
DIPLOMARBEIT

Titel der Diplomarbeit

�Syntactical Consistency Proofs for Term Induction

Revisited: Two Di�erent Methods�

Verfasser

Michael Toppel

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag.rer.nat)

Wien, im Juli 2011
Studienkennzahl lt. Studienblatt: A 405

Studienrichtung lt. Studienblatt: Mathematik

Betreuer: Dr. Jakob Kellner

Ao.Univ.Prof. Dr. Matthias Baaz

Contents

Introduction iii

1 Finite dealings with in�nite Ordinal Numbers 1

1.1 The Class of Ordinal Numbers 1
1.1.1 ZFC . 1
1.1.2 Ordinal Arithmetic and De�nable Functions 4
1.1.3 Regular Ordinals, Cardinals and Club 6
1.1.4 Veblen Hierarchy . 7

1.2 An Ordinal Notation System 10
1.3 The Proof Theoretical Ordinal 12

2 The Consistency Proof by Gerhard Gentzen 17

2.1 Language and Theory . 18
2.2 Some Sequent Calculi . 21
2.3 Important de�nitions and facts about CTf 28
2.4 The Consistency of CTf . 32
2.5 Examples for Tf . 44

3 The Π1
1-Ordinal from Cut-Elimination 47

3.1 The Language of a Tait Calculus 48
3.2 A Tait-Calculus for an Arithmetical Theory 50
3.3 An In�nite Language and Tait-Calculus 52
3.4 An Embedding and an application of Cut-Elimination 58
3.5 The Π1

1-Ordinal of a Tait-calculus 61
3.6 An upper bound for the Π1

1-Ordinal of TAf 64

References 65

Abstract 67

Abstract(German) 69

Curriculum Vitae 71

i

Introduction

At the beginning of the 19th century David Hilbert became interested in
the idea that all of mathematics can be covered by elementary operations
on �nite strings of symbols. So one can speak about mathematics without
referring to the �meaning� (whatever that means) of the symbols that are
used. Motivated by this idea he started two programs: One to show that the
extension of mathematics to the in�nite does not change �nite mathematics
and (as a successor of the �rst) another one to show with elementary (�nite)
methods the consistency of mathematical theories. These two programmes
are connected by the fact that a solution of the second leads to a solution of
relevant parts of the �rst (see [14]). Since the syntax of ordinary �rst order
logic amounts to �nite operations on �nite strings of symbols, the notions
of �proof�, �provability� and �consistency� are part of ��nite mathematics�.
This was the beginning of proof theory. Of course ��nite mathematics� is
not a well de�ned concept. Several logicians have argued that it should be
peano arithmetic PA, others have favoured primitive recursive arithmetic
PRA (including all primitive recursive functions plus open induction).
By the work of Kurt Gödel, Hilbert's program ran aground. With his second
incompleteness theorem (published 1931) Gödel showed that even for weak
theories like PA there cannot be a consistency proof using just primitive
recursive methods. Otherwise PA would be strong enough to prove its own
consistency, contradicting the second incompleteness theorem.
In the year 1936 Gerhard Gentzen published a syntactical consistency proof
of PA [5] and 1938 a second version [6]. His result does not contradict
Gödel's incompleteness theorem, because the proof uses an induction �longer
than the natural numbers� (over the well-ordering of an ordinal notation
system up to ε0). So the second incompleteness theorem implies that this ε0-
induction-principle can not be proven in PA. Paul Lorenzen, Kurt Schütte
and others used the work of Gentzen to develop longer ordinal notation
systems to show (or from another point of view, to measure) the consistency
of stronger theories. In their work, they use in�nite languages and calculi
but still keep primitive recursivness in some sense. This part of proof theory
is called ordinal analysis and can be seen as an extended Hilbert program.
It became common to speak about �the ordinal� of a given theory when
talking about the consistency strength (in a primitive recursive way). This is
somewhat misleading as Georg Kreisel pointed out. He used several counter
examples to show that the proof theoretical ordinal (as a primitive recursive
ordering) of a theory is not a robust notion. For example, an easy argument
shows that the shortest primitive recursive well-ordering one needs to prove
the consistency of a consistent recursive �rst order theory has always order-
type ω. So the proof theoretical ordinal only makes sense in relation to a
given notation system (if one wants to keep primitive recursiveness).
A way to deal with this problem is presented by Wolfram Pohlers in his

iii

book [8]. Pohlers extends the language of �rst order logic by second order
variables (but not second order quanti�cation) to de�ne the Π1

1-ordinal of a
theory. This notion of a proof theoretical ordinal is in fact a real ordinal (not
an element of an ordinal notation system), so it is not given in a primitive
recursive way.
Ordinal analysis leads to some useful applications in proof theory beyond
assigning a proof theoretical strength. For several examples see [9].
In my diploma thesis I will take a closer look at the method Gentzen used
in his consistency proof for PA. Sometimes it is supposed in the literature
that Gentzen's method is essential the same as Schütte's (for example see
[8, p.123]). This is somewhat misleading because Gentzen's method relies
essentially on the induction schema

ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x)

but not of the other axioms of PA, except from the fact that they are
all universal sentences. In contrast, Schütte's and Tait's methods seem to
require other properties of the underlying theories: In the case of arithmetic
all functions and predicate constants have to have a standard interpretation,
and all axioms have to be true (in the standard interpretation). (In the
case one wants to work in PRA it is useful to have only primitive recursive
interpretations.) However, in this thesis we only present Gentzen's mothod
and (a variant of) Schütte's, the analysis of the di�erences would go beyond
the scope of this diploma thesis.
In Chapter 1 I will introduce an ordinal notation system up to Γ0, and several
di�erent notions of �proof theoretical ordinal of a theory�. In Chapter 2 I
will give a slight generalisation of Gentzen's result which covers all primitive
recursive theories Tf which include just universal sentences together with an
induction schema

ϕ(c1) ∧ ... ∧ ϕ(cm) ∧ ∀~x[ϕ(x1) ∧ ... ∧ ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x).

Here one has to assume that the theory proofs in a very simple way that any
of its closed terms is equal to a term build up from f and c1, ..., cm and that
all axioms except from induction are universal sentences. This will lead to
the fact that every Σ0

1-sentence which is provable in Tf is also provable in
Tf without the use of the induction schema. As in Gentzen's original proof
we have to assign to each deduction a rank, which is an ordinal term (in an
ordinal notation system up to ε0).
In Gentzen's proof ε0 appears from nowhere: the way how the ranks are
assigned to the deductions is rather arti�cial and depends on the fact that
ε0 is the right choice. (The ordinal term ε0 is the smallest term of the
notation system which can be used, because trans�nite induction is provable
in PA for every smaller term (see [6]).)
Contrary to Gentzen's method the method W. W. Tait developed in [15] has

iv

a stronger relation to the ordinals: One uses in�nite propositional logic and
in�nite deductions trees and every deduction in the considered theory such
as PA can be transformed into such a tree. Since the method uses in�nite
deduction trees, the rank can be de�ned very natural as the smallest ordinal
which is bigger than the ranks of all subdeductions. Tait proves in [15] how
the rank raise after cut-elimination is related to the χ-function: A deduction
of rank α, where the �cut-rank� is smaller or equal than β + ωγ , can be
transformed in a deduction of rank χ(γ, α) and cut-rank β. The cut-rank is
de�ned as the smallest ordinal term (or in some approaches: ordinal) which
is bigger than the complexity of any cut-formula in the deduction, so a cut-
rank of 0 means cut-freeness. Therefore by repeating the procedure the rank
increases and the cut-rank degreases in each step, so we end up in a cut-free
deduction which rank is smaller than the smallest �x-point of χ bigger than
α.
This gives a consistency proof, because cut-freeness implies the subformula
property (every provable formula has an axiom as subformula). This proof
uses trans�nite induction up to the �x-point the Elimination Theorem gives
for the embedded deductions of the considered theory. So in the case of PA
the theorem leads to χ(1, 0) which is ε0. So in Tait's method one has only to
�nd an embedding (i.e., a transformation which transforms ordinary (�nite)
deductions of the theory in in�nite deductions trees) and then the proof
theoretical ordinal can be calculated whereas in Gentzen's method one has
to guess the proof theoretical ordinal to be able to assign ranks to deductions
in a suitable way.
I will only present a variant of Tait's method, to measure the Π1

1-ordinal, in
Chapter 3. There I will consider Theories TAf which include all de�nable
axioms for primitive recursive functions and the induction axioms

ϕ(c1) ∧ ... ∧ ϕ(cm) ∧ ∀~x[ϕ(x1) ∧ ... ∧ ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x)

for one primitive recursive function f . Because I restrict myself to �nding
an upper bound for the Π1

1-ordinal of TAf , I will consider languages which
contain second order variables (without second order quanti�cation). We
call the sentences of this language (pseudo) Π1

1-sentences. This will chance
the focus from consistency to the approach Wolfram Pohlers give in his book
[8]. I do this because giving all the details of coding the methods primitive
recursively would go beyond the extend of this diploma thesis.
In the end of this introduction I want to thank a couple of people who helped
me in my academic life: Firstly my parents who gave me the con�dence
a child with dyslexia needs to grow up in the school system of Austria.
Secondly my supervisor Jakob Kellner who took the burden to supervise a
diploma thesis which has nothing to do with his personal interests. And last
but of course not least Matthias Baaz for his friendly support and the supply
of his proof theoretical expertise given to a student who does not even study
at his university.

v

1 Finite dealings with in�nite Ordinal Numbers

1.1 The Class of Ordinal Numbers

Two methods of syntactical consistency proofs, one invented by Gentzen and
the other by Tait, will be introduced. For both methods, we assign to any
deduction (as a rooted tree) a number called the rank of the deduction. But
it is not su�cient to use �nite numbers for the rank of a deduction. So in
this chapter a notation system will be introduced which extends the natural
numbers. This will be the system of ordinal notations up to the ordinal Γ0.
This presentation is closely related to [7], [8] and [12].

1.1.1 ZFC

For those readers who like to work in ZFC we show:

1. How one can obtain the ordinal notation system that we will use from
set theory.

2. How the notations are related to the usual way of presenting ordinals
in ZFC.

3. How one can see that the notation system is well-founded.

Note that all these questions can be deal with in many other systems that
can talk about ordinals as well, so in some sense what we do with ordinals
is independent from ZFC.
The language of set theory is the �rst order language with the signature
{∈,=}, denoted by L(∈,=) (see Section 2.1). In this language it is possible
to de�ne union (∪), successor (S(x) = x ∪ {x}), the empty set (∅) and the
subset relation (⊂). To denote �rst order provability we will use �`�.

De�nition 1.1. ZFC

The axioms of ZFC will be the following:

1. Set Existence:
∃x(x = x)

2. Extensionality:

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

3. Foundation:

∀x[∃y(y ∈ x)→ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))]

4. Pairing:
∀x∀y∃z(x ∈ z ∧ y ∈ z)

1

5. Union:
∀x∃y∀z∀w(w ∈ z ∧ z ∈ x→ w ∈ y)

6. In�nity:
∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x))

7. Power set:
∀x∃y∀z(z ⊂ x→ z ∈ y)

8. Axiom of Choice:

∀x[(∀y ∈ x(y 6= ∅))→ (∃f∀y ∈ xf(y) ∈ y)]

together with the two following schemas:

1. For all formulas ϕ where x, z are not bound we have the following
Comprehension axiom:

∀z∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ).

We denote the set y by {x ∈ z|ϕ}.

2. For all formulas ϕ where x, y, z are not bounded we have the following
Replacement axiom:

∀x(∀y ∈ x∃!zϕ→ ∃w∀y ∈ x∃z ∈ wϕ).

We can also de�ne the ordered pair 〈x, y〉 and the cartesian product x×y.
A (two place) relation on x, as a set, is a subset of x × x. We usually use
the symbol R to denote relations. Instead of 〈a, b〉 ∈ R we also write aRb.
It should be clear how to de�ne functions f : x→ y, rang (rng(f)), domain
(dom(f)) and the restriction f |z on a subset z ⊂ x. We de�ne isomorphism
of sets together with a relation in the usual way,

f : 〈A,R〉 → 〈B,S〉

is an isomorphism i� f : A→ B is bijective and

∀x∀y(xRy ↔ f(x)Sf(y)).

And we write 〈A,R〉 ∼= 〈B,S〉 if there is such f .

De�nition 1.2. The set 〈A,R〉 is a total order i� R satis�es the following:

1. ∀x ∈ A¬(xRx)

2. ∀x, y, z ∈ A(xRy ∧ yRz → xRz)

3. ∀x, y ∈ A(x = y ∨ xRy ∨ yRx)

2

The next de�nition will give us a notation for a special kind of ordering.

De�nition 1.3. 〈A,R〉 is a well-order i� 〈A,R〉 is a total order and

∀x ⊂ A(x 6= ∅ → ∃y ∈ A(¬∃z ∈ A(zRy))),

i.e., each non-empty subset of A has a R-minimal element.

The next proposition should be obvious. It shows the closed relation
between well-ordering and induction over a relation.

Proposition 1.4. 〈A,R〉 is a well-order i�

∀x(∀y ∈ A(∀z ∈ A(zRy → z ∈ x))→ y ∈ x)→ ∀y(y ∈ A→ y ∈ x)).

Remark 1.5. The formula in the only-if position at the proposition above is
called the formula of trans�nite induction over the well-order 〈A,R〉.

De�nition 1.6. A set A is transitive i� ∀x(x ∈ A→ x ⊂ A).

Now we are prepared to give the de�nition of ordinal numbers. For that,
we need a special kind of a relation, called the membership relation ∈x of a
set x, de�ned by ∈x:= {〈y, z〉 ∈ x× x|y ∈ z}.

De�nition 1.7. A set x is an ordinal number i� x is transitive and 〈x,∈x〉
is a well order.

Note the class of ordinal numbers is a proper class, so being in the class
of ordinal numbers, informally x ∈ ON or ON(x), is an abbreviation for the
formula in the de�nition of ordinal number. This way we can introduce the
notation of classes as some kind of metasets, so we can think of ON as the
class de�ned from the formula in De�nition 1.7.

Theorem 1.8. Ordinal Properties

• If x ∈ ON and y ∈ x, then y ∈ ON and y ⊂ x.

• If x, y ∈ ON and 〈x,∈x〉 ∼= 〈y,∈y〉, then x = y.

• If x, y ∈ ON, then exactly one of the three statements holds: x = y,
x ∈ y or y ∈ x.

• If x, y, z ∈ ON, x ∈ y and y ∈ z, then x ∈ z.

• If x ⊂ ON and x 6= ∅, then x have a ∈-least element.

• If (in the metalevel) C is a class, then holds:

If C ⊂ ON and C 6= ∅, then C have a ∈-least element.

Proof. See [7, I, §7].

3

So in some meta sense ON is a class well-order. This makes trans�nite
induction possible. We will de�ne this generally for class relations.

De�nition 1.9. A class relation R is well-founded on a class A i�
∀x ⊂ A(x 6= ∅ → ∃y ∈ A(¬∃z ∈ A(zRy))).

Of course the class notation here is an abbreviation for formulas which
de�ne the class.

To better re�ect the intuition about the order of ordinals, the symbol <
will be used instead of ∈ when we talk about ordinals, and we will use small
greek letters to denote them. From the de�nition of the successor it should
be clear that if x ∈ ON, then also S(x) ∈ ON and the statements α < S(α)
and ∀β(β < S(α) ↔ β ≤ α) hold. From that it is easy to see that ∅ is the
smallest ordinal and that the �rst ordinals are its successors. So we de�ne:
0 := ∅, 1 := S(0), 2 := S(1) a.s.o. The next de�nition will give two di�erent
kinds of ordinals.

De�nition 1.10. α is a successor ordinal i� ∃β(α = S(β)). α is a limit

ordinal i� α 6= 0 and α is not a successor ordinal.

De�nition 1.11. α is a natural number i� ∀β ≤ α(β = 0 ∨ β is a successor
ordinal).

The next de�nition gives the smallest limit ordinal. Its existence is as-
sured by Axiom 6.

De�nition 1.12. ω is the set of all natural numbers.

Now we want to introduced the concept of cardinality. A set A is said
to be well-orderable i� there is a well-order on A. The second axiom schema
ensures that the following de�nition makes sense [7].

De�nition 1.13. Assume a set A can be well-ordered. The function |A| = α
i� α is the least ordinals such that there is a bijection between A and α.
α ∈ ON is a cardinal i� |α| = α.

We used the well known aleph notation to denoting cardinals, i.e.
ℵ0,ℵ1,ℵ2, ...,ℵω, ... a.s.o trans�nite. We say a set A is countable i� |A| < ℵ1.

1.1.2 Ordinal Arithmetic and De�nable Functions

Using the theorem of trans�nite recursion (see [7, I, §9]) we can de�ne class
functions (or meta functions) by trans�nite recursion on ON.

De�nition 1.14. Addition

• α+ 0 = α

• α+ 1 = S(α)

4

• α+ S(β) = S(α+ β)

• If β is a limit, then α+ β =
⋃
{α+ γ|γ < β}

De�nition 1.15. Multiplication

• α · 0 = 0

• α · 1 = α

• α · S(β) = α · β + α

• If β is a limit, then α · β =
⋃
{α · γ|γ < β}

De�nition 1.16. Exponentiation

• α0 = 1

• αβ+1 = αβ · α

• If β is a limit, then αβ =
⋃
{αγ |γ < β}

The next proposition shows that the functions 2α and ωα have the same
�x-points.

Proposition 1.17. Assume α 6= ω is an ordinal. Then 2α = α i� ωα = α.

Proof. See [1, III, §15].

For the next class function we need a well known fact about the normal
form of ordinal numbers which was discovered by Cantor.

Theorem 1.18. Cantors Normalform Theorem
Every ordinal α > 0 can be represented uniquely in the form

α = ωβ1 + ...+ ωβn ,

where ω > n > 0 and α ≥ β1 ≥ ... ≥ βn.

Proof. See [11, IV, §14].

De�nition 1.19. Natural Sum

• α]0 = α

• 0]β = β

• If α = ωγ1+...+ωγn and β = ωδ1+...+ωδm , then α]β = ωλ1+...+ωλn+m

where λi ∈ {γ1, ..., γn, δ1, ..., δm} and λ1 ≥ ... ≥ λn+m.

