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1 Category theory

1.1 Foundations and elementary definitions

1.1.1 REMARK. There are several set theories on which category theory can be built. For us it is sufficient
to adapt a system such as Morse-Kelley set theory, which allows us to talk about two different kinds of
entities, namely small classes (sets) and proper classes. Each class has only small classes as elements.
Anything that can be done in ZFC set theory we may also do with sets in Morse-Kelley set theory, but
beyond that we may also speak of arbitrary collections of sets, which is essential in category theory. Proper
classes, for example the class of all sets, are not elements of any class.

There is another way to deal with the collection of all sets. To the axioms of ZFC set theory we may
add an axiom due to Alexander Grothendieck which states that any set is an element of a set U that has

the properties that (1) if z € U, then x is transitive (that is, |Jy C z), (2) Ux U C U, (3) if z € U, then
YyET
the powerset of z is an element of U and (4) if (z;);cs is a family in U and I € U, then |Jz; € U. Such
i€l

a set is called a Grothendieck universe. All of “ordinary mathematics” can be done within any particular
uncountable Grothendieck universe U. Call the elements of U small sets. In contrast to Morse-Kelley set
theory however, we do not simply have small sets and sets having small sets as elements. Instead, the sets
are arranged in layers in such a way that the lowest layer consists of all small sets and such that there is
no topmost layer.

In all what follows, we do not place special emphasis on the choice of set theoretic foundations. The
only important point is that we have at least two kinds of objects at our disposal. We use the terms “small

)

class” and “set” exchangeably to denote objects of the smaller kind and “proper class” to denote objects

of the larger kind. Everything is a class.

1.1.2 DEFINITION. A function o is called a partial binary operation on a class M if there is a subclass D
of M x M such that o : D — M. In this context, the function o is called composition. We say that the
composition of two elements a and b of M is defined if (a,b) € D. An element e of M is called an identity

if e o a = a whenever e o a is defined and a o e = a whenever a o e is defined.
A class ¥ is called a category if the following conditions are satisfied.
(1) € is a pair (M, o), where o is a partial binary operation on M.
(2) For all a,b,c € M, the following statements are equivalent:
(a) The compositions a o b and b o ¢ are defined.
(b) The compositions a o b and (a o b) o ¢ are defined.
(¢) The compositions bo ¢ and a o (bo ¢) are defined.
If so, we have (aob)oc=ao (boc).

(3) For all a € M, there exist identities ¢ and d such that a o d and c o a are defined.

(4) For all identities ¢ and d, the class {a € M : aod and coa are defined} is a set.
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Elements of M are called morphisms of the category €. For the class M we write Mor(%). Identities
e € M are also called objects of the category €. The class of objects of € is written as Ob(%’). A category

€ is called small if it is a set.

1.1.3 LEMMA. Let € be a category.

(1) For each morphism a of € there exist uniquely determined identities ¢ and d such that c o a and
aod are defined. The identity d is called the domain of a and is written as dom a. The identity c is

called the codomain of a and is written as cod a.
(2) Let e be an object of €. Then code = e = dome.
(3) For each object e of €, the composition e o e is defined and e = e o e.
(4) For all objects e and f of €, the composition e o f is defined if and only if e = f.
(5) If a and b are morphisms of €, then the composition a o b is defined if and only if dom a = cod b.

Proof. (1) If ¢’ is another identity such that ¢ o a is defined, then ¢’ o (co a) = ¢’ o a is defined, therefore
¢ o c is defined; since ¢ and ¢’ are identities, ¢ = co ¢ = ¢/. The proof of the other statement is similar.
(2) All of e, dome and code are identities, therefore code = (code)oe = ¢ = e o dome = dome.
(3) e=eodome =eoe. (4) If eo f is defined, we have e = cod f = f, since e is an identity; if e = f, then
f = dome, therefore eo f is defined. (5) First, aob = (aodoma) o ((codd) ob). Therefore, a ob is defined

if and only if doma o cod b is defined. Since dom a and cod b are identities, the claim follows from (4). O

For objects d and ¢ of the category €, we write homg (d, ¢) for the set {a € M : doma = d and coda =
¢} of morphisms from d to c. The class M is the disjoint union of the sets home (d, ¢), where ¢,d € Ob(%).

1.1.4 REMARK. Very often categories are defined by specifying a class &, for given elements a and b of &
some nonempty set A(b,a) and for elements a, b and ¢ of & a function o.p 4 @ A(c,b) x A(b,a) = A(c, a).
The class of morphisms of the category to be defined is then the class .4 = {(b, f,a) : b,a € O, f € A(b,a)}.
Composition of morphisms (¢, g,b’) and (b, f,a) is defined whenever b = ¥'. If so, (¢, g,b) o (b, f,a) =
(cy0ep.a(g, f),a). Assume that the pair € = (., 0) constructed this way is a category. Then for each
a € O there exists a unique element e, € A(a,a) such that (a,eq,a) is an identity of . Each identity is
of this form. Via the assignment a — (a,e,,a) we may identify & with the class of objects of €. Using
this identification, for each morphism (b, f,a) of ¥ we have cod (b, f,a) = b and dom (b, f,a) = a and for
given objects a and b of € we have hom¢(a,b) = A(b, a).

1.1.5 EXAMPLES.
(1) The empty category is the category (0,0).

(2) Let & be the class of all (small) sets. For sets a and b, let A(b,a) be the set of all functions from a
to b. If a, b and c are sets, let the function o, 4 @ A(c, b) x A(b,a) — A(c,a) be given by the usual
composition of functions. The construction above gives us a category, the category of sets, which is
denoted Set.

(3) The category Top has as objects the topological spaces; morphisms from (X,.7) to (X',.7’) are
given by the functions f from X to X’ that are continuous with respect to .7 and .7’. Composition

in Top is the usual composition of functions.

(4) Other examples of this kind include the category of groups (with group homomorphisms as mor-
phisms), the category of (R, S)-bimodules (with (R, S)-linear functions as morphisms), the category

of R-algebras and so on.
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(5)

To each preordered set (I, <) we construct an associated small category .#: The set of morphisms of
& is the set {(i,j) € I x I : j < i}. Composition of (4,7) and (5, k) is defined if and only if j = j.
Then (i,7) o (j, k) = (i,k). Objects of .# are the pairs (4,4) for ¢ € I. The function i — (4,4) from
I to Ob(#) is a bijection. Using this identification, we have dom (¢, j) = j and cod (i,j) = i. For
given objects ¢ and j of £, we have hom ¢ (i,7) = {(4,7)} if ¢ < 7 and () in the other case.

