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Chapter 1: Introduction 

1.1 Background 

1.1.1 Health and environmental concerns about lead 

Lead and its compounds belong to the most problematic chemicals with regard to the 

consequences it may have on human life and environment [94Woo]. The accumulation 

of lead in the body over a long period can cause serious health problems. The function 

of the human body might be disturbed because lead has the property to bind strongly 

to proteins. Known effects are disorders in the nervous and reproductive system, 

delays in the neurological and physical development, cognitive and behavioral 

changes, reduced production of hemoglobin which can cause anemia and hypertension 

[84Mon]. Lead poisoning is assumed, when the level of lead exceeds 50mg/dl [95Nap]. 

It should be noted, that also a level of lead below this official threshold can be 

dangerous especially for children and their neurological and physical development 

[06Zuo].  

Due to the fact, that lead and its compounds pose a great risk to the human population 

and its well-being, a lot of effort is made to reduce the exposure to these substances. 

Potential risks occur from occupational exposure, lead waste derived from the 

manufacturing process and the disposal of electronic assemblies. Primary sources for 

occupational exposure are soldering processes. In this case, the inhalation of lead 

vapors represents one of the greatest risks. The problems arising from the disposal of 

lead containing waste will be probably even more important. Especially the rapidly 

increasing amounts of electronic assemblies like personal computers, television sets 

and mobile phones could cause serious problems of lead contamination in the future, 

when they are discarded. Lead which is disposed in this form in landfills can be washed 

out and may cause a contamination of water sources, terrain and as a consequence it 

might cause a disruption of the human ecosystem in general [06Zuo], [11Hin]. 

There is no clear scientific prove about the mechanisms of how lead from electronic 

waste reaches our ecosystem, but one possible explanation is, that lead reacts with 

oxygen, water and carbon dioxide. 
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Representatives which should regulate the points mentioned above. Japan did not 

forbid the use of lead directly but sending lead or lead containing materials to landfills 

will be prohibited. This way, Japan is trying to prevent lead from reaching our 

ecosystem. Manufacturers have two possible options. Either they conceive the 

complete recycling of lead from their products or they establish the use of lead-free 

solder alloys. Since a lot of Japanese companies started to proclaim the use of new 

lead-free solders, the trend seems to be conclusive [06Zuo]. 

 

1.2 New lead-free solders 

1.2.1 Function of lead in eutectic tin-lead solders 

The reason why lead is frequently used for solders is that there are a lot of technical 

advantages for the manufacturing processes of electronic devices. The popularity of 

the classical Sn-37Pb alloy has several reasons: 

I. The melting temperature of 183°C is quite low. This allows very mild soldering 

conditions. Furthermore the SMT (Surface Mount Technology) can be applied. 

II. The wettability (solderability) is improved because lead reduces the surface 

tension of pure tin. 

III. The addition of lead reduces the possibility of the transformation of the grey α-

tin to the white β-tin which is also known as “tin pest”. This reaction reduces 

the structural integrity of the tin and therewith the stability of the soldered 

parts. 

IV. Lead promotes the fast formation of intermetallic bonds by acting as a solvent 

metal. 

V. Lead is a low cost material which is sufficiently available. 

These are common reasons why lead-based soldering materials are still widely used for 

the manufacture of electronic devices [00Abt]. 
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1.2.2 Lead-free solders 

During the last years, a number of different lead-free solders were investigated which 

are mostly based on tin-alloys. It is probably not possible to substitute lead containing 

solders completely but the new solders may be used as an environmentally friendly 

alternative [11Hin]. Possible intermetallic compounds are for example Sn-Ag and Sn-

Cu. One of the biggest disadvantages of these new solders is their higher melting point, 

in comparison to alloys which have been used until now. The higher melting point 

causes a lot of technical problems during the manufacture processes. The processes of 

soldering have to be adapted for higher temperatures and the materials used (e.g. 

printed circuit boards) must resist these high temperature conditions. For this reason 

the reduction of the melting temperature is a current subject of research. If elements 

like Indium and Bismuth are added to the new intermetallics ternary alloys with much 

lower melting points are formed [01Sug].  

Recent works of our group have shown, that intermetallic systems on the basis of     

Cu-In-Sn have good wettability and improved mechanical properties [06Zuo]. With 

regard to melting properties, wettability and mechanical properties, previous 

investigations suggested Ag-Bi-Sn Systems as good alternatives to currently used lead 

containing solders [98Kar1], [98Kar2], [99Via1], [99Via2], [02Xia]. 

 

1.3 Research Objectives 

The aim of this work is to obtain information about the thermodynamic properties of 

the ternary Al-Ge-Zn system. The primary reason for the investigation of this particular 

system was the fact, that studies concerning this system are quite rare. Especially 

reports about experimental works on this system are very limited. There are few 

publications [76Tad], [81Sto], [91Sri] with thermodynamic calculations on that system. 

The measurement of the electromotive force (EMF) of an appropriate galvanic cell 

represents a highly accurate method to determine thermodynamic properties of 

metallic systems. It is possible to measure the partial Gibbs energies directly and to 

derive the Gibbs energies of formation of alloys [97Mik].  
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The activity of aluminum in the Al-Ge-Zn intermetallic system can be determined by 

the measurement of the electromotive force (EMF) in an electrochemical cell 

containing a liquid electrolyte. Thermodynamic data are very significant for the 

calculation of phase diagrams, for the development of new lead-free solders and for 

the prediction of their physical and chemical properties such as surface tension and 

viscosity [98Sau]. Furthermore the evaluated parameters can be included into a 

database of lead-free solders [06Zuo]. 

This work was part of the COST MP0602 action. The previous COST 531 action for the 

investigation of lead free solder alloys was originally founded in 2001 by H. Ipser and  

A. Mikula. The goal of this program is to create a database of important results of 

different investigations in this particular area. It should help to create new useful alloys 

and to avoid the repetition of complicated and time-consuming experiments.  
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Chapter 2: Experimental techniques 

2.1 Methodology 

2.1.1 Electromotive force (EMF) method 

A chemical system, which is able to produce electric current, is named “galvanic cell” 

or “electrochemical cell”. A chemical reaction in such a cell can be obtained by a 

concentration difference between two electrodes. According to that, this cell-type is 

called “concentration cell”. In this case, the thermodynamic properties of the chemical 

reaction inside the cell can be calculated from the measured electromotive force (EMF) 

which is provided by the particular cell. Furthermore the activity of one metal in an 

alloy system (eg. binary or ternary intermetallic systems) can be determined. As 

mentioned in 1.3 the measurement of EMF is a widely used technique and one of the 

most accurate methods for investigating thermodynamic properties of alloys [11Hin]. 

In general there are two possible methods of measuring the EMF to obtain 

thermodynamic data of an intermetallic system: One possibility is to work with solid 

electrolytes, which normally allows the work at high temperatures (over 800°C). The 

other option is to work with liquid electrolytes at temperatures below 800°C [06Zuo]. 

In 1923, aqueous electrolytes where replaced with molten salt-mixtures by Taylor 

[23Tay]. In this way, it was possible to measure the activities of Zn, Cd, Sn, Pb and Bi in 

binary alloys. Many further publications, [52Wag], [58Chi], [73Kom] refer to galvanic 

cells which work with molten salts. An extensive summary of the EMF-technique was 

compiled in 1997 by A. Mikula [97Mik]. With the aid of the EMF measurement in liquid 

electrolytes, a number of potential lead-free solders like Ag-Sn-Zn [94Kar], Cu-Sn-Zn 

[97Pen], Al-Sn-Zn [02Kno], Cu-In-Zn [06Kno1], Ag-Bi-Sn [06Li1] and Pd-Sn-Zn [06Li2] Ag-

Au-Sn [10Hin], Au-Sb-Sn and Au-Sb [11Hin]  where investigated extensively by our 

group. 
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2.1.2 Principle of the EMF method 

Basically the concentration cells which are used to study thermodynamic properties of 

liquid alloys consist of an electrode which is a pure metal A and a second electrode 

which is an alloy containing metal A [97Mik], [06Zuo], [11Hin]. 

