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1. Introduction

Frege systems are the typical �incarnations� of propositional proof systems. They

are not only of interest in logic but also in computer science because of their rela-

tionship to exhaustive search problems. This relationship basically states that the

complexity of a Frege proof is equivalent to the complexity of a calculation of a

Turing machine that runs an exhaustive search algorithm. So for the class of NP -

complete problems, where only exhaustive search heuristics are known, the runtime

of such a search is equivalent to the size of the corresponding Frege proof. A con-

sequence of Ajtai's work is that an algorithm for �nding a Frege proof for PHP

cannot have sub-exponential runtime. As indicated in the abstract, an analogous

proposition holds for the Parity Principle: the runtime cannot be sub-exponential

even considering Turing machines with PHP as an oracle. As a conclusion one can

consider a hierarchy of stronger and stronger tautologies that cannot be computed

in sub-exponential time relative to an oracle lower in the hierarchy. Later Ajtai's

results were improved even further [BIKPPW, BPU, KPW, BP] by eliminating the

need for nonstandard models and by giving a more exact super-exponential lower

bound to PHP in a more constructive way. Lower bounds to Frege proof systems

have consequences for even broader complexity issues. The important, still open

problem �NP? = co − NP �, that is, the question whether the class of predicates

accepted by a non-deterministic polynomial time Turing machine is closed under

complementation, is equivalent to: �Is there a Frege proof system in which the

correctness of a derivation can be checked in polynomial time and which admits

polynomial size proofs of all tautologies?�
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2. Paris & Wilkie's Work

In this section I present the required de�nitions and use them to give a general

understanding of the subject (most of these are from [K]).

De�nition 1. (language of arithmetic LPA):

LPA = {0, 1,+,×, <,=}, where 0, 1 are constants, < , = are binary relations and

+, × are tertiary relations.

De�nition 2. (bounded arithmetical formulas ∆0):

(1) E0 = U0 is the class of quanti�er free formulas.

(2) Class Ei+1 is the class of formulas logically equivalent to a formula of the

form

∃x1 < t1(ā) . . . ∃xk < tk(ā)φ(ā,x̄)

with φ ∈ Ui and ti(ā)'s terms of the language LPA.

(3) Ui+1 is the class of formulas logically equivalent to a formula of the form

∀x < t1(ā) . . . ∀xk < tk(ā)φ(ā,x̄)

with φ ∈ Ei and ti(ā)'s terms of the language LPA.

(4) Class ∆0 of bounded arithmetic formulas is the union of classes Ei and Ui

∆0 =
⋃
i

Ei =
⋃
i

Ui

De�nition 3. (theory of bounded arithmetic I∆0):

The theory of bounded arithmetic is a �rst order theory in the language LPA is

axiomatized by the axioms

(1) PA−:

(a) a+ 0 = a

(b) (a+ b) + c = a+ (b+ c)

(c) a+ b = b+ a

(d) a < b→ ∃x, a+ x = b

(e) 0 = a ∨ 0 < b

(f) 0 < 1
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(g) 0 < a→ 1 ≤ a

(h) a < b→ a+ c < b+ c

(i) a+ 0 = 0

(j) a× 1 = a

(k) (a× b)× c = a× (b× c)

(l) a× b = b× a

(m) (a < b ∧ c 6=)→ a× c < b× c

(n) a× (b+ c) = (a× b) + (a× c)

(2) and the ∆0-induction scheme ∆0-IND

(φ(0) ∧ ∀(φ(x)→ φ(x+ 1)))→ ∀xφ(x)

where φ is a ∆0-formula, which may have other free variables beside x.

De�nition 4. (least number principle LNP scheme):

φ(x)→ ∃b∀a(φ(b) ∧ (a < b→ ¬φ(a)))

where φ is a ∆0-formula, which may have other free variables beside x.

De�nition 5. (induction up to n INDn):

(φ(0) ∧ ∀(φ(x)→ φ(x+ 1)))→ ∀x ≤ nφ(x)

.

De�nition 6. (theory of existential arithmetic I∃1):

(1) consist of the axioms PA−

(2) and the ∃1-induction scheme:

(φ(0) ∧ ∀(φ(x)→ φ(x+ 1)))→ ∀xφ(x)

where φ is a E1-formula, which may have other free variables beside x.

De�nition 7. ([A]n):

For any set A and any natural number 0 < n ∈ ω

[A]n = {X ⊂ A||X| = n}
4



is the set of all subsets of A that have exactly n elements.

De�nition 8. (the Pigeonhole Principle PHP ):

Fix k ∈ ω. For every

F : [ω]1 → {1, . . . , k}

there exists an in�nite H ⊂ ω s.t. F is constant on [H]1

De�nition 9. (the propositional Pigeonhole Principle PHPn by Cook and Rechkov):

PHPn = ¬[(
∧
i∈n

∨
j∈n−1

xi,j) ∧

(
∧

j∈n−1

∨
i∈n

xi,j) ∧

(
∧

i∈j,k∈n−1,j 6=k

¬(xi,j ∧ xi,k) ∧

(
∧

j∈n−1i,l∈ni 6=l

¬(xi,j ∧ xl,j)))]

To show the consistency of I∃1(F ) + ∃xF : x 7→ x− 1, Paris and Wilkie applied

a simple forcing argument to a non-standard model M of I∃1 to get an extended

model M[F ] with M[F ] |= I∃1(F ) + ∃xF : x → x − 1. Because this is the

�rst important technique for understanding the following arguments, it is worth

discussing the origins of forcing.

The general idea of forcing was introduced by Paul Cohen in his proofs that the

Continuum Hypothesis and the Axiom of Choice are independent of ZF . In the

following I give those de�nitions, that are appropriate for applications to bounded

arithmetic.

De�nition 10. (Initial segment of a model of PA):

IfM =:< M, 0, 1,+,×, <,=> is a model of Peano Arithmetic and n ∈M then

Mn =: {x ∈M |M |= x < n}

.

De�nition 11. Let A be an i-ary relation symbol and R a binary relation symbol,

then L = LPA ∪ {A} and L′ = L ∪ {B}.
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De�nition 12. (M-de�nability):

Let i ∈ ω, R ⊆M i (a i-ary relation on M),

then R is de�nable inM

if there exists a 1st-order formula φ(x1, . . . , xi, y) of LPA with free variables x1, . . . , xi,

y and there exists a c ∈M s.t. for all a1, . . . , ai ∈M we get R(a1, . . . , ai) i�M |=

φ(a1, . . . , ai, c).

De�nition 13. (M-de�nability on Mn):

Let i, n ∈ ω, R ⊆M i
n (a i-ary relation on Mn),

then R isM-de�nable on Mn

i� there exists a single 1st-order formula φ(x1, . . . , xi, y) of LPA with free vari-

ables x1, . . . , xi, y and there exists cR ∈ M s.t. for all a1, . . . , ai ∈ Mn we get

R(a1, . . . , ai) i�M |= φ(a1, . . . , ai, cR).

Remark 14. So we can treat de�nable relations onMn as elements ofM , by coding

R as above as 2#(φ)3cR ∈M .

De�nition 15. (ω-de�nability inM):

Let i ∈ ω,R ⊆M i,

then R is ω-de�nable inM

i� there exists a 1st-order formula φ(x1, . . . , xi, y, z) of LPA with free variables

x1, . . . , xi, y, z and there exists b ∈M s.t. for all a1, . . . , ai ∈M we get R(a1, . . . , ai)

i� (there is cR ∈ ω s.t. M |= φ(a1, . . . , ai, cR, b)).

De�nition 16. (Forcing):

(1) LetM be a countable model of PA−.

(2) notion of forcing:

(a) Let P ⊆ M be nonempty, de�nable in M and ≤P a partial, M-

de�nable ordering on P ,

then < P,≤P> is de�nable inM and called anM-de�nable notion of

forcing .

(b) Let P ⊆ M be nonempty, ω-de�nable inM and ≤P a ω-de�nable in

M, partial ordering on P ,
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then < P,≤P> is ω-de�nable inM and called anM-ω-de�nable no-

tion of forcing.

(3) The elements p ∈ P are called forcing conditions.

(4) For p, q ∈ P we say q is stronger than p i� q ≤P p.

(5) If p, q ∈ P and there is r s.t. r ≤P p and r ≤P q then p and q are called

compatible.

(6) A set D ⊆ P is dense in P if for every p ∈ P there is q ∈ D s.t. q ≤P p .

De�nition 17. (Filter):

A set F ⊆ P is called a �lter on P if the following holds:

(1) F 6= ∅.

(2) If p ≤P q, p ∈ F, q ∈ P , then q ∈ F .

(3) If p, q ∈ F , then there is r ∈ F s.t. r ≤P p and r ≤P q .

De�nition 18. (P -genericity):

Let P be anM-de�nable forcing notion,

then a set G ⊆ P is called P -generic over M if the following holds:

(1) G is a �lter on P .

(2) If D is dense in P and D M-de�nable, then G ∩D 6= 0.

De�nition 19. (P -ω-genericity):

Let P be anM-ω-de�nable forcing notion,

then a set G ⊆ P is called P -ω-generic over M if the following holds:

(1) G is a �lter on P .

(2) If D is dense in P and D ω-de�nable, then G ∩D 6= 0.

De�nition 20. (Forcing relation):

Suppose < P,≤P> is a notion of forcing, φ(−→x ) a 1st-order formula with a new

relation symbol, −→a ∈ M , p ∈ P . We say p 
 φ(−→a ) (p forces φ) i� for any G

P -generic overM s.t. p ∈ G we getM[G] |= φ(−→a ).

Here M[G] is the model (the generic extension) obtained from M (the ground

model) by adjoining the generic set G as a new unary relation to get a richer model.
7



What is important for the de�nition of the forcing relation is that the �external�

de�nition of p 
 φ is equivalent to its �internal� de�nition. This is done to ensure

that the properties de�nable in M[G] are �expressible� inM. To get a nontrivial

case whereM[G] is a model of a theory T ′ stronger than T , the forcing conditions

have to be understood as �partial examples� of the new properties denoted by T ′.

Using the partial ordering < P,≤P> of the forcing conditions de�ned in the ground

model, we can understand a �lter F ⊂ P as a consistent sequence of such partial

examples that each belong to the ground model. So a generic G ⊂ P , consisting

of forcing conditions in the ground model, can arbitrarily approximate this new

property. This approximation further fully de�nes what else is true in the generic

extension and can be formalized by the following three conditions:

De�nition 21.

(1) Truth: M[G] |= φ i� there is some condition p ∈ G, p 
 φ.

(2) De�nability: For every φ �xed the relation p 
 φ must be de�nable inM.

(3) Coherence: If p 
 φ and q ≤P p, then q 
 φ.

Paris and Wilkie de�ned their forcing conditions this way:

De�nition 22.

SupposeM is a countable nonstandard model of I∃1, n ∈ M and n nonstandard.

A forcing condition p is a �nite set of the form

p = {R(x1) = y1, R(x2) = y2, . . . , R(xi) = yi}

with −→x ≤ n,−→y < n and R ⊂ n×n− 1 is one-to-one and for two forcing conditions

p, q is q ≤P p i� q ⊇ p.

Remark 23. In this case P , the set of forcing conditions p, can be regarded as an

M-de�nable notion of forcing, by coding the forcing conditions using elements of

M .

Theorem 24.

I∃1(F ) + ∃xF : x→ x− 1 + F is one-to-one
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is consistent.

Proof.

Remark 25. Suppose p is a forcing condition, φ(−→x ) a formula from LPA (i.e. φ

does not involve R) and −→a ∈M , then

p 
 φ(−→a )⇐⇒M |= φ(−→a ) and p 
 R(a) = b⇐⇒ (R(a) = b) ∈ p

.

