models for the given axioms.
There we were referring to possible frameworks of set theory (mathematics),
and this remains our course, but the notion of a model is much more general.
An algebraic group and a linear ordering are also examples of models for a
bunch of axioms. A more general name for models is structures.

The models of set theory are precisely de�ned as follows: The language
of set theory, beside the logical symbols ∀ (universal quanti�er for all), ∃
(existential quanti�er exists), = (equality), and vi (variables), consists of a
single non-logical symbol ∈. A structure A (for the language of set theory)
is a function which assigns a set V to the symbol ∀ and a binary relation
∈A⊆ V × V to the symbol ∈. In other words, A = (V,∈A) consists of a
universe V over which ∀ ranges, and a binary relation ∈ on V . We identify
∈A with ∈, and instead of A we simply write V .

The formulas of set theory are built up from the atomic formulas x ∈ y
and x = y by means of connectives ∧ (and), ∨ (or), q (not) and → (implies),
and quanti�ers ∀ and ∃. We already referred the reader to [8, Chapter 1] for
a precise de�nition of logical formulas and a complete and formal description
of ZFC axioms. We also assume that the reader understands what it means
for a formula φ to be true in a structure V , it should namely express a
correct statement about the universe V and the relation ∈ (this is denoted
by V |= φ).

Our goal is to relate models of set theory to each other by elementary
embeddings. These embeddings are one of the most powerful tools in set
theory.
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Let V and M be two structures in the language of set theory. A function
j : V → M is said to be an elementary embedding of V into M if for every
formula φ and x1, ..., xn ∈ V :

V |= φ(x1, ..., xn) if and only if M |= φ(j(x1), ..., j(xn)).

2.1.3 Forcing and consistency results

A set of axioms (formulas or statements) is said to be consistent if no contra-
diction can be produced from them. Equivalently, a set of axioms is consistent
if there exists a model in which these statements hold simultaneously.

Since many statements, like the tree property or the inaccessibility of a
cardinal number, are neither provable nor refutable from ZFC (that is, ZFC
is incomplete), investigating which axioms or statements are consistent with
ZFC or with each other became a central topic in the modern set theory.

The consistency results are of the form Con(ZFC+φ)→ Con(ZFC+ψ),
where φ and ψ are two statements and Con(ZFC+φ) means that φ is consis-
tent with ZFC. In other words, it is assumed that there is a model in which
ZFC and φ hold, and then another model is constructed in which ZFC and
ψ hold. The main method for obtaining the second model from the �rst one
is called forcing and the constructed model is then called forcing extention. If
the implication above holds we say that φ has a higher consistency strength
than ψ.

In most consistency results the statements φ and ψ are statements about
cardinal numbers known as large cardinal properties (such as the existence
of a measurable cardinal) because they are the perfect scale for consistency
strength - any property ψ can be forced (to hold together with ZFC in some
other model) with their help, and they can be forced from some properties.

Forcing was discovered by Paul Cohen who was also the �rst one to use it
for a consistency result. Namely, he proved Con(ZFC)→ Con(ZFC+qCH),
where CH is the statement 2ℵ0 = ℵ1, i.e. any in�nite subset of reals is either
countable or as big as the reals.

Forcing is a rather complicated technical method which we will not de-
scribe here. We refer the reader to [17] for a detailed introduction to forcing.

2.2 Trees and branches

De�nition 8. A tree is a strict partial ordering (T,<) with the property
that for each x ∈ T , the set {y : y < x} is well-ordered by <.
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Trees belong to the most fundamental objects in combinatorial set theory
and are frequently used in many di�erent contexts.

The αth level of a tree T consists of all x such that {y : y < x} has
order-type α. The height of T is the least α such that the αth level of T is
empty. A branch in T is a maximal linearly ordered subset of T . We say
that a branch is co�nal in T if it hits every level of T .

2.2.1 De�nition of the tree property

The tree property is a combinatorial principle which was introduced by Erd®s
and Tarski in 1961. It is the main subject of this thesis.

De�nition 9. An in�nite cardinal κ has the tree property if every tree of
height κ whose levels have size < κ has a co�nal branch.

A tree of height κ whose levels have size < κ is called a κ-Aronszajn tree
if it has no co�nal branches. Therefore, an equivalent formulation of the tree
property is nonexistence of Aronszajn trees.

2.3 Forcing notions

We de�ne some forcing notions which will be used in the later chapters, and
state their most important properties.

2.3.1 Lévy collapse

Let κ be a regular cardinal and let α > κ be a cardinal. Let Pα be the set of
all functions p such that

1. dom(p)⊂ κ and |dom(p)| < κ, and

2. ran(p)⊂ α,

and let p < q if and only if p ⊃ q.
If G is a generic �lter over Pα, then f :=

⋃
G is a function from κ onto

α, i.e. forcing with Pα collapses α to κ. Pα is < κ-closed and therefore all
cardinals ≤ κ are preserved. If α<κ = α, then |Pα| = α and hence also all
cardinals ≥ α+ are preserved.

The Lévy collapse is a forcing for collapsing cardinals below an inacces-
sible cardinal λ and it is basically the product of Pα's for α < λ:

De�nition 10 ([8]). Let κ be a regular cardinal and let λ > κ be an inacces-
sible cardinal. Lévy collapse is the set of all functions p on subsets of λ× κ
such that
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1. |dom(p)| < κ, and

2. p(α, ξ) < α for each (α, ξ) ∈ dom(p),

ordered by p < q if and only if p ⊃ q.

Let G be generic over P , and for each α < λ, let Gα be the projection
of G on Pα. Then Gα is generic over Pα. It follows that P collapses every
α < λ to κ.

The Lévy collapse P is < κ-closed and therefore all cardinals ≤ κ are
preserved. For an inaccessible cardinal λ, the product with supports of size
< κ of λ many forcings of size < λ satis�es the λ-chain condition. Thus, P
preserves cardinals ≥ λ as well, in particular λ = κ+ in the extension.

2.3.2 Sacks forcing

De�nition 11. Let ρ be a strongly inaccessible cardinal. Then Sacks(ρ)
denotes the following forcing notion. A condition p is a subset of 2<ρ such
that:

1. s ∈ p, t ⊆ s→ t ∈ p.

2. Each s ∈ p has a proper extension in p.

3. For any α < ρ, if 〈sβ : β < α〉 is a sequence of elements of p such that
β < β′ < α→ sβ ⊆ sβ′ , then

⋃
{sβ : β < α} ∈ p.

4. Let Split(p) denote the set of s ∈ p such that both sa0 and sa1 are in
p. Then for some club denoted C(p) ⊆ ρ, Split(p) = {s ∈ p : length(s)
∈ C(p)}.

The conditions are ordered as follows: q ≤ p i� q ⊆ p, where q ≤ p means
that q is stronger than p.

Given p ∈ Sacks(ρ), let 〈γα : α < ρ〉 be the increasing enumeration of
C(p). For α < ρ, the α-th splitting level of p, Splitα(p), is the set of s ∈ p of
length γα. For α < ρ we write q ≤α p i� q ≤ p and Splitβ(q) = Splitβ(p) for
all β < α.

Sacks(ρ) satis�es the following ρ-fusion property: Every decraesing se-
quence 〈pα : α < ρ〉 of elements in Sacks(ρ) such that for each α < ρ,
pα+1 ≤α pα, has a lower bound, namely

⋂
α<ρ pα ∈ Sacks(ρ).

This closure under certain sequences of length κ, namely fusion sequences,
is a big advantage of Sacks(κ) forcing over, say, κ-Cohen forcing, and it will
play a crucial role in the proofs of the fourth chapter.

The forcing notion Sacks(ρ) is also < ρ -closed, satis�es the ρ++-c.c., and
preserves ρ+. For a proof see [3] or [1].
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De�nition 12. Let ρ be a strongly inaccessible cardinal and let λ > ρ be a
regular cardinal. Sacks(ρ, λ) denotes the λ-length iteration of Sacks(ρ) with
supports of size ≤ ρ.

Sacks(ρ, λ) satis�es the generalized ρ-fusion property which we describe
next: For α < ρ, X ⊆ ρ of size less than ρ, and p, q ∈ Sacks(ρ, λ), we write
q ≤α,X p i� q ≤ p (i.e. q � i  q(i) ≤ p(i) for each i < λ) and in addition,
for each i ∈ X, q � i  q(i) ≤α p(i). Every decreasing sequence 〈pα : α < ρ〉
of elements in Sacks(ρ, λ) such that for each α < ρ, pα+1 ≤α,Xα pα, where
the Xα's form an increasing sequence of subsets of λ each of size less than
ρ whose union is the union of the supports of the pα's, has a lower bound.
[The lower bound is q where q(0) =

⋂
α<ρ pα(0), q(1) is a name s.t. q(0) 

q(1) =
⋂

α<ρ pα(1), etc.]
Assuming 2ρ = ρ+, Sacks(ρ, λ) is < ρ -closed, satis�es the λ-c.c., preserves

ρ+, collapses λ to ρ++ and blows up 2ρ to ρ++. For a proof see [3] or [1].
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Chapter 3

The tree property

This chapter is a survey of ZFC and consistency results on the tree property.

3.1 ZFC results on the tree property

3.1.1 The tree property at inaccessible cardinals

Equivalent formulations

Before we start talking about deeper results on the tree property, we
would like to give the reader some idea about the importance of this car-
dinal property by stating all of its equivalent formulations for inaccessible
cardinals.

We �rst de�ne some notions which are needed for these formulations
and which will be used later on. The most fundamental one among them,
including the tree property, relates to the subject of compactness which is a
milestone of logic. Thus, we want to start by introducing compactness.

Compactness

Let α and β be in�nite cardinal numbers. The language Lα,β is the
language obtained by closing the usual �rst order language under in�nitary
conjuctions, disjunctions and quanti�cations, more precisely:

1. if δ < α and (φi)i<δ is a sequence of formulas in Lα,β, then
∨

i<δ φi and∧
i<δ φi are also formulas in Lα,β; and

2. if σ < β, (xj)j<σ is a sequence of variables, and φ is a formula in Lα,β,
then ∀(xj)j<σφ and ∃(xj)j<σφ are also formulas in Lα,β.