According to this, we can write for a typical cell-setup: 

A-pure(l) / AZ+, ionic electrolyte / A-alloy(l)                                                         (2.1) 

The cell-reaction can be written as follows: 

A-pure(l) ↔ A-alloy(l)                                                                                       (2.2) 

If pure A(l) is used as a reference, the change of the chemical potential for this reaction 

is described by the following equation [97Mik]: 

∆�������  �  ��	
 � �� 
���                                                     (2.3) 

z……….Number of transferred electrons in the cell reaction 

F……….Faraday constant (96486 C ∙ mol-1) 

E……….measured electromotive force (EMF) of the cell 

R……….universal gas constant (8,314 J ∙ mol-1 K-1) 

T……….absolute temperature (K) 

aA……….thermodynamic activity of component A in the alloy 

If the subscript A is substituted by i, the partial molar Gibbs free energy ∆������� and the 

activity of the component i in the alloy can be determined directly by the measured 

EMF [06Zuo]: 

∆�������  �  ��	
                                                               (2.4) 

�� � exp �����
�� �                                                            (2.5) 
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The temperature dependence of the EMF allows us to calculate the partial molar 

enthalpy ∆������� and also the partial molar entropy ∆������ using the Gibbs-Helmholtz relation 

[97Mik], [06Zuo]: 

∆������� �  ∆������� �  �∆������ �  ��	  
 � � �!"
!#�$,&'                                 (2.6) 

∆������ � �	 �!"
!#�$,&                                                       (2.7) 

It is known, that the thermodynamic properties of real solutions differ from ideal ones. 

According to this, the mixing thermodynamic properties of real solutions are described 

as the sum of an ideal contribution and an excess contribution [06Zuo], [11Hin].  

If this definition is applied to partial molar properties, the following expressions are 

obtained: 

∆��" � �� ln *�                                                               (2.8) 

∆��" �  �� ln *� � �! +, -.
! # �&                                                (2.9) 

∆��"……….partial excess Gibbs free energy 

∆��"……….partial excess entropy 

In this case *� is the activity coefficient of the component i. 

In the multi-component solution, the molar quantity ∆/ is the sum of the individual 

partial molar quantities multiplied by the mole fraction: 

∆/ �  ∑ 1�  ∆/��                                                             (2.10) 

The integral properties cannot be obtained directly by using equation 2.10 because 

only the partial molar properties of one component in the multi-component solution 

can be measured by the EMF-method. To solve this problem, the Gibbs-Duhem 

equation can be used [97Mik], [06Zuo], [11Hin]: 

∑ 1� 2 ∆/� � 0�                                                           (2.11) 
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After carrying out a partial differentiation of the equation (with respect to xi while 

keeping xj:xk:xl… constant) and combining the result with the Gibbs-Duhem equation 

the following expression can be obtained: 

4 !
!$.  � ∆5

6�$.�7$8:$::$;… �  ∆5.=6�$.>?                                            (2.12) 

In this case xj:xk:xl …means, that the relative amounts of all components except i are 

constant. 

In a ternary system, where the partial molar properties of component 3 are measured 

by the EMF method, the integration of equation 2.12 from x1=0 to x3 at a constant 

molar ratio of x1 to x2 results in the following equation [51Ell], [06Zuo], [11Hin]: 

∆/ �  =1 � 1A> 4∆/$BCD �  E ∆5B
=6�$B>?

$BD 21A7$F/$?
                             (2.13) 

From this equation, molar thermodynamic properties can be calculated if the partial 

molar properties of one component are measured over the whole concentration 

range. ∆/$BCD represents the starting value of the binary 1-2 system [06Zuo]. 

If this relationship is applied to the excess Gibbs free energy and enthalpy of mixing, 

the following two equations can be derived [50Dar], [51Ell], [06Zuo]: 

∆�HI �  =1 � JKL> M∆�KLCDHI � E ∆NOPQR
=6�HOP>?

HOPD 2JKLS
HF/H?

                  (2.14) 

∆� �  =1 � JKL> 4∆�KLCD �  E ∆TOP
=6�HOP>? 2JKLHOPD 7HF/H?

                  (2.15) 

∆�KLCDHI  and ∆�KLCD are representing the limiting excess Gibbs energy and enthalpy 

values of the binary system. JKL is the mole fraction of Al in the alloy. 

According to [Hin11] an additional function is used for the integration of the partial 

excess Gibbs free energy: 

∆�KLHI � �� ln *KL                                                       (2.16) 

In this case *KL represents the activity coefficient. 
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According to this, the integrand becomes the so called alpha function: 

U �  � +, -OP
=6�$OP>?�                                                           (2.17) 

When this alpha function is inserted into 2.14 the following expression can be 

obtained [Hin11]: 

∆�HI � =1 � JKL> 4∆�KLCDHI �  �� E U 2JKLHOPD 7HF/H?
                   (2.18) 

 

2.1.3 Requirements for accurate EMF measurements 

There are several points, which should be taken into account if EMF measurements are 

performed. These are important to obtain accurate and reliable data: 

I. The cell reaction has to be reversible. No drift or polarization effects should be 

shown. At the same temperature the value of the measured EMF must be 

constant and reproducible. 

II. It is important to know the charge of the electropositive ion AZ+.  

A ↔ AZ+ + Ze-                                                          (2.19) 

This should also represent the only charge transfer through the electrolyte and 

the only reaction on the surface of the used electrodes. 

III. The conduction through the electrolyte should be pure ionic. Attention must be 

paid to prevent displacement reactions. 

IV. Reactions between the lead wires, the electrodes, the electrolyte, the 

containment and the alloy must be averted. During the investigation of the 

ternary Al-Ge-Zn system, a reaction between the molybdenum electrodes and 

the liquid alloys was observed. The problem was solved by using graphite rods 

as electrodes which touched the liquid alloys. This way, a direct contact 

between the Mo-wires and the samples was prevented (see also 3.2.3). Similar 

phenomena of unwanted side reactions were noticed in our group during the 

measurement of liquid Sn-Zn-Al alloys with tungsten electrodes [02Kno]. 

V. Potential reactions of the electrolyte and the electrodes with materials which 

the cell consists of must be taken into account. 
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VI. For heating the cell, a furnace should be used, which is not wired inductively. In 

this way electrical interferences during the measurement can be prevented. For 

the present investigations a metallic, grounded shield was placed around the 

cell. In this way electrical interferences (induction effects) could be minimized. 

VII. Eventually concentration changes because of the vapor pressure of the 

electrodes and the electrolyte must be taken into consideration. 

VIII. During the measurement of the EMF, it is mandatory to prevent the passage of 

electrical current through the cell. This can be accomplished by using a 

voltmeter with an input impedance greater than 1010ohms. 

IX. A protecting atmosphere consisting of an inert gas must be provided. In the 

case of the Al-Ge-Zn system, Ar-gas was used to fill the cell with a pressure of 

0,5bar. 

X. The temperature should be high enough to avoid changes in the composition of 

the alloy. 

XI. The appearance of thermoelectric voltage must be prevented. 

It is essential that these conditions are fulfilled for successful experiments. If this is the 

case, adequate EMF-measurements are possible and as mentioned in 2.1.2 a 

relationship between the reversible cell potential E and the Gibbs free energy change 

ΔG can be found in a simple equation [79Kub], [96Mik], [06Zuo], [10Ips]. 

 

2.2 EMF measurements with liquid electrolytes 

This kind of measurement is done by using a liquid electrolyte (molten salt-mixture), 

which is normally composed of different alkali chlorides with a small addition of Me-

ions of the investigated alloy-compound in the form of a suitable Me-salt. This means, 

that for the investigation of the ternary Al-Ge-Zn system, where the focus of research 

is set on the activity of the aluminum in the liquid ternary alloy, Al3+ is added to the 

electrolyte in the form of a suitable salt. A widely used electrolyte is the eutectic salt 

mixture of LiCl and KCl which starts to melt at 354°C [10Ips].  
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The use of molten salts is a standard method for measurements at elevated 

temperatures [10Ips]. The setup of the measuring cell which uses liquid electrolytes 

consists of a reference electrode which is a pure metal A and another electrode which 

is an alloy containing the metal A. The electrodes are covered completely by the 

molten salt electrolyte. This form of the setup works like a classical, chemical 

concentration cell and the electromotive force between the electrodes can be 

measured in dependence of the temperature by using a voltmeter [97Mik], [06Zuo], 

[11Hin]. 