Claim 26. (�Decision Lemma�) Suppose φ(x) = ∃−→y θ(x,−→y ) ∈ ∃1(R) in the language

LPA(R) =: LPA ∪ R, then there is a �xed jθ ∈ ω depending only on θ s.t. for any

condition p and a ∈M , either p 
 ¬φ(a) or ∃p′ ≤P p, p′ 
 φ(a) and |p′ − p| ≤ jθ.

Proof. To decide θ(x, y1, . . . , ym) we need to know the values of Ri(x),Ri(y1),. . . ,

Ri(ym),Ri(e1),. . . ,Ri(ek) where e1, . . . , ek are the constants in θ and i ≤ j, j �xed.

Suppose there exist jθ such values, then either p 
 ¬φ(a) or ∃p′ ≤P p,
−→
b ∈

ran(R) s.t. p′ 
 θ(a,
−→
b ). Since |p| is �nite and n is nonstandard we can pick

a p′′ compatible to p′ (i.e. p′′ ∪ p′ 
 θ(a,
−→
b )) s.t. p′′ extends p by de�ning

Ri(x), Ri(y1), . . . , Ri(ym), Ri(e1), . . . , Ri(ek) for i ≤ j and hence p′′ decides θ(a,
−→
b ).

Then also p′′ 
 θ(a,
−→
b ) and p′′ 
 φ(a), |p′′ − p| ≤ jθ. �

Now we can pick a generic set G of forcing conditions p s.t. F =:
⋃
G and

<M, F >|= ∃αF : α→ α− 1 + F is one-to-one.

To show that <M, F >|= I∃1(F ), we have to show that every nonempty ∃1(F )

set has a least element:

Suppose that p a forcing condition, φ(x) ∈ ∃1(F ) and jθ ∈ ω are as in the Claim,

p 
 φ(a). Then

{a′ ≤ a| there is a forcing condition p′ ≤P p, |p′ − p| ≤ jθ and p′ 
 φ(a)}

is de�nable inM and has a least element l. By the Claim above p 
 ¬φ(a) for all

a < l, hence p′ forces that l is the least element satisfying φ(x) in <M, F > �
9



The second important idea of Paris and Wilkie was the connection between

bounded arithmetic and Frege systems in their consistency result for I∆0(F ) +

∃x, F : x→ x− 1, under the assumption of the Cook-Reckhov Conjecture:

De�nition 27. (Frege system [U]):

(1) A Frege Rule is de�ned to be a sequence of propositional formulas of the

form A1, . . . , Ak ` A0.

(2) If A1 = ... = Ak = ∅ then ` A0 is called an axiom scheme.

(3) A rule is sound if ever truth-assignment satisfying A1, . . . , Ak also satis�es

A0 (A1, . . . , Ak |= A0).

(4) C0 is inferred from C1, . . . , Ck by a Frege rule A1, ..., Ak ` A0, if there is

a sequence of formulas B1, . . . , Bm and variables x1, . . . , xm s.t. for all i,

0 ≤ i ≤ k,Ci = Ai[B1/x1, . . . , Bm/xm]. Bi/xi refers to the substitution of

the variable xi by the formula Bi.

(5) If F is a set of Frege rules and A a formula, then a proof of A in F from

A1, ..., Ak is a �nite sequence of formulas s.t. every formula in the sequence

is either one of the A1, ..., Ak or inferred by a rules in F and the last formula

is A.

(6) The length of a Frege proof is number of formulas in this sequence.

(7) The size of a Frege proof is the number of its symbols.

(8) A set F of Frege rules is implicationally complete if whenever A1, . . . , Ak |=

A0, then there is a proof of A in F from A1, . . . , Ak.

(9) A Frege system is a �nite, sound, implicationally complete set of Frege

rules.

De�nition 28. (Cook-Rechkov Conjecture):

∀k∃n s.t. every Frege proof of

CR ≡
∧
i≤n

∨
j<n

pi,j →
∨

i<e≤n

∨
j<n

(pi,j ∧ pe,j)

has size bigger than nk.

Theorem 29. (Paris, Wilkie):

Suppose the Cook-Reckhov Conjecture holds,
10



then

I∆0(F ) + ∃n, F : n→ n− 1

is consistent.

Proof.

Suppose M is a countable, nonstandard model of I∆0. Take n, k ∈ M and non-

standard s.t. every proof of

∧
i≤n

∨
j<n

pi,j →
∨

i<e≤n

∨
j<n

(pi,j ∧ pe,j)

has size bigger than nk.

De�nition. De�nition (bounded arithmetic ↔ propositional calculus)

For φ formula from LPA(R) =: LPA ∪ R, R a new binary relation symbol and

−→a ≤ n we de�ne a formula Φ(−→a ) of a Frege system

φ Φ

R(a1, a2) ra1,a2

a1 + a2 = a3 sa1,a2,a3

a1 × a2 = a3 ta1,a2,a3

a1 = a2 ea1,a2

φ1 ∧ φ2 Φ1 ∧ Φ2

¬φ ¬Φ

∃xφ(x)
∨
a≤n

Φ(a)

∀xφ(x)
∧
a≤n

Φ(a)

, with p, s, t new propositional variables.
11



Now we de�ne a sets of propositional formulas T such that any proof of incon-

sistency uses more than nk symbols:

T ≡ CR ∪

{Φ|φ is an atomic sentence or negation of an atomic sentence of LPA

and n+ 1 |= φ}

De�ne an increasing sequence of sets of propositional formulas

T = T0 ⊆ T1 ⊆ T2 ⊆ ...

s.t.

(1) each Ti is coded inM,

(2) there is no proof of inconsistency inM from Ti using less than nk/2
i

sym-

bols,

(3) for each φ(−→x ) ∈ LPA(R) and −→a ≤ n there is an i ∈ N s.t. Φ(−→a ) ∈ Ti or

¬Φ(−→a ) ∈ Ti,

(4) if
∨
a≤n Φ(−→a ) ∈ Ti then there is ∃j,m ∈ ω, j ≥ i and m ≤ n s.t. Φ(−→m) ∧∧

a≤m ¬Φ(−→a ) ∈ Tj .

De�ne a new relation

R̄ ⊆ (n+ 1)× (n+ 1)⇐⇒ ra1,a2 ∈
⋃
i∈ω

Ti

then

< n+ 1, R̄ >|= ∆0-IND + {φ|Φ ∈
⋃
i∈ω

Ti}

For a ≤ n de�ne

F (a) = the least b s.t. R̄(a, b)

then F is an one-to-one map from n+ 1 into n, because CR ∈ Ti for all i and

< nω, F >|= ∆0-IND(F ) + F : n+ 1→ n

where nω denotes the substructure ofM with universe {m|m ≤ ne , e ∈ ω}.

�
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3. Ajtai

Ajtai combined the ideas of forcing on nonstandard models and the connection

of Frege systems with the provability in bounded arithmetic to prove that I∆0(F )+

∃nF : n→ n−1 is consistent, if we consider only Frege proofs of polynomial size and

constant depth [AJ2]. As the existence of such a function F is a simple application

of the ideas of forcing, the consistency gives deep insight into the complexity of the

construction of this function.

The argument is the following: The Paris-Wilkie proof above shows that PHP

can only be proven if we have a model where a polynomial size and constant depth

Frege proof of PHPn exists. Now assume that there is such a model M where a

polynomial size and constant depth proof for PHPn exists for some nonstandard

n. We restrict our model to the initial segment containing only elements less than

n. We add the function ρ : n − 1 → n − 2, ρ one-to-one via forcing. Furthermore

by a combinatorial argument, INDn also holds in this extended model and with

this we can check the proof of PHPn for ρ. This contradicts our assumption, by

�nding a formula in the proof that contradicts the injectivity of ρ.

Thus the consistency proof splits into two main parts:

First we de�ne a modelM and special notion of forcing < P↔,≤P↔> and show

that for any generic subset G,M[G] |= ¬PHPn .

The second part, showing that induction holds in the generic extension, is the

more di�cult part. To decide the truth value of a 1st-order formula φ(a) for a �xed

a ∈Mn in the new model, means that there exists a pa s.t. either for all generic G

containing pa M[G] |= φ(a) orM[G] |= ¬φ(a). We have to show that this can be

done by looking at the values of ρ and ρ−1 on a small, standard number of elements

and taking into account the combinatorial structure of the notion of forcing. We

essentially show:

If φ is a 1st-order formula and G P↔-ω-generic overM and p ∈ G, then

(1) ∀a∈Mn ∃pa∈G∃j∈ω pa≤P↔p ∧ |dom(pa)− dom(p)| ≤ j ∧ pa decides φ(a)

(2) ∀a∈Mn ∃U(a)⊆Mn ∃w∈ω |U(a)|≤P↔w and ∀q≤P↔p U(a) ⊆ dom(q)∧U(a)∩

Mn−1 ⊆ ran(q)→ q decides φ(a)
13



The meaning of (1) is, if we already know p ∈ G then there exists a pa only a �little�

stronger (at most �j-much� stronger) than this and pa decides φ(a). The meaning

of (2) is, if we already know p ∈ G then the truth value of any �xed φ(a) can be

decided by looking only at the values of ρ and ρ−1 on U(a) which contains only w

many elements.

Now I give a rigorous de�nition of these ideas:

3.1. Forcing <M, ρ >|= ¬PHP .

De�nition 30. Let T be a theory of the language L,

then T describes a large initial segment of Peano Arithmetic,

if for each l ∈ ω then there is a model M of PA and an n ∈ M s.t. M |= n > l

and there is an i ∈ ω and an i-ary relation A ⊆ M i
n de�nable in M s.t. with the

interpretation τ de�ned by, τ(+) = +M �Mn, τ(×) = ×M �Mn, τ(<) =<M�Mn,

we getMn =:< Mn, τ(+), τ(×), τ(<),=, A >|= T .

De�nition 31. Let τ ′ ⊃ τ be an interpretation of the language L′.

Let T describe a large initial segment of PA and let M |= PA and n ∈ M s.t.

Mn |= T with n nonstandard. To get Ajtai's result we have to extend Mn by

adding a generic set G via forcing s.t. the extended structureM[G] satis�es a new

binary relation ρ:

(1) ρ is an one-to-one map of Mn onto Mn−1

(2) if τ ′(R) = ρ, then <M, ρ >|= INDn(ρ).

We will de�ne a notion of forcing < P↔,≤P↔> where its elements p ∈ P↔ will

consist of partial one-to-one maps between two sets de�nable inM, with domain of

size at most n−nε, ε > 0, ε standard rational which are de�nable inM and ordered

by set-inclusion. We take a �lter G ⊆ P↔ which is P↔-ω-generic over M. Since

Mn is countable,
⋃
G is de�ned everywhere on Mn, takes every value in Mn−1, is

one-to-one and onto. Thus ρ :=
⋃
G will serve as the desired new binary relation.

De�nition 32. (Ajtai forcing)

Let ε > 0, standard, Pε := {p ∈ M|p is one-to-one from Mn into Mn−1 ∧ M |=

|dom(p)| ≤ (n− nε)}, P↔ :=
⋃

1/t{P1/t|t ∈ ω} and q ≤P↔ p i� q ⊇ p,

then < P↔,≤P↔> is a notion of forcing which is ω-de�nable inM.
14



Fact 33.

The following hold:

(1) each p ∈ P↔ is de�nable inM (because of the remark above every de�nable

relation on Mn is an element of M).

(2) P↔ is not de�nable inM, because P↔ has no minimal elements.

(3) P↔ is ω-de�nable in M, because for every p ∈ P↔ there is a t ∈ ω, p ∈

P1/t.

(4) P↔ has a greatest element 1P , that is the empty function.

(5) for each �xed x ∈ Mn, Dx := {p ∈ P↔|p is de�ned at x} is dense in P↔

and ω-de�nable in M: Dx has no minimal elements; for all p ∈ Dx there

is t ∈ ω, p ∈ P1/t.