The next two class functions are the class version of the well known
order-type function and the enumeration function of a well-ordered set.

5

De�nition 1.20. Let A be a class, R be a well-ordered class relation on A
and x ∈ A. Then otypA : A→ ON is de�ned as follows:

• If x is the R-smallest element in A, then otypA(x) := 0.

• Otherwise otypA(x) :=
⋃
{otypA(y) + 1|yRx}.

The order-type of R itself is

otyp(A) :=
⋃
{otypA(x) + 1|x ∈ A}.

It should be clear that otyp(A) is either an ordinal or the whole classON
(see [8, Ch.3, p.26]) for every well-ordered class relation R over a class A. In
[8, Ch.3, p.26] is also proved that the function otypA is a order preserving
bijection, so there is an order preserving bijection

enA := otyp−1
A

which is just the enumeration of the elements in A.

1.1.3 Regular Ordinals, Cardinals and Club

An important concept in set theory are regular ordinals and the club �lter
which will be introduced in this section. Note that the class notations of
subset and intersection are abbreviations for formulas.

De�nition 1.21. We call a class A ⊂ ON unbounded in α ∈ ON i� for all
β < α there is a γ ∈ A ∩ α such that β < γ.

De�nition 1.22. Assume α, β ∈ ON. A function f : α→ β is called co�nal

i� rng(f) is unbounded in β.

De�nition 1.23. The co�nality cf(α) of an ordinal α is the least β such
that there is a co�nal function f : β → α.

De�nition 1.24. An ordinal α is regular i� cf(α) = α.

From that we can give the de�nitions of club.

De�nition 1.25. Assume α is regular. A class A ⊂ ON is closed in α i�
for all U ⊂ A ∩ α with U 6= ∅ and |U | < α holds that

⋃
U ∈ A.

De�nition 1.26. Assume α is regular. A class A is α-club i� A is closed
and unbounded in α.

De�nition 1.27. Assume α is regular and f : ON→ ON is order preserv-
ing. f is α-continuous i� dom(f) is closed in α and for all U ⊂ dom(f) ∩ α
with U 6= ∅ and |U | < α holds that

⋃
f(U) = f(

⋃
U).

A function f is α-normal i� f is α-continuous and α ⊂ dom(f).

6

The next theorem will ensure that the Veblen functions, de�ned in the
next section, are normal for a adequate regular ordinal.

Theorem 1.28. Assume α is regular.

A class A ⊂ ON is α-club i� enA is α-normal.

Proof. See [8, Ch.3, p.27].

1.1.4 Veblen Hierarchy

The Veblen Hierarchy gives most of the ordinals used in proof theory. The
basis of the hierarchy is the set of principal ordinals

H := {α ∈ ON|α 6= 0 ∧ [∀β∀γ(β < α ∧ γ < α)→ β + γ < α]}

which is κ-club for all regular κ > ω. Second, we need the concept of �x-
points.

De�nition 1.29. Assume f : ON→ ON is order preserving. Then

Fix(f) := {α ∈ ON |f(α) = α},

f ′ := enFix(f).

Assume A ⊂ ON is a class, then A′ := Fix(enA) = {α ∈ A|enA(α) = α}.

From that we can de�ne the Veblen Hierarchy.

De�nition 1.30. Veblen Hierarchy

• Cr(0) := H

• Cr(α+ 1) := Cr(α)′

• If β is a limit, then Cr(β) :=
⋂
{Cr(α)|α < β}.

The function χα := enCr(α) is called the Veblen function of α.

Ordinals from Cr(α) are called α-critical ordinals. A very important
class of ordinals are the epsilon numbers

E := {α ∈ ON|ωα = α}

where the smallest of its elements is denoted by

ε0 :=
⋂

E

which can be imagined by an in�nite ω exponentiation. The next lemma
shows that E = Cr(1).

Lemma 1.31. Assume α and γ are ordinals. Then χα have the properties:

7

1. χ0(α) = ωα

2. χ1(0) = ε0

3. If β < α, then χγ(β) < χγ(α).

4. β ≤ χα(β)

5. If α < β, then Cr(β) $ Cr(α) and χα(γ) ≤ χβ(γ) and χα(χβ(γ)) =
χβ(γ).

Proof. See [8, Ch.3, p.37].

Theorem 1.32. For all regular κ ∈ ON with κ > α, ω holds that Cr(α) is

κ-club.

Proof. See [8, Ch.3, p.37]

The following theorem gives the �rst hint how a primitive recursive no-
tation system of some ordinals can be de�ned.

Theorem 1.33. Basic Conditions of Veblen Functions

• χα1(β1) = χα2(β2) i� one of the following conditions holds:

1. α1 < α2 and β1 = χα2(β2)

2. α1 = α2 and β1 = β2

3. α2 < α1 and β2 = χα1(β1)

• χα1(β1) < χα2(β2) i� one of the following conditions holds:

1. α1 < α2 and β1 < χα2(β2)

2. α1 = α2 and β1 < β2

3. α2 < α1 and β2 > χα1(β1)

Proof. See [8, Ch.3, p.38].

The lambda notation will be used to denote functions.

Corollary 1.34. The function λα.χα(0) is order preserving, so for all β and

α it holds that α ≤ χα(0) ≤ χα(β).

Some of the critical ordinals are some kind of �x-points in this hierarchy
and give important upper bounds for the use of ordinal notation systems.

De�nition 1.35. The class of strongly critical ordinals is de�ned as follows:

SC := {α ∈ ON|α ∈ Cr(α)}.

And we denote them with Γα := enSC(α).

8

I will denote the 2-array function

χ := λαβ.χα(β)

with the term χ-function and the the function

χT(α, β) :=

{
2β : α = 0
χα(β) : α 6= 0

with the term χT-function. T stands for Tait, because W. W. Tait used
this function to get bounds for the increasing of ranks when eliminating
cuts in deductions(see Theorem 3.32). Both versions of the χ-function are
essential the same (see Proposition 1.17) but χT is more useful in the �nite.
The following lemma will show how the χ-function is related to the strongly
critical ordinals.

Lemma 1.36. 1. α ∈ SC i� for all β, γ < α holds χβ(γ) < α.

2. α ∈ SC i� χα(0) = α.

Proof. See [8, Ch.3, p.39].

From the above lemma it is clear that a strongly critical ordinal is closed
under the χ-function. From this it is possible to use a Γα as a ordinal system
for proof theory. Now a last theorem about SC is given.

Theorem 1.37. For all regular α ∈ ON with α > ω the class SC is α-club.

Proof. See [8, Ch.3, p.40]

To get a notation system a normal forms are useful. The next proposition
will help to �nd a normal form for any ordinal up to Γ0.

Proposition 1.38. For all α ∈ H\SC there are unique determined ordinals

β, γ < α such that α = χβ(γ).

Proof. See [8, Ch.3, p.41].

These leads to a new normal form concept.

Corollary 1.39. Every α < Γ0 can be uniquely represented in the form

α = χβ1(γ1) + ...+ χβn(γn) for n < ω and βi, γi < α for 1 ≤ i ≤ n.

Proof. From Theorem 1.18 and Lemma 1.31 follows that every α < Γ0 have
a unique representations of a sum of ordinals from H. Together with Propo-
sition 1.38 the proof �nished.

9

1.2 An Ordinal Notation System

In this section I present a way to deal in a primitive recursive way with
ordinals up to Γ0. By Corollary 1.39 the notation system can be given in
terms of �nite sums (coded by �1�) and the χ-function (coded by �2�). Note
that �=� in the following de�nition means that two �nite strings are identical.

De�nition 1.40. Ordinal Notation

Fix the alphabet {〈, 〉 , 0, 1, 2}. We will de�ne a set OT of �nite strings and
the string relation �≺� (��� denotes as usual �= or ≺�) by induction on the
length of the strings.

1. 0 ∈ OT

2. If a1, ..., an ∈ OT and a1 � ... � an then 〈1, a1, ..., an〉 ∈ OT.

3. If a1, a2 ∈ OT then 〈2, a1, a2〉 ∈ OT.

4. 0 ≺ a for all a ∈ OT not identical to 0.

5. If a, b ∈ OT such that a = 〈2, a1, a2〉 and b = 〈2, b1, b2〉, then a ≺ b i�
one of the following cases holds:

(a) a1 ≺ b1 and a2 ≺ b
(b) a1 = b1 and a2 ≺ b2
(c) b1 ≺ a1 and b2 � a,

6. If a, b ∈ OT such that a = 〈1, a1, ..., an〉 and b = 〈1, b1, ..., bm〉, then
a ≺ b i� one of the following cases holds:

(a) n < m and ai = bi for all 1 ≤ i ≤ n.
(b) There exists j ≤ min{n,m} such that aj ≺ bj and ai = bi for all

1 ≤ i ≤ j − 1.

We call the elements of OT ordinal terms.

The next theorem gives us the crucial property of this notation system.

Theorem 1.41. The set OT and the relations �≺� are primitive recursive.

Proof. The proof is an easy induction on the length of the strings and is
done in [12, p.87].

As promised at the beginning of this chapter we now show how the ordinal
notation system is related to the ordinals given in ZFC. For this we de�ne
the canonical embedding ι on OT into ON. This embedding will prove that
�≺� is linear-ordered and well-founded. Note that one can prove most of
the properties of the relation �≺�, except that it is well-founded, without
referring to ordinals (see [12, Ch.V, §14]).

10

Remark 1.42. Note that this notation system satis�es the conditions of an
elementary recursive ordinal notation system (see [4]).

De�nition 1.43. The function ι : OT→ ON is de�ned as follows:

1. ι(0) := 0

2. If a = 〈2, a1, a2〉 then ι(a) := χι(a1)(ι(a2)).

3. If a = 〈1, b1, ..., bm〉 then ι(a) := ι(a1) + ...+ ι(an).

From this de�nition and the previous section we get the next theorem.

Theorem 1.44. For every a ∈ OT it holds that ι(a) < Γ0 and for every

ordinal α < Γ0 there is a unique ordinal term a ∈ OT such that ι(a) = α.
Moreover: ι(a) < ι(b) i� a ≺ b.
Proof. This follows from Proposition 1.39 together with De�nition 1.43 by
induction on the length of strings and trans�nite induction.

Remark 1.45. From the De�nitions 1.40 and 1.43 together with Theorem
1.44 it should be clear what element of OT is denoted by a term of ordinal
arithmetic. On the other hand many functions of ordinal arithmetic such
as +, ·, exponentiation and the natural sum can be introduced as primitive
recursive functions on OT (see [12, §14] and [12, §16]).
De�nition 1.46. Assume a ∈ OT, then (OTa,≺a) denotes the ordinal
notation system where

• OTa := {b ∈ OT|b ≺ a}

• �≺a� denotes the restriction of �≺� to OTa

We will usually identify a ∈ OT and α ∈ ON in this notation if ι(a) = α.

Remark 1.47. As in Remark 1.45 the functions of ordinal arithmetic can also
introduced as primitive recursive functions on all the (OTa,≺a).

Using the notation system we can talk about ordinal terms, the elements
of OT or OTα, instead of ordinals. Strings can be coded into the language
of arithmetic as usual, e.g. via Gödel numbers. For example we can de�ne
a coding p.q : OT→ N as follows:

p〈q := 0

p〉q := 1

p0q := 2

p1q := 3

p2q := 4

paq :=
n∏
i=1

ppaiq+1
i

where a is the string a1...an and pi denotes the i-th prime number.

11

1.3 The Proof Theoretical Ordinal

The most used method in proof theory is induction over the complexity of
formulas or deductions. As mentioned at the beginning of this chapter the
usual way of expressing the rank of formulas and deductions via natural
number is not suitable for many purposes. The notation system which is
introduced in De�nition 1.40 uses a wider system, which can also be coded
into the language of arithmetic. We can formulate for an arbitrary formula
ϕ the trans�nite induction over α < Γ0 in the language of arithmetic, by
coding the ordinal notation system (OTα,≺α) into arithmetic, as follows:
TIα(ϕ) is the following formula:

∀x[OTα(x)→ [∀y ≺α x→ ϕ(y)]→ ϕ(x)]→ ∀x[OTα(x)→ ϕ(x)].

The schema of α-induction is denoted by TIα := {TIα(ϕ)|ϕ is a formula}.
For a set of formulas Λ which appears in the arithmetical hierarchy (see [8])
we will denote the schema of Λ-α-induction by TIα,Λ := {TIα(ϕ)|ϕ ∈ Λ}.
By this observation it is enough to use an arithmetical system as framework
for the following observations. A rather weak such framework is the theory of
primitive recursive arithmetic, denoted by PRA, which includes the de�ning
axioms for all primitive recursive functions (as universal sentences) and the
usual induction schema restricted to quanti�er-free formulas ϕ:

ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x).

From this we can de�ne what we mean by the proof theoretic ordinal (as
Michael Rathjen does in [9]) of a calculus C. From now on we denote an
ordinal and the corresponding ordinal term by the same small Greek latter.

De�nition 1.48. Let C be a calculus de�ned by a �nite set of deduction
rules and a primitive recursive set of axioms in a primitive recursive language.
Assume there is an α ∈ OT such that

PRA+TIα,∆0 ` Con(C),

then we call the ≺-least of this α the proof theoretical ordinal of C and
denote it by ‖C‖Con.

Remark 1.49. Such an element of OT does not have to exist. For example
Kripke-Platek set theory (considered as a Tait-calculus) need an ordinal
notation system which goes far beyond Γ0.
As usual we code formulas and deductions into arithmetic to de�ne:

PrfC x :⇔ ∃yPrfC(y, x)

Con(C) :⇔ ¬PrfCp⊥q,
where pϕqmeans the Gödel number of a formula ϕ and PrfC(y, x) a primitive
recursive predicate means �y is the Gödel number of a deduction for a formula
with Gödel number x�.

12

As one can de�ne ‖C‖Con with the help of the schema of trans�nite induc-
tion over an ordering there is also a possible de�nition which use the related
concept that an ordering is well-founded. Let R be a two place primitive re-
cursive total order relation on the primitive recursive set A, then the schema
PRWO(R) says that every primitive recursive de�nable R-descending se-
quence is �nite. PRWO(R) is weaker than �R is a well-order� and can be
formulated in arithmetic as

∀~x∃y[¬[f(~x, y + 1)Rf(~x, y)] ∨ ¬A[f(~x, y)]] ∧ LO(R)

where LO(R) means that (A,R) is a linear order, f ∈ L(PRA) and R, A
abbreviations for the de�ning formulas of the relation and the set respec-
tively.

Notation 1.50. In the rest of this diploma thesis (A,R) will always be a
notation system (OTα,≺α) for a α < Γ0. In this case we denote the schema
de�ned above by PRWO(α).

De�nition 1.51. Let C be a calculus de�ned by a �nite set of deduction
rules and a primitive recursive set of axioms in a primitive recursive language.
Assume there is an α ∈ OT such that

PRA+PRWO(α) ` Con(C),

then we denote the ≺-least of this α by ‖C‖PRWO

Con .

Michael Rathjen1 points out that if α ∈ Cr(1) then PRA + TIα,∆0 is
contained in PRA + PRWO(α) (in the sense that every sentence which is
provable in PRA+PRWO(α) is also provable in PRA+TIα,∆0) and both
theories prove the same Π0

2-sentences.

As was pointed out by Kreisel, the restriction to a �xed notation system
in both previous de�nitions is crucial. De�ning the proof theoretical ordinal
independently of a �xed notation system is not possible, i.e. we can not de�ne
‖C‖Con or ‖C‖PRWO

Con as the order-type of the shortest primitive recursive
ordering which is needed to prove the consistency. We will demonstrate this
in the following:
Recall that ‖PA‖Con = ε0 (see [8, p.126]) and ‖PA‖PRWO

Con = ε0 (see [16])
and note that we can apply the following theorem to PA.

Theorem 1.52. Kreisel [8]
Let C be a calculus de�ned by a �nite set of deduction rules and a primitive

recursive set of axioms in a primitive recursive language. Then there is a

primitive recursive well order ≺C (on N× N) with otyp(≺C) = ω such that

PRA+PRWO(≺C) ` Con(C).

1personal communication, 5th June 2011

13

Proof. At �rst we de�ne the relation:

x ≺C y :⇔
{
x < y if (∀i < x)[¬PrfC(i, p⊥q)]
y < x if otherwise

which is primitive recursive and a total order.
We de�ne ϕ(x) :≡ (∀i ≤ x)[¬PrfC(i, p⊥q)].
So we get

(∗) : PRA ` (∀x ≺C y)ϕ(x)→ ϕ(y),

because if we have ¬ϕ(y) then by de�nition of the formula we obtain

(∃i ≤ y)[PrfC(i, p⊥q)]

and because y < y + 1 we get

(∃i ≤ y + 1)[PrfC(i, p⊥q)].

This means by de�nition of ≺C that y < y+1, which is in this case equivalent
to y + 1 ≺C y. But with the assumption of the statement (∗), that for all
x ≺C y we have ϕ(x), we also get ϕ(y + 1), which is by de�nition

(∀i ≤ y + 1)[¬PrfC(i, p⊥q)].

This leads to the weaker statement

(∀i ≤ y)[¬PrfC(i, p⊥q)],

which is again by de�nition just ϕ(y).
Altogether, we get ¬ϕ(y) ⇒ ϕ(y), with is a contradiction. That leads to
ϕ(y), which proves (∗).
Now (∗) implies

PRA+PRWO(≺C) ` ∀xϕ(x),

which leads with the de�nition of Con(C) to the statement

PRA+PRWO(≺C) ` Con(C).

It remains to show that otyp(≺C) = ω. Because of the assumption that
C is consistent the sentence Con(C) is true and so the statement (∀i <
x)[¬PrfC(i, p⊥q)] holds for every x. This means by de�nition of ≺C the
relation is just the standard ordering of natural numbers <, which is a well
ordering of order type ω.

