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Abstract

This work summarizes the many attempts to understand the saturation of
the nonstationary ideal, starting with Solovays Splitting Theorem, proven by a
generic ultrapower construction, which asserts that NSκ cannot be κ-saturated.
The natural arising question wheter NSκ is κ+ saturated is answered for κ 6= ℵ1,
even when the ideal is restricted to points of a certain cofinality, following the
work of M. Gitik and S. Shelah. Further we prove the consistency of the claim
that NSℵ1 is ℵ2 saturated, using a supercompact cardinal, following the joint
work of M. Foreman, M. Magidor and S. Shelah. The last chapter, according
to the work of M. Foreman, M. Magidor and D.R. Burke, Y. Matsubara respec-
tively, investigates the saturation of the nonstationary ideal on Pκ(λ). We prove
that this ideal cannot be λ+ saturated, unless κ = λ = ω1.
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Chapter 1

Introduction

1.1 Clubs

Definition 1.1.1. Let κ be a regular uncountable cardinal. A subset C of κ is
a closed unbounded subset of κ (a club) if C is unbounded in κ and if for every
sequence α0, α1, ., ., of elements of C of length γ < κ we have limξ→γ αξ ∈ C.

A subset S of κ is stationary if it has a nonempty intersection with every
club of κ

Fact 1.1.2 ([11], Theorem 8.3.). The intersection of fewer than κ club subsets
of κ is a club subset

Definition 1.1.3. Let (Xα : α < κ) be a sequence of subsets of κ. The set

∆Xα := {ξ < κ : ξ ∈ ∩α<ξXα}

is called the diagonal intersection of the Xα. Further we can define the dual
notion, the diagonal sum of (Xα : α < κ):∑

α<κ

Xα := {ξ < κ : ξ ∈
⋃
α<ξ

Xα}.

Fact 1.1.4 ([11], Lemma 8.4.). If Cα, α < κ is a sequence of clubs of length κ.
Then the diagonal intersection of the Cα’s is a club

Definition 1.1.5. An ordinal function f on a set S ⊂ On is regressive if f(α) <
α for all α ∈ S, α > 0.

Lemma 1.1.6 (Fodor’s Lemma). If f is a regressive function on a stationary
set S ⊂ κ then there is a stationary set T ⊂ S and some γ < κ such that
f(α) = γ for all α ∈ T .

Proof. Assume to the contrary that for each γ < κ the set {α ∈ S : f(α) = γ} is
nonstationary. Therefore there is for each γ < κ a club Cγ such that Cγ ∩ {α ∈
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S : f(α) = γ} = ∅ i.e. f(α) 6= γ∀α ∈ Cγ Let C := ∆γ<κCγ . C is a club, hence
S ∩C is stationary hence contains a nonzero ordinal and for each α ∈ S ∩C we
have f(α) 6= γ for every γ < α, i.e. f(α) ≥ α which is a contradiciton

For stationary sets we have this fundamental combinatorial property discov-
ered by Robert Solovay in the 70’s. Its proof uses a technique we will introduce
later.

Theorem 1.1.7. Let κ be a regular uncountable cardinal. Then every stationary
subset of κ can be split into κ many disjoint stationary subsets of κ.

Definition 1.1.8. A filter F on a set S 6= ∅ is a collection of subsets of S such
that

1. S ∈ F , ∅ /∈ F

2. If X, Y ∈ F then X ∩Y ∈ F

3. If X ∈ F , Y ⊂ S and X ⊂ Y then Y ∈ F

If λ is a regular cardinal then the filter is λ-complete if F is closed under the
intersection of less than λ sets of F , i.e. If γ < λ and for all α < γ Xα ∈ F
then it follows that

⋂
α<γ Xα ∈ F

Definition 1.1.9. An ideal on a nonempty set S is a collection I of subsets of
S such that:

1. ∅ ∈ I ∧ S /∈ I

2. X ∈ I, Y ∈ I ⇒ X ∪ Y ∈ I

3. X, Y ∈ S, X ∈ I ∧ Y ⊂ X ⇒ Y ∈ I

If λ is a regular cardinal then the ideal I is λ-complete if it is closed under the
union of less than λ sets of I, i.e. if γ < λ and if for all α < γ Xα ∈ I then⋃
α<γ Xα ∈ I

Note that the concept of an ideal is closely related to the concept of a filter.
If F is a filter on S then the set I := {S − X : X ∈ F} is an ideal on S, the
so called dual ideal. In a similar way we can define for each ideal I it’s dual
filter which will be denoted by I∗. Further we write I+ to denote P (S)− I, i.e.
I+ := {X ⊂ S : X ∈ I} and say that I+ is the set of the I-positive subsets of
S. Lastly if ϕ is an arbitrary property then we say that ϕ holds for almost all
x ∈ S if {x ∈ S : ¬ϕ(x)} ∈ I.

Definition 1.1.10. The collection of all X ⊂ κ, such that there is a club C ⊂ κ
with C ⊂ X is a filter F on κ, the closed unbounded filer on κ. Its dual ideal
I is the ideal of all nonstationary subsets of κ, the nonstationary ideal NSκ.
Since F is κ complete NSκ is κ complete as well.
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Definition 1.1.11. A filter F on κ is normal if it is closed under diagonal
intersections:

∀α < κXα ∈ F ⇒ ∆α<κXα ∈ F

An ideal I is normal if its dual filter is normal.

Fact 1.1.12 ([11], Lemma 8.11.). If F is a normal filter on κ that contains all
final segments {α : α0 < α < κ} then F contains all clubs.

For example the closed unbounded filter on κ is normal due to Fact 1.1.2.
We can generalize the concept of a club on a regular κ:

Definition 1.1.13. Let A be any set of cardinality at least κ

• A set X ⊂ Pκ(A) = [A]<κ := {X ∈ P (A) : |X| < κ} is unbounded if for
every x ∈ Pκ(A) there exists a y ⊃ x such that y ∈ X

• A set X ⊂ Pκ(A) = [A]<κ is closed if for every chain x0 ⊂ x1 ⊂ .. of
length α < κ of sets in X, the union

⋃
ξ<α xξ is in X.

• A set C ⊂ Pκ(A) = [A]<κ is closed unbounded (a club) if it is closed and
unbounded

• A set S ⊂ Pκ(A) = [A]<κ is stationary if it has a nonempty intersection
with each club of Pκ(A)

The closed unbounded filter on Pκ(A) is the filter generated by the clubs, i.e. the
filter consisting of all sets that have a club as a subset.

The natural question now arises if we are allowed to transform important
results obtained for clubs on κ to similar statements for the generalized concept
of a club. This will later be the main theme of this work. At first we notice
that the most basic results still hold in the more general frame:

Fact 1.1.14 ([11], Theorem 8.22.). If X0, X1, .. is a sequence of length γ < κ
of clubs of Pκ(A) then

⋂
ξ<γ is a club in Pκ(A)

Definition 1.1.15. The diagonal intersection of |A|-many subsets Xa, a ∈ A
of Pκ(A) is defined as:

∆a∈AXa := {x ∈ Pκ(A) : x ∈
⋂
a∈x

Xa}

Fact 1.1.16 (Jech). ([11], Theorem 8.24.) If f is a function on a stationary
set S ⊂ Pκ(A) and if f(x) ∈ x for every nonempty set x ∈ S then there exists a
stationary set T ⊂ S and some a ∈ A such that f(x) = a fora all x ∈ T.

Definition 1.1.17. A set D ⊂ Pκ(A) is directed if for all x and y in D there is
a z ∈ D such that x ∪ y ⊂ z.

Lemma 1.1.18. If C is a closed subset of Pκ(A) then for every directed set D
⊂ C with |D| < κ,

⋃
D ∈ C.
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Proof. By induction on |D|. If D is finite the lemma holds, thus let D =
{xα : α < γ < κ} be an enumeration of D of length γ. Assume the lemma
holds for every directed set of cardinality less than γ. Let α < γ and Dα be the
smallest directed subset of D such that xα ∈ Dα and Dα ⊃

⋃
β<αDβ .

We claim now that |Dα| < γ for all α < γ which we will prove by induction
on α: Let |Dβ | < γ for all β < α. Since Dα is the smallest directed set extending
all the Dβ ’s, β < α, Dα consists of the following elements:

• all the xiβ which denotes the i-th element of Dβ

• all the xi,jβ,δ ⊃ xiβ ∪ x
j
δ

• all the xi,j,k,lβ,δ,ξ,θ ⊃ x
i,j
β,δ ∪ x

k,l
ξ,θ

...

• . . .

...
It follows that |Dα| < γ and the claim is proven. Now let yα =

⋃
Dα. We

have yα ∈ C for all α < γ, and yβ ⊂ yα if β < α. This implies
⋃
D =

⋃
α<γ yα ∈

C which finishes the proof.

Definition 1.1.19. Let f: [A]<ω → Pκ(A) be a function. A set x ∈ Pκ(A) is a
closure point of f if the following holds for all finite subsets of A:

e ⊂ x⇒ f(e) ⊂ x

Note that the set Cf of all closure points of f form a closed unbounded subset
of Pκ(A). As a matter of fact the sets Cf generate the closed unbounded filter
of Pκ(A):

Lemma 1.1.20. For every club C in Pκ(A) there exists a function f: [A]<ω →
Pκ(A) such that Cf ⊂ C.

Proof. Since C is a club we can find for each finite subset e of A an infinite set
f(e) ∈ C such that e ⊂ f(e) and that f(e1) ⊂ f(e2) whenever e1 ⊂ e2. Let x
be a closure point of f . As x =

⋃
{f(e) : e ∈ [x]<ω} is the union of a directed

subset of C of cardinality < κ we have (by Lemma 1.1.18) that x ∈ C, hence
Cf ⊂ C.

Definition 1.1.21. Let A ⊂ B and |A| ≥ κ.

• For Y ⊂ Pκ(B) the projection of X to A is the set

X � A := {x ∩A : x ∈ X}

• For Y ⊂ Pκ(A) the lifting of Y to B is the set:

Y := {x ∈ Pκ(B) : x ∩A ∈ Y }
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Lemma 1.1.22 (Menas). Let A ⊂ B

• If S is stationary in Pκ(B) then S�A is stationary in Pκ(A)

• If S is stationary in Pκ(A) then SB is stationary in Pκ(B)

Proof. The first assertion holds because if C is club in Pκ(A) then CB is club
in Pκ(B): CB is closed since if x0 ⊂ x1 ⊂ ... is a chain of length less than κ in
CB then (xξ ∩A) ∈ C for all ξ < γ. It follows that

⋃
ξ<γ xξ ∩A ∈ C and hence⋃

ξ<γ xξ ∈ CB . CB is unbounded since for each x ∈ Pκ(B), x ∩A ∈ Pκ(A) and
there exists a x1 ∈ C such that x1 ⊃ x∩A and it follows that x1 ∪ (x−A) ⊃ x
and (x1 ∪ (x − A)) ∩ A = x1 ∈ C, hence x1 ∪ (x − A) ∈ CB and CB is in fact
a club subset of Pκ(B). This ends our proof of the first claim since if we would
suppose that S � A is not stationary in Pκ(A) then there would be a set C
which is club in Pκ(A) such that C ∩ S � A = ∅ which implies CB ∩ S = ∅, a
contradiction to the fact that CB is club.

For the second assertion we want to show that if C ⊂ Pκ(B) is club then
C � A contains a club which would implie the claim. If C is club in Pκ(B) then
by the lemma 1.1.20 there is a function f : [B]<ω → Pκ(B) such that Cf ⊂ C.
Let g : [A]<ω → Pκ(A) be the following function: for each finite subset e of A
let x be the smallest closure point of f such that x ⊃ e and let g(e) = x ∩ A.
We claim that Cf � A = Cg: Let x ∈ Cf � A, e ⊂ x then g(e) = x1 ∩A ⊂ x ∩A
due to the definition of g, hence x ∈ Cg. Let x ∈ Cg and e1 ⊂ x, e1 ∈ [A]<ω

and g(e1) = x1 ∩ A ⊂ x. For e2 ⊂ x − (x1 ∩ A) there exists x2 ∈ Cf such
that g(e2) = x2 ∩ A ⊂ x and we can continue this way until we obtain a chain
(xα)α<κ of elements of Cf such that x =

⋃
xα ∩ A holds. Hence x ∈ Cf � A.

This finishes our proof since Cf � A = Cg we have Cg ⊂ C � A.

Before ending the first section we state a result by Kueker, which will be
important later in the text, and which improves Lemma 1.1.20 in the case where
κ = ω1. Let A be an arbitrary set, let [A]ω denote the set of subsets of A of size
ω, then a function F : [A]<ω → A is called an operation on A. Moreover we say
that x ∈ [A]ω is closed under F if for every finite e ⊂ x F (e) ∈ x.

Theorem 1.1.23 (Kueker). Suppose that C ⊂ [A]ω is a club, then there is an
operation F on A such that

{x ∈ [A]ω : x is closed under F} =: CF ⊂ C

i.e. the family of the CF is a basis for the clubs in Pω(A).

Proof. Suppose that C is a club. First we define a function f : [A]<ω → C with
these two properties:

1. ∀e ∈ [A]<ω e ⊂ f(e)

2. if e1 ⊂ e2 then f(e1) ⊂ f(e2).
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This can always be done since C is a club, and as in lemma 1.1.20 we have that
Cf ⊂ C. Since f(e) is countable for each e we may write f(e) = {fk(e) : k ∈ ω}.
Let n 7→ (kn,mn) be a bijection.

Now we define an operation as follows: F ({α}) = α + 1 and if α1 < α2 <
... < αn then let F ({α1, ..., αn}) = fkn({α1, ..., αn}). It suffices to show that
CF ⊂ Cf .

Thus let x be closed under F , let k ∈ ω and let e ∈ [x]<ω. We want to show
that fk(e) ∈ x. If e = {α1, ..., αm} and α1 < ... < αm, then let n ≥ m be so
that k = kn and m = mn. Since x is unbounded (as F ({α}) = α+ 1), there are
αm+1, ..., αn ∈ x such that fk({α1, ..., αm}) = F ({α1, ..., αn}) ∈ x which is all
we need.

Note that Kuekers theorem becomes a wrong statement for κ > ω1: Suppose
that κ > ω1 then let C := {x ∈ Pκ(A) : |x| ≥ ℵ1}. It’s hard not to show that C
is a club in Pκ(A). On the other hand for each operation F there exists a closed
x ∈ A such that |x| = ω, so CF ⊂ C is impossible. Nevertheless we will later
show that there is a reasonable generalization of Kuekers theorem for κ > ω1.

1.2 Measurability

The concept of measurability has its origin in the investigations of Henri Lebesgue
in the beginning of the last century. The question wheter there exists a measure
on an arbitrary set S led to the introduction of measurable cardinals, which
turned out to be a too strong concept to be decided in ZFC alone. We start
with the definition of the first large cardinals, the inaccessible ones:

Definition 1.2.1. A cardinal κ > ω is weakly inaccessible if and only if κ is
regular and a limit cardinal.

A cardinal is (strongly) inaccessible if and only if κ is weakly inaccessible
and a strong limit i.e. ∀λ < κ 2λ < κ. We will suppress the adverb strongly
from now on, thus an inaccessible cardinal will always be a strongly inaccessible
one.

We will later derive the basic properties of inaccessible cardinals. Instead we
now present the definition of measure on a set S, axiomatizing some elementary
characteristics of capacity. A definition which looks very harmless at first sight
is the following:

Definition 1.2.2. Let S be an infinite set. A (nontrivial, σ-additive) measure
on S is a real valued function µ on P(S) such that the following holds:

(i) µ(∅) = 0

(ii) if X ⊆ Y then µ(X) ≤ µ(Y )

(iii) µ({a}) = 0 for all a ∈ S
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(iv) if Xn, n = 0, 1, 2 . . . are pairwise disjoint then:

µ(

∞⋃
n=0

Xn) =

∞∑
n=0

µ(Xn)

The easiest case, and thus probably the first one that comes to mind, would
be a two valued measure µ, i.e. a measure with the property that for every
X ⊂ S µ(X) = 0 or µ(X) = 1. If µ is so then

U = {X ⊂ S : µ(X) = 1}

defines a nonprincial ultrafilter on S which is moreover ℵ1-complete. Conversely
such a filter defines a two-valued measure on S by:

µ(X) = 1⇔ X ∈ U

µ(X) = 0⇔ X /∈ U.

So these two concepts are equivalent.
The next fact leads the way to the definition of a measurable cardinal:

Fact 1.2.3 ([11], Lemma 10.2 ). Suppose that κ is the least cardinal such that
there is a nonprincipal, ℵ1-complete ultrafilter, then U is even κ-complete.

Thus the following is reasonable:

Definition 1.2.4. An uncountable cardinal κ is measurable if there exists a
κ-complete, nonprincipal ultrafilter U on κ.

Fact 1.2.5 ([11], Lemma 10.4 ). Every measurable cardinal is inaccessible

If we turn our attention to measures that are not necessarily two-valued, we
discover an important property: Let µ be a measure on a set S and consider the
ideal:

Iµ = {X ⊂ S : µ(X) = 0}

Iµ is a nonprincipal,ℵ1-complete ideal (the so-called ideal of all null sets) and
satisfies these two properties:

1. {x} ∈ I for every x ∈ S

2. every family of pairwise disjoint sets X ⊂ S that are not in I is at most
countable.

A σ-complete,nonprincipal ideal I on S, for which those two properties hold is
called σ-saturated.

Definition 1.2.6. An uncountable cardinal κ is real valued measurable if there
exists a nontrivial (i.e. µ({γ}) = 0 for all γ < κ) κ-additive measure µ on κ.
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Note that beeing real valued measurable implies beeing regular since every
singular cardinal is the sum of less than κ many small sets, and κ additivity
implies that small sets have measure zero.

Lemma 1.2.7. A κ-complete ideal I on κ is normal iff for every S0 6∈ I and
every regressive function f on S0 there is S⊂ S0 , S 6∈ I such that f is constant
on S

Proof. In the forward direction let I be normal and let f : S0 → κ be a regressive
function. Let us assume to the contrary that for each γ < κ, f−1(γ) ∈ I.
Since I is normal we claim that I is closed under diagonal unions: If (Aα)α<κ
is a sequence in I then (κ − Aα) is in I∗ and by normality we know that
∆α<κ(κ − Aα ∈ I∗. But ∆(κ − Aα) = {ξ < κ : ξ ∈

⋂
α<ξ(κ − Aα} =

{ξ < κ : ξ /∈
⋃
α<ξ Aα} = κ −

∑
Aα hence

∑
Aα ∈ I which shows that I is

indeed closed under diagonal unions. Thus set S :=
∑
γ<κ f

−1(γ) then S ∈ I
and

∑
f−1(γ) = {ξ < κ : ξ ∈

⋃
γ<ξ f

−1(γ)} which equals, as f is regressive⋃
γ<κ f

−1(γ) = κ ∈ I which is a contradiction. Hence there must be a γ < κ

such that f−1(γ) ∈ I.
To prove the backward direction we assume that I is an ideal which satisfies

the latter assertion but is not normal. Thus let (Aα)α<κ be a sequence in I
and assume that ∆α<κ(κ − Aα) /∈ I∗. Consider the regressive function f :
(κ − ∆(κ − Aα)) → κ defined by f : ξ 7→ α < ξ where α is the least ordinal
such that ξ /∈ κ − Aα. By our assumption f is defined on a set which is not in
I hence there exists an S ⊂ κ− (∆(κ− Aα) such that f is constant on S. For
each element ξ ∈ S we have that f(ξ) = α for a fixed α, hence ξ /∈ κ− Aα, i.e.
S ∩ (κ−Aα) = ∅ and hence S ⊂ κ− (κ−Aα) = Aα which implies that S ∈ I -
a contradiction.

Definition 1.2.8. A normal measure on κ is a normal, κ-complete non prin-
cipal ultrafilter on κ.

Fact 1.2.9 ([11], Lemma 10.19 ). If D is a normal measure on κ then every set
in D is stationary

1.3 Ultrapowers

This section gives a brief introduction to ultrapowers, a useful tool to construct
from a given model of ZFC a new one. We assume that the reader already feels
familiar with model theoretic concepts. V will always denote a transitive model
of ZFC.

Definition 1.3.1. A formula of set theory is ∆0 (Σ0, Π0) if

1. it has no quantifiers or

2. it is ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ→ ψ or ϕ↔ ψ where ϕ and ψ are ∆0 formulas
or
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3. it is (∃x ∈ y)ϕ or (∀x ∈ y)ϕ where ϕ is a ∆0 formula

Definition 1.3.2. A formula is Σn+1 if it is of the form ∃x0∃x1...∃xmϕ where
ϕ is Πn and Πn+1 if it is of the form ∀x0∀x1...∀xmϕ where ϕ is Σn. ϕ is ΣZFn
if there is a ψ which is Σn and ZF ` ϕ↔ ψ. ΠZF

n is defined in the same way;
∆ZF
n means both ΠZF

n and ΣZFn .

Fact 1.3.3 ([11], Lemma 12.9.). If ϕ(v0, v1, . . . , vn) is Σ0, M a transitive class
and x0, x1, . . . , xn ∈ M then:

M |= ϕ[x0, x1, . . . , xn]↔ V |= ϕ[x0, x1, . . . , xn]

The same result holds for ∆ZF
1 - formulas:

Fact 1.3.4 ([13], Exc. 4.15.). If ϕ is ∆ZF
1 , M a transitive model of ZF and

x0, x1, . . . , xn ∈ in M then:

M |= ϕ[x0, x1, . . . , xn]↔ V |= ϕ[x0, x1, . . . , xn]

Fact 1.3.5.
”
rank(v0) = v1“ is ∆ZF

1 ;
”
Vv0 = v1“ is ΠZF

1

Proof. Let ϕ(f) be the statement
”
f is a function and ∀x ∈ dom(f)(x ⊂

dom(f) ∧ f(x) =
⋃
{f(y) + 1 : y ∈ x} “. This can be written by a ∆0

formula.
”
rank(v0) = v1“ can be written as ∃f(ϕ(f) ∧ (v0, v1) ∈ f) or as

∀f(ϕ(f)∧ v0 ∈ dom(f)→ (v0, v1) ∈ f). The first formula is Σ1, the second one
is Π1.

”
Vv0 = v1“ iff ∀v2(v2 ∈ v1 ↔ ∃v3 ∈ v0(rank(v2) = v3)) which is Π1

Definition 1.3.6. Let #ϕ denote the Gödel number of the formula ϕ. A for-
mula T(x) is called a truth definition if it satisfies these two conditions:

1. ∀x(T (x)→ x ∈ ω)

2. if σ is a sentence then σ ↔ T (#σ)

Fact 1.3.7 (Tarski). ([11], Theorem 12.7) A truth definition does not exist

Proof. Assume to the contrary that there is a truth definition T (x). Let ψ(x) be
the formula x ∈ ω∧¬T (#ϕx(x)). Let k be such that ϕk(x) = ψ(x). Let σ be the
sentence ψ(k). Then we have: σ ↔ ψ(k) ↔ ϕk(k) ↔ ¬T (#ϕk(k)) ↔ ¬T (#σ)
which is a contradiction.

Although a truth definition does not exist we are able to formalize a satis-
faction relation |=n

M for a transitive class M restricted to Σn formulas:

Definition 1.3.8. We write |=0
M ϕ[x1, .., xk] iff ϕ(v1, .., vk) is Σ0 and ∃y ∈M

(y is transitive and x1, .., xk ∈y and (y,∈) |= ϕ[x1, .., xk]).
And recursively |=n+1

M iff ϕ(v1, .., vk) is Σn+1 say ∃vk+1 . . . ∃vk+r¬ψ(v1, . . . , vk+r)
where ψ is Σn, and ∃y1 . . . ∃yr¬(|=n

M ψ[x1, . . . , xk, y1, . . . , yr]).

The definition 1.3.8. above is justified by the following fact:
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Fact 1.3.9. Let ϕ be a Σn formula with variables v1, ., .vk. Let#ϕ be its Gödel
number. If M is a transitive class and x1, ., ., xk ∈ M then the following holds:

ϕM [x1, ., ., xk]↔|=n
M ϕ(x1, .., xk).

Note that the relation on the right side is a relation in #ϕ, x1, ., ., xk, n.

Definition 1.3.10. Let M0 = (M0, ., .) and M1 = (M1, ., .) be structures (pos-
sibly of class-size) for a language L. An injective function (which may be a class
again) j: M0 →M1 is an elementary embedding of M0 to M1 if it satisfies the
elementarity schema: For any formula ϕ(v1, ., ., vn) of L and x1, ., ., xn ∈M0:

M0 |= ϕ[x1, ., ., xn]↔M1 |= ϕ[j(x1), ., ., j(xn)]

Note that the definition above is merely an informal one since the relation
M |= ϕ[x0, ., ., xn] is not formalizable in general.

We can overcome this difficulty, using the following stratagem: We don’t
want the full elementarity schema to hold we just want it to hold for Σn formulas
for which the satisfaction relation is formalizable.