(6) for each �xed y ∈ Mn−1, D
y := {p ∈ P↔|y is in the range of p} is dense

in P↔ and ω-de�nable inM: Dy has no minimal elements; for all p ∈ Dy

there is t ∈ ω, p ∈ P1/t.

Lemma 34.

Let G be P↔-ω-generic over M and ρ :=
⋃
G, then ρ is an one-to-one map of Mn

onto Mn−1.

(1) for all x ∈Mn ρ is de�ned in x:

for each �xed x ∈Mn Dx is dense in P↔ and so by de�nition of genericity

Dx ∩G 6= ∅.

(2) for all y ∈Mn−1 y is in the range of ρ:

for each �xed y ∈Mn−1 D
y is dense in P↔ and so by de�nition of genericity

Dy ∩G 6= ∅.

(3) ρ is one-to-one:

for all p, q ∈ G p, q are compatible, partial one-to-one maps of Mn into

Mn−1.

Corollary 35. <M, ρ >|= ¬PHP

3.2. Truth of 1st-order formulas in <M, ρ >.
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Lemma 36.

Let j ∈ ω, G P↔-ω-generic, ρ :=
⋃
G and R ⊆M j

n s.t. R is de�nable in <M, ρ >,

then the following holds:

(1) for all a1, . . . , aj ∈ Mn there is a p ∈ G s.t. p 
 R(a1, . . . , aj) or p 


¬R(a1, . . . , aj)

(2) for all p ∈ P↔ there is a p′ ∈ P↔ , p′ ≤P↔ p s.t.

• the relation q 
 R(a1, . . . , aj) restricted to q ≤P↔ p′, q ∈ P↔,

a1, . . . , aj ∈Mn is ω-de�nable

and

• for all standard ε > 0 the relation q 
 R(a1, . . . , aj) restricted to

q ≤P↔ p′, q ∈ P↔ε , a0, . . . , aj ∈Mn is de�nable inM.

(3) for all p ∈ P↔ there is a p′ ∈ P↔,q ≤P↔ p′, w ∈ ω and a function

U : M j
n → Mn−1 that is de�nable in M s.t. for all a1, . . . , aj ∈ Mn

U(a1, . . . , aj) ⊆ Mn ∪Mn−1, |U(a1, . . . , aj)| = w, and for all q ∈ P↔ if

q ≤P↔ p′, U(a1, . . . , aj)∩Mn ⊆ dom(q) and U(a1, . . . , aj)∩Mn−1 ⊆ ran(q)

then either

q 
 R(a1, . . . , aj) or q 
 ¬R(a1, . . . , aj).

To prove this, we introduce:

3.2.1. Unlimited fan-in Boolean formulae.

De�nition 37. (unlimited fan-in Boolean formulae):

Let X be a set of Boolean variables.

By induction on c ∈ ω we de�ne Bc:

(1) B0 = X ∪ {0, 1}.

(2) Induction step:

(a) If H ⊂ ω, |H| < ω, h : H → Bc−1,

then
∨
x∈H h(x) ∈ Bc and

∧
x∈H h(x) ∈ Bc .

(b) If Φ ∈ Bc−1,

then Φ,¬Φ ∈ Bc.

B =:
⋃
cBc is the set of unlimited fan-in Boolean formulae with variables in X.
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De�nition 38. (depth of a formula):

Let Φ ∈ B,

then the depth(Φ) is the smallest c ∈ ω s.t. Φ ∈ Bc.

De�nition 39. (size of a formula):

Let Φ ∈ B,

then |Φ| (the size of Φ) is de�ned by induction on d = depth(Φ):

(1) d = 0: If Φ ∈ B0, then |Φ| = 1.

(2) de�ne |¬Φ| =: |Φ|+ 1

(3) Let |h(x)| be de�ned for all h(x) ∈ Bk−1. Then

|
∧
x∈H h(x)| =

∑
x∈H |h(x)| = |

∨
x∈H h(x)|.

De�nition 40.

Let D0, D1 be arbitrary sets s.t. D0 ∩ D1 = ∅. |D0| = n < ω, |D1| = n − 1 <

ω, D := D0 ∪D1,

then de�ne the set of Boolean variables indexed byD0, D1: XD0,D1 =: {xa,b| for all

a ∈ D0, b ∈ D1}.

Remark 41. In the following we consider BD0,D1
=: {Φ ∈ B| for all xa,b which

appear in Φ we have xa,b ∈ XD0,D1}.

Notation 42. For simplicity we will denote BD0,D1
as B. And XD0,D1

as X.

3.2.2. (Partial-)Truth assignments and evaluations of Boolean formulae. Now we

de�ne an assignment of truth values on the Boolean variables. We'll start with an

ε-partial assignment Rε on XDε0,D
ε
1
⊂ XD0,D1 s.t. D

ε
1 ⊂ D1, Dε

0 ⊂ D0, n−nε = |Dε
0|

for 0 < ε ≤ 1. Then we'll de�ne an δ−partial assignment Qδ on Dδ
0, D

δ
1 that acts

as a kind of complement to Rε. The common extension Rε ◦Qδ will be a δ−partial

assignment on D0 in a natural way.

De�nition 43.

Let p be an one-to-one map of Dε
0 ⊆ D0 onto Dε

1 ⊆ D1, Qε : X ′ ⊆ X → {0, 1},

then Qε is an ε-partial assignment (on Dε
0, D

ε
1),

if the following holds:

(1) n− nε = |Dε
0|

17



(2) (Qε(xa,b) = 0 or Qε(xa,b) = 1) i� (a ∈ dom(p) or b ∈ ran(p))

(3) Qε(xa,b) = 1 i� p(a) = b.

Notation 44. map(Qε) =: p, valp =: Qε and set(Qε) =: dom(p) ∪ ran(p).

De�nition 45.

Let Φ ∈ B and Qε an ε-partial assignment,

then ΦQε denotes the Boolean formula that we get

if we apply the truth assignment Qε on Φ, i.e replace the xa,b appearing in Φ by

Qε(xa,b).

De�nition 46.

Let p be an one-to-one map of D|dom(p)|
0 into D1, |dom(p)| < n − nε0 , ε0 > 0 and

ε < ε0,

thenR(p)
ε is a random element of {Qε|Qε is an ε-partial assignment and p ⊆ map(Qε)}.

De�nition 47.

Let Rε be a random, ε-partial assignment, Dδ
0 ⊆ D0−dom(Rε), Dδ

1 ⊆ D1−ran(Rε)

and Qδ a δ-partial assignment on Dδ
0, D

δ
1,

then Rε ◦Qδ is the common extension of the assignments Rε and Qδ.

Fact 48. Each Rε ◦Qδ is a δ-partial assignment on D0, D1 and the probability of

choosing a particular common extension Rε◦Qδ is the same as choosing a particular

δ-partial assignment.

De�nition 49. (evaluation of a Boolean variable):

Let ρ be an one-to-one map of D0 onto D1, xa,b ∈ X a Boolean variable,

then de�ne a Boolean evaluation e↔ : X → {0, 1} by:

e↔(xa,b) = 1 i� ρ(a) = b.

Notation 50. We denote this evaluations e↔ de�ned by ρ as valρ.

De�nition 51. (evaluation of a Boolean formula):

Let ρ be an one-to-one map of D0 onto D1, Φ ∈ B,

then e(Φ) is the truth value of Φ

where each Boolean variable xa,b appearing in Φ is replaced by its evaluation

valρ(a, b).
18



Remark 52. By Lemma 36 and de�nition 51 we can understand the truth value of

a 1st-order formula φ(a1, . . . , ak) in the language L′ by an evaluation of a corre-

sponding Boolean formula Φ by the map ρ.

In the following we will just consider Boolean formulae Γ s.t. depth(Φ) ∈ ω. For

these it is possible to de�ne the truth value e(Φ) even if ρ /∈ M, our non-standard

model of PA.

3.2.3. Equivalence of Boolean formulae.

De�nition 53. (Equivalence of Boolean Formulae):

Two Boolean formulae Φ,Ψ are equivalent (Φ ≡eval Ψ),

i� for all evaluations e, e(Φ) = e(Ψ).

De�nition 54. (Equivalence of Boolean Formulae inM):

Two Boolean formulae Φ,Ψ are equivalent inM (Φ ≡M Ψ),

i� for all evaluations e ∈M, e(Φ) = e(Ψ).

Fact 55. For every φ(a1, . . . , ak) ∈ L′, a1, . . . , ai ∈Mn there is a d ∈ ω and Φ ∈ B

s.t. depth(Φ) ≤ d and <M, ρ >|= φ(a1, . . . , ak) i� e(Φ) = 1, e = valρ.

Remark 56. We want to replace Φ by a �simpler� Ψ s.t. Φ ≡eval Ψ. The construction

of Ψ will be inM but since there are evaluations e /∈M, Ψ needs not to be inM.

However, there is one problem: If two Boolean formulae Φ,Ψ s.t. Φ ≡M Ψ, then

still there may exist an evaluation e′ /∈M s.t. e′(Φ) 6= e′(Ψ). So we need to de�ne

a stronger kind of equivalence relation L ∈M s.t. ΦLΨ⇒ e(Φ) ≡eval e(Ψ).

De�nition 57. (Boolean identity):

We de�ne the syntactic equivalence of Boolean formulae (≡s) as follows:

(1) If H ⊂ ω, |H| < ω, g, h : H → B and ran(g) = ran(h),

then
∧
x∈H g(x) ≡s

∧
x∈H h(x).

(2) If Hi ⊂ ω, |Hi| < ω, pairwise disjoint, hi : Hi → B, H =
⋃
i∈I Hi,

hi ⊆ h : H → B and
∧
x∈H h(x) ∈ B,

then
∧
x∈H h(x) ≡s

∧
i∈I
∧
x∈Hi hi(x).

(3) If Φ ∈ B and
∧
a∈H h(a) ∈ B,

then Φ ∨
∧
x∈H h(x) ≡s

∧
x∈H(Φ ∨ h(x)).
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(4) If
∧
x∈H h(x) ∈ B,

then ¬
∧
x∈H h(x) ≡s

∨
x∈H ¬h(x).

(5) If Φ ∈ B,

then 0 ∨ Φ ≡s Φ, 0 ∧ Φ ≡s 0, 1 ∨ Φ ≡s 1, 1 ∧ Φ ≡s Φ, Φ ∨ ¬Φ ≡s 1,

Φ ∧ ¬Φ ≡s 0, ¬¬Φ ≡s Φ.

Remark 58. Each identity in the above de�nition has a dual form that we get by

replacing
∧

with
∨

and vice versa.

De�nition 59. (k-map):

K ∈ B is called a k-map,

if there is an one-to-one map pK of D0(K) ⊂ D0 onto D1(K) ⊂ D1 s.t. K =∧
(a,b)∈pK xa,b, |D0(K)| = k.

De�nition 60. D(K) = D0(K) ∪D1(K).

Fact 61. D0(K) ∩D1(K) = ∅.

Fact 62. |K| = k.

De�nition 63.

Let K ∈ B be a k-map,

then de�ne a function πK : D → D by

πK(x) =


pK(x) x ∈ D0(K)

p
−1

K (x) x ∈ D1(K)

De�nition 64. (cover of a k-map):

Let K ∈ B be a k-map and V ⊂ D,

then V covers K,

if for all x ∈ D(K)⇒ x ∈ V or πK(x) ∈ V .

De�nition 65.

Let K ∈ B be a k-map and K ′ ∈ B a k′-map,

then K and K ′ are contradictory,

if there is a x ∈ D(K) ∩D(K ′) s.t. πK(x) 6= πK′(x).
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De�nition 66. (k-disjunction)

Let ∆ ∈ B,

then ∆ is a k-disjunction

if there is a set κ = {K| there is a k′ ≤ k s.t K is a k′-map} and ∆ =
∨
K∈κK.