This shows that the proof theoretical ordinals only make sense with re-
spect to a speci�ed notation system, and not as ordinals in the set theoretical
sense. However by leaving the realms of consistency there are two notations
of proof theoretical ordinals which are more robust then the two previously
mentioned: ‖T‖otyp and ‖T‖Π1

1
for suitable theories T . We give a de�nition

of ‖T‖otyp here (for another one, see De�nition 3.51), the de�nition of ‖T‖Π1
1

will be given in De�nition 3.51.

14

De�nition 1.53. Assume T is a �rst order theory which is strong enough
to code primitive recursive sets. Then set ‖T‖otyp to be the supremum of
all otyp(≺) where (A,≺) is primitive recursive and T proves all instances of
PRWO(≺).

Remark 1.54. Note ‖T‖otyp is really an ordinal while ‖C‖Con and ‖C‖PRWO

Con

are elements of the used notation system.

15

2 The Consistency Proof by Gerhard Gentzen

In this chapter I will present Gentzens consistency proof [16] for the following,
slightly generalized, situation: The considered theories are axiomaticed by
universal sentences plus induction axioms of the form:

ϕ(c1) ∧ ... ∧ ϕ(cm) ∧ ∀~x[ϕ(x1) ∧ ... ∧ ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x)

where f is a function such that all closed terms of the language are provable
equal to a term build up from c1, ..., cm and f .

Remark 2.1. W.l.o.g. we use only one function. Note that one can build
from a �nite number of functions a single function which can be split into
its parts.

The proof proceeds as follows:

1. The considered theory Tf is translated into a sequent calculus CTf . In
this translation, the induction axioms will be replaced by a deduction
rule.

2. A weak subcalculus SCTf , called the simple part of CTf , will be
de�ned. We will have to assume the consistency of SCTf and that
SCTf proves for every closed term t the equality of t to a term t̄ build
up just from c1, ..., cm and f (we call this t̄ an f -term).

3. We assign to each deduction D of CTf an ordinal term (the rank of
D), denoted by o(D).

4. We de�ne the end-piece of a deduction D as the part in which no
conclusion of a logical inference (which is also in this part) vanishes by
an application of the cut rule.

5. Now assume towards a contradiction that CTf is inconsistent. Show
that for every deduction D, which is not in the simple part, if it is a
deduction of an inconsistency then, there is another deduction D′ of
an inconsistency such that o(D′) ≺ o(D). Moreover we can construct
D by the following primitive recursive operations on the end-piece of
D:

(a) Eliminate all disruptive factors from the end-piece: free vari-
ables, application of induction, logical axioms ore weakening rules.
(Here we use properties of SCTf which are guaranteed by the
fact that all axioms of Tf are universal sentences and that SCTf

satis�es the condition assumed in 2.)

(b) Make a partial cut-elimination to get a deduction of an incon-
sistency where the cut formulas have smaller ranks then the cut
formulas of the eliminated cuts and therefore are �nearer� to the
simple part of the calculus.

17

6. Using the fact that the ordinal notation system (OTε0 ,≺ε0) is well-
founded, we show that the iteration of the method described in 5 ter-
minates and leads to a deduction of a contradiction in the simple part.
This contradicts the assumption in 2.

7. As an additional step one can check that every step in the proof, ex-
cept the termination, can be done in PRA providing that PRA al-
ready proves that the assumptions in 2 holds. So in this case we can
prove that the consistency of SCTf imply the consistency of CTf in
PRA+PRWO(ε0).

2.1 Language and Theory

For a set τ of constants, we de�ne the �rst order languages L(τ).

De�nition 2.2. The primitive symbols are:

1. Logical Symbols

(a) Logical connectives: ∧,∨,→,¬
(b) Quanti�ers: ∃, ∀
(c) Free variables: a0, a1, a2, ...

(d) Bound variables: x0, x1, x2, ...

(e) Brackets: (,)

2. Constants: The set τ consists �nitely or countable many of the follow-
ing constants:

(a) Individual constants: c1, c2, c3, ...

(b) Function constants for n-array function with n ∈ ω:
fn1 , f

n
2 , f

n
3 , ...

(c) One 2-array Predicate constant: =

(d) Predicate constants for n-array Predicates with n ∈ ω:
Pn1 , P

n
2 , P

n
3 , ...

I will use latin letters like a, b, c as metavariables for free, x, y, z as
metavariables for bound variables, f, h, g as metavariables for function con-
stants and P,R as metavariables for predicate constants. Finite sequences
of primitive symbols will be called expressions.

De�nition 2.3. The set of τ -terms (or just terms) is de�ned recursively:

1. Each free variable and each individual constant is a term.

2. If f is a n-array function constant and t1, ..., tn are terms then f(t1, ...tn)
is a term.

18

Terms without free variables will be called closed terms.

We will use the symbol �≡� as a meta symbol for identity over expressions.

De�nition 2.4. The expression ϕ is an atomic formula i� ϕ ≡= (t1, t2)
ore ϕ ≡ P (t1, ..., tn) where t1, ..., tn are terms and P is an n-array predicate
constant.

We will denote = (t1, t2) by t1 = t2 from now on. Before we can de�ne
what formula means we have to introduce the notation of substitution.

De�nition 2.5. Assume ϕ, σ1, ...σn are expressions and ρ1, ..., ρn distinct
primitive symbols, then

ϕ[ρ1, ..., ρn/σ1, ..., σn]

denotes the expression where in every occurrence of ρi, for 1 ≤ i ≤ n, the
expression σi is written instead.

It should be clear that if ρ1, ..., ρn are distinct primitive symbols not
occurring in ϕ then,

(ϕ[ρ1, ..., ρn/σ1, ...σn])[σ1, ...σn/θ1, ..., θn]

is the same as
ϕ[ρ1, ..., ρn/θ1, ..., θn].

De�nition 2.6. The set L(τ) is de�ned inductively:

1. If ϕ is an atomic formula, then ϕ ∈ L(τ).

2. If ϕ,ψ ∈ L(τ) then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) ∈ L(τ).

3. If ϕ(a) ∈ L(τ) and the bound variable x does not occur in ϕ(a), then
∃x(ϕ(x)),∀x(ϕ(x)) ∈ L(τ) where ϕ(x) denotes ϕ(a)[a/x].

Now some standard de�nitions for languages are given.

De�nition 2.7. 1. Elements of L(τ) will be called formulas.

2. Elements of L(τ) without quanti�ers are called quanti�er free formulas.

3. Elements of L(τ) without free variables will be called sentences.

4. A set of formulas will be called a τ -Theory.

The next de�nition gives a useful subset of L(τ).

De�nition 2.8. A formula ϕ is in prenex normalform i�
ϕ ≡ Q1x1, ..., Qnxnψ(x1, ..., xn) where ψ(a1, ..., an) is quanti�er free and
Qi ∈ {∀, ∃} for all 1 ≤ i ≤ n. The formula ψ(a1, ..., an) is called the matrix

of ϕ.

19

This de�nition leads to a well known fact.

Proposition 2.9. Every formula is logical equivalent to a formula in prenex

normal form.

Proof. See [2, p.160].

Remark 2.10. By logical equivalence of two formulas, ϕ and ψ, one means
that a complete and sound �rst order calculus deducts the formula ϕ ↔ ψ,
or equivalently, this formula is valid in the semantical sense [2].

The next two de�nitions give also important subsets of L(τ).

De�nition 2.11. A sentence ϕ is called a universal sentence i� ϕ is in
prenex normal form and ∃ does not occur in ϕ.

De�nition 2.12. Assume ϕ is quanti�er free.
Say that ϕ is in conjunctive normal form i�

ϕ ≡
n∧
i=1

ki∨
j=1

ψij

and the ψij are atomic or negations of atomic formulas. An universal sentence
is in constructive normal form i� its matrix is in constructive normal form.

These de�nition leads to the next well known fact.

Proposition 2.13. Every quanti�er free formula is equivalent to a formula

in conjunctive normal form.

Proof. See [2, p.53].

De�nition 2.14. Two theories T and T ′ are logical equivalent i� T and T ′

prove exactly the same sentences.

From this results we can prove the next lemma.

Lemma 2.15. Assume T is a theory containing only universal sentences

ϕ ≡ ∀~xψ(~x) where the conjunctive normal form of ψ(~a) is

n∧
i=1

ki∨
j=1

ψij

. Let T ′ is the theory containing for all ϕ ∈ T and all 1 ≤ i ≤ n the sentence

∀~x(

ki∨
j=1

ψij),

then is T ′ logical equivalent to T .

20

Proof. From Proposition 2.13 follows that ∀~xψ(~x) is logical equivalent to
∀~x(
∧n
i=1

∨ki
j=1 ψij) which is logical equivalent to

∧n
i=1 ∀~x(

∨ki
j=1 ψij), because

there are only universal quanti�ers. It is easy to see that {
∧n
i=1 ∀~x(

∨ki
j=1 ψij)}

is logical equivalent to {∀~x(
∨k1
j=1 ψ1j), ...,∀~x(

∨kn
j=1 ψnj)}.

De�nition 2.16. Let f, c1, ..., cm ∈ τ . A formula which is an instance of
the schema

ϕ(c1) ∧ ... ∧ ϕ(cm) ∧ ∀~x[ϕ(x1) ∧ ... ∧ ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x)

where ϕ(a) ∈ L(τ) will be called a induction axiom for f and c1, ..., cm.

Notation 2.17. Assume f is a function constant and c1, ..., cm are individual
constants occurring in the induction axioms of a Theory T . Terms which are
build up from c1, ..., cm and f only are called f -terms of T .

Now we make the assumptions on the considered theories Tf explicit.

Assumtion 2.18. Assume τ is a primitive recursive set of constants. Let f
be a function constant and c1, ..., cm individual constants of τ . We assume
Tf = (Tf)0 ∪ (Tf)Ind is a primitive recursive τ -theory which satis�es the
following conditions:

1. (Tf)Ind consists of all induction axioms for f and c1, ..., cm.

2. Every element of (Tf)0 is a universal sentence. According to Lemma 2.15
we can assume with out lose of generality that the elements of (Tf)0

are of the form
∀~x[ϕ1(~x) ∨ ... ∨ ϕn(~x)]

where the ϕi(~a) for 1 ≤ i ≤ n are atomic or the negotiations of atomic
formulas.

3. For all closed τ -terms t there is an f -term t̄ such that Tf ` t = t̄.
Moreover: all individual and function constance of τ occur in a sentence
of Tf .

Remark 2.19. Condition 3 is actually not su�cient for the proof. It will be
strengthened later such that already the simple part proves the identity.

Notation 2.20. In general we denote the induction free part of an theory T
by T0.

2.2 Some Sequent Calculi

After we know what we mean by a formula we can de�ne what we mean
by a sequent calculus and from that we will de�ne the sequent calculus of a
given theory Tf . For this I will introduce the central syntactical object of a
sequent calculus, the sequent.

21

De�nition 2.21. A sequent S is a expression of the form Γ ⇒ ∆ where Γ
and ∆ are �nite sequences of formulas.

For an intuitive understanding of what a sequent means, one can interpret
it as the formula ∧

ϕ∈Γ

ϕ→
∨
ψ∈∆

ψ

where
∧
{φ1, ...φn} means φ1 ∧ ...∧ φn and vice versa for �

∨
�. Equivalent, Γ

semantically implies the disjunction of ∆, in symbols

Γ |=
∨

∆.

If one of the sequences is empty than it is omitted. Semantically
∧
∅ is

interpreted as > and
∨
∅ as ⊥. The sequent where both sequences are empty

is denoted by ⇒ and is called the empty-sequent i.e., ⇒ is a contradiction.
The notation Γ, ϕ denotes the sequence starting with Γ as subsequence and
ends with ϕ.

De�nition 2.22. An inference is a tuple of the form

〈S, 〈Si|i ∈ I〉〉

where S and Si for i ∈ I are sequents and I is a �nite set. Fore easier reading
we will denote them by

S or
S0

S or
S0 S1

S .

The Si for i ∈ I called upper sequents and S lower sequent. An inference
without an upper sequent is called an Axiom. A sequent calculus (or just
calculus) is a set of such inferences.

A sequent calculus will be allays de�ned by a �nite set of deduction
rules which are schemas for inferences. And we will always talk about the
deduction rule when we talk about an inference which is an instance of this
deduction rule.

From this de�nition we can introduce the concept of deduction in a cal-
culus.

De�nition 2.23. Assume C is a sequent calculus de�ned by a �nite set of
deduction rules. A deduction D of S in C, D ` S, is a �nite, rooted, ordered
tree2, whose nodes are labelled by a sequent and (a tag of) a deduction rule,
satisfying the following conditions:

1. All leaves are labelled by axioms and the corresponding axiom deduc-
tion rule.

2If two notes are comparable, then we call the note closer to the root �below� or
�successor� of the other.

22

2. If a node, which is not a leaf, is labelled by a sequent S and a deduction
rule R and if its immediate predecessors are labelled by the sequents
S1, ...,Sn, then the inference

S1 ... Sn
S

is an instance of the deduction rule R.

3. The root of D is labelled by S (S is called the end-sequent) and a
deduction rule R (R is called the last deduction rule).

We sayC derives a Sequent S (or a formula ϕ), in symbolsC ` S (orC ` ϕ),
if there is a deduction D in C such that D ` S (or D `⇒ ϕ).

We identify a note of the deductions with its label. With the previous
work we can de�ne the well known Gentzen calculus of classical logic LK.

De�nition 2.24. The Calculus LK [16]

1. Logical Axioms:
ϕ⇒ ϕ

for every atomic ϕ ∈ L(τ).

2. Structural rules:

(a) Weakening:

Γ⇒ ∆
ϕ,Γ⇒ ∆

(left) Γ⇒ ∆
Γ⇒ ∆, ϕ

(right)

The formula ϕ is called the weakening-formula.

(b) Contraction:

ϕ,ϕ,Γ⇒ ∆

ϕ,Γ⇒ ∆
(left)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(right)

(c) Exchange:

Γ, ψ, ϕ,Π⇒ ∆

Γ, ϕ, ψ,Π⇒ ∆
(left)

Γ⇒ ∆, ψ, ϕ,Λ

Γ⇒ ∆, ϕ, ψ,Λ
(right)

(d) Cut:
Γ⇒ ∆, ϕ ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

The formula ϕ is called the cut-formula. The rules (a)-(c) are called
weak structural rules.

23

3. Logical Rules:

(a) Negation:

(¬ϕ),Γ⇒ ∆

Γ⇒ ∆, ϕ
(¬-left)

Γ⇒ ∆, (¬ϕ)

ϕ,Γ⇒ ∆
(¬-right)

(b) Conjunction:

ϕ,Γ⇒ ∆

(ϕ ∧ ψ),Γ⇒ ∆
(∧-left1)

ϕ,Γ⇒ ∆

(ψ ∧ ϕ),Γ⇒ ∆
(∧-left2)

and
Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ ∧ ψ)
(∧-right)

(c) Disjunction:
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

(ϕ ∨ ψ),Γ⇒ ∆
(∨-left)

Γ⇒ ∆, ϕ

Γ⇒ ∆, (ϕ ∨ ψ)
(∨-right1)

and

Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ ∨ ψ)
(∨-right2)

(d) Implication:

Γ⇒ ∆, ϕ ψ,Π⇒ Λ

(ϕ→ ψ),Γ,Π⇒ ∆,Λ
(→ -left)

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ→ ψ)
(→ -right)

(e) Generalisation:

ϕ(t),Γ⇒ ∆

∀xϕ(x),Γ⇒ ∆
(∀-left)

Γ⇒ ∆, ϕ(a)

Γ⇒ ∆,∀xϕ(x)
(∀-right)

Where t is a term and a is a free variable not occurring in the
lower sequent which is called the eigenvariable.

(f) Existence:

ϕ(a),Γ⇒ ∆

∃xϕ(x),Γ⇒ ∆
(∃-left)

Γ⇒ ∆, ϕ(t)

Γ⇒ ∆,∃xϕ(x)
(∃-right)

Where t is a term and a is a free variable not occurring in the
lower sequent which is called the eigenvariable.

The Rules (a)-(d) called propositional rules and (d) and (f) quanti�er
rules. ∀-right and ∃-left called strong the other cases weak quanti�er
rules.

24

The formulas in the upper sequents which are used in the rule called auxiliary
formulas (a.f.) the formulas in the lower sequent which are modi�ed called
principal formulas (p.f.) and formulas which are not used called side formulas

(s.f.).

Remark 2.25. Adding a set of axioms A to LK means to enlarge the set of
axiom inferences by the sequent ⇒ ϕ for all ϕ ∈ A. Note that A have to be
a set of sentences (see Theorem 2.29).

A useful de�nition by dealing with cuts is the following.

De�nition 2.26. A cut is called inessential i� the cut formula is atomic.
Otherwise it is called essential.

LK have a very important and well known fact about the application of
the cut rule which will be not proved here but is given for completeness.

Theorem 2.27. Cut Elimination
Every sequent S with LK ` S has a deduction in LK without the application

of a cut.

Proof. See [16, §5].

De�nition 2.28. A formula ϕ is called valid i� ϕ is true in every Model.

To argue that the given sequent calculi are equivalent to the Tf with the
Hilbert calculus we formulate the completeness theorem for LK.

Theorem 2.29. Completeness Theorem
LK` ϕ i� ϕ is valid.

Moreover: If A is a set of sentences as in Remark 2.25, then LK + A ` ϕ
i� A |= ϕ (A semantically implies ϕ).

Proof. See [16, §8].

Remark 2.30. Note that here we need that A does not contain free variables,
otherwise e.g. (∀-right) might lead to a contradiction.

Now we de�ne the simple part of a theory Tf .

De�nition 2.31. The simple calculus for Tf , called SCTf , is de�ned as
follows:

1. Identity Axioms: Let t1, ..., tn, t
′
1, ..., t

′
n be closed terms and f, P ∈ τ a

n-array function and predicate constant, then

t1 = t2, t2 = t3 ⇒ t1 = t3

t1 = t′1, ..., tn = t′n ⇒ f(t1, ..., tn) = f(t′1, ..., t
′
n)

t1 = t′1, ..., tn = t′n, P (t1, ..., tn)⇒ P (t′1, ..., t
′
n)

are axioms of SCTf .