 

2.2.1 The EMF apparatus for liquid electrolytes 

The general setup of an EMF apparatus which works with liquid electrolytes is shown 

in Figure 2.1. The experimental details concerning the apparatus which was used for 

the investigation of the ternary Al-Ge-Zn system can be found in 3.2.3. This type of 

apparatus represents the measuring setup, which is currently used in our group. 
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The whole cell is made of quartz (silica). The sealing at the top of the cell is made of 

brass and has five inlets at the top and a glass valve attached at the side which is used 

as a connection to the vacuum-pump and the argon-bottle. Four of the inlets are used 

for the lead wires, and the central one is used for the sample holder which is also 

made of quartz. The lead wires and the sample holder are all introduced through the 

inlets. In this way a steering of the alloys during the measurement is possible. 

Furthermore it is possible to insert a thermocouple into the sample holder to monitor 

and record the temperature while measuring it.  

For the measurement the setup of the whole cell is prepared first. During each 

measurement four electrodes are used. One of them is the reference and the other 

three are the alloy samples. With this cell arrangement three samples can be 

Fig. 2.1 The EMF apparatus for measurements with 

liquid electrolytes [11Hin] 
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measured during one experiment. The contact is provided by wires with a protection 

made of thin quartz capillaries.  

After everything has been prepared, the electrolyte, which should have been prepared 

previously (see 3.2.2) is inserted into the quartz tube. The apparatus is closed 

immediately and evacuated. After this, the cell is purged with Argon gas. This 

procedure is repeated for 4 times. Finally the container is filled up with Argon gas to 

about half standard atmosphere. Subsequently the cell is heated in a vertical furnace 

to melt the electrolyte. The electrodes and the sample holder are kept at the top of 

the cell during the heating process. This prevents the evaporation of volatile 

compounds of the alloys. After the electrolyte has melted, the sample holder and the 

electrodes are pushed down into the molten salt. When the temperature reaches a 

maximum of 800°C the lead wires are connected with the data acquisition system, the 

thermocouple is inserted and the measurement can be started. 

Generally the measurement is done by slowly cooling the cell down and 

simultaneously measuring the temperature and the EMF values. This way, a function 

which is dependent on the temperature and the EMF, can be recorded. The cooling 

rate normally is about 0.1°C to 0.2°C per minute. Furthermore it is also common, to 

keep the temperature for a longer period of time at different constant levels. In this 

case, the EMF-values also have to be constant. The temperature and the EMF-values 

are monitored with a computer and automatically recorded for the evaluation. 

 

2.2.2 Preparation of the liquid electrolyte 

The following part will give a general overview of the preparation of a liquid 

electrolyte. Also a list of advantages and disadvantages concerning the use of liquid 

electrolytes is given. The experimental details for the investigation of the Al-Ge-Zn 

system are described in 3.2.2.  

The liquid electrolytes, which are commonly used for the investigation of various 

alloys, often consist of eutectic mixtures of different alkali chlorides. A small amount of 

a salt (normally also a chloride) of the metal whose activity is investigated is added to 
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this mixture to ensure that only ions of this particular metal can migrate through the 

electrolyte during the measurement. The choice of the particular electrolyte-

composition depends on the alloys, which shall be investigated and further on the 

experimental parameters like the temperature range, in which the cell is going to be 

operated. A very common electrolyte is a eutectic mixture of 46 wt.% LiCl and   54 

wt.% KCl with a melting temperature of 354°C [96Mik].  

The use of liquid electrolytes during the study of intermetallics has several advantages 

[96Mik], [06Zuo], [10Ips], [11Hin]: 

I. Systems with liquid electrolytes reach the equilibrium much faster than those, 

which are working with solid electrolytes. This has the advantage, that diffusion 

processes don´t have to be taken into account. 

II. The liquid electrolyte covers the molten alloys and prevents evaporation. This is 

very useful, if alloys containing a volatile compound (e.g. zinc) are investigated. 

III. Eutectic mixtures of LiCl and KCl have a melting point of about 354°C. 

Compared to other salt mixtures this is quite low, and opens up the possibility 

of working at lower temperatures. 

IV. Solid electrolytes sometimes can suffer microcracks. This can falsify 

measurements. If liquid electrolytes are used, this kind of error source does not 

occur. 

At this point it must be mentioned, that there are also limitations when liquid 

electrolytes are used [96Mik], [06Zuo], [11Hin]: 

I. The preparation of the electrolyte must be done very carefully. Any impurities 

can cause serious problems during the measurement because of side reactions, 

which leads to incorrect results. 

II. Liquid electrolytes should not be used at temperatures which are higher than 

800°C. The reason for this is that the molten salt mixture can get some 

electronic conductivity at higher temperatures. 

III. As mentioned in 2.1.3 reactions between lead wires, the electrodes, the 

electrolyte, the containment and the alloy have to be taken into account. 
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The aim of the process for preparing the liquid electrolyte is to remove impurities such 

as water and hydroxides from the used salts. The experimental setup is shown in      

Fig. 2.2. The apparatus has to be made of glass to resist the reaction-conditions and it 

also has to be completely vacuum tight.  

 

 

 

 

For the purification, the single components of the electrolyte are mixed together and 

then filled into the apparatus. After that, the whole setup is evacuated. By heating the 

eutectic mixture up to 600°C the salt becomes liquid. As this happens, chlorine gas is 

passed through the molten salt for about 30-45 minutes. Often this causes a slightly 

yellow-greenish color of the molten salt. The process of chlorination leads to the 

purification of the electrolyte according to the following reactions: 

OH- + Cl2 → Cl- + HCl + ½O2                                                  (2.20) 

H2O + Cl2 → 2HCl + ½O2                                                    (2.21) 

O2- + Cl2 → 2Cl- + ½O2                                                     (2.22) 

Fig. 2.2 Apparatus for the preparation of liquid electrolytes [10Ips] 
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It is also possible to use other gases like hydrogen chloride for this process. However, 

chlorine gas is preferred because it gives a lower residual water and hydroxide content 

[06Zuo]. 

After the step of chlorination, all remaining chlorine gas must be removed from the 

electrolyte. Therefore, the residue of chlorine is removed from the molten salt with 

argon gas which is bubbled through the electrolyte for about four hours until the 

previously developed color disappears. When this is finished, the molten salt is filtered 

through the frit at the bottom of the apparatus into an ampoule. This is subsequently 

sealed under vacuum. An electrolyte, which is prepared according to this procedure, 

can be stored for several months until it is used [96Mik], [06Zuo], [10Ips], [11Hin]. 

 

2.2.3 Preparation of the alloys for EMF measurements with liquid 

electrolytes 

The detailed process and the compositions of metals which were used for investigating 

the Al-Ge-Zn system can be found in 3.2.1. There are many different ways to prepare 

alloys for EMF measurements. Common methods are simply to melt the single 

components together in crucibles using a standard laboratory furnace or an induction 

furnace. It is also possible to use a commercial arc-melter to prepare the alloys on 

laboratory scale. Another possibility for preparing intermetallics for research 

experiments is to use a modified version of an electron gun which is normally used for 

physical vapor deposition experiments [02Pas], [05Goz], [07Goz]. 

However, it might be necessary to prepare larger quantities of alloys to have the 

possibility of repeating some experiments. For this reason, the alloys can be prepared 

by melting the appropriate quantities of the pure metals together using large alumina 

crucibles. This can be done in a common laboratory furnace during one week. To 

prevent oxidation of the metals, the alumina crucibles are placed and sealed into 

quartz ampoules under vacuum. After heating these ampoules for six days in a furnace 

50-100K above the melting temperature, the temperature is lowered, so that it is close 
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to the melting temperature of the particular alloy. After another day of heating, the 

alloys can be quenched and kept for further experiments. 

 

2.3 EMF measurements with solid electrolytes 

EMF measurements with solid electrolytes are often carried out by using CaF2 crystals 

as electrolyte. The ionic conductivity at higher temperatures of this electrolyte makes 

it suitable for this kind of measurements. Although there are some differences 

between the EMF technique with liquid and solid electrolytes, the obtained data can 

be used in each case in the same way. The EMF values which are measured in 

dependence of the temperature can be used to derive thermodynamic properties of 

different intermetallic materials. 

As mentioned before, the current work was partly established at the “Dipartimento di 

chimica – Università degli studi di Roma la Sapienza” in Rome/Italy. There will be a 

review of the technique of EMF measurements with solid electrolytes which is 

currently used by Prof. Daniele Gozzi and his team at the faculty of chemistry at la 

Sapienza University in Rome for the investigation of alloys consisting of rare-earth 

elements and Fe, Co or Ni. 