The usual �nitary language Lω,ω satis�es the following Compactness The-
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orem: If Σ is a set of sentences such that every �nite subset S ⊆ Σ has a
model, then Σ has a model.

Let us say that the language Lκ,κ satis�es Weak Compactness Theorem
if whenever Σ is a set of sentences of Lκ,κ of cardinality κ such that every
S ⊂ Σ with |S| < κ has a model, then Σ has a model.

De�nition 13. An inaccessible cardinal κ is called weakly compact i� Lκ,κ

satis�es Weak Compactness Theorem.

If κ is an inaccessible cardinal then Lκ,κ satis�es the Weak Compactness
Theorem i� Lκ,ω satis�es the Weak Compactness Theorem. The left to right
direction is trivial because Lκ,ω ⊂ Lκ,κ. For a proof of the converse see [8],
Thm. 17.13.

Unfoldability

Unfoldability is a large cardinal property expressed in terms of elementary
embeddings:

De�nition 14. [11] A cardinal number κ is λ-unfoldable if and only if for
every transitive model N0 of ZF− (ZF without Power Set Axiom) with
|N0| = κ, κ ∈ N0 and <κN0 ⊆ N0 there exists a non-trivial elementary
embedding k : N0 → N1, where N1 is also a transitive model of ZF−, <κN1 ⊆
N1, crit(k) = κ and k(κ) ≥ λ.

If κ is κ-unfoldable and N0, k are as above, then one can assume in addi-
tion that N0, k are elements of N1. For a proof see [10].

We remark here that some authors use the name unfoldability for the
extension property from Theorem 1.

Indescribability

Recall that in the usual �rst order logic (�rst order calculus) all variables
range only over the universe. We de�ne higher orders as follows: In the
second order logic there are also variables which range over the power set
of the universe. Correspondingly, the ∈-relation extends to the power set of
the universe. The third order logic has even variables which range over the
power set of the power set of the universe. Etc.

A Πn
m formula is a formula of order n+ 1 of the form ∀x∃y...φ (m quan-

ti�ers in front of φ), where x, y, ... are (n+1)th order variables and φ is such
that all quanti�ed variables in it are of order at most n.

A cardinal number is said to be indescribable in the sense that it can not
be distinguished from smaller cardinals in some given language. Namely, the
re�ection in the de�nition of indescribability makes many smaller cardinals
have similar properties.
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De�nition 15. A cardinal κ is Πn
m-indescribable i� whenever U is a subset

of Vκ and σ is a Πn
m sentence such that (Vκ,∈, U) |= σ, then for some α < κ,

(Vα,∈, U ∩ Vα) |= σ.

Partition properties

Unlike the notions above, partition properties are purely combinatorial
principles. We denote by

κ −→ (λ)n
m

the following partition property: Every function F : [κ]n −→ m is constant
on [H]n for some H ⊂ κ with |H| = λ.

Theorem 1. The following are equivalent for an inaccessible cardinal κ:

1. κ is weakly compact;

2. κ has the tree property;

3. κ −→ (κ)2
2;

4. κ is κ-unfoldable;

5. κ is Π1
1-indescribable;

6. κ has the extension property: for any R ⊆ Vκ there is a transitive set
X 6= Vκ and an S ⊆ X such that (Vκ,∈, R) 4 (X,∈, S);

7. every linear order of cardinality κ has an ascending or a descending
sequence of order type κ;

8. for every set S ⊆ P (κ) of cardinality κ there is a nontrivial κ-complete
�lter that decides S.

The proof of the equivalence of 1., 2., 3., 5. and 6. can be found in [12],
Theorems 4.5, 6.4, 7.8; the proof of the equivalence of 4. and 6. can be
found in [11], Theorem 4.1; and the proof of the equivalence of 1., 7. and 8.
(actually 1., 2., 3., 5., 6., 7. and 8.) can be found in [9], Ch. 10, Theorem
2.1.

Cardinal strength

The existence of an inaccessible cardinal which has the tree property (i.e.
weakly compact) is not provable from ZFC - it is a large cardinal property.
These equivalent formulations of the weak compactness actually say a lot
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about its cardinal strength. For example, from 3. and 5. in Theorem 1 one
can easily de�ne stronger or weaker partition and indescribablity properties.
Let us mention some of the stronger properties. A cardinal κ is called Ramsey
i� κ −→ (κ)<ω

2 ; totally indescribable i� it is Πn
m-indescribable for everym,n ∈

ω; unfoldable i� it is λ-unfoldable for each ordinal λ; etc.
Here is a little broader context of the cardinal strength of weak compact-

ness in terms of the famous large cardinal properties which we have already
mentioned:

De�nition 16. A cardinal κ is called (strongly) Mahlo i� {α < κ | α is
inaccessible} is stationary in κ.

The Mahlo cardinals are obviously inaccessible, however, the weakly com-
pact cardinals are stronger:

Proposition 4. If κ is weakly compact, then κ is Mahlo.

For a proof see [12], 4.7, or [8], 17.19. On the other side, measurable
cardinals are stronger than the weakly compacts:

Proposition 5. If κ is measurable, then κ is weakly compact.

For a proof see [8], 10.18. Without going further into the cardinal hi-
erarchy, we refer the reader to [12] for a complete survey of large cardinal
properties.

3.1.2 The tree property at small cardinals

It is very popular in set theory to investigate which (combinatorial) prop-
erties of large cardinals small cardinals have. Especially if these properties
characterise the large cardinals. For example, in our case, the tree property
at an inaccessible cardinal is equivalent to the weak compactness of that
cardinal. So it is very interesting to ask whether, say, the smallest uncount-
able cardinals, have the tree property, and hence are 'weak compact' in some
sense.

The tree property at ℵ0, known as König's Lemma, holds in every model
of ZFC. It is namely very easy in ZFC to construct an in�nite branch
through a given tree of hight ω whose levels have �nite size.

If we look at the �rst uncountable cardinal ℵ1 and ask whether it has the
tree property, we also get an answer in ZFC, but this time a negative one:

Theorem 2 (Aronszajn). There is an ℵ1-Aronszajn tree.
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For a proof see [12], 7.10.

Whether the tree property holds at the other small uncountable cardinals
can not be decided in ZFC. One can use large cardinals to build models of
ZFC in which other small uncountable cardinals have the tree property. We
will make an overview of these consistency results in section 3.2.

3.1.3 Other ZFC implications

We �nally state some general ZFC results on the tree property which don't
apply only for inaccessible cardinals. Here we want to remark that there have
not been discovered many ZFC implications about the tree property until
the late 1980's, and in the last two decades neither, because the consistency
results have been attracting all the interests. However, here are �rst the few
old results:

For a singular cardinal κ there is always a κ-Aronszajn tree: Let κ−{0} =⋃
α<δ Xα be a disjoint union with δ < κ and |Xα| < κ for each α < δ, and

consider (κ,<T ) where ξ <T ζ i� ξ < ζ and ξ, ζ ∈ {0} ∪Xα for some α < δ.
This tree obviously has no co�nal branches. Therefore, a singular cardinal
can never have the tree property.

Kurepa proved in 1935 that for regular cardinals κ uniformly thin trees
have a co�nal branch, i.e if (T,<T ) is a κ-tree such that for some δ < κ all
levels of T have size less than δ, then (T,<T ) has a co�nal branch. For a
proof see [12], 7.9.

Kurepa's result has the following two consequences:

Corollary 1 (Silver). If κ is real-valued measurable, then κ has the tree
property.

For a proof see [12], 7.12.

An ideal I on κ is said to be δ-saturated i� for any {Xα|α < δ} ⊆ P (κ)\I
there are β < γ < δ such that Xβ ∩Xγ /∈ I.
Corollary 2. If there exists a δ-saturated ideal on κ for some δ < κ, then κ
has the tree property.

For a proof see [12], 16.4.

In 1949 Specker generalised the result from Theorem 2 as follows:

Theorem 3. If κ<κ = κ, then there is a κ+-Aronszajn tree.

For a proof see [12], 7.10. A straightforward consequence of this theorem
is that if tree property holds at some successor cardinal κ++ then 2κ is at
least κ++.



20 The tree property

Beside these older results, we mention here the following theorem of Magi-
dor and Shelah from 1996.

Theorem 4. If a singular cardinal λ is a limit of strongly compact cardinals,
then there are no Aronszajn trees of height λ+.

3.2 Consistency results on the tree property

The questions whether small cardinals and consecutive cardinals can have
the tree property led to many nice consistency results. We state the most
important ones.

Theorem 5 (Mitchell [13]). If there exists a weakly compact cardinal, then
for any regular cardinal κ > ω, there is an extension in which κ+ has the tree
property.

Baumgartner and Laver simpli�ed Mitchell's forcing notion and got a
little weaker result. They obtained the tree property at ℵ2 by using a weakly
compact length countable support iteration of Sacks forcing. This generalizes
to the following ([3]): If κ is strongly inaccessible and λ > κ is weakly
compact, then the iteration of Sacks(κ) of length λ, with supports of size κ,
yields the tree property at κ++ in the extension (for a proof see [1]). This
was improved by Kanamori who, assuming ♦κ, showed that the same holds
for any regular cardinal κ ([3]).

In fact, Baumgartner showed that the countable support iteration of many
other forcings (including ω-Cohen forcing) of weakly compact length produces
models in which ℵ2 has the tree property.

The assumption in the theorem above turns out to be optimal, having
the same consistency strength as the tree property:

Theorem 6 (Silver [14]). If a cardinal κ > ℵ1 has the tree property, then it
is weakly compact in L.

Mitchell's question whether two consecutive cardinals can simultaneously
have the tree property, and whether two weakly compacts would su�ce, was
answered in 1983:

Theorem 7 (Abraham [5]). If there exist cardinals δ < κ < λ which are
respectively regular, supercompact and weakly compact, then there is an ex-
tension in which 2δ = δ++ = κ, 2δ+

= δ+++ = λ, and κ, λ still have the tree
property.
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The lower bound of the consistency strength of two successive cardinals
having the tree property was �rst explored by M. Magidor who proved the
following:

Theorem 8 (Magidor [5]). If there exists a model with two successive cardi-
nals having the tree property, then there is an inner model with a measurable
cardinal.