25

2. Closed Term-Tf -Axioms: Assume ∀~xϕ(~x) ∈ (Tf)0 where (according to
Assumption 2.18)

ϕ(~x) ≡ ϕ1(~x) ∨ ... ∨ ϕn(~x)

such that the ϕi(~a) are atomic or the negation of atomic formulas.
Assume

¬ψ1(~a), ...,¬ψl(~a), ψl+1(~a), ..., ψn(~a)

is a list of the ϕi(~a) where all ψj for 1 ≤ j ≤ n are atomic formulas.
Then the following sequent is an axiom of SCTf :

ψ1(~t), ..., ψl(~t)⇒ ψl+1(~t), ..., ψn(~t)

where ψj(~t) ≡ ψj(~a)[~a/~t] and t1, ..., tn are arbitrary closed terms in
L(τ).

3. All weak structural rules as deduction rules.

4. Inessential cuts as deduction rule.

The next lemma is obvious from the de�nition of the simple part and
Theorem 2.29.

Lemma 2.32. If SCTf ` Γ⇒ ∆ then (Tf)0 |=
∧

Γ→
∨

∆.

Now we strengthen Assumption 2.18.

Assumtion 2.33. The τ -theory Tf is as supposed in Assumption 2.18 but
replace case 3 of Assumption 2.18 by the stronger condition:

For all closed τ -terms t there is an f -term t̄ such that SCTf ` t = t̄.

Remark 2.34. Note that this assumption generally excludes the use of Skolem-
function.

Examples of Tf are given in Section 2.5.
Now the de�nition of the sequent calculus related to a τ -theory Tf will

be given. Note that the induction axioms of Tf vanish and are replaced by
a deduction rule.

De�nition 2.35. The Calculus to the Theory Tf (CTf)
CTf is de�ned as LK together with the following deduction rules.

1. Identity Axioms: Let t1, ..., tn, t
′
1, ..., t

′
n be terms and f, P ∈ τ a n-array

function and predicate constant, then

t1 = t2, t2 = t3 ⇒ t1 = t3

t1 = t′1, ..., tn = t′n ⇒ f(t1, ..., tn) = f(t′1, ..., t
′
n)

t1 = t′1, ..., tn = t′n, P (t1, ..., tn)⇒ P (t′1, ..., t
′
n)

are axioms of CTf .

26

2. Tf -Axioms:(Same as in SCTf but without the restriction to closed
terms.) Assume ∀~xϕ(~x) ∈ (Tf)0 where (according to Assumption 2.18)

ϕ(~x) ≡ ϕ1(~x) ∨ ... ∨ ϕn(~x)

such that the ϕi(~a) are atomic or the negation of atomic formulas.
Assume

¬ψ1(~a), ...,¬ψl(~a), ψl+1(~a), ..., ψn(~a)

is a list of the ϕi(~a) where all ψj for 1 ≤ j ≤ n are atomic formulas.
Then the following sequent is an axiom of CTf :

ψ1(~t), ..., ψl(~t)⇒ ψl+1(~t), ..., ψn(~t)

where ψj(~t) ≡ ψj(~a)[~a/~t] and t1, ..., tn are arbitrary terms in L(τ).

3. Induction for f (INDf):

ϕ(a1), ..., ϕ(an),Γ⇒ ∆, ϕ(f(a1, ..., an))

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t)

where t is a arbitrary term in L(τ). The free variables a1, ..., an will
be called the eigenvariables of INDf , and ϕ(t) the induction formula.

Remark 2.36. 1. With respect to Remark 2.25 it is not clear why CTf

still proves the same formulas as Tf . By (∀-right) and Theorem 2.29 it
is equivalent to add ⇒ ∀~xϕ(~x) or ⇒ ϕ(~a) as a new axiom. We chose
to use axioms with free variables instead of sentences for technical rea-
sons. (We can also add rules for substitution which would make the
proof more complicated.)
By (∀-right) it is also easy to see why adding the rule INDf is equiva-
lent to adding the induction formulas as axioms. Since (Tf)0 contains
universal sentences only, Tf together with the Hilbert calculus is equiv-
alent to CTf . So a consistency proof of CTf is a consistency proof of
Tf .

2. It should be clear that SCTf is a proper subsystem of CTf in the
sense that every deduction of SCTf is a deduction of CTf , but the
converse is false, because in general even logical axioms have no de-
ductions in SCTf .

For short I will called the identity axioms and the Tf -axioms of CTf

mathematical axioms.

27

2.3 Important de�nitions and facts about CTf

In this section I will give some well known and important facts about calculi
like CTf and useful de�nitions for the following sections.

De�nition 2.37. 1. Fix a deduction D. The successor of a formula ϕ is
de�ned as follows:

(a) If ϕ is a cut formula, then ϕ has no successor.

(b) If ϕ is an auxiliary formula of an deduction rule other than a cut
or exchange, then the principal formula is the successor of ϕ.

(c) If ϕ is a auxiliary formula of exchange then ϕ in the lower sequent
of exchange is the successor of ϕ.

(d) If ϕ is the k-th formula of Γ,Π,∆ or Λ in the upper sequence,
then the k-th formula of Γ,Π,∆ or Λ in the lower sequent is the
successor of ϕ.

2. A sequence of sequents will be called a thread in a deduction D if the
following properties are satis�ed:

(a) The sequence begin with an (logical or mathematical) axiom and
ends with the end-sequent of D.

(b) Every sequent in the sequence expect the last is an upper sequent
of an inference, and is immediately followed by the lower sequent
of this inference.

3. Assume S1,S2 and S3 are sequents in a deduction D. The sequent S1

is above S2 (or S2 is below S1) i� there is a thread containing S1 and
S2 and S1 appears before S2. The sequent S3 is between S1 and S2 i�
S1 is above S3 and S2 is below S3.

4. An inference is below a sequent S i� the lower sequent of the inference
is below S.

5. Let D be a deduction and S and sequent in D. We call D′ the sub-

deduction of S in D i� D′ is a deduction and contains, exactly those
sequent, which appears, in every thread of D, above S.

6. A formula ϕ is called an axiom-formula or end-formula of D i� ϕ is
contained in an axiom or the end-sequent of D.

7. A sequence of formulas is called a bundle i� it satis�es the following
conditions:

(a) The sequence begins with an axiom-formula or weakening-formula.

(b) The sequence ends with an end-formula or cut-formula.

28

(c) Every formula except the last in the sequence is immediately fol-
lowed by its successor.

8. Assume ϕ and ψ are formulas. The formula ϕ is called the ancestor of
ψ and ψ is called the descendent of ϕ i� There is a bundle containing
ϕ an ψ in which ϕ appears before ψ.

9. The notation of implicit and explicit:

(a) A bundle is called explicit i� the the last formula in the bundle is
an end-formula.

(b) A bundle is called implicit i� the the last formula in the bundle
is an cut-formula.

(c) A formula in a deduction is called implicit or explicit i� the bundle
which contains the formula is implicit or explicit.

(d) A sequent in a deduction is called implicit or explicit i� the se-
quent contains a formula which is implicit or explicit.

(e) A logical inference is called implicit or explicit i� the principal
formula of the logical inference is implicit or explicit.

10. A part E of a deduction D is called the end-piece of D if it satis�ed
the following properties:

(a) The end-sequent is in E.

(b) The upper sequent of an inference other than an implicit logical
inference is contained in E i� the lower sequent of the inference
is in E.

(c) The upper sequent of an implicit logical inference is not in E.

Or for short: An sequent in a deduction is in the end-piece i� there is
no implicit logical inference below this sequent.

11. An inference I is in the end-piece of a deduction i� the lower sequent
of I is in the end-piece.

12. An inference I is a boundary i� the lower sequent of I is in the end-piece
and the upper is not.

13. A cut in the end-piece is called suitable i� each cut formula of the cut
has an ancestor which is the principal formula of a boundary.

De�nition 2.38. A deduction D will be called regular i� D satis�es:

1. All eigenvariables in D are distinct.

2. If a is a free variable which occurs as a eigenvariable in a sequent S of
D, then a occurs just in sequents above S.

29

Lemma 2.39. For every deduction D there is a regular deduction D′ with
the same end sequent.

Proof. By a straight forward induction over the application of deduction
rules in D where in every step the free variables become replaced such that
de�nition 2.38 is satis�ed.

Lemma 2.40. If CTf ` S(a) then for all terms t, CTf ` S(t).

Proof. By a straight forward induction over the application of deduction
rules in the deduction of S(a) where in every step a is replaced by t.

Remark 2.41. In Lemma 2.39 and 2.40 the new deduction is essential the
same except that in 2.39 all eigenvariables which occurs twice are replaced
by new free variables and in 2.40 every occurrence of a is replaced by t. More
precisely, the phrase �essential the same� can be replace in both statements
by the notation of a skeleton [3], but since we do not need it again we will
not de�ne it here.

The next de�nition gives a way of counting the complexity of formulas
which is very useful in much approaches of proof theory.

De�nition 2.42. The rank of a formula ϕ, rank(ϕ), is de�ned inductive
over de�nition 2.6:

1. If ϕ is an atomic formula, then rank(ϕ) = 0.

2. If ϕ is ψ ∧ σ, ψ ∨ σ or ψ → σ,
then rank(ϕ) = max{rank(ψ), rank(σ)}+ 1

3. If ϕ is ∀xψ(x) or ∃xψ(x), then rank(ϕ) = rank(ψ(a)) + 1,
where ψ(x) ≡ ψ(a)[a/x]

The rank of a cut or a INDf rule is the rank of the cut or induction formula.

De�nition 2.43. The height of a sequent S in a deduction D, h(S, D), is
the maximum of the ranks of the cut and INDf rules in D below S.

From this de�nition its obvious that.

Proposition 2.44. 1. If S is the end-sequent of the deduction D, then

h(S, D) = 0.

2. If S1 is above S2 in a deduction D, then h(S2, D) ≤ h(S1, D).

3. If S1 and S2 are the upper sequents of the same deduction rule, then

h(S1, D) = h(S2, D).

The next lemma shows that a equality result based on a identity of two
terms is simple.

30

Lemma 2.45. If SCTf ` t = s for s, t closed terms, then CTf ` ϕ(t) ⇒
ϕ(s) without essential cuts and INDf .

Proof. From SCTf ` t = s follows that there is a D ` t = s without any
essential cuts and INDf in CTf . Now we proof the lemma by induction over
the complexity of formulas for some selected cases.

1. If ϕ(t) ≡ P (t1, ..., t, ..., tn) then

(1) : t1 = t1, ..., t = s, ..., tn = tn, P (t1, ..., t, ..., tn)⇒ P (t1, ..., s, ..., tn)

is an axiom. So P (t1, ..., t, ..., tn)⇒ P (t1, ..., s, ..., tn) can be deducted
in CTf with (1) and SCTf `⇒ ti = ti for 1 ≤ i ≤ n with n appli-
cations of the cut rule. Because the cut formula of all this cuts is an
atom they are inessential.

2. If ϕ(t) ≡ ψ(t)∧σ(t) then we get from induction hypothesis deductions
for

ψ(t)⇒ ψ(s)

σ(t)⇒ σ(s)

without essential cuts and INDf . With weakening and exchange we
get deductions for

ψ(t), σ(t)⇒ ψ(s)

ψ(t), σ(t)⇒ σ(s)

with the same property, and so with ∧-right

ψ(t), σ(t)⇒ ψ(s) ∧ σ(s)

is deducible. Together with two times ∧-left and contraction we can
deduct

ψ(t) ∧ σ(t)⇒ ψ(s) ∧ σ(s).

3. If ϕ(t) ≡ ∀xψ(x, t) then from the induction hypothesis there is a D `
ψ(a, t)⇒ ψ(a, s) free from essential cuts and INDf . Because of Lemma
2.40 we get aD(t′) ` ψ(t′, t)⇒ ψ(a, s) without essential cuts and INDf
for a term t′. From that we get with one application of ∀-right and
∀-left ϕ(t)⇒ ϕ(s). This �nished the proof.

31

2.4 The Consistency of CTf

At the beginning of a consistency proof of a calculus there should be a
de�nition what it means to be consistent. Following Hilbert, consistency in
general means that a calculus is not able to deduct every single syntactical
object of the kind the calculus is applied to. In this chapter the syntactical
object a calculus is dealing with is the sequent, which leads to the next
de�nition.

De�nition 2.46. The calculus C is inconsistent i� C derives every sequent.
Otherwise it is consistent.

The next lemma is useful for technical reasons.

Lemma 2.47. A calculus C is inconsistent i� C `⇒

Proof. (if): Clear from De�nition 2.46.
(only if): Assume C `⇒ with the deduction D0 and Γ⇒ ∆ is an arbitrary
sequent. Since Γ and ∆ are �nite we can denote there formulas by ϕ0, ..., ϕn
and ψ0, ..., ψm where de index follows the appearance in Γ and ∆. By adding
weakening left n-times to D starting with ϕn as weakening formula and so
on, there is a deduction Dn for Γ⇒. After m-times applying weakening right
to Dn starting by ψ0 there is a deduction Dn+m such that Dn+m ` Γ⇒ ∆.
And from this it follows by de�nition C` Γ⇒ ∆.

Remark 2.48. This concept of consistency can be coded into L(τar) (see
[2]) presupposed that C is de�ned by a �nite set of deduction rules and a
primitive recursive set of axioms in a primitive recursive language: Since
the set of axioms are primitive recursive and the set of inferences is de�ned
over �nite set of deduction rules, which makes it also primitive recursive, the
concept of �deduction� can be represented in PRA by a 2-array predicate

PrfC,
PRA ` PrfC(pDq, pSq) i� D is a deduction in C and D ` S
PRA ` ¬PrfC(pDq, pSq) otherwise

where S is a sequent and p.q is the Gödel number of a �nite sequence of
symbols.
From this a 1-array predicate is de�nable via

PrfC(n̄) i� ∃xPrfC(x, n̄),

for n̄ := Sn(0), which express in PRA if a sequence has a deduction in C.
So with the previous lemma we can de�ne

Con(C) i� ¬PrfC(p⇒q).

From Lemma 2.47 a consistency proof can be given by showing that
the empty sequent is not derivable. For syntactical consistency proofs in
most cases it is useful to count the length of deductions, such a way to

32

count will be de�ned next. Note that whenever we talk about ordinals or
functions of ordinal arithmetic in this chapter, we really mean ordinal terms
of (OTε0 ,≺ε0) (see De�nition 1.46 and Remark 1.47). We will use �≺� for
�≺ε0�.

De�nition 2.49. 1. ω0(α) = α

2. ωn+1(α) = ωωn(α)

De�nition 2.50. Assume D is a deduction in CTf , then for every sequent
S in D o(S, D) or o(S) for short is de�ned inductively:

1. If S is an axiom in D, then o(S) = 1.

2. If S is the lower sequent of a weak-structural-rule where S1 is the upper
sequent, then o(S) = o(S1).

3. If S is the lower sequent of a deduction rule of the form ∧-left, ∨-right,
→-right, ¬-right, ¬-left or of a quanti�er rule and S1 is there upper
sequent, then o(S) = o(S1) + 1.

4. If S is the lower sequent of a deduction rule of the form ∧-right, ∨-left
or→-left and S1,S1 are there upper sequents, then o(S) = o(S1)]o(S1).

5. If S is the lower sequent of a cut rule and S1,S2 are there upper
sequents, then o(S) = ωk−l(o(S1)]o(S2)) where k and l are the hight
of the upper sequents, respectively.

6. If S is the lower sequent of a INDf and S1 is the upper sequent, then
o(S) = ωk−l+1(µ1 + 1) where µ1 is the biggest exponent of the normal
form of the ordinal o(S1) and k, l are the hight of S1 and S, respectively.

De�nition 2.51. The ordinal of a deduction D with S as end-sequent, in
symbols o(D), is de�ned as o(D) = o(S, D).

Now we show that the restriction to (OTε0 ,≺ε0) makes sense.

Proposition 2.52. (Here, ≺ is the full order of OT.) For every deduction

D in CTf , o(D) ≺ ε0.

Proof. This follow directly from de�nition 2.50 and the fact that ε0 is the
�rst �x point of the function λα.ωα.

Lemma 2.53. For every deduction D in SCTf , o(D) ≺ ω.

Proof. Easy to see because no INDf and no essential cut is used in SCTf

which lead to the fact that for every D in SCTf and for every S (if it
appears in D) h(S, D) = 0. Since all hights are equal there can never appear
a ordinal bigger than ω because of De�nition 2.50 Case 5.

33

Lemma 2.54. Assume D is a deduction and S is a sequent in D without

any INDf below it. Let D1 be the sub-deduction of S in D, D′1 any deduction

of S and D′ the deduction which is generated by replacing D1 in D by D′1,
then ii follows: If o(D′1) ≺ o(D1), then o(D′) ≺ o(D).

Proof. See [16, Ch.2, §12].

In generally we can not prove the consistency of CTf , by using only the
consistency of SCTf and elementary methods. More exactly it does not hold
that PRA ` Con(SCTf)→ Con(CTf) for every Tf . In particular set Tf =
PA. Assume for contradiction that PRA ` Con(SCPA) → Con(CPA).
Since PRA ` Con(SCPA) (see [16]) this leads to PRA ` Con(CPA). But
Con(CPA) is equivalent to Con(PA) over PRA (and every proof in PRA
can be done in PA) this leads to PA ` Con(PA) which contradicts Gödel's
second incompleteness theorem.
As Takeuti presents in [16] PRA+PRWO(ε0) ` Con(CPA), so PRA can
not prove every instance of the schema PRWO(ε0). We present here an
adaptation of this proof to prove

PRA+PRWO(ε0) ` Con(SCTf)→ Con(CTf).

This proof technique shows, only with primitive recursive methods, that for a
deductionD with is a deduction of the empty sequent and not in SCTf there
is deduction D′ which is also an deduction of the empty sequent and o(D′) ≺
o(D). This leads to a in�nite decreasing sequence in (OTε0 ,≺ε0), which
contradicts the statement PRWO(ε0), or to a contradiction in SCTf , which
contradicts Con(SCTf). That PRWO(ε0) is a true arithmetical sentence
is obtained by the observations of Chapter 1. Note that Tekeuti gives in
[16, p.92-101] a non formal argument for PRWO(ε0) which does not need
theories as strong as ZFC. Before the main result is given, a auxiliary lemma
must be proven.