The work achieved work during the semester abroad in Rome can be summarized as 

follows: 

It was possible to assemble a working setup for the investigation of rare-earth 

elements and transition-metal elements with the EMF technique with solid electrolytes 

(see 2.3.1). The apparatus was equipped with new holders for the tungsten resistor of 

the cell. These holders were made of copper and cooled by water. Due to the different 

thermal expansion of copper and tungsten, mechanical forces occurred and caused 

problems which finally led to a break of the resistor. Further problems were that the 

resistor-holders could not be mounted into the vacuum chamber in a leak tight way 

due to mistakes which were done during the manufacture process. The problems were 

solved by a modification of the resistor by the US based manufacturing company. Also 

the holders for the resistor were modified and the new ones were completely made of 
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tungsten metal. The whole setup was checked for several days for leak tightness by 

heating up the cell to normal operation temperatures of about 800°C. To prove the 

correct function of the whole system, the temperature controller was set to a stepwise 

cooling. Several temperature steps were programmed, keeping each temperature 

constant for 10 minutes and the temperature of each isothermal section was recorded. 

The measured values were then evaluated by plotting them on a PC. The results 

showed a very good isothermal behavior of the cell for each previously set 

temperature. Based on these measurements further calculations could be carried out 

to calculate the exact runtimes for the following EMF measurements of the alloys. 

Another part of the work was the preparation of the investigated intermetallics. 

Several alloys were prepared during the work on the system. The alloys for this 

particular study were intermetallic systems formed by different rare-earth elements 

and cobalt. The fusion of the metals was achieved by using an electron-gun (see also 

2.3.3). After the preparation of the alloys, the correct composition was proved by an X-

ray diffraction analysis. 

The author of the current work had the possibility to investigate the Pr2Co17 

intermetallic with the setup which is mentioned below. The results of this 

measurement are listed together with the results of two further investigations 

(Nd2Co17 and Gd2Co17) in 2.3.4.  

 

2.3.1 The EMF apparatus for measurements with solid electrolytes 

The basic setup for the investigation of alloys consisting of rare-earth elements and 

iron is an EMF cell of the following type: 

(-) Mo | RE, REFy | CaF2 | RE2Fe17, Fess, REFy | Mo (+)                            (2.23) 

In this case Fess is the rare earth saturated solution of Fe in equilibrium with the 

RE2Fe17 + Fess. REFy is the rare earth fluoride [05Goz], [07Goz]. Figure 2.3 shows the 

whole measuring unit (dismantled) at the laboratory of Prof. Gozzi. 
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The electrolyte, which is used for this particular cell is a CaF2 single crystal, which is 

shaped as a disk with a diameter of 8mm and 2mm thickness. The surfaces of the 

crystal are polished [05Goz], [07Goz]. A setup, where the cell is assembled in a 

Knudsen cell-like holder with a sandwich-type arrangement is currently used by the 

Fig. 2.3 Opened apparatus for EMF measurements with a 

solid CaF2 electrolyte for the investigation of alloys consist of 

rare-earth elements and transition-metal elements. 

A- vacuum chamber, B- holder for the electrodes and the 

electrolyte, C- Head of the measuring setup, D- feedback-

motion device, E- guillotine type vacuum valve, F- connection 

to the vacuum pump, G- vacuum sensor, H- window for visual 

control [photo: Virgilio Genova] 
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group of the RlM-lab (Reactivity of Inorganic Materials) at la Sapienza University      

(Fig. 2.4).  

 

 

 

This specially designed holder-arrangement is placed as a whole in the center of a 

massive tungsten resistor which is used to heat the cell. The setup was used in the past 

to measure Ni-rich and Fe-rich intermetallics along the rare earth series [02Pas], 

[05Goz], [07Goz]. At the moment, the group is carrying out investigations of Co-RE 

(rare earth elements) alloys. It is of great importance to mention that the system was 

improved by the scientific group of Prof. Gozzi by performing the EMF measurements 

under molecular effusion conditions. For this reason a very high vacuum is required. 

Fig. 2.4 Knudsen cell-like holder with a “sandwich-type” 

arrangement for the electrodes and the electrolyte       

[photo: Virgilio Genova] 
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Attention should be paid to this aspect especially when the vapor pressure of at least 

one of the galvanic cell components is high at operating temperatures [02Pas].  

For this kind of cell a resistor which is completely constructed of tungsten is used for 

heating the sample (Fig. 2.5). The resistor is connected to a transformer which supplies 

the system with a very high current of up to 700 amperes. As mentioned above, the 

whole sample holder is placed in the center of this resistor.  

 

 

 

A spring loaded latticework is utilized to place the electrochemical cell in the 

isothermal zone of the furnace. Size changes of the sample and other parts of the 

electrochemical cell setup are measured by a force-sensor and compensated by a 

feedback-motion device (Fig. 2.6). This is important, because by doing so, it can be 

ensured, that the contact pressure at the electrode-electrolyte interface is 

independent of the temperature [07Goz]. 

Fig. 2.5 Tungsten-resistor [photo: Virgilio Genova] 
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The measurement itself is done by stepwise cooling down the cell from a high 

temperature (about 800°C). This means, that several temperature steps are 

programmed where each temperature is kept constant for about 10 minutes and the 

EMF of this isothermal section is recorded.  

The measurement of compounds which contain rare earth- and transition-metal 

elements is of great interest because the interaction of d and f orbitals forms relevant 

properties. Such compounds can be used as superconductors, permanent magnets, 

catalysts, hydrogen storage materials or other promising structural materials. For this 

reason, it is interesting to determine the thermodynamic properties of these materials 

Fig. 2.6 Feedback-motion device for the compensation of size 

changes of the electrodes and the electrolyte due to the high 

temperatures [photo: Virgilio Genova] 
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by the EMF technique. Publications in this particular field of research are quite rare 

[07Goz]. 

  

2.3.2 Solid electrolytes for EMF measurements 

The following part of this thesis gives a general overview of possible solid electrolytes 

which can be used for EMF measurements. Also the advantages and disadvantages 

concerning the use of this particular type of electrolytes will be given. 

In general there are many different classes of substances which are suitable to be used 

as a solid electrolyte, for instance oxides, halides, sulfides and other types of solid 

materials [10Ips]. A very common type of solid electrolytes is CaF2 which is normally 

used in the form of a single crystal [73Ske], [01Kle]. Solid electrolytes are more and 

more important in various scientific and technological applications because they can 

be used in electrochemical cells for the measurement of chemical potentials in gases, 

liquids and solids [10Ips]. 

A big advantage of solid electrolytes is the possibility to use them at temperatures 

above 800°C. While liquid salt mixtures (liquid electrolytes) are not suitable for these 

high temperatures (see also 2.2.2), galvanic cell setups with solid electrolytes can be 

easily used also under these conditions and deliver reliable data [97Mik], [06Zuo].  

Another important aspect is that current cells with solid electrolytes remain very 

stable during an experiment and can be operated for more than a week. 

Finally it is important to mention, that it is not necessary to perform the time 

consuming and labour-intensive preparation and purification of the electrolyte like it is 

necessary for liquid salt mixtures as electrolyte. 

It should be mentioned, that they are also some limitations concerning the use of solid 

electrolytes during EMF experiments: 

Due to the solid state of the electrolyte-material, the system needs much longer to 

reach an equilibrium. This should be taken into account when planning a particular 

experiment. Furthermore the solid electrolyte does not provide any protection against 
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evaporation of material or the oxidation at the surface of the electrodes like liquid 

electrolytes do. This should be taken into account, especially if the alloys contain 

volatile components like for example zinc. Finally it has to be mentioned, that solid 

electrolyte materials can suffer so called microcracks. As mentioned before in 2.2.2 

this can falsify measurements. If liquid electrolytes are used, this kind of error source 

does not occur. 

One of the most important aspects concerning the use of solid electrolytes is their 

predominantly ionic conductivity. The ionic transference number tion, which is defined 

as the ratio of the ionic conductivity σion to the total conductivity σtotal should be near 

to 1 for an ideal solid electrolyte [10Ips].  

tion = σion / σtotal                                                                                             (2.24) 

A simple setup of a measuring cell was constructed by Schweitzer et. al. [04Sch] for the 

determination of the activities of Indium in the intermetallic compound InPt3. The cell 

for this purpose had a sandwich type arrangement, where the solid electrolyte was 

placed between the two electrodes which were contacted by Ir foil for separating the 

leading wires to avoid any unwanted side reactions. The experimental setup of solid 

electrolyte cells which are commonly used for EMF measurements is very frequently 

similar to this arrangement. Some details to this particular system can also be found in 

[10Ips]. 