There have been e�orts to improve this lower bound. A partial success
in this direction is:

Theorem 9 (Foreman, Magidor, Schindler [15]). If there exists a pair of
successive cardinals with the tree property, and either 2ℵ0 ≤ κ or there exists
a measurable cardinal, then Π1

2 Determinacy holds.

For another formulation of this result in terms of Woodin cardinals see
[6]. The de�nition of Determinacy can be found in [8].

Theorem 10 (Cummings, Foreman [4]). If there exist ω supercompact car-
dinals, then there is an extension in which there are no ℵn-Aronszajn trees
for 2 ≤ n < ω.

A lower bound on the consistency strength of ω consecutive cardinals
having the tree property (with an additional condition) was also proven in
[15]:

Theorem 11 (Foreman, Magidor, Schindler [15]). If there are ω pairs of
consecutive cardinals with the tree property, and their supremum is a strong
limit, then Projective Determinacy holds.

For another formulation of this result see [6]. The de�nition of Projective
Determinacy can be found in [8].

Schindler has shown in an unpublished work that if κ is an inaccessible
limit of cardinals δ < κ such that both δ and δ+ have the tree property, then
the Axiom of Determinacy holds in L(R∗), where R∗ denotes the reals of the
Levy collapse V Coll(<κ,ω).

Theorem 12 (Magidor, Shelah [7]). If there exist a (roughly) huge cardinal
and ω supercompact cardinals above it, then in some extension ℵω+1 has the
tree property.

This result generalizes to successors of singular cardinals. Note that it
did not give an answer to Woodins question from 1980s whether the tree
property at ℵω+1 implies SCH at ℵω (SCH is the following Singular cardinal
hypothesis : if 2cf(κ) < κ, then κcf(κ) = κ+). However, this question was
recently negatively answered by Itay Neeman:
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Theorem 13 (Neeman [16]). Relative to the existence of ω supercompact
cardinals, there is a model with a strong limit cardinal κ of co�nality ω such
that 2κ = κ++ and κ+ has the tree property.

The consistency strength of the tree property at ℵω+1 is quite high. By
a result of Jensen from 1972 the existence of a special κ+-Aronszajn tree
is equivalent to Weak Square principle, and the consistency strength of the
failure of Weak Square principle at a singular cardinal is proven to be at least
one Woodin cardinal.

There are more consistency theorems on the tree property but we decide
to complete this list of most signi�cant results by discussing the tree property
at the double successors in the next chapter which is the real beginning of
this thesis.



Chapter 4

The tree property at the double

successors

We start this chapter with an easy observation that the tree property can
hold at κ++ for a supercompact cardinal κ. The strategy for showing this
is as follows. Start with a model in which there exist a supercompact κ
and a weakly compact λ > κ. First do the Laver preparation for preserva-
tion of supercompactness by <κ-directed-closed forcings, and then force with
Sacks(κ, λ). This produces the desired model.

It is also possible to make the tree property hold at the double successor
of a measurable cardinal, assuming the existence of something called weakly
compact hypermeasurable which is the optimal requirement (equiconsistency
holds, see [1]), but this requires more work as will be indicated in the following
section.

Our aim later in the chapter is to build up on this result singularizing this
measurable cardinal such that it remains a strong limit and the tree property
at its double successor is preserved. This is an improvement of a result of
Matthew Foreman from [4] who uses supercompact cardinals to build a model
in which the double successor of a singular strong limit cardinal has the tree
property.

4.1 The tree property at the double successor

of a measurable

De�nition 17. We say that κ is weakly compact hypermeasurable if there is
weakly compact cardinal λ > κ and an elementary embedding j : V → M
with crit(j) = κ such that H(λ)V = H(λ)M .
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Let κ be a weakly compact hypermeasurable cardinal. De�ne a forcing
notion P as follows. Let ρ0 be the �rst inaccessible cardinal and let λ0 be
the least weakly compact cardinal above ρ0. For k < κ, given λk, let ρk+1

be the least inaccessible cardinal above λk and let λk+1 be the least weakly
compact cardinal above ρk+1. For limit ordinals k < κ, let ρk be the least
inaccessible cardinal greater than or equal to supl<kλl and let λk be the least
weakly compact cardinal above ρk. Note that ρκ = κ and λκ is the least
weakly compact cardinal above κ.

Let P0 = {10}. For i < κ, if i = ρk for some k < κ, let Q̇i be a Pi-name
for the direct sum

⊕
η≤λk

Sacks(ρk, η):={〈Sacks(ρk, η), p〉: η is an inaccessible
≤ λk and p ∈ Sacks(ρk, η)}, where 〈Sacks(ρk, η), p〉 ≤ 〈Sacks(ρk, η

′), p′〉 i�
η = η′ and p ≤Sacks(ρk,η) p

′. Otherwise let Q̇i be a Pi-name for the trivial
forcing. Let Pi+1 = Pi ∗ Q̇i. Let Pκ be the iteration 〈〈Pi, Q̇i〉 : i < κ〉 with
reverse Easton support.

Theorem 14 (N. Dobrinen, S. Friedman). Assume that V is a model of ZFC
in which GCH holds and κ is a weakly compact hypermeasurable cardinal in
V . Let λ > κ be a weakly compact cardinal and let j : V → M be an
elementary embedding with crit(j) = κ, j(κ) > λ and H(λ)V = H(λ)M ,
witnessing the weakly compact hypermeasurability of κ. Let G∗g be a generic
subset of P = Pκ ∗ ˙Sacks(κ, λ) over V . Then in V [G][g], 2κ = κ++, κ++ has
the tree property, and κ is still measurable, i.e. the embedding j : V → M
can be lifted to an elementary embedding j : V [G][g] →M [G][g][H][h], where
G ∗ g ∗H ∗ h is a generic subset of j(P ) over M .

For a proof see [1].

4.2 The tree property at the double successor

of a singular

Theorem 15. Assume that V is a model of ZFC and κ is a weakly compact
hypermeasurable cardinal in V . Then there exists a forcing extension of V in
which cof(κ) = ω and κ++ has the tree property.

Proof. Let λ > κ be a weakly compact cardinal and let j : V → M be an
elementary embedding with crit(j) = κ, j(κ) > λ and H(λ)V = H(λ)M .
We may assume that M is of the form M = {j(f)(α) : α < λ, f : κ →
V, f ∈ V }. First force as in Theorem 14 with P = Pκ ∗ ˙Sacks(κ, λ) over V
to get a model V [G][g] in which 2κ = κ++, κ++ has the tree property, and
κ is still measurable, i.e. there is an elementary embedding j : V [G][g] →
M [G][g][H][h], where G ∗ g ∗H ∗ h is a generic subset of j(P ) over M .
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Now force with the usual Prikry forcing which we will denote by R :=
{(s, A) : s ∈ [κ]<ω, A ∈ U}, where U is the normal measure on κ derived from
j. We say that s is the lower part of (s, A). A condition (t, B) is stronger than
a condition (s, A) i� s is an initial segment of t, B ⊆ A, and t− s ⊂ A. The
Prikry forcing preserves cardinals and introduces an ω-sequence of ordinals
which is co�nal in κ. It remains to show that it also preserves the tree
property on κ++ = λ.

In order to get a contradiction suppose that there is a κ++-Aronszajn tree
in some R-extension of V [G][g]. Then in V [G] there is a Sacks(κ, λ)∗Ṙ - name
Ṫ of size λ (because Sacks(κ, λ) ∗ Ṙ satis�es λ-c.c.) and a condition (p, ṙ) ∈
Sacks(κ, λ) ∗ Ṙ which forces Ṫ to be a κ++-Aronszajn tree. Recall that λ is
a weakly compact cardinal in V [G]. Therefore, by Theorem 1, there exist in
V [G] transitive ZF−-models N0, N1 of size λ and an elementary embedding
k : N0 → N1 with critical point λ, such that N0 ⊇ H(λ)V [G] and G, Ṫ ∈ N0.

Since g is also Sacks(κ, λ)-generic over N0 and the critical point of k is λ,
k can be lifted to k∗ : N0[g] → N1[g][K], where K is any N1[g]-generic subset
of Sacks(κ, [λ, k(λ))) in some larger universe (and where Sacks(κ, [λ, k(λ))) is
the quotient Sacks(κ, k(λ))/Sacks(κ, λ), i.e. the iteration of Sacks(κ) indexed
by ordinals between λ and k(λ)). Consider the forcing R∗ := k∗(Ṙg) in
N1[g][K] and choose any generic C∗ for it such that k∗(r) ∈ C∗, where r = ṙg.
Let C := (k∗)−1[C∗] be the pullback of C∗ under k∗. Then C is an N0[g]-
generic subset of R, because if ∆ ∈ N0[g] is a maximal antichain of R then
k∗(∆) = k∗[∆] (since crit(k)=λ and R has the κ+-c.c.) and by elementarity
k∗(∆) is maximal in k∗(R) = R∗, so k∗[∆] meets C∗ and hence ∆ meets C. It
follows that there is an elementary embedding k∗∗ : N0[g][C] → N1[g][K][C∗]
extending k∗.

We have r ∈ C. So it follows that the evaluation T of Ṫ in N0[g][C]
is a λ-Aronszajn tree. By elementarity k∗∗(T ) is a k∗∗(λ)-Aronszajn tree in
N1[g][K][C∗] which coincides with T up to level λ. Hence T has a co�nal
branch b in N1[g][K][C∗]. We will show that b has to belong to N1[g][C]
(i.e. the quotient Q of the natural projection π : Sacks(κ, k(λ)) ∗ Ṙ∗ →
RO(Sacks(κ, λ)∗Ṙ) can not add a new branch), and thereby reach the desired
contradiction!

Let us �rst analyse the quotient Q of the projection above. In N1[g][C]
we have Q = {(p∗, (s∗, Ȧ∗)) ∈ Sacks(κ, k(λ)) ∗ Ṙ∗ | for all (p, (s, Ȧ)) ∈ g ∗ C,
(p, (s, Ȧ)) does not force that (p∗, (s∗, Ȧ∗)) is not a condition in the quotient}.
Observe that (p, (s, Ȧ)) forces that (p∗, (s∗, Ȧ∗)) is not a condition in Q i�
the two conditions are incompatible, which is the case i� one of the following
holds:

1. p∗ � λ is incompatible with p.
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2. s∗  s and s  s∗.