Lemma 2.55. Assume a deduction D in CTf satisfy the following proper-

ties:

1. D is not its own end-piece.

2. The end-piece contains neither applications of INDf , weakening nor

logical rules.

3. If and axiom belong to the end-piece of D it does not contain any logical

symbols.

Then the end-piece of D contains a suitable cut.

Proof. See [16, Ch.2, §12, p.109].

34

Notation 2.56. We use
S1 ... Sn

S
to denote that some weak structural rules are applied before the conclusion
is inferred.

The next lemma will give the result which leads to the consistency.

Lemma 2.57. Assume SCTf is consistent.

If there is a deductions D in CTf which D `⇒, then there is a deduction

D′ in CTf which D′ `⇒ and o(D′) ≺ o(D).

Proof. Assume there is a deduction D (not in SCTf) such that D `⇒, from

Lemma 2.39 there is a regular deduction D̂ `⇒ and o(D) = o(D̂) because
of the fact that D̂ is constructed form D just by renaming variables. The
following procedure will construct from D̂ a deduction D′ which smaller or-
dinal, it should be obvious that every step can be coded in PRA because
there are only used primitive recursive operations.

Step 1: Assume D̂ contain a free variable a which is not used in D̂ as
an eigenvariable, then replace a by the constant c1.

Step 2: Assume the end-piece of D̂ contains inferences which are appli-
cations of INDf . Assume that R is the lowest such inference. Suppose R
has the form

ϕ(a1), ..., ϕ(an),Γ⇒ ∆, ϕ(f(a1, ..., an))

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t)
R
.

Let S be the upper sequent of R with h(S, D̂) = l, S0 the lower sequent with
h(S0, D̂) = k and D̂0 is the subdeduction of S in D̂.
Suppose o(S, D̂) = µ with the normal form µ = ωµ1 + ... + ωµs where
µs ≤ ... ≤ µ1, then o(S0, D̂) = ωl−k+1(µ1 + 1) (2.50).
Because R is in the end piece of a deduction for the empty sequent there is
no logical rule after it. (To deducted the empty sequent all formulas which
are introduced anywhere in the deduction have to be cut out. Every logical
rule have to be implicit in the deduction. The end piece can not contain any
logical rule at all.) So in particular no quanti�cation rule. Together with
the facts that R is the last instance of INDf in D̂ and Step 1 is already
applied there is no free variable below S. So the term t in S is closed.
From the assumption of De�nition 2.35 SCTf `⇒ t = t̄ where t̄ is a term
build up from f and the constants c1, ..., cm. From Lemma 2.45 follows
that CTf ` ϕ(t̄) ⇒ ϕ(t) via P without essential cuts and INDf and so
o(ϕ(t̄)⇒ ϕ(t), P) = p ≺ ω.
Via induction over complexity of the term t̄ we proof that

S ′0 : ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t̄)

35

have a deduction D′0.0 such that together with the deduction P we get a
deduction D′0 of S via the application of the cut rule

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t̄) ϕ(t̄)⇒ ϕ(t)

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t) .

FromD′0,D
′ can be constructed by replacing D̂0 withD

′
0, such that o(S ′0, D′) ≺

q ∗ µ for some q (here q ∗ µ means µ]...]µ, q many times):
Induction start: Assume t̄ ≡ ci for 1 ≤ i ≤ m. The sequent ϕ(ci) ⇒ ϕ(ci)
can be deduct without applications of cut and INDf . From this sequent
we get with �nite instances of the weakening rule a deduction D′0.0 for
ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(ci) such that

o(ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(ci), D
′) = q ≺ q ∗ µ.

Induction step: Assume t̄ ≡ f(t1, ..., tn) where t1, ..., tn are terms build up
just by f and c1, ..., cm. From induction hypothesis follows that there are
deductions D′0,i for

Si : ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(ti)

with 1 ≤ i ≤ n and o(Si, D′) ≺ qi ∗ µ.
From D̂0 we get a deduction for

S ′ : ϕ(t1), ..., ϕ(tn),Γ⇒ ∆, ϕ(f(t1, ..., tn))

with Lemma 2.40 such that D̂0(t1, ..., tn) is constructed by substitute ti for
ai in D̂0 (which do not makes a di�erent for the ordinal). Then we use cuts
of the form:

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t1) ϕ(t1), ..., ϕ(tn),Γ⇒ ∆, ϕ(f(t1, ..., tn))

ϕ(c1), ϕ(c2), ..., ϕ(cm), ϕ(t2), ..., ϕ(tn),Γ⇒ ∆, ϕ(f(t1, ..., tn))
C1

where we denote the lowest sequent by S0,1. And also cuts together with
some weak structural rule to get this �gure:

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t1) C1

ϕ(c1), ϕ(c2), ..., ϕ(cm), ϕ(t3), ..., ϕ(tn),Γ⇒ ∆, ϕ(f(t1, ..., tn))
C2

where again S0,2 denotes the lowest sequent. So after n of the Cj ` S0,j a
deduction D′0.0 for

ϕ(c1), ϕ(c2), ..., ϕ(cm),Γ⇒ ∆, ϕ(f(t1, ..., tn))

can be obtained. Since h(Sj , D̂) = h(Sj , D′) = r for every 1 ≤ j ≤ n,
because the cut formulas of the Cj have all the same rank and so they are
all a�ected in the same amount from the cuts and INDf below S, it follows

36

o(Sj , D′) ≺]ji=1qi ∗ µ, and since o(S ′, D′) = o(S, D̂) = µ, this leads to
o(S ′0, D′) ≺]ni=1qi ∗ µ which �nished the induction.
As explained above D′0 is build up form P ` ϕ(t̄) ⇒ ϕ(t) (o(P) = p ≺ ω)
and the deduction D′0,0 ` S ′0 to deduct via

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t̄) ϕ(t̄)⇒ ϕ(t)

ϕ(c1), ..., ϕ(cm),Γ⇒ ∆, ϕ(t)

the sequent S. Replace in D̂ the supdeduction D̂0 by this new deduction to
get the deduction D′ from D̂, as also explained above. Then for some q ∈ ω,

o(S, D′) = ωl−k(q ∗ µ+ p) ≺ ωl−k+1(µ1 + 1) = o(S, D̂),

because q ∗ µ+ p ≺ ωµ1+1 since p ≺ ω. Which lead with Lemma 2.54 to

o(D′) ≺ o(D̂) = o(D).

So we assume there is no INDf in the end-piece of D̂.

Step 3: Assume the end-piece of D̂ contains a logical axiom, say ϕ⇒ ϕ.
Because D̂ `⇒, ϕ have to be cut out on both sides. It have to be ϕ because
we are in the end-piece of a deduction where no logical rules are appear,
so all descendants of ϕ are ϕ itself. We con�rm the case where ϕ from the
antecedence is cut out �rst, the case where ϕ from the succedence is cut out
�rst is analogous. Consider the supdeduction D̂0 which end with the cut

Γ⇒ ∆, ϕ ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

where ϕ (from the succedence) is in Λ. So we can deduct Γ,Π⇒ ∆,Λ (call
it S) from Γ ⇒ ∆, ϕ just by use of weakening and exchange and get a new
deduction for S called D′0. By replacing D̂0 with D

′
0 in D̂ we get a deduction

D′. Since weakening and exchange do not count in the ordinal countering

o(S, D′) ≺ o(S, D̂).

From Lemma 2.54 it follows that

o(D′) ≺ o(D̂) = o(D).

So we assume there is no logical axiom in the end-piece of D̂.

Step 4: Assume there is a weakening in the end-piece and let R be the
lowest of these. Since D̂ `⇒ there have to be a cut C below R such that the
principal formula of R is the cut formula of C (because the descendent of a

37

formula have to be the formula itself in the end-piece). So a part of D̂ have
the form:

Γ⇒ ∆, ϕ

Π′ ⇒ Λ′

ϕ,Π′ ⇒ Λ′
R

....
ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
C
.

Case 1: If no contraction is applied to ϕ between R and C, reduce D̂ to D′

by replacing the considered part of D̂ by the following:

Π′ ⇒ Λ′....
Π⇒ Λ

weakenings and exchanges

Γ,Π⇒ ∆,Λ .

Assume h(Γ,Π ⇒ ∆,Λ, D̂) = l and h(ϕ,Π ⇒ Λ, D̂) = k. Then, l � k
and h(Π ⇒ Λ, D′) = h(Γ,Π ⇒ ∆,Λ, D′) = l. Let S a sequent in D̂ above
ϕ,Π⇒ Λ and let S ′ be the corresponding sequent in D′. Then by induction
on the number of applications of rules up to ϕ,Π⇒ Λ it is possible to show

ωk1−k2(o(S, D̂)) � o(S ′, D′)

where k1 = h(S, D̂) and k2 = h(S ′, D′). Hence, if

µ1 =o(Γ⇒ ∆, ϕ, D̂), µ2 =o(ϕ,Π⇒ Λ, D̂),

ν =o(Γ,Π⇒ ∆,Λ, D̂), µ′2 =o(Π⇒ Λ, D̂),

ν ′ =o(Γ,Π⇒ ∆,Λ, D′),

then

ωk−l(µ2) � µ′2

and further,

ν = ωk−l(µ2]µ1) � ωk−l(µ2) � µ′2 = ν ′.

So by Lemma 2.54 it follows that

o(D′) ≺ o(D̂) = o(D).

Case 2: Assume not case 1, then we consider the uppermost application of
contraction between R and C and replaced it as described below to get a
deduction E from D̂.

38

D̂ E
Π′ ⇒ Λ′

ϕ,Π′ ⇒ Λ′ Π′ ⇒ Λ′
....

ϕ,ϕ,Π′′ ⇒ Λ′′

ϕ,Π′′ ⇒ Λ′′

....
ϕ,Π′′ ⇒ Λ′′

....
ϕ,Π⇒ Λ

....
ϕ,Π⇒ Λ

Clearly o(E) = o(D̂) = o(D).

From now on assume there is no application of weakening in the end-
piece of D̂.

Step 5: D̂ `⇒ can not be his own end-piece. Otherwise D̂ would
be simple which is impossible by assumption. By Lemma 2.55 there is a
suitable cut in the end-piece of D̂. The lowermost of this cuts, called C, will
be reduced.
Case 1: The cut formula of C have the form φ ∧ ψ, so D̂ have the form

....
Γ′ ⇒ Θ′, ϕ

....
Γ′ ⇒ Θ′, ψ

Γ′ ⇒ Θ′, ϕ ∧ ψ
R1

....
Γ⇒ Θ, ϕ ∧ ψ

....
ϕ,Π′ ⇒ Λ′

ϕ ∧ ψ,Π′ ⇒ Λ′
R2

....
ϕ ∧ ψ,Π⇒ Λ

Γ,Π⇒ Θ,Λ
C

....
∆⇒ Ξ....⇒

where ∆⇒ Ξ denotes the �rst sequent such that

k = h(∆⇒ Ξ, D̂) ≺ h(Γ⇒ Θ, ϕ ∧ ψ, D̂) = h(ϕ ∧ ψ,Π⇒ Λ, D̂) = l.

The existence of this sequent is ensured by Proposition 2.44. Note, ∆ ⇒ Ξ
can be the lower sequent of C or the end-sequent.
Since k ≺ l and there is no INDf in the end-piece, ∆⇒ Ξ must be the lower
sequent of a cut, called R3. Assume

µ =o(Γ⇒ Θ, φ ∧ ψ, D̂)

ν =o(ϕ ∧ ψ,Π⇒ Λ, D̂)

λ =o(∆⇒ Ξ, D̂).

39

Consider the following deductions:
D′1:

Γ′ ⇒ Θ′, ϕ

Γ′ ⇒ ϕ,Θ′

Γ′ ⇒ ϕ,Θ′, ϕ ∧ ψ
weakening

....
Γ⇒ ϕ,Θ, ϕ ∧ ψ

....
ϕ ∧ ψ,Π⇒ Λ

Γ,Π⇒ ϕ,Θ,Λ
R31

....
∆⇒ ϕ,Ξ

∆⇒ Ξ, ϕ

D′2:

....
Γ⇒ Θ, ϕ ∧ ψ

....
ϕ,Π′ ⇒ Λ′

Π′, ϕ⇒ Λ′

ϕ ∧ ψ,Π′, ϕ⇒ Λ′
weakening

....
ϕ ∧ ψ,Π, ϕ⇒ Λ

Γ,Π, ϕ⇒ Θ,Λ
R32

....
∆, ϕ⇒ Ξ

ϕ,∆⇒ Ξ

From that D′ is constructed form D′1 and D′2 via sticking both together
with a cut and follows from ∆⇒ Ξ like in D̂.

D′1
∆⇒ Ξ, ϕ

D′2
ϕ,∆⇒ Ξ

∆,∆⇒ Ξ,Ξ

∆⇒ Ξ....⇒

Assume that h(∆⇒ Ξ, ϕ,D′) = h(ϕ,∆⇒ Ξ, D′) = m and note that

h(∆,∆⇒ Ξ,Ξ, D′) = h(∆⇒ Ξ, D′) = h(∆⇒ Ξ, D̂) = k.

It is obvious that

m =

{
k : k � rank(ϕ)
rank(ϕ) : otherwise.

In both cases k � m ≺ l. It follows

h(Γ⇒ ϕ,Θ, ϕ ∧ ψ,D′) = h(ϕ ∧ ψ,Π⇒ Λ, D′) = l,

40

because all cut formulas below C in D̂ occur in D′ belowR31 , all cut formulas
below R31 in D′ except ϕ occurs in D̂ under C and it holds that rank(ϕ) ≺
rank(ϕ ∧ ψ) � l. And a similar argumentation for

h(Γ⇒ Θ, ϕ ∧ ψ,D′) = h(ϕ ∧ ψ,Π, ϕ⇒ Λ, D′) = l.

Assume

µ1 =o(Γ⇒ ϕ,Θ, φ ∧ ψ,D′), ν1 =o(ϕ ∧ ψ,Π⇒ Λ, D′),

λ1 =o(∆⇒ ϕ,Ξ, D′), µ2 =o(Γ⇒ Θ, ϕ ∧ ψ,D′),
ν2 =o(ϕ ∧ ψ,Π, ϕ⇒ Λ, D′), λ2 =o(∆, ϕ⇒ Ξ, D′),

λ0 =o(∆,∆⇒ Ξ,Ξ, D′).

Then µ1 ≺ µ, ν1 = ν, µ2 = µ and ν2 ≺ ν.
Assume

S ′1 S ′2
S ′ R′

is an arbitrary deduction rule between R31 and ∆⇒ ϕ,Ξ in D′ and assume

S1 S2

S R

is the corresponding deduction rule between C and ∆⇒ Ξ in D̂. Assume

α′1 =o(S ′1, D′), α′2 =o(S ′2, D′), α′ =o(S ′, D′),
α1 =o(S1, D

′), α2 =o(S2, D̂), α =o(S, D̂),

h(S ′1, D′) = h(S ′2, D′) = k1,

h(S ′, D′) = k2.

Then

α =

{
α1]α2 : S 6≡ ∆⇒ ϕ,Ξ
ωl−k(α1]α2) : S ≡ ∆⇒ ϕ,Ξ

and α′ = ωk1−k2(α′1]α
′
2). By and induction, starting with µ1 ≺ µ and ν1 = ν,

on the number of applications of deduction rules between R31 and S it is
possible to show that,

if S 6≡ ∆⇒ ϕ,Ξ, then α′ ≺ ωl−k2(α). (?)

41

Assume λ = ωl−k(κ). From (?) it follows λ1 ≺ ωl−m(κ). A similar argumen-
tation shows that λ2 ≺ ωl−m(κ).
From l − k = (l −m) + (m− k) follows,

ωm−k(λ1]λ2) ≺ ωl−k(κ).

This implies λ0 ≺ λ, which lead as in the steps before with Lemma 2.54 to

o(D′) ≺ o(D̂) = o(D).

Case 2: The cut formula of C have the form ∀xϕ(x), so D̂ have the form

....
Γ′ ⇒ Θ′, ϕ(a)

Γ′ ⇒ Θ′,∀xϕ(x)
R1

....
Γ⇒ Θ,∀xϕ(x)

....
ϕ(s),Π′ ⇒ Λ′

∀xϕ(x),Π′ ⇒ Λ′
R2

....
∀xϕ(x),Π⇒ Λ

Γ,Π⇒ Θ,Λ
C

....
∆⇒ Ξ....⇒

where ∆⇒ Ξ is de�ned as in case 1 and D′ is constructed from two deduc-
tions D′1 and D′2 de�ned as follows.
D′1 :

....
Γ′ ⇒ Θ′, ϕ(s)

Γ′ ⇒ ϕ(s),Θ′

Γ′ ⇒ ϕ(s),Θ′,∀xϕ(x)
weakening

....
Γ⇒ ϕ(s),Θ,∀xϕ(x)

....
∀xϕ(x),Π⇒ Λ

Γ,Π⇒ ϕ(s),Θ,Λ
....

∆⇒ ϕ(s),Ξ

∆⇒ Ξ, ϕ(s)

where the deduction of Γ′ ⇒ Θ′, ϕ(s) comes from the deduction of
Γ′ ⇒ Θ′, ϕ(a) via Lemma 2.40.

42

D′2 :

....
Γ⇒ Θ, ∀xϕ(x)

....
ϕ(s),Π′ ⇒ Λ′

Π′, ϕ(s)⇒ Λ′

∀xϕ(x),Π′, ϕ(s)⇒ Λ′
weakening

....
∀xϕ(x),Π, ϕ(s)⇒ Λ

Γ,Π, ϕ(s)⇒ Θ,Λ
....

∆, ϕ(s)⇒ Ξ

ϕ(s),∆⇒ Ξ

From this two deductions, D′ is de�ned as follows:

D′1
∆⇒ Ξ, ϕ(s)

D′2
ϕ(s),∆⇒ Ξ

∆,∆⇒ Ξ,Ξ

∆⇒ Ξ....⇒

Since o(Γ′ ⇒ Θ′, ϕ(s)) = o(Γ′ ⇒ Θ′, ϕ(a)) the rest of the proof is essentially
the same as in Case 1.