 

2.3.3 Preparation of the alloys for EMF measurements with solid 

electrolytes 

There are different possibilities for the preparation of samples for EMF measurements. 

Some of them were already mentioned and described in 2.2.3. Normally the samples 

are prepared by melting a mixture of the different components together. Melting can 

be achieved by standard laboratory furnaces, induction furnaces or electric arc 

furnaces. A special, not very common method is the use of a modified electron gun (e-

gun) which is normally used for physical vapor deposition. This particular technique is 

currently used by the RIM-lab in Rome/Italy [05Goz], [07Goz]. 
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The procedure for preparing the alloys is quite simple. The single components are 

mixed together by stirring them gently in a mortar. To prevent loss of material due to 

the formation of a fine metal dust and to obtain a better result concerning the 

homogeneity of the composition, the mixture is wetted by some drops of pure 

acetone. The finished compound is placed on a support in the e-gun. To prevent the 

formation of oxides on the surface of the sample during the melting process, a 

commercially available getter material is also placed in the chamber of the e-gun. After 

the chamber is evacuated, the getter material is heated for several hours. Then the 

preparation process of the intermetallic is carried out. To ensure homogeneity, each 

sample is heated repeatedly [07Goz].  

 

2.3.4 Measurements of Re2Co17 alloys with a solid electrolyte based EMF 

cell 

As mentioned above, EMF investigations of Re2Co17 intermetallics (Re=Pr, Nd, Gd) 

were carried out with a galvanic cell which was equipped with a solid CaF2 single 

crystal as electrolyte. The author of this work had the possibility to examine the 

Pr2Co17 intermetallic system. In this case, the Re2Co17 alloys were measured in a solid 

state. The following figures and tables show the results of this measurement and also 

the data which were obtained from two further investigations (Nd2Co17 and Gd2Co17). 
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The following intermetallic systems were examined [11Gen]: 

 

 

(-)Mo/Pr, PrF3/CaF2(s.c.)/Pr2Co17, PrF3/Mo(+)                          (2.25) 

EMF (V) = (0.1974 ± 0.0005) + (2.860 ± 0.004) x 10-5 T               (2.26) 

 

 

Fig. 2.7 Linear interpolation of EMF vs T for the system Pr2Co17 

[diagram: Virgilio Genova] 
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(-)Mo/Nd, NdF3/CaF2(s.c.)/Nd2Co17, NdF3/Mo(+)                     (2.27) 

EMF (V) = (-0.47 ± 0.01) + (7.4 ± 0.2) x 10-4 T                       (2.28) 

 

 

Fig. 2.8 Linear interpolation of EMF vs T for the system Nd2Co17 

[diagram: Virgilio Genova] 
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(-)Mo/Gd, GdF3/CaF2(s.c.)/Gd2Co17, GdF3/Mo(+)                      (2.29) 

EMF (V) = (-0.98 ± 0.03) + (1.38 ± 0.02) x 10-4 T                     (2.30) 

 

 

 

 

 

 

 

 

Fig. 2.9 Linear interpolation of EMF vs T for the system Gd2Co17 

[diagram: Virgilio Genova] 
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The measured EMF values can be used to calculate the activity of the Re and the 

change of the partial Gibbs free energy ∆�VL������� according to the equations of chapter 

2.1.2. 

Furthermore, it is possible to calculate also the partial molar enthalpy ∆�VL������� and the 

partial molar entropy ∆�VL������ by using the equations mentioned in chapter 2.1.2. 

The table below shows the calculated thermodynamic properties [11Gen]: 

Re in Re2Co17 T (K) -log aRe ∆�VL������� (kJ/mol) ∆�VL������� (kJ/mol) ∆�VL������ (J/K) 

Pr 1070 17.107 -6.948 -6.0152 8.72 

Nd 878 15,631 -5.313 16.433 26.21 

Gd 840 14.25 -5.085 30.125 4.922 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 2.1 Calculated thermodynamic properties of Re2Co17 alloys (Re=Pr, Nd, Gd) 
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Chapter 3: EMF investigations of the ternary Al-Ge-Zn 

system 

3.1 Literature review 

3.1.1 The Al-Ge binary system 

This particular system is interesting because it shows superconducting and 

semiconducting metastable phases which can be formed by rapid cooling [11Spr1]. 

Figure 3.1 shows the calculated phase diagram by A. J. McAlister and J. L. Murray 

(1984) with a simple eutectic. It is based primarily on the work of [26Kro], [39Sto], 

[62Gla], [66Wil], [79Esl1] and [79Esl2]. 

 

 

 

 

Fig. 3.1 Calculated phase diagram for the system Al-Ge                 

[A.J. McAlister and J.L. Murray, 1984] 
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The eutectic temperature has not been determined reliably [86Mas1]. Estimates have 

been done based on the electrochemical cell data of [79Esl1] of 417°C ± 3°C. The mean 

of these estimates agrees quite well with the value of 420°C resulting from the present 

thermodynamic calculation [86Mas1].  

 

3.1.2 The Al-Zn binary system 

Al-Zn alloys are of great interest, because they form the basis of many technically 

important alloys. Figure 3.2 shows the calculated phase diagram by J. L. Murray (1983) 

of the Al-Zn binary system. Some further information about this particular system can 

be found in [11Spr2]. 

 

 

 

 

Fig. 3.2 Calculated phase diagram for the system Al-Zn                  

[J.L. Murray, 1983] 
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3.1.3 The Ge-Zn binary system 

The Ge-Zn system is characterized by a eutectic reaction at 394°C and 94,7 at. % Zn 

[86Mas2]. A thermodynamic assessment of this particular system was carried out by 

Chevalier [89Che], [11Spri3]. Figure 3.3 shows the calculated phase diagram by            

G. W. Olesinski and G. J. Abaschian (1985) of the Ge-Zn binary system. 

 

 

 

 

Previous works, which were based on EMF measurements, were carried out to 

determine the partial free energy of Zn in liquid alloys [72Pre], [11Spri3]. Also Batalin 

et al. obtained thermodynamic properties of the liquid phase by using EMF 

measurements [70Bat]. 

 

Fig. 3.3 Calculated phase diagram for the system Ge-Zn             

[R.W. Olesinski and G.J. Abbaschian, 1985] 
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3.1.4 The Al-Ge-Zn ternary system 

Thermodynamic data of the ternary Al-Ge-Zn system are quite scarce in the literature. 

There is to be found just some information about the thermodynamic calculation of 

phase equilibria in Al-Ge-Zn system [91Sri], but also in this case, the calculations were 

based on the data of the binary alloys Al-Ge, Al-Zn and Ge-Zn [11Sci]. Up to now, it has 

not been possible to find any reports about experimental work concerning the ternary       

Al-Ge-Zn system. 

 

3.2 Experimental procedures 

3.2.1 The Al-Ge-Zn alloys 

The alloys were prepared by melting the appropriate quantities of aluminum, 

germanium and zinc together in a standard laboratory furnace. To avoid oxidation of 

the metals, the alumina crucibles, which were used, were sealed into quartz ampoules 

under vacuum. Leak tightness was ensured using a test with a small Tesla transformer. 

Aluminum was obtained in small rods from Alfa Aesar with a purity of 99.999%. Pure 

99.999% germanium was also bought at Alfa Aesar and zinc with a given purity of 

99.999% was used from Johnson Matthey Chemicals Limited. The alloys were molten 

for 6 days at 850°C. Subsequently the alloys were quenched. 