There are the following special cases. If < is the discrete order on I, the associated category .# has
no nontrivial morphisms. Such a category is also called a discrete category. If I is a two-element set
{a,b} and < is the preorder I x I, we may illustrate the category .# as e =— e . Likewise, the

category originating from a three-element set I together with the order I x I may be visualized as

[ ] [ ]

Ny,

Let (V, A) be a directed multigraph, that is, V' is a set (of vertices) and A is a function from a set T
(of edges) to V x V. Let X be the image of A and assume that the multigraph has the properties
that (a) for all v € V| we have (v,v) € X and (b) whenever (c,b) € X and (b,a) € X there is a
unique 7 € I such that (¢,a) = A(7).
Then a category % is defined as follows. The set of morphisms is the disjoint union M of I and V.
Extend the function A to M by setting A(v) = (v,v) for v € V. Composition of morphisms j and 4
is defined if there exist a,b, ¢ such that A(j) = (¢,b) and A(¢) = (b,a), and in that case,

the k € I such that A(k) = (¢,a) if d,jel
joi= joif ieV

i if eV

For example, let T = {1,2} and V = {1,2}. The function 1 — (1,2), 2 — (1,2) from I to V defines

a category which we may depict as e — o .
The function 1 — (1,2), 2 — (1,2), 3 — (2,3), 4 — (1,3) from I = {1,2,3,4} to V = {1,2,3}
I

defines the category ¢ —Z e — o .

1.1.6 DEFINITION. (1) Let ¥ = (M, o) be a category. The dual or opposite category of € is the pair

(M, 0°P), where o°P is defined as follows: If D C M x M is chosen in such a way that o : D — M,
then o°P is the function from {(a,b) : (b,a) € D} to M defined by a o°? b =boa.

Let € = (M,0) and 2 = (N,o’) be categories. The category Z is called a subcategory of € if
N C M, Ob(Z2) C Ob(%¥) and o' is the restriction of o that has the property that whenever a o b is
defined for a,b € N, then a o’ b is defined.

Let € = (M,0) and 2 = (N,0’) be categories. The product category € x 2 is the category
(M XN, (o,0")). That is, morphisms (f1, f2) and (g1, g2) of € x & are composable if and only if f; and
g1 are composable in € and f2 and go are composable in Z. Then (f1, f2)o(g1,92) = (f10g1, f2092).

More general, let P denote a formula and let i, I, C, f and g denote distinct variables of which I, f

and g do not occur freely in P. Let P have the following property:

There is a set I whose elements are all i for which there exists a unique C such that P (L11)
and for all i € I, there is a category C such that P. o

Then the class {f : f is a family having the index set I and Vi € I3C(P and f(i) € Mor(C))} to-
gether with the composition defined by f o g = (f; 0 g;)ie1 is a category, the product of the categories
C, wherei €l and P.
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1.1.7 ExaMPLE. For rings with unity R and S (not necessarily commutative), we denote by pRMg the
category of (R, S)-bimodules together with (R, S)-linear maps. Let Ry,..., R, be rings and let P be the
formula “C = g, Mg, and 1 <1i < n”. The product of the categories r, ,Mpg, where 1 <14 <n has as
morphisms all tuples (f1, ..., fn) such that f; € Mor (Rq‘,—lMRi) for 1 < i < n. Composition of (f1,..., fn)
and (g1,...,9n) is defined if and only if for all 1 <4 < n the composition f; o g; is defined in g,_,Mpg,. If
so, we have (f1,...,fn)o(g1,---,9n) = (f1291,.- -, fn ©gn), where the composition in the i-th coordinate
is taken in the category g, ,Mpg,.

1.1.8 REMARK. The construction of product categories takes a simpler form if we accept the axiom of
Grothendieck universes, since in this theory it is possible to talk about families of categories. In Morse-
Kelley set theory this is not possible since categories that are not small cannot occur as elements, and
therefore they can not be members of a family. Nevertheless, we use phrases such as “Let C; be a category
for i € I” if we want to suppose that a formula P having the property is given.

1.2 Functors and natural transformations
1.2.1 DEFINITION. A class F' is called a functor from < to £ if the following conditions are satisfied.
(1) & and A are categories.
(2) F is a function from Mor(/) to Mor(%).
(3) If a € Mor(«) is an identity, then F(a) is an identity.
(4) For all «Z-morphisms f and g, cod f = dom ¢ implies cod F'(f) = dom F(g) and F(go f) = F(g) o
E(f).

To indicate this situation, we also write F' : & — %. We also use phrases such as “Let F': & — % be a
functor”. Note however that the categories &7 and Z are not determined by I alone: It is easy to see that
a functor from &7 to 4 is also a functor from &7°P to °P. This fact simplifies the process of “reversing all
the arrows in a category”, that is, passing to the dual of a “category theoretic statement”. Alternatively,
we could also define a functor as a triple (&7, F, %) such that the properties (1) to (4) are satisfied. We

do not use this definition.

Composition of functors is the usual composition of functions — the arising function turns out to be
a functor as well. Associativity of this kind of composition is evident, and so is the fact that the functor

idyor(wr) @ @ — &, denoted by 1, acts as an identity for composition.

1.2.2 DEFINITION. A class 7 is called natural transformation from F to G (with respect to &/ and A) if

the following conditions are satisfied.
(1) F and G are functors from &7 to 4.
(2) n is a function from the class of identities of & to the class of morphisms of .
(3) For each identity a of o/ we have n(a) : F(a) = G(a).
(4) If f:a — bis a €-morphism, then n, o F(f) = G(f) o 1.

If confusion is unlikely to occur, we will omit the part “with respect to &/ and %”. The notationn : F — G

is synonymous with “p is a natural transformation from F to G”.

There are two kinds of composition of natural transformations.



1.2 Functors and natural transformations

(1) The vertical composition or simply composition. Let categories, functors and natural transformations

[\

\ P

We define (noe)(a) =n(a)oe(a) for objects a of &7. Then no e is a natural transformation from F to H

be given as in the following diagram.

with respect to &/ and %. Vertical composition of natural transformations is associative, as can be checked
easily by gluing together two commutative squares. Let &/ and % are categories and let F' : & — % be
a functor. The natural transformation 1g from F to F', defined by 1r(a) = F(a) for a € Ob(&/), acts as

an identity for the vertical composition, since F(a) is an identity of & for all o7-objects a.

A natural transformation n : F — G is called a natural isomorphism if 1(i) is an isomorphism for all i.
This is the case if and only if there is a natural transformation ¢ : G — F such that e o = 1r and

noe=1g.

(2) The horizontal composition or star product. First, let categories, functors and a natural transformation
be given as in the following diagram.
/N
# |- @
RN

o

2

A short calculation shows that the function a — eps(,4) is a natural transformation from F o M to G o M
and b — K(gp) is a natural transformation from K o F to K o G. These functions will turn out to be
special cases of the star product yet to be defined. Now consider the following diagram.

ENG TR

o e @z |r @

g
We have two natural transformations from K o F' to L o G, specifically a — L(g,) © pip(q) and a
Ké(a) © K (gq). Since p is a natural transformation from K to L, for all a € Ob(#/) the following diagram
is commutative and hence the two natural transformations just defined are equal.