De�nition 67. (cover of a k-disjunction):

Let V ⊂ D, and a k-disjunction ∆ =
∨
K∈κK,

then V covers ∆

if V covers all K ∈ κ.

De�nition.

Let u ∈ D,

then we de�ne

Fu =:



∨
v∈D1

xu,v ∧
∧

s,t∈D1, s6=t
(xu,s → ¬xu,t) u ∈ D0

∨
v∈D0

xv,u ∧
∧

s,t∈D0, s6=t
(xs,u → ¬xt,u) u ∈ D1

and

OD0,D1
=:

∧
u∈D

Fu

.

Fact 68.

If there is a 0, 1-assignment for xu,v, s.t OD0,D1
= 1,

then the function ρ de�ned by ρ(a) = b i� xa,b = 1 is an one-to-one map of D0

onto D1.

Fact 69. If |D0| 6= |D1|,

then the equation OD0,D1 = 1 has no solution.

De�nition 70.

Let ∆ =
∨
K∈κK be a k-disjunction, V ⊂ D covers ∆, |V | = l,

then the l-disjunction c(∆, V ) is de�ned,

if µ =: {M | there is a l′ ≤ l s.t M is a l′-map, V covers M and for all K ∈ κ, M

and K are contradictory}, and c(∆, V ) =:
∨
M∈µM .
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Remark 71. c(∆, V ) serves as a complement of ∆, if restrict the evaluations of the

Boolean variables xa,b to valp(a, b) s.t p is an one-to-one map on V .

Even if V is a minimal cover of ∆, it is possible that l > k.

Fact 72. If ρ is an one-to-one map of D0 onto D1 , ∆ ∈ B a k-disjunction and e

the evaluation de�ned by ρ, then e(¬∆) = e(c(∆, V )).

Notation 73. We say ¬∆ and c(∆, V ) are k-equivalent.

De�nition 74. (Lw)

Let w ∈ ω, Φ,Ψ ∈ B,

then de�ne the binary relation ΦLwΨ,

if there is a set S of pairwise disjoint sub-formulae of Φ s.t.

if we replace each formula Λ ∈ S by a formula Λ′ that is either ≡s-equivalent or a

k-equivalent k-disjunction ∆, k ≤ w, then we get Ψ.

De�nition 75. (Lw,r)

Let w, r ∈ ω, Φ,Ψ ∈ B,

then de�ne the binary relation ΦLw,rΨ,

if there is a sequence Φ = Φ0,Φ1, . . .Φr = Ψ s.t. for all 0 ≤ j ≤ r − 1 ΦjLwΦj+1.

De�nition 76.

Let ∆,∆′ be k-disjunctions,

then ∆L∆′,

if ∆ =
∨
x∈H h(x), ∆′ =

∨
x∈H′ h(x), H ′ = {x ∈ H| for all y ∈ H, h(x) 6= h(y) →

map(h(x)) 6⊆ map(h(y))}.

Remark 77. We get ∆′ from ∆ by deleting h(x) with non-minimal map(h(x))'s.

Fact 78. There are w, r ∈ ω constant for all ∆,∆′ k-disjunctions s.t. ∆L∆′ →

∆Lw,r∆
′.

Notation 79. For ∆L∆′ the unique ∆′ is denoted by min(∆).

Fact 80. If Q is an assignment of the Boolean variables in ∆,

then min(∆Q) = min(min(∆Q)).
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3.2.4. Properties of k-disjunctions. We'll now state what a property of a k-disjunction

is, what it means that a property holds and how one property can be reduced to

another one:

Remark 81. The following two Lemma are from [AJ1]

Lemma 82.

If 0 < ε < 1
2 , 0 < δ < ε

4 , g is a function, dom(g) = H, |H| = n, for all x ∈ H

g(x) ⊆ H, |g(x)| ≤ |H|1−ε, x 6∈ g(x), j < |H|δ, H ′ random subset of H, |H ′| = j

then for all t > 0, P (|{y|y ∈ H ′ there is x ∈ H ′, y ∈ g(x)}| ≥ t) < n−c1t+c2 .

Lemma 83.

If 0 < ε < 1
2 , k ∈ ω,

then there are δ > 0 for all H, |H| = n, x =< x1, . . . , xk >∈ Hk,

if g is a function, dom(g) = Hk, g(x) ⊆ H, |g(x)| ≤ |H|1−ε, g(< x1, . . . , xk >

) ∩ {x1, . . . , xk} = ∅, H ′ random subset of H, |H ′| = |H|δ,

then for all t > 0 P (|{y ∈ H ′| there is x ∈ H ′k, y ∈ g(x)}| ≥ t) < n−c1t+c2 , c1 > 0,

c1, c2 depend only on ε and k.

De�nition 84.

Let k ∈ ω and ∆ ∈ B be a k-disjunction,

then Pk(∆, w) is a property of ∆,

if it is a binary relation de�ned on all pairs ∆, w, all elements a ∈ D are a ∈ ω:

Pk ⊆ {(∆, w)|∆ is a k-disjunction for some D0, D1 and w ∈ ω}

De�nition 85.

Let k,w ∈ ω, ∆ ∈ B be a k-disjunction and Ωk(∆, w) be a property,

then Ωk is the trivial property,

i� Ωk(∆, w) holds for all ∆ and w.

De�nition 86.

Let k,w ∈ ω and ∆ ∈ B be a k-disjunction,

then we say that the property Πk(∆, w) of the k-disjunction ∆ holds (we say that

the weight of ∆ is at most w),

i� there is a set V ⊆ D s.t. V covers ∆ and |V | ≤ w.
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De�nition 87.

Let Rε be a random ε-partial assignment, k ∈ ω, ∆ a k-disjunction and Pk, P
′
k

properties of k-disjunctions,

then Pk C P ′k (Pk can be reduced to P ′k),

if for all w′ there are ε > 0, w0 ∈ ω, h ∈ω ω with limx→∞h(x) = ∞ s.t. for all

w > w0, n su�ciently large, |D0| = n, |D1| = n− 1 and Pk(∆, w′),

then with a probability≥ 1 − n−h(w) there is a k-disjunction ∆′ s.t. ∆RεL∆′ and

P ′k(∆′, w).

Fact 88. C is transitive.

Theorem 89. Let Rε be a random ε-partial assignment. For any k ∈ ω Ωk C Πk.

Proof. (Theorem 89 for k = 1):

If ∆ is a 1-disjunction, ∆ is of the form
∨

(a,b)∈W xa,b s.t. W ⊆ D0 × D1 , then∨
(a,b)∈W is an abbreviation for

∨
a∈D0

∨
b∈Wa

xa,b s.t. for all a ∈ D0, Wa ⊆ D1.

Let ε > 0 and G = {a ∈ D0| |Wa| ≥ n1−ε}.

Case 1. |G| ≥ n2ε

With a probability of a least (1 − (1 − nε

2 ))n
2ε

> 1 − n−n
ε
2 , there is at least one

valRε(a, b) = 1 s.t, b ∈Wa. So the empty set covers min(λRε) .

Case 2. |G| < n2ε

We apply Lemma 82 with D in the role of H, then we de�ne a function

f(x) =


Wx x ∈ D0 −G

0 else

. Let D′ = D − set(Rδ). Strictly speaking D′ is not a random subset of D with

uniform distribution since |D′ ∩D0| is the same for all Rδ.

Fact 90. There is a random assignment D′′ s.t. with an uniform probability we

choose D′′ as the subsets of D with 4[nδ] elements and with high probability D′ ⊆

D′′.
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This implies that Lemma 82 holds for D′ too. Let V = {y ∈ D′| there is x ∈

D′ s.t. y ∈ f(x)}, then V covers the 1-disjunction ∆Rε and Lemma 82 implies that

with high probability |V | ≤ w.

�

Now we want to prove Theorem 89 for k > 1:

We prove if ∆ is a k-disjunction then there is a k-disjunction E and a k − 1-

disjunction E′ s.t. ∆RεL(E ∨ E′) and Π(E,w). Then applying the induction

hypothesis to E′ we get the wanted result:

De�nition 91.

Let ∆ =
∨
x∈H h(x) be a k-disjunction s.t. each h(x) is an k′-map, k′ ≤ k and

min(∆) =
∨
x∈H′ h(x) for some H ′ ⊆ H,

then we de�ne the k-disjunction (∆)k,

if there is a set H ′′ = {x ∈ H ′|map(h(x)) is a k-map} and (∆)k =
∨
x∈H′′ h(x).

De�nition 92.

Let Pk be a property of k-disjunctions,

then we de�ne (P )k,

if Pk(∆, w) i� Pk((∆)k, w).

De�nition 93. Let ∆ =
∨
x∈H h(x) be a k-disjunction and a ∈ D0, b ∈ D1,

then ∆a,b denotes a k-disjunction,

if there is a set H ′ = {x ∈ H|map(h(x))(a) = b} and ∆a,b =
∨
x∈H′ h(x).

Claim 94. Let Pk be the property � for all a ∈ D0, b ∈ D1 Πk(∆a,b, w)� , then

Ωk / (P )k.

Proof.

Let a ∈ D0, b ∈ D1 be �xed, ∆a,b =
∨
i∈H′ h(i). For each �xed i ∈ H ′, h(i) is a

k′-map, k′ ≤ k. Let h′(i) be the k − 1-map that we get from h(i) by deleting the

term xa,b. Let E =
∨
i∈H′ h(i) be a k−1-disjunction, then by induction hypothesis

with high probability there is k−1-disjunction ∆′ s.t. ∆RεL∆′ and a set with w−1

elements covers ∆′. That implies the Claim. �

Claim 95. Pk / (Π)k.
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Proof.

We apply Lemma 83 with D in the roll of H and 2 as k. If a ∈ D0, b ∈ D1, then

according to Pk there is V , |V | ≤ w s.t. V covers ∆a,b. We de�ne the function f :

f(< a, b >) =


V a ∈ D0, b ∈ D1

0 else

As in the proof of Case 1 for k = 1, Lemma 83 holds for an D′, D′ = D − set(Rε).

Let V = {y ∈ D′| there are a, b ∈ D′ s.t y ∈ f(< a, b >)}, then by the Lemma

P (|V | > t) < n−c1t+c2 , c1 > 0, c1, c2 depend just on ε. V covers (∆Rε)k:

Let ∆ =
∨
i∈H h(i) and for each �xed i ∈ H map(h(i))(x) = y. It is su�cient to

prove that if |dom(h(i)) − set(Rε)| = k then either x ∈ V or y ∈ V k ≥ 2 implies

there are a, b ∈ D, a 6= x s.t. map(h(i))(a) = b. So V covers ∆a,b. �

Lemma 96.

For all k, u ∈ ω there are ε > 0, w ∈ ω for all su�ciently large n,

if |D0| = n, |D1| = n − 1, ∆ ∈ B is a k-disjunction and Rε a random ε-partial

assignment,

then with probability ≥ 1 − n−u there is V ⊂ D s.t. V covers min(∆Rε) and

|V | ≤ w.

Proof. 96

Starting with an arbitrary k-disjunction ∆ and Rε =: Rε(1) ◦ · · · ◦Rε(r). We con-

struct a sequence of k-disjunctions s.t. ∆ = ∆1, . . . ,∆r = min(∆Rε), ∆
Rε(j)
j L∆j+1

for 0 ≤ j ≤ r−1and r depending only on k, u. We construct this sequence in such a

way that later k-disjunctions satisfy additional properties: If ∆j is a k-disjunction

and property Pk(∆j , w) holds for su�ciently large w (for all w > w0, w depending

just on k, u), then with a probability of at least 1−n−u we have ∆
Rε(j)
j L∆j+1, where

ε(j) depends just on k, u and ∆j+1 is k-disjunction with a property P ′k(∆j+1, w).