Definition 1.3.11. The injective function j is a Σn-elementary embedding,
denoted j: M0 ≺nM1 if the elementary schema holds for all the Σn-formulas.

We will often denote a model M = (M,∈, ..) simply with M , and hope
the reader doesn’t lose his faith in the overwhelming accuracy of mathematical
notation. For inner models we obtain the following basic result:

Fact 1.3.12 ([12], Proposition 5.1.). Let M0 and M1 be inner models and let
j: M0 ≺1 M1. then the following holds:

• For any ordinal α j(α) is an ordinal and j(α) ≥ α

• If j is not the identity and if either M1 ⊂M0 or M0 |= AC then j(δ) > δ
for some ordinal δ.

• For any n ∈ ω j: M0 ≺n M1.

Motivated by the third statemant of 1.3.12. an elementary embedding j will
always be a Σ1-elementary embedding, and we will treat them informally.

Definition 1.3.13 (Ultrapower of the universe). Let S be a set, U be an
ultrafilter on S and consider the class of the functions with domain S. We define:

• f =∗ g ↔ {x ∈ S|f(x) = g(x)} ∈ U

• f ∈∗ g ↔ {x ∈ S|f(x) ∈ g(x)} ∈ U

For each f: S → V define [f ] := {g | f =∗ g∧∀h(h =∗ f → rank(g) ≤ rank(h))}
and let UltU (V ) be the class of all [f ]. The model (UltU (V ),∈∗ ) is the so called
ultrapower of V, and we will sometimes just write Ult to denote it.
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Our next theorem answers the question why ultapowers have been studied,
and moreover states the elementary equivalence of V and UltU (V ):

Fact 1.3.14 ( Loś). ([11], Theorem 12.3.) For every formula ϕ(v1, v2, ..vn) of
L∈ (i.e. the standard language of set theory containing the relation symbol ∈
and nothing more) and f1, .., fn functions : S → V the following holds:

(UltU (V ),∈∗) |= ϕ[[f1], [f2], ..., [fn]]↔ {i ∈ S|ϕ[(f1(i), ..., fn(i)]} ∈ U

Proof. Informal induction over the complexity of ϕ.

Note that the fact above is in fact a schema of theorems, one for each ϕ.
The function j = jU defined by jU (a) = [ca] (where ca : S → {a} is the constant
function) is an elementary embedding of V in Ult. Of particular interest is the
case where Ult is well founded, i.e.

• Every nonempty set X ⊂ Ult has an ∈∗-minimal element

• {[g] : g ∈∗ f} is a set for each f

The second condition is always satisfied and using AC the first one is equiva-
lent to the non-existence of an infinite descending ∈∗-sequence. We have the
following characterization:

Lemma 1.3.15. U is a σ-complete ultrafilter if and only if (Ult, ∈∗) is a well
founded model.

Proof. ′ ⇒′: Assume to the contrary that there is such a descending sequence
of infinite length f1, f2, ... Let Xn := {x ∈ S : fn+1(x) ∈ fn(x)}. Each Xn ∈ U
and so

⋂
Xn is not empty (since it is an element of U). This would lead to an

infinite descending sequence f1(x) 3 f2(x) 3 .... for each x ∈
⋂
Xn which is a

contradiction.
For the reverse direction we assume that there would be a sequence (Xi)i<ω

of elements of U such that
⋂
Xi /∈ U . For each k < ω let gk : S → V be defined

as follows:

gk(i) :=

{
n− k if i ∈

⋂
m<nXm −Xn

0 otherwise

Then {i ∈ S : gk+1(i) < gk(i)} ⊃
⋂
m≤kXm −

⋂
n<ωXn ∈ U for k ∈ ω

and so ([gn])n<ω is an infinite descending sequence in Ult which is again a
contradiction.

Now if the ultrapower Ult is well founded we can apply the Mostowski Col-
lapsing Theorem to obtain an isomorphic transitive model M = π(Ult). Its
elements π([f ]) will be, in an abusive way, denoted again with [f ] to simplify
the notation.

Lemma 1.3.16. If U is a κ-complete ultrafilter over a measurable cardinal κ
and j : V ≺M its canonical embedding then crit(j):= the smallest ordinal such
that j(α) > α equals κ
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Proof. At first we show that for each α < κ j(α) = α. If not then let α < κ be
the least ordinal such that j(α) > α. If [f ] = α we have {ξ < κ : f(ξ) < α} ∈ U
due to our assumption. Let Xβ := {ξ < κ : f(ξ) = β(< α)} for each β < α.
That’s a partition of an element of U into α-many sets and κ-completeness
implies that there is a β < α such that Xβ ∈ U which would implie that
[f ] = j(β) = β = α a contradiction.

Next if we consider the diagonal function d : κ → κ d(α) := α we observe
first that α < [d] for each α < κ due to the κ-completeness, further [d] < j(κ),
which combined gives us κ ≤ [d] < (κ) and so κ is the critical point of j.

The converse is also true:

Lemma 1.3.17. Let j be a nontrivial elementary embedding j: V ≺ M then
there exists a measurable cardinal

Proof. If j is such an embedding then there exists an ordinal α such that j(α)
> α due to Fact 1.3.12. Set κ:= crit(j) and we have κ > ω. What remains to
show is that κ is measurable: Let D be the collection of subsets of κ defined as
follows:

X ∈ D ↔ κ ∈ j(X) (X ⊂ κ)

We have that κ < j(κ) and so κ ∈ D, also ∅ /∈ D because j(∅) = ∅. If
X,Y ∈ D then κ ∈ j(X) ∩ j(Y ) ↔ κ ∈ j(X ∩ Y ) ↔ X ∩ Y ∈ D. If X ∈ D
and Y ⊃ X then κ ∈ j(X) ⊂ j(Y ) → Y ∈ D. And finally if X /∈ D then
because of j(κ − X) = j(κ) − j(X) = j(κ − X) and so κ − X ∈ D. Also
j({α}) = {j(α)} = {α} 63 κ for all α < κ and so D is a nonprincipal ultrafilter.

It remains to show that D is κ-complete. Thus let γ < κ and let (Xα)α<γ
be a sequence of elements of D. We have: j((Xα)α<γ) = (j(Xα))α<j(γ) =
(j(Xα))α<γ and so if X =

⋂
α<γ Xα we get j(X) = j(

⋂
α<γ Xα) =

⋂
α<γ j(Xα)

and so κ ∈ j(X) hence X ∈ D.

Remark : The measure D = {X ⊂ κ : κ ∈ j(X)} is even a normal one.
This follows from the following observation, together with Fact 1.2.10. : Let f
be a regressive function on some X ∈ D. Then (jf)(κ) < κ. Let γ = (jf)(κ).
We have: γ = (jf)(κ) < κ ↔ κ ∈ {α : (jf)(α) = γ} ↔ κ ∈ j({α : f(α) =
γ})↔ {α : f(α) = γ} ∈ D ↔ f(α) = γ for almost all α < κ

Lemma 1.3.18. Let D be a nonprincipal κ-complete ultrafilter on κ. Then the
following are equivalent:

(i) D is normal

(ii) In the ultrapower UltD(V ): κ = [d] where d is the diagonal function :κ→
κ, d(α) = α

(iii) For every X ⊂ κ, X ∈ D if and only if κ ∈ jD(X).

Proof. (i) → (ii): If [f ] ∈∗ [d] then there exists a g : κ → κ such that g =∗ f
and g is regressive. Due to Fact 1.3.12.(1) g is constant on a set in D hence
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[f ] = [g] = α < κ and we have [d] ⊂ κ. To show that κ ⊂ [d] let α < κ. Since
α = j(α) = [α] ∈∗ [d] we are done.

(ii)→ (iii): If X ⊂ κ then X ∈ D ↔ d(α) ∈ X for almost all α↔ [d] ∈ j(X).
If [d] = κ we get X ∈ D ↔ κ ∈ jD(X).

(iii) → (i): by the remark preceding the lemma

Lemma 1.3.19. Let U be a nonprincipal κ-complete ultrafilter on κ, let M =
UltU (V ) and let j = jU be the canonical elementary embedding of V in M.

(i) j(x) = x for every x ∈ Vκ and so VMκ = Vκ; j(X) ∩ Vκ = X for every
X ⊂ Vκ and so VMκ+1 = Vκ+1 and (κ+)M = κ+.

(ii) Mκ ⊂ M , i.e. every κ-sequence (aα)α<κ of elements of M is itself a
member of M

(iii) U /∈M

(iv) 2κ ≤ (2κ)M < j(κ) < (2κ)+

(v) If λ is a limit ordinal and if cf(λ) = κ then j(λ) > limα→λj(α), if
cf(λ) 6= κ then j(λ) = limα→λj(α)

(vi) If λ > κ is a strong limit cardinal and cf(λ) 6= κ then j(λ) = λ.

1.4 Some Large Cardinals

We have already introduced measurable cardinals and derived some easy con-
sequences. In this section we will define some other large cardinals that will
later in this text become important. We start with a property which all large
cardinals have in common and which is crucial for its theory. The existence of
an inaccessible cardinal is not provable in ZFC, further the relative consistency
of the statement there exists an inaccessible cardinal is not provable:

Fact 1.4.1 ([12], Theorem 1.2.). Suppose that κ is inaccessible. Then:

(i) If x ⊂ Vκ then: x ∈ Vκ ↔ |x| < κ

(ii) (Vκ,∈) |= ZFC

Fact 1.4.2 ([11], Theorem 12.12.). (i) ZFC 6` (Con(ZFC) → There exists
an inaccessible cardinal)

(ii) ZFC 6` ( Con(ZFC) → Con(ZFC + There exists an inaccessible cardinal))

The next large cardinal notion is due to Paul Mahlo

Definition 1.4.3. Let κ be a limit cardinal

(i) κ is weakly Mahlo if and only if {α < κ : α is regular} is stationary in κ.
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(ii) κ is (strongly) Mahlo if and only if {α < κ : α is inaccessible} is station-
ary in κ. Again the strongly will be supressed

A weakly Mahlo cardinal is regular (to see this assume to the contrary that
there is an unbounded X ⊂ κ such that |X| < κ. The limit points of X − |X|
other than κ form a club which doesn’t contain any regular cardinal). Hence
a weakly Mahlo cardinal is weakly inaccessible. Moreover a Mahlo cardinal is
regular (since it is weakly Mahlo) and obviously a strong limit. Thus a Mahlo
cardinal is inaccessible.

Fact 1.4.4 ([12], Proposition 6.2.). The following holds:

(i) κ is inaccessible if and only if ∀R ⊂ Vκ∃α < κ (Vα,∈, R∩Vα) ≺ (Vκ,∈, R)

(ii) κ is Mahlo if and only if ∀R ⊂ Vκ∃α < κ such that α is inaccessible and
(Vα,∈, R ∩ Vα) ≺ (Vκ,∈, R)

The next large cardinal we want to introduce is the weakly compact: To
motivate our definition we need some definitions first.

Definition 1.4.5 (Arrow notation). Let κ, λ be infinite cardinals, let n be a
natural number and let m be a (finite or infinite) cardinal. We write

κ→ (λ)nm

if every partition of [κ]n into m pieces has a homogeneous set of size λ, i.e.
every F : [κ]n → m is constant on [H]n for some H ⊂ κ such that |H| = λ

The arrow notation was invented to faciliate the study of possible generaliza-
tions of the quite famous theorem of Ramsey, who could prove that ℵ0 → (ℵ0)nk
holds for all n, k ∈ ω. An obvious question is if there are uncountable cardinals
κ that satisfy κ → (κ)22, which is the weakest case of κ → (κ)nm (as κ → (λ)nm
remains true if n,m are made smaller).

Definition 1.4.6. An uncountable cardinal κ is weakly compact if it satisfies
κ→ (κ)22

This is a stronger principle than inaccessibility:

Fact 1.4.7 ([11], Lemma 9.9.). Every weakly compact cardinal is inaccessible

It is also stronger than Mahloness

Fact 1.4.8 ([11], Theorem 17.19.). Every weakly compact cardinal κ is a Mahlo-
cardinal. Moreover the set of Mahlo cardinals below κ is stationary

Its name refers to another equivalent definition: It can be shown that for
weakly inaccessible cardinals the infinitary language Lκ,κ satisfies a variation
of the Compactness Theorem in Model Theory, which explains its name. We
will later use another characterization of weak compactness using some tree
terminology:
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Definition 1.4.9. Let κ be a regular uncountable cardinal. κ has the tree prop-
erty if every tree of height κ whose levels have cardinality < κ has a branch of
cardinality κ.

This concept is closely related to an old result by Aronszajn who showed
that ω1 doesn’t have the tree property.

Fact 1.4.10 ([11], Theorem 9.26.). (i) If κ is weakly compact then κ has the
tree property

(ii) If κ is inaccessible and has the tree property then κ is weakly compact.

The next lemma determines the position of measurability in the hierachy of
the large cardinals that we have already defined:

Lemma 1.4.11. Every measurable cardinal is weakly compact

Proof. We already know that κ is inaccessible, thus 1.4.10 tells us that we only
have to show that κ has the tree property. Let (T,<) be a tree of height κ with
levels of size < κ, and let U be a κ-complete ultrafilter on T .

We consider the first level T1 := {xξ : ξ < γ}γ < κ of the tree T . For
each xξ ∈ T1 let Uξ be the set of all successors of xξ inT . The (Uξ)ξ<γ form a
partition of T of size less than κ, hence due to κ-completeness there is a ξ ∈ γ
such that Uξ ∈ U . We apply the same argument to the set T2 ∩Uξ, where T2 is
the set of elements of the tree of level 2 and get an x′ξ′ ∈ Uξ ∩ T2 such that the
set of the successors of x′ξ′ is in U . Continuing this way we obtain a branch of
T whose length is κ. This shows that κ has the tree property.

The last of the large cardinals we will need is the supercompact cardinal.

Definition 1.4.12. A κ-complete filter F on Pκ(A) is normal if for every a ∈ A,
{x ∈ Pκ(A) : a ∈ x} ∈ F and if F is closed under diagonal intersections.

Lemma 1.4.13. Let U be a κ-complete ultrafilter on Pκ(A) and assume that
for every a ∈ A, {x ∈ Pκ(A) : a ∈ x} ∈ F . Then U is normal if and only if for
every function f : Pκ(A)→ A such that f is regressive, i.e. f(x) ∈ x holds for
each x, f is constant on a set in U.

Definition 1.4.14. A cardinal κ is supercompact if for every A such that |A| ≥
κ there exists a normal ultrafilter on Pκ(A).

We will see soon that a supercompact cardinal is always measurable, in fact
it is the κ-th measurable cardinal.

Fact 1.4.15 ([11], Lemma 20.13.). Let U be a normal ultrafilter on Pκ(A), let
d:Pκ(A) → Pκ(A) be the diagonal function i.e. d(x)=x for each x in Pκ(A).
Then if we consider [d] in UltU (V ) we have [d] = {j(γ) : γ < λ}= j“λ.
Moreover for every X ⊂ Pκ(A):

X ∈ U if and only if j“λ ∈ j(X)
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It follows that if f and g are functions in Pκ(λ) then: [f ] = [g]↔ X := {x :
f(x) = g(x)} ∈ U ↔ j“λ ∈ j(X) ↔ j“λ ∈ {y : jf(y) = jg(y)} ↔ jf(j“λ) =
jg(j“λ). So

(1) [f ] = [g] if and only if jf(j“λ) = jg(j“λ)

Moreover [f ] = [g]↔ X := {x : f(x) ∈ g(x)} ∈ U ↔ j“λ ∈ j(X)↔ j“λ ∈ {y :
jf(y) ∈ jg(y)} ↔ jf(j“λ) ∈ jg(j“λ) So

(2) [f ] ∈ [g]↔ jf(j“λ) ∈ jg(j“λ)

(1) and (2) implies that

(∗) [f ] = jf(j“λ).

Lemma 1.4.16. Let U be a normal ultrafilter on Pκ(λ). Consider the ultra-
power UltU (V ). Then:

(i) λ is represented in UltU (V ) by the function f : x 7→ ot(x), where ot(x)
denotes the ordertype of x.

(ii) κ is represented by the function g : x 7→ x ∩ κ.

Proof. (i): Let f : x 7→ ot(x). Then [f ] = jf(j“λ). Due to elementarity of j the
function jf still maps eachx to ot(x), thus [f ] = jf(j“λ) = ot(j“λ) = λ. Note
that this implies, as ot(x) < κ for each x, j(κ) > λ.

(ii): Let g : x 7→ κ ∩ x. Then jg : x 7→ j(κ) ∩ x and hence [g] = jg(j“λ) =
j(κ) ∩ j“λ. Now, by the usual argument, the κ-completeness of U implies that
j(γ) = γ for each γ < κ, whereas j(κ) > λ by (i). Hence [g] = j(κ) ∩ j“λ =
κ.

Fact 1.4.17 ([12], Lemma 22.4.). Let U be an ω1-complete ultrafilter over a set
S, and let j : V ≺M ∼= UltU (V ) be the canonical elementary embedding. Then

(i) If j“X ∈ M for some set X and Y ⊂ M is such that |Y | ≤ |X|, then
Y ∈M .

(ii) For any γ, j“γ ∈M ↔ Mγ ⊂M .

(iii) j“(|S|+) /∈M

(iv) U /∈M

The last lemma together with (∗) imply the following characterization of
supercompact cardinals:

Fact 1.4.18 (Solovay,Reinhardt). ([11], Lemma 20.14.) Let λ ≥ κ be two
cardinals, the latter should be regular. A normal ultrafilter on Pκ(λ) exists if
and only if there exists an elementary embedding j : V →M such that:

(i) j(γ) = γ for all γ < κ;
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(ii) j(κ) > κ;

(iii) Mλ ⊂M ; i.e. every sequence (aα : α < λ) of elements of M is a member
of M

Note that the last theorem is not a result of ZFC since the expression
”
there

exists an elementary embedding j“ is not formalizable (j could be a class). Nev-
ertheless this doesn’t make any problem in the⇒ -direction since the elementary
embedding j is a definable class. Hence in this direction the Theorem should
read:

”
if there is a normal ultrafilter then the class j defined by ϕ(x) (where

ϕ(x) is so chosen that it defines the class j) satisfies the elemetarity schema“.
This doesn’t work for the other direction though. To mention a frame for

which the theorem remains exprssible consider the usual language L∈, together
with a function symbol j and a predicat for M , and augment ZFC with the for-
mula schema, verifying that j is an elementary embedding satisfying conditions
(i)-(ii) in the last theorem, and M is a model of ZFC satisfying (iii). Then this
new axiom system proves that there exists a normal measure on Pκ(λ).

Definition 1.4.19. Let κ be a cardinal that satisfies the conditions (i)-(iii) in
the theorem of Solovay and Reinhardt. Then κ is called λ-supercompact.

Lemma 1.4.20 ([11], Lemma 20.16.). If κ is supercompact then there exists a
normal measure D on κ such that almost every α < κ (modD) is measurable.
In particular, κ is the κ-th measurable cardinal.

1.5 Forcing

I will only give a short review of the basic facts of forcing. The reader will find
more in Bells [1], Jechs [11] and Kunens [13] books.

Definition 1.5.1. A forcing notion P satisfies the κ-chain condition (κ-c.c.) if
every antichain in P is of size less than κ. P has the countable chain condition
(c.c.c.) if P satifies the ω1-chain condition.

Fact 1.5.2 ([11], Theorem 15.3.). If κ is a regular cardinal in V (where V
denotes as always the ground model) and if P has the κ-c.c. then κ remains a
regular cardinal in the generic extesion V[G].

Fact 1.5.3 ([12], Proposition 10.5.). Let P be a notion of forcing, κ be a regular
cardinal, P has the κ-c.c., and let λ be an arbitrary cardinal. If we let θ =
(|P |<κ)λ and G be a generic filter then

V [G] |= 2λ ≤ θ

Definition 1.5.4. A partial order P is κ-distributive if the intersection of less
than κ open dense sets is open dense.

Definition 1.5.5. Let κ be a cardinal. A forcing notion P is κ-closed if for
every λ < κ, every descending sequence (pα : α < λ) has a lower bound. We
say that P is σ-closed if P is ω1-closed.

18



Fact 1.5.6 ([11], Lemma 15.8.). If P is κ-closed then it is κ-distributive.

Fact 1.5.7 ([11], Theorem 15.6.). Let V be the ground model. If the forcing
notion P is κ-distributive, if G is a V-generic filter for P, and if f ∈ V [G] is a
function from λ to V (where λ < κ), then f ∈ V . As a consequence such λ have
no new subsets in V[G].

Definition 1.5.8. Suppose that P and Q are two notions of forcing. The partial
order P ×Q is defined as the set of all pairs (p, q) such that p ∈ P ∧ q ∈ Q and
such that

(p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 ∧ q1 ≤ q2
If G is a generic filter on P ×Q let

G1 := {p ∈ P : ∃q (p, q) ∈ G}, G2 := {q ∈ Q : ∃p (p, q) ∈ G}

Fact 1.5.9 (The Product Lemma). ([11], Lemma 15.9.) Let P and Q be
two notions of forcing. Then the following are equivalent:

• G ⊂ P ×Q is V-generic.

• G = G1×G2 and G1 ⊂ P is V-generic filter and G2 ⊂ Q is V [G1]-generic.

As a consequence V [G] = V [G1][G2]. Further if G1 is generic over V and G2 is
generic over V [G1] then G1 is generic over V [G2], and V [G1][G2] = V [G2][G1]

Fact 1.5.10 ([11], Lemma 15.12.). If P and Q are λ-closed partial orders then
P ×Q is λ-closed.

A generalization of product forcing is the iterated forcing:

Definition 1.5.11. Let P be a notion of forcing and let Q̇ ∈ V P be a name for
a partial ordering in V P . Then

(i) P ∗ Q̇ := {(p, q̇) : p ∈ P∧ 
P q̇ ∈ Q̇}

(ii) (p1, q̇1) ≤ (p2, q̇2) if and only if p1 ≤ p2 ∧ p1 
 q̇1 ≤ q̇2.

Fact 1.5.12 ([11], Theorem 16.2.). Let P and Q̇ be as above in the definition

(i) Let G be a V-generic filter on P, let Q = Q̇G, and let H be V[G]-generic
filter on Q. Then

G ∗ Ḣ := {(p, q̇) ∈ P ∗ Q̇ : p ∈ G ∧ q̇G ∈ H}

is a V-genric filter on P ∗ Q̇ and V [G ∗H] = V [G][H].

(ii) Let K be a V-genric filter on P ∗ Q̇. Then

G := {p ∈ P : ∃q̇ (p, q̇) ∈ K} and H := {q̇G : ∃p(p, q̇) ∈ K}

are, respectively, a V-generic filter on P and a V[G]-generic filter on Q =
Q̇G, and K = G ∗H.
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Definition 1.5.13. Let {Pi, : i ∈ I} be a family of partial orders, each having
a greatest element 1. Let κ be a regular cardinal. Then the κ-product P of the
Pi is the set of all functions p on I with p(i) ∈ I such that the support s for
each p, i.e. the set {i ∈ I : p(i) 6= 1}, has size less than κ. The ordering of the
κ-product is coordinatewise:

∀p, q ∈ P : p ≤ q ↔ p(i) ≤ q(i) for each i ∈ I

Definition 1.5.14. Let I be a class (or a set) of ordinals. Let {Pi : i ∈ I}
be a collection of notions of forcing. The Easton product P of the Pi is the set
of all functions p ∈

∏
i∈I Pi, ordered as usual coordinatewise, which satisfy this

additional condition:

For all regular cardinals γ : |s(p) ∩ γ| < γ where s(p) denotes the support

Lemma 1.5.15 ([11], Lemma 15.19 ). Let G × H be a generic filter on P ×
Q, where P is λ+-closed and Q satisfies the λ+-chain condition. Then every
function f : λ→M in M [G×H] is in M[H]. In particular:

PM [G×H](λ) = PM [H](λ)

Definition 1.5.16 (Iteration of arbitrary length). Let α ≥ 1. A forcing
notion Pα is an iteration of length α if it is a set of sequences of length α
satisfying the following properties:

1. If α = 1 then there exists a forcing notion Q0 such that:

(a) P1 is the set of all sequences of length 1 (p(0)) where p(0) ∈ Q0.

(b) (p(0)) ≤1 (q(0)) if and only if p(0) ≤Q0
q(0)

2. If α = β+ 1 then Pβ = Pα � β = {p � β : p ∈ Pα} is an iteration of length

β, and there exists a notion of forcing Q̇β ∈ V Pβ such that

(a) p ∈ Pα if and only if p � β ∈ Pβ and 
β p(β) ∈ Q̇β
(b) p ≤α q if and only if p � β ≤β q � β and p � β 
beta p(β) ≤ q(β).