Figure 3.4 shows the measured cross-sections and alloy compositions of the ternary  

Al-Ge-Zn alloys. Altogether 30 different alloys were prepared. It is apparent from the 

diagram, that three different sections with varying ratios of germanium and zinc were 

defined (Ge:Zn=3:1, Ge:Zn=1:1, Ge:Zn=1:3). Each section was subdivided so that ten 

compositions with a variable concentrations of aluminum (from 5 to 90 atomic %) 

were defined for every section. This results in a total number of 30 different ternary         

Al-Ge-Zn alloys. 
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Fig 3.4 Measured cross-sections and alloy compositions in the ternary   

Al-Ge-Zn system 



Chapter 3: EMF investigations of the ternary Al-Ge-Zn system 
 

36 
 

The following tables give a detailed overview of the composition of each single alloy 

which was prepared: 

 

ID wt Al (g) wt Ge (g) wt Zn (g) Al at. % Ge/Zn Total wt 

1 0.07869 3.01661 0.90506 5.004 3.000 4.00036 

2 0.16244 2.95206 0.88552 10.000 3.001 4.00002 

3 0.34771 2.80925 0.84322 19.993 2.999 4.00018 

4 0.56166 2.64525 0.79357 30.008 3.001 4.00048 

5 0.81001 2.45347 0.73614 39.998 3.000 3.99962 

6 1.10348 2.22800 0.66829 50.003 3.001 3.99977 

7 1.45432 1.95796 0.58725 59.999 3.001 3.99953 

8 1.88242 1.62911 0.48861 70.000 3.001 4.0014 

9 2.41508 1.21928 0.36569 79.999 3.001 4.00005 

10 3.09786 0.69498 0.20849 90.001 3.001 4.00133 

 

 

ID wt Al (g) wt Ge (g) wt Zn (g) Al at. % Ge/Zn Total wt 

11 0.08056 2.06264 1.85705 4.994 1.000 4.00025 

12 0.16660 2.01750 1.81627 10.003 1.000 4.00037 

13 0.35605 1.91779 1.72632 19.994 1.000 4.00016 

14 0.57406 1.80325 1.62315 29.998 1.000 4.00046 

15 0.82710 1.66974 1.50332 40.002 1.000 4.00016 

16 1.12437 1.51367 1.36232 50.000 1.000 4.00036 

17 1.47925 1.32725 1.19493 60.002 1.000 4.00143 

18 1.90852 1.10098 0.99126 69.999 1.000 4.00076 

19 2.44065 0.82126 0.73935 80.001 1.000 4.00126 

20 3.11634 0.41961 0.41961 90.000 1.000 4.00198 

 

 

Tab. 3.1 The compositions of Al-Ge-Zn alloys (Ge:Zn=3:1) 

Tab. 3.2 The compositions of Al-Ge-Zn alloys (Ge:Zn=1:1) 
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ID wt Al (g) wt Ge (g) wt Zn (g) Al at. % Ge/Zn Total wt 

21 0.08258 1.05866 2.85897 4.988 3.000 4.00021 

22 0.17060 1.03456 2.79403 9.990 3.000 3.99919 

23 0.36510 0.98254 2.65369 20.005 3.000 4.00133 

24 0.58727 0.92204 2.49010 30.005 3.000 3.99941 

25 0.84487 0.85262 2.30280 40.007 3.000 4.00029 

26 1.14634 0.77144 2.08334 50.003 3.000 4.00112 

27 1.50320 0.67443 1.82125 60.003 3.000 3.99888 

28 1.93384 0.55784 1.50632 70.001 3.000 3.99800 

29 2.46584 0.41495 1.12042 80.000 3.000 4.00121 

30 3.13685 0.23454 0.63354 90.000 3.001 4.00493 

 

 

3.2.2 The liquid electrolyte 

The preparation of the liquid electrolyte for the investigation of the ternary Al-Ge-Zn 

system was done according to the procedure described in 2.2.2. In this case a mixture 

of 77.3g LiCl, 90.7g KCl and 2.975g KAlCl4 was used. The KAlCl4 (Fig. 3.5) was prepared 

in a separate experiment. According to [63Moo] it was found that the use of this salt, 

leads to much better results than the use of AlCl3. KAlCl4 is less hygroscopic than AlCl3 

and also has a lower vapor pressure at high temperatures (At 650°C the vapor pressure 

of pure AlCl3 is about 10 atm., that of KCl-AlCl3 is < 0.02atm.) [63Moo].  

Tab. 3.3 The compositions of Al-Ge-Zn alloys (Ge:Zn=1:3) 
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One day before the purification, the first two components (LiCl and KCl) were mixed 

together and stored in a dry box at 100°C over night. The mixture was then filled into 

the glass apparatus for the purification. At this moment the KAlCl4 was removed from 

the glove box and added to the other components. As mentioned before, the whole 

apparatus (Fig. 3.6) was constructed of glass.  

Fig. 3.5 Handling of moisture sensitive KAlCl4 inside of the 

glovebox 
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The procedure of the chlorination was done according to the steps which were 

described in the previous chapter. For safety reasons, only a small amount of chlorine 

gas was transferred from a gas bottle into a cooling-trap which was cooled down under 

the exhaust hood (Fig. 3.7). The cooling of the trap was accomplished with liquid 

nitrogen.  

Fig. 3.6 The apparatus for the preparation of the KCl-LiCl-KAlCl4 electrolyte 
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Then the cooling trap was attached to another one, which was permanently fixed to 

the purification-apparatus. The chlorine was transferred from the first to the second 

trap (Fig. 3.8) by removing the dewar container with the liquid nitrogen.  

This way, only a small amount of the needed chlorine gas could be transferred to the 

apparatus for the purification. 

Fig. 3.7 Transfer of chlorine gas into a cooling trap under the exhaust hood 
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The salt was heated up to 600°C. After the eutectic mixture was melted, chlorination 

was accomplished in 45 minutes. The remaining chlorine gas which passed the molten 

salt was dissolved in washing bottles which contained aqueous solutions of sodium 

hydroxide. The light green color of the aqueous solution showed that chlorine gas was 

absorbed (Fig. 3.9).  

Fig. 3.8 Chlorine gas inside of the purification-apparatus 
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This particular salt mixture seems to have a kind of viscosity which causes the 

formation of foam. For this reason the cold parts of the apparatus were heated 

periodically from the outside with a hydrogen torch to melt down the parts of the 

electrolyte which condensed at the cooler part of the tube (Fig. 3.10).  

Fig. 3.9 Chlorine gas bubbling through aqueous sodium hydroxide solutions. The 

slightly green color of the solution in the right bottle shows the presence of dissolved 

chlorine 
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After that a continuous flow of pure argon gas was passed through the molten salt for 

about four hours. Finally the molten salt was filtered under vacuum through a frit and 

sealed into a glass ampoule (Fig. 3.11). 

Fig. 3.10 Melting down the condensed parts of the electrolyte 

with a hydrogen torch 
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3.2.3 The setup of the cell 

The general setup of the measuring cell was accomplished according to the way 

described in 2.2.1. Figure 3.12 shows the setup of a typical cell which was used for the 

current investigations. 

Fig. 3.11 Sealing the purified electrolyte into an ampoule 

[photo: Michael Hindler] 
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The alloy samples were placed in small alumina crucibles which themselves were 

inserted into the sample holder (Fig 3.13).  

Fig. 3.12 EMF cell for the investigation of Al-Ge-Zn alloys with 

liquid electrolytes 
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This procedure seemed to be important because reactions between the alloys and the 

quartz material were observed in previous experiments. By placing the alloys into the 

alumina crucibles, this kind of interaction could be prevented. The investigated alloys 

were of various compositions. The details concerning the preparation of the alloys and 

their exact formation are described in 3.2.1. Pure aluminum was used as a reference 

electrode. 

The lead wires which established the connection to the liquid electrodes were made of 

molybdenum. In the course of first tests, an interaction of the molybdenum wire with 

the alloys was observed. For this reason, graphite rods were attached at the end of the 

lead wires using commercially available electrical connectors (Fig. 3.14).  

Fig. 3.13 Sample holder 
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The graphite rods were of sufficient length, so that only the graphite dipped into the 

liquid electrolyte and touched the alloys. This way, an interaction between the 

molybdenum wire and the investigated intermetallics could be avoided. 

For the present investigation a K-type Ni/NiCr thermocouple was used to monitor the 

temperature inside the cell. After heating up the cell to about 800°C the temperature 

control of the furnace was set to establish a cooling rate 0.1 °C per minute. Thus the 

temperature was gradually lowered to 500°C. During this process, the EMF values in 

Fig. 3.14 Graphite rods at the end of the molybdenum lead 

wires to prevent interactions between the Mo and the 

investigated alloys 
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dependence of the temperature were recorded with a PC. The cooling curve was used 

to evaluate the thermodynamic properties. 
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Chapter 4: Results and discussions 

The following chapter shows the measured data and their evaluation. It is to be 

mentioned, that in the course of the experimental work some problems occurred 

which caused some fluctuations of the recorded values. It might be that the electrolyte 

is not stable enough to work at high temperatures of about 800°C for a longer period 

of time. Interactions of germanium with any compound of this particular setup also 

cannot be excluded. The fact, that the measurement of the Ge-rich compounds turned 

out to be more difficult supports this assumption. This is also the reason, why it was 

not possible to obtain reasonable data in all cases (for all previously set Al-

concentrations from 5 at. % to 90 at. %) of each cross section. According to that it is 

suggested to carry out further investigations concerning the Al-Ge-Zn system. A 

possibly suitable way could be the measurement of EMF values with solid electrolytes. 