3. p∗ � λ is compatible with p, s∗ ⊆ s, and p∗ ∪ p forces that s− s∗  Ȧ∗.

4. p∗ � λ is compatible with p, s ⊆ s∗, and p∗ � λ∪p forces that s∗−s  Ȧ.

It follows that Q = {(p∗, (s∗, Ȧ∗)) ∈ Sacks(κ, k(λ)) ∗ Ṙ∗ | (p∗, (s∗, Ȧ∗)) is
compatible with all (p, (s, Ȧ)) ∈ g ∗C}, i.e. Q is the set of all (p∗, (s∗, Ȧ∗)) ∈
Sacks(κ, k(λ)) ∗ Ṙ∗ such that for all (p, (s, Ȧ)) ∈ g ∗ C either

1. p∗ � λ is compatible with p, s∗ ⊆ s, and p∗ ∪ p does not force that
s− s∗  Ȧ∗, or

2. p∗ � λ is compatible with p, s ⊆ s∗, and p∗ � λ ∪ p does not force that
s∗ − s  Ȧ}.

Equivalently, Q is the set of all (p∗, (s∗, Ȧ∗)) ∈ Sacks(κ, [λ, k(λ))) ∗ Ṙ∗ such
that

1. p∗ ∈ Sacks(κ, [λ, k(λ))),

2. s∗ is an initial segment of S(C) (the Prikry ω-sequence arising from
C)

3. p∗ forces that Ȧ∗ is in U̇∗, and

4. for any �nite subset x of S(C), some extension q of p∗ forces x to be a
subset of s∗ ∪ Ȧ∗.

We now again argue indirectly. Assume that b is not in N1[g][C], and let
ḃ in N1[g] be an R ∗ Q̇ - name for b. Identify k(Ṫ ) with the R ∗ Q̇ - name
de�ned by interpreting the Sacks(κ, k(λ))∗ Ṙ∗ - name k(Ṫ ) in N1 as an R∗ Q̇
- name in N1[g]. Let ((s0, A0), (p0, (t0, Ȧ0))) be an R ∗ Q̇ - condition forcing
that the Prikry-name Ṫ is a λ-tree and that ḃ is a branch through Ṫ not
belonging to N1[g][Ċ].

Let us take a closer look at the condition ((s0, A0), (p0, (t0, Ȧ0))). Note
that the forcing Q lives in N1[g][C], but its elements are in N1[g], so we can
assume that (p0, (t0, Ȧ0)) is a real object and not just a Prikry-name. The
Prikry condition (s0, A0) forces that p0 is an element of Sacks(κ, [λ, k(λ))),
that t0 is an initial segment of S(Ċ), and that for all �nite subsets x of S(Ċ),
some extension of p0 forces x to be a subset of t0 ∪ Ȧ0. This simply means
that t0 is an initial segment of s0 and for every �nite subset x of s0 ∪ A0,
some extension of p0 forces x to be a subset of t0 ∪ Ȧ0.

Moreover, we can assume that s0 equals t0. Namely, from the next claim
follows that the set of conditions of the form ((s, A), (p, (s, Ȧ))) is dense in
R ∗ Q̇.
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Claim. Suppose that p is an element of Sacks(κ, [λ, k(λ))) which forces that
Ȧ is in U̇∗. Then there is A(p) ∈ U such that whenever x is a �nite subset
of A(p), there is q ≤ p forcing x to be contained in Ȧ.

Proof of the claim. De�ne the function f : [κ]<ω → 2 by

f(x) =

{
1 if ∃q ≤ p q  x ⊆ Ȧ
0 otherwise.

By normality f has a homogeneous set A(p) ∈ U . It follows that for each
n ∈ ω, f � [A(p)]n has the constant value 1: Assume on the contrary that
there is some n ∈ ω such that f � [A(p)]n has the constant value 0. Then
p  x 6⊆ Ȧ for every x ∈ [A(p)]n, but this is in contradiction with the facts
that the measure U∗ extends U , p  Ȧ ∈ U∗, and A(p) ∈ U .

It is now easy to show that the set of conditions of the form ((s, A), (p, (s,
Ȧ))) is dense in R ∗ Q̇. Assume that ((s, A), (p, (t, Ȧ))) is an arbitrary con-
dition in R ∗ Q̇. We have t ⊆ s. There is some q ≤ p which forces that
x := s − t is contained in Ȧ. Now by shrinking A to A(q) we get that
((s, A(q)), (q, (s, Ȧ))) is a condition which is below ((s, A), (p, (t, Ȧ))). We
will from now on work with this dense subset of R ∗ Q̇.

Now in N1[g] build a κ-tree E of conditions in Sacks(κ, [λ, k(λ))), whose
branches will be fusion sequences, together with a sequence of ordinals 〈λβ :
β < κ〉, each λβ < λ, as follows:

Consider an enumeration 〈sβ : β < κ〉 of all possible lower parts of condi-
tions in R, i.e. all �nite increasing sequences of ordinals less than κ, in which
every lower part appears co�nally often. Start building the tree E below
the condition p0 (p0 was chosen such that ((s0, A0), (p0, (s0, Ȧ0))) forces ḃ to
be a bad branch). Assume that the tree E is built up to level β. Then,
at stage β of the construction of the tree, at each node v (a condition in
Sacks(κ, [λ, k(λ)))), is associated an Xv ⊂ [λ, k(λ)), |Xv| < κ; we will �nd
stronger (incompatible) conditions v0 and v1 which on all indices in Xv equal
v below level β (for purposes of fusion), i.e. v0, v1 ≤β,Xv v. (The sets Xv can
be chosen in di�erent ways, the only condition they have to satisfy is that at
the end of the construction of the tree E for every branch through the tree
the union of the supports of the conditions (nodes) on the branch is equal to
the union of the corresponding X's.) Before we start the construction of the
level β + 1 of the tree E we need to set some notation. Given i ∈ [λ, k(λ)),
let Si denote Sacks(κ, [λ, i)). For a node v on level β, let δv = o.t.(Xv) and
dv = |δv(β+12)|. Let 〈ivε : ε < δv〉 be the strictly increasing enumeration of
Xv and let iδv = sup{ivε : ε < δv}. For each ε < δv there are Sivε - names
ṡv

ε,ζ (ζ ∈ β+12) such that Sivε  (ṡv
ε,ζ is the ζ-th node of Splitβ+1(v(i

v
ε ))),
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where the nodes of Splitβ+1(v(i
v
ε ))) are ordered canonically lexicographically

(by choosing an Sivε - name for an isomorphism between v(ivε ) and
<κ2). Let

〈uv
l : l < dv〉 enumerate δv(β+12) (the δv-length sequences whose entries are

elements of β+12) so that uv
l = 〈uv

l (ε) : ε < δv〉, where each uv
l (ε) ∈ β+12. We

now need the following two facts:

Fact 1. Suppose that v is a node and l < dv. We can construct a condition
r ≤ v called v thinned through ul, denoted by (v)ul , in the following manner:
r � iv0 = v � iv0, for each ε < δv, r(ivε ) = v(ivε ) � ṡv

ε,uv
l (ε), r � (ivε , i

v
ε+1) = v �

(ivε , i
v
ε+1) and r � (iδv , k(λ)) = v � (iδv , k(λ)), where v(ivε ) � ṡv

ε,uv
l (ε) is the

subtree of v(ivε ) whose branches go through ṡv
ε,uv

l (ε).

Fact 2. Suppose that v and r are conditions in Sacks(κ, [λ, k(λ))) with r ≤
(v)ul . Then there is a condition v′ such that v′ ≤β,Xv v and (v′)ul ∼ r (i.e.
(v′)ul ≤ r and r ≤ (v′)ul). We say that v′ is v re�ned through ul to r.

Let 〈vj : j < 2β+1〉 be an enumeration of level β of the tree E and let
〈um〉m<

P
j<2β+1 dvj

be an enumeration of Y :=
⋃

j<2β+1{uvj

l : l < dvj
}. In

order to construct the next level of the tree we will �rst thin out all the
nodes on level β (by considering all the pairs in Y ) and then split each of
them into two incompatible nodes. The thinning out is done as follows:
Consider u0 and u1. If they belong to the same node, i.e. if there is j < 2β+1

and l0, l1 < dvj
s.t. u0 = u

vj

l0
and u1 = u

vj

l1
, then no thinning takes place. So

assume that u0 and u1 belong to di�erent nodes, say vj0 and vj1 , respectively.
Use Fact 1 to construct conditions r01 = (vj0)

u0 and r10 = (vj1)
u1 , i.e. thin

vj0 and vj1 through u0 and u1 to r01 and r10, respectively. Now ask whether
there exist extensions r′01 and r′10 of r01 and r10, respectively, such that for
some γ01 < λ and some A01, A10, Ȧ01, Ȧ10, ((sβ, A01), (r

′
01, (sβ, Ȧ01))) and

((sβ, A10), (r
′
10, (sβ, Ȧ10))) force di�erent nodes on level γ01 of Ṫ to lie on ḃ.

If the answer is 'yes', use Fact 2 to re�ne vj0 and vj1 through r′01 and r′10,
respectively, and continue with the next pair: u0, u2. And if the answer is
'no', go to the pair u0, u2 without re�ning vj0 and vj1 . The next pairs are
u1, u2; u0, u3 and so on, i.e. all pairs of the form uδ, uη, for η <

∑
j<2β+1 dvj

and δ < η. At the limit stages take lower bounds, they exist since the forcing
is κ-closed. Let λβ be the supremum of (the increasing sequence of) γδη's.
Now extend each node v on level β (after thinning out the whole level) to
two incompatible conditions vo and v1, such that v0, v1 ≤β,Xv v.