For the rest of the cases the proof is very similar to the two which are
shown. This �nished the proof.

Theorem 2.58. Relative Consistency of CTf
If SCTf is consistent, then also CTf .

Proof. Assume SCTf is consistent and CTf is inconsistent. Then there is
a deduction D in CTf such that D `⇒. From the consistency of SCTf

together with Lemma 2.57 follows that there is in�nite decreasing sequence
in (OTε0 ,≺ε0). This is a contradiction to the fact that (OTε0 ,≺ε0) is well-
founded.

By the method descried above one can prove the next corollary.

Corollary 2.59. Assume that ϕ(a) is quanti�er free and that Tf is consis-

tent.

If Tf |= ∃xϕ(x) then (Tf)0 |= ∃xϕ(x).
I.e., Tf is Σ0

1-conservative over (Tf)0.

Proof. Assume that Tf |= ∃xϕ(x) where ϕ(a) is quanti�er free. Then T ′f :=
Tf ∪{∀x¬ϕ(x)} is inconsistent and satis�es Assumption 2.33 (since Tf does).

43

So CT′f `⇒ by Remark 2.36. By Lemma 2.58 this implies SCT′f is inconsis-
tent. According to Lemma 2.32 this implies that (T ′f)0 = (Tf)0∪{∀x¬ϕ(x)}
is inconsistent. So we obtain (Tf)0 |= ∃xϕ(x).

The next corollary shows that PRA is su�cient as basic theory.

Corollary 2.60. The theory PRA plus PRWO(ε0) proves:

If Con(SCTf) and � For all closed terms t there is an f -term t̄ s.t. SCTf `
t = t̄.�, then Con(CTf).

Proof. The argument in the proof of 2.58 can be carried out in

PRA+PRWO(ε0)

by a standard coding because all operations in Lemma 2.57 are primitive
recursive.

2.5 Examples for Tf

We end this chapter by a collection of examples of the considered theories
Tf .

Example 2.61. Let τ = {0, S,+,×} (called τar). We denote the theory which
contains the induction axioms for S and 0 together with the formulas

∀x¬(S(x) = 0)

∀x∀y(S(x) = S(y)→ x = y)

∀x(x+ 0 = x)

∀x∀y(x+ S(y) = S(x+ y))

∀x(x× 0 = 0)

∀x∀y(x× S(y) = x× y + x)

by PA, called peano arithmetic. It is a well known fact (see [16]) that PA
satis�es Assumption 2.33. Here SCPA is only the equational part of peano
arithmetic between two closed terms build up from {0, S,+,×}. SCPA is
weaker than Robinsons Q (in the sense that SCPA can not prove that every
natural number have a predecessor, also Q is a model of SCPA by the
standard interpretation of the constance). This is the classical example for
Gentzen's proof.

Example 2.62. AGroup theoryGa,b, formulated in the language τ = {e, a, b, ◦,−1 },
as

∀x∀y∀z((x ◦ y) ◦ z = x ◦ (y ◦ z))

∀x(x ◦ e = x)

44

∀x(x ◦ x−1 = e)

e 6= a

e 6= b

a 6= b

(a ◦ b−1) ◦ a = a ◦ (b−1 ◦ a)

(where we denote ◦(x, y) by x ◦ y) together with an induction schema over
a, b, ◦ and −1. SCG will be as above the equational part of closed terms.
But considering consistency alone, this example is rather pointless since Ga,b
has a �nite model (e.g. Z/2Z× Z/2Z).
Example 2.63. Since ZFC is a primitive recursive axiom system the sentence
Con(ZFC) is a universal sentence with primitive recursive matrix. This
makes PA+ Con(ZFC) to an example. Because the matrix of Con(ZFC) is
primitive recursive the simple part in this example is as strong as Con(ZFC).
So of course PRA+PRWO(ε0) can not prove Con(Tf).

Example 2.64. Let

f(x) :=

{
x+ 1 : ¬[(∃y ≤ x)¬PrfZFC(y,⊥)]
0 : otherwise,

which is obviously primitive recursive. De�ne Tf as PRA0 plus all induc-
tion axioms for f and 0, then Tf |= Con(ZFC). (Since ¬Con(ZFC) implies
that f(x) is bounded by some N . So by induction over f we could prove
∀x(x < N), which is obviously inconsistent.) The theory Tf also has the
property demanded in Assumption 2.33, because f(x) = S(x) by assuming
Con(ZFC). Since one have to assume Con(ZFC) the theory PRA is not
strong enough to prove that SCTf satisfy Assumption 2.33. (Note Corol-
lary 2.60 in this context.)

45

3 The Π1
1-Ordinal from Cut-Elimination

As it will be explain later, the following method, introduced by Lorenzen,
Schütte, Tait and others, needs stronger restrictions on the considered theo-
ries: Basically, all function and predicate constants have to have a standard
interpretation in N and the theory may only prove true sentences (in the
standard interpretation).
In this chapter we consider theories which again include the generalised in-
duction axioms (as in Chapter 2) for a function f and individual constants
c1, ..., cm and all de�ning axioms for primitive recursive functions.
We are not interested in consistency questions as in the notion of proof the-
oretical ordinal as de�ned in De�nition 1.48 in this chapter. Because we are
interested to get an upper bound for the Π1

1-Ordinal (see De�nition 3.51) of
the considered Theories from a cut-elimination procedure, we have to enlarge
the language by (free) second order variables. However, similar methods can
be used to �nd the proof theoretical ordinal of De�nition 1.48 of the theories
without second order variables, see [4] and [13].
This chapter is closely related to [15] and [8]. We will proceed as follows:

1. We introduce a �nite Tait language where free second order variables
are included to get (pseudo) Π1

1-sentences.

2. A �nite Tait style calculus TAf of the considered theories is given.

3. We give an in�nite Tait-calculus NT∞ which has cut elimination (via
primitive recursive operations on in�nite trees).

4. To any deduction in NT∞ we assign an ordinal (not an ordinal term!)
called the �rank� of the deduction.

5. The crucial point will be to translate TAf -deductions into NT∞-deductions.
The translated deductions are bounded by ω2.

6. By repeating the cut elimination procedure we can show that the cut
free versions of the translated deductions have at most rank ε0.

7. We give a staged version of the truth de�nition for sentences (|=α).

8. If ϕ has a cut-free deduction of rank α in NT∞, then N |=α ϕ.

9. We introduce the notation of the Π1
1-ordinal of a theory T , ‖T‖Π1

1
.

This will be the smallest α ∈ ON such that a T -provable Π1
1-formula

ϕ satis�es N |=α ϕ.

10. If a Π1
1-formula ϕ has a deduction in the �nite calculus by translation

it has a deduction in the in�nite calculus bounded by ω2. So it has a
cut free (in�nite) deduction bounded by ε0. This implys N |=ε0 ϕ. So
we get ‖T‖Π1

1
≤ ε0.

47

3.1 The Language of a Tait Calculus

To introduce a (�nite) Tait calculus TAf we have to remove negation from
the connective and de�ne it on the atomic level instead. In this section we
give a �nite language, so disjunction and conjunction have only �nite many
components. Note that we will de�ne a in�nite language later in Section 3.3.
We also have second order variables in the language but not second order
quanti�cation.

De�nition 3.1. The set of primitive symbols is the following:

1. Logical Symbols:

(a) Logical connectives: ∧,∨
(b) Quanti�ers: ∃, ∀
(c) First order free variables: a0, a1, a2, ...

(d) First order bound variables: x0, x1, x2, ...

(e) Second order variables: X0, X1, X2, ...

(f) Relationship symbols: ∈, /∈
(g) Brackets: (,)

2. Constants: The set τnt of constants consists of:

(a) An individual constant for each natural number: 0̄, 1̄, 2̄, 3̄, ...

(b) The 1-array function constant S �successor� and for every other
n-array primitive recursive function a n-array function constant:
fn0 , f

n
1 , f

n
2 , ...

(c) Two 2-array predicate constants = and 6=. And for every primitive
recursive n-array relation a predicate constant Rn and its negation
R̄n3.

The set of terms is de�ned as in De�nition 2.3.

De�nition 3.2. The expression ϕ is an atomic formula i� one of the tree
cases holds:

1. ϕ ≡ P (t1, ..., tn) for some n-array predicate constant P and terms
t1, ..., tn.

2. ϕ ≡ t ∈ X for some term t and second order variable X.

3. ϕ ≡ t /∈ X for some term t and second order variable X.

As before = (t1, t2) and 6= (t1, t2) will be written as t1 = t2 and t1 6= t2.
Now we will de�ne the language LT(τnt).

3For every set just one symbol

48

Remark 3.3. Note that the restriction to one term in case 2 and 3 in De�ni-
tion 3.2 is not essential, because all primitive recursive functions are in the
language n-tuples of terms can be coded by standard methods.

De�nition 3.4. The set LT(τnt) will be now de�ned in the following way:

1. If ϕ is an atomic formula, then ϕ ∈ LT(τnt).

2. If ϕ,ψ ∈ LT(τnt) then (ϕ ∧ ψ) and (ϕ ∨ ψ) in LT(τnt).

3. If ϕ(a) ∈ LT(τnt) and the bound variable x does not occur in ϕ(a) then
∃x(ϕ(x)),∀x(ϕ(x)) ∈ LT(τnt) where ϕ(x) denotes ϕ(a)[a/x].

We call the elements of LT(τnt) formulas and formulas without free �rst order
variables (pseudo) Π1

1-sentences. Formulas without second order variables
are called arithmetical.

Remark 3.5. Note that we imagine the free second order variables in the
formulas as for all quanti�ed. This is also the reasons why we call formulas
without free �rst order variables (pseudo) Π1

1-sentences.

Because negation is not a primitive symbol we have to de�ne it:

De�nition 3.6. For every formula ϕ ∈ LT(τnt) we de�ne ¬ϕ inductively
over the de�nition of LT(τnt).

1. If ϕ ≡ t1 = t2, then ¬ϕ :≡ t1 6= t2.

2. If ϕ ≡ t1 6= t2, then ¬ϕ :≡ t1 = t2.

3. If ϕ ≡ t ∈ X, then ¬ϕ :≡ t /∈ X.

4. If ϕ ≡ t /∈ X, then ¬ϕ :≡ t ∈ X.

5. If ϕ ≡ Rn(t1, ..., tn) for a predicate constant correspond to the primitive
recursive relation RN, then ¬ϕ :≡ R̄n(t1, ..., tn).

6. If ϕ ≡ R̄n(t1, ..., tn) for a predicate constant correspond to the comple-
ment of the primitive recursive relation RN, then ¬ϕ :≡ Rn(t1, ..., tn).

7. If ϕ ≡ ψ ∧ σ, then ¬ϕ :≡ ¬ψ ∨ ¬σ.

8. If ϕ ≡ ψ ∨ σ, then ¬ϕ :≡ ¬ψ ∧ ¬σ.

9. If ϕ ≡ ∀xψ(x), then ¬ϕ :≡ ∃x¬ψ(x).

10. If ϕ ≡ ∃xψ(x), then ¬ϕ :≡ ∀x¬ψ(x).

Note that ¬¬ϕ ≡ ϕ holds literally. (I.e., not just as logical equivalence.)
In the rest of the chapter �nite sets of formulas will be denoted by capital
greek letters like Γ,∆,Λ. They are interpreted as �nite disjunctions of the
included formulas. We denote Γ ∪ {ϕ} by Γ, ϕ and omit the set braces if
Γ = {ϕ}.

49

3.2 A Tait-Calculus for an Arithmetical Theory

We introduce formal systems using the �nite Tait-language in this section.
They are essential PRA where the induction schema is replaced by

ϕ(c1) ∧ ... ∧ ϕ(cm) ∧ ∀~x[ϕ(x1) ∧ ... ∧ ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x).

First let us de�ne a set AX of �nite sets of formulas, called axioms.

De�nition 3.7. The set AX is the collection of following sets of formulas.

1. Logical Axioms: Every set of the form {ϕ,¬ϕ}, where ϕ ∈ LT(τnt) is
atomic, is an axiom.

2. Mathematical Axioms: Each of the following is an axiom.4

(a) ∀x(0 6= S(x))

(b) ∀x∀y(S(x) 6= S(y) ∨ x = y)

(c) The de�ning universal formulas for all primitive recursive function
constants and predicate constants.

(d) n̄ = Sn(0) for every n ∈ N.

3. Identity property: For every n-array function symbol f ∈ τnt and every
ϕ(~a) ∈ LT(τnt) �nite sets of the following formulas are axioms.

∀x(x = x)

∀x∀y(x 6= y ∨ y = x)

∀x∀y∀z(x 6= y ∨ y 6= z ∨ x = z)

∀~x∀~y(x1 6= y1 ∨ ... ∨ xn 6= yn ∨ f(~x) = f(~y))

∀~x∀~y(x1 6= y1 ∨ ... ∨ xn 6= yn ∨ ¬ϕ(~a)[~a/~x] ∨ ϕ(~a)[~a/~y])

Remark 3.8. Because LT(τnt) is primitive recursive, AX is as well.

I will use the notation tN to denote the evaluation of a term t ∈ LT(τnt)
in the standard interpretation.

De�nition 3.9. The Tait-Calculus TAf
Assume f ∈ τnt is an m-array primitive recursive function constant and
c1, ..., cl ∈ τnt are individual constants such that every n ∈ N is equal to a
composition of fN and the elements cN1 , ..., c

N
l .

1. Axiom Rule:
Γ ∪∆

where ∆ ∈ AX and Γ arbitrary.

4Recall that we write ϕ instead of {ϕ}.

50

2. Conjunction Rule:
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

3. Disjunction Rules:
Γ, ϕ

Γ, ϕ ∨ ψ
Γ, ψ

Γ, ϕ ∨ ψ

4. Generalisation Rule:
Γ, ϕ(a)

Γ,∀xϕ(x)

where a is a free variable which does not occur in the lower set of
formulas, here a is called the eigenvariable.

5. Existence Rule:
Γ, ϕ(t)

Γ,∃xϕ(x)

where t is an arbitrary term.

6. Cut Rule:
Γ, ϕ Γ,¬ϕ

Γ

where ϕ is called the cut formula.

7. Induction:

Γ, ϕ(c1) ... Γ, ϕ(cl) Γ,¬ϕ(a1) ∧ ... ∧ ¬ϕ(am) ∨ ϕ(f(a1, ..., am))

Γ, ϕ(t)

We call the formulas in Γ the side formulas, the formulas shown in the
premisses the auxiliary formulas and the formulas shown in the conclusion
principal formulas.

Remark 3.10. Obviously TAS (where S is the successor function) can be
seen as PA extended by axioms for all primitive recursive functions and free
second order variables. This extension is a conservative one (see [8]).

De�nition 3.11. A deduction D of Λ in TAf , D ` Λ, is a �nite, rooted,
ordered tree5, whose nodes are labelled by a �nite set of formulas and (a
tag6 of) a deduction rule, satisfying the following conditions:

5If two notes are comparable, then we call the note closer to the root �below� or
�successor� of the other.

6By a tag we mean a symbol for each set of inferences (rule), e.g. the string "cut" for
the cut rule.

51

1. All leaves are labelled by an instance of the axiom rule and the tag of
the axiom rule.

2. If a node, which is not a leaf, is labelled by a set Γ∪∆ and a deduction
rule R of TAf and if its immediate predecessors are labelled by the sets
Γ, ϕi for i ∈ I, then the inference

Γ, ϕi
Γ ∪∆

(for all i ∈ I)

is an instance of the deduction rule R.

3. The �nite set of formulas of the root is Λ.

We say TAf deduces Λ, in symbols TAf ` Λ i� there is a deduction D in TAf
such that D ` Λ.

Later, an in�nite Tait-calculus (where index sets are possible in�nite)
will be given into which TAf can be embedded. This in�nite Tait-calculus
has full-cutelimination.

3.3 An In�nite Language and Tait-Calculus

In this section we de�ne an in�nite version of the Tait-language. Not sur-
prisingly one can replace quanti�cation and �rst order variables whit in�nite
conjunctions and disjunctions.

De�nition 3.12. The set of primitive symbols of L∞(τnt) consists of the
following:

1. Logical Symbols

(a) Logical connectives:
∧
,
∨

(b) Second order variables: X0, X1, X2, ...

(c) Relationship symbols: ∈, /∈
(d) Brackets: (,)

2. Constants: The set τnt of constants consists of

(a) An individual constant for every natural number: 0̄, 1̄, 2̄, 3̄, ...

(b) The 1-array function constant S �successor� and for every other
n-array primitive recursive function with n ∈ ω a n-array function
constant: fn0 , f

n
1 , f

n
2 , ...

(c) Two 2-array Predicate constant = and 6=. And for every primitive
recursive n-array relation exactly one predicate constant Rn and
its negation R̄n.

52

The set of terms is de�ned as in De�nition 2.3 apart from the fact that
the language does not have �rst order variables. Atomic formulas are de�ned
as before in De�nition 3.2.

De�nition 3.13. The set L∞(τnt) is de�ned by the following induction:

1. If ϕ is a atomic formula then ϕ ∈ L∞(τnt).

2. If I is a �nite set and ϕi ∈ L∞(τnt) for all i ∈ I, then∨
i∈I

ϕi and
∧
i∈I

ϕi

are in L∞(τnt).

3. If I = N and ϕi ≡ ψ(̄i) ∈ L∞(τnt)
7 for all i ∈ I, then∨

i∈I
ϕi and

∧
i∈I

ϕi

are in L∞(τnt).

Remark 3.14. Note that L∞(τnt) is a �constructively given complete species�
in the sense of [15].

As in the case of LT(τnt) we have to introduce negation for L∞(τnt).

De�nition 3.15. For every formula ϕ ∈ L∞(τnt) we de�ne ¬ϕ inductively
over the de�nition of L∞(τnt).