3. If α is a limit ordinal, then for every β < α, Pβ = Pα � β = {p � β : p ∈
Pα} is an iteration of length β and:

(a) the α-sequence constant 1, (1,1,...,1) is in Pα

(b) if p ∈ Pα, β < α and if q ∈ Pβ is such that q ≤β p � β then r ∈ Pα
where for all ξ < α, r(ξ) = q(ξ) if ξ < β and r(ξ) = p(ξ) if β ≤ ξ < α;

(c) p ≤α q if and only if ∀β < αp � β ≤β q � β.

A general iteration depends not only on the Q̇β but also on the limit stages
of the iteration.
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Definition 1.5.17. Suppose that Pα is an iteration of length α, and α is a limit
ordinal. We say that Pα is a direct limit if for every α-sequence p:

p ∈ Pα ⇔ ∃β < αp � β ∈ Pβ and ∀ξ ≥ βp(ξ) = 1

Further Pα is an inverse limit if for every α-sequence p the following holds:

p ∈ Pα ⇔ ∀β < αp � β ∈ Pβ

Fact 1.5.18 ([11], Theorem 16.30.). Suppose that κ ≥ ℵ0 is regular, and α
is a limit ordinal. If Pα is an iteration with the property that for each β < α
Pβ = Pα � β satisfies the κ-c.c. and if Pα is a direct limit, and either cf(α) 6= κ
or (if cf(α) = κ)) there is a stationary set of β < α with Pβ a direct limit, then
Pα has the κ-c.c. too.

Definition 1.5.19 (Countable support iteration). Let α be an ordinal and
let I be the ideal on α, consisting of the at most countable sets. Then we say
that the iteration Pα has countable support if and only if the following holds for
each limit ordinal γ ≤ α

p ∈ Pγ if and only if ∀β < γ p � β ∈ Pβ ∧ s(p) ∈ I.

Where s(p) denotes the support of p, i.e. the set {β < γ : 6
β p(β) = 1}.

We have seen that a c.c.c. notion of forcing doesn’t collaps ℵ1. However the
c.c.c. property is a quite strong one, therefore set theorists were looking for a
weaker characteristic for a notion of forcing to preserve ℵ1. Shelah eventually
arrived at this definition:

Definition 1.5.20. We call a notion of forcing (P,<) proper if for every un-
countable cardinal λ, every stationary subset of [λ]ω remains stationary in the
generic extension V [G] via P.

Lemma 1.5.21 ([11], Lemma 31.2.). Let P be a c.c.c. notion of forcing. Then
P is proper

Fact 1.5.22 ([11], Lemma 31.3.). Let P be an ω-closed notion of forcing then
P is proper.

Lemma 1.5.23 ([11], Lemma 31.4.). Let P be a proper notion of forcing and
G be a V-generic filter over P. If A is a set of countable ordinals in V[G] then
there is a set B, that is countable in V such that A ⊂ B. As a consequence ℵ1
is preserved in V[G].

There are some other definitions of proper forcing which we will use later
in this text. First we introduce a notion which is often used in the context
of proper forcing. Let P be any fixed poset and let λ be a cardinal such that
λ > 2|P |. then we say that λ is sufficiently large.
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For any cardinal λ we may define the set Hλ which is the collection of sets
whose transitive collapse has size less than λ, i.e.

Hλ := {x : |tc(x)| < λ}.

Each Hλ is transitive and if λ is regular then Hλ is a model of ZFC with the
power set axiom deleted.

Definition 1.5.24. Let P be a notion of forcing, λ a sufficiently large cardinal.
Let Hλ denote (in an abusive way) the structure (Hλ,∈, <, P, ..) where < is a
wellordering of Hλ and let M ≺ Hλ. Then a condition q is (M,P)-generic if
and only if for every maximal antichain A ∈M , the set A∩M is predense below
q, i.e. every p ≤ q is compatible with an element of A ∩M .

This gives us a new characterization of properness:

Lemma 1.5.25 ([14], Theorem 3.2.8.). A notion of forcing P is proper if and
only if for all sufficiently large cardinals λ there is a club C of countable ele-
mentary submodels M ≺ (Hλ,∈, <, P, ...) such that

∀p ∈M ∃q ≤ p (q is (M,P )-generic)

Lemma 1.5.26 ([11], Theorem 31.16.). A notion of forcing P is proper if and
only if for every p ∈ P , every sufficiently large cardinal λ and every countable
M ≺ (Hλ,∈, <, P, ...) with p ∈M , there exists a q ≤ p that is (M,P )-generic.

Definition 1.5.27 (The proper game). Let P be a notion of forcing and let
p ∈ P . The proper game for P below p is defined as follows: Player I plays
P-names α̇n for ordinals and player II plays ordinals βn. II wins if and only if
there is some q ≤ p such that for each n:

q 
 ∀n∃k α̇n = βk.

Theorem 1.5.28 ([10], Theorem 2.10.). A notion of forcing is proper if and
only if for every p ∈ P player II has a winning strategy for the proper game.

Definition 1.5.29 (The semiproper game). Let P be a poset p ∈ P . The
semiproper game for P below p has the following rules: Player I plays P-names
for countable ordinals and player II plays countable ordinals. Again player II
wins if and only if there exists a q ≤ p such that:

q 
 ∀n∃kα̇n = βk

A notion of forcing is semiproper if and only if for each p ∈ P player II has a
winning strategy in the semiproper game for P below p.

The notion of semiproperness has again equivalent definitions:
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Definition 1.5.30. Let P be an arbitrary poset, λ be sufficiently large and
let M ≺ (Hλ,∈, <, P, ...) be a countable elementary submodel. A condition q
∈ P is (M,P )-semigeneric if and only if for every name α̇ ∈ M such that

 α̇ is a countable ordinal the following holds:

q 
 ∃β ∈Mα̇ = β

Lemma 1.5.31 ([11], Exercise 37.6.). P is a semiproper notion of forcing if and
only if the following holds: Let λ be a sufficiently large cardinal, M ≺ (Hλ,∈, <)
countable, and let p ∈ P be arbitrary such that p ∈M and P ∈M . Then there
exists a q ≤ p such that q is (M,P)-semigeneric.

Definition 1.5.32 (PFA, SPFA). The proper forcing axiom (PFA) is the
assertion that for any proper notion of forcing P and for any collection D of ℵ1
dense subsets of P there exists a D-generic filer on P i.e. a filter which meets
every element of D. The semiproper forcing axiom (SPFA) is defined the same
way but with the different assumption that P is semiproper instead of proper.

A very useful fact is the following:

Theorem 1.5.33 (Shelah). ([14], Theorem 3.3.2.] If Pα is a countable support
iteration of {Q̇β : β < α} such that every Q̇β is a proper forcing notion in
V Pα�β, then Pα is proper.
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Chapter 2

The saturation of NSκ

2.1 The saturation of an ideal

We now turn to the central notion of this work, introduced by Tarski:

Definition 2.1.1. Let κ > ω and λ be cardinals. A κ-complete ideal I on κ is
λ-saturated if and only if for any set {Xα : α < λ} with Xα /∈ I (or equivalently
Xα ∈ I+) for each α, there are β < γ < λ such that Xβ ∩Xγ ∈ I+. Moreover
set

sat(I) := the least λ such that I is λ− saturated.

We can think of sat(I) as a measure of how close I is to being a maximal
ideal. The lower sat(I) is, the more maximal is I and sat(I) = 2 if and only if I
is maximal. The natural question arising now is the following: Are there ideals
In, n ∈ ω such that sat(In) = n? The answer is yes assuming the existence of a
measurable cardinal. From now on κ will always denote a regular, uncountable
cardinal.

Lemma 2.1.2. Let κ be a measurable cardinal then there exists an ideal I such
that I is κ-complete and sat(I)=3

Proof. Let I be a maximal ideal on κ. Let f : κ × {0, 1} → κ be a bijection
which induces a function, also denoted by f : P (κ × {0, 1}) → P (κ). Then
f(I×{0}∪ I×{1}) generates a κ complete ideal J on κ for which the following
holds: ∀X ⊂ κ(X ∈ J ⇔ ∃Y1 ∈ I × {0}∃Y2 ∈ I × {1}X ⊂ f(Y1)∪ f(Y2)). Thus
if X ∈ J+ and X ⊂ f(Y1) ∪ f(Y2) then at least one Yi ∈ I+ for i ∈ {0, 1}. On
the other hand if without loss of generality Y1 ∈ I+ and X = f(Y1) ∪ f(Y2),
then X /∈ J .

Now we claim that sat(J) = 3. If we set X1 = f(κ × {0}) and X2 =
f(κ × {1}) then X1 /∈ J , X2 /∈ J and X1 ∩ X2 = ∅. Hence sat(J) > 2. But
if X1, X2, X3 ∈ J+ then X1 = f(Y 1

0 ) ∪ f(Y 1
1 ) and without loss of generality

Y 1
0 ∈ I+, X2 = f(Y 2

0 ) ∪ f(Y 2
1 ) and without loss of generality Y 2

1 ∈ I+, last
X3 = f(Y 3

0 ) ∪ f(Y 3
1 ) and we may assume that Y 3

0 ∈ I+. We conclude that
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X1 ∩ X3 = f(Y 1
0 ∩ Y 3

0 ) ∪ f(Y 1
1 ∩ Y 3

1 ) and as Y 1
0 , Y

3
0 ∈ I+ and sat(I) = 2 we

conclude that Y 1
0 ∩ Y 3

0 ∈ I+ hence X1 ∩X3 ∈ J+ and so sat(J) = 3.

If we generalize this construction in an obvious way we see that ideals of
any finite saturation are possible. The next step would be an ideal such that
sat(I) = ω. This is impossible though. To faciliate our next proof we briefly
introduce some useful notions. Let I be an ideal on a set, which should be
without loss of generality a cardinal κ. Then an I-partition of κ is a maximal
family W of I-positive subsets of κ (i.e. the sets belong to I+), that are pairwise
almost disjoint (i.e. if X,Y ∈W and X 6= Y then X ∩ Y ∈ I). If X ∈ I+ then
X is an atom if there are no Y,Z ∈ I+, with Y ∩ Z ∈ I such that X = Y ∪ Z.
If X is not an atom then we say that X splits. Moreover if X ∈ I+ then we
define sat(X) := sat(I � X) (see 2.2.12 for the definition of I � X), and say that
X ∈ I+ is stable if sat(X) = sat(Y ) for all Y ⊂ X such that Y ∈ I+.

Lemma 2.1.3. Let I be a κ-complete ideal over κ. If sat(I) is infinite then
sat(I) is a regular, uncountable cardinal.

Proof. Assume first that sat(I) = ω. We will construct an antichain in I+ of
size ω, contradicting our assumption. Let T be a tree whose elements are coded
by sequences s ∈ 2<ω, defined inductively like this: The first level of T consists
of two almost disjoint elements of I+, T0 and T1, coded by the sequence 0 and
1 respectively. Now if X ∈ I+ is in T and is coded by an s ∈ 2n, n ∈ ω, and
if X splits, i.e. X = Y ∪ Z then Y and Z are the successors of X in T , coded
by sa0 and sa1. If X does not split then X has no successors in T . Now as
sat(I) = ω each so defined tree T has heigth ω and each level of T is finite,
hence has an infinite branch b. If we pick for each X ∈ b the Y ∈ T such that
Y is the offshoot of X (i.e. the Y in T whose code differs from the code of X
only in the last digit) then this defines an antichain of length ω.

Now we turn to the regularity of sat(I) := µ. We assume that µ is singular
and build again an antichain of length sat(I). First we observe that µ equals
the smallest cardinal such that there is no antichain of its length in the Boolean
algebra P (κ)/I. As P (κ)/I is dense in its completion B this still holds for B,
thus we may say that µ is the least cardinal such that there is no partition of
B of its length, and assume its singularity to obtain a contradiction.

Let S be the set of stable elements of B, then it is dense in B as can
be seen as follows: Assume not then there would be a descending sequence
u0 > u1 > u2... with a corresponding decreasing sequence sat(u0) > sat(u1)...
which is a contradiction. Let T be a maximal subset of pairwise disjoint elements
of S. From its maximality we deduce that sup{sat(u) : u ∈ T} = µ, as for
every regular λ < µ there is a partition W of B of size λ, which yields a partition
of an element u ∈ T of size λ.

Now we split into cases

1. If there is an u ∈ T such that sat(u) = µ then since cf(µ) < µ there is a
partition W of u: W = {uα : α < cf(µ)}. Let (µα)α<cfµ be an increasing
sequence with limit µ, then we let for each α Wα be a partition of uα of
size µα.

⋃
α<cfµWα is a partition of u of size µ.
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2. If for all u ∈ T sat(u) < µ holds then again let (µα)α<cfµ converge to
µ. As sup{sat(u) : u ∈ T} = µ we can define by induction a sequence
(uα)α<cfµ in T such that each uα admits a partition Wα of size µα. Then⋃
α<cfµWα is an antichain of length µ in B.

The question whether there are any λ-saturated ideals on λ needs at least
the assumption of the existence of weakly inaccessible cardinals by the next
lemma:

Lemma 2.1.4. For any λ, there is no λ+-saturated, λ+-complete ideal over λ+

Proof. Assume that there exists a λ+-saturated, λ+-complete ideal I on λ+. For
each ξ < λ+ let fξ be a function fξ : λ → λ+ such that ran(fξ) ⊃ ξ. Further
let Aα,η, α < λ+η < λ be a family of subsets of λ+ defined by:

ξ ∈ Aα,η if and only if fξ(η) = α

The family of the Aα,η’s form a so-called Ulam-matrix, that is it satisfies:

(i) Aα,η ∩ Aβ,η = ∅ whenever α and β are nonequal ordinals below λ+ and
η < λ.

(ii) |λ+ −
⋃
η<λAα,η| ≤ λ for each α < λ+

Now if we fix an α < λ+ and consider the (Aα,η)η<λ, then by the λ+-completeness
of I and (ii) there must be an ηα such that Aα,η ∈ I+. Hence there is an η and
a W ⊂ λ+ of size λ+ such that ηα = η for each α ∈ W . Then (Aα,η)α∈W is a
pairwise disjoint sequence of elements of I+ of length λ+, a contradiction.

Lemma 2.1.5. Let I be a κ-complete ideal over κ then the following holds:

(i) If I is λ-saturated where 2<λ < κ then κ is measurable.

(ii) If I is κ-saturated and κ is weakly compact, then κ is measurable.

Proof. Assume first that I has an atom A. Then it is easy to check that the
set {X ⊂ κ : X ∩ A ∈ I+} is a κ-complete ultrafilter, hence witnessing the
measurability of κ. So we can assume that in both cases (i) and (ii), I has no
atoms. We shall derive a contradiction.

We build a tree T ordered by ⊃ inductively: We consider the set of the
sequences s ∈ 2<κ and the corresponding Xs ⊂ κ defined inductively like this:
Set X∅ = κ and if Xs is already defined then let Xsa(0) and Xsa(1) be two

I-positive sets witnessing that Xs splits. Finally if δ is a limit and s ∈ 2δ then
let Xs =

⋂
α<δXs�α. This definition makes sense as I is assumed to have no

atoms.
The tree T has the following property:
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(∗) If γ ≤ κ and s ∈ 2γ , then the set {Xs�αa(i) : α < γ∧Xs�(α+1) is defined ∧
s(α) 6= i} is pairwise disjoint.

For (i) (∗) and λ-saturation imply that T has heigth at most λ. But then
κ is the union of the 2<λ < κ many Xs’s without tree successor, contradicting
the κ-completeness.

For (ii) note that if T had heigth less than κ, then by the inaccessibility of
κ and the argument above, the κ-completeness of I would again be violated.
Thus we may assume that T has heigth κ and by the weak compactness of κ
there must be a branch of length κ. Again with (∗) this yields a sequence in I+

of length κ, contradicting the κ-saturation of I.

The next method we want to present is the Kunen-Paris-Forcing. Let U be
a normal ultrafilter over a measurable cardinal κ. Let j : V ≺ UltU (V ) ∼= M
be the canonical elementary embedding. Let P be a forcing poset in V and let
j(P ), which is again a partial order in V , satisfy two certain conditions, that
will enable us to extend the elementary embedding j. Let us assume that:

(i) j(P ) ∼= P ∗ Q̇ under an identification through which

(ii) j(p) = (p, 1̇Q) for every p ∈ P (1̇Q denotes the maximal element of Q̇).

Now let G be a j(P )-generic filter over V . Then by Fact 1.5.10. there exist
two filters G0, G1, such that G = G0 ∗ G1, where G0 is P -generic over V and
G1 is Q̇G0 -generic over V [G0], and V [G] = V [G0][G1]. Further by (ii)

(∗) If p ∈ G0 then j(p) ∈ G

As UltU (V ) ∼= M ⊂ V we observe that G is also a j(P )-generic filter over
M , and now we can construct the generic extension M [G]. The crucial point is
that with (∗) the canonical elementary embedding j : V ≺ M can be extended
to an elementary embedding j : V [G0] ≺M [G], if we apply j to the names:

Let x ∈ V [G0] and let ẋ be a name for it. Then due to elementarity j(ẋ) is
a j(P ) name and we can therefore set:

j(x) := j(ẋ)M [G]

The next easy lemma tells us that our concept does make sense:

Lemma 2.1.6. Let j be defined as above. Then j is a function, moreover
satisfies the elementarity schema, and extends j, i.e. j(x) = j(x) for all x ∈ V .

Proof. At first we notice that j is indeed a well-defined function: Suppose that
ẋ, ẏ are two different names for x ∈ V [G0]. Then there is a p ∈ G0 such
that p 
P ẋ = ẏ and by (∗) j(p) ∈ G and j(p) 
j(P ) j(ẋ) = j(ẏ), hence

(j(ẋ))M [G] = (j(ẏ))M [G] and j is well-defined.
Next we show that j is elementary: Let ϕ(v1, ..., vn) be a formula, let

x1, ..., xn ∈ V [G0], and let p ∈ G0 be such that p 
P ϕ[ẋ1, ..., ẋn]. Then
j(p) ∈ G and j(p) 
j(P ) ϕ[j(ẋ1), ..., j(ẋn)], hence M [G] |= ϕ[j(x0), ..., j(xn)].

27



The last thing remaining is to show that j extends j: If x ∈ V then x = x̌G0

and j(x) = (j(x̌))M [G] = (ǰ(x))M [G] = j(x) and the proof is done.

Lemma 2.1.7. Let G, G1, G0, j, j be as above and let U be defined by:

X ∈ U ↔ X ∈ P (κ) ∩ V [G0] ∧ κ ∈ j(X)

Then U is a V [G0]-normal ultrafilter over κ which extends U . With V [G0]-
normal we mean that U is an ultrafilter on P (κ) ∩ V [G0] and further that for
any function f in V [G0] with domain κ, which is almost everywhere regressive
(in the sense of the ultrafilter U), we may conclude that f is almost everywhere
constant.

Note now that if the forcing with Q̇ in j(P ) ∼= P ∗ Q̇ adds no new subsets of
κ then the U of the lemma above witnesses the measurability of κ in V [G].

Definition 2.1.8. Suppose that N is a model of ZFC. We say that J is a
N-λ-saturated ideal over κ if and only if:

(i) J is an ideal on P (κ) ∩ N such that if γ < κ and f ∈ Jγ ∩ N , then⋃
α<γ f(α) ∈ J

(ii) For any function g : λ→ J+ which is in N there are α < β < λ such that
g(α) ∩ g(β) ∈ J+.

Lemma 2.1.9. Let κ, λ be regular cardinals, and let P be a notion of forcing
which has the λ-c.c. then: If


P J̇ is a V̌-λ-saturated ideal over κ

then
I := {X ⊂ κ :
P X̌ ∈ J̇}

is a λ-saturated ideal over κ.

Proof. Assume that {Xα ⊂ κ : α < λ} ⊂ I+. Then there exists a p ∈ P such
that

p 
 |{α < λ : X̌α ∈ J̇+}| = λ.

Because: Suppose not then by the regularity of λ and the λ-c.c. of P there
would be a γ < λ such that


 {α < λ : X̌α ∈ J̇+} ⊂ γ.

But then Xγ ∈ I by the definition of I, which is a contradiction.

Now p 
 |{α < λ : X̌α ∈ J̇+}| = λ together with the V̌-λ-saturation of J̇
implies that there is a q ≤ p and α < β < λ such that q 
 X̌α ∩ X̌β ∈ J̇+, i.e.
Xα ∩Xβ ∈ I+.

The next theorem gives us the consistency of sat(I) = κ:
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Theorem 2.1.10 (Kunen-Paris). Let κ be a measurable cardinal. Then there
is a partial order E such that every E-generic extension of V satisfies the fol-
lowing three claims:

(i) 2ℵ0 = κ

(ii) There is a κ-saturated ideal I over κ

(iii) For no λ < κ is there a λ-saturated ideal I over κ.

Therefore: V [G] |= sat(I) = κ.

Proof. Let P be Easton product of the forcing notion which adds κ new subsets
to ω and to each successor cardinal below κ. That is P is the set of all functions p
with dom(p) = κ×κ×κ and ran(p) ⊂ 2, such that the folllowing two conditions
are satisfied:

(i) For any (ξ, ζ, η) ∈ dom(p) we have that ξ = ω or a successor cardinal
below κ , and ζ < ξ.

(ii) For any regular ν, |{(ξ, ζ, η) ∈ dom(p) : ξ ∈ ν}| < ν.

P is ordered by reverse inclusion: p ≤ q if and only if p ⊃ q. Note that this
definition implies that |p| < κ for every p ∈ P .

We note also that P has the κ-c.c.: Suppose that A ⊂ P is a maximal
antichain. We have to show that |A| < κ. Let δ < κ be inaccessible such that

(Vδ, ∈, P ∩ Vδ, A ∩ Vδ) ≺ (Vκ, ∈, P, A)

Such a δ always exists due to Lemma 1.4.5.(ii). Then for any p ∈ P |p∩Vδ| < δ
(stipulation (ii)) and therefore, due to Lemma 1.4.2.(i), p ∩ Vδ ∈ Vδ. So by the
maximality of A ∩ Vδ in Vδ, p ∩ Vδ is compatible with some element of A ∩ Vδ.
But then p itself is compatible with that element. Hence A ∩ Vδ is a maximal
antichain of P , and so A = A ∩ Vδ and |A| < κ.

Suppose now that U is a normal ultrafilter over κ and j : V ≺M ∼= UltU (V )
the canonical elementary embedding. Let

P1 := {p ∈ j(P ) : p ⊂ (j(κ)− κ× j(κ)× j(κ)× 2}

P2 := {p ∈ j(P ) : p ⊂ κ× κ× (j(κ)− κ)× 2}
Then:

j(P ) ∼= P × P1 × P2

through a natural identification and if p ∈ P then j(p) may be identified with
(p, 1P1

, 1P2
), since |p| < κ and hence j(p) = p. So the Kunen-Paris conditions

are satisfied.
We now proceed to show that P × P1 is our desired notion of forcing E.

Let G0 be P -generic over V and let G1 be P1-generic over V [G0]. To invoke
the Kunen- Paris scheme let G2 be P2-generic over V [G0][G1] and set G :=
G0×G1×G2. Since P1 is κ+-closed (as κ is not a successor cardinal), it follows
from fact 1.5.15. that forcing with P1 after P adds no further subsets of κ.
Therfore:
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(∗) The ultrafilter U from lemma 2.1.7. is even a V [G0][G1]-normal ultrafilter

We continue the proof by noting that 
P×P1
P̌2 has the κ-c.c.. To see this

let {pα : α < κ} ⊂ P2, and let

X := {η : ∃α∃ξ∃ζ (ξ, ζ, η) ∈ dom(pα)} ⊂ j(κ)− κ.

Then by stipulation (ii) ∀p ∈ P2 |p| < κ, hence |X| ≤ κ, and so an injection
g : X → κ associates to each pα a qα ∈ P by taking the η ∈ j(κ) − κ to the
corresponding g(η) ∈ κ. Note that this preserves incompatibility i.e. pα ⊥ pβ if
and only if qα ⊥ qβ . Thus the κ-c.c. of P implies the κ-c.c. of P2. Now because
of the κ-c.c. of P κ is preserved in V P hence 
P P̌2 has the κ-c.c.. Moreover
P1 is κ+-closed and so we apply fact 1.5.15. to obtain our desired 
P×P1

P̌2

has the κ-c.c..
Now we can conclude: By (∗) there exists a V [G0][G1]-2-saturated ideal over

κ, and by the κ-c.c in V P×P1 we may apply 2.1.9. to see that V [G0][G1] contains
a κ-saturated ideal over κ.

Moreover note that 
P×P1
2ℵ0 = κ holds due to fact 1.5.3. and the κ-

c.c. which can be seen as follows: We have already noticed earlier that forcing
with P × P1 doesn’t raise the size of P (κ), compared to forcing only with
P . In particular (2ℵ0)V [G0][G1] = (2ℵ0)V [G0] and invoking fact 1.5.3. gives us

P 2ℵ0 ≤ θ where θ = (|P |<κ)ℵ0 ; as P consists of functions p with |p| < κ
we may conclude with the measurability of κ that |P | = κ, moreover κ<κ = κ
which gives us θ = κ. Hence (2ℵ0)V [G0][G1] = κ which is what we wanted to
show.