HF(a)

KFa LFa
K(%)J \L(Ea)
KGa LGa
HG(a)

The natural transformation thus defined is denoted by p*e. Horizontal composition is associative; identities

are the natural transformations 11, : a — a, where & is a category.

M K
There is the following special case. Let functors & — £ 4?’ € — 2 be given and let € :
F — G be a natural transformation. By abuse of notation, we write K x ¢ instead of 1x x¢ and n % F
instead of nx 1. Then (K %¢)(b) = K(e) for objects b of # and (nx F)(a) = np(q for objects a of
o7 . Also, the equation K x F' = 1 g,r holds whenever F' and K are composable functors. Given functors
F K
o :Gt B :Lt % and natural transformations ¢ : F' — G and n : K — L, the following diagram is

commutative.
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nx F
KoF ——LoF

K*el H*e JL*E

N
KoG——=LoG
wxG

There are the following distributive laws for natural transformations.
F

M T K
Given functors & — B —G=> ¥ — 2 and natural transformations ¢ : ' — G and n: G — H,
H

we have K x (noe) = (K xn)o (K x¢)and (noe)*M = (nx M) o (ex M).
There is also the following (more general) theorem on the relationship between horizontal and vertical

composition. Given the following diagram, we have (v o u) *x (noe) = (v *n) o (i * ), the so—called

SR

A —G— B —L—F

(AN

Now we wish to define the “category of natural transformations between functors from J to € 7. It is,

interchange law.

however, not enough to take the class of natural transformations as the class of morphisms, since in general
a pair of functors (F, G) such that 7 is a natural transformation from F to G is not unique, as the following

example shows.

1.2.3 ExaMPLE. Consider the following category <.

f
a b
g
X« /
c
Let three functors from & to &/ be defined as follows: F' is the identity functor, G is the functor that
exchanges f and g and H is defined by H(f) = H(g) = k, H(k) = k and H(h) = c. This gives H(a) = a

H(b) = H(c) = c. Let also a function n be defined by n(a) = a, n(b) = h and n(c) = ¢. Then 7 is a natural

transformation from F to H, as the following diagrams, corresponding respectively to the morphisms f,

CH

Analogously, 7 is a natural transformation from G to H.

g, k and h, show.

a
_— _—

B

O +—Q
ES
)

T —Q

g

Q<79

_—

1.2.4 DEFINITION. Let % be a category and J be a small category. According to Remark we define a
category, written as [J, %] or € as follows: The objects are the functors from J to %, the morphisms are
given by natural transformations between such functors and the composition of morphisms is the vertical

composition of natural transformations. The category €7 is called the category of functors from J to €.
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1.2.5 REMARK. (1) The class of morphisms of the category € is the class of triples (G,n, F'), where
7 : F — G with respect to J and . Composition of (H,u,G’) and (G,n, F) is defined if and only if
G = @, and given that, we have (H, u,G) o (G,n,F) = (H,uon, F).

(2) When working in Morse-Kelley set theory, the claim that .J be a small category is essential: If J is a
proper class and if € is not the empty category, then a natural transformation n between functors from J

to ¥ is itself a proper class and can therefore not be considered as a morphism of a category.

1.3 The dual of a statement

1.3.1 REMARK AND DEFINITION. For each statement involving one or more categories, we want to be
able to speak of the statement that results from “reversing all morphisms” in the appearing categories.
To avoid entering into a discussion about what a “category-theoretic statement” could be, we give an
elementary definition. This definition requires us to speak of “the dual €°P of the category €~ without
any restriction on ¢ — that is, even if ¢ turns out not to be a category at all. In the remaining part of
the paper however we will use the notation °P only in the case that we know that ¥ is a category, since
we do not have to say very much about €°P in the other case.

Let Cq,...,C, denote pairwise distinct variables and let P denote a formula. Let Q be the formula
that arises from P by replacing each free occurrence of Cy,...,C, by C{¥,..., C% respectively. We call

any formula equivalent to “Cy, ..., C, are categories and Q7 the dual of P with respect to Cq,...,C,.

1.3.2 LEMMA. Let P be a formula and let Cy,...,C,, be pairwise distinct variables.

(1) The dual of the dual of P with respect to Cy,...,C,, is the formula “C,...,C,, are categories and
P

(2) IfP is a theorem and P°P is the dual of P with respect to Cy, ..., C,, then the formula “Cy,...,C,

are categories = P°P” is also a theorem.

O

1.3.3 EXaMPLE. The statement that x is an initial object of € is the following: “% is a category and
for all z € Ob(%) there is a unique @-morphism f : x — z”. The dual statement with respect to € is
“% is a category and for all z € Ob(%°P) there is a unique €°P-morphism f : x — 2”. The categories €
and €°P have the same morphisms and objects. Furthermore, when passing to the dual category, domain
and codomain of a morphism exchange. Therefore the dual statement is “% is a category and for all
z € Ob(¥) there is a unique €-morphism f : z — 2”7, which means that x is a final object of €.

Also, consider the notion of an isomorphism of objects: “% is a category, x and y are objects of ¥ and
there exist ¢-morphisms f : ¢ — y and g : ¥y — x such that fog = 1, and go f = 1,”. The dual
statement is “% is a category, x and y are objects of €°P and there exist € °P-morphisms f : x — y and
g :y — x such that fo°? g =1, and go° f = 1,”. This is equivalent to “% is a category, x and y are
objects of € and there exist ¥-morphisms f:y — x and g : * — y such that go f =1, and fog=1,",

which is the original statement up to renaming of bound variables. Isomorphism of objects is self-dual.

Now consider the following theorem:

“If x and y are initial objects of a category ¥, then x and y are isomorphic in €”. Dualizing this
proposition, we get the following theorem: “If ¥ is a category and x and y are initial objects of ¥°P, then
x and y are isomorphic in €°P”. We arrive at the following corollary: “If ¥ is a category and x and y are

final objects of €, then z and y are isomorphic in €.
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This is the right place to examine what happens to functors, natural transformations and functor
categories when we pass to the dual categories. From now on, unless otherwise noted, duals are always to
be taken with respect to all of the involved categories. Identifying these categories will always be an easy
task.

1.3.4 REMARK. (1) The class F is a functor from &7 to £ if and only if F is a functor from &/°P to
Z°P. Since (€°P)°P = € for any category €, we have to work out only one direction of this claim. Let
F: o — P be a functor. It is a trivial fact that the function F' maps objects of @7°P to objects of #°P. If
f and g are morphisms of &/°P such that cod®® f = dom®? g, then F(go°P f) = F(fog) = F(f)o F(g) =
F(g) o°? F(f), and the statement is proved. It follows that the statement “F' is a functor from & to A7

is self-dual.