Let α be the supremum of λβ's. Note that α < λ, because λ = (κ++)N1[g].
Let p be the result of a fusion along a branch through E. By the claim
we can choose A0(p) ⊆ A0 in U such that ((s0, A0(p)), (p, (s0, Ȧ0))) is a
condition. Extend this condition to some ((s1(p), A1(p)), (p

∗, (s1(p), Ȧ1(p))))
which decides ḃ(α), say it forces ḃ(α) = xp.
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As level α of Ṫ has size < λ, there exist limits p, q of κ-fusion sequences
arising from distinct κ-branches through E for which xp equals xq and s1(p)
equals s1(q). Moreover, we can intersect A1(p) and A1(q) to get a common A1.
Say, ((s1, A1), (p

∗, (s1, Ȧ1(p)))) and ((s1, A1), (q
∗, (s1, Ȧ1(q)))) force ḃ(α) = x.

Now choose a Prikry generic C containing (s1, A1) (and therefore con-
taining (s0, A0)). As ḃ is forced by ((s0, A0), (p0, (s0, Ȧ0))) to not belong to
N1[g][Ċ] and ((s1, A1), (p

∗, (s1, Ȧ1(p)))) extends ((s0, A0), (p0, (s0, Ȧ0))), we
can extend ((s1, A1), (p

∗, (s1, Ȧ1(p)))) to incompatible conditions ((s20 , A20),
(p∗∗0 , (s20 , Ȧ20))), ((s21 , A21), (p

∗∗
1 , (s21 , Ȧ21))), with (s20 , A20), (s21 , A21) ∈ C

and p∗∗0 , p
∗∗
1 ≤ p∗, which force a disagreement about ḃ at some level γ above

α.
Now extend ((s1, A1), (q

∗, (s1, Ȧ1(q)))) to some ((s3, A3), (q
∗∗, (s3, Ȧ3)))

deciding ḃ(γ) with (s3, A3) in C. We can assume without loss of generality
that ((s3, A3), (q

∗∗, (s3, Ȧ3))) and ((s20 , A20), (p
∗∗
0 , (s20 , Ȧ20))) disagree about

ḃ(γ). Also w.l.o.g. we can assume that s3 ⊇ s20 .
Using the claim extend ((s20 , A20), (p

∗∗
0 , (s20 , Ȧ20))) to a stronger condition

((s3, A
′
3), (p

∗∗∗, (s3, Ȧ20))) with A
′
3 ∈ U and p∗∗∗ ≤ p∗∗0 .

Now, for some β < κ we have s3 = sβ where sβ is the βth element of
the enumeration of the lower parts (s3 is not the third element!). Since sβ

appears co�nally often in the construction of the tree E, we can assume that
the branches which fuse to p and q split in E at some node below level β
and go through some nodes vj0 and vj1 at level β. It follows that for some
l < dvj0

and k < dvj1
,

r1 := ((s3, A
′
3((p

∗∗∗)u
vj0
l )), ((p∗∗∗)u

vj0
l , (s3, Ȧ20)))

and

r2 := ((s3, A3((q
∗∗)u

vj1
k )), ((q∗∗)u

vj1
k , (s3, Ȧ3)))

force di�erent nodes to lie on ḃ at level γ > α. By construction, this means
that for some η <

∑
j<2β+1 dvj

and δ < η,

r3 := ((sβ, Aδη), (r
′
δη, (sβ, Ȧδη)))

and

r4 := ((sβ, Aηδ), (r
′
ηδ, (sβ, Ȧηδ)))

force di�erent nodes on level γδη(< α) of Ṫ to lie on ḃ. Say, ḃ(γδη) = y0 and
ḃ(γδη) = y1, respectively.

On the other side, conditions r1 and r2 extend ((s1, A1), (p
∗, (s1, Ȧ1(p))))

and ((s1, A1), (q
∗, (s1, Ȧ1(q)))), respectively. Therefore we have that r1 and

r2 also force ḃ(α) = x.
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Note that (p∗∗∗)u
vj0
l ≤ r′δη and (q∗∗)u

vj1
k ≤ r′ηδ. Since any two R ∗ Q̇

conditions with the same lower part and compatible Sacks conditions are
compatible, we have that r1 ‖ r3 and r2 ‖ r4. Let ((s3, B

′), (p̄, (s3, Ḃ′)))
be a common lower bound of r1 and r3, and let ((s3, B

′′), (q̄, (s3, Ḃ′′))) be a
common lower bound of r2 and r4. The �rst condition forces ḃ(γδη) = y0 and
ḃ(α) = x, and the second condition forces ḃ(γδη) = y1 and ḃ(α) = x.

Finally, let B̄ := B′ ∩ B′′. Then (s3, B̄) forces that y0, y1 <Ṫ x in the
ordering of the tree Ṫ , because Ṫ is a Prikry-name, i.e. all the relations
between the nodes of Ṫ are determined by the Prikry parts of the conditions
above. Contradiction.

4.3 The tree property at ℵω+2

Using a forcing notion which makes κ into ℵω instead of Prikry forcing in
the proof of Theorem 15 one can get from the same assumptions the tree
property at ℵω+2, ℵω strong limit.

Theorem 16. Assume that V is a model of ZFC and κ is a weakly compact
hypermeasurable cardinal in V . Then there exists a forcing extension of V in
which ℵω+2 has the tree property.

Proof. Let λ > κ be a weakly compact cardinal and let j : V → M be an
elementary embedding with crit(j) = κ, j(κ) > λ and H(λ)V = H(λ)M .
We may assume that M is of the form M = {j(f)(α) : α < λ, f : κ →
V, f ∈ V }. First force as in Theorem 14 with P = Pκ ∗ ˙Sacks(κ, λ) over V
to get a model V [G][g] in which 2κ = κ++, κ++ has the tree property, and
κ is still measurable, i.e. there is an elementary embedding j : V [G][g] →
M [G][g][H][h], where G ∗ g ∗H ∗ h is a generic subset of j(P ) over M . Let
M∗ := M [G][g][H][h].

We now have thatM∗ is the ultrapower of V [G][g] (by the normal measure
U induced by j), i.e. every element in M∗ is of the form j(f)(κ) for some
function f : κ → V [G][g], f ∈ V [G][g]. This is because of the following
two facts: every element in M∗ is of the form j(f)(α) for some α < λ
and some f : κ → V [G][g], f ∈ V [G][g]; and every α < λ is of the form
j(g)(κ) for some g : κ → V [G][g], g ∈ V [G][g]. To see the �rst fact recall
that every element in M∗ is of the form j(f)(α)G∗g∗H∗h for some α < λ and
some f : κ → V, f ∈ V . De�ne f ′ : κ → V [G][g], f ′ ∈ V [G][g] by setting
f ′(α) to be f(α)G∗g whenever f(α) is a name, and 0 otherwise. Then, by
elementarity, j(f ′)(α) = j(f)(α)G∗g∗H∗h. To see the second fact note that
2κ = κ++ in V [G][g]. Let 〈Xα : α < κ++〉 be an enumeration of the subsets
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of κ. Identify Xα with α and let g(β) := Xα � β for β < κ. Then again by
elementarity we have j(g)(κ) = j(Xα) � κ = Xα.

Claim. De�ne Q′ := Coll((κ+++)M∗
, j(κ))M∗

, the forcing that collapses each
ordinal less than j(κ) to (κ+++)M∗

using conditions of size ≤ (κ++)M∗
. There

exists G′ in V [G][g], a generic subset of Q′ over M∗.

Proof of the claim. Every maximal antichain ∆ ⊂ Q′ in M∗ is actually in
M [G][g][H], and thus of the form σG∗g∗H for some j(Pκ)-name σ in M . It
follows that ∆ is of the form j(f)(α)G∗g∗H for some α < λ = (κ++)M∗

,
and some f : κ → V, f ∈ V . Since we can assume that σ = j(f)(α) is in
Vj(κ) (because |j(Pκ)| = j(κ) and j(Pκ) has j(κ)-c.c.), it follows that we can
assume that f : κ→ Vκ, by modifying it.

For a �xed f : κ → Vκ we have that Ff := {∆ ⊂ Q′ | ∆ maximal
antichain, ∆ ∈ M [G][g][H], and j(f)(α)G∗g∗H = ∆ for some α < (κ++)M∗}
is an element of M [G][g][H]. Therefore, since Q′ is (κ+++)M∗

-distributive in
M [G][g][H], there exists a single condition pf ∈ Q′ which lies below every
antichain in Ff .

Now, there are 2κ = κ+ functions f : κ → Vκ in V . Enumerate them as
f1, f2, f3... We can �nd conditions qγ ∈ Q′ for γ < κ+ such that qγ is a lower
bound of (pfβ

)β<γ, because M [G][g][H]κ ∩ V [G][g] ⊆ M [G][g][H] and Q′ is
(κ+)V -closed in M [G][g][H]. The sequence {qγ | γ < κ+} generates a �lter
G′ for Q′ in V [G][g], which is generic over M [G][g][H]. Here ends the proof
of the claim.

We now de�ne in V [G][g] a κ+-c.c. forcing notion R(G′, U), or just R,
called Collapse Prikry, which makes κ into ℵω and preserves the tree property
on κ++: An element p ∈ R is of the form (ℵ0, f0, α1, f1, ..., αn−1, fn−1, A, F )
where

1. ℵ0 < α1 < · · · < αn−1 < κ are inaccessibles

2. fi ∈ Coll(α+++
i , αi+1) for i < n− 1 and fn−1 ∈ Coll(α+++

n−1 , κ)

3. A ∈ U , minA > αn−1

4. F is a function on A such that F (α) ∈ Coll(α+++, κ)

5. [F ]U , which is an element of Coll((κ+++)M∗
, j(κ))M∗

, belongs to G′.

The conditions in R are ordered as follows:
(ℵ0, g0, β1, g1, .., βm−1, gm−1, B,H) ≤ (ℵ0, f0, α1, f1, .., αn−1, fn−1, A, F ) i�

1. m ≥ n
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2. ∀i < n βi = αi, gi ⊇ fi

3. B ⊆ A

4. ∀i ≥ n βi ∈ A, gi ⊇ F (βi)

5. ∀α ∈ B H(α) ⊇ F (α).

We often abbreviate the lower part of a condition by a single letter and
write (s, A, F ) instead of (ℵ0, f0, α1, f1, ..., αn−1, fn−1, A, F ) where |s| = n
denotes the length of the lower part. Let S denote the 'generic sequence',
i.e. the Prikry sequence together with the generic collapsing functions.