Thus it is left to show that there are no λ-saturated ideals over κ in V P×P1 :
We show this by contradiction: Suppose that there is an ideal which is λ-
saturated for a λ < κ. Due to the already shown fact that each measurable
cardinal is Mahlo, we may assume without loss of generality that λ<λ = λ. We
split the forcing notion P into two parts:

• (P )λ := {p ∈ P : p ⊂ λ× κ× κ× 2}

• (P )λ := {p ∈ P : p ∩ (λ× κ× κ× 2) = ∅}.

It is possible to show that P ∼= (P )λ×(P )λ and further that (P )λ has the λ+-c.c.
and (P )λ is λ+-closed. G0 can thus be considered as H0×H1 where H0 ⊂ (P )λ
and H1 ⊂ Pλ. If V [G0][G1] is regarded as a generic extension of V [H1][G1] using
(P )λ, then by 2.1.9. there is a λ+-saturated ideal in V [H1][G1]. As (P )λ is λ+-
closed, P1 is κ+-closed, we know by fact 1.5.10. that (P )λ × P1 is λ+-closed.

As I is λ+ saturated in V [H1][G1] and (2<λ
+

)V [H1][G1] = (2λ)V [H1][G1] = (2λ)V

(the last equality holds due to the λ+-closedness of (P )λ × P1) and the latter
term is less than κ; hence we may use 2.1.5(i) to conclude that κ is measurable

in V [H1][G1]. However 2λ
+

= κ also holds in the model because (P )λ adds to
P (λ+) κ-many elements. This is our desired contradiction.

Theorem 2.1.11 (Kunen-Paris). Suppose that κ is a measurable cardinal.
Then there is a notion of forcing E such that the following three properties hold
in V E:
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(i) κ is weakly compact

(ii) There is a κ+-saturated ideal over κ

(iii) There is no κ-saturated ideal over κ.

Proof. Let P be the Easton product of the notions of forcing for adding a generic
subset to each regular cardinal less than κ, i.e. P consists of the functions p with
dom(p) ⊂ κ× κ and ran(p) ⊂ 2 that additionally satisfy these two conditions:

1. if (ξ, ζ) ∈ dom(p) then ξ is a regular cardinal less than κ and ζ < ξ

2. for any regular µ, |{(ξ, ζ) ∈ dom(p) : ξ ≤ µ}| < µ.

Again P has the κ-c.c..
Suppose that U is a normal ultrafilter over κ and j : V ≺ M ∼= UltU (V ).

We split:

• P1 := {p ∈ j(P ) : p ⊂ (j(κ)− κ+ 1)× j(κ)× 2}

• P2 := {p ∈ j(P ) : p ⊂ {κ} × κ× 2}

Then:
j(P ) ∼= P × P1 × P2.

and the Kunen-Paris conditions are satisfied if we identify j(p) with (p, 1, 1).
Moreover by the usual sum-argument P1 is κ+-closed, and P2 is κ-closed. Also
P2 has the κ+-c.c.

We now proceed very similar to our last proof, and show that P × P1 is our
desired notion of forcing. Let G0 be P -generic over V and let G1 be P1-generic
over V [G0]. Again, to invoke the Kunen-Paris scheme, we let G2 be a P2-generic
filter over V [G0][G1] and G := G0 × G1 × G2. As in the previous proof, the
κ+ -closure of P1 implies that the normal V [G0]-ultrafilter is in fact a normal
V [G0][G1] ultrafilter over κ. And with lemma 2.1.9 we may derive from the
κ+ − c.c. of P2 that there exists a κ+-saturated ideal over κ in V [G0][G1].

The next thing is to show that κ is forced to be weakly compact. We already
know by theorem 1.4.11. that κ is weakly compact if and only if κ is inaccessible
and has the tree property, thus we continue the proof by showing these two
characteristics. Due to fact 1.5.15. it suffices to show them in V [G0]. First κ is
inaccessible in V [G0] because: Let γ be a cardinal < κ such that γ<γ = γ (for
example if γ is inaccessible) then again set

(P )γ := {p ∈ P : p ≤ γ × κ× 2}

(P )γ := {p ∈ P : p ∩ (γ × κ× 2) = ∅}

.
We know that (P )γ × (P )γ ∼= P and (P )γ has the γ+-c.c. and (P )γ is

γ+-closed. Hence by fact 1.5.15. forcing with (P )γ after (P )γ adds no new
subsets to γ, γ+ is preserved and since the inaccessible cardinals below κ form
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an unbounded set we know that κ remains inaccessible after forcing with P and
thus in V [G0].

Next suppose that (T,<) is a κ-tree in V [G0], T ⊂ κ. Our goal is to produce
a branch in V [G0] of length κ. Let j : V [G0] ≺M [G] be the canonical extension
of j. Then (j(T ), j(<)) is a j(κ)-tree in M [G]. We know that j(T )∩κ = T and
therefore γ which is an element of the κ-th level of j(T ) determines a branch of
length κ in T . Unfortunately this branch sits in M [G] ⊂ V [G]. Thus we have
to show that this branch actually lies in V [G0].

We work in V [G0] and use the fact that V [G] is a generic extension by P1×P2

which is a κ-closed notion of forcing. We already know that for each generic
G1 ×G2 there is a branch τ in V [G]. Therefore


P1×P2 ∃τ(τ is a κ-branch in Ť)

and by fullness there is a P1 × P2-name τ such that


P1×P2
(τ is a κ-branch in Ť)

. Now we can define recursively conditions pα ∈ P1 × P2 and sets bα ⊂ κ for
α < κ (the κ-closedness of P1 × P2 is crucial at the limit steps) such that

(i) pα 
 τ ∩ α = b̌α

(ii) pβ ≤ pα

If we set b :=
⋃
α<κ bα then b is a κ branch in V [G0] (because pα 
 τ ∩ α =

b̌α ∧ ( b̌α is an α-branch) and the latter formula written inside the brackets
is ∆0 thus || b̌α is an α-branch|| = 1 hence b̌α is an α-branch and

⋃
bα is a κ

branch).
To finish the proof we have to show that there are no κ-saturated ideals over

κ in V [G0][G1]. Using lemma 2.1.5.(ii) it suffices to show that in V [G0][G1] κ
is not measurable: Let α < κ be regular then P added a generic set g(α) ⊂ α
such that g(α) ∩ ξ ∈ V for each ξ < α. Now assume that κ were measurable.
Let W be a normal ultrafilter over κ, let x = [g]W . Then due to normality x is
a subset of κ in the ultrapower hence by 1.3.19.(i) [g]W = x = jW (x)∩ κ which
means that {α : g(α) = x ∩ α} ∈ W . But if α1 < α2 are elements of this set
then g(α2) = x∩α2 ⊃ x∩α1 = g(α1) = x∩α1 = (x∩α2)∩α1 = g(α2)∩α1 ∈ V .

2.2 The saturation of the nonstationary ideal

In this section we focus our interest on the saturation of the nonstationary
ideal on κ, denoted with NSκ. For this purpose we introduce the so called
generic ultrapower construction, a useful method which combines forcing and
ultrapowers.

Let κ be a regular cardinal and let I be an ideal on κ. Consider this notion
of forcing: The set of conditions P is the set of all I-positive sets and p ∈ P is
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stronger than q ∈ P if and only if p ⊂ q. Let V denote the ground model and
let G be a V -generic filter on P . Certain properties of the ideal are conveyed to
G:

Lemma 2.2.1 ([11], Lemma 22.13 ). (i) G is a V-ultrafilter on κ extending
the filter dual to I

(ii) If I is a κ-complete then so is G

(iii) The normality of I implies that G is normal

Having constructed a V -ultrafilter on κ we are now able to construct in V [G]
the ultrapower UltG(V ). This ultrapower is the so called generic ultrapower,
which is a model of ZFC though not necessarily well-founded. Of course  Loś
theorem still holds here and we have:

UltG(V ) |= ϕ([f1], ..., [fn])⇔ {α : V |= ϕ(f1(α), ..., fn(α))} ∈ G

where f1, ...fn ∈ V are functions from κ to V . Again j : V → UltG(V ) denotes
the canonical elementary embedding.

Note that the generic ultrapower may be constructed with an arbitrary set
A instead of κ, and an ideal I on A instead on κ. Thus the last lemma, and the
generic ultrapower construction apply also in the case where A = Pκ(λ).

Lemma 2.2.2 ([11], Lemma 22.14 ). Let κ be a regular cardinal and let I be
a κ-complete ideal on κ, containing all singletons. Let M = UltG(V ) be the
generic ultrapower. Then the following holds:

(i) ∀γ < κ j(γ) = γ, hence OrdM (though maybe not well-ordered) has an
initial segment of order type κ.

(ii) j(κ) 6= κ

(iii) If I is normal then [d] = κ where d(α) = α is the diagonal function.

As already mentioned the ultrapower UltG(V ) needs not to be well-founded,
even if G is countably complete, as G is only a V -ultrafilter. Nevertheless the
well foundedness of the generic ultrapower is a very useful thing, thus it is
reasonable to consider ideals for which the generic ultrapower is well founded:

Definition 2.2.3. Let κ be a regular cardinal, and let I be a κ-complete ideal,
containing all singletons. Then I is precipitous if and only if UltG(V ) is well-
founded for every generic filter G.

We will characterize precipitous ideals soon. First of all we need some new
notions. Suppose that I is an ideal as in the definition above, and S ⊂ κ with
S /∈ I. Then we say that W ⊂ P (S) is an I-partition of S if W is a mximal
antichain in S with respect to I, i.e. W is maximal with the property that each
X in W has positive measure and if X,Y ∈ W then X ∩ Y ∈ I. Further an
I-partition W1 is a refinement of an I-partition W2, W1 ≤W2, if every X ∈W1

is a subset of some Y ∈W2.
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A functional F on S is a family of functions such that WF = {dom(f) : f ∈
F} is an I-partition of S. Moreover we say that for two functionals F,G F < G
holds if

1. ∀f ∈ F ∪G f is a function into the ordinals

2. WF ≤WG

3. if f ∈ F and g ∈ G are so chosen that dom(f) ⊂ dom(g) the f(α) < g(α)
for each α in the domain of f .

With these notions we assert:

Lemma 2.2.4 ([11], Lemma 22.19 ). The following are equivalent:

(i) I is precipitous

(ii) Whenever S is a set such that S /∈ I and {Wn : n < ω} are I-partitions
of S such that W0 ≥W1 ≥ ...Wn ≥ ..., then there exists a sequence of sets
X0 ⊃ X1 ⊃ X2... such that Xn ∈Wn for each n, and

⋂
Xn 6= ∅.

(iii) There is no set S of postive measure such that there is a sequence of func-
tionals on S with F0 > F1 > F2...

Lemma 2.2.5 (Solovay). If I is a κ-complete, κ+-saturated ideal where κ is a
regular cardinal then I is precipitous

Proof. Let S be a set of positive measure and let W0 ⊃ W1,⊃ ... be I-partitions
of S. We want to show that there are X0 ⊃ X1 ⊃ X2 ⊃ ... , Xi ∈Wi such that⋂∞
n=0Xn is nonempty.

We start to modify by induction on n the partitions Wi to obtain more
suitable W

′

i . Let W0 = {Xα : α < θ}, θ < κ be an enumeration of W0. For

each α < θ let X
′

α := Xα −
⋃
β<αXβ and set W

′

0 := {X ′α : α < θ}. W
′

0 is
clearly a pairwise disjoint family of sets, moreover it is an I-partition of S since
for each X

′

α we have Xα −X
′

α = (Xα ∩
⋃
β<αXβ) =

⋃
β<α(Xα ∩Xβ) ∈ I due

to the κ-completeness of I; and hence X
′

α /∈ I.
Having constructed W

′

n we enumerate Wn+1 = {Xα : α < θ}, θ < κ and let
X
′

α = (Xα −
⋃
β<αXβ) ∩ Z where Z is the unique Z ∈ W ′

n that is almost all

of the unique Y ∈ Wn such that Xα ⊂ Y . We set W
′

n+1 = {X ′ : X ∈ Wn+1}.
Again W

′

n+1 is a partition of Sn+1 :=
⋃
W
′

n+1 , S − Sn+1 ∈ I and Xα −X
′

α ∈ I
for all α < θ (because Xα −X

′

α = (Xα ∩
⋃
β<αXβ)− Z and

⋃
β<αXβ ∈ I due

to κ-completeness).
To finish the proof we observe that

⋂
n<ω Sn 6= ∅ (otherwise S −

⋂
Sn = S

and S −
⋂
Sn =

⋃
i(S − Si) ∈ I - a contradiction). Let z ∈

⋂
Sn. For each n

there is a unique Yn ∈W
′

n such that z ∈ Yn and let Xn be the unique Xn ∈Wn

such that Xn ⊃ Yn ( If there would be a second X
′

n ∈ Wn such that X
′

n ⊃ Yn
then Xn ∩X

′

n ⊃ Yn /∈ I - a contadiction to the fact that W
′

n is an I- partition).
Now we have that X0 ⊃ X1 ⊃ ... because if Xn+1 6⊂ Xn then, since Wn+1 is a
refinement of Wn, there would be a X

′ ∈ Wn such that X
′ ⊃ Xn+1. But now

Yn+1 ⊂ X ′ ∩Xn ∈ I would follow which is a contradiction) and
⋂
Xn 6= ∅.
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Note that our last lemma still applies if I is an ideal over Pκ(λ).
The next few lemmata will be used later to prove the splitting theorem of

Solovay.

Lemma 2.2.6. (i) If κ carries a κ-saturated, κ-complete ideal then κ is weakly
inaccessible.

(ii) If there exists a κ-saturated, κ-complete ideal on an uncountable cardinal
κ then there exists a normal κ-saturated, κ-complete ideal on κ.

(iii) Let I be a normal κ-saturated, κ-cpmplete ideal on κ. If S /∈ I and if
f : S → κ is regressive, then there is a γ < κ such that f(α) < γ for
almost all α ∈ S.

Proof. (i) Follows immediatly from 2.1.3. and 2.1.4.
For the proof of part (ii) take a look at [11] 22.3 (i) pp 410.
(iii) Due to lemma 1.2.7 for every X ⊂ S of positive measure there is a Y ⊂ X
of positive measure where f is constant. Thus let W be a maximal disjoint
family of sets X ⊂ S of positive measure such that f is constant on X. W has
cardinality less than κ and hence f(

⋃
W ) < γ < κ and

⋃
W has measure one

due to the maximality of W .

Lemma 2.2.7. Let κ > ω be a regular cardinal, P be a notion of forcing, which
has the κ-c.c., V[G] be its generic extension. Then every club C ⊂ κ in V[G]
has a closed and unbounded subset D ∈ V. It follows that each S ⊂ V which is
stationary in V remains stationary in the generic extension.

Proof. For α < κ set

Xα := {ξ < κ : ∃q ≤ p (q 
 ξ is least member of Ċ − (α+ 1))

By the κ-c.c. |Xα| < κ, so set f(α) := sup(Xα) < κ. Finally, let

D := {β < κ : ∀α < β (f(α) < β)}

which is a club as can be seen easily.
To show that p 
 Ď ⊂ Ċ, assume to the contrary that there is a q ≤ p and a

β ∈ D such that q 
/∈ Ċ. Then for some r ≤ q and α < β, r 
 α = sup((̇C)∩β).
For some s ≤ r and ξ ∈ Xα, ξ is the least element of Ċ − (α+ 1). But ξ < β as
β ∈ D, contradicting the choice of α.

Theorem 2.2.8. Let κ be a regular cardinal > ω and let I be a κ-complete,
κ-saturated ideal on κ. Then the following holds:

(i) κ is weakly Mahlo

(ii) The set of the weakly Mahlo cardinals below κ is an stationary subset of κ

35



(iii) If I is additionally normal and if X ⊂ κ has measure one then X ∩M(X)
has measure one, where M(X), the Mahlo operation is defined as

M(X) := {α < κ : cf(α) > ω ∧X ∩ α is stationary inα}

Proof. The existence of a κ-saturated ideal implies that κ is weakly inaccessible
and also implies the existence of a normal κ-saturated ideal by lemma 2.2.6.(i)
and (ii). Thus we assume that I is normal. We start with the following

Claim: If S ⊂ κ is stationary then for I-almost all α < κ S∩α is stationary.

We want to prove the claim first: Assume to the contrary that there is
an X /∈ I such that (S ∩ α) is not stationary in α for all α ∈ X. Choose
a generic filter G such that X ∈ G and build UltG(M). We have UltG(M) |=
“[cS ]∩[d] is nonstationary” where d is the diagonal function d : κ→ κ, d(α) = α.
Since I has the κ-c.c. UltG(M) is wellfounded, thus we can identify it with its

transitive collaps N
π∼= UltG(M) and also the canonical elementary embedding

j : M
∼→ N exists. Since I is normal, κ is represented by d, thus N |= “(π([cS ])∩

κ) is not stationary”. And since S = j(S) ∩ κ = π([cS ]) ∩ κ we obtain N |=
“S is not stationary”. However, the notion of forcing is κ-saturated and hence
κ is a regular cardinal in M [G] and by lemma 2.2.7. M [G] |= “S is stationary”,
but N ⊂ M [G], hence N |= “S is stationary” which is a contradiction and the
proof of our Claim is finished.

Now we can tackle (iii): At first we notice that for I-almost all α < κ cf(α)
> ω: If there would be a set X of positive measure such that for all α ∈ X
cf(α) = ω we could choose again a generic G and construct UltG(M) to get
UltG(M) |= cf [d] = ω which would lead to N |= cf(κ) = ω. But κ is a regular
cardinal in M and I is κ-saturated, thus κ is regular in M [G], but N ⊂M [G] -
a contradiciton.

Now if X has measure one, then since Lemma 2.2.6.(iii) X is stationary
and the set {α < κ : cf(α) > ω} has measure one (due to our claim). Also
{α < κ : cf(α) > ω} has measure one and so X∩M(X) has measure one which
ends our proof of (iii).

To prove (i) it suffices to show that I-almost all α < κ are regular cardinals.
Otherwise let X /∈ I be such that all α ∈ X are singular. Let G be generic with
X ∈ G. Then UltG(M) |= “[d] is singular” hence N |= “κ is singular” - again a
contradiction.

And for (ii) let {α < κ : α is regular} thenM(X) = {α < κ : cf(α) >
ω ∧X ∩ α is stationary inα} has measure one and so: X ∩M(X) = {α < κ :
α is weakly Mahlo} has measure one, hence stationary.

To prove eventually Solovays Splitting Theorem we need one last Lemma:

Lemma 2.2.9. Let S be a stationary subset of κ and assume that every α ∈ S
is a regular uncountable cardinal, Then T = S ∩ (κ − M(S)) = {α ∈ S :
S ∩ α is not stationary in α} is stationary in κ.
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Proof. Let C be any club subset of κ and let C ′ be the set of the limit points
of C which is also a club. Hence S ∩ C ′ 6= ∅ and let α be its minimal element.
Since α is regular, and a limit point of C we have that C ∩α is a club in α, yet
(C ∩ α)′ = C ′ ∩ α. As α is the least element of S ∩ C ′, (C ′ ∩ α) ∩ (S ∩ α) = ∅
and so S ∩ α is nonstationary in α, hence α ∈ T ∩ C

Theorem 2.2.10 (Solovay). If S ⊂ κ is stationary then S can be split into
κ-many sationary, pairwise disjoint subsets (Sξ)ξ<κ.

Proof. If not then let S be a stationary set for which such a decomposition
is impossible. Consider the set I := {X ⊂ κ : X ∩ S is stationary }. It is
straightforward to show that I is an ideal which is κ-complete, normal, and
due to our assumption κ-saturated. The Claim in the proof of Theorem 2.2.8.
tells us that M(S) has measure one, thus S −M(S) has measure zero, i.e. is
nonstationary (S−M(S) ∈ I implies S−M(S)∩S = S−M(S) is nonstationary)
which is a contradiction to Lemma 2.2.9.

Remark: The proof above is Solovays original proof and the theorem is one
of the most prominent basic results of set theory which were discovered first in
the context of large cardinals. An elementary proof which avoids large cardinals
can be found in [11] (pp. 94-95).

Definition 2.2.11. Let κ be a regular uncountable cardinal. Then

NSκ := {X ⊂ κ : X is nonstationary }

is an ideal, the nonstationary ideal on κ

Remark: NSκ is κ-complete and normal, since its dual filter is the closed
and unbounded filter. The theorem of Solovay shows that NSκ is not κ-
saturated. The question arises if NSκ is at least κ+-saturated and that is
what we want to start to investigate now. Our goal will be a result of Gitik and
Shelah who showed that the answer is no if κ > ℵ1. We will prove this assertion
in a series of lemmas:

Definition 2.2.12. If I is an ideal on κ, S ∈ I+ then we define

I � S := {X ⊂ κ : X ∩ S ∈ I}

We say that I�S concentrates on S

Lemma 2.2.13. If I is a normal κ-complete ideal then so is I � S

Proof. Straightforward: Let (Xξ)ξ<γ , γ < κ be a sequence in I � S, i.e. Xξ∩S ∈
I ∀ξ < γ then

⋃
Xξ ∩ S ∈ I ⇒

⋃
Xξ ∈ I � S. Moreover by definition

I � S is normal if and only if its dual filter (I � S)∗ is so. Thus assume that
∀ξ < κXξ ∈ (I � S)∗. We want that ∆ξ<κXξ ∈ (I � S)∗. Since Xξ ∈ (I � S)∗

it follows that (κ − Xξ) ∩ S ∈ I and hence κ − ((κ − S) ∪ Xξ) ∈ I, thus
(κ−S)∪Xξ ∈ I∗ which implies that ∆((κ−S)∪Xξ) ∈ I∗ due to the normality
of I. But ∆((κ−S)∪Xξ) = (κ−S)∩∆Xξ ∈ I∗. Hence κ− ((κ−S)∩∆Xξ) ∈
I ⇔ S ∪ (κ − ∆Xξ) ∈ I ⇒ (κ − ∆Xξ) ∩ S ∈ I ⇔ ∆Xξ ∈ (I � S)∗ which we
wanted to show.
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Lemma 2.2.14 (Smith-Tarski). ([12], Lemma 16.5) If I is a κ+-saturated
ideal over κ then P (κ)/I, i.e. the Boolean Algebra P (κ) modulo the ideal I is a
complete one.

Lemma 2.2.15. Let I be a normal, κ-complete, κ+-saturated ideal on κ. Let
(P,<) be the forcing with I-positive sets, G be the generic ultrafilter and let
M = UltG(V ). Then PM (κ) = PV [G](κ) and all cardinals and cofinalities < κ
are preserved.

Proof. We first state again that the Boolean algebra B = P (κ)/I is complete.
Hence if Ȧ is a name for a subset A ⊂ κ, A ∈ V [G], there are sets Sα /∈ I such
that ‖α ∈ Ȧ‖ = [Sα]. If j : V →M is the canonical embedding we get for each
α: α ∈ A⇔ Sα ∈ G⇔ κ ∈ j(Sα) (the last equivalence is due to lemma 1.3.18).
Moreover, since for each α j(Sα) ∈M we have that the sequence (j(Sα)α<κ is in
M (which is a consequence of Lemma 1.3.19 (ii)) hence A = {α ∈ κ : κ ∈ j(Sα)}
is a set defineable in M , thus A ∈M and we have PV [G](κ) = PM (κ).

If λ < κ is a cardinal then since κ is the critical point of j (Lemma 2.2.2)
we have that j(λ) = λ and λ remains a cardinal in M due to elementarity of j.
Since PV [G](κ) = PM (κ), λ is a cardinal in V [G].

Definition 2.2.16. Let λ be a cardinal and let α < λ+ be a limit ordinal. A
family {Xξ : ξ < λ+} of subsets of α is called strongly almost disjoint if every
Xξ ⊂ α is unbounded and if for every ν < λ+ there exist ordinals δξ < α for
ξ < ν such that the sets Xξ − δξ, ξ < ν are pairwise disjoint.

Lemma 2.2.17. Let κ be a regular cardinal then there exists a strongly almost
disjoint family of κ+-many subsets of κ.

Proof. We first observe that there are κ+-many almost disjoint functions from
κ to κ: It suffices to show that given a list fν of κ almost disjoint functions,
there is an f which isn’t included in the list and which is almost disjoint from
each fν , ν < κ. We define f(α) 6= fν(α) ∀ν < α, which is well defined because
of the regularity of κ. Thus we have at least κ+-many almost disjoint functions
f : κ→ κ.

Next we consider a bijection h : κ×κ→ κ. If (fα)α<κ+ is an almost disjoint
family of functions from κ to κ then (h′′fα)α<κ+) is an almost disjoint family
of subsets of κ.