1. If ϕ ≡ t1 = t2, then ¬ϕ :≡ t1 6= t2.

2. If ϕ ≡ t1 6= t2, then ¬ϕ :≡ t1 = t2.

3. If ϕ ≡ t ∈ X, then ¬ϕ :≡ t /∈ X.

4. If ϕ ≡ t /∈ X, then ¬ϕ :≡ t ∈ X.

5. If ϕ ≡ Rn(t1, ..., tn), then ¬ϕ :≡ R̄n(t1, ..., tn).

6. If ϕ ≡ R̄n(t1, ..., tn), then ¬ϕ :≡ Rn(t1, ..., tn).

7. If ϕ ≡
∧
i∈I ϕi, then ¬ϕ :≡

∨
i∈I ¬ϕi.

8. If ϕ ≡
∨
i∈I ϕi, then ¬ϕ :≡

∧
i∈I ¬ϕi.

As before ¬¬ϕ ≡ ϕ holds. With this language a in�nite Tait-calculus
can be given.

De�nition 3.16. The set of �nite set of formulas AX∞ is de�ned as follows:

7Here ψ(̄i) means that the constant ī occurs in ϕi and that for every i, j ∈ I ϕi [̄i/j̄] ≡ ϕj

53

1. If ϕ ∈ L∞(τnt) is atomic arithmetical and N-true, then {ϕ} ∈ AX∞.

2. If tN = sN, then {t /∈ X, s ∈ X} ∈ AX∞.

Remark 3.17. Some times sets as AX∞ are called axiom systems. The most
general notion of an axiom system for a Tait-calculus is a setAX of �nite non
empty sets of atomic formulas which satis�es the intersection property [15]:
If ∆, ϕ ∈ AX and ∆′,¬ϕ ∈ AX then there is an Λ ⊂ ∆ ∪ ∆′ such that
Λ ∈ AX.
It should be obvious that AX∞ has this property. So we can apply Tait's
proofs in [15] to NT∞. It is also a logical complete axiom systems which
means that for every atomic formula ϕ there is a non empty subset of {ϕ,¬ϕ}
in AX [15].

De�nition 3.18. The Tait-Calculus NT∞

1. Axiom Rules:
Γ ∪∆

for ∆ ∈ AX∞ and Γ arbitrary.

2. Disjunction:
Γ, ϕi

Γ,
∨
i∈I ϕi

(for some i ∈ I)

3. Conjunction:8

Γ, ϕi
Γ,
∧
i∈I ϕi

(for all i ∈ I)

4. Cut:
Γ, ϕ Γ,¬ϕ

Γ

where ϕ is called the cut formula.

We call the formulas in Γ the side formulas, the formulas shown in the
premisses the auxiliary formulas and the formulas shown in the conclusion
principal formulas.

Remark 3.19. 1. Note that NT∞ is an in�nite propositional calculus. The
deductions of NT∞ (see De�nition 3.20) are not recursive enumerable
even the axioms are primitive recursive.

2. From the de�nition of the axiom rule it should be clear where are the
di�erence to Gentzen's method. Here we need all standard-model-true
atomic sentences. So from the point of view of De�nition 1.48 this
can leads into troubles if one uses a language where the predicate and
function constants do not have a primitive recursive interpretation.

8Note that the instances of this deduction rule can be inferences with in�nitely many
premisses if the principal formula of the inference has the form

∧
i∈N ϕi.

54

A tree is called well-founded i� it has no in�nite paths.

De�nition 3.20. A deduction D of Λ in NT∞, D ` Λ, is a (possible in�nite)
well-founded, rooted, ordered tree9, whose nodes are labelled by a �nite set of
formulas and (a tag of) a deduction rule, satisfying the following conditions:

1. All leaves are labelled by an instance of one of the axiom rules and the
tag of this axiom rule.

2. If a node, which is not a leaf, is labelled by a set Γ∪∆ and a deduction
rule R of NT∞ and if its immediate predecessors are labelled by the
sets Γ, ϕj for j ∈ J , then the inference10

Γ, ϕj
Γ ∪∆

(for all j ∈ J)

is an instance of the deduction rule R.

3. The �nite set of formulas of the root is Λ.

We say NT∞ deduces Λ, in symbols NT∞ ` Λ i� there is a deduction D in
NT∞ such that D ` Λ.

The next de�nition will extend the concept of rank and will give a way
to count the application of deduction rules. The rank for �nite formulas is
de�ned like in Chapter 2, also ordinals will be denoted as before.

De�nition 3.21. Assume ϕ ∈ L∞(τnt). The rank of a formula, rank(ϕ) ≤
α, is inductively de�ned as follows:

1. If ϕ is atomic, then rank(ϕ) ≤ α for all α < ω1.

2. If ϕ ≡
∧
i∈I ϕi with rank(ϕi) ≤ αi and αi < α for all i ∈ I, then

rank(ϕ) ≤ α.

3. If ϕ ≡
∨
i∈I ϕi with rank(ϕi) ≤ αi and αi < α for all i ∈ I, then

rank(ϕ) ≤ α.

Remark 3.22. From the de�nition it should be obvious that rank(ϕ) =
rank(¬ϕ).

The next de�nition gives the rank of a derivation in the two Tait-calculi
mentioned before. From now on we write T if we speak about TAf and NT∞
simultaneously.

9If two notes are comparable, then we call the note closer to the root �below� or
�successor� of the other.

10Do not be confused. In general, the set J does not coincide with the index sets of the
principal formulas in applications of the rules Conjunction and Disjunction. J is only an
index set which enumerates the labels of the predecessors (premisses) in the tree.

55

De�nition 3.23. Assume D is a derivation in T. Then the rank(D) ≤ α is
de�ned as follows:

1. If D is an instance of an axiom rule, then rank(D) ≤ α for all α < ω1.

2. If the last deduction rule of D is a rule with the following form

Γ, ϕj
Γ ∪∆

(for all j ∈ J)

and Dj are the subdeductions of D with the form

....
Γ, ϕj

such that rank(Dj) ≤ αj with αj < α for all j ∈ J , then rank(D) ≤ α.

Obviously in the case of TAf the rank of a deductions is always �nite. The
following de�nition gives a weighted way to count the cuts in a deduction.

De�nition 3.24. Assume D is a deduction in T. The cut degree of D, or
cd(D), is ≤ α i� all cut formulas ϕ in D have rank(ϕ) < α.

So by de�nition cd(D) ≤ 0 means there is no application of the cut rule
in D.

Notation 3.25. D ` ∆[α, β] i� D ` ∆ and rank(D) ≤ α and cd(D) ≤ β.
From the previous de�nition it should be clear what T ` ∆[α, β] means.

The notation D∪∆ will denote the deduction in T which is obtained from D
by extending every set of formulas in D by the set ∆. The next two lemmas
should be obvious from De�nition 3.18.

Lemma 3.26. If D ` Γ[α, β], then D ∪∆ ` Γ ∪∆[α, β].

Lemma 3.27. If NT∞ ` Γ, ϕ(t)[α, β] and tN = sN, then NT∞ ` Γ, ϕ(s)[α, β].

We call a deduction rule permissible i� it does not extend the set of
derivable syntactical objects. The next de�nition gives a concept which lead
to some permissible deduction rules for NT∞

De�nition 3.28. A reduction of a ϕ ∈ L∞(τnt) is a �nite set Θ of formulas
such that:

1. If ϕ is an atom which is not an axiom, then Θ is arbitrary.

2. If ϕ is an atom which is an axiom, then ϕ has no reduction.

3. If ϕ ≡
∧
i∈I ϕi, then Θ is an reduction of ϕ i� there is an i ∈ I such

that ϕi ∈ Θ, .

56

4. If ϕ ≡
∨
i∈I ϕi such that I is �nite, then every Θ ⊇ {ϕi|i ∈ I} is an

reduction of ϕ.

5. If ϕ ≡
∨
i∈I ϕi such that I is not �nite, then ϕ has no reduction.

With this we can formulate the next lemma.

Lemma 3.29. Assume Θ is an reduction of ϕ.
If NT∞ ` Γ, ϕ[α, β], then NT∞ ` Γ ∪Θ[α, β]

Proof. See [15, p.212].

The next lemma gives a bound of the rank of a cut-free deduction of an
instance of the tertium non datur.

Lemma 3.30. If rank(ϕ) � α, then NT∞ ` {ϕ,¬ϕ}[2 · α, 0].

Proof. See [15, p.212].

Now we formulate the main lemma, from which cut-elimination can be
easily proven.

Lemma 3.31. Elimination Lemma
Assume NT∞ ` Γ, ϕ[α, γ] and NT∞ ` ∆,¬ϕ[β, γ], where rank(ϕ) � γ, then
NT∞ ` Γ ∪∆[α]β, γ]

Proof. See [15, p.213].

This gives us cut-elimination together with an upper bound of the rank-
rising after cut-elimination in terms of the χT-function (see Section 1.1.4).

Theorem 3.32. Elimination Theorem
If NT∞ ` ∆[α, β + ωγ], then NT∞ ` ∆[χT(γ, α), β].

Proof. See [15, p.214].

Remark 3.33. If one read the proof in [15] carefully one sees that the oper-
ations can be make primitive recursive.

Before the next corollary can be formulated the following notation has
to be introduced.

20(α) := α

2n+1(α) := 22n(α).

Corollary 3.34. If NT∞ ` ∆[α, β + n], then NT∞ ` ∆[2n(α), β].

Proof. Imagine n = ω0 + ...+ ω0 and apply Theorem 3.32 n-times.

We get the next corollary just by observing that in a cut-free deduction
it is not possible to lose any formulas.

57

Corollary 3.35. Every in NT∞ derivable set of atomic formulas include an

axiom.

Remark 3.36. The syntactical objects, a Tait-calculus is dealing with, are
�nite sets of formulas. So by the discussion above De�nition 2.46 a consis-
tency proof have to show that there are �nite sets of formulas which are not
derivable. This observation makes cut-elimination into a consistency proof,
because of Corollary 3.35 which leads to:

If ϕ is atomic and N-false, then NT∞ 6 `{ϕ}.

3.4 An Embedding and an application of Cut-Elimination

In general the calculi TAf do not have cut-elimination. For example, this is
the case for TAS .

Assume toward a contradiction that TAS does have cut-elimination, then
also the subsystem of TAS (without second order variables) which include
only the de�ning formulas for successor, addition and multiplication has cut-
elimination. This restricted system is essential PA. So we obtain that PA
has cut-elimination. It is a well known fact that in PA the exponential func-
tion is de�nable (see [2, Sec.3.8]), say via ϕ, and that PA ` ∃xϕ(n̄, x) for
every n ∈ N. Since PA has cut-elimination there is an Herbrand-Disjunction∨m
i=0 ϕ(n̄, ti) for every n ∈ N. Because the language just contains successor,

addition and multiplication as function symbols for all 0 ≤ i ≤ m the term
ti is a polynomial. This leads to the contradiction that exponentiation can
be approximate by polynomials.

So instead of using cut-elimination in TAf , we embed TAf into NT∞ and
use cut-elimination there. To do this, we �rst give a embedding of LT(τnt)
into L∞(τnt) by expressing quanti�cation by in�nite formulas.

A syntactical assignment is a function ι : {a1, a2, a3, ...} → {0̄, 1̄, 2̄, ...}.
The next de�nition will show how a syntactical assignment can be extended
to an embedding of LT(τnt) into L∞(τnt).

De�nition 3.37. Assume ι is an syntactical assignment. An embedding

ι : LT(τnt)→ L∞(τnt) is de�ned as follows.

1. If ϕ ≡ ψ(a1, ..., am) is atomic and all free variables are shown, then
ι(ϕ) ≡ ψ(ι(a1), ..., ι(am)).

2. If ϕ ≡ ψ ∧ σ, then ι(ϕ) ≡
∧
i∈I ϕi where I = {0, 1}, ϕ0 ≡ ι(ψ) and

ϕ1 ≡ ι(σ).

3. If ϕ ≡ ψ ∨ σ, then ι(ϕ) ≡
∨
i∈I ϕi where I = {0, 1}, ϕ0 ≡ ι(ψ) and

ϕ1 ≡ ι(σ).

58

4. If ϕ ≡ ∀x(ψ(x)), then ι(ϕ) ≡
∧
i∈I ϕi where I = N, ϕi ≡ ι(ψi) and

ψi ≡ ψ(x)[x/̄i].

5. If ϕ ≡ ∃x(ψ(x)), then ι(ϕ) ≡
∨
i∈I ϕi where I = N, ϕi ≡ ι(ψi) and

ψi ≡ ψ(x)[x/̄i].

For a �nite set of formulas ∆ in LT(τnt) the embedding is denoted by ι(∆).

Obviously rank(ι(ϕ)) ≺ ω for all ϕ ∈ LT(τnt). Also clear from de�nition
of embedding is the next lemma.

Lemma 3.38. Assume ϕ ≡ ψ(a1, ..., an) ∈ LT(τnt) where all free variables

are shown, ι1 and ι2 are embeddings. Then holds:

If ι1(ai) = ι2(ai) for all 1 ≤ i ≤ n, then ι1(ϕ) = ι2(ϕ)

Now we start to show some the results which together will prove the
Embedding Theorem (see Theorem 3.41).

Lemma 3.39. If ∆ ∈ AX, then NT∞ ` ι(∆)[ω, 0] for all embeddings ι.

Proof. The proof is a case distinction by the De�nition 3.7 of AX.

1. ∆ is a logical axiom, then the result follows from Lemma 3.30.

2. ∆ is a mathematical axiom, then ∆ = {ϕ} for an universal sentence
ϕ ≡ ∀~xψ(~x). Since ϕ is N-true, ψ(~̄n) for every ~n ∈ N<ω is N-true
and therefore an axiom of NT∞ so we get ι(∆) by one applications of
Conjunction. The result follows by Lemma 3.38.

3. ∆ is an identity axiom. For all instances of the �rst four identity axiom
the proof is like in Case 2, for the last one observe that

NT∞ ` {n̄1 6= m̄1, ..., n̄k 6= m̄k, ι(¬ϕ(~̄n)), ι(ϕ(~̄m))}[l, 0]

for l ∈ ω holds if ni 6= mi for one 1 ≤ i ≤ k by the axiom rule of NT∞
and Lemma 3.26 and if for all 1 ≤ i ≤ k ni = mi then by Lemma 3.30.
The result follows by �nite applications of Conjunction and Lemma
3.38.

Lemma 3.40. If TAf ` ∆ without an application of the induction rule, then

NT∞ ` ι(∆)[ω + n,m] for some n,m ∈ ω and all embeddings ι.

Proof. From TAf ` ∆ it follows that there is a deduction D in TAf such
that D ` ∆. Since D is in TAf by De�nition 3.23 follows rank(D) < ω
and cd(D) < ω. So there are n,m ∈ ω such that D ` ∆[n,m]. This
deduction D can be used to construct a deduction in NT∞ by induction on
the applications of deduction rules.
Induction Start: By Lemma 3.39 we get D0,∞ ` ι(Λ)[ω, 0] for all Λ in D
which are an application of the axiom rule of TAf and all ι.
Induction Step: There are just two cases are given the rest is analogues, note
that the case of a cut is the most trivial one.

59

1. Assume in D is an application of the conjunction rule, say

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

and there are already deductionsDl0,∞ ` Γ, ι(ϕ)[ω+k0, q0] andDl1,∞ `
Γ, ι(ψ)[ω + k1, q1] in NT∞ for all ι. Then we de�ne I := {0, 1} and
with an application of conjunction from NT∞ we get

Dl,∞ ` Γ,
∧
{ι(ϕ), ι(ψ)}[ω + k, q]

such that k = max{k0, k1}+ 1 and q = max{q0, q1} for all ι.

2. Assume in D is an application of the generalisation rule, say

Γ, ϕ(a)

Γ, ∀xϕ(x).

Because of Lemma 3.38 and the fact that a free variable is involved
we get from the induction hypothesis for all i ∈ ω deductions Dli,∞ `
Γ, ιi(ϕ(a))[ω + ki, qi], where ιi(a) = ī and all ki and qi are the same.
So by an application of conjunction from NT∞ with I = N we get

Dl,∞ ` Γ,
∧
{ι(ϕ(̄i))|i ∈ ω}[ω + k, q]

where k = k0 + 1 and q = q0.

From this we get a deduction Dn,∞ ` ι(∆)[ω+n,m] where n = rank(D)

Remember the notation of an f -term in Notation 2.17.

Theorem 3.41. Embedding Theorem
If TAf ` ∆, then NT∞ ` ι(∆)[ω2, q] for some q ∈ ω and all embeddings ι.

Proof. Like in the proof of Lemma 3.40 there is a D in TAf such that D `
∆[n, q] for n, q ∈ ω. The result follows by induction from the case where
the last deduction rule is an application of induction. So assume the last
deduction rule in D have the form

Γ, ϕ(c1) ... Γ, ϕ(cl) Γ,¬ϕ(a1) ∨ ... ∨ ¬ϕ(am) ∨ ϕ(f(a1, ..., am))

Γ, ϕ(t) .

By Lemma 3.40 and 3.29 we get l+1 deductions in NT∞ with rank(D∞,i) ≤
ω + ni and cd(D∞,i) ≤ qi such that:

D∞,1....
ι(Γ), ι(ϕ(c1)); ... ;

D∞,l....
ι(Γ), ι(ϕ(cl));

D∞,l+1....
ι(Γ), ι(¬ϕ(a1)), ..., ι(¬ϕ(am)), ι(ϕ(f(a1, ..., am))).

60

Because there are just constants for primitive recursive functions in τnt the
problem tN = k ∈ N is an primitive recursive one. Because of De�nition 3.9
there is an f -term t̄ such that t̄N = k. By induction over the complexity of
t̄ it is possible to show that NT∞ ` ι(Γ), ι(ϕ(t̄))[p · ω, q] for m, p < ω.
Induction start: Assume t̄ ≡ ci for 1 ≤ i ≤ l. The claim follows by deduction
D∞,i.
Induction step: Assume t̄ ≡ f(t1, ..., tm) and we already have

NT∞ ` ι(Γ), ι(ϕ(ti))[pi · ω, qi]

for 1 ≤ i ≤ m.
From D∞,l+1 and Lemma 3.27 we obtain the deduction

D∞,l+1....
ι(Γ), ι(¬ϕ(t1)), ..., ι(¬ϕ(tm)), ι(ϕ(f(t1, ..., tm)))

which is possible because in all ti no free variable occurs. After m applica-
tions of the cut rule we get

NT∞ ` ι(Γ), ι(ϕ(t̄))[p · ω, q]

where p = max{p1, ..., pm}+ 1 < ω and q = max{q1, ..., qm, rank(ι(ϕ(t̄)))} <
ω.
Since t̄N = k = tN this leads with Lemma 3.27 to NT∞ ` ι(Γ), ι(ϕ(t))[p·ω, q].
So an easy induction on the applications of the induction rule in a deduction
D of TAf proves the result.