(2) A family 7 is a natural transformation from F' to G with respect to &/ and £ if and only if 7 is a
natural transformation from G to F with respect to &7/°P and %°P. To prove this, assume that the former
is true. For each &7°P-morphism m we have F(m)o°?n(dom®” m) = n(cod m)o F(m) = G(m)on(domm) =
n(cod®® m) o°P G(m). The converse follows from the identity (¢°P)” = €.

The dual of the statement “7 is a natural transformation from F': &/ — % to G : &/ — % (with respect
to o/ and #)” is therefore “n is a natural transformation from G to F' (with respect to &/ and %#)”.

Dualizing reverts natural transformations.

(3) The dual of a functor category. Let € be a category and let J be a small one. The category [J, €]°P
has the same morphisms as [J, €]; the category [J°P, €°P] has as morphisms the triples (F,n, G) such that
7 is a natural transformation from G to F with respect to /°P and Z°P, that is, such that 7 is a natural
transformation from F' to G with respect to & and #. Hence (G, 7, F) is a morphism of [«7, ]°P if and
only if (F,n,G) is a morphism of [«7°P, #°P|. In fact A(G,n, F) = (F,n,G) defines an isomorphism from
[« , B)°P onto [&7°P, PB°P]: Since objects of these categories are of the form (F, 1, F'), objects are mapped
to objects; if (G,n, F) and (H,e,G) are morphisms of [«7, %P, then A((G,n,F) o (H,e,G)) =

[of ,B]oP
A((Hava) [ﬂi%’] (GJ%F)) = A(Ha50n7F) = (F,EO’I’},H) = (FaUOOpfyH) = (FJ%G) [szoxf%op] (G7€7H) =
A(G,n, F) o A(H,e,G). Here o denotes composition of natural transformations with respect to <

[P, 28°P]
and A, and o°P denotes composition of natural transformations with respect to &7°P and Z°P. Bijectivity

of A is obvious, and the claim is proved.

(4) Summarizing: Dualization reverts the orientation of morphisms and natural transformations, but not

the orientation of functors. Furthermore, the categories [«7, Z|°P and [«7/°P, 8°P] are isomorphic.

1.4 Adjunctions

1.4.1 DEFINITION. Let R : # — &/ be a functor and let a be an object of o/. We call a pair (b,{) an
initial morphism for a with respect to R or an R-initial morphism for a, if the following, so-called universal

property is satisfied:

b€ Ob(#) and ¢ : a — R(b) and if ¥’ € Ob(H) and g : a — R(V'), there is a unique
ZB-morphism g : b — b’ such that R(g) o = g.

R(b) 22 Ry

N/
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1.4 Adjunctions

Let L : of — 2 be a functor and let b be an object of . We call a pair (a, () a final morphism for b with

respect to L or an L-final morphism for b, if the following universal property is satisfied:

a € Ob(«) and ¢ : L(a) — b and if o’ € Ob(«) and f : L(a’) — b, there is a unique
&/-morphism f : a’ — a such that ¢ o L(f) = f.

L(f)
L(a) «~—— L(d')
\ /0
b
Apart from the variable names the two notions are dual to each other. A universal morphism is either an

initial morphism or a final morphism: A universal morphism from a to R is an R-initial morphism for a

and a universal morphism from L to b is an L-final morphism for b.

1.4.2 REMARK. Initial morphisms for a with respect to R : 4 — &/ are precisely the initial objects of a
so-called comma category. The objects of this category are pairs (b, 7), where b € Ob(#) and 7 : a — R(b)
is an &/-morphism. The set of morphisms from (b, 7) to (', 7') consists of those #-morphisms p : b — V'
satisfying R(p) o m = 7. Likewise, final morphisms are the final objects of a similarly defined category.

1.4.3 EXAMPLES.

(1) The free group. Let Grp be the category of groups and group homomorphisms and let U : Grp — Set
be the forgetful functor. This functor transforms each group into its underlying set and each group
homomorphism into its underlying function. A U-initial morphism for a set A is a pair (G, n), where G is

a group and 7 is a function from A to the underlying set of G with the following property:

For each group H and each function g from A to the underlying set of H there exists one and

only one group homomorphism g : G — H such that go f =g.

This property characterizes the free group generated by A up to isomorphism. The map 7 is also called
insertion of generators. This example carries over, for example, to free R-modules and free R-algebras,

by making only the obvious changes.

(2) Define a functor A : Grp — Grp X Grp by A(a) = (a,a) for groups and group homomorphisms a.
Let G and H be groups. Then a A-final morphism for (G, H) is a pair (4, ¢), where A is a group and ¢ is
a pair (g, h) of group homomorphisms, g : A — G and h : A — H, having the following property:

For each group B and for all group homomorphisms ¢’ : B — G and b’ : B — H there exists a
unique group homomorphism f : B — A such that go f = ¢’ and ho f = }'.

This is the universal property of the product of groups. The example generalizes easily to arbitrary index

sets and also to many other categories than Grp.

(3) Let A : Grp — Grp x Grp be the functor introduced in the previous example. A A-initial morphism
for a pair (G, H) of groups is a group A together with pair (g, h) of group homomorphisms, g : G — A
and h : H — A such that the following property is satisfied.
For each group B and for all group homomorphisms ¢’ : G — B and b’ : H — B there exists a
unique group homomorphism f : A — B such that fog=¢" and foh =1h'.

The group A together with g and & is a free product of the groups G and H.
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(4) Consider the diagonal functor A : Set — Set x Set, where A(z) = (z,x) for sets and functions z.
A A-initial morphism for a pair (4, B) of sets is a set C' together with two functions, ¢ : A — C and
b: B — C, such that the universal property of the disjoint union of two sets is satisfied: Each pair of
functions a’ : A — D, b’ : B — D can be continued uniquely to a function from C to D.

(5) Let CRing be the category of commutative rings with unity, where ring homomorphisms are assumed
to be unitary. For a given ring R, we denote by R* the group of invertible elements of R. We define
a category &/ as follows: Objects of &7 are pairs (R,S), where R is a ring and S is a submonoid of
(R,-). Morphisms (R, S) — (R/,S’) are given by ring homomorphisms f : R — R’ with the property that
f(S) C S’. We further define a functor G : CRing — & by G(R) = (R, R*) for rings R and G(f) = f
for morphisms f: R — R'.

Let R be a ring and S a submonoid of (R,-). An G-initial morphism for (R, S) is a pair (T, e), where T
is a ring and e : R — T is a ring homomorphism satisfying e(S) C T* and the following property:

For each ring 7" and each ring homomorphism g : R — T satisfying ¢g(S) C T'* there is a
unique ring homomorphism g : T'— T” such that goe = g.

This is the universal property of the ring of fractions: T is the ring of fractions of R with denominators in

S.

(6) Let R be a commutative ring and gkM be the category of (left) R-modules and R-linear maps. We
then have the internal hom-functor rpHom which assigns to each pair (E, F') of R-modules the R-module
of R-linear maps f : E — F and to each pair (f,g) of R-module homomorphisms f: B - E, g: F — F’
the R-linear map gpHom(f,g) : gHom(E, F) — gHom(E', F’), x — gox o f. Let F be an R-module. In

what follows we are concerned with the (covariant) functor gHom(F, _): gM — g M.