And now it can be seen that each almost disjoint family of subsets of κ is
in fact strongly almost disjoint: Let (Xα)α<κ be an almost disjoint family. We
define inductively X ′0 := X0, (Xα)′ := Xα− δα where δα is an ordinal such that
(Xα− δα)∩Xβ = ∅ ∀β < α. Such a δα always exists due to the regularity of κ.
The (Xα)′ are strongly almost disjoint.

Lemma 2.2.18. If α < λ+ ∧cf(α) 6= cf(λ) then there exists no strongly almost
disjoint family of subsets of α of size λ+.

Proof. If not then there would be a family (Xξ)ξ<λ+ which is strongly almost
disjoint. Since by the definition each Xξ is cofinal in α, we may assume that
each Xξ has ordertype cf(α). Let f be a function that maps λ onto α.
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Claim: For each ξ < λ+ there exists some γξ < λ such that Xξ ∩ f ′′γξ is
cofinal in α

We proof now the claim: Since cf(α) 6= cf(λ) we can distinct two cases:

(a) cf(α) > cf(λ): Assume to the contrary that there is a β < λ+ such that
for all γ < λXβ∩f ′′γ is bounded inα. Let (γξ)ξ<cf(λ) be a sequence cofinal
in λ. Let δ′ be any element of α then there is a δ > δ′ such that δ ∈ Xβ . If
ν ∈ λ denotes an element such that f(ν) = δ then there is a ξ < cf(λ) such
that γξ > ν, hence δ ∈ f ′′γξ∩Xβ and δ < sup(f ′′γξ∩Xβ) 6= α (due to our
assupmtion). Thus the non-decreasing sequence (sup(f ′′γξ ∩Xβ))ξ<cfλ is
unbounded inα which implies cfα <= cfλ which is a contradiction.

(b) cfα < cfλ: Let (xξ)ξ<cfα be an enumeration of any Xβ , β < λ+, then
for each xi, i < cfα there is a yi < λ such that xi ∈ f(yi). We obtain
a sequence (yi)i<cfα in λ, hence γβ := lim(yi) ∈ λ and Xβ ∩ f ′′γβ ⊃
(xξ)ξ<cfα = Xβ which ends our proof of the claim.

We continue with the proof of the lemma: There exixts some γ and a set
W ⊂ λ+ of size λ such that γξ = γ for all ξ ∈ W . Let η > sup(W ). By
our assumption on the Xξ there exist ordinals δξ < α, ξ < η such that the
Xξ− δξ are pairwise disjoint. Thus f−1(Xξ− δξ), ξ ∈W are λ pairwise disjoint
nonempty subsets of γ < λ which is a contradiction.

Corollary 2.2.19. If κ is a regular cardinal and if a notion of forcing makes
cfκ 6= cf |κ|, then P collapses κ+

Proof. Assume to the contrary that κ+ is preserved. Then V [G] thinks that
(κ+)V = λ+ where λ = |κ|. By Lemma 2.2.17. there exists a strongly almost
disjoint family (Xξ)ξ<κ+ of subsets of κ and it remains strongly almost disjoint
in V [G], but its length changes to λ+. Since cfκ 6= cf |κ| = cfλ (in V [G]). This
is a contradiction to Lemma 2.2.17.

Corollary 2.2.20. If κ = λ+, if ν < λ, ν 6= cfλ is regular and if I is a normal,
κ-complete, κ+-saturated ideal on κ. Then Eκν := {α < κ : cfα = ν} ∈ I.

Proof. Assume that Eκν /∈ I, let G be generic on P (κ)/I such that Eκν ∈ G. By
Lemma 2.2.14. all cardinals < κ i.e. ≤ λ are preserved as well as κ+ (I is κ+-
saturated, hence the notion of forcing P (κ)/I has the κ+.c.c.). We construct the
generic ultrapower M = UltG(V ) in V [G], which is well founded due to lemma
2.2.5. We have Eκν ∈ G⇔ {α < κ : cfα = ν} ∈ G⇔ M |= cf [d] = ν ⇔ M |=
cfκ = ν (The last equality holds because I is normal hence G) Hence V [G] |=
cfκ = ν. We also have that {α ∈ κ : |α| = λ} ∈ G which implies M |= |κ| = λ
and V [G] |= |κ| = λ follows. Thus V [G] |= cfκ = ν ∧ cf |κ| = cfλ ∧ ν 6= cfλ
which contradicts corollary 2.2.19.

Now we can easily proof the Theorem of Gitik and Shelah, at least for
successor cardinals:
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Theorem 2.2.21 (Gitik-Shelah). Let κ be a successor-cardinal such that κ >
ℵ1. Then the nonstationary ideal on κ is not κ+-saturated. Moreover the ideal
NSκ � Eκν is not κ+-saturated for all regular ν 6= cfλ where λ is the predecessor
of κ.

Proof. The sets Eκν are stationary subsets of κ. Thus if NSκ � Eκν would be
κ+-saturated then because of Corollary 2.2.20. Eκν ∈ NSκ � Eκν since NSκ � Eκν
is a κ-complete normal ideal on κ which is impossible.

What is now still opened is the question wheter NSκ is κ+-saturated when
κ is a limit cardinal. Its answer is again a negative one and its proof goes in a
diffrent direction: Again we will obtain our desired result in a series of lemmas.
We start with:

Definition 2.2.22. Let κ be a regular uncountable cardinal and let E be a
stationary subset of κ. Let C be a club on κ and let for each α ∈ E cα be a
cofinal subset of α. Then we say that the sequence (cα)α∈E guesses C if for all
α ∈ E ∃β < αC ⊃ cα−β i.e. C contains for each α ∈ E an end segment of cα.

Lemma 2.2.23. Let κ and λ be regular, λ ≥ ℵ1 and λ+ < κ. Then there exists
no sequence (cα : α ∈ Eκλ) with each cα ⊂ α closed and unbounded that guesses
every club C ⊂ κ almost everywhere [i.e. the set

G(C) := {α ∈ Eκλ : ∃β < αC ⊃ cα − β}

has measure one in the ideal NSκ] and additionaly satisfies this property:

(∗) if α ∈ E is a limit of ordinals of cofinality greater than λ, then all nonlimit
elements of cα have cofinality greater than λ

Proof. Assume to the contrary that (cα : α ∈ Eκλ) is such a sequence. Set
E0 := {α ∈ κ : α is a limit of ordinals of cofinality > λ}. E0 is clearly a club
in κ. Now we define inductively: If the club En is already defined then we
consider the club E′n, the set of the limit points of En. Due to our assumption
the set G(E′n) = {α ∈ Eκλ : ∃β C ⊃ cα − β} has measure one, i.e. it is an
element of the dual filter of NSκ, the closed unbounded filter, hence G(E′n)
contains a club C. Notice that if α ∈ C then E′n contains a final segment of cα.
Set En+1 := E′n ∩ C.

Finally we let E :=
⋂
En, which is a club. Due to the stationarity of

Eκλ , E ∩ Eκλ is nonempty and we set δ := min(E ∩ Eκλ). For every n < ω E′n
contains a final segment of cδ since δ ∈ En+1. But cfδ = λ > ℵ0 and so a final
segment of cδ is contained in E. Pick some β ∈ E ∩ cδ. By (∗) cf(β) > λ. Since
E′n ⊃ En+1 β ∈ E′n for every n ∈ ω. So it is a limit point of En. Hence En ∩ β
is a club in β for every n ∈ ω. Since cfβ > ℵ0 also E ∩ β is a club in β. But
cfβ > λ, hence there is some γ ∈ E ∩ β of cofinality λ which contradicts the
minimality of δ0.

A only slightly different concept is this one, invented again by Shelah:

40



Definition 2.2.24. Let κ, θ be regular cardinals, κ > ℵ2 ∧ κ > θ+. If S ⊂ Eκθ
is stationary in κ then ♦′club(S) denotes the following: There exists a sequence
(Sα : α ∈ Eκθ ) which satisfies:

(i) Sα ⊂ α

(ii) sup Sα = α

(iii) |Sα| = θ

(iv) if α is a limit of ordinals of cofinality > θ (and > ℵ1 if θ = ℵ0) then for
every β ∈ Sα cfβ > θ (and if θ = ℵ0 then cfβ > ℵ1)

(v) For every club C ⊂ κ the set {α ∈ S : ∃β < α C ⊃ Sα − β} is stationary

The next very small lemma emphasizes the similarites between the two no-
tions, ♦′club(S) and the sequence defined in Lemma 2.2.23.

Lemma 2.2.25. If ♦′club(E) holds then there exists a squence (cα)α∈E such
that:

(i) cα ⊂ α is a club for each α ∈ E

(ii) if α ∈ E is a limit of ordinals of cofinality greater than θ then all nonlimit
elements of cα have cofinality greater than θ

(iii) if C is a club then{α ∈ E : ∃β ∈ αC ⊃ cα − β} is stationary.

Proof. Just define cα := Sα where Sα denotes the completion under the limit
of sequences in Sα, and Sα is the ♦′club(E)- sequence. Then the cα have the
desired properties.

We see that the only difference to the concept of lemma 2.2.23. is point (iii),
where we have postive measure instead of measure one. Surprisingly this turns
the existence upside down since:

Theorem 2.2.26. Let κ > θ are regular cardinals, κ > θ+ ∧ κ > ℵ2. If S ⊂ Eκθ
is stationary then ♦′club(S) holds in ZFC.

Proof. Suppose otherwise that θ+ ≥ ℵ2 (otherwise we do the same proof only
with θ+ replaced by θ++). We will show that there is even a sequence (Sα)α∈S
witnessing ♦′club(S) such that for every club C ⊂ κ {α ∈ S : C ⊃ Sα} is
stationary. Suppose that for some stationary S ⊂ Eθκ ♦′club(S) fails. We shall
define sequences (Ci : i < θ+) of clubs on κ, (T iα : i < θ+, α ∈ S) of trees which
nodes are elements of α and subsets (Siα : i < θ+, α ∈ S) of α. We start with the
definition of the trees T iα: Let C be a club with nonlimit points of cofinality > θ
and let α ∈ Eκθ be an ordinal which is the limit of ordinals of cofinality> θ.We
define in this case a canonical tree Tα(C). The first level of Tα(C) will consist
of a closed cofinal in α sequence F of order type θ, whose nonlimit points have
cofinality > θ. We pick such a sequence to be the least one in some fixed well
ordering. Now let η be a point from the first level. Let η∗ be the predeccessor
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of η in the sequence F if there exists one and let η′ := sup(C ∩ (η + 1)). Now
we want to define the set of the immediate successors of η in the tree Tα(C),
i.e. the set sucTα(C)(η). We distinguish these three cases:

(a) if η is a limit point of F then sucTα(C)(η) = ∅

(b) if η is not a limit point and η′ < η∗ then again sucTα(C)(η) = ∅

(c) η∗ < η′ < η and

(i) if cfη′ > θ then set suc(η) = {η′} and suc(η′) = ∅
(ii) if cfη′ ≤ θ then as above we pick the least closed cofinal in η′ sequence

F ′ of length cfη′ with nonlimit points of cofinality > θ and the first
element above η∗ if it exists. Otherwise set suc(η) = ∅.

Using the points (a)− (c) we continue to define Tα(C) above η. Tα(C) is a tree
of cardinality ≤ θ and is wellfounded.

Now let us define the sequences of clubs: Let C0 be a club with nonlimit
points of cofinality > θ. For α ∈ S which is a limit of ordinals of cofinality > θ
we set T 0

α := Tα(C0) and S0
α := T 0

α ∩ C0 ∩ Eκ>θ i.e. the set of all points of all
the levels of T 0

α which are in C0 and have cofinality bigger than θ. We have
that for all but nonstationary α’s in S, S0

α is unbounded in α (if C0 ∩ α is a
club in α then S0

α = T 0
α ∩ C0 ∩ Eκ>θ is unbounded in α, and the set {α ∈ κ :

α∩C0 is a club in α} is a club in κ, hence the set {α ∈ S : α∩C0 is bounded }
has measure zero). We will ignore this nonstationary set where S0

α is not defined
or bounded and let S0

α be an unbounded, in α cofinal sequence of length θ in
these cases.

Now due to our assumption, there exists a club C1 ⊃ C0 such that every
nonlimit point has cofinality > θ, and C1 witnesses the failure of (Sα : α ∈ S)
being a ♦′club(S)- sequence. We define T 1

α and S1
α as above with C1 replacing

C0 and continue by induction. At limit stages we take Ci to be a club subset of⋂
j<i Cj with nonlimit points of cofinality > θ.

Finally let D =
⋂
i<θ+ Ci, and D is a club since κ > θ+. Let α ∈ D ∩ S

be such that the elements of D of cofinality > θ are unbounded in it (such an
α always exists: Let D̃ be a club subset of D such that every nonlimit element
has a cofinality > θ, and consider the club D̃′ (i.e. the set of all limit points
of D̃). Then D̃′ ∩ S 6= ∅ and if α ∈ D̃′ ∩ S then it has the desired property).
Now let us show that the trees Tα(Ci), i < θ+ must stabilize, i.e. there is an
iα < θ+ such that Tα(Ci) = Tα(Cj) for all i, j > iα: If not then there would be
a η0 ∈ Lev1(T 0

α) such that there is no stabilisator above it ( this is due to the
fact that there would be θ+-many diffrent trees but only θ-many elements at
level 1). The first level of all the trees is the same by definition. η0 can not be a
limit, because it would have no successors in the tree in this case (by (a) in the
definition of the tree), so let η∗0 be again the predeccessor of η0 in the sequence
or 0 if there is none. Since there is no stabilization above η0 in the trees and
Ci’s are decreasing, the sequence (η0,i : i < θ+) where η0,i := sup(Ci∩ (η0 +1))
will be a nonincreasing sequence of ordinals inside the interval (η0, η]. Hence
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it is eventually constant, so there is some η1 ∈ (η∗0 , η0, cfη1 ≤ θ such that
η0,i = η1 for all i bigger than some i1. By the definition of the trees the set of
the immediate successors of η1 will be the same in every Tα(Ci) (i ≥ i1). Pick
η2 to be one of them with no stabilization above it. Deal with it as it was done
with η0. We will obtain η2, η3, . . . which form an infinite decreasing sequence
of ordinals which is impossible.

Hence there is an iα < θ+ such that T iα = T iαα for every i ≥ iα. Then
there are i∗ < θ+ and a stationary S∗ ⊂ S such that for every α ∈ S∗ : iα =
i∗ ∧ supSi∗α = α. But this contradicts the choice of Ci∗+1.

Now we can prove the Theorem of Gitik-Shelah for every cardinal > ℵ2:

Theorem 2.2.27 (Gitik-Shelah). Let κ, λ be regular uncountable cardinals,
κ ≥ ℵ3. Then the ideal NSκ � Eκλ can not be κ+-saturated.

Proof. Let E ⊂ Eκλ be stationary. Then by Lemma 2.2.25. there exists a
sequence (cα)α∈E that witnesses ♦′club(E). We have the following

Claim: If NSκ � Eκλ is κ+-saturated then there exists a stationary set

Ẽ ⊂ E such that for every club C, Ẽ−G(C) := {α ∈ E : ∃β < αC ⊃ cα−β is
nonstationary. (With Definition 2.2.20. in mind we can say that C is guessed
by (cα) at almost every α ∈ Ẽ).

We prove now the claim: If not then for every stationary S ⊂ E there exists
a club C such that S −G(C) is stationary. Thus there exists a family of pairs
(Si, Ci) which has cardinality at most κ such that W = {Si−G(Ci : i < κ} is a
maximal antichain in P (κ)/NSκ below E. If we set C := ∆i<κ(Ci then for every
i < κ Ci contains an end segment of C thus G(Ci) contains an end segment of
G(C) and hence G(C) is stationary. But we have that G(C) − (Si − G(Ci) ∈
NSκ because G(C) ∩ (Si − G(Ci)) ⊂ G(C) ∩ (κ − G(Ci)) is bounded hence
nonstationary. This contradicts the maximality of W , which ends the proof of
the claim.

We continue with the proof of the theorem: Assume now to the contrary that
NSκ � Eκλ is κ+-saturated. By the saturation there exists a maximal antichain
{Si : i < γ} of pairwise disjoint stationary subsets of Eκλ with γ ≤ κ and for
each i there exists a sequence of clubs (cα)α∈Si (by lemma 2.2.25.) witnessing
♦′club(Si). The sets Si are so chosen that every club C ⊂ κ is guessed at almost
every α ∈ Si. Then (cα : α ∈

⋃
i<κ Si) guesses every C almost everywhere

which contradicts lemma 2.2.23.

The theorem above doesn’t tell us anything about the case where λ = ω.
Indeed its proof doesn’t work if λ is countable as the proof of lemma 2.2.23 fails.
However we can define a sequence in the sense of 2.2.23 which works for ω too,
quickly leading to the assertion that the theorem of Gitik-Shelah still holds for
λ = ω. We follow the lines of [9]:
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Definition 2.2.28. Let κ and λ be two regular cardinals with κ > ℵ2 and
κ > λ+. Then ♦∗club(κ, λ) denotes the following: There exists a sequence (Sα :
α ∈ Eλκ) with the following properties:

1. ∀α ∈ Eλκ Sα ⊂ α

2. ∀α ∈ Eλκ sup(Sα) = α

3. ∀α ∈ Eλκ |Sα| = λ

4. if α is a limit of ordinals of cofinality > λ (and > ℵ1 if λ = ω) then for
every β ∈ Sα cf(β) > λ (and cf(β) > ℵ1 if λ = ω).

5. for every club C ⊂ κ the set

G(C) := {α ∈ Eλκ : ∃β < αC ⊃ Sα − β

has measure one in NSκ, i.e. contains a club intersected with Eλκ .

Note that if λ > ω then a ♦∗club(κ, λ) sequence is exactly the sequence of
lemma 2.2.23, hence such a sequence can’t exist. This remains true in the
countable case:

Lemma 2.2.29. ♦∗club(κ, ω) doesn’t hold in ZFC for each regular κ.

Proof. Similar to the proof of 2.2.23: Let E0 := {β < κ : β is a limit of ordinals
of cofinality > ℵ1}. E0 is a club, hence so is E′0, the set of its limits, thus there
exists a club C ⊂ κ such that for each α ∈ C∩Eωκ , E′0 contains a final segement of
Sα. Let E1 := E′0∩C and continue this way. We obtain a sequence (Ei : i < ω1)
and set E :=

⋂
i<ω1

Ei. As in the proof of 2.2.23 let δ denote the minimum of
E∩Eωκ . We know by (3) of the definition that |Sδ| = ω, thus let (sn : n ∈ ω) be
a sequence in Sδ, cofinal in δ. Since Ei+1 contains a final segment of Sδ for each
i, there must be an n0 ∈ ω such that for ℵ1 many i’s Ei+1 ⊃ {sn : n ≥ n0}.
But the Ei’s are decreasing hence for each i ∈ ℵ1 Ei ⊃ {sn : n ≥ n0}. Hence
there is a β ∈ E ∩ Sδ, which satisfies cf(β) > ℵ1 (δ ∈ E and point 4 in the
definition). β is a limit point of each En as E′n ⊃ En+1, which implies that
En ∩ β is a club for each n. Since cf(β) > ℵ1 also E ∩ β is a club in β, thus
verifying the exsistence of a γ in E ∩ β of cofinality ω which contradicts the
minimality of δ.

Lemma 2.2.30. Let κ, λ be regular cardinals with κ > λ+ and κ > ℵ2. Assume
that NSκ � Eλκ is κ+-saturated. Then for any stationary S ⊂ Eλκ and for any
♦′club(S) sequence (Sα : α ∈ S) there exists a stationary S∗ ⊂ S such that for
every club C ⊂ κ the set

GS∗(C) := {α ∈ S∗ : ∃β < αC ⊃ Sα − β}

contains a club intersected with S∗.
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Proof. Assume that the lemma is false. Let S ⊂ Eλκ witness this. We define
inductively a modulo NSκ decreasing sequence of clubs (Cα : α < κ+) and an
almost disjoint sequence (Aα : α < κ+) of stationary subsets of S:

If C is a club then G(C) denotes as always the set {α ∈ S : ∃β < αC ⊃
Sα−β}. Let C0 be a club such that S−G(C0) is stationary. Set A0 := S−G(C0).
Now assume that (Cβ : β < α) and (Aβ : β < α) are already defined. First
take a club C which is almost contained in every Cβ for β < α (such a C
always exists, take for example the diagonal intersection of the previous Cβ).
Then consider the stationary G(C) which is almost contained in every G(Cβ)
for β < α. As G(C) is stationary there exists a club Cα ⊂ κ such that {γ ∈
G(C) : ∃β < γ Cα ⊃ Sγ − β} does not contain a club intersected with G(C),
i.e. there exists a club Cα such that G(C)−G(Cα) remains stationary. Finally
let Aα := G(C)−G(Cα). This completes the inductive definition.

Now we obtain a sequence of length κ+ of stationary subsets Aα, whose
intersections are nonsationary, contradicting the κ+-saturatedness of NSκ �
Eλκ .

Now the proof of the full theorem is easy:

Theorem 2.2.31 (Gitik-Shelah). As always let κ and λ be two regular car-
dinals, κ > ℵ2 and λ+ < κ. Then NSκ � Eλκ is not κ+-saturated.

Proof. Assume that NSκ � Eλκ is κ+-saturated. Then we pick a maximal se-
quence of almost disjoint stationary subsets S∗, given by our last lemma, which
must be of size κ. Then we make them completely disjoint, and glue the ♦′club-
sequences together to finally obtain ♦∗club(κ, λ) which is a contradiction.

2.3 The saturation of NSℵ1

The theorem of Gitik-Shelah leaves the case κ = ℵ1 unanswered, thus our
next attempt will be to present a solution to the question: May NSℵ1 be ℵ2-
saturated? We show in this section that relative to the existence of a super-
compact cardinal, it is consistent that NSℵ1 is ℵ2-saturated. Hence the result
of Gitik and Shelah is best possible. We start with a technical lemma:

Lemma 2.3.1 (Laver function). Suppose that κ is a supercompact cardinal.
There exists a function f : κ→ Vκ such that for every set x and every λ ≥ κ with
x ∈ Hλ+ , there exists a normal measure U on Pκ(λ) such that jU (f)(κ) = x.
Such an f is called a Laver function.

Proof. By contradiction. Thus assume the lemma is false. For each f : κ→ Vκ
let λf be the least cardinal such that there exists an x ∈ Hλ+ and x witnesses
the Non-Laverness of f , i.e. jU (f)(κ) 6= x for every normal measure U on
Pκ(λf ). Choose a ν, greater than all of the λf ’s and let j : V →M witness the
ν-supercompactness of κ.

Let ϕ(g, δ) be the following statement: There exists a cardinal α, g : α→ Vα
and δ is the least cardinal δ ≥ α for which there exists an x with x ∈ Hδ+ such
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that there is no normal measure U on Pα(δ) with jU (g)(α) = x. Again let λg
denote this δ. Since κ is the critical point of j we know that each f : κ→ Vκ in
V is also a function f : κ→ (Vκ)M , hence f : κ→M and since Mκ ⊂Mν ⊂M ,
we know by elementarity that M |= ϕ(f, λf ) for all f : κ → Vκ. Let A be the
set of all α < κ such that ϕ(g, λg) holds for all g : α→ Vα. By our assumption
we know that κ ∈ j(A), hence A cannot be empty.

Now inductively define f : κ → Vκ as follows: If α ∈ A we let f(α) = xα
where xα witnesses ϕ(f � α, λf�α), otherwise f(α) = ∅.

From now on the proof will be more sketchy. Let x = jf(κ). It follows
from the definition of f that x witnesses ϕ(f, λf ) in M and hence in V . Let
U := {x ∈ Pκ(λ) : j“λ ∈ j(x)}, which is a normal ultrafilter and induces
an elementary embedding jU due to the Solovay-Reinhardt characterization of
supercompact cardinals. Thus we can write j = k ◦ jU where k : UltU (V )→M
is an elementary embedding. It’s not hard to verify that k(x) = x and therfore
jU (f)(κ) = k−1(jf)(κ) = k−1(x) = x which is a contradiction.

Next the mother of all the forcing axiom ever studied - Martin’s Axiom

Definition 2.3.2 (Martin’s Axiom). Suppose that (P,<) is a partial order
with the c.c.c and let D be a collection of fewer than 2ℵ0 dense subsets of P ,
then there exists a D-generic filter on P.

Further let κ be an infinite cardinal, then MAκ is the following assertion:
Let (P,<) be a partial order, satisfying the c.c.c. and let D be a collection of at
most κ many dense subsets of P, then there exists a D-generic filter on P.

Note that PFA impliesMAℵ1 . We will need only one (of the many interesting
consequences) of MAκ:

Fact 2.3.3 ([11], Exercise 16.10 ). MAκ implies that κ < 2ℵ0

Theorem 2.3.4. If κ is a supercompact cardinal then there is a proper forcing
extension in which κ equals ℵ2 and PFA holds.