This is su�cient as we know that Ωk trivially holds for ∆ and after r steps we reach

min(∆Rε) s.t Πk holds for it with a high probability.

�

Theorem 97.

For all k, d, u ∈ ω, δ > 0 there are ε > 0, w, r ∈ ω s.t. for all su�ciently large n,
26



if |D0| = n, |D1| = n− 1, Φ ∈ B, |Φ| ≤ nk, depth(Φ) = d, p an one-to-one map of

D′0 ⊆ D0 into D1, |D′0| = n− nδ and R(p)
ε a ε-partial assignment,

then with probability ≥ 1−n−u there is a w-disjunction ∆ and V ⊂ D s.t. V covers

∆, |V | = w and ΦR
(p)
ε Lw,r∆.

Remark 98. ∆ being a k-disjunction is replaced by Φ being an arbitrary Boolean

Formula with |Φ| ≤ nk and depth(Φ) = d, because the size of a k-disjunction on n

variables can't exceed 2n2k.

Fact 99. δ ≥ ε, because the ε-partial assignment R
(p)
ε de�ned on an subset of D0

with n−nε extends the map p that is de�ned on a subset of D0 with n−nδelements.

Proof. 97

Let

Kk =: {Φ ∈ B||Ψ| ≤ nk}

De�nition 100. De�ne Ukd,l by induction:

(1) For each l ∈ ω let

Uk0,l =: {∆ ∈ Kk|∆ is a l − disjunction}

(2) Suppose Ukd−1,l is already de�ned,

then let

Ukd,l =: {∆ ∈ Kk|∆ =
∨
x∈H

h(x), h(x) ∈ Ukd−1,l for all x ∈ H}

∪{Φ ∈ Kk|Φ = ¬∆, ∆ ∈ Ukd−1,l}

.

Fact 101. If Φ ∈ Kk and depth(Φ) ≤ d, then by the Boolean identities there is a

∆ ∈ Uk2d,l and there are w, r ∈ ω depending only on d s.t ΦLw,r∆.

Suppose Φ ∈ Uk1,l if Φ is of he form
∨
h(x) we can transform it into a formula in

Uk0,l then Lemma 96 can be applied.

Suppose that h is of the form ¬Φ and Φ ∈ Uk0,l, then by Lemma 96 we have a

high probability that ΦRεL∆ s.t. ∆ is a w-disjunction covered by a set V , |V | = w.

∆ is w-equivalent to c(h, V ), so ΦRεLw,r+1c(h, V ).
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3.2.5. Proof of the truth Lemma. Proof of Lemma 36

Proof. (36.2) According to the de�nition of P↔ the q ∈ P↔ are maps of Mn

into Mn−1. We de�ne two relations W0 and W1 W1(q, a1, . . . , aj) will imply q 


R(a1, . . . , aj) and W0(q, a1, . . . , aj) will imply q 
 ¬R(a1, . . . , aij). For each �xed

a ∈ M j
n let Γa ∈ B be the Boolean formula de�ning the relation R(a1, . . . , aj).

There is such a formula Γa because R is de�nable in <M, ρ > and ρ can be seen

as an evaluation of the variables xa,b, a ∈ D0, b ∈ D1. We may assume that for

each Γa depth(Γa) ≤ d, |Γa| ≤ nk, where d, k ∈ ω depend only on |Γa| and not on

a or n. We apply Theorem 97 with u = j + 1 for each Γa, then ε > 0, w, r, R(p)
ε ,

Va , |Va| = w is as in the Theorem (Since u > j there is such an R(p)
ε ). We de�ne

p′ =: map(R
(p)
ε ) s.t. valp′ satis�es the conclusion of 97 for all Γa simultaneously,

W1 i� �there is a t ∈ ω s.t q ∈ P↔1/t and ΓvalqLt,t1� and W0 i� �there is a t ∈ ω s.t.

q ∈ P↔1/t and ΓvalqLt,t0�.

Fact 102. W0 and W1 are ω-de�nable.

Theorem 97 concludes: If q ≤ p′, then W1 is equivalent to the relation q 


R(a1, . . . , aj).

Let δ > 0, then by Theorem 97 the relation W1, q ≤P↔ p′ restricted to q ∈ P↔δ

is equivalent to q ∈ P↔ε and ΓvalqLw,r1 w, r depending just on j and |Γ|. So

q 
 R(a0, . . . , aj) is de�nable inM if q ≤P↔ p′ and q ∈ P↔ε .

(36.3) We take Va for U(a).

(36.1) Follows from 36.2.

�

Using this Lemma we can prove that induction up to n holds, we'll do this

by showing �rst that any nonempty subset of the natural numbers de�nable in

<M, ρ > with less than log(n) is already de�nable inM. As a last step we'll show

that induction up to log(n) in <M, ρ > implies induction up to n:

3.3. <M, ρ >|= INDn.
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Lemma 103.

If G is a P↔-ω-generic overM, ρ =
⋃
G, R an unary relation on Mn de�nable in

<M, ρ > and for all a ∈Mn R(a)→ a ≤ log(n),

then R is de�nable in M and therefore the induction principle for R holds up to

log(n) in <M, ρ >.

Proof.

By Lemma 36 there exists a p′ ∈ P↔ s.t. for all a ≤ log(n) there is an U(a),

|U(a)| ≤ w s.t. if q ≤P↔ p′ , U(a) ⊆ dom(q), U(a) ∩ Mn−1 ⊆ ran(q) then

either q 
 R(a) or q 
 ¬R(a) and U is de�nable in M. Let p′ ∈ P↔ε , ε > 0.

|
⋃
a≤log(n) U(a)| ≤ w log(n), w ∈ ω. So the de�nition of our notion of forcing

implies that T = {q′ ∈ P↔|q′ ≤P↔ p′,
⋃
a≤log(n) U(a) ⊆ dom(q′)∧

⋃
a≤log(n)(U(a)∩

Mn−1) ⊆ ran(q′)} is dense in P↔. So there is a q ∈ G∩T . We may assume q ∈ P↔ε/2
for a �tting ε. Also by Lemma 36 we have either q 
 R(a) or q 
 ¬R(a) for all

a ≤ log(n) and the relation p 
 R(a) is de�nable on P↔ε/2 therefore R is de�nable

inM. �

Lemma 104.

If the induction principle up to log(n) holds in <M, ρ >, then also induction up

to n holds.

Proof. By contradiction

Let H ⊆ Mn, H 6= ∅, de�nable in < M, ρ > s.t H has no smallest element. We

show there is also a nonempty subset of {0, . . . , [log(n)]} without a smallest element.

We may assume that for all x ∈ H if x ≤ y then also y ∈ H . Let H ′ = {x− y ∈

Mn|x ∈ H, y ∈Mn, y 6∈ H}, then H ′ is a cut too.

Claim 105. If w ∈ H ′ then [w/2] ∈ H ′.

Proof. If w = x− y, x ∈ H, y 6∈ H then let z = y + [w/2].

Case 1. If z ∈ H, then clearly [w/2] ∈ H ′.

Case 2. If z 6∈ H, then x − z ∈ H ′. Since x − z may di�er from w at most by

one, [w/2] ∈ H ′.
29



Let H ′′ = {x|2x ∈ H ′}. Then H ′′ is de�nable in <M, ρ >. Because H ′ is closed

under division by 2, H ′′ has no smallest element and for each x ∈ H ′′, x ≤ log(n).

That gives the desired contradiction.

�

�

4. The nontrivial Hierarchy

Later Ajtai used the same ideas in his search for further tautologies whose proofs

are even more di�cult than that of PHP . PHP∆0 will be the axiom system that

we obtain if we add to I∆0 the axiom scheme ∀n PHPn. These other tautologies

arise in a natural way if we understand the Pigeonhole Principle as another for-

mulation of the Parity Principle PAR, where the Parity Principle for n, PARn,

states that the set 2n+ 1 = {0, . . . , 2n} has no partition into subsets with exactly

two elements. Clearly PAR implies PHPn if we state it in the form that there is

no one-to-one map of {0, . . . , n− 1} onto {0, . . . , n− 2}. The other direction, that

PARn cannot be proven relative to PHP∆0 has one di�culty that did not arise

in the last section. While in the last section one could use the nice property of

induction that induction up to n implies induction up to nc for any �xed c, no such

property is known from PHPn. As a consequence we have to prove that PARn

cannot be proven even when assuming PHPnc . So the �rst part of this proof will

essentially be the same as in the last, whereby we construct a new model by forc-

ing where PARn holds in a natural way. The second part, showing that PARn

cannot be proven from PHPnc , however must be reduced to a completely di�erent

combinatorial question.

De�nition 106.

Let c, i ∈ ω, (p1, . . . , pc), (h1, . . . , hc), (y1, . . . , yi) and φ((p1, . . . , pc),(h1, . . . , hc),

(y1, . . . , yi)) a 1st-order formula of the language L′, written in the form (h1, . . . , hc) =
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f (y1,...,yi)(p1, . . . , pc), then

PHPφ,c ≡ ∀(y1, . . . , yi)

(∀(p1, . . . , pc)∃!(h1, . . . , hc) (h1, . . . , hc) = f (y1,...,yi)(p1, . . . , pc))

→ ((∃(h1, . . . , hc)∀(p1, . . . , pc)¬(h1, . . . , hc) = f (y1,...,yi)(p1, . . . , pc))

→ (∃(p1, . . . , pc), (p
′
1, . . . , p

′
c) (p1, . . . , pc) 6= (p′1, . . . , p

′
c)

∧f (y1,...,yi)(p1, . . . , pc) = f (y1,...,yi)(p′1, . . . , p
′
c)))

is the Pigeonhole Principle with parameters φ, c.

De�nition 107.

�∃x, y(∀z z < x)→ x+ 1 = 2y + 1�,

then �the cardinality of the universe is odd�.

De�nition 108. Let R be a binary relation and φ ≡ �if the cardinality of the

universe is odd, then R is not a partition of the universe into subsets with two

elements� of the language L′,

then φ is the Parity Principle for R.

Theorem 109.

Let T be a theory of the language L that describes a large initial segment of Peano

Arithmetic ,

then

T + ∀φ, c PHPφ,c + ¬ "the Parity Principle for R”

is consistent in L′.

Theorem 110.

Let M be a model of Peano Arithmetic, n ∈ M odd, nonstandard, i ∈ ω and

A ⊆M i
n an i-ary relation de�nable inM,

there is a partition R of n into subsets of size 2 s.t. < Mn, A,R >|= PHPφ,c.

De�nition 111. (partition)

We consider partitions as the set of their classes, so e.g. p′ ⊆ p means each class of

p′ is a class of p
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De�nition 112. (2-partition)

If S is a set and p is a partition of S,

then we call p a 2-partition,

i� every class of p contains exactly two elements.

De�nition 113.

Let p be a 2-partition of some S′ ⊂ S,

then p is a partial 2-partition for S.

De�nition 114.

Let p, p′ be (partial) 2-partitions and p ⊆ p′,

then p and p′ are compatible,

if every class of p is either in p′ or disjoint from every class of p′.

De�nition 115. (cover)

Let p be a (partial) 2-partition of S and V ⊆ S,

then V covers p,

i� every class of p contains at least one element of V (for all (x, y) ∈ p ⇒ x ∈

V ∨ y ∈ V ).

Remark 116. The de�nition of a cover of a 2-partition is very similar to the de�ni-

tion of the cover of a k-map.

De�nition 117. (inside)

Let p be a (partial) 2-partition of S and V ⊆ S,

then V is inside p,

i� V ⊆
⋃
p.

De�nition 118. (support)

Let p be a (partial) 2-partition of S and V ⊆ S,

V supports p,

i� V is inside p and covers p.

4.1. Forcing <M, σ >|= ¬PARn.

De�nition 119.