Now we can apply cut elimination on the embedded deductions.
With Corollary 3.34 together with the fact that 2n(ω2) < ε0 = χT(1, 0) for
all n ∈ ω we get:

Corollary 3.42. If TAf ` ∆, then NT∞ ` ι(∆)[α, 0] for some α < ε0 and

all embeddings ι.

3.5 The Π1
1-Ordinal of a Tait-calculus

An application of the embedding-method is to calculate the Π1
1-Ordinal of

the TAf which is de�ned in this section.

We de�ne the truth of a formula ϕ(~X) which contains second order vari-
ables as follows:

N |= ϕ(~X) :⇔ N |= ∀ ~Xϕ(~X).

Here we mean the standard de�nition of truth in a second order model. As
usual, a �nite set of formulas ∆ is interpreted as a disjunction of its elements:
so we set

N |= ∆ i� N |=
∨
ϕ∈∆

ϕ.

61

De�nition 3.43. Assume N is the standard model of arithmetic, α ∈ ON11

and ϕ is a Π1
1-sentence of LT(τnt). Then the N |=α ∆ is de�ned as follows:

1. If ϕ is true, atomic and arithmetical12, then N |=α Γ, ϕ for all α < ω1.

2. If tN = sN, then N |=α Γ, t /∈ X, s ∈ X for all α < ω1.

3. N |=α Γ, ψ1 ∧ ψ2 i� N |=αi Γ, ψ1 ∧ ψ2, ψi for i ∈ {1, 2} and α1, α2 < α.

4. N |=α Γ, ψ1∨ψ2 i� there is an i ∈ {1, 2} such that N |=αi Γ, ψ1∨ψ2, ψi
and αi < α.

5. N |=α Γ, ∀xψ(x) i� N |=αn Γ, ∀xψ(x), ψ(n̄) for all n ∈ N and αn < α
for all n ∈ N.

6. N |=α Γ,∃xψ(x) i� there is an n ∈ N such that N |=β Γ, ∃xψ(x), ψ(n̄)
and β < α.

The next de�nition gives the famous Church-Kleene-ordinal.

De�nition 3.44. ωCK1 :=
⋃
{otyp(≺)| ≺ is a primitive recursive ordering on ω}

The next Theorem gives an important property of |=α.

Theorem 3.45. ω-Completeness Theorem
For all Π1

1-sentences ϕ(~X) we have:

N |= ϕ(~X) i� there is an α < ωCK1 such that N |=α ϕ(~X)

Proof. See [8, Sec.5.4].

Remark 3.46. The proof of Theorem 3.45 uses the fact that all functions in
the language are primitive recursive.

Notation 3.47. For a formula ϕ let ϕO denote the �nite set that is obtained
from ϕ by braking up all disjunction, i.e.,

ϕO :=

{
ψO

1 ∪ ψO
2 if ϕ ≡ ψ1 ∨ ψ2

{ϕ} otherwise.

This de�nition leads to the obvious fact that

if N |=α ϕ then N |=α ϕO.

De�nition 3.48. Assume ϕ is a Π1
1-sentence, then we de�ne the truth com-

plexity as

tc(ϕ) := min({α|N |=α ϕO} ∪ {ωCK1 }).
11Here we mean an ordinal, not an element of an ordinal notation system.
12No occurrence of second order variables.

62

By this de�nition we get the next corollary from Theorem 3.45.

Corollary 3.49. For every Π1
1-sentence ϕ holds:

N |= ϕ i� tc(ϕ) < ωCK1

The next lemma is obvious from De�nition 3.43 by an induction on the
rank of an deduction in NT∞.

Lemma 3.50. Assume ∆ is a set of Π1
1-sentences (in LT(τnt)) and ι as in

De�nition 3.37.

If NT∞ ` ι(∆)[α, 0], then there is an β ≤ α such that N |=β ∆.

Assume T is a �nite Tait-calculus in a language LT(τnt). If ≺ is a order
relation on A ⊂ N de�nable in LT(τnt) (such as primitive recursive order
relations) we can formulate the sentence of trans�nite induction with the
help of second order variables as

TI(≺) : ∀x[(∀y ≺ x)[y ∈ X]→ x ∈ X]→ ∀x[A(x)→ x ∈ X].

In the sentence above (∀y ≺ x) and A(x) are appropriations for there de�ni-
tions in LT(τnt). In the next de�nition a correct calculus is a calculus which
deduct only true sentences (as TAf).

De�nition 3.51. Assume T is a correct �nite Tait-calculus in a language
LT(τnt). Then is the otyp-ordinal and the Π1

1-ordinal of the calculus T de-
�ned as follows:

‖T‖otyp := sup{otyp(≺)|(A,≺) is primitive recursive and T ` TI(≺)}
‖T‖Π1

1
:= sup{tc(ϕ)|ϕ is a Π1

1-sentence andT ` ϕ}

Note that ‖T‖otyp ≤ ‖T‖Π1
1
as [8] proves. From Corollary 3.49 we obtain

‖TAf‖Π1
1
< ωCK1 .

With the use of the embedding-method presented in the previous sections
of this chapter we can use Lemma 3.50 to show ‖TAf‖Π1

1
≤ ε0. It seems

to me that the lower bound of ‖T‖otyp can be found by using the ordinal
notation system (ONε0 ,≺ε0) (as [8] do for PA). By coding (ONε0 ,≺ε0) into
TAf one can show that for all orderings (ONα,≺α) with α ≺ ε0 the calculus
TAf ` TI(≺α). This would lead to

ε0 ≤ ‖T‖otyp ≤ ‖T‖Π1
1
≤ ε0.

But because we are not interested about this in this diploma thesis we only
restrict ore self to ‖T‖Π1

1
.

63

3.6 An upper bound for the Π1
1-Ordinal of TAf

We will give a constructive13 proof of

‖TAf‖Π1
1
≤ ε0.

Theorem 3.52.

‖TAf‖Π1
1
≤ ε0

Proof. Assume ϕ is a Π1
1-sentence of LT(τnt) and TAf ` ϕ, then it is easy to

see that TAf ` ϕO. From Corollary 3.42 we obtain that NT∞ ` ι(ϕO)[α, 0]
where α < ε0. Lemma 3.50 leads to N |=α ϕO where α < ε0. So we
obtain tc(ϕ) < ε0. Since ϕ was arbitrary this holds for all these sentences.
Since ‖TAf‖Π1

1
is de�ned as a supremum (see De�nition 3.51) the theorem

is proved.

Note by similar methods (without the use of in�nite languages) we can
also proof

‖TAf‖Con = ε0

as Friedman showed it in [4] or Schwichtenberg showed in [13].

13Constructive means that the proof constructs an ordinal smaller then ε0 for each ϕ
with TAf ` ϕ instead of only proving the existence of such an ordinal.

64

References

[1] H. Bachmann: Trans�nite Zahlen. Springer-Verlag, second edition, Berlin
1967.

[2] H. B. Enderton: Mathematical Introduction to Logic. Harcourt/Academic
Press, second edition, Burlington 2001.

[3] W. M. Farmer: A uni�cation-theoretic method for investigating the k-

provability problem. Annals of Pure and Applied Logic, 51, 1991, pp. 173-
214.

[4] H. Friedman, M. Sheard: Elementary descent recursion and proof theory.
Annals of Pure and Applied Logic, 71, 1995, pp. 1-45.

[5] G. Gentzen: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathe-
matische Analen, 112, 1936, pp. 493-565.

[6] G. Gentzen: Neue Fassung des Widerspruchsfreiheitsbeweises für die

reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der
exakten Wissenschaften, Neue Reihe, 4, 1938, pp. 19-44.

[7] K. Kunen: Set Theory, An Introduction to Independence Proofs. North-
Holland Publishing Co., tenth impression, Amsterdam 2006.

[8] W. Pohlers: Proof Theory: The First Step into Impredicativity. Springer-
Verlag, second edition, Berlin 2009.

[9] M. Rathjen: The Realm of Ordinal Analysis. In: Set and Proofs, London
Math. Soc. Lecture Note Ser. 258, edited by S. B. Cooper and J. K.
Truss, Cambridge University Press, Cambridge 1999, pp. 219-279

[10] K. Schütte: Beweistheoretische Erfassung der unendlichen Induktion in

der Zahlentheorie. Mathematische Annalen, vol. 122, 1955, pp. 369-389.

[11] K. Schütte: Beweistheorie. Springer-Verlag, Berlin 1960.

[12] K. Schütte: Proof Theory. Springer-Verlag, Berlin 1977.

[13] H. Schwichtenberg: Proof Theory: Some Applications of Cut-

Elimination. In: Handbook of Mathematical Logic, edited by J. Barwise,
North-Holland Publishing Co., Amsterdam 1977, pp. 867-895.

[14] C. Smorynski: Proof Theory: The Incompleteness Theorem. In: Hand-
book of Mathematical Logic, edited by J. Barwise, North-Holland Pub-
lishing Co., Amsterdam 1977, pp. 821-865.

[15] W. W. Tait: Normal Derivability in Classical Logic. In: The Syntax and
Semantics of In�nitary Languages, edited by J. Barwise, Springer-Verlag,
Berlin 1968, pp. 204-236.

65

[16] G. Takeuti: Proof Theory. North-Holland Publishing Co., second edi-
tion, Amsterdam 1987.

66

Abstract

In [6] Gerhard Gentzen prove the consistency of �rst-order Peano arithmetic
PA. The method works as follows: De�ne a simple part SPA of peano arith-
metic (SPA does in particular not contain induction) and �rst show the con-
sistency of SPA. Now assume towards a contradiction that PA deducts an
contradiction. Show that this deduction can be transformed into a deduction
in SPA, this contradicts the consistency of SPA. How to get a deduction
in SPA: We assign an ordinal (more exact an ordinal term of an ordinal
notation system) to each deduction in PA, called the rank of the deduction.
Next show that for each deduction which deducts a contradiction (and is
not in SPA) there is a deduction (also deducting and contradiction) with
smaller rank. This method requires that the ordinal notation system (which
goes up to ε0) is well-founded. It turns out that Gentzen's method requires
only to the following properties of PA:

1. All axioms of PA are universal sentences or instances of the induction
schema

ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x).

2. All closed terms are provable equal to a term build up just from 0 and
the symbol of the successor function.

This allows a slight generalisation of Gentzen's method. In this Diploma
Thesis we consider theories Tf = (Tf)0∪(Tf)Ind with the following properties:

1. (Tf)0 contains only universal sentences.

2. (Tf)Ind contains all instances of the general induction schema

ϕ(c1)∧...∧ϕ(cm)∧∀~x[ϕ(x1)∧...∧ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x).

3. The simple part of Tf proves for every closed term t the equality of t
to a term t̄ build up just from c1, ..., cm and f .

As in [6] for PA, the consistency of Tf can be shown with respect to their
simple part which corresponds to the simple part of Gentzen (also without
induction). As a consequence, one gets the following result for all such
theories.

Corollary. Assume ϕ(a) is quanti�er free and Tf consistent.

If Tf |= ∃xϕ(x), then (Tf)0 |= ∃xϕ(x).
I.e., Tf is Σ0

1-conservative over (Tf)0.

It seems that this method is di�erent in an essential way to the method
Kurt Schütte uses in his consistency proof of PA. Schütte, Tait and others
uses calculi with in�nite deduction rules. These methods compute, in some

67

sense, the proof theoretical ordinal of the considered theory by embedding the
deductions of the theory (in ordinary �rst-order logic) in an in�nite system
which allows cut-elimination. In contrast to Gentzen's method Schütte's and
Tait's methods are closely related to the proof theoretical ordinals.
We do not provide an analysis of the disparities of both methods. Instead
we present the point of view Wolfram Pohlers take in [8], to measure the Π1

1-
ordinal of theories TAf (presented as a Tait-calculus) satisfying the following
conditions:

1. TAf includes all de�ning axioms for primitive recursive functions.

2. All instances of the schema

ϕ(c1)∧ ...∧ϕ(cm)∧∀~x[ϕ(x1)∧ ...∧ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x)

are included. Here f is an m-array primitive recursive function con-
stant and c1, ..., cl are individual constants.

3. Every n ∈ N is equal to a composition of fN and the elements cN1 , ..., c
N
l .

68

Abstract(German)

In [6] wird von Gerhard Gentzen die Wiederspruchsfreiheit der Peano Arith-
metik erster Stufe PA bewiesen. Die Methode geht dabei follgendermaÿen
vor: Man de�niert einen simplen Teil SPA der Peano Arithmetik (SPA en-
thällt im speziellen keine Anwedung des Induktionsschemas) und zeigt zuerst
die Wiederspruchsfreiheit von SPA. Der Rest des Arguments verläuft indi-
rekt. Man nimmt an, dass PA einen Wiederspruch ableitet und zeigt das
dessen Deduktion zu einer Deduktion in SPA tranformiert werden kann,
was der Wiederspruchsfreiheit von SPA wiederspricht. Diese Transforma-
tion verläuft wie folgt: Jeder Deduktion in PA wird eine Ordinalzahl (oder
genauer, ein Ordinalzahlterm eines Ordinalzahlnotations Systems) zugeord-
net, diese wird der Rang der Deduktion genannt. Dann wird gezeigt, dass es
zu jeder Deduktion eines Wiederspruches (die nicht in SPA verläuft) eine De-
duktion (ebenfalls eines Wiederspruches) gibt die einen kleineren Rang hat.
Diese Methode benötigt daher die Wohlfundiertheit des verwendeten Ordi-
nalzahlnotations Systems (in diesem fall bis ε0). Bei näherer betrachtung
von Gentzens Methode fällt auf, dass sie lediglich folgende Eigenschaften
von PA verwendet:

1. Alle Axiome von PA sind Allsätze oder Instanzen des Induktionss-
chemas

ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x).

2. Alle geschlossenen Terme sind beweisbar (in SPA) gleich zu einem
Term der lediglich aus 0 und dem Symbol der Nachfolgerfunktion aufge-
baut ist.

Dies erlaubt eine Verallgemeinerung von Gentzens Methode. In dieser Diplo-
marbeit werden wir daher Theorien Tf = (Tf)0 ∪ (Tf)Ind betrachten die
follgende Eigenschaften erfüllen:

1. (Tf)0 besteht lediglich aus Allsätzen.

2. (Tf)Ind beinhaltet alle Instanzen des Induktionsschemas

ϕ(c1)∧...∧ϕ(cm)∧∀~x[ϕ(x1)∧...∧ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x).

3. Der simple Teil von Tf beweist für jeden geschlossenen Term t, dass t
gleich einem Term t̄ ist der lediglich aus den symbolen c1, ..., cm und f
aufgebaut ist.

Die Wiederspruchsfreiheit von Tf kann nun, wie in [6] für PA, relativ zu
ihrem simplen Teil (wo Induktion wie zuvor bei Gentzen nicht möglich ist)
gezeigt werden. Eine konsequentz dieses Resultates ist das follgende Korollar.

69

Korollar. Sei ϕ(a) quantorenfrei und Tf wiederspruchsfrei.

Wenn Tf |= ∃xϕ(x), dann (Tf)0 |= ∃xϕ(x).
Insbesondere ist Tf Σ0

1-konservativ über (Tf)0.

Es scheint mir als wäre die Methode, die von Kurt Schütte in seinem
Wiederspruchsfreiheitsbeweis von PA verwendet wird, eine gänzlich andere.
Schütte, Tait und Andere verwenden Kalküle mit unendlichen Deduktion-
sregeln um, in einem gewissen Sinne, die Beweistheoretische Ordinalzahl
einer Theorie zu berechnen. Dies erfolgt über eine Transformation der endlichen
Deduktionen der Theorie (in der Logik erster Stufe) in Deduktionen in
einem unendlichen Kalkül, das Schnittelimination erlaubt. Im Gegensatz
zu Gentzens Methode hat die von Schütte eine enge Beziehung zu den be-
weistheoretischen Ordinalzahlen.
Auf die Unterschiede der beiden Methoden wird nicht weiter eingeangen
werden. Anstatt dieses Vergleiches wird lediglich eine Variante von Taits
Methode dazu verwendet die Π1

1-Ordinalzahl, wie von Wolfram Pohlers in
[8] beschrieben, von Theorien TAf (aufgefasst als Taitkalkühl) zu messen.
Es wird angenommen das TAf follgende Eigenschaften erfüllt:

1. TAf enthällt für jede primitiv rekursive Funktion die de�nierenden
Formeln als Axiome.

2. Weiters enthällt TAf alle Instanzen des Schemas

ϕ(c1)∧...∧ϕ(cm)∧∀~x[ϕ(x1)∧...∧ϕ(xn)→ ϕ(f(x1, ..., xn))]→ ∀xϕ(x).

Hierbei ist f einm-stelliges Symbol einer gleichstelligen primitiv rekur-
siven Funktion und c1, ..., cl Individuenkonstanten.

3. Es wird auserdem angenommen das jedes n ∈ N gleich einer Komposi-
tion aus fN und den natürlichen Zahlen cN1 , ..., c

N
l ist.

70

Curriculum Vitae

Personal Data

Name TOPPEL Michael

Date of birth March 10, 1987

Nationality Austria

Education

2007-2009 Faculty of philosophy and educational science, University
of Vienna, studies in philosophy (discontinued)

2006- Faculty of mathematics, University of Vienna, studies
in mathematical logic, estimated �nishing date: end of
August 2011, Degree: Master (Mag. rer. nat.)

2001-2006 College for chemical engineering (HBLVA für Chemische
Industrie - Rosensteingasse), Vienna, Austria

Professional Experience

2010-2011 Tutor(teaching assistant) at the institute of philosophy,
University of Vienna

2005 Oncological research (internship) at Boehringer-Ingelheim
Austria Gesmbh

71