Claim. R satis�es κ+-c.c.

Proof of the claim. There are only κ lower parts and any two conditions with
the same lower part are compatible, so no antichain has size bigger than κ.

Claim. Let (s, A, F ) ∈ R and let σ be a statement of the forcing language.
There exists a stronger condition (s′, A∗, F ∗) with |s| = |s′| which decides σ.

For a proof see [2].

Claim. Let C be a V [G][g]-generic subset of R and let 〈ℵ0, α1, ..., αn, ...〉
be the Prikry sequence in κ introduced by R. For j ∈ ω, de�ne R �
j := Coll(ℵ+++

0 , α1)× Coll(α+++
1 , α2)× ...× Coll(α+++

j−1 , αj). Then V [G][g][C]
and V [G][g][C � j] have the same cardinal structure below αj + 1, namely
ℵ1,ℵ2,ℵ3, α1, α

+
1 , α

++
1 , α+++

1 , ..., αj−1, α
+
j−1, α

++
j−1, α

+++
j−1 , αj, where C � j is the

restriction of C to R � j.

Proof of the claim. Write R as R � j∗ ˙R/(R � j), where the quotient ˙R/(R � j)
is de�ned in the same way as R (using only inaccessibles between αj and κ).
We need to show that R/(R � j) does not add bounded subsets of αj, but
this follows immediately from the last claim.

So we proved that R makes κ into ℵω. It remains to show that it also
preserves the tree property on κ++ = λ.

In order to get a contradiction suppose that there is a κ++-Aronszajn
tree in some R-extension of V [G][g]. Then in V [G] there is a Sacks(κ, λ) ∗ Ṙ
- name Ṫ of size λ (because Sacks(κ, λ) ∗ Ṙ satis�es λ-c.c.) and a condition
(p, ṙ) ∈ Sacks(κ, λ) ∗ Ṙ which forces Ṫ to be a κ++-Aronszajn tree. Let Ġ′

be a Sacks(κ, λ)-name in V [G] for G′ of size λ (there is such a name because
Sacks(κ, λ) has the λ-c.c. and |Q′| = λ). We can assume w.l.o.g. that p
forces Ġ′ to be generic over Q′. Recall that λ is a weakly compact cardinal
in V [G]. Therefore, there exist in V [G] transitive ZF−-models N0, N1 of size
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λ and an elementary embedding k : N0 → N1 with critical point λ, such that
N0 ⊇ H(λ)V [G] and G, Ṫ , Ġ′ ∈ N0.

Since g is also Sacks(κ, λ)-generic over N0 and the critical point of k is λ,
k can be lifted to k∗ : N0[g] → N1[g][K], where K is any N1[g]-generic subset
of Sacks(κ, [λ, k(λ))) in some larger universe (and where Sacks(κ, [λ, k(λ)))
is the quotient Sacks(κ, k(λ))/Sacks(κ, λ), i.e. the iteration of Sacks(κ)
indexed by ordinals between λ and k(λ)). Consider the forcing R∗ :=
k∗(R) = R(k(G′), k(U)) in N1[g][K] and choose any generic C∗ for it such
that k∗(r) ∈ C∗, where r = ṙg, R = Ṙg, G′ = Ġ′g. Let C := (k∗)−1[C∗] be
the pullback of C∗ under k∗. Then C is an N0[g]-generic subset of R be-
cause crit(k)=λ and R has the κ+-c.c. It follows that there is an elementary
embedding k∗∗ : N0[g][C] → N1[g][K][C∗] extending k∗.

We have r ∈ C. So it follows that the evaluation T of Ṫ in N0[g][C]
is a λ-Aronszajn tree. By elementarity k∗∗(T ) is a k∗∗(λ)-Aronszajn tree in
N1[g][K][C∗] which coincides with T up to level λ. Hence T has a co�nal
branch b in N1[g][K][C∗]. We will show that b has to belong to N1[g][C] and
thereby reach the desired contradiction!

Let us �rst analyse the quotient Q arising from the natural projection π :
Sacks(κ, k(λ))∗Ṙ∗ →RO(Sacks(κ, λ)∗Ṙ). As in the previous section, Q is the
set of all (p∗, (ℵ0, f0, α1, f1, ..., αn−1, fn−1, Ȧ

∗, Ḟ ∗)) ∈ Sacks(κ, k(λ))∗Ṙ∗ which
are compatible with each (p, (ℵ0, g0, β1, g1, ..., βm−1, gm−1, Ȧ, Ḟ )) ∈ g∗C, that
is, either

1. p∗ � λ is compatible with p,

2. n < m,

3. for all i < n αi = βi ∧ fi ‖ gi,

4. there is q ≤ p∪ p∗ such that q  “βn, ..., βm−1 ⊂ Ȧ∗ and Ḟ ∗(βi) ‖ gi for
n ≤ i < m”,

or

1. p∗ � λ is compatible with p,

2. n ≥ m,

3. for all i < m αi = βi ∧ fi ‖ gi,

4. there is q ≤ p ∪ p∗ such that q  “αm, ..., αn−1 ⊂ Ȧ and Ḟ (αi) ‖ fi for
m ≤ i < n”.



34 The tree property at the double successors

[Note that in both cases the condition q also forces Ḟ and Ḟ ∗ to be compat-
ible on a measure one set. This is because the weaker condition p (by de�-
nition) forces j(Ḟ )(κ) to be in Ġ′, and therefore, by elementarity, also forces
k(j)(k(Ḟ ))(κ) to be in k(Ġ′), but k(j)(k(Ḟ ))(κ) is the same as k(j)(Ḟ )(κ) =
[Ḟ ]U∗ , since the trivial condition forces k(Ḟ ) = Ḟ .]

Equivalently, Q is the set of conditions (p∗, (ℵ0, f0, ..., αn−1, fn−1, Ȧ
∗, Ḟ ∗))

in Sacks(κ, [λ, k(λ))) ∗ Ṙ∗ such that

1. p∗ ∈ Sacks(κ, [λ, k(λ))),

2. 〈ℵ0, α1..., αn−1〉 is an initial segment of S(C) (the Prikry sequence aris-
ing from C),

3. the collapsing function ḡi : α+++
i → αi+1 arising from C extends fi,

i < n,

4. p∗ forces that Ȧ∗ is in U̇∗, and that Ḟ ∗ is a function on Ȧ∗ such that
Ḟ ∗(α) ∈ Coll(α+++, κ) for each α ∈ Ȧ∗,

5. for every �nite subset x = 〈βn, ..., βm−1〉 of S(C) and every sequence of
functions 〈gn, ..., gm−1〉 with gi ⊆ ḡi, n ≤ i < m, there is some extension
q of p∗ which forces that x is a subset of {ℵ0, α1, ..., αn−1}∪Ȧ∗ and that
Ḟ ∗(βi) ‖ gi for n ≤ i < m.

We now again argue indirectly. Assume that b is not in N1[g][C], and let
ḃ in N1[g] be an R ∗ Q̇ - name for b. Identify k(Ṫ ) with the R ∗ Q̇ - name
de�ned by interpreting the Sacks(κ, k(λ))∗ Ṙ∗ - name k(Ṫ ) in N1 as an R∗ Q̇
- name in N1[g]. Let ((s0, A0, F0), (p0, (t0, Ȧ0, Ḟ0))) be an R ∗ Q̇ - condition
forcing that the Prikry-name Ṫ is a λ-tree and that ḃ is a branch through Ṫ
not belonging to N1[g][Ċ].

Let us take a closer look at the condition ((s0, A0, F0), (p0, (t0, Ȧ0, Ḟ0))).
Say, s0 = 〈ℵ0, f0, α1, f1, ..., αn−1, fn−1〉 and t0 = 〈ℵ0, g0, β1, g1, ..., βm−1, gm−1〉.
Note that the forcing Q lives in N1[g][C], but its elements are in N1[g], so
we can assume that (p0, (t0, Ȧ0, Ḟ0)) is a real object and not just an R-name.
The condition (s0, A0, F0) forces (p0, (t0, Ȧ0, Ḟ0)) to be an element of Q̇. But
this simply means that:

1. p0 is an element of Sacks(κ, [λ, k(λ))),

2. 〈ℵ0, β1, ..., βm−1〉 is an initial segment of 〈ℵ0, α1, ..., αn−1〉,

3. gi ⊆ fi for i < m, and
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4. for every �nite subset x = 〈δ1, ..., δl〉 of {ℵ0, α1, ..., αn−1}∪A0 and every
sequence of functions 〈gδ1 , ..., gδl

〉 with gδi
⊇ F0(δi) if δi > αn−1, and

gδi
⊇ fi if δi = αi (for some i < n), some extension of p0 forces that x

is a subset of {ℵ0, β1, ..., βm−1} ∪ Ȧ0 and that Ḟ0(δi) ‖ gδi
for i < l.

Moreover, we can assume that s0 = t0. Namely, the following claim gives
us a nice dense subset of R ∗ Q̇ on which we will work from now on.

Claim. Let ((s, A, F ), (p, (t, Ȧ, Ḟ ))) be an arbitrary condition in R∗Q̇. There
is a stronger condition ((s′, A′, F ′), (p′, (s′, Ȧ, Ḟ ))) with the property that for
each α ∈ A′ p′  F ′(α) ≤ Ḟ (α).

Proof of the claim. Say, s is of the form 〈ℵ0, f0, α1, f1, ..., αn−1, fn−1〉 and t is
of the form 〈ℵ0, g0, β1, g1, ..., βm−1, gm−1〉. Let q be an extension of p which
forces that {αm, ..., αn−1} is a subset of Ȧ and that fi ‖ Ḟ (αi) for m ≤ i < n.
Extend q further to q′ to decide Ḟ (αi) and let f ′i := fi ∪ Ḟ (αi). De�ne s′ to
be 〈ℵ0, f0, α1, f1, ..., αm−1, fm−1, αm, f

′
m, ..., αn−1, f

′
n−1〉.