Let ε > 0 and Hε = {p ∈ M |p is a partial 2-partition of Mn ∧ M |= |
⋃
p| ≤
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(n− nε)}, P≡ =
⋃

1/t{H1/t|t ∈ ω} and q ≤P≡ p i� q ⊇ p,

then < P≡,≤P≡> is anM-ω-de�nable notion of forcing.

Fact 120.

the following holds:

(1) each p ∈ P≡ is de�nable in M, because every de�nable relation on Mn is

an element of M .

(2) P≡ is not de�nable inM, because P≡ has no minimal elements.

(3) P≡ is ω-de�nable in M, because for every p ∈ P≡ follows there is a t ∈

ω, p ∈ P1/t.

(4) P≡ has a greatest element 1P≡ , that is the empty relation.

(5) For each �xed x ∈ Mn, Dx = {p ∈ P≡|x ∈
⋃
p} is dense in P≡ and ω-

de�nable inM: Dx has no minimal elements; for all p ∈ Dx follows there

is t ∈ ω, p ∈ P≡1/t.

Lemma 121.

Let G be P≡-ω-generic overM and σ :=
⋃
G, then σ is a 2-partition of Mn.

(1) σ is a partial 2-partition of Mn:

for all p, q ∈ G p, q are compatible partial 2-partitions of Mn.

(2) for all x ∈Mn

⋃
σ = Mn:

for each �xed x ∈ Mn Dx is dense in P≡ and ω-de�nable inM and so by

de�nition of genericity of Dx ∩G 6= ∅.

Corollary 122. If τ ′(R) = σ, then <M, σ >|= ¬PAR

4.2. The truth Lemma revised.

Lemma 123.

Let ij ∈ ω, G ⊆ P≡ P≡-generic, σ :=
⋃
G and R ⊆ M ij

n s.t. R is de�nable in

<M, σ >,

then the following holds:

(1) for all a1, . . . , aj ∈ Mn there is a p ∈ G s.t. p 
 R(a1, . . . , aj) or p 


¬R(a1, . . . , aj)
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(2) the relation q 
 R(a1, . . . , aij), q ∈ P≡, a0, . . . , aj ∈Mn is de�nable inM.

(3) for all p ∈ P≡ there are p′ ∈ P≡, p′ ≤P≡ p, w ∈ ω and a function U : M j
n →

Mn that is de�nable in M s.t. for all a1, . . . , aj ∈ Mn U(a1, . . . , aj) ⊆

Mn, |U(a1, . . . , aj)| = w s.t. if all 2-partitions p′′ of Mn are compatible to

p′ and supported by U(a1, . . . , aj),

then either p′ ∪ p′′ 
 R(a1, . . . , aj) or p′ ∪ p′′ 
 ¬R(a1, . . . , aj).

(4) if j = 2c and for all x ∈M c
n, there is exactly one y ∈M c

n s.t. R(x1, . . . , xc,

y1, . . . , yc) is a function (That is y = Y (x) i� R(x1, . . . , xc, y1, . . . , yc)) de-

�nable in <M, σ >), then U(x1, . . . , xc, y1, . . . , yc) can be chosen s.t. for

all x, y, y′ ∈M c
n U(x1, . . . , xc, y1, . . . , yc) = U(x1, . . . , xc, y

′
1, . . . , y

′
c).

Fact 124. U(a1, . . . , aij) ⊆Mn −
⋃
p′, because those classes of p′′ that contain at

least one element from
⋃
p′ coincide with the corresponding classes of p′

De�nition 125. Let D be an arbitrary set s.t. |D| = n < ω,

then de�ne another set of Boolean variables indexed byD: XD =: {xa,b| for all a, b ∈

D, a 6= b}.

Remark 126. In the following we just consider BD =: {κ ∈ B| for all xa,b ∈

κ it follows that xa,b ∈ XD}.

Notation 127. From here on we will denote BD as B and XD as X for simplicity.

De�nition 128. Let D be a �nite set, xa,b ∈ X a Boolean variable,

then de�ne a Boolean evaluation e≡ : XD → {0, 1} by:

e≡(xa,b) = 1 i� (a, b) ∈ σ.

De�nition 129. (k-collection):

K ∈ B is called a k-collection,

if there is a 2-partition p of D(K) ⊂ D s.t. κ =
∧
{a,b}∈p xa,b, |D0(K)| = 2k.

De�nition 130.

Let a ∈ D,

then de�ne

F ′a ≡: (
∨

b∈D,a6=b

xa,b) ∧ (
∧

b,b′∈D,a6=b,a6=b′
xa,b → ¬xa,b′)
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and

OD ≡:
∧

a,b∈D,a6=b

(xa,b ↔ xb,a) ∧
∧
a∈D

F ′a

Fact 131.

If there is a 0, 1-assignment for xa,b s.t OD = 1,

then we de�ne a 2-partition σ of D de�ned by (a, b) ∈ σ i� xa,b = 1.

If |D| 6= 2c for c ∈ ω,

then the equation OD = 1 has no solution.

De�nition 132. Let ε > 0, p a 2-partition of Dε ⊆ D, Qε : X → {0, 1},

then Qε is an ε−partial assignment (on Dε),

if the following holds:

(1) 2[(n− nε)/2] = |Dε|

(2) Qε(xa,b) = 0 or Qε(xa,b) = 1 i� (a ∈ Dε or b ∈ Dε)

(3) Qε(xa,b) = 1 i� (a, b) ∈ p.

Notation 133. part(Qε) =: p, valp =: Qε and set(Qε) =: D.

Remark 134. The following two statements are essetially the same as Lemma 96

and Theorem 97 but in the context of partial 2-partitions.

Lemma 135.

For all k, d, u ∈ ω there are ε > 0, w, r ∈ ω s.t. for all su�ciently large n,

if |D| = n, Φ ∈ B, |Φ| ≤ nk, depth(Φ) = d and Rε is an ε-partial assignment,

then with probability ≥ 1− n−u there is a w-disjunction ∆ and a set V ⊂ D s.t. V

covers ∆, |V | = w and ΦRεLw,r∆.

Theorem 136.

For all k, d, u ∈ ω, δ > 0 there are ε > 0, w, r ∈ ω s.t. for all su�ciently large n,

if |D| = n, Φ ∈ B, |Φ| ≤ nk, depth(Φ) = d, p ∈ P≡ a partial 2-partition of Dε,

|p| ≤ n− nδ and R(p)
ε is an ε-partial assignment,

then with probability ≥ 1− n−u there is a w-disjunction ∆ and a set V ⊂ D s.t. V

covers ∆, |V | = w and ΦR
(p)
ε Lw,r∆.

Proof. of 123

According to the de�nition of P≡ the q ∈ P≡ are (partial) 2-partitions of Mn . We
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de�ne two relations W0 and W1, W1(q, a1, . . . , aj) will imply q 
 R(a1, . . . , aj) and

W0(q, a1, . . . , aj) will imply q 
 ¬R(a1, . . . , aj):

For each �xed a ∈ M j
n let Γa ∈ B be the Boolean formula de�ning the relation

R(a1, . . . , aj). There is such a formula Γa because R is de�nable in <M, σ > and

σ can be seen as an evaluation of the variables xa,b, a, b ∈ D. We may assume that

for each Γa depth(Γa) ≤ d, |Γa| ≤ nk, where d, k ∈ ω depend only on |Γa| and not

on a or n. We apply Theorem 136 with u = j+1 for each Γa, then ε > 0, w, r, R(p)
ε ,

Va , |Va| = w is as in the Theorem (Since u > j there is such an R(p)
ε ). We de�ne

p′ =: map(R
(p)
ε ) s.t. valp′satis�es the conclusion of 136 for all Γa simultaneously,

W1 i� �there is a t ∈ ω s.t q ∈ P≡1/t and ΓvalqLt,t1� and W0 i� �there is a t ∈ ω s.t.

q ∈ P≡1/t and ΓvalqLt,t0�.

(1) Theorem 136 implies thatD′ = {p ∈ P≡|∃w, r ∈ ω s.t ΓvalpLw,r1∨ΓvalpLw,r0}

is dense in P≡ and D′ ∈ M . Therefore there is a q ∈ D′ ∩ G and

q 
 R(a1, . . . , aj) or q 
 ¬R(a1, . . . , aj).

(2) Let δ > 0, then by Theorem 123.1 for some q ≤P≡ p′ restricted to q ∈ P≡δ

we get w, r ∈ ω s.t. ΓvalqLw,r1 ∨ ΓvalqLw,r0 and q 
 R(a1, . . . , aj) i�

q ∈ P≡ε s.t. ΓvalqLw,r1. So the relation q 
 R(a1, . . . , aj) is de�nable in

<M, σ > if q ≤ p′ and p ∈ P≡ε .

(3) D′ = {p ∈ P≡|∃w, r ∈ ω s.t ∀w-disjunctions ∆a, Va ⊆ D, |Va| = w, Va

covers ∆a and ΓR
(p)
ε Lw,r∆a}. If for some w, r there are ∆a, Va, then they

are de�nable in M, so D′ is de�nable in M. As a consequence we only

have to show that D′ is dense in P≡. Since there are only nj di�erent a's

this is a consequence of 136.

(4) Let Yk(a) be the k-th bit of the binary code of the number Y (a). Apply

3 to the relation Yk(a) = 1 for k = 1, . . . , log(c). Theorem 136 implies

that there is a single p′ ≤P≡ p s.t. for each k there is a function Vk.

Let V ′(a1, . . . , aj) =
⋃
k≤log(c) Vk(a1, . . . , aj), then V ′ satis�es the needed

properties for U of statement 3 of the Lemma, except |V ′(a1, . . . , aj)| ≤

w. We pick q ≤P≡ p′, q ∈ P≡ s.t. for all a1, . . . , aj ∈ Mn we get

|V ′(a1, . . . , aj) −
⋃
q| ≤ w simultaneously. q → p′, V ′ → U satisfy all

the requirements of statement 3.
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4.3. < M, σ >|= PHP . Suppose <M, σ >|= ¬PHP , then there is a c ∈ ω and

an one-to-one map ρ of M c
n into M c

n − (

c×︷ ︸︸ ︷
0, . . . , 0) s.t <M, σ >|= ρ.

Remark 137. From now on ρ will serve as the function Y in Lemma 123.4.

Let p′ ∈ P≡ and Uρ as in the Lemma 123.4. Let ρ−1 be the inverse of ρ, not nec-

essarily de�ned on all a ∈M c
n. We may suppose that p′ 
 ρ is a one-to-one map of

M c
n into M c

n − (0, . . . , 0) and ρ−1 is the inverse of ρ.

Let pρ
−1 ∈ P≡ and Uρ

−1

be the function corresponding to ρ−1 as de�ned in

123.4 and µ(a) = Uρ(a) ∪ Uρ−1

(a), for all a ∈M c
n.

Remark 138. We may suppose that |µ(a)| = |µ(a′)| ∈ ω for all a, a′ ∈ M c
n and

p′ = pρ
−1

. Because of the Fakt 124 we may also assume that µ(a) ⊆Mn−
⋃
p′ and

thatM |= m = n−
⋃
p′, as a consequence we can identify m and n−

⋃
p′. T will

be the set of w-tuples formed from the elements of m. We'll also identify nc and

M c
n, because |M c

n| = nc. Suppose ρ maps nc into nc − {0}.

Since the function µ and the relation 
 are de�nable inM there exist functions

f, g de�nable inM s.t. the following holds:

Let a ∈M c
n and p any partial 2-partition supported by µ(a) compatible to p′, then

(1) p ∪ p′ 
 ρ(a) = f(a, p)

(2) if g(a, p) is de�ned then p ∪ p′ 
 ρ−1(a) = g(a, p) and

if g(a, p) is not de�ned then p ∪ p′ 
 ”ρ−1is not de�ned”.

Proposition 139. some properties of µ, f, g:

(1) µ : nc → T .