Proof. Let f : κ → Vκ be a Laver function. We construct a countable support
iteration Pκ of {Q̇α : α < κ} as follows: At stage α, if f(α) is a pair ((Ṗ ), (Ḋ))
of Pα names such that Ṗ is proper and Ḋ is a γ-sequence of dense subsets of
Ṗ for some γ < κ then set Q̇α = Ṗ . Otherwise let Q̇α be the trivial forcing.
Note that each notion of forcing used in the iteration is proper by definition,
hence Pκ is proper and ℵ1 is preserved. Further each Pα (i.e. the iteration of
{Q̇β : β < α}) has size less than κ, as f(α) ∈ Vκ, hence (due to fact 1.5.18.)
Pκ has the κ-c.c. and all cardinals ≥ κ are preserved. Let G be a generic filter
on Pκ. Now we

Claim: In V [G] holds that if P is proper and D := {Dα : α < κ} with
γ < κ is a family of dense subsets of P , then there is a D-generic filter on P .

First we prove this claim: Let Ṗ , Ḋ be Pκ names for P and D. Let λ > 22
|P |

and w.l.o.g. we may assume that P ≤ λ. Remember that f is a Laver function,
therefore there is an elementary embedding j : V → M with critical point
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κ such that j(κ) > λ,Mλ ⊂ M and jf(κ) = (Ṗ , Ḋ). By our assumption P is
proper in V [G] and by lemma 1.5.25. this is witnessed by a club C of elementary
submodels M ≺ (Hη, ...) where 2|P | < η < λ. Since Mλ ⊂ M and Pκ has the

κ-c.c., V [G] thinks that M [G]λ ⊂ M [G] (let f ∈ M [G]λ then f has a name ḟ ,
hence each f ∈ M [G]λ can be seen as a f ∈ Mλ which is itself in M and so
f ∈M [G]). Thus C is a club inM [G], witnessing that P is proper in M [G].

Now consider the forcing notion j(Pκ) in M . Due to elementarity it is a
countable support iteration of length j(κ), generated by the Laver function
j(f). We note that j(Pκ) � κ = Pκ (as j � Vκ is the identity), and as jf(κ) =
(Ṗ , Ḋ), P proper in M [G] (which implies that if Ṗ is a name of P in M [G],
then Ṗ is proper in j(Pκ) � κ = Pκ in M) it follows that j(Q̇)κ = Ṗ and
j(Pκ) = Pκ ∗ Ṗ ∗ Ṙ for a forcing notion Ṙ. Thus j(Pκ) satisfies the Kunen-
Paris schema and if H ∗ K denotes a V [G]-generic filter on Ṗ ∗ Ṙ, then in
V [G ∗ H ∗ K] we may extend j to the elementary embedding j : V [G] →
M [G∗H∗K]. The filterH on P is V [G]-generic, hence has nonempty intersection
with every Dα ∈ D. Let E = {j(p) : p ∈ H} then E belongs to M [G ∗
H ∗K] and generates a filter on j(P ) that is j(D)-generic. Hence M [G ∗ H ∗
K] |= “there exists a j(D) generic filter on j(P )” and due to elementarity we
have V [G] |= “there exists a D-generic filter on P”. This is the end of the proof
of the claim.

Now the rest is easy: For every γ < κ let P be the forcing that collapses
γ onto ω1, with countable conditions and for α < γ let Dα := {p ∈ P :
α ∈ ran(p)}. Due to our claim there exists a bijection between γ and ω1 and
as V [G] preserves κ (Pκ has the κ-c.c.) we conclude that V [G] |= κ = ℵ2.
The already proven claim thus shows that in V [G] PFA holds. The last thing
remaining is to show that 2ℵ0 = ℵ2 in V [G]. On the one hand we have that
(2ℵ0)V [G] ≤ (|Pκ|ℵ0)V = (κℵ0)V = κ. On the other hand PFA implies MAℵ1
and so 2ℵ0 > ℵ1 and so 2ℵ0 ≥ ℵ2 = κ, thus 2ℵ0 = κ = ℵ2 in V [G].

There exists a notion of iteration, the so called revised support iteration
(RCS) for which semiproperness of the {Q̇β : β < α} implies semiproperness
of Pα. We can use the RCS to obtain a result, similar to our last theorem:

Theorem 2.3.5. If κ is a supercompact cardinal than there is a semiproper
forcing extension in which SPFA and κ = ℵ2 holds.

Thus SPFA and PFA are consistent relative to the existence of a supercom-
pact cardinal.

Definition 2.3.6 (Martin’s Maximum (MM)). If (P,<) is a stationary set
preserving notion of forcing, and if D is a collection of ℵ1 dense subsets of P
then there exists a D-generic filter on P .

Definition 2.3.7. A sequence (Mα : α < ω1) of countable elementary submod-
els of Hλ = (Hλ,∈, <) is called an elementary chain if it satisfies additionally
Mα ⊂ Mβ for α ≤ β, Mα ∈ Mβ for α < β and Mα =

⋃
β<αMβ for each limit

α.
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MM is consistent relative to the existence of a large cardinal. This follows
from the next theorem:

Theorem 2.3.8 (Shelah). SPFA implies that every stationary set preserving
notion of forcing is also semiproper. As a consequence SPFA implies MM.

Proof. First we define a new notion: If X is a set of countable elementary
submodels of Hλ = (Hλ,∈, <) then:

X⊥ := {M ∈ [Hλ]ω : M ≺ Hλ andN /∈ X for every countable N that
satisfies M ≺ N ≺ Hλ and N ∩ ω1 = M ∩ ω1}

Lemma 2.3.9. Assume SPFA and let ω1 ≤ κ < λ with λ regular and sufficiently
large. Let Y ⊂ [Hκ]ω be stationary and let X = {M ∈ [Hλ]ω : M ∩Hκ ∈ Y }
be the lifting of Y to Hλ. Then there is an elementary chain (Mα : α < ω1) of
submodels of (Hλ,∈<) such that Mα ∈ X ∪X⊥ for all α < ω1.

Moreover the assertion remains true if we consider any X ′ ⊃ X

Proof. Let P be the forcing that shoots on elementary chain through X ∪X⊥,
i.e. the conditions of P are elementary chains (Mα : α < γ < ω1) in X ∪X⊥
and stronger conditions are extensions of the weaker ones. In order to show that
this definition of P does make sense (and is not the trivial forcing) we prove
first that the sets {(Mα ∈ X ∪X⊥ : α ≤ γ) : γ ≥ ξ} = Dξ form dense sets in
P .

Thus let (Mα ∈ X ∪X⊥ : α < γ) be a sequence of countable length in V .
Let P be the forcing notion that collapses |Hλ| to ω1 with countable conditions.
Let G be V -generic over P . In V [G] there exists an elementary chain C of length
ω1 with limit (Hλ)V . Since X ∪ X⊥ is stationary, and the forcing is proper,
and the elementary chain is a club, hence we know that X ∪ X⊥ ∩ C is itself
a stationary subset of [(Hλ)V ]ω of size ℵ1. Due to the theorem of H. Friedman
[7] we know that (X ∪ X⊥) ∩ C contains a closed subset of length γ < ω1 for
any γ < ω1. This subset is an elementary chain. Thus in V [G] holds that for
every γ < ω1 there is an elementary chain C of length γ such that C ⊂ X ∪X⊥.
Since P is < ω1-closed and therefore all functions f : γ → V in V [G] with γ
countable are in V . Hence V contains elementary chains through X ∪ X⊥ of
any countable length.

The next thing we want to show is that the forcing notion P is semiproper:
Let µ > λ, let M ≺ (Hµ,∈, <) be countable with P ∈ M and let p ∈ P ∩M .
Due to fact 1.5.31. we only need to find a q ≤ p that is (M,P )-semigeneric.

Claim: There exists a countable N with N ≺M ≺ Hµ such that N ∩ ω1 =
M ∩ ω1 and N ∩Hλ ∈ X ∪X⊥

We proof this claim: If M ∩ Hλ ∈ X⊥ then set N = M . If not then
there exists a countable N ′ ≺ Hλ such that M ∩Hλ ⊂ N ′, N ′ ∩ ω1 = M ∩ ω1

and N ′ ∈ X. Let N be the Skolem hull of M ∪ (N ′ ∩ Hκ) in (Hµ,∈, <).
Then N ∩ Hκ ⊃ (M ∪ (N ′ ∩ Hκ)) ∩ Hκ = (M ∩ Hκ) ∪ (N ′ ∩ Hκ) and as
M ∩Hλ ⊂ N ′, N ′∩Hκ ⊃M ∩Hκ, hence N ∩Hκ ⊃ N ′∩Hκ. On the other hand
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N ∩Hκ ⊂ N ′ as for every Skolem function h for Hµ, h ∩Hκ ∈ M ∩Hλ ⊂ N ′.
Thus N ∩Hκ = N ′ ∩Hκ, which gives us N ∩ω1 = N ′ ∩ω1 and N ∩Hκ ∈ Y (as
N ′ ≺ Hλ, N

′ ∈ X ⇒ N ′ ∩Hκ ∈ Y ⇒ N ∩Hκ ∈ Y ) hence N ∩Hλ ∈ Y and this
ends the proof of our claim.

Using this claim we can finish the proof of lemma 2.3.9. We can find a
decreasing sequence of conditions pn ∈ N with p = p0 such that pn = (Mα :
α < γn and such that every name for a countable ordinal in N is decided by some
pn (as an ordinal in N). We may also assume that

⋃
n∈ω

⋃
α≤γnMα = N ∩Hλ.

Set γ =
⋃
γn and Mγ = N ∩ Hλ, then as already shown in the proof of our

claim Mγ ∈ X∪X⊥, hence q = (Mα : α ≤ γ) is a condition in P , stronger than
p and by construction (N,P )-semigeneric. Since M ⊂ N and M ∩ω1 = N ∩ω1,
q is also (M,P )-semigeneric which is all we wanted to prove our lemma

Now we are finally ready to finish the proof of the theorem. We go on
indirectly, assume that SPFA holds, further that Q is a stationary set preserving
notion of forcing, that is not semiproper. Let κ be sufficiently large so that all
Q names for countable ordinals are in Hκ.

By our assumption Q is not semiproper, hence there is a condition p ∈ Q for
which the set Y = {M ∈ [Hκ]ω : M ≺ Hκ∧ there is no (M,Q)-semigeneric q ≤
p} is stationary. Let λ > κ be regular and lift the set Y to Hλ, i.e. con-
sider X = {M ∈ [Hλ]ω : M ∩ Hκ ∈ Y } which remains stationary. Due
to our choice of κ we may rewrite: X = {M ∈ [Hλ]ω : M ∩ Hκ ≺ Hκ ∧
there is no (M ∩Hκ, Q)-semigeneric q ≤ p } = {M ∈ [Hλ]ω : M ∩ Hκ ≺
Hκ ∧ there is no (M,Q)-semigeneric q ≤ p }. By our last lemma there exists
an elementary chain (Mα : α < ω1) in X ∪X⊥. We

Claim The set {α < ω1 : Mα ∈ X} is nonstationary in V [G] hence in V .

We proceed by proving the claim: Towards a contradiction we assume that
S is stationary. Let G be a generic filter on Q, p ∈ G. Remember that
Q is assumed to be stationary set preserving, hence S remains stationary in
V [G]. Let δ̇ξ, ξ ∈ ω1 be an enumeration of all the names in

⋃
α<ω1

Mα for
countable ordinals. We define in V [G] the set C := {α < ω1 : Mα ∩ ω1 =
α} ∩ {α < ω1 : ∀ξ < α(δ̇ξ ∈ Mα)} ∩ {α < ω1 : ∀ξ < α δ̇Gξ < α} ∩ {α < ω1 :

each name of a countable ordinal in Mα is in {δ̇ξ : ξ < α}}. It is straightfor-
ward to check that each of the sets is a club, hence C is a club itself. Moreover
if α ∈ C then there is a q ∈ G below p such that for every δ̇ξ ∈ Mα q 
 ∃β ∈
αδ̇ξ = β and as α ⊂ Mα we have q 
 ∃β ∈ Mα δ̇ξ = β. Thus q is (Mα, Q)-
semigeneric. Hence if S is indeed stationary then there is an α ∈ C ∩ S which
leads to an Mα ∈ X which includes a (Mα, Q)-semigeneric condition ≤ p, which
is a contradiction to the way we defined X. Hence S has to be nonstationary
and our claim is proven.

With the last claim in mind we derive that there exists an elementary chain
(Mα : α < ω1) in X⊥. Let µ > λ be sufficiently large, pick a countable
M ≺ (Hµ,∈, <,Q, (Mα : α < ω1)) with p ∈ M and set δ = M ∩ ω1, which
implies Mδ ⊂ M ∩ Hλ and δ = Mδ ∩ ω1. Since Mδ ∈ X⊥ we know that
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M ∩ Hλ /∈ X and by the definition of X there exists an (M,Q)-semigeneric q
below p. So for each p ∈ Q there is a club of countable M ≺ (Hµ,∈, <) and an
(M,Q)-semigeneric q ≤ p. If we take the diagonal intersection then we obtain
a club of countable M ≺ (Hλ,∈, <) such that for every p ∈ M there is an
(M,Q)-semigeneric condition below p, establishing the semiproperness of Q.

Theorem 2.3.10. MM implies that NSℵ1 is ℵ2-saturated.

Proof. Let {Ai : i < δ} be a maximal, almost disjoint collection of stationary
subsets of ω1. Assume that MM holds. Our goal is to find a subset Z ⊂ δ such
that |Z| ≤ ℵ1, and

∑
i∈Z Ai contains a club (

∑
denotes the diagonal union).

This suffices because: Suppose that S is a stationary subset, that doesn’t equal
any Ai. Suppose further that S ∩Ai ∈ NS for each i then

∑
i∈δ(S ∩Ai) ∈ NS,

and this contradicts the fact that
∑
Ai contains a club.

Let P be the set of all pairs (p, q) with the following properties:

1. q : γ + 1→ δ for some γ < ω1

2. p ⊂ ω1 is a closed subset of ω1 of countable size such that α ∈ p ⇒ α ∈⋃
ξ<αAq(ξ)

On P we consider the following ordering: (q′, p′) < (q, p) if and only if q′ ⊃ q
and there is an α such that p′ ∩ α = p, i.e. p′ is an end extension of p.

Thus P is a 2-step iteration P = Q ∗ R where Q collapses |δ| to ω1 and
R shoots a club through Ṡ :=

∑
i∈δ Ai, the diagonal union of the Ai. P is

stationary set preserving: Let A ⊂ ω1 be stationary then, by maximality there
is some i < δ such that A ∩ Ai is stationary. As Q is ω-closed, it preserves
stationarity, hence A ∩Ai ∩ Ṡ is stationary inV Q. We further

Claim: The forcing for shooting a club through the stationary set Ṡ pre-
serves stationarity of any stationary subset of Ṡ.

We prove the claim: To faciliate our notation we write S instead of Ṡ (our
ground model is V Q but we will not denote its elements with a dot) Our forcing
notion consists of closed subsets p ⊂ S of countable length (they exist due to
H. Friedmans theorem [7]), and p is stronger than q if and only if there is an
α < ω1 such that p ∩ α = q. We shall show that if T ⊂ S is stationary and if p
is a condition such that p 
 Ċ is a club in ω1 then there is a q ≤ p and a λ ∈ T
such that q 
 λ ∈ Ċ.

We construct a sequence of sets of conditions like this: Set A0 = {p}
and Aα :=

⋃
β<αAβ if α is a limit. If Aα is already defined we let γα :=

sup{max(q) : q ∈ Aα} and further we let r(q) be a condition stronger than q
such that max(r) > γα and there exists a β(q) > γα with r(q) 
 β(q) ∈ Ċ.
We may additionally assume that max(r(q)) > β(q). Then we let Aα+1 :=
Aα ∪ {r(q) : q ∈ Aα}.

Consider the set C := {λ < ω1 : α < λ⇒ γα < λ}. C is a club hence C ∪T
contains limit ordinals, let λ be one of these, then there is a sequence of αn that
converges to λ. As λ ∈ C we also have that γαn → λ. Let pαn ∈ Aαn be a
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corresponding, decreasing sequence of conditions, then sup{max(pαn) : αn <
λ} = λ, hence q :=

⋃
pαn ∪{λ} is a condition and we have: q 
 ∀n < ωβ(pαn) ∈

Ċ which leads to q 
 ∃β = limβ(pαn) ∈ Ċ but limβ(pαn) = limγαn = λ and
therefore q 
 λ ∈ Ċ ∩ S which gives us the claim.

Therefore A ∩Ai ∩ Ṡ remains stationary in V P , and so does A.
Now define for each α < ω1: Dα := {(q, p) ∈ P : α ≤ max(p)}. Dα is dense

for each α < ω1, and since MM holds, there is a generic filter G on P that meets
every Dα. Set

F :=
⋃
{q : (q, p) ∈ G for some p} C :=

⋃
{p : (q, p) ∈ G for some q}

Then C is a club and F a function ω1 → |δ| and moreover C = {α : ∃ξ < α(α ∈
AF (ξ))}. Now it follows that if A is an arbitray stationary set then A ∩ C is a
stationary subset of C, and due to the closedness of NSℵ1 under diagonal unions
we know that there must be β < ω1 such that C ∩A∩AF (β) is stationary which
means that {AF (α) : α < ω1} is already a maximal pairwise almost disjoint
collection. Thus NSℵ1 is ℵ2-saturated.

51



Chapter 3

The saturation of the
generalized NS

3.1 The generalized Splitting Theorem

The first result we obtained, concerning the question of the saturation of the
nonstationary ideal on κ, was Solovays Splitting Theorem, asserting that NSκ
cannot be κ-saturated. It is reasonable to think about an analogue in the more
general notion of stationarity, defined in 1.1.13.

Our first expectation would be something like
”
every stationary subset of

Pκ(λ) can be partitioned into (λ)<κ pairwise disjoint stationary subsets“. How-
ever this is impossible as we will see after some lemmas.

Lemma 3.1.1. There exists a stationary set S ⊂ [ω2]ω of size ℵ2.

Proof. Due to the Theorem of Kueker the clubs and the strong clubs coincide
on [ω2]ω. Thus there is for every club C a functional F : [ω2]<ω → ω2 such that
C = CF .

For each uncountable α < ω2 let fα : α→ ω1 be a bijection and set

Xα,ξ := {β < α : fα(β) < ξ}.

Now we claim that the set

S := {Xα,ξ : α < ω2, ξ < ω1}

is stationary.
Let f : [ω2]<ω → [ω2]ω be an arbitrary function. It suffices to show that

there are α < ω2 and ξ < ω1 such that Xα,ξ is closed under f . We first claim
that there is an α < ω2 such that α is closed under f : Let α0 := ω1 and consider
the union

⋃
e∈[ω1]<ω

g(e). As ω2 is regular there exists an α1 < ω2 such that⋃
g(e) ⊂ α1. We continue like this: Again build

⋃
e∈[α1]<ω

g(e), for which an
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α2 < ω2 exists such that
⋃
g(e) ⊂ α2 and so on. If we let α := supi∈ωαi then

this is our desired ordinal less than ω2, which is closed under f .
Next let ξ0 := ω. Consider Xα,ξ0 and take the union

⋃
e∈[Xα,ξ]<ω g(e). As

Xα,ξ0 is, by our assumption countable,
⋃
g(e) is countable as well, moreover⋃

g(e) ⊂ α, hence there exists an α1 < ω1 such that
⋃
g(e) ⊂ Xα,ξ1 . We loop

this construction to obtain a sequence Xα,ξ0 , Xα,ξ1 , ... and if we let ξ := supi∈ωξi
then Xα,ξ is closed under f , which ends the proof of the lemma.

The lemma above shows that a partition of a stationary subset of Pκ(λ)
into λ<κ many sets might be impossible. For instance if κ and λ are regular
cardinals such that λ<κ > κ and a stationary subset S of Pκ(λ) of size λ exists
then a partition of S into λ<κ many parts is impossible.

But there is even another reason why our first attempt of the generalization
of Solovays Theorem fails; Large cardinals affect the size of sat(NS) too.

Theorem 3.1.2 (Gitik). ([8]) If there exists a model of ZFC in which a super-
compact cardinal exists then there exists a model of ZFC and a stationary set
S ⊂ Pκ(κ+) in it, such that S cannot be split into κ+ many stationary sets.

Although we know now these delimiting results a similar assertion to Solo-
vays theorem is still provable.

Lemma 3.1.3. If κ is a regular cardinal and λ a cardinal ≥ κ. Then let
E := {x ∈ Pκ(λ) : |x ∩ κ| = |x|}. We have

(i) E is stationary

(ii) If κ is a successor cardinal then E contains a club.

Proof. For (i) let C be a club, x0 ∈ C. Assume that |x0 > |x0 ∩ κ|. Let
|x0| = ξ0 < κ, set y1 := x0 ∪ ξ0 and notice that |y1 ∩ κ| = |y1|. Let x1 ∈ C be
such that x1 ⊃ y1 and check again if |x1| = |x1∩κ|. If not then let y2 := x1∪ ξ1
where ξ1 = |x1|. If we loop this contruction then it yields an increasing sequence
(xi)i∈ω and x :=

⋃
i∈ω xi is in C ∩ E.

For (ii) let E′ := {x ∈ Pκ(λ) : |x| = |x ∩ κ| = |κ−|} where κ− denotes the
predecessor of κ. It is easy to see that E′ is a club.

Lemma 3.1.4. Assume the same sitution as in the lemma above and define E
in the same way. Then every stationary subset S ⊂ E can be split into λ-many
disjoint stationary sets.

Proof. If κ = λ then for each club C ⊂ Pκ(λ), the set C̃ := {x ∈ C : x ∈ On} is
a club subset of C. Hence if S is stationary then S̃ := {x ∈ S : x ∈ On} remains
stationary in Pκ(κ), and can be considered as a stationary set in κ. Therefore
there exists a partition of S {Si : i < κ} and each Si is still stationary in Pκ(κ)
which is all we wanted.
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Thus assume κ > λ and assume first that λ is a regular cardinal. Let S ⊂ E
be an arbitrary stationary subset. For each x ∈ S we may choose a bijection
fx : x→ x ∩ κ. Now an elegant trick: for arbitrary x ∈ S and α ∈ x we set

gα(x) := fx(α).

It is immediate that gα is a function, defined on the stationary set S ∩ {x ∈
Pκ(λ) : α ∈ x}, and gα(x) = fx(α) ∈ x ∩ κ ⊂ x, hence gα is a regressive
function on S ∩ {x ∈ Pκ(λ) : α ∈ x}. By Fodors theorem there exists for each
α < λ a stationary set Sα ⊂ S such that gα is constant on it with value γα < κ.

Now there must be a setX ⊂ λ of size λ such that γα = γ for each α ∈ X, and
we claim that the corresponding subsets {Sα : α ∈ X} are pairwise disjoint.
If not then x ∈ Sα ∩ Sβ and gα(x) = gβ(x) = γ but gα(x) = fx(α) and
gβ(x) = fx(β) and fx is one to one, which is a contradiction. Thus every
stationary subset S ⊂ E can be split into λ-many pairwise disjoint stationary
sets.

If λ is singular then the argument just described shows that E can be parti-
tioned into γ many subsets, where γ is an arbitrary cardinal less than λ. If E is
not scissible into λ many parts then sat(NS � E) = λ, but this is a contradiction
as sat(I), if infinite, is always a regular cardinal. Hence E can be devided into
λ many parts as well.

Lemma 3.1.5. Let κ be as always a regular cardinal and let λ ≥ κ. Assume that
GCH holds. If cf(λ) < κ then every stationary set in Pκ(λ) can be partitioned
into λ+ disjoint stationary sets.

Proof. Note first that the regularity of κ and cf(λ) < κ implies that λ 6= κ hence
λ > κ. We observe that |Pκ(λ)| = λ<κ = supµ<κλ

µ. And as cf(λ) < κ < λ
we may conclude with GCH that supµ<κλ

µ = λ+. Moreover every unbounded
Y ⊂ Pκ(λ) has size λ+ as Pκ(λ) =

⋃
x∈Y P (x).

Let (fα)α<λ+ be an enumeration of the set of all functions fα : [λ]<ω →
Pκ(λ) such that each function appears cofinally often. We remember lemma
1.1.20. which states that for each club C ⊂ Pκ(λ) there is a function f :
[λ]<ω → Pκ(λ) such that the club of the closure points Cf ⊂ C. Thus for every
club C ⊂ Pκ(λ) and every γ < λ+ there is an α > γ such that C ⊃ Cfα = {x :
f(e) ⊂ x for all finite e ⊂ x }.

Now let S ⊂ Pκ(λ) be stationary. We define inductively sequences (xαξ :

ξ < α) ⊂ S ∩Cfα for each α < λ+, such that (xαξ : ξ < α) and (xβξ : ξ < β) are
pairwise disjoint if α 6= β (note here that S ∩ Cfα is an unbounded set of size
λ+, hence the pairwise disjointness causes no problem). For each ξ < λ+ we set

Sξ := {xαξ : ξ < α < λ+}.