Using the fusion property of Sacks(κ, [λ, k(λ))) we can �nd a condition
q′′ ≤ q′ and a ground model function F ∗ on A with |F ∗(α)| ≤ α++ for each α
such that q′′  Ḟ (α) ∈ Coll(α+++, κ)∩F ∗(α). It follows that q′′ forces that in
Ult(N1[g], U), the ultrapower of N1[g] by U , jU(Ḟ )(κ) ∈ Coll(κ+++, jU(κ))∩
jU(F ∗)(κ), where |jU(F ∗)(κ)| ≤ κ++, that is, q′′ forces that there are fewer
than κ+++ possibilities for jU(Ḟ )(κ). Note that the forcing Coll(κ+++, jU(κ))
of Ult(N1[g], U) is the same as Coll(κ+++, jU(κ)) of Ult(N0[g], U), because
these two ultrapowers agree below jU(κ).

Since Coll(κ+++, jU(κ)) is κ+++-closed we can densely often �nd con-
ditions in Coll(κ+++, jU(κ)) which are either stronger than or incompatible
with all elements in jU(F ∗)(κ). Therefore we can �nd in G′ some jU(F ′)(κ) ≤
jU(F )(κ) with this property, i.e. q′′  jU(F ′)(κ) ≤ jU(Ḟ )(κ) ∨ jU(F ′)(κ)
⊥ jU(Ḟ )(κ). But actually we have q′′  jU(F ′)(κ) ≤ jU(Ḟ )(κ), because for
any genericK below q′′, jU(F ′)(κ) and jU(ḞK)(κ) can not be incompatible as
k(jU(F ′)(κ)) and k(jU(ḞK)(κ)) = jk(U)(Ḟ

K)(κ) both belong to the guiding
generic k(G′).

It follows that q′′ forces that for some B ∈ U,B ⊆ A, for each α ∈ B,
q′′  F ′(α) ≤ Ḟ (α). Extend q′′ to some p′ deciding B.

Finally, using the claim from the previous section, shrink B to some A′

such that every �nite subset of A′ is forced by some extension of p′ to belong
to Ȧ. Then we have ((s′, A′, F ′), (p′, (s′, Ȧ, Ḟ ))) ≤ ((s, A, F ), (p, (t, Ȧ, Ḟ )))
such that for each α ∈ A′ p′  F ′(α) ≤ Ḟ (α). This proves the claim.

Now in N1[g] build a κ-tree E of conditions in Sacks(κ, [λ, k(λ))), whose
branches will be fusion sequences, together with a sequence of ordinals 〈λβ :
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β < κ〉, each λβ < λ, in the same way as in the last section (using the same
notation, Fact 1 and Fact 2):

Let 〈vj : j < 2β+1〉 be an enumeration of level β of the tree E and let
〈um〉m<

P
j<2β+1 dvj

be an enumeration of Y :=
⋃

j<2β+1{uvj

l : l < dvj
}. In order

to construct the next level of the tree we will �rst thin out all the nodes on
level β (by considering all the pairs in Y ) and then split each of them into two
incompatible nodes. The thinning out is done as follows: Consider u0 and u1.
If they belong to the same node, i.e. if there is j < 2β+1 and l0, l1 < dvj

s.t.
u0 = u

vj

l0
and u1 = u

vj

l1
, then no thinning takes place. So assume that u0 and u1

belong to di�erent nodes, say vj0 and vj1 , respectively. Use Fact 1 to construct
conditions r01 = (vj0)

u0 and r10 = (vj1)
u1 , i.e. thin vj0 and vj1 through u0

and u1 to r01 and r10, respectively. Now ask whether there exist extensions
r′01 and r

′
10 of r01 and r10, respectively, such that for some γ01 < λ and some

A01, A10, F01, F10, Ȧ01, Ȧ10, Ḟ01, Ḟ10, ((sβ, A01, F01), (r
′
01, (sβ, Ȧ01, Ḟ01))) and

((sβ, A10, F10), (r
′
10, (sβ, Ȧ10, Ḟ10))) force di�erent nodes on level γ01 of Ṫ to

lie on ḃ. If the answer is 'yes', use Fact 2 to re�ne vj0 and vj1 through r
′
01 and

r′10, respectively, and continue with the next pair: u0, u2. And if the answer
is 'no', go to the pair u0, u2 without re�ning vj0 and vj1 . The next pairs are
u1, u2; u0, u3 and so on, i.e. all pairs of the form uδ, uη, for η <

∑
j<2β+1 dvj

and δ < η. At the limit stages take lower bounds, they exist since the forcing
is κ-closed. Let λβ be the supremum of (the increasing sequence of) γδη's.
Now extend each node v on level β (after thinning out the whole level) to
two incompatible conditions vo and v1, such that v0, v1 ≤β,Xv v.

Let α be the supremum of λβ's. Note that α < λ, because λ = (κ++)N1[g].
Let p be the result of a fusion along a branch through E. As before we can �nd
A0(p) ⊆ A0 such that ((s0, A0(p), F0), (p, (s0, Ȧ0, Ḟ0))) is a condition. Extend
this condition to some ((s1(p), A1(p), F1(p)), (p

∗, (s1(p), Ȧ1(p), Ḟ1(p)))) which
decides ḃ(α), say it forces ḃ(α) = xp.

As level α of Ṫ has size less than λ, there exist limits p, q of κ-fusion
sequences arising from distinct κ-branches of the tree E for which xp equals
xq and s1(p) equals s1(q). Moreover, we can extend (s1(p), A1(p), F1(p))
and (s1(q), A1(q), F1(q)) to get a common (s1, A1, F1). Say, ((s1, A1, F1),
(p∗, (s1, Ȧ1(p), Ḟ1(p)))) and ((s1, A1, F1), (q

∗, (s1, Ȧ1(q), Ḟ1(q)))) force ḃ(α) =
x.

Now choose a Collapse Prikry generic C containing (s1, A1, F1) (and hence
containing (s0, A0, F0)). As ((s0, A0, F0), (p0, (s0, Ȧ0, Ḟ0)))  ḃ /∈ N1[g][Ċ]
and ((s1, A1, F1), (p

∗, (s1, Ȧ1(p), Ḟ1(p)))) ≤ ((s0, A0, F0), (p0, (s0, Ȧ0, Ḟ0))), we
can extend ((s1, A1, F1), (p

∗, (s1, Ȧ1(p), Ḟ1(p)))) to two incompat. conditions,
((s20 , A20 , F20), (p

∗∗
0 , (s20 , Ȧ20 , ˙F20))) and ((s21 , A21 , F21), (p

∗∗
1 , (s21 , Ȧ21 , ˙F21))),

with (s20 , A20 , F20), (s21 , A21 , F21) ∈ C and p∗∗0 , p
∗∗
1 ≤ p∗, which force a dis-
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agreement about ḃ at some level γ above α.
Now extend ((s1, A1, F1), (q

∗, (s1, Ȧ1(q), Ḟ1(q)))) to some stronger condi-
tion ((s3, A3, F3), (q

∗∗, (s3, Ȧ3, Ḟ3))) which decides ḃ(γ) with (s3, A3, F3) in C.
Say, ((s3, A3, F3), (q

∗∗, (s3, Ȧ3, Ḟ3))) and ((s20 , A20 , F20), (p
∗∗
0 , (s20 , Ȧ20 , ˙F20)))

don't agree about ḃ(γ), and say, s3 is of the form 〈ℵ0, f0, α1, f1, ..., αn−1, fn−1〉,
and s20 is of the form 〈ℵ0, g0, β1, g1, ..., βm−1, gm−1〉.

Assume w.l.o.g. that m < n. As both (s3, A3, F3) and (s20 , A20 , F20)
are in C, we have 〈ℵ0, β1, ..., βm−1〉 is an initial segment of 〈ℵ0, α1, ..., αn−1〉,
gi ‖ fi for i < m, {αm, ..., αn−1} ⊂ A20 , and F20(αi) ‖ fi for m ≤ i < n. Let
f ′i := fi ∪ gi for i < m, and f ′i := fi ∪ F20(αi) for m ≤ i < n. De�ne s′3 to be
〈ℵ0, f

′
0, α1, f

′
1, ..., αn−1, f

′
n−1〉.

Then ((s′3, A3, F3), (q
∗∗, (s′3, Ȧ3, Ḟ3))) ≤ ((s3, A3, F3), (q

∗∗, (s3, Ȧ3, Ḟ3))) is
also a condition.

Since {αm, ..., αn−1} ⊂ A20 , there exists some p∗∗∗ ≤ p∗∗0 which forces that
{αm, ..., αn−1} ⊂ Ȧ20 . It follows that there is also some A′

3 ∈ U such that
((s′3, A

′
3, F20), (p

∗∗∗, (s′3, Ȧ20 , ˙F20))) ≤ ((s20 , A20 , F20), (p
∗∗
0 , (s20 , Ȧ20 , ˙F20))).

Now, for some β < κ we have s′3 = sβ where sβ is the βth element of
the enumeration of the lower parts. Since sβ appears co�nally often in the
construction of the tree E, we can assume that the branches which fuse to p
and q split in E at some node below level β and go through some nodes vj0

and vj1 at level β. It follows that for some l < dvj0
and k < dvj1

,

r1 := ((s′3, A
′
3((p

∗∗∗)u
vj0
l ), F20), ((p

∗∗∗)u
vj0
l , (s′3, Ȧ20 , ˙F20)))

and

r2 := ((s′3, A3((q
∗∗)u

vj1
k ), F3), ((q

∗∗)u
vj1
k , (s′3, Ȧ3, Ḟ3)))

force di�erent nodes to lie on ḃ at level γ > α. By construction, this means
that for some η <

∑
j<2β+1 dvj

and δ < η,

r3 := ((sβ, Aδη, Fδη), (r
′
δη, (sβ, Ȧδη, Ḟδη)))

and

r4 := ((sβ, Aηδ, Fηδ), (r
′
ηδ, (sβ, Ȧηδ, Ḟηδ)))

force di�erent nodes on level γδη(< α) of Ṫ to lie on ḃ. Say, ḃ(γδη) = y0 and
ḃ(γδη) = y1, respectively.