Let E be an R-module. A pair (G,7), where G is an R-module and 7 : E — gHom(F,G) is an R-linear
map, is a gHom(F, _ )-initial morphism for F if and only if the following holds:

For each R-module H and each R-linear map h : E — grHom(F, H) there is one and only one
R-linear map h : G — H such that gkHom(F,h) on = h.
The formula gHom(F,h) on = h is equivalent to saying that h(n(e)(f)) = h(e)(f) for all (e, f) € E x F.
Using the canonical correspondence between bilinear maps E' X F' — L and linear maps £ — pHom(F, L),

we translate the statement above and arrive at the universal property of the tensor product of the R-
modules £ and F:

If H is an R-module and h : E x F' — H is R-bilinear, then there exists a unique R-linear map
h: G — H such that h(e ® f) = h(e, f) for all (e, f) € E x F.

Here ® denotes the bilinear map (e, f) — n(e)(f).

Analogously, using the canonical correspondence between bilinear maps from E x F' to L and linear maps
from F to gHom(E, L), the tensor product F ® F can be seen as a gHom(E, _ )-initial morphism for F.
R

(7) The initial topology on a set. Let I be a small category and let € be another category. For each
functor F' : I — % we have a category CI(?%e(F), the category of cones over F: Its objects are families of
%-morphisms (f;);cr such that there exists an ¢-object X with the properties that f; : X — F(i) for all
i and if @ : ¢ — j is an J-morphism, then F(a) o f; = f;. A morphism from (f;); to (g;); is given by a
% -morphism h : X = dom f; — Y = dom g; with the property that g; o h = f; for all i.

10
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In the following, whenever a letter is used both in boldface and normal font, we speak of a topological space
resp. a Top-morphism (in boldface) and the underlying set resp. the underlying function (normal font).
Now let I be a set (which we identify with the associated small discrete category), let (Y;)icr = (Yi, Zi)icr
be a family of topological spaces (which we identify with a functor from I to Top) and let X be a set.
Furthermore, let (f;);cr be a family of functions, where f; : X — Y;. If U : Top — Set is the forgetful
functor, this family is an object of the category (Egrelte(U oY) = g%re}s(Y) We have the forgetful functor
W . gggs(Y) — g%re}s(Y) which assigns to a family of Top-morphisms the family of corresponding
Set-morphisms and also to a Top-morphism the corresponding Set-morphism. We intend to prove the
following: If X denotes the set X provided with the initial topology with respect to the functions f;, and
if f; denotes the now continuous function X — Y, the family (f;);c; together with the identity function
on X forms a final morphism for (f;);e; with respect to the functor W.

For a pair (G, k) to be a W-final morphism it is necessary and sufficient that the following properties be
fulfilled.

(1) G is a family (g;);cr and there exists a topological space X’ such that for all i, the element g; is a
Top-morphism from X’ to Y;. The space X’ is then uniquely determined.

(2) k is a function from X’ to X with the property that f; o k = g; for all i.

(3) If X" is a topological space, h; is a continuous function from X” to Y; for all 4 and if [ : X" — X is
a function with the property that f; ol = h; for all 4, then there exists a unique continuous function
m : X"’ — X such that kom = 1[.

U(m)

U(X’) U(X”)
\k l/
~a e
X
Ulg: ‘ U(h;
(&) ’l (h;)
U(Y;)

The pair ((f;);,idx) satisfies these properties: Choose X’ = X. Then (1) clearly holds, and (2) is trivial.
Let h; : X" — Y; be a Top-morphism for all 7 and let [ : X" — X be a function satisfying f;ol = h; for all
i. Since h; is a continuous function, all of the functions f; ol are continuous. The characteristic property
of the initial topology now implies continuity of I. Letting m be such that U(m) = [, the diagram above
is commutative. Since U is a faithful functor (that is, each restriction of U to a hom-set is injective) and

k is the identity on X, the choice is clearly unique.

1.4.4 PROPOSITION. Let L and M be functors from o/ to % and let b € Ob(%). Assume that (a,() is

an L-final morphism for b.

(1) Assume that (a,&) is another final morphisms for b with respect to L. There is a unique morphism

g :a — a such that ( o L(g) = &. It is an isomorphism.

11
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(2) Let g : @ — a be an isomorphism. Then (a,( o L(g)) is an L-final morphism for b.

(3) If T : M — L is a natural isomorphism, then (a,( o 7,) is an M-final morphism for b. In particular,

the object parts of final morphisms with respect to naturally isomorphic functors are isomorphic.
(4) If f : b — b is an isomorphism, then (a, f o ¢) is an L-final morphism for b.

(5) Assume that the following diagram is commutative, where g : a — @ and f : b — b are isomorphisms.

L
(9) I

(@)
CJ Js
b

b

Then (a, ) is an L-final morphism for b.
Proof.

(1) There is exactly one &/-morphism h : a — @ satisfying £ o L(h) = ¢ and exactly one &7-morphism
g : @ — a satisfying ( o L(g) = . Then g o h is the unique morphism f : @ — a satisfying ¢ o F(f) = ¢,
therefore g o h = 1,.

L(goh)

Also, h o g is the unique morphism f : @ — @ such that £ o F(f) = &.

(2) Set £ = (o L(g). Assume that a' is an o/-object and that f : L(a’) — b is a #-morphism. There
exists an .@/-morphism f : a’ — a such that ¢ o L(f) = f; setting h = g~' o f it follows that £ o L(h) =
CoL(g)oL(g~Y)oL(f) = f. If b’ is another .&/-morphism satisfying £ o L(h') = f, then goh’ is a morphism
a such that ¢ o L(a) = (o L(g) o L(k') = £ o L(K') = f, that is, go b’ = f. It follows that h = h'.

(3) Suppose that @ is an «7-object and that & : M(a@) — b. Since £ o 7. ' : L(@) — b, there is a unique
o/-morphism & : @ — a such that (o L(k) =& o Tgl. Using the naturality of 7 this means that there is a
unique &/-morphism k : @ — a such that £ = (o L(k) oz = (( o 7,) o M (k).

(4) If o’ is an </-object and 1 : L(a’) — b, there is a unique morphism A : a’ — a such that ¢ o L(h) =
f~ Lo, that is, such that (f o () o L(h) = .

(5) By (4), (a, fo() is an L-final morphism for b. From (2) it follows that (@, fo (o L(g™!)) = (@,§) is

an L-final morphism for b.

1.4.5 COROLLARY (Dual of Proposition [1.4.4)). Let R,S : 8 — &/ be functors and let a € Ob(4).

(1) Assume that (b,¢) and (b,&) are initial morphisms for a with respect to R. There is a unique
morphism f : b — b such that R(f) o ( = £. It is an isomorphism.