The Sξ form a set of size λ+ of pairwise disjoint subsets of S. What remains
to show is that each Sξ is stationary. Fix an Sξ, if C is an arbitrary club then
there is an α > ξ such that C ⊃ Cfα , and xαξ ∈ Sξ ∩ Cfα , hence each Sξ is
stationary.
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In the light of 3.1.1 and 3.1.2 the next theorem is our best possible result-
not as good as expected though:

Theorem 3.1.6. Let κ be a regular uncountable cardinal and let λ ≥ κ. Then
the following holds:

(i) Pκ(λ) can be partitioned into λ pairwise disjoint stationary subsets.

(ii) If κ is a successor cardinal then every stationary subset of Pκ(λ) can be
split into λ disjoint stationary subsets.

(iii) If GCH holds then Pκ(λ) can be partitioned into λ<κ stationary subsets.

Proof. (i) Follows directley from 3.1.4
(ii) Let S ⊂ Pκ(λ) be stationary. Then as κ is a successor cardinal, E

contains a club, hence S ∩ E is stationary and by 3.1.4 can be split into λ
disjoint stationary sets.

(iii) If cf(λ) < κ then by the last lemma Pκ(λ) can be split into λ+ many
disjoint stationary subsets. In this case also λ<κ = λ+ holds by the GCH. Hence
(iii) is true. If cf(λ) ≥ κ then aagain by the GCH for all µ < κ λµ = λ and
part (i) of the theorem applies.

3.2 The saturation of the generalized NS

We enventually arrived at the highlight of this work. When considering the
result of Gitik-Shelah, it is natural to ask wheter their result still holds, when
exchanging the nonstationary ideal on κ with the the nonstationary ideal on
Pκ(λ). This chapter is devoted to the answer of this question. Since it’s proof
is long we will give a short preview of the things to come.

Question: If κ ≤ λ is a regular cardinal, NS the nonstationary ideal on
Pκ(λ). May NS be λ+-saturated?

Answer: No, it is impossible, unless κ = λ = ω1 (where 2.3.10. applies).
We show this answer in this way:

• First we will prove a result of Burke-Matsubara stating that if

(i) κ limit and cf(λ) > κ or

(ii) κ a successor, κ ≥ ω2 and cf(λ) ≥ κ

then NS cannot be λ+-saturated. In the next section we consider the case
where

• κ = ω1 and λ > ℵ1 is arbitrary. We show again that NS cannot be
λ+-saturated.

• cf(λ) < κ, where κ is arbitrary but regular. We even show that NS
cannot be λ++-saturated.

• The only remainig case is: κ a limit, and cf(λ) = κ. Then NS cannot be
λ+-saturated.
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3.2.1 The Result of Burke and Matsubara

If we look back to the proof of Corollary 2.2.20. we can detect the following
strategy: Define a subset S of κ which is so chosen that it changes the cofinality
of κ in UltG(V ) and hence in V [G] (where G is a generic filter for the forcing
below S), in order to obtain a contradiction to Corollary 2.2.19. This argument
does also work (with the right assumptions) in the more general frame: the
nonstationary ideal NS on Pκ(λ).

For practical reasons we state Cor 2.2.19. again:

Theorem 3.2.1 (Shelah). Let λ be a regular cardinal and let P be a notion
of forcing that preserves λ+. Then for all generic G ⊂ P : V [G] satisfies
cf(|λ|) = cf(λ).

There exists a variation of the theorem above, which works for singular λ
under different circumstances:

Theorem 3.2.2 (Cummings). ([3]) Suppose that λ is a singular cardinal and
P is a notion of forcing that preserves stationary subsets of λ+. Then:


P cf(|λ|) = cf(λ).

Note that any notion of forcing P that satisfies the λ+-chain condition sat-
isfies the hypothesis of the both theorems above.

Theorem 3.2.3. ([4], Theorem 2.25. pp 903) Let I be a normal ideal on Pκ(λ)
and assume that I is λ+-saturated. Then I is precipitous and further the generic
ultrapower M=UltG(V ) is closed under sequences of length λ, i.e. Mλ ∩M =
Mλ ∩ V [G].

Lemma 3.2.4. Let κ and λ be cardinals, and let κ be regular.

(i) Suppose that cf(λ) > κ and that µ, ν are regular cardinals less than κ. Let

S = {x ∈ Pκ(λ) : |x| = |x ∩ κ|, cf(x ∩ κ) = µ, and cf(sup(x) = ν}

Then S is stationary in Pκ(λ)

(ii) Suppose that κ = θ+ and cf(λ) ≥ κ. If we let

S = {x ∈ Pκ(λ) : cf(x ∩ κ) = cf(sup(x)) 6= cf(θ)}

then S is stationary.

Theorem 3.2.5 (Burke-Matsubara). ([2]) Let NS denote the nonstationary
ideal on Pκ(λ), where κ is a regular cardinal and λ a cardinal ≥ κ. Assume
further that one of these two assumptions holds:

(i) cf(λ) > κ and κ is a limit

(ii) κ is a successor cardinal, κ ≥ ω2 and cf(λ) ≥ κ
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Then the nonstationary ideal NS is not λ+-saturated.

Proof. (i):Thus let cf(λ) > κ and let κ be a limit. Assume to the contrary that
NS is λ+-saturated. Then by lemma 3.2.4 the set S := {x ∈ Pκ(λ) : |x| =
|x ∩ κ|, cf(x ∩ κ) = µ and cf(sup x) = ν} is stationary in Pκ(λ). Let P be the
forcing with NS-positive sets below S and let G be a generic filter.

The next thing we observe is that in the ultrapower UltG(V ) cf(κ) is
represented by the function f : x 7→ cf(ot(κ ∩ x)) because then jf : x 7→
cf(ot(j(κ) ∩ x)) and [f ] = jf(f“λ) = cf(ot(j(κ) ∩ j“λ)) = cf(ot(κ)) = κ.

Further cf(λ) is represented by the function g : x 7→ cf(sup x) as jg : x 7→
cf(sup x) and [g] = jg(j“λ) = cf(sup(j“λ)) = cf(λ). This together with the
representation of κ we obtained in lemma 1.4.16 tells us that

UltG(V ) ∼= M |= |λ| = |κ| ∧ cf(κ) = µ ∧ cf(λ) = ν

As M is closed under V [G] sequences of length λ we know that:

V [G] |= |λ| = |κ| ∧ cf(κ) = µ ∧ cf(λ) = ν

And as κ is a limit cardinal it remains a cardinal in M hence in V [G]. Thus

V [G] |= |λ| = κ ∧ cf(κ) = µ ∧ cf(λ) = ν

which leads to
V [G] |= cf(|λ|) = cf(κ) 6= cf(λ)

and this is a contradiction to Shelah’s theorem if λ is regular. If λ is singular
then this is a contradiction to Cumming’s theorem.

(ii): Assume again that NS is λ+-saturated. If κ = µ+ and µ ≥ ω1 and
cf(λ) ≥ κ then S = {x ∈ Pκ(λ) : cf(x∩κ) = cf(sup(x)) 6= cf(µ)} is stationary
due to lemma 3.2.4. If we force again with NS-positive sets below S then S ∈ G
(where G is the generic filter) hence

UltG(V ) ∼= M |= |λ| = µ ∧ cf(λ) 6= cf(µ)

as the set {x : |ot(x)| = µ} ∈ G and as {x : cf(sup(x)) 6= cf(µ)} ⊃ S ∈ G.
Because M is closed under V [G]-sequences of length λ we know that

V [G] |= |λ| = ν ∧ cf(λ) 6= cf(µ)

. Again this contradicts either the theorem of Shelah or the theorem of Cum-
mings.

3.2.2 Mutual stationarity

Definition 3.2.6. Let A be a set. An Algebra A on A is a structure (A, fi<ω),
where fi<ω : Ai → A. A is the so called universe of A. Equivalently an algebra
is a structure (A,F ) where F is a operation on A. A subalgebra B ≺ A is a
subset of the universe of A which is closed under the operation F .
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Definition 3.2.7. Let K be a set of regular uncountable cardinals, let sup(K) :=
δ, and let Sκ ⊂ κ for each κ ∈ K. Then the collection (Sκ : κ ∈ K) is mutually
stationary if for every algebra A on δ there is an N ≺ A such that

∀κ ∈ N ∩K sup(N ∩K) ∈ Sκ
where N denotes the universe from N .

We will derive some easy consequences from the notion of mutual stationar-
ity:

Lemma 3.2.8. Let K be again a set of regular cardinals and Sκ be subsets of
κ. Then the following holds:

(i) If (Sκ : κ ∈ K) is a sequence such that for every κ: Sκ is a club in κ then
the sequnce of the Sκ is mutually stationary.

(ii) If (Sκ : κ ∈ K) is mutually stationary then Sκ is a stationary subset of κ
for each κ ∈ K.

Proof. (i) Suppose A is an algebra on δ := sup(K). Choose a countable subal-
gebra N0 ≺ A.Let N0 denote the universe of N0. If K ∩ N0 = ∅ we are done,
thus let κ ∈ K ∩ N0. If sup(κ ∩ N0) ∈ Sκ we are finished again, thus assume
that sup(κ ∩ N0) /∈ Sκ. Since the Sκ is a club, there exists an x0 ∈ Sκ such
that x0 > sup(κ ∩ N0). Build now N1 := 〈N0 ∪ {x0}〉 (i.e. the subalgebra
generated by the elements of N0 and x0) and continue with checking wheter
sup(N1 ∩ κ) ∈ Sκ or not. In the latter case there is an x1 ∈ Sκ such that
x1 > sup(N1 ∩ κ) and we set N2 := 〈N1 ∪ {x1}〉. We obtain this way an in-
creasing chain of subalgebras Ni of A: N0 ≺ N1 ≺ . . . . Let Ñ :=

⋃
Ni then Ñ

is closed under the operations of (A), hence universe of a subalgebra Ñ and we
have that sup(Ñ ∩ κ) = sup(κ ∩

⋃
Ni) = sup(κ ∩Ni) ∈ Sκ.

This construction can easily be generalized to handle the case where N ∩ κ
has more than one element and we are finished.

(ii) We start with a

Claim: Let C be a club on κ ∈ K. Then there exists an Algebra A on
δ := sup(K) such that for all nonempty N ≺ A: κ ∈ N and if sup(N ∩ κ) ∈ κ
then sup(N ∩ κ) ∈ C.

Using this claim we can continue as follows: Let C be a club on κ. We
want to show that C ∩ Sκ 6= ∅ which would justify the stationarity of Sκ. We
choose for C an algebra A which satisfies the properties of our claim. Due to
the mutual stationarity of the Sκ there is an N ≺ A such that sup(N ∩κ) ∈ Sκ
which implies that sup(N ∩ κ) ∈ κ, hence sup(N ∩ κ) ∈ C.

What remains to prove is our claim: Consider (Eκℵ0 ∩ C) and for each xi ∈
Eκℵ0 ∩ C) a cofinal sequence (xji )j<ω → xi. For each α < κ there is an xi ∈
Eκℵ0 ∩ C) such that xi is the least element of Eκℵ0 ∩ C) ≥ α. Define now

f1(α) :=


xji if α 6= xji ∀j where xji is the least element such that xji > α

xj+1
i if α = xji
β if α = xi or α > κ and β is any ordinal bigger than κ
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and f2(α, β) = κ ∀α, β ∈ δ, f3(α, β, γ) = κ ∀α, β, γ ∈ δ... and so on. Then
(δ, f1, f2, . . . ) has the desired attributes.

The last lemma states that mutual stationarity is a property stronger than
the usual stationarity but weaker than closed unboundedness. The concept
of mutual stationarity can be reformulated by the means of the notion of a
strongly closed unbounded set (a strong club). A subset X ⊂ Pκ(λ) is strongly
closed and unbounded if there is an algebra A on λ such that X = {N ∈
Pκ(λ) : N ≺ A}. A set X is strongly (or generally) stationary if and only
if it has, as one would expect, nonempty intersection with every strong club,
i.e. for each algebra A there is an N ≺ A, N ∈ Pκ(λ) such that N ∈ S. It
is immediate that {Sκ : κ ∈ K} is mutually stationary if and only if the set
{X ⊂ sup(K) : ∀κ ∈ X ∩K(sup(X ∩ κ) ∈ Sκ)} is a strongly stationary subset
of P (sup(K)). Using the following lemma we will obtain another despriction of
mutual stationarity:

Lemma 3.2.9 ([6], Lemma 0 ). Let µ ≤ κ < λ be regular cardinals, Fs(λ, µ),
Fs(κ, µ) be the filters generated by the strong clubs on [λ]<µ and on [κ]<µ respec-
tively. F(κ, µ), F(λ, µ) denote the corresponding club filter. Then the following
holds:

(i) F(λ, µ) is the filter generated by Fs(λ, µ) ∪ {{z ∈ [λ]<µ : z ∩ µ ∈ µ}}

(ii) If C ⊂ [λ]<µ is a strong club then {y ∩ κ : y ∈ C} is a strong club in
[κ]<µ.

(iii) If C ⊂ [κ]<µ is a strong club then {z ∈ [λ]<µ : z∩κ ∈ C} is a strong club
in [λ]<µ.

Lemma 3.2.10. Let K be as always a set of regular cardinals, and let Y be a
set with sup(K) ⊂ Y . Then {Sκ : κ ∈ K} is mutually stationary if and only
if {X ⊂ Y : ∀κ ∈ X ∩ κ (sup(X ∩ κ) ∈ Sκ)} is a strongly stationary subset of
P (Y ).

Thus if Y is a set with sup(K) ⊂ Y then (Sκ : κ ∈ K) is mutually stationary
if and only if the set {X ⊂ Y : ∀κ ∈ K ∩X(sup(X ∩ κ) ∈ Sκ)} is stationary in
P (Y ).

We will use the notion of mutual stationarity to investigate the saturation
of the nonstationary ideal on Pκ(λ) in the case where κ = ω1

3.2.3 The generalized saturation of NS when κ = ω1

Next we consider the case where κ = ω1 and λ is an arbitrary cardinal. We
shall show that the nonstationary ideal in Pω1

(λ) cannot be λ+ saturated. At
first let λ > ω1 be a regular cardinal. then we already know by 2.2.31 that
the nonstationary ideal on λ, restricted to the elements whose cofinality is ω is
not λ+-saturated. Thus the next lemma suffices to show that the nonstationary
ideal on Pω1(λ) is not λ+-saturated whenever λ is regular:
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Lemma 3.2.11. Let κ < λ be two regular cardinals and let A ⊂ λ be such that
cf(α) = γ < κ for every element α of A. Then

A is stationary iff Ã := {x ∈ Pκ(λ) : sup(x) ∈ A} is stationary in Pκ(λ)

Proof. We start with the direction from the left to the right: Suppose that
C ⊂ Pκ(λ) is a club. Let f : [λ]<ω → Pκ(λ) be such that the set of the closure
points of f , Cf is a subset of C. Let D be the club in λ, consisting of the
ordinals which are closed under f . Then D ∩ A 6= ∅, and if β ∈ A ∩ D, then
there exists a sequence (βα)α<γ which converges to β. Build the closure B of

(βα)α<γ under f , then B ∈ C and sup(B) = β ∈ A, hence B ∈ C ∩ Ã and Ã is
stationary in Pκ(λ).

For the other direction assume that C is a club in λ, then C̃ := {X ∈
Pκ(λ) : sup(X) ∈ C} is a club in Pκ(λ), hence there is an X ∈ C̃ ∩ Ã and
sup(X) ∈ C ∩A, witnessing the stationarity of A.

Corollary 3.2.12. If λ > ω1 is regular then the nonstationary ideal on Pω1(λ)
is not λ+-saturated.

Note that the just described strategy isn’t limited to the case κ = ω1. In
fact it works for all regular κ and all regular λ > κ.

The remainig case is where λ is a singular cardinal. Unfortunately non-
saturation is way harder to show here. It turns out that the notion of the
mutually stationarity is crucial in that case. We start with a small technical
result:

Lemma 3.2.13. Suppose that κ < θ are regular cardinals. Then

S ⊂ κ is stationary ⇔ ∀A = (H(θ),∈, < ..)∃M ≺ A, |M | < κ with sup(M∩κ) ∈ S

Proof. We start with the ⇒ direction. Consider for a fixed A the set

CA := {sup(M ∩ κ) : M ≺ A, |M | < κ}.

Then CA contains a club as we can define a sequence of length κ of elementary
submodels (Mα)α<κ of A for which Mξ ≺ Mη holds whenever ξ < η, and
|Mα| < κ for each α < κ and moreover Mα =

⋃
β<αMβ holds for every limit

α. Now if we consider sup(Mα ∩ κ) then this is a club and a subset of CA, thus
CA ∩ S 6= ∅ as S is stationary and this is what we wanted.

For the other direction let C be an arbitrary club in κ. We claim that
there exists a structure A = (H(θ), ..) such that for each M ≺ A sup(M ∩
κ) ∈ C. Indeed let f : κ → κ be an increasing function with f : α 7→
β ∈ C where β is the least such ordinal that is larger than α. Now set A :=
(H(θ),∈, <, f) and whenever M ≺ A with |M | < κ then sup(M ∩ κ) can be
approached by a sequence of the form (f(β))β<γ which is a sequence in C hence
sup(M∩κ) ∈ C. Now by our assumption there is anM ≺ A and sup(M∩κ) ∈ S,
thus S is stationary.

Our main result is this one:

60



Theorem 3.2.14 (Foreman-Magidor). Let (κα : α ∈ γ) be an increasing
sequence of regular cardinals, let (Sα : α ∈ γ) be a sequence of stationary
subsets of κα, such that each Sα consists of points of countable cofinality. If
λ := supα<γ(κα) and A is an algebra on λ, then there is a countable N ≺ A
such that for all κα ∈ K ∩ N sup(N ∩ κα) ∈ Sα, i.e. if the Sα are stationary
for each α < γ and each x ∈ Sα has countable cofinality then (Sα : α ∈ γ) is
mutually stationary.

Proof. Let A be any algebra on λ and let τ ⊂ λ<ω be a tree constructed in a
way that there is a function l : τ → {κα : α < γ} which satisfies these two
conditions:

1. If σ ∈ τ and l(σ) = κα then {γ : σaγ ∈ τ} ⊂ κα and has cardinality κα.

2. If σ ∈ τ and κα ∈ skA(σ) then there are infinitely many n ∈ ω such that
if σ′ ⊃ σ and σ′ has length n then l(σ′) = κα.

Let τ ′ be a subtree of τ with stem σ0 and let λ1, λ2, . . . , λn be a finite collection
of the κα’s such that each λi ∈ skA(σ0). We say that τ ′ is an acceptable subtree
( for {λ1, . . . , λn) if and only if for all nodes σ ∈ τ ′:

• if l(σ) /∈ {λ1, λ2, .., λn} then {γ : σ a γ ∈ τ ′} is a subset of l(σ) with
cardinality l(σ).

• and if l(σ) ∈ {λ1, ..., λn} then there is a unique γ such that σ a γ ∈ τ ′.

We say that the tree τ ′ is fixed for κα if τ ′ is acceptable for a set {λ1, ..., λn}
and κα ∈ {λ1, ..., λn}. Our goal is to produce a decreasing sequence of subtrees
τn, and a non-decreasing sequence of finite subsets An of {κα : α ∈ γ} such
that the following three conditions hold:

(i) τn is an acceptable subtree for An and the length of the stem of σn is at
least n.

(ii) If κα is in the skolem hull of the stem of one of the τn then there is an
m > n such that τm is fixed for κα.

(iii) If τn is fixed for κα then there is a βα ∈ Sα such that for all branches b
through τn: sup(skA(b) ∩ κα) = βα.

If we could prove the existence of such a sequence then we could end the
proof of the theorem: Due to (i) the intersection of the τn is nonempty and is
a branch b through each τn. Now if N := skA(b) then N ≺ A, |N | = ω and if
κα ∈ N then there is a stem σn of a tree τn such that κα ∈ skA(σn). Due to
(ii) there is an m > n such that τm is fixed for κα and (iii) tells us that there is
a βα ∈ Sα such that sup(N ∩ κα) = βα ∈ Sα which is exactly what we wanted
to prove. Thus we need to show that there is such a decreasing sequence of the
τn, which is done if we could prove:
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Lemma 3.2.15. Suppose that τ is an acceptable tree for λ1, ..., λn and κα ∈
skA(σ), where σ is the stem of τ . Then there is a βα ∈ Sα and a subtree τ ′ ⊂ τ
such that τ ′ is acceptable for {λ1, ..., λn, κα} and such that for all branches b
through τ ′ : sup(skA(b) ∩ κα) = βα.

Proof. We proof this lemma by defining a game Gδ for each ordinal δ ∈ κ,
played on the tree τ with two players G (good) and B (bad), who play nodes
of the tree determining a branch b of the tree. At a stage of the game where a
node σ ∈ τ has been determined:

1. If l(σ) ∈ {λ1, ..., λn} then there is only one γ such that σ a γ ∈ τ . B must
play this γ.

2. If l(σ) < κα then B has to play a γ such that σ a γ ∈ τ .

3. If l(σ) > κα then B chooses a subset D of l(σ) with |D| < l(σ) and G
chooses an element of {γ : σaγ ∈ τ} −D.

4. If l(σ) = κα then B chooses an ordinal β < δ < κα and G chooses a γ > β
such that σaγ ∈ τ .

If the game described above determines a branch of τ such that skA(b)∩κα ≤
δ then G wins, otherwise B. Note that if B wins then skA(b) ∩ κα > δ after a
finite number of steps, hence the game Gδ is determined for every δ ∈ κα.

Claim: There is a closed unbounded set δ < κα such that G has a winning
strategy in the game Gδ

Assume to the contrary that S ⊂ κα is stationary and G doesn’t have a
winning strategy Sδ for each δ ∈ S. Let θ be a cardinal > λ+5 and N ≺
(H(θ),∈, <, (Sδ : δ ∈ S), ..) be such that |N | < κα and N ∩ κα = δ0 ∈ S.
Such an N always exists as the previous lemma justifies the existence of an
N ′ ≺ (H(θ),∈, ..) such that sup(N ′ ∩ κα ∈ S. Now let N ≺ N ′ be such that
N ′ ∩ κα ⊂ N and |N | < κα. This N has now the desired properties.

We will derive a contradiction by exhibiting a game according to Sδ0 that
produces a branch b with skA(b) ∩ κα ≤ δ0. As B plays with strategy Sδ0 we
only need to describe what G does. We will show that each player in each step
plays ordinals that are elements of N and as N is closed under finite sequences
by elementarity we can say that for all n b � n ∈ N .

Assume inductively that the play has constructed σ of length n and l(σ) ∈ N .

1. If l(σ) ∈ {λ1, ..., λn then there is exactly one γ such that σaγ ∈ τ and
this γ also lies in N .

2. At a stage where l(σ) < κα, B has to play a γ so that σaγ ∈ τ . As
N ∩ κα ∈ κα any γ < l(σ) is in N .

3. If the play has arrived at a σ of length n so that l(σ) > κα then as l(σ) ∈ N ,
and as the cardinality of U =

⋃
{Sδ(σ) : δ ∈ S} is less than l(σ) we know

that N |= l(σ) − U 6= ∅, and so G plays an element γ ∈ N ∩ (l(σ) − U).
Since γ ∈ N σaγ ∈ N , and by construction γ /∈ Sδ(σ).
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4. Suppose now the game has constructed a σ of length n and l(σ) = κα,
and Sδ0 forces B to play an ordinal β < δ0. Then G plays an ordinal γ
so that σaγ ∈ τ and β < γ < δ0, and such a γ ∈ N always exists as by
elementarity N |= ” the successors of σ are unbounded in κα “.

Now let b be the resulting branch through τ and let M = (skA(b))N . Then
M ≺ N and hence supM ∩ κα ≤ δ0. This contradicts the fact that b is the
result of a game according to the winning strategy for B Sδ0 . Thus our claim is
proven.

We go back to the proof of the theorem. Since each Sα is stationary there
is a βα ∈ Sα such that G has a winnig strategy for Gβα . Let S denote this
strategy. Due to our assumption βα has countable cofinality thus let (δm)m∈ω
be a sequence cofinal in βα. Let us now define the subtree τ ′, which should have
the desired attributes: We take a look at each σ ∈ τ and decide wheter σ is in
τ ′ or not. Assume inductively that each σ ∈ τ ′ is the result of a partial play by
G according to S and that if l(σ) /∈ {λ1, .., λn, κα} then the set {γ : αaγ} has
cardinality l(σ).

Suppose we have put σ ∈ τ ′. Then:

1. If l(σ) ∈ {λ1, ..., λn} then σ has a unique successor in τ . We put this
successor into τ ′. Notice that this is done by B, thus it doesn’t contradict
our strategy.

2. If l(σ) < κα then we let the successor of σ in τ be the successors of τ ′.
Note again that this is a legal play of the game according to S.