This could be achieved by a setup like the one, which is described in chapter 2.3 of the 

current work.   

Despite of the mentioned problems, a reasonable data evaluation has been 

accomplished, by careful analysis and interpretation of the measured values. 

 

4.1 Measured EMF values 

The following figures show the measured EMF values in dependence of the recorded 

temperature. These data were obtained through the measurements and used for the 

evaluation. It is apparent from the figures, that some of the recorded curves are 

shorter than the others. The previously described experimental problems caused a lack 

of values and resulted in shorter curves. 
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Fig. 4.1 Measured EMF values in dependence of the temperature for 

the cross section Ge:Zn=1:3 
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Fig. 4.2 Measured EMF values in dependence of the temperature for 

the cross section Ge:Zn=1:1 
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Fig. 4.3 Measured EMF values in dependence of the temperature for the 

cross section Ge:Zn=3:1 
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The linear parts of the temperature vs. EMF curves were used for the evaluation. The 

EMF values were fitted with a square fit according to the following equation: 

 


 =WX> � � � Y� =Z>                                                         (4.1) 

 

The tables below show the obtained parameters: 

 

xAl E (mV) 

0.05 -4.95 + 0.1164 T/K (± 0.27) 

0.2 -12.93 + 0.0613 T/K (± 0.30) 

0.3 -45.51 + 0.0775 T/K (± 0.24) 

0.5 -20.04 + 0.0394 T/K (± 0.35) 

0.7 -7.37 + 0.0181 T/K (± 0.36) 

 

 

 

xAl E (mV) 

0.05 -103.23 + 0.1759 T/K (± 0.60) 

0.4 -53.20 + 0.1039 T/K (± 0.40) 

0.6 1.02 + 0.0234 T/K (± 0.22) 

0.7 3.73 + 0.0065 T/K (± 0.19) 

0.8 -0.15 + 0.0067 T/K (± 0.21) 

 

 

 

 

Tab. 4.1 Measured EMF data of liquid Al-Ge-Zn alloys. Cross-section 

Ge:Zn=1:3 

Tab. 4.2 Measured EMF data of liquid Al-Ge-Zn alloys. Cross-section 

Ge:Zn=1:1 
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xAl E (mV) 

0.3 -70.60 + 0.1220 T/K (± 0.90) 

0.4 -30.75 + 0.0588 T/K (± 0.82) 

0.8 -8.17 + 0.0141 T/K (± 0.64) 

0.9 -8.96 + 0.0143 T/K (± 0.70) 

 

 

 

4.2 Partial molar quantities of aluminum in liquid Al-Ge-Zn 

alloys 

By using the measured EMF values, the activity of aluminum and the change of the 

Gibbs free energy were calculated according to the equations of chapter 2.1.2. 

As mentioned above (see 2.1.2), it is possible to calculate also the partial molar 

enthalpy ∆��[������ and the partial molar entropy ∆��[������ by the following equations: 

 

∆��[������ �  ��	  
 � � �!"
!#�$,&' � ∆��[������ �  �∆��[������ �  �3�	                        (4.2) 

 

∆��[������ � �	 �!"
!#�$,& � 3Y	                                                   (4.3) 

 

 

 

 

 

Tab. 4.3 Measured EMF data of liquid Al-Ge-Zn alloys. Cross-section 

Ge:Zn=3:1 
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The calculated results are listed in the following tables: 

 

xAl EMF (mV) aAl ∆��[������(J/mol) ∆��[������(J/mol) ∆��[������(J/mol K) 

0.05 108.305 0.0212 34429 1434*3 33.69 

0.2 46.793 0.1892 14879 3744 17.74 

0.3 158.07 0.0035*1 45431*2 13174 22.43 

0.5 17.633 0.5339 5607 5801 11.40 

0.7 11.27 0.6618 917 2133 5.23 

 

 

*1 value was not taken into account for the plot a vs xAl (Ge:Zn=1:3, T=677°C) 

*2 value was not taken into account for the plot ΔGAl vs xAl (Ge:Zn=1:3, T=677°C) 

*3 value was not taken into account for the plot ΔHAl vs xAl (Ge:Zn=1:3, T=677°C) 

 

xAl EMF (mV) aAl ∆��[������(J/mol) ∆��[������(J/mol) ∆��[������(J/mol K) 

0.05 10.403 0.0863 -20882 29882 50.91 

0.4 45.64 0.1825 -3798 15691 30.07 

0.7 9.826 0.6989 3044 1081 1.88 

0.8 6.037 0.7953 -1870 44 1.93 

 

 

 

 

 

 

Tab. 4.4 Activities and partial molar quantities of aluminum at 677°C for the 

cross-section Ge:Zn=1:3 

Tab. 4.5 Activities and partial molar quantities of aluminum at 677°C for 

the cross-section Ge:Zn=1:1 
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xAl EMF (mV) aAl ∆��[������(J/mol) ∆��[������(J/mol) ∆��[������(J/mol K) 

0.3 44.671 0.1785 12930 20437 35.31 

0.4 25.837 0.3867 -8425 8903 17.02 

0.8 5.408 0.8208 -1764 2366 4.08 

0.9 4.858 0.8295 -1585 2593 4.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 4.6 Activities and partial molar quantities of aluminum at 677°C for 

the cross-section Ge:Zn=3:1 
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The following figure shows the activities of aluminum at 677°C of the three cross 

sections. The binary values for Ge-Al and Zn-Al were taken from [73Hul]: 

 

 

The figures below show the curves of the partial thermodynamic quantities  ∆��[������, ∆��[������ 

and ∆��[������ . The results seem to be reasonable, even with the apparent deviations of the 

theoretical trend of the curves. 

 

Fig. 4.4 Activities of aluminum at 677°C for three cross sections 
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Fig. 4.5 Partial Gibbs free energy of aluminum for the cross 

section Ge:Zn=1:3 at 677°C 

Fig. 4.6 Partial Gibbs free energy of aluminum for the cross 

section Ge:Zn=1:1 at 677°C 

∆]^_������ =`/ab_> 

 

∆]^_������ =`/ab_> 
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Fig. 4.7 Partial Gibbs free energy of aluminum for the cross 

section Ge:Zn=3:1 at 677°C 

 

Fig. 4.8 Partial enthalpy of aluminum for the cross 

section Ge:Zn=1:3 at 677°C 

∆]^_������ =`/ab_> 

 

∆c^_������� =`/ab_> 
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Fig. 4.9 Partial enthalpy of aluminum for the cross 

section Ge:Zn=1:1 at 677°C 

 

Fig. 4.10 Partial enthalpy of aluminum for the 

cross section Ge:Zn=3:1 at 677°C 
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Fig. 4.11 Partial entropy of aluminum for the 

cross section Ge:Zn=1:3 at 677°C 

 

Fig. 4.12 Partial entropy of aluminum for the 

cross section Ge:Zn=1:1 at 677°C 
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4.3 Conclusion 

The investigation of the ternary Al-Ge-Zn system with a suitable galvanic cell made it 

possible to determine the activity and the partial thermodynamic quantities of Al in 

liquid Al-Ge-Zn alloys as a function of concentration and temperature. Although the 

apparent fluctuations of the experimental parameters which were caused by the 

previously described problems (see chapter 4 and 5), the obtained results seem to be 

reasonable. A total amount of 47 alloys was investigated with the EMF technique. Due 

to the difficulties described above it was not possible to evaluate all of the measured 

data. According to that, it was practicable to receive thermodynamic data for 13 

different alloys of the ternary Al-Ge-Zn system. As described in 3.2.1 the studied 

intermetallics consisted of compositions with the constant ratios of Ge:Zn=3:1, 

Ge:Zn=1:1 and Ge:Zn=1:3 which had a variable content of 5 to 90 atomic percent 

aluminum.  