(2) Let (b,¢) be an R-initial morphism for a and let f : b — b be an isomorphism. Then (b, R(f) o () is

an R-initial morphism for a.

12
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(3) If (b,¢) is an R-initial morphism for a and T : R — S is a natural isomorphism, then (b, 7 o ()
is an S-initial morphism for a. In particular, the object parts of initial morphisms with respect to

naturally isomorphic functors are isomorphic.

(4) If (b, C) is an R-initial morphism for a and if g : @ — a is an isomorphism, then (b, (og) is an R-initial

morphism for a.

(5) Let (b,¢) be be an R-initial morphism for a. Assume that f : b — b is a %-isomorphism and that
g:@—> a is an o/ -isomorphism. If ( o g = R(f) o &, then (b, ) is an R-initial morphism for @. O

5
1.4.6 PROPOSITION. Let functors <f N B —> € be given and let C be an object of €.

(1) If (B, s) is a final morphism for C' with respect to S and (A, 1) is a final morphism for B with respect
to L, then (A, s o S(l)) is a final morphism for C' with respect to S o L.

(2) Let (B, s) be a final morphism for C with respect to S and let (A,t) be any such for C with respect
to S o L. There exists a final morphism for B with respect to L.

Proof.

(1) First, we have s: S(B) — C, 1 : L(A) — B, hence so S(l) : (So L)(A) = C. Let X be an «/-object
and f:(SoL)(X)—C.

S(L(a))

S(L(A)) S(L(X))

S S5(b) f

S5(B)

C

S

Because (B, s) is a final morphism, there is a uniquely determined %-morphism b : L(X) — B such that
soS(b) = f. As (A,l) is one, there is a unique «/-morphism a : X — A such that [o L(a) = b. This proves
the existence of an «/-morphism g : X — A satisfying f = s0.S(lo L(g)) = (soS(l)) o (So L)(g). If h
is another morphism with this property, then [ o L(h) is a -morphism k : L(X) — B with the property
that s o S(k) = f. It follows that [ o L(h) = b due to the first uniqueness, and then h = a because of the

second.

(2) There is one and only one #-morphism ! : L(A) — B with the property that s o S(l) = t. We show
that (A,l) is a final morphism for B with respect to L. Assume that X is an «/-object and f : L(X) — B

is a #-morphism.

(L)) <2 g (r(x))
/ S S()
C S(B)

S

Due to the universality of (4, t) there is a unique «-morphism a : X — A such that to(SoL)(a) = soS(f).
We then have so S(lo L(a)) = soS()o(SoL)(a) =to (SoL)(a)=s0S(f). Since (B,s) is universal,
there is a unique #-morphism z : L(X) — B such that so0.S(z) = soS(f). This fact gives us f =10 L(a).
Uniqueness: Assume that b : X — A is another morphism with the property that [ o L(b) = f. Then
to(SoL)(b)=s0S8()o(SoL)(b)=soS(f), which implies a = b.

13
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We state the dual version of this proposition.
1.4.7 COROLLARY. Let functors € — B —> o be given and let A € Ob().

(1) If (B,r) is an initial morphism for A with respect to R and (C,t) is an initial morphism for B with
respect to T, then (C, R(t) or) is an initial morphism for A with respect to RoT.

(2) Let (B,r) be an initial morphism for A with respect to R and (C,u) be an initial morphism for A

with respect to RoT. Then there exists an initial morphism for B with respect to T.
1.4.8 EXAMPLES.

(1) Let Ay : Grp — Grp x Grp and A, : Set — Set x Set be the diagonal functors (defined in [1.4.3(2),
(4)) and let V5 : Grp — Set and V5 : Grp x Grp — Set x Set be the forgetful functors which assign to
each group (resp. pair of groups) the underlying set (resp. pair of sets) and to each group homomorphism
(resp. pair of group homomorphisms) the underlying function (resp. pair of functions). Then the following

diagram is commutative.

Grp Grp x Grp
Vi J J Va
Set Set x Set

As

Suppose that A and B are sets. Let F)4 and Fp be the free groups generated by A and B respectively.
Denote by Fs4 % Fp their free product and by A LI B the disjoint union of A and B. Using Example
1,3,4), we infer the following facts:

1. The pair (F4, F'g) is the object part of a Va-initial morphism for (A, B).

2. The group Fa * F is the object part of a Aj-initial morphism for (Fa, Fig).

3. The set AU B is the object part of a As-initial morphism for (4, B).
Hence F4 * Fig is the object part of an initial morphism for (A, B) with respect to Vo0 Ay = Ay o V; and

is therefore isomorphic to a free group with generating set ALl B. In other words, the free product of free

groups is free.

(2) Suppose that R is a commutative ring. Let gHom : gM° x gM — rM be the internal hom-
functor as in example [1.4.3(6). Let E, F and G be R-modules. The R-module E ® F is the object part

R
of a pHom(E, _ )-initial morphism for F' and (E ® F') ® G is the object part of a RHom(G, _ )-initial
R 'R
morphism for E® F. Hence (E® F)® G is the object part of a gHom(E, gHom(G, _ ))-initial morphism
R R 'R
for F.

Analogously, F' % G is the object part of a gHom(G, _ )-initial morphism for F and FE % (F % G) is the
object part of a gHom(E, _ )-initial morphism for F' @R) G. Therefore £ % (F % G) is the object part of a
rHom(G, pgHom(FE, _))-initial morphism for F'.

By a straightforward evaluation of the expressions (¢(B) o gHom(E, gHom(G, f)))(¢)(e)(g) and
(rHom(G, gHom(E, f))o¢(A))(¢)(e)(g), where p(A) : gHom(E, gHom(G, A)) — pHom(G, pRHom(E, A))
is the isomorphism defined by ¢(A4)(¢)(g)(e) = ¢(e)(g) for each R-module A, one can see that ¢ is a
natural isomorphism from gpHom(E, gHom(G, _)) to gHom(G, gHom(E, _)). Proposition[1.4.4|3) yields

the existence of an isomorphism

14
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Later we will see that the isomorphism + can be chosen in such a way that ¥(e® (f®g)) =(e® f)® g
for all (e, f,g) € Ex F x G.

1.4.9 LEMMA. Let T : I — % and L : &/ — 9% be functors.

(1) Assume that f : @ — y is an I-morphism. Let there exist L-final morphisms (Z,e,) for T(x) and
(y,e,) for T(y). There is a unique &/-morphism f : T — ¥y such that e, o L(f) = T(f) o &,.

L) < L@
T) +— 1)

(2) For alli € Ob(I) let (A, e;) be a final morphism for T'(i) with respect to L. There exists a uniquely
determined functor R : I — o satisfying the following properties.
(a) For all i € Ob(I), we have R(i) = A;.

(b) The family (¢;);con(r) is a natural transformation from Lo R to T.