3. If l(σ) > κα then in the game B chooses a subset D of l(σ) of cardinality
< l(σ) and then G an element of {γ : σaγ}. To ensure that the set of
successors of σ has cardinality l(σ), we define by induction on ν < l(σ)
ordinals γν ∈ l(σ) such that γν is the response by S to B playing {γν′ :
ν′ < ν}. Then we let the set of successors of σ in τ ′ be {σaγν : ν ∈ l(σ)}

4. If l(σ) = κα then we want τ ′ be fixed for κα i.e. σ has only one successor
in τ ′. The rules of the game require B to play an ordinal β < βα and G
to play an ordinal γ such that γ > β and (σaγ) ∈ τ . If the length of σ
is m then we let {γ : σaγ ∈ τ ′} be the well defined γ such that γ is G’s
response to B playing δm.

This defines a subtree τ ′ ⊂ τ , and we checked in each step that τ ′ is accept-
able for {λ1, ..., λn, κα}. Thus it remains to show that for all branches b in τ ′

sup(skA(b) ∩ κα) = βα. Since such a branch is the result of a game with G
following his winning strategy S we have that sup(skA(b) ∩ κα) ≤ βα. On the
other hand, since κα is in the skolem hull of the stem of σ of τ we have that
there are infinetly many m such that l(b � m) = κα and for each such m we
have that the unique γ with b � maγ ∈ τ ′ is bigger than δm cofinal in βα, hence
the equality is verified.
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Theorem 3.2.16 (Foreman-Magidor). Let λ be a singular cardinal with co-
finality µ. Then the nonstationary ideal on Pω1

(λ) is not λµ-saturated.

Proof. We pick an increasing sequence (κα : α < µ) of regular cardinals, cofinal
in λ. For each α we divide the stationary set of the elements of κα with countable
cofinality into κα pairwise disjoint stationary sets (Sαβ : β < κα). Then we
define for each function f ∈

∏
α∈µ κα:

Sf := {N ∈ Pω1(λ) : ∀κα ∈ N (sup(N ∩ κα) ∈ Sαf(α)}

Our last theorem witnesses the strong stationarity of each Sf in Pω1(λ).
Due to Kueker’s theorem strongly stationary and stationary are the same in
Pω1

(λ), hence each Sf is even stationary in Pω1
(λ). Further if f 6= g then

there is an α such that f(α) 6= g(α), hence Sf ∩ Sg is nonstationary as it
has empty intersection with the club {N ∈ Pω1

(λ) : κα ∈ N}. So the set
{Sf : f ∈

∏
α<µ κα} forms an antichain in Pω1(λ) of cardinality λµ.

3.2.4 The cofinality of λ is less than κ

Now we consider the case where, as already mentioned, the cofinality of λ is less
than κ. We will show an even better result than the one we already got by Burke-
Matsubara: namely that the nonstationary ideal cannot be λ++-saturated. Our
proof relies on a fact by Shelah which will be stated without proof, and makes
heavy use of the PCF theory. Therefore we need to introduce first some defini-
tions and properties of this theory.

Definition 3.2.17. Suppose that λ is a singular cardinal, (λi)i∈cf(λ) is a co-
final sequence of regular cardinals and I is an ideal on cf(λ). Then a scale
in

∏
i∈cf(λ) λi/I is a sequence of functions (fα : α < η) such that each fα ∈∏

i∈cf(λ) λi and the following two properties hold:

(i) ∀α < α′ {i : fα(i) ≥ fα′(i)} ∈ I, i.e. the sequence is increasing.

(ii) ∀g ∈
∏
i∈cf(λ) λi ∃α < η {i : g(i) ≥ fα(i)} ∈ I, i.e. the sequence is cofinal

Fact 3.2.18. Let λ be a singular cardinal, let I be the ideal of the bounded
subsets of cf(λ), and let (λi)i∈cf(λ) be a cofinal sequence in λ. Then there is a
scale in

∏
λi/I of length λ+. We will say that

∏
λi/I has true cofinality λ+.

Definition 3.2.19. Let (fα : α < η) be a sequence of functions fα : cf(λ) →
λ, and moreover let g ∈ λcf(λ). Then g is called an exact upper bound for
the sequence if and only if g is greater than each fα almost everywhere, i.e.
{i : fα(i) ≥ g(i)} ∈ I, and if h ∈

∏
i∈cf(λ) λi is such that {i : h(i) ≥ g(i)} ∈ I,

then there exists an α such that {i : h(i) ≥ fα(i)} ∈ I.
Moreover we say that a scale is continous if and only if for all β, whenever

there is an exact upper bound for (fα : α < β) then fβ is the exact upper bound.

Definition 3.2.20. Let (fα : α < η) be a scale and let β be an ordinal. Then
β is called good if and only if there exists a set B := {hξ : ξ < cf(β)} ⊂∏
i∈cf(λ) λi and a set S ∈ I such that:
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1. for all ξ < η < cf(β), i ∈ cf(β), i ∈ cf(λ)− S hξ(i) < hη(i)

2. for all α < β there is an h ∈ B such that {i : fα(i) ≥ h(i)} ∈ I.

Fact 3.2.21. There exists always a stationary set of good points

Fact 3.2.22 (Shelah). ([15]) Suppose that λ is a singular cardinal, and µ <
λ is a regular uncountable cardinal. then there exists a set R ⊂ λ+ and a
stationary set A ⊂ λ+ consisting of ordinals of cofinality µ, such that whenever
N ≺ (H(θ),∈, <,R, ..), if α = N ∩ λ+ ∈ A, then there is a cofinal sequence
C ⊂ α of order type µ such that for all β < α, C ∩ β ∈ N .

Fact 3.2.23 ([5]). Let λ be a singular cardinal, and let µ be a regular cardinal
less than κ. Then there exists a stationary set A ⊂ λ+ such that for all sta-
tionary B ⊂ A and all expansions of H(θ) := (H(θ),∈, <,R, ..) -where θ is as
always a sufficiently large cardinal, and R is as in our previous fact- there is an
elementary submodel N ≺ H(θ) such that:

(i) |N | < κ and N ∩ κ ∈ κ

(ii) sup(N ∩ λ+) ∈ B

(iii) N is internally approachable of length µ

Definition 3.2.24 (Internally approachable). Let N be an arbitrary set
and µ an ordinal, then N is internally approachable of length µ if and only
if there is a sequence (Nα : α < µ) such that N =

⋃
α<µNα and for all

β < µ, (Nα : α < β) ∈ N .

Note that if N ≺ (H(θ),∈) and N is internally approachable of length µ,
then due to the definability of µ as the length of the sequence (Ni : i < µ) and
by the elementarity of N , µ ⊂ N and moreover Ni ∈ N for each i < µ.

Lemma 3.2.25. Let λ be a singular cardinal, cf(λ) < κ, let (λi)i<cfλ be a
sequence of regular cardinals cofinal in λ and let (fβ : β < λ+) be a continous
scale. Further let I be the ideal of the bounded subsets of cf(λ), and N ≺
(H(θ),∈, <, (fβ : β < λ+), ...) be an internally approachable structure of length
µ 6= cf(λ) (where µ is a regular cardinal), with |N | < κ, cf(λ) ∈ N ∩ κ ∈ κ and
sup(N ∩ λ+) = α then

χN = fα almost everywhere modulo I

Proof. Pick a sequence (Ni : i < µ) that witnesses that N is internally ap-
proachable. We already know that Ni ∈ N for all i < µ, as well as µ ⊂ N . As
N ≺ H(θ) we may assume that the Ni’s are increasing, i.e. Ni ⊂ Nj if i ≤ j.
Additionally we may assume that each λj ∈ N , which gives us that χNi ∈ N
for every i < µ. Now we

Claim: There are cofinal subsets X ⊂ µ and Y ⊂ α ∩N and a j0 < cf(λ)
such that if i, i′ are successive in X then there is a unique β ∈ Y such that for
all j > j0:

χNi(j) < fβ(j) < χNi′ (j)
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We prove the claim. Let χNi ∈ N be the characteristic function for an
arbitrary i < µ. As the (fβ : β < λ+) form a scale in N there exists a
β ∈ N ∩ λ+ such that χNi <I fβ . Moreover as µ 6= cf(λ) and as the cofinality
of the approaching sequence is uniquely determined, there exists an i′ such that
fβ ⊂ N ′i . For the N ′i there exists again a β′ ∈ N ∩ λ+ such that fβ ≥I N ′i
and so on. We obtain a cofinal X ⊂ µ and Y ⊂ α ∩N and for each successive
i, i′ ∈ X there is exactly one β ∈ Y ∩ α such that χNi <I fβ < χN ′i , i.e. there
is a ji < cf(λ) such that for all j > ji χNi(j) < fβ(j) < χN ′i (j). Thus it is only
left to show that there is even a j0 < cf(λ) such that the inequality above holds
for all j > j0. We break into cases:

1. µ < cf(λ). Then supi<µji < cf(λ), thus there is a j0 such that supji <
j0 < cf(λ) which works.

2. µ > cf(λ). Then since the function h : i 7→ ji goes from µ to cf(λ), we
know that there is a j0 ∈ cf(λ) such that j0 is hit by µ-many i’s. If we
let X ′ := h−1(j0) then X ′ ⊂ X and if we build Y ′ just in the same way
as our Y , then we obtain a cofinal X ′ ⊂ µ and a cofinal Y ′ ⊂ α ∩N . For
these X ′ and Y ′ now the claim holds.

This ends the proof of our claim.

Now we continue with the proof of the lemma. Again we break into cases

1. cf(λ) > µ. Then as α = sup(N ∩λ+) which implies that cf(α) ≤ µ and as
|Y | = µ we know that ∀j < j0 : fα(j) = supβ∈Y fβ(j) = supi∈XχNi(j) =
χN (j).

2. cf(λ) < µ. Then Y and j0 witness that α is a good point, hence again for
sufficiently large j > j0: fα(j) = supβ∈Y fβ(j) = supi∈XχNi(j) = χN (j)
and we are done

Theorem 3.2.26. If κ ≥ ω2 is a regular cardinal and λ > κ is a cardinal wirh
cf(λ) < κ. Then the nonstationary ideal on Pκ(λ) is not λ++-saturated.

Proof. As κ ≥ ℵ2 we may pick a regular cardinal µ < κ such that µ 6= cf(λ). Let
A ⊂ λ+ be a set as in fact 3.2.23. As λ+ is regular we already know that there is
an antichain D of cardnality λ++ in P (A)/NS. Thus let {Bα : α < λ++} be an
enumeration of this antichain. For each ξ, η < λ++ let Cξ,η be a club such that
Bξ ∩Bη ∩Cξ,η = ∅. By taking a bijection between the λ++ × λ++ and λ++ we
define Cξ for all ξ < λ++ and build ∆ξ<λ++Cξ. We set B′α := Bα ∩∆ξ<λ++Cξ
for every α < λ++. Then each B′α is stationary and if α 6= β then B′α ∩ B′β is
bounded. Thus we may assume without loss of generality that for all Bξ, Bη ∈ D
Bξ ∩Bη is bounded.

Each stationary B ⊂ A induces a stationary set

SB := {N ∈ Pκ(H(θ)) : sup(N ∩ λ+) ∈ B and N is I.A. of length µ}.
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Because if C is a club in PκH(θ) then by 3.2.9 there is a function F : [H(θ)]<ω →
H(θ) such that {x ∈ Pκ(H(θ)) : x ∩ κ ∈ κ ∧ F“[x]<ω ⊂ x} is a subset of
C. Now fact 3.2.23 witnesses that there exists such an N ≺ (H(θ), F, ...) which
additionally has sup(N∩λ+) ∈ B and is I.A. of length µ, hence SB is stationary.

If (fα : α < λ+ is a continous scale then the set {N ∈ Pκ(H(θ)) : (fα : α <
λ+) ∈ N} is a club and we may assume that each element of SB additionally
contains the scale.

Now we set for each B ∈ D TB := {N ∩ λ : N ∈ SB} which is a projection
of a stationary set and therefore remains stationary. We shall show that

if B,C are distinct elements of D then TB ∩ TS is nonstationary.

Let γ < λ+ be large enough that B ∩ C − γ = ∅. Let N ∈ SB and assume that
fγ(j) ∈ N ∩λ ∈ TB for each j < cf(λ) (this is always possible since the set {A ∈
Pκ(λ) : ∀j fγ(j) ∈ A} is a club). As N ∈ SB we know by lemma 3.2.25 that
there is an α ∈ B−γ such that χN =I fα. Assume now that there is an M ∈ SC
such that M ∩ λ = N ∩ λ, then χN (j) = sup(N ∩ λj) = sup(M ∩ λj) = χM (j),
but χN =I fα, α ∈ B − γ and χM =I fβ , β ∈ C − γ, which is a contradiction.

Thus we have shown that if E is the club in Pκ(λ) whose elements contain all
the ordinals fγ(j) for j < cf(λ), then E∩TB∩TC = ∅, which shows that TB and
TC have indeed nonstationary intersection, hence Pκ(λ) is not λ++ saturated.

3.2.5 κ is weakly inaccessible

Our last remaining case is where κ is weakly inaccessible and λ has cofinality
κ. We shall show:

Theorem 3.2.27. Let κ be weakly inaccessible and let λ > κ be such that
cf(λ) = κ. Then the nonstationary ideal on Pκ(λ) is not λ+-saturated.

The theorem will be proven after a series of lemmas are settled. Our proof
is indirect, thus we assume within the whole section that the nonstationary
ideal is λ+-saturated. Define a map π : Pκ(λ+) → Pκ(λ) by π(x) = x ∩ λ.
Moreover this function induces a map, which we will denote confusingly again
with π : P (Pκ(λ+)) → P (Pκ(λ)). The second π preserves stationarity, as well
as it’s inverse function π−1.

Lemma 3.2.28. If S ⊂ Pκ(λ+) is a stationary set, and if the nonstationary
ideal restricted to π(S) is λ+-saturated, then there is a club C ⊂ Pκ(λ+) such
that for each stationary S′ ⊂ π(S ∩ C), the set S ∩ π−1(S′) is stationary.

Proof. Let B ⊂ π(S) be stationary. We say that B is bad if and only if the
set {N ∈ S : N ∩ λ ∈ B} = S ∩ π−1(B) is not stationary. Suppose that
A ⊂ P (Pκ(λ) is a maximal antichain of bad sets. By the λ+-saturation we may
assume that A = {Bα : α < λ}. Since for each α < λ Dα := {x ∈ Pκ(λ) : α ∈
x} is a club, we may also assume that if N ∈ Bα then α ∈ N .
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Now since each Bα is bad, for every α there exists a club Cα ⊂ Pκ(λ+) such
that Cα ∩S ⊂ {N ∈ S : N ∩λ /∈ Bα}. Let C := ∆α<λCα and let T ⊂ π(C ∩S)
be stationary.

If S∩π−1(T ) is not stationary, i.e. {N ∈ S : N∩λ ∈ T} ∈ NS, then T is bad
and by the maximality of Bα, there must be an α such that Bα∩T is stationary.
Hence we may assume without loss of generality that T ⊂ Bα for an α < λ. Let
N ∈ S ∩ C with N ∩ λ ∈ T . Then since T ⊂ Bα, N ∩ λ ∈ Bα and thus α ∈ N .
As ∆Cα = {x ∈ Pκ(λ) : x ∈

⋂
α∈x Cα}, α ∈ N and N ∈ C ∩ S = ∆Cα ∩ S,

N ∈ Cα ∩ S and so N ∩ λ /∈ Bα, thus N ∩ λ /∈ T which is a contradiction. So
{N ∈ S : N ∩ λ ∈ T} must be stationary.

Now we pick a cofinal sequence of regular cardinals (λi : i < κ) such that
the true cofinality of the reduced product of the λi’s modulo the bounded sets
on κ is λ+. We choose a continous scale (fα : α < λ+) in this reduced product.

Lemma 3.2.29. Let T be the subset of Pκ(λ+) such that its elements M satisfy

(i) cf(M ∩ κ) = ω1

(ii) there is a sequence (δn : n ∈ ω) ⊂ M ∩ λ+ and an i0 ∈ M ∩ κ so that
χM (i) := sup(M ∩ λi) = sup(fδn)(i) : n ∈ ω) for all i ∈ κ ∩M, i > i0.

Then T is stationary

Proof. Let θ be a sufficiently large regular cardinal such that all the neccessary
things (the scale, the cardinals mentioned) lie in H(θ). We shall show that there
exists an elementary submodel M ≺ H(θ) with M ∈ T , such that M ∩ κ ∈ κ.
This suffices as we know by lemma 3.2.9 that {N ∈ Pκ(λ+ : N ≺ (H(θ),∈, <
, ...) ∧ N ∩ κ ∈ κ} forms a basis for the clubs in Pκ(λ+).

Pick an M ≺ H(θ) such that κ ∈M , M has cardinality κ. We may demand
that M is internally approachable by an increasing sequence (Nk : k ∈ ω) of
length ω as can be seen as follows: Let M0 ≺ H(θ) such that |M0| = κ, κ ⊂M0.
Pick an M1 ≺ H(θ) with M0 ⊂M1, M0 ∈M1 and |M1| = kappa. Moreover let
M2 ⊃M1 be such that M2 ≺ H(θ), (M0,M1) ∈M2, |M2| = κ and so on. Then
M :=

⋃
i∈ωMi has the desired properties.

Then (maybe after thinning the internally approaching sequence out) for all
k there is a δk ∈ Nk+1 such that χNk <

∗ fδk <
∗ χNk+1

. Next we choose an
increasing sequence (Mα : α < κ) such that (Mα∩κ) ∈ κ, |Mα| < κ, each Nk ∈
M0 and Mα ⊂M . Then for some α with cf(α) = ω1, (Mα, (fδk)) ≺ (M, (fδk)).

Now we claim that for this Mα, Mα ∩λ ∈ T . Note that since each fδk ∈Mα

and cf(α) = ω1 there is an i0 ∈ Mα ∩ κ such that for all i with i0 < i < κ,
and all k ∈ ω χNk(i) < fδk(i) < χNk+1

(i). Thus for all i between i0 and κ
χMα(i) = sup{χNk(i) : k ∈ ω} = sup{fδk(i) : k ∈ ω}.

Now for every N ∈ T we fix an increasing sequence (αNi : i ∈ ω1) of
ordinals cofinal in N ∩κ. Moreover we pick a G ⊂ P (Pκ(λ))/NS that is generic
with π(T ) in G and build the generic ultrapower of V by G. This gives us an
embedding j : V → M ⊂ V [G], M transitive, and j“λ ∈ M and the sequence
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(αj“λi : i ∈ ω1) is a cofinal increasing sequence in κ. This sequence determines a
subsequence of the cardinals (λi : i ∈ κ), which we will denote by (λ∗i : i ∈ ω1).
Thus it is reasonable to view each fα as an element of

∏
i∈ω1

λ∗i . Further for

N ∈ T , the sequence (αNi : i ∈ ω1) determines a version of the sequence λ∗i
relative to N∩λ, and for i > i0 each N∩λ∗i has cofinality ω. By our penultimate
lemma by intersecting T with a club if necessary we may assume that for all
stationary S ⊂ π(T ), π−1(S) ∩ T is stationary.

Lemma 3.2.30. For every generic G ⊂ P (Pκ(λ))/NS with π(T ) ∈ G,

V [G] |= ((f∗α : α ∈ λ+) is unbounded in
∏
i<ω1

λ∗i (mod the filter of countable sets))

Proof. Assume to the contrary that the lemma is false, take G generic with
π(T ) ∈ G as a counterexample and let j : V → M ⊂ V [G] be the generic
elementary embedding, where M is transitive. We may assume that π(T ) 

((f∗α : α < λ+) is bounded in

∏
i∈ω1

λ∗i ). Hence there is an h ∈
∏
i∈ω1

j“λ∗i
such that for all α ∈ λ+ and all large enough i < ω1, h(i) > f∗j(α)(i). Note

that h ∈ M . Hence by the saturation there is a g : π(T ) → V such that for
almost every x ∈ π(T ), g(x) ∈

∏
i∈ω1

(λ∗i ∩ x), and such that for all α < λ+,
π(T ) 
 ( for all sufficiently large i ∈ ω1, [g]M (i) > f∗j(α)(i).

Let N ∈ T then g(N∩λ) ∈
∏
i∈ω1

(λ∗i ∩N). In particular for all i ∈ ω1, g(N∩
λ)(i) < χ∗N (i) (where χ∗N (i) = sup(N ∩ λ∗i )). Since N ∈ T , there is a sequence
δn : n ∈ ω) such that for all large enough i ∈ ω1, χ∗N (i) = sup{f∗δn(i) : n ∈ ω}.
Hence for all large i ∈ ω1, there is an n such that g(N ∩ λ)(i) < f∗δn(i). Hence
there is an unbounded set of i < ω1, and an n such that f∗δn(i) > g(N ∩ λ)(i).

Now by Fodor there is a δ and a stationary T ′ ⊂ T such that for all N ∈ T ′,
g(N ∩ λ)(i) < f∗δ (i) for cofinally many i ∈ omega1.

Assume that π(T ′) ∈ G, then j(g)(j“λ)(i) < f∗j(δ)(i) holds in M for un-
boundedly many i < ω1, a contradiction.

proof of theorem 3.2.27. We are finally ready to prove the theorem 3.2.27: With
the help of our last lemmas we can find a generic G ⊂ P (Pκ(λ)) such that in
V [G] the following holds:

(a) (f∗α : α < λ+) is unbounded in
∏
i∈ω1

λ∗i

(b) cf(κ) = ω1 and for all i, cf(λ∗i ) = ω.

Working now in V [G] we may apply Shelahs trichotomy theorem ([15], Claim
2.1.2 ) to see that in Onω1/ bounded sets the sequence (f∗α : α < λ+) either

1. has an exact upper bound g in Onω1/ bounded sets such that for almost
all i, j ∈ ω1, cf(g(j)) = cf(g(i)), or

2. there are sets Ai ⊂ λ∗i , with |Ai| ≤ ω1, and an ultrafilter D ⊂ P (ω) such
that for all α < λ+ there is a β < λ+ and a g ∈

∏
i<ω1

Ai such that
f∗α <D g <D f∗β or
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3. there is a g ∈
∏
i<ω1

λ∗i such that the sequence of equivalence classes of
{i : f∗α(i) ≤ g(i)} modulo the ideal of bounded sets in ω1 is not eventually
constant.

Note that by our last lemma, if the sequence (f∗α : α < λ+) has an exact
upper bound then it must be given by the function g(i) = λ∗i . As each λ∗i has
cofinality ω, we can choose cofinal countable sets Ai ⊂ λ∗i . Since g is an exact
upper bound, for every function h ∈

∏
i∈ω1

Ai, there is a β such that h <∗ f∗β .

Further since the Ai are cofinal, for all β < λ+, there is an h ∈
∏
i<ω1

Ai such
that f∗β <

∗ h. Hence if there is an exact upper bound the sets{Ai} are a witness
to being in case 2 for any ultrafilter D.

We shall show that both cases 2 and 3 lead to a contradiction. In either case
there is an ordinal δ ∈ λ+ of cofinality ω2 (in V and V [G]) such that either for
all α < δ there is a β < δ and a g ∈

∏
i<ω1

Ai such that f∗α <D g <D f∗β (in
case 2). Or the sequence of equivalence classes of {i : f∗α ≤ g∗α} (modulo the
ideal of bounded sets in ω1) for α < δ is not eventually constant (in case 3).

We return to V now and choose there a cofinal X ⊂ δ of order type ω2.
Then since κ is regular in V there is a j < κ such that for all i > j and all
α < β in X, fα(i) < fβ(i). Thus in V [G] there is an i0 ∈ ω1 such that for all
α < β, α, β ∈ X and all i > i0, f∗α(i) < f∗β(i).

We work in V [G] again: If 2 holds then we construct a cofinal set X ′ ⊂ X
such that for all α < β in X ′ there is a g ∈

∏
i<ω1

Ai such that f∗α <D g <D f∗β .
If α < α′ are successive elements of X ′, pick iα > i0 and a gα ∈

∏
i∈ω1

Ai such
that fα(iα) < gα(iα) < fα′(iα). Then there is a j > i0 such that for cofinally
many α ∈ X ′ we have that iα = j, and hence we can assume that for all α ∈ X ′,
iα = j. But then, if α < β are arbitrary elements of X ′

f∗α(j) < gα(j) < f∗α′(i) < f∗β(j) < gβ(j)

which is a contradiction, since it implies that Aj has cardinality at least ω2.
If 3 holds then choose X ′ ⊂ X cofinal in δ so that if α, β ∈ X ′ are distinct

then modulo the bounded subsets of ω1, [{i : fα(i) ≤ g(i)}] 6= [{i : fβ(i) ≤
g(i)}]. Since the fα’s are increasing with α ∈ X ′ at every i > i0, the sets
{i > i0 : fα(i) ≤ g(i)} are strictly decreasing with α ∈ X ′, however it is
impossible to have a stricitly decreasing sequence of subsets of ω1 of length ω2.
So our theorem is finally proven.
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