(2) dom(f) = {(a, p)|a ∈ nc∧p is a partial 2-partition of m∧µ(a) supports p}.

(3) dom(g) ⊆ {(a, p)|a ∈ nc∧p is a partial 2-partition of m∧µ(a) supports p}.

The following conditions hold for all x, y, p, q where x, y ∈ nc, p, q com-

patible, partial 2-partitions of m, µ(x) supports p and µ(y) support q,

respectively.

(4) f(x, p) ∈ nc, f(x, p) 6= 0, because ran(ρ) = nc − {0}.
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(5) If g(x, p) is de�ned, then g(x, p) ∈ nc, because ran(ρ−1) = nc.

(6) If x 6= y ∈ nc, then f(x, p) 6= f(y, q), because ρ is an one-to-one function

and p, q are compatible.

(7) y = f(x, p) i� (g(y, q) is de�ned and x = g(y, q)), because p, q are compat-

ible and by Lemma 123.4 we get y ∈ nc s.t. p ∪ q ∪ p′ 
 y = ρ(x).

De�nition 140.

Let w, nc,m ∈ ω,

then W0(w, nc,m) hold,

if there are functions µ, f, g s.t. 1-7 hold.

De�nition 141.

Let U, V ∈ T and p a partial 2-partition,

then p is a position over U, V ,

i� each class of p contains at least one element from U and V .

De�nition 142.

Let U, V ∈ T and p ⊆ p′ partial 2-partitions,

then p′ is based on p over U, V ,

i� each class of p′ that contains at least one element from U and V is also a class

of p.

De�nition 143.

Let U ∈ T , p be a 2-partition of m and U inside p,

then pU is a minimal partial 2-partition of m that is compatible to p and covered

by U .

Fact 144. pU is unique for U , because U has to be inside pU and has to cover pU .

Lemma 145. (M0)

If <M, σ >|= ¬PHPnc ,

then there is a w ∈ ω and nc,m ∈M s.t. M |= W0(w, nc,m).

Lemma 146. (M1)

For all w ∈ ω if m ∈ ω is su�ciently large and nc ∈ ω,

then PA ` ¬W0(w, nc,m).
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Proof. Case 1. m is even:

Suppose that contrary to our assertion there are w, nc ∈ ω s.t. W0(w, nc,m) holds

for in�nitely many even m's. Let us �x such a m > 4w. Let p be a 2-partition of m.

For all µ(x) ∈ T let pµ(x) be the unique partial 2-partition of m that is compatible

to p and supported by µ(x). Now we de�ne a function h on nc by h(x) = f(x, pµ(x)).

h contradicts the Pigeonhole principle, because h is one-to-one by by Fact 139.5

but maps nc into nc − {0}.

�

ForW0 to hold we required that f(x, p) is de�ned if p is just supported by µ(x) ∈ T .

Now we want f(x, p) to be de�ned even for any p s.t. a U ∈ T is inside p. In the

same way we de�ne g(x, p).

Lemma 147.

Let W0(w, nc,m) hold for m > 4w , U, V ∈ T , p is a position over U, V and p′, p′′

are 2-partitions of m s.t. they are based on p over U, V and U is inside p′ and p′′,

then

(1) for all x, y ∈ nc s.t. µ(x) = U , µ(y) = V follows: y = f(x, p′) i� y =

f(x, p′′)

(2) for all x, y ∈ nc s.t. µ(x) = U ,µ(y) = V follows: (g(x, p′) is de�ned and

y = g(x, p′)) i� (g(x, p′′) is de�ned and y = g(x, p′′)).

Proof. (1)

We may suppose that V is also inside p′ and p′′, because else we may extend p′ and

p′′ without changing the values of f and g. Let x, y be given as required, y = f(x, p′)

and p′U , p
′′
U the unique minimal subsets of p′ and p′′ respectively supported by U .

p′V , p
′′
V are de�ned alike.

Case 1. p′U and p′′V are compatible:

Then by 139.4 y = f(x, p′U ) implies x = g(y, p′′V ) and because p′′U and p′′V are

compatible too F4 also implies that from x = g(y, p′′V ) follows y = f(x, p′′).

Case 2. p′U and p′′V are incompatible:

We want to construct a p′′′ from p′U s.t. p′′′U and p′′V are compatible and s.t for

all x, y as required y = f(x, p′) i� y = f(x, p′′′), so we can apply the �rst case.
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The classes of p′U that are incompatible to p′′V cannot be covered by V , since p′

and p′′ are both based on p over U, V and so these classes would already be classes

of p.

These incompatible classes are also incompatible to p′V , else they would be sup-

ported by V and as well covered by V .

We replace these classes of p′U with new ones to get p′′′ s.t.:

• each new class contains exactly one element from U .

• each element of U is contained in a class of p′′′.

• the set of elements not in U but contained in a new class is disjoint from
⋃
p′V

and
⋃
p′′V .

Remark 148. This can be done, because m > 4k, Fact 124 and Remark 138.

The de�nition of the replacement implies that p′′′ is supported by U and com-

patible to p′V and p′′V . For all x, y as required y = f(x, p′) i� y = f(x, p′V ) trivially

holds and with p′′′ compatible to p′V and 1394 also y = f(x, p′V ) i� y = f(x, p′′′)

holds.

�

De�nition 149.

Let p′ be a partial 2-partitions and U, V ∈ T ,

then pU,V,p′ is the unique position over U, V ,

if p′ is based on p over U, V and U is inside p′.

Remark 150. We have shown that the truth value of the relations y = f(x, p) and

x = g(y, p) s.t. µ(x) = U , µ(y) = V is constant for all 2-partitions p′ based on

pU,V,p′ over U, V where U is inside p′.

Now we de�ne a function that gives for all U, V ∈ T and positions p over U, V

the number of pairs < x, y > s.t. y = f(x, p′) is true for a p′ based on p over U, V .

In a similar way we de�ne a counting function for the number of de�ned and true

x = g(y, p′) relations.
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De�nition 151. Let W0(w, nc,m) hold, m > 4w, U, V ∈ T and p a position over

U, V ,

then

• d(U, V, p) is the number of all pairs x, y ∈ nc s.t µ(x) = U , µ(y) = V and

for any 2-partition p′ based on p over U, V , U inside p′ follows: y = f(x, p′).

• e(U, V, p) is the number of all pairs x, y ∈ nc s.t. µ(x) = U , µ(y) = V and

for any 2-partition p′ based on p over U, V , U inside p′ follows: g(x, p′) is

de�ned and y = g(x, p′).

De�nition 152.

Let U ∈ T and p′ a partial 2-partition of m supported by U ,

then

r(U, p) =
∑
V ∈T

(d(U, V, pU,V,p′)− e(U, V, pU,V,p′))

Lemma 153.

Let W0(w, nc,m) hold, m > 4w,

then the following holds:

(1) If U, V ∈ T and p is a position over U, V , then d(U, V, p) = e(U, V, p).

(2) If U ∈ T and p′ is a partial 2-partition supported by U , then r(U, p′) ≥ 0.

(3) If there is an U0 ∈ T , then for all partial 2-partitions p′ that are supported

by U0, follows r(U0, p
′) > 0.

Proof. (1)

Let p′, p′′ be two compatible, partial 2-partitions of m, based on p over U, V and

supported by U respectively V . m > 4w implies that such p′, p′′ exists. The Lemma

is a direct consequence of the de�nitions and 1394.

(2) Let µ(x) = U , then f(x, p′) is de�ned and y = f(x, p′). The pair (x, y)

occurs just in the d(U, V, pU,V,p′) de�ned by V = µ(y). Then ΣV ∈T d(U, V, pU,V,p′)

equals to the number of x ∈ n s.t µ(x) = U . The same argument works for

e(U, V, pU,V,p′) except g(y, p′) may not be de�ned for some y, the consequence:

ΣV ∈T e(U, V, pU,V,p′) ≤ ΣV ∈T d(U, V, pU,V,p′).

(3) This is a special case of 2 where U0 = µ(0) �
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De�nition 154.

Let m,w ∈ ω, m > 4w be �xed we de�ne:

• Let ∆ =: {(U, V, p)|U, V ∈ T and p is a position over U, V }.

• For all (U, V, p) ∈ ∆ we de�ne a variable x(U,V,p).

• Let Γ =: {(U, p)|U ∈ T and p is a partial 2-partition of m supported by U}

• For all (U, p′) ∈ Γ we de�ne the inequity L(U,p′):

ΣV ∈T (x(U,V,pU,V,p′ )
− x(V,U,pV,U,p′ )

) ≥ 0

• For all w,m ∈ ω, (U, p′) ∈ Γ we de�ne the system Lw,m consisting of all the

L(U,p′).

Remark 155. We search for solutions to such a system of inequities over the �eld

of real numbers s.t. at least one sum is strictly bigger than 0.

De�nition 156. (proper solution)

Let Lw,m be as above and x(U,V,p) a solution of the system,

then we call x(U,V,p) a solution proper,

if there is at least one L(U,p′) > 0.

Lemma 157.

If w, nc,m ∈ ω, m > 4w and W0(w, nc,m) holds,

then Lw,m has the proper solution x(U,V,p) = d(U, V, p),

if (U, V, p) ∈ ∆.

Proof.

This Lemma is a consequence of Lemma 153 �

Lemma 158.

If w,m ∈ ω, m is even and p is a 2-partition of m

then the following holds:

(1) ΣU∈TL(U,p′U ) = 0

(2) Lw,m has no proper solution in the �eld of real numbers.
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Proof. (1)

Let p be a 2-partition of m. If we consider all the unequations L(U,p′U ) for U ∈ T ,

then a �xed x(Uo,V0,pUo,Vo,qo ) occur exactly twice:

• In the unequation L(Uo,qU0
) = ΣV ∈T (x(U0,V,pU0,V,qU0

)−x(V,U0,pV,U0,qV
)) where

V = V0 and

• In the unequation L(V0,qV0 ) = ΣU∈T (x(V0,U,pV0,U,qv0
)−x(U,V0,pU,V0,qU )) where

U = U0.

Therefore the sum on the left hand side is 0.

(1→2):

The �rst clause of the Lemma states that no L(U,p′U ) can be positive, hence Lw,m

can't have a proper solution. �

De�nition 159. Let Part(ω) be the set of �nite partial 2-partitions of ω.

Let SP (ω)w =: [ω]w ∪ Part(ω).

Let Seq(SP )w,i be the set of sequences from SP (ω)wof length i.

Fact 160. If λ is an one-to-one map of ω into ω, then it induces in a natural way

a one-to-one map on [ω]w for �xed w and on Part(ω) and therefore on SP (ω)w

and on Seq(SP )w,i for w, i �xed.

Notation 161. If A,B ∈ Seq(SP )w,i,

then we say A and B are isomorphic (A ∼= B),

if there is an one-to-one map λ : ω onto ω s.t. λ(A) = λ(B).

De�nition 162. If A ∈ Seq(SP )w,i for some w, i ∈ ω,

then let type(A) =: {B| B ∈ Seq(SP )w,i and A ∼= B}. We say that type(A) is the

isomorphism type of A.

If S ⊆ Seq(SP )w,i for some w, i ∈ ω,

then Type(S) =: {type(A)| A ∈ S}.

De�nition 163. For all (U, p′) ∈ Γ we de�ne an inequity J(U,p′) from L(U,p′) by re-

placing all x(U,V,p) for (U, V, p) ∈ ∆ with a variable ytype((U,V,p))where type((U, V, p)) ∈

Type(∆):

ΣV ∈T ytype((U,V,pU,V,p′ )) − ytype((V,U,pV,U,p′ )) ≥ 0
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.

Remark 164. If (V, q), (V ′, q′) ∈ type((U, p′)), then the inequalities J(V,q) and

J(V ′,q′) are identical.

Notation 165. By Jtype((U,p′)) we'll denote the inequity J(V,q) s.t. (V, q) is an arbi-

trary element of type((U, p′)).