(3) For all i € Ob(I) let (A;,e;) and (Ai,éi) be final morphisms for T(i) with respect to L. Define
functors R and R according to (2), corresponding to the families (A;,€:);con(ry and (fli,éi)ieOb(I)
respectively. For i € Ob(I) let ¢; : A; — A; be the unique o/ —morphism having the property that
gi o L(p;) = &;. Then (¢;)icon(r) Is a natural isomorphism from R to R.

Proof.
(1) We have T'(f) o€, : L(T) — y, hence the universality of (7,¢,) yields the result.

(2) f R: I — & is a functor satisfying properties (a) and (b), then for all 2,y and for all I-morphisms
f o —y, the formula e, o L(R(f)) = T(f) o €5 holds. The uniqueness now follows from the uniqueness
result in (1). Define R on objects i of I by R(i) = A;, as claimed by (a). If f: 2z — y is an I-morphism,
then by (1) there is a unique /-morphism f : R(x) — R(y) such that e, o L(f) = T(f) o &;. Define
R(f) = f. If R really is a functor, then property (b) is satisfied by definition.

Apparently R preserves identities. If f : @ — y and g : y — z are two I-morphisms, then R(g o f) and
R(g) o R(f) are two «/-morphisms a : A, — A, such that €, 0 L(a) =T(g o f) oe,, as can be seen in the

diagram below. There is only one such morphism, therefore the claim follows.

L(R(go f))

(3) Let f:i— j be an I-morphism.

15
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L(r() —2 L(Rr())
L(en) | T(i) o T(5)| Loy
L(R(0) 7 LRG))

From the diagram we extract the relations &; o L(R(f) o ;) = &j 0 L(R(f)) o L(p;) = T(f) 0 é; 0 L(g;) =
T(f)oe; = ¢j o L(R(f)) = ;0 L(pj) o L(R(f)) = &; o L(pj o R(f)). The universality of (R(j),Z;) now

implies R(f) o p; = ¢j o R(f).

1.4.10 COROLLARY (Dual of Lemma[l.4.9). Let T : I — o and R: % — </ be functors.

(1) Assume that f : y — x is an I-morphism. Let there exist R-final morphisms (Z,n,) for T(x) and
(y,my) for T(y). There is a unique %-morphism f :y — T such that L(f) on, = n, o T(f).

(2) For all i € Ob(I) let (B;,n;) be an initial morphism for T(i) with respect to R. There exists a
uniquely determined functor L : I — % such that the family (1;);con(r) is a natural transformation
from T to Ro L and such that, for all i € Ob(I), we have L(i) = B;.

(3) For all i € Ob(I) let (B;,n;) and (B;, ;) be initial morphisms for T(i) with respect to R. Define
functors L and L according to (2), corresponding to the families (B;,1;)icon(r) and (Bi,ﬁi)iGOb(I)
respectively. For i € Ob(I) let ¢; : B; — B; be the unique %-morphism having the property that
R(;) on;i = 1;. Then (n;);con(r) is a natural isomorphism from L to L.

1.4.11 THEOREM. Let L : &/ — 2% be a functor. Assume that for each b € Ob(%) there exists a final
morphism (Ay, ) for b with respect to L.

(1) There is a uniquely determined functor R : 4 — <o having the properties
(a) For each object b of B, we have R(b) = Ay.

(b) The family (ey)scon(2) is a natural transformation from Lo R to 1.

(2) There is one and only one natural transformation n: 1, — Ro L such that
(exL)o(L*n)=1p.
Moreover, the following equation holds.

(Rxe)o(nxR) =1g.

1r

LoRoL R

L% kL \ /
n*R Rxe

L RoLoR

Proof.
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(1) This is a consequence of Lemma
(2) For each a € Ob(«), the pair ((Ro L)(a),er(q)) is an L-final morphism for L(a). There is hence a
unique Z-morphism 7, : a — (R o L)(a) such that e,y 0 L(na) = 1) = 11(a).

L(na)

(Lo RoL)(a) L(a)
€L(a) 1)

L(a)

This proves uniqueness of a natural transformation 7 satisfying (¢ x L) o (L *n) = 1. Now define n
as above. To show naturality of 7, let f : © — y be an &/-morphism. We need to prove the formula
nyof = (RoL)(f)omn, Since L(f) is a ZA-morphism, we may deduce, using the naturality of ¢ and
the defining property of 7, that ez, o L(ny o f) = epy) o L(ny) o L(f) = L(f) = L(f) o er(a) 0 L(nz) =
er(y) © L((Ro L)(f)) o L(ns) = er(y) © L((R o L)(f) on,). Hence n, o f and (R o L)(f) o1, are two
/-morphisms a : « — (R o L)(y) satisfying the equation £,y o L(a) = L(f). Since ((Ro L)(y),cr()) is
an L-final morphism for L(y), we have n, o f = (Ro L)(f) o n,.

It remains to prove that the formula (R *¢) o (nx R) = 1 holds. To this end, let b € Ob(£). Then
gy : (Lo R)(b) — b is a #-morphism, which by naturality of ¢ implies €, o L(R(ep)) = €b © €1(R(b))-

E(LoR)(b)

(LoRoLoR)(b) (LoR)(b)
(LoR)(ep) £p
(LoR)(b) b

€b

From this formula we deduce e, o L(R(ep) 0 nrp)) = € © L(R(ep)) © L(nr@p)) = €b © €L(r®)) © L(Mre)) =
ep0 L(R(b)). Since (R(b),ep) is a final morphism for b with respect to L, the equality R(ep) o ngpy = R(b)

follows. The assertion is proved. O

1.4.12 COROLLARY (Dual of Theorem [1.4.11). Let R : 8 — &/ be a functor. Assume that for each
a € Ob(&) there exists an initial morphism (B,,n,) for a with respect to R.

(1) There is a uniquely determined functor L : &/ — 98 such that the family (1)a).cob(er) IS a natural
transformation from to 1. to Ro L and such that for each object a of & we have L(a) = B,.

(2) There is one and only one natural transformation € : Lo R — 14 such that (R*¢€)o (n* R) = 1g.
We then have the formula (e x L) o (L*n) = 1p.

Note that up to variable naming, the “triangular identities” exchange in the course of dualizing.
L
1.4.13 DEFINITION. Let functors &/ T. A be given and let there exist natural transformations 7 :
1, — RoL and ¢: Lo R — 14 satisfying the triangular identities

(exL)o(Lxn)=1p and (Rx¢g)o(n*xR)=1g.

Then the pair (L, R) is called an adjunction. We use the notation (n,e) : L 4 R : (#,4/) or simply
L - R to indicate this situation. We call L the left adjoint and R the right adjoint functor. The natural
transformation 7 is called unit and ¢ is called counit of the adjunction.

A functor L is called left adjoint functor if there is an R such that (L, R) is an adjunction. A functor R
is called right adjoint functor if there is an L such that (L, R) is an adjunction.