On the other side, r1 and r2 extend ((s1, A1, F1), (p
∗, (s1, Ȧ1(p), Ḟ1(p))))

and ((s1, A1, F1), (q
∗, (s1, Ȧ1(q), Ḟ1(q)))), respectively. Hence we have that r1

and r2 also force ḃ(α) = x.
Note that (p∗∗∗)u

vj0
l ≤ r′δη and (q∗∗)u

vj1
k ≤ r′ηδ. Since any two R ∗ Q̇

conditions with the same lower part and compatible Sacks conditions are
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compatible (this follows by the same arguments used in the proof of the last
claim), we have that r1 ‖ r3 and r2 ‖ r4. Let ((s′3, B

′, H ′), (p̄, (s′3, Ḃ
′, Ḣ ′))) be

a common lower bound of r1 and r3, and let ((s′3, B
′′, H ′′), (q̄, (s′3, Ḃ

′′, Ḣ ′′)))
be a common lower bound of r2 and r4. The �rst condition forces ḃ(γδη) = y0

and ḃ(α) = x, and the second condition forces ḃ(γδη) = y1 and ḃ(α) = x.
Finally, let B̄ := B′ ∩B′′ and H̄ := H ′ ∩H ′′. Then (s′3, B̄, H̄) forces that

y0, y1 <Ṫ x in the ordering of the tree Ṫ , because Ṫ is a Collapse Prikry-
name, i.e. all the relations between the nodes of Ṫ are determined by the
Collapse Prikry parts of the conditions above. Contradiction.
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Appendix

5.1 Variations of the tree property

Recall that an inaccessible cardinal is weakly compact if and only if it has
the tree property. There are also other constructions like trees and principles
like the tree property which yield nice characterizations of large cardinal
properties.

Lists

Let κ be a regular uncountable cardinal. A set D = {dα : α < κ} is called
a κ-list if dα ⊆ α for all α < κ. We say that d ⊆ κ is

• a branch for D if for all α < κ there is β < κ, β ≥ α, such that
d ∩ α = dβ ∩ α.

• an ine�able branch for D if there is a stationary set S ⊆ κ such that
d ∩ α = dα for all α ∈ S.

Fact 3. A cardinal κ is weakly compact i� every κ-list has a branch.

Fact 4. A cardinal κ is ine�able i� every κ-list has an ine�able branch.

There is now a straightforward generalization of the concept of a κ-list
which yields a nice characterization of strong compactness and supercom-
pactness:

Let λ ≥ κ. A set D = {da : a ∈ [λ]<κ} is called a Pκλ-list if da ⊆ a for
all a ∈ [λ]<κ. We say that d ⊆ λ is

• a branch for D if for all a ∈ [λ]<κ there is b ∈ [λ]<κ, b ⊇ a, such that
d ∩ a = db ∩ a.
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• an ine�able branch for D if there is a stationary set S ⊆ [λ]<κ such
that d ∩ a = da for all a ∈ S.

Theorem 17 (Jech). A cardinal κ is strongly compact i� for every λ ≥ κ,
every list on [λ]<κ has a branch.

Theorem 18 (Magidor). A cardinal κ is supercompact i� for every λ ≥ κ,
every list on [λ]<κ has an ine�able branch.

Note that the above characterizations 'contain' inaccessibility, unlike the
tree property. However, inaccessibility can be subtracted from them and
corresponding weakenings of the above principles in terms of the so-called
thin and slender lists can be de�ned. For more on this subject we refer the
reader to [22].

Other trees

Beside Aronszajn trees there are also other beautiful trees in set theory.
We will just mention some of them:

A special Aronszajn tree is an Aronszajn tree from which there exists an
orderpreserving function into the rational numbers. It is consistent that all
Aronszajn trees are special.

A κ+-Suslin tree is a tree of height κ+ such that every branch and every
antichain have cardinality at most κ. Jensen showed that if V = L, then for
every in�nite cardinal κ there exists a κ+-Suslin tree. Shelah proved that
adding a single Cohen real adds a Suslin tree as well.

A Kurepa tree is a tree of height ω1 whose each level is countable and
which has at least ℵ2 uncountable branches. Solovay showed that if V = L,
then there exists a Kurepa tree. The nonexistance of Kurepa trees is actually
equiconsistent with an inaccessible cardinal.

Other tree properties

R. Hinnion and O. Esser recently developed the notion of tree property
for both directed and ordered sets. This notion is another generalization
of the usual tree property. The tree property for directed sets is connected
to compacti�cation problems, �xed-point problems in class-theory and large
cardinals. See [23] for details and other relevant references.

A. Leshem in [24] considers only ℵ1-trees which are �rst order de�n-
able over (Hω1 ,∈) and shows that the corresponding tree property at ℵ1 is
equiconsistent with the existence of a Π1

1-re�ecting cardinal.
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5.2 SCH

We have seen from Theorem 13 and Woodin's question which was mentioned
there, as well as from Specker's result, that SCH and tree property interact.

Precisely, SCH at ℵω and the tree property at ℵω+1 like each other, it
took Neeman ω supercompacts to separate them. But on the other side SCH
at ℵω strong limit kills the tree property at ℵω+2. This gives us a �avour of
the big open question whether it is consistent to have the tree property at
ℵω+1 and ℵω+2 simultaneously.

In our model SCH fails at ℵω, because ℵω remains a strong limit in the
extension. The best known lower bound for the consistency strength of ℵω

being strong limit with the tree property at ℵω+2 is a weakly compact λ such
that for each n < ω there exists κ < λ with o(κ) = κ+n. This lower bound is
necessary and su�cient for GCH (and SCH) to fail at ℵω strong limit with
2ℵω weakly compact in the core model K. See [18] and [19] for proofs.

It would be interesting to investigate the consistency strength of the tree
property at ℵω+2 without requiring that ℵω is a strong limit, or particularly
the consistency strength of the tree property at ℵω+2 together with 2ℵ1 =
ℵω+2 or with 2ω ≥ ℵω, so that SCH vacuously holds.

Note that Mitchell's forcing can not be used for getting the tree prop-
erty at ℵω+2 from a weakly compact cardinal: An alternative de�nition of
Mitchell's forcing is alternating a κ-Cohen and a κ+-Cohen for a weakly com-
pact length. This gives the tree property at κ++. But since this works only
for regular κ, it is of no use if one wants to get the tree property at ℵω+2.

5.3 Aronszajn trees

The tree property on small or on successor cardinals is obtained by starting
with a large cardinal which has the tree property and showing by means
of the preservation theorems that the forcing which is being used to make
this large cardinal into a small cardinal or into a successor preserves the tree
property. So there are no Aronszajn trees neither at the beginning nor at
the end. However, Aronszajn trees themselves are also very interesting (not
only their absence) and have been studied a lot since they were invented
by Aronszajn. Abraham, Todor£evi¢, Shelah, Moore and others have many
papers on Aronszajn trees.

We refer the reader to Abraham's work for detailed analysis of Aron-
szajn trees, see for example his recent paper [20] on constructing (special)
Aronszajn trees (this paper contains many other good references regarding
Aronszajn trees).
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Jensen showed that if κ is a strong limit, then �κ implies that there exists
a special κ+-Aronszajn tree.

The deep interest in Aronszajn trees is also evident from the fact that
even nonspecial Aronszajn trees are being studied separately. There is also
some work done on specializing Aronszajn trees, etc.

5.4 Open problems

1. What is the consistency strength of ℵω strong limit with the tree prop-
erty at ℵω+2? [The best known lower bound is a weakly compact λ
such that for each n < ω there exists κ < λ with o(κ) = κ+n.]

2. What is the consistency strength of TP(ℵω+2) without requiring that
ℵω is a strong limit?

3. What is the consistency strength of TP(ℵω+2) + TP(ℵω+3)?

4. What is the consistency strength of the tree property at every even
successor cardinal?

5. Is it consistent with ZFC to have the tree property at each ℵn, 1 < n <
ω, and ℵω+2?
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Abstract

We say that κ is weakly compact hypermeasurable if there is weakly com-
pact cardinal λ > κ and an elementary embedding j : V → M with crit(j)
= κ such that H(λ)V = H(λ)M . Assuming the existence of a weakly com-
pact hypermeasurable cardinal we prove that in some forcing extension ℵω is
a strong limit cardinal and ℵω+2 has the tree property. This improves a work
of Matthew Foreman who got the same result using stronger assumption,
namely he assumed the existence of a supercompact cardinal with a weakly
compact above it.

The thesis builds on a paper by Natasha Dobrinen and Sy-D. Fried-
man who used a generalization of Sacks forcing to reduce the large cardi-
nal strength required to obtain the tree property at the double successor
of a measurable cardinal from a supercompact to a weakly compact hyper-
measurable cardinal. In the thesis we extend the method of Dobrinen and
Friedman to obtain improved upper bounds on the consistency strength of
the tree property at the double successor of singular cardinals and at ℵω+2

by showing that forcing over Dobrinen's and Friedman's model with Prikry
forcing and Collapse Prikry forcing preserves the tree property at the double
successor.





Zusammenfassung

Eine Kardinalzahl κ ist schwach kompakt hypermessbar falls es eine
schwach kompakte Kardinalzahl λ > κ und eine elementare Einbettung
j : V → M mit kritischem Punkt κ gibt, so dass H(λ)V = H(λ)M . Aus
der Annahme dass es eine schwach kompakt hypermessbare Kardinalzahl κ
gibt, konstruieren wir ein Modell in dem ℵω eine unerreichbare Kardinalzahl
ist und ℵω+2 die Baumeigenschaft hat. Das ist eine Verbesserung des Resul-
tats von Matthew Foreman in dem er Superkompaktheit verwendet um die
gleiche Konsistenz zu beweisen.

Diese Dissertation baut auf einem Werk von Natasha Dobrinen und Sy-
D. Friedman in dem eine Generalisierung der Sacks-Erzwingungsmethode be-
nutzt wird um eine bessere obere Schranke der Konsistenzstärke der Baumei-
genschaft an dem zweiten Nachfolger einer messbaren Kardinalzahl zu �nden.
In dieser Dissertation erweitern wir die Methode von Dobrinen und Friedman
um eine bessere obere Schranke der Konsistenzstärke der Baumeigenschaft
an dem zweiten Nachfolger einer singulären Kardinalzahl, bzw. ℵω+2, zu
�nden.
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