 

Fig. 4.13 Partial entropy of aluminum for the 

cross section Ge:Zn=3:1 at 677°C 
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Chapter 5: Summary 

In terms of the possible use of the ternary Al-Ge-Zn alloys as lead free solders, the 

thermodynamic properties of these intermetallic systems were investigated with the 

EMF (electromotive force) method. The data received in these experiments were then 

evaluated mathematically to obtain information regarding the thermodynamic 

properties of this particular system. The major accomplishments achieved in the 

present work can be summarized as follows: 

The activities and the partial molar Gibbs free energies of Al in liquid Al-Ge-Zn alloys 

were determined as a function of concentration and temperature. This was achieved 

by using a suitable electrochemical cell with the following compilation: 

Al (l) / Al3+ (KCl-LiCl) / Al-Ge-Zn (l)                                              (5.1) 

In sum it was possible to obtain thermodynamic data for 13 different alloys of the 

ternary Al-Ge-Zn system which were located on three cross sections of the phase 

diagram. These previously defined sections had constant molar ratios of Ge:Zn=3:1, 

Ge:Zn=1:1 and Ge:Zn=1:3. The individual alloys had variable contents of aluminum 

from 5 to 90 atomic percent. 

From the experimental point of view, the following aspects are to be mentioned: 

A suitable electrolyte for the measurement of the particular Al-Ge-Zn system could be 

found in the form of an eutectic mixture of KCl, LiCl and KAlCl4. It was discovered, that 

the use of KAlCl4 leads to much better results than the usually used AlCl3, due to the 

lower vapor pressure and the higher stability of the KAlCl4 at elevated temperatures. 

Furthermore it was found, that graphite can be used as suitable material for the 

electrodes contacting the liquid alloys. This prevents interactions between the 

intermetallics and the electrodes for the measurement. It was important, that the 

investigated alloys were placed into small alumina crucibles. Otherwise there might 

have been the possibility of interactions between the liquid alloys and the sample 

holder, which was made of quartz. 
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It should also be also mentioned, that some problems occurred while carrying out the 

experimental work. If it is compared to other ternary intermetallic systems, it seems 

that this particular system is much more difficult to investigate with the commonly 

used EMF technique. It is suspected, that problems with the electrolyte lead to 

inaccurate EMF values. Also an interaction of Germanium with the electrolyte cannot 

be excluded completely because the measurements seemed to be more difficult with 

the Ge-rich compounds. The problems during the measurement were reflected in the 

evaluation of the data nevertheless the results seem to be reasonable, even with the 

apparent deviations of the theoretical trend of the curves. For this reason, the 

interpretation became more difficult in this particular case. According to that, further 

investigations should be carried out to get more information about the Al-Ge-Zn alloys, 

also due to the fact that publications of experimental works concerning this system are 

practically nonexistent. 

Concerning the work, which was carried out in Rome, the major accomplishments 

achieved for this thesis can be summarized in the following way: 

A suitable EMF cell for measurements with solid electrolytes was set up. The apparatus 

was checked for leak tightness and the correct function was proved by the 

measurement of a previously set temperature program. After the evaluation of the 

measured values by plotting them on a PC, the results showed a very good isothermal 

behavior of the cell. 

Based on these measurements further calculations were carried out to calculate the 

exact runtimes for the following EMF measurements. 

The preparation of the investigated intermetallics was achieved by a modified 

electron-gun. The correct composition of the prepared alloys was proved by an X-ray 

diffraction analysis. 

Finally it was possible to investigate the thermodynamic properties of 3 different 

Re2Co17 (Re=Pr, Nd, Gd) alloys. 
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Abstract (English version) 

The present thesis gives a review about the current need of new lead free solder 

alloys. A short introduction into the EMF (electromotive force) technique is also given. 

The practical aspects of EMF measurements with liquid and solid electrolytes are 

described. Requirements as well as advantages and disadvantages of the different 

methods are explained. 

Concerning the ternary Al-Ge-Zn system the current work deals with the following 

aspects: 

In terms of the possible use of Al-Ge-Zn alloys as lead free solders, the thermodynamic 

properties of this intermetallic system were investigated by using the EMF method 

with liquid electrolytes. This work describes the setup of the galvanic cell and the 

execution of the measurements. Also the preparation of the electrolyte for the 

galvanic cell is described. A suitable salt for the investigation of the particular Al-Ge-Zn 

system was found in the form of an eutectic mixture of KCl, LiCl and KAlCl4.  

The preparation of the investigated alloys is also described. 

The experimental data were mathematically evaluated to obtain information regarding 

the thermodynamic properties of this particular system. By using the measured EMF 

values, the activity of aluminum and the change of the Gibbs free energy were 

calculated. It was also possible to determine the partial molar enthalpy ∆��[������ and the 

partial molar entropy ∆��[������. 

Since parts of this work were carried out during an Erasmus semester abroad at the 

RIM-Lab (Reactivity of Inorganic Materials Laboratory) of the Facolta di Chimica at the 

Universita La Sapienza di Roma, measurements with solid electrolytes which I 

performed during my stay in Italy are also described.  

The focus of this part of the work was set on the investigation of alloys consisting of 

rare-earth elements and cobalt. A suitable EMF cell for measurements with a solid CaF2 

electrolyte was set up. In this case, the preparation of the investigated intermetallics 
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was achieved by a modified electron-gun. It was possible to investigate the 

thermodynamic properties of the Pr2Co17 alloy. 
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Abstract (German version) 

Die vorliegende Arbeit gibt einen Überblick über den derzeit bestehenden Bedarf für 

neue bleifreie Lotmaterialien und einige, für diesen Zweck bereits entwickelte 

intermetallische Systeme. Des weiteren wird eine Einführung in die EMK-Messungen 

(Messungen der elektromotorischen Kraft) gegeben. Zusätzlich werden praktische 

Aspekte der EMK-Technik mit flüssigen und festen Elektrolyten erörtert. In der Arbeit 

werden die Voraussetzungen für derartige Messungen beschrieben und auch Vor- und 

Nachteile der einzelnen Methoden ausgeführt. 

Bezüglich des ternären Al-Ge-Zn Systems behandelt diese Arbeit folgende Aspekte: 

Im Hinblick auf den möglichen Einsatz von Al-Ge-Zn Legierungen als bleifreie 

Lotmaterialien wurden deren thermodynamische Eigenschaften mit Hilfe von EMK-

Messungen mit flüssigen Elektrolyten untersucht. Die Arbeit beschreibt den Aufbau 

der galvanischen Zelle und die Durchführung der entsprechenden Messungen. Weiters 

wird die Herstellung des verwendeten Elektrolyten erklärt. In diesem Zusammenhang 

konnte in einer eutektischen Mischung welche aus KCl, LiCl und KAlCl4 besteht, ein 

geeigneter Elektrolyt gefunden werden.  

Zusätzlich wird die Herstellung der untersuchten Legierungen beschrieben. 

Die experimentellen Werte wurden mathematisch ausgewertet um Informationen 

über die thermodynamischen Eigenschaften des Systems zu erhalten. Mit Hilfe der 

Messwerte konnten die Aktivität von Aluminium und die Änderung der Gibbsschen 

freien Enthalpie berechnet werden. Außerdem war es möglich die partielle molare 

Enthalpie ∆��[������ und die partielle molare Entropie ∆��[������ zu ermitteln. 

Da Teile der vorliegenden Arbeit während eines Erasmus Auslandssemesters am RIM-

Lab (Reactivity of Inorganic Materials Laboratory) der Fakultät für Chemie an der 

Universität La Sapienza in Rom entstanden sind, sind zusätzlich Beschreibungen von 

Messungen mit festen Elektrolyten welche während dieser Zeit in Italien durchgeführt 

wurden, enthalten. 
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Der Fokus dieses Teiles der Arbeit war auf die Untersuchung von Legierungen 

bestehend aus Seltenerdelementen und Cobalt gerichtet. Eine geeignete EMK-Zelle für 

Messungen mit festem CaF2 als Elektrolyt wurde hierfür aufgebaut. In diesem Fall 

wurden die entsprechenden Legierungen unter Zuhilfenahme einer modifizierten 

Elektronenkanone hergestellt. Es war möglich die thermodynamischen Eigenschaften 

einer Legierung mit der Zusammensetzung Pr2Co17 zu untersuchen. 
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