De�nition 166. For all w,m ∈ ω and (U, p′) ∈ Γ, we de�ne the system Jw,m

consisting of all the Jtype((U,p′)).

Remark 167. For a �xed w ∈ ω Type(∆) and Type(Γ) do not depend on m if

m > 4w, as a consequence the systems Jw,m share the same set of variables and

have the same number of equations. The coe�cients of the variables of the equations

Jtype((U,p′)), however depend on the speci�c choice of m; namely:

The coe�cient of ytype((U,V,p)) is a polynomial of m whose degree and coe�cients

may only depend on w, type((U, p′)) and type((U, V, p)).

Lemma 168.

(1) For each w ∈ ω, δ =: type((U, V, p)) ∈ Type(∆) there is a polynomial

fw,δ,γ(m) with rational coe�cients s.t. for anym > 4w and γ =: type((U, p′)) ∈

Type(Γ) the inequity Jtype((U,p′)) equals to:

ΣV ∈T fw,δ,γ(m)yδ ≥ 0

.

(2) For each w ∈ ω, γ =: type((U, p′)) ∈ Type(Γ) there is a polynomial fγ(m)

with rational coe�cients s.t for any m > 4w and p a 2-partition of m, then

fγ(m) = |{(U, pU )| U ∈ T}|

.

Proof. (1)

Suppose w is �xed and γ =: type((Uγ , pγ)) ∈ Type(Γ). Let η =: (Uη, pη) s.t.

type(η) = γ. We want to �nd the coe�cient cδ of the variable yδ where δ =:

type((Uδ, Vδ, pδ)) ∈ Type(∆) in the inequity Jγ :
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cδ itself is the sum of the coe�cients of the variables x(U,V,p) with type((U, V, p)) =

δ in the equation Jη. Jη was given in a way s.t. each x(U,V,p) may occur once with

coe�cient 1 and once with coe�cient −1, so its enough to determine the number

of x(U,V,p) with coe�cient 1 and type((U, V, p)) = δ for all δ ∈ Type(∆) and the

number of x(U,V,p) with coe�cient −1, respectively.

Case 1. The coe�cient of x(U,V,p) is 1:

Let δ ∈ Type(∆) and let (U0, V0, pU0,V0,p0) ∈ ∆ s.t. type((U0, V0, pU0,V0,p0)) = δ

and x(U0,V0,pU0,V0,p0
) has coe�cient 1 in Jη. By de�nition any x(U,V,pU,V,p′ )

occurs

in Jη if there is a V ∗ ∈ T with (U, V, pU,V,p′) = (Uη, V ∗, pUη,V ∗,pη ), so its enough

to determine the number of V ∗ ∈ T s.t. (Uη, V, pUη,V,pη ) ∼= (U0, V0, pU0,V0,p0):

By de�nition pU,V,p′ is unique for all triples (U, V, p′) with U, V ∈ T and p′ a

partial 2-partition. The isomorphism types δ and γ uniquely de�ne the numbers

i = |V − (U ∪
⋃
p)| and j = |U ∪

⋃
p| . We �nd a su�cient V ∗ by two steps:

(1) We choose one of the
(
m−i
j

)
j-elementary subsets X of m− (U ∪

⋃
p).

(2) We choose a subset H of U ∪
⋃
p with |H| = i s.t < U,X∩V, p >∼=< U,H, p >.

The number c of such appropriate setsH depend just on the isomorphism types

η and δ but not on m.

So the number c
(
m−i
j

)
of appropriate V ∗'s is really a polynomial of m and its

coe�cients depend just on w and the isomorphism types δ and γ.

Case 2. The coe�cient of x(U,V,p) is −1:

Similar to the case above.

The sum of these polynomials gives fw,δ,γ(m).

Proof. (2) similar. �

�

Lemma 169.

If m > 4w, δ ∈ Type(∆) then Σγ∈Type(Γ)fγ(m)fw,δ,γ(m) equals 0.

Proof.

Let w, δ be �xed. We prove that the polynomial Σγ∈Type(Γ)fδ(m)fw,δ,γ(m) is the 0-

polynomial by proving the fact for in�nitely manym's, namely the even ones: If p is
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a 2-partition of m, then fδ is the number of inequalities L(U,pU ) s.t. type((U, pU )) =

γ. In all L(U,pU ) the sum of the coe�cients c(U,V,p) of the x(U,V,p) with (U, V, p) ∈ δ

is fw,δ,γ(m). According to 2 of the Lemma above the sum of all the lefthandsides

equals 0. So the sum of the coe�cients of the variables x(U,V,p) with (U, V, p) ∈ δ

is 0, which implies the Lemma. �

Lemma 170.

Let m,nc, w ∈ ω, m > 4w and W0(w, nc,m) hold,

then the system Jw,m has no proper solution.

Proof.

Let J̄γ be the lefthand side of Jγ . Lemma 168 and 169 imply that Σγ∈Type(Γ)fγ(m)J̄γ =

0: The coe�cient of yδ in Jγ is fw,δ,γ according to Lemma 168. So the coe�cient

of yδ is Σγ∈Type(Γ)fγ(m)fw,δ,γ(m) and this sum is equal to 0 according to Lemma

169. �

Lemma 171.

Let m,nc, w ∈ ω, m > 4w and W0(w, nc,m) hold,

then the system Jw,m has a proper solution.

Proof.

Suppose that W0(w, nc,m) holds for m,nc, w ∈ ω, m > 4w. Lemma 157 implies

that Lw,m has a proper solution x(U,V,p) = d(U, V, p). Let Sm be the group of

permutations of ω which leaves everything outside the set m untouched. We de�ne

another evaluation of all variables x(U,V,p) → X(U,V,p) =: (1/m!)
∑
σ∈Sm xσ((U,V,p)).

Since x(U,V,p) is a proper solution of Lw,m, xσ((U,V,p)) s.t. σ ∈ Sm is a proper

solution and their average X(U,V,p) is a proper solution too. The de�nition of

X(U,V,p) implies that its value just depends on type((U, V, p)). Let δ ∈ Type(∆) s.t.

for all (U, V, p) ∈ δ follows yδ = X(U,V,p). The de�nition of Jw,m implies that yδ is

a proper solution of Jw,m.

Proof. (4.3) �

Case 1. m is odd:

Suppose that contrary to our assertion there are w, n ∈ ω s.t. W0(w, nc,m) holds
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for in�nitely many odd m's. Let us �x such a m > 4w. Lemma 170 implies that

Jw,m has a proper solution. This contradicts the Lemma 171 above.

�
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Abstract

Here I review some articles of Paris, Wilkie [PW] and Ajtai [AJ2, AJ3] concerning

connections between complexity and proof theory.

J. Paris and A. Wilkie [PW] were interested in the question whether every ∆0

subset A of N has a ∆0 de�nable counting function: {< n,m > |m = |A ∩ n|}. A

closely related question is whether the Pigeonhole Principle PHP can be proved

in the weak fragment of Peano Arithmetic called I∆0. I∆0 consists of the axioms

of Peano arithmetic with the induction scheme restricted to bounded formulas.

They showed the consistency of I∃1(F ) + ∃xF : x 7→ x − 1, by an application of

forcing. They also showed the consistency of I∆0(F ) + ∃xF : x 7→ x − 1 under

the assumption of the Cook-Reckhov Conjecture, that is, the assumption that it is

�hard to prove� the propositional form PHPn of PHP . This proof establishes a

connection between I∆0 and Frege systems.

Ajtai [AJ2] combined the application of forcing and this connection to prove the

consistency of I∆0(F )+∃xF : x 7→ x−1 (if we only consider Frege proofs of constant

size and polynomial depth) without assuming the Cook-Reckhov Conjecture. His

main idea was the following: Take a non-standard modelM of I∆0. Assume there

is a �simple� proof of PHPn for some n. Take the substructure Mn = M � n,

extend it by forcing to some M [G] where PHP cannot hold. By a combinatorial

argument M [G] is also a model of complete induction up to n, so we can step-wise

check our �simple� proof of PHPn and get a contradiction to the soundness of its

construction.

Later [AJ3] Ajtai generalized this technique and showed that PHP∆0 6` PAR,

where PHP∆0 = I∆0 ∪ PHP and PAR is the assertion that no odd set has a

partition into subsets with two elements. PAR can be generalized further [AJ3]

to �the modulo p Counting Principles� CPp , where PAR = CP2. He also showed

that for all primes p 6= q, CPp and CPq are pairwise independent.

As a consequence of these observations we get a hierarchy of stronger and stronger

weak theories of Peano Arithmetic:

I∃1 ⊂ I∆0 ⊂ PHP∆0 ⊂ CPp∆0 for every prime p
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Abstract Deutsch

In dieser Arbeit betrachte ich einige Arbeiten von Paris, Wilky [PW] und Ajati

[AJ2, AJ3] welche einen Zusammenhang zwischen Komplexitäts- und Beweistheorie

herstellen.

J. Paris und A. Wilkie [PW] betrachteten die Fragen ob jede ∆0−Teilmenge A

von N auch eine ∆0 de�nierbare Zählfunktion {< n,m > |m = |A ∩ n|} besitzt.

Eine damit eng verwanndte Fragestellung ist, ob das Schubfachprinzip PHP in

einer schwachen Teiltheorie I∆0 der Peano Arithmetik bewiesen werden kann. I∆0

umfasst die selben Axiome wie die Peano Arithmetik. Das Axiomenschema der In-

duktion ist jedoch nur für beschränkte Formeln gegeben. Paris und Wilky konnten

mithilfe der Forcing-Technik die Konsistenz von I∃1(F ) + ∃xF : x 7→ x− 1 zeigen.

Weiters konnten sie unter Verwendung der Cook-Reckhov Vermutung, die Konsis-

tenz von I∆0(F ) + ∃xF : x 7→ x− 1 zeigen. Die Cook-Reckhov Vermutung besagt,

dass ein Beweis der aussagenlogischen Form PHPn von PHP �schwer� ist. Dieser

zweite Beweis benutzt einen Zusammenhang zwischen I∆0 und Frege Systemen.

Ajtai [AJ2] verband die Verwendung der Forcing-Technik und dieses Zusammen-

hangs um die Konsistenz von I∆0(F ) + ∃xF : x 7→ x − 1, ohne der Verwendung

der Cook-Reckhov Vermutung, zu zeigen. Dazu nahm er an, dass in einem nicht-

standard ModellM von I∆0 ein �einfacher� Beweis von PHPn für ein n existiert.

DiesesM beschränkte er auf die Substruktur Mn =M � n, welche er dann durch

Forcing zu einem M [G] erweiterte in welchem PHP auf natürliche Weise nicht

wahr sein kann. Eine kombinatorische Überlegung zeigt, dass in M [G] aber das

Axiomenschema der vollständigen Induktion bis n wahr ist. Damit kann man nun

den �einfachen� Beweis von PHPn Schritt für Schritt prüfen, was zu einem Wider-

spruch führt.

Später [AJ3] verallgemeinerte Ajtai diese Art der Beweisführung, um zu zeigen,

dass PHP∆0 6` PAR, wobei PHP∆0 = I∆0 ∪ PHP und PAR folgende Aussage

ist: Keine Menge mit einer ungeraden Anzahl von Elementen kann in Teilmengen

mit genau zwei Elementen partitioniert werden. PAR kann weiter zum �module p

Counting Principle� CPp verallgemeinert werden [AJ3]. Schlussendlich zeigte Ajtai

für alle Primzahlen p 6= q, dass die CPp paarweise unabhängig sind.
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Als Konsequenz dieser Erkenntnisse bekommen wir eine Hierarchie von schwachen

Theorien der Peano Arithmetik:

I∃1 ⊂ I∆0 ⊂ PHP∆0 ⊂ CPp∆0 für alle Primzahlen p
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