17
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1.4.14 REMARK. The dual of “(n,e) : L 4 R : (#,</)” with respect to & and B is “(e,n) : R 4 L :
(o7, 2)". The dual with respect to &7 and % of “R: # — « is a right adjoint functor” is “R: # — &

is a left adjoint functor”.

1.4.15 THEOREM. Let (n,¢): L4 R: (A, /) be an adjunction. The functors o/°P x 8 — Set defined by

homg(L_,
homg (_,R

) : (¢,d) — homg(L(c),d) and
) : (e,d) = homg (c, R(d))

are naturally isomorphic. Natural isomorphisms are given by the following Set-morphisms, for (a,b) €
Ob(o x AB):
¢(a,b) : homg(L(a),b) — homy (a, R(b))

), [ R(f)on(a) and
¥(a,b) : homgy (a, R(b)) — homg(L(a),b)

, grepoL(g).
. R
Proof. The functions ¢(a,b) and (a, b) are well-defined: a —-» R(L(a)) RSN R(b) and

L
L(a) ), L(R(b)) = b . Let (¢,d) : (a,b) — (a/,V') be an &°P x Z-morphism, that is, ¢ : @’ — a in

o and d:b— b in . We want to establish commutativity of the following diagram.

#(a,b)
homg(L(a),b) % > hom,y(a, R(b))
¥(a,b)
homg (L(c), d) hom (¢, R(d))
w(a’,b")
homg(L(a'),b') ———" homy(a’, R(V'))
w(a/»b/)

For each %-morphism f : L(a) — b, we have ¢(a’,b')(homg(L(c),d)(f)) = ¢(a’,b')(d o f o L(c)) =
R(do [ o L(e) o 1 = R(do f) o (Ro L(e)) o 1ler = R(do f) 0 1 o ¢ and homy (e, R(d))(o(a,b)(f)) =
hom g (¢, R(d))(R(f) ona) = R(d) o R(f) onq o ¢, since n is a natural transformation.

Let f: L(a) — b be a #-morphism. The formula (¢ x L) o (L 1) = 1 yields ¥(a,b)(¢(a,b)(f)) =
P(a,b)(R(f) 0 na) = ep 0 L(R(f) 0 na) = € 0 L(R(f)) © L(11a) = [ © €L(a) © L(na) = f. Analogously, for
an o/-morphism g : a — R(b), we have ¢(a, 0)(¥(a,b)(9)) = p(a,b) (e 0 L(g)) = R(es) o (R L)(g) 0110 =
R(ep) o nrp) © g = g according to the formula (Rx¢) o (nx R) = 1g.

Naturality of 1 is a straightforward consequence of the above. O

The bijectivity of the functions ¢(a,b) and ¥(a,b) yields the following corollary.
1.4.16 COROLLARY. Let (n,¢): L 4 R: (%,4) be an adjunction. Let a € Ob(</) and b € Ob(A).

(1) For all b € Ob(Z), the pair (R(b),¢ep) is an L-final morphism for b.
If f: L(a) — b is a #-morphism, then R(f) on(a) is the unique &/-morphism g : a — R(b) such
that e, 0 L(g) = f.

(2) For all a € Ob(&7), the pair (L(a),n,) is an R-initial morphism for a.
If g: a — R(b) is an &/ -morphism, then €y, o L(g) is the unique -morphism f : L(a) — b such that
R(f)ona.=g.

18
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L(R(E) ZEDD Lo R(L(@) " H) b
b a

The following characterization of adjoint functors is also very useful.

1.4.17 COROLLARY. Let L : of — A be a functor. The following statements are equivalent:
(1) L ist a left adjoint functor.
(2) For each object b of % there is an L-final morphism for b.

Also, a functor R is a right adjoint functor if and only if there is an R-initial morphism for each object a
of & .

1.4.18 PROPOSITION (Uniqueness of adjoint functors). If (L, R) and (L, R) are adjunctions, then R and
R are naturally isomorphic. Let n,7,¢,é, 9/ and % be chosen such that (n,e) : L 4R : (AB,o) and
(n,é) : L R: (B, o). Then a natural isomorphism ¢ from R to R is given by the unique & —morphisms
@b - R(b) — R(b) satisfying ey, o L(gy) = &y, where b € Ob(#). Conversely, if (L, R) is an adjunction and
R is naturally isomorphic to ]:2, then (L, R) is an adjunction.

If (L,R) and (ﬁ,R) are adjunctions, then L and L are naturally isomorphic. Let n,7,¢,é, </ and % be
chosen such that (n,¢) : L 4 R : (#,4) and (§,€) : L 4 R : (#, /). Then a natural isomorphism 1)
from L to L is given by the unique %-morphisms 1, : L(a) — L(a) satisfying R(1q) © Na = 7la, where
a € Ob(«/). Conversely, if (L, R) is an adjunction and L is naturally isomorphic to L, then (L, R) is an

adjunction.

Proof. Tt is sufficient to give a proof of the first pair of statements. By reason of Corollary 1), for
each Z-object b the pairs (R(b),ep) and (R(D), &) are L-final morphisms for b. Since (L, R) and (L, R)
are adjunctions, we have e : Lo R — 1g and é : Lo R — 14. For b € Ob(#) let ¢, : R(b) — R(b)
be the «7-morphism having the property that e, o L(¢p) = €. By Lemma 3), b — ¢y is a natural
isomorphism from R to R.

To prove the second statement, let 4 : R — R be a natural isomorphism. Define 7= (uxL)on and
E=co(Lxpt).

* L Lxu !t
ly —>RoL "> RolL LoR——+LoR 1z

Then (7,€) : L4 R : (%,.47) is an adjunction: The proof of this statement is a straightforward verification

of the triangular identities. O

L s
1.4.19 THEOREM. Let functors o/ T. P T. % be given. If (L,R) and (S,T) are adjunctions,

then (SoL,RoT) is also an adjunction.

Proof. Choose 7,7,¢,é such that (n,e) : L 4 R : (%#,<) and (1),€) : S AT : (€¢,%). The domains and

codomains of these natural transformations are as follows.

n:1y - RolL ce:LoR—1g
N:1lg—>ToS €:50T = 1g

19



1 Category theory

Let ¢ be an object of €. The pair (T'(c),(c)) is an S-final morphism for ¢ and ((RoT)(c),e7()) is an L-final
morphism for T'(c), by Corollary By reason of Proposition mthe pair ((RoT)(c),é.08(ez(e))) =
((RoT)(c),(¢0(S*e*T))(c)) is an S o L-final morphism for c. But €0 (S*e*T): (SoL)o(RoT) — 1y
is a natural transformation. Feeding this into Theorem (1), the assertion is proved. O

1.5 Limits and continuity

1.5.1 DEFINITION.

Let € be a category and let J be a small one. We construct a functor A : € — %€ as follows: For each
object a of € we define a functor A(a) by A(a)(j) = a for all j € Ob(J). If g : a — a’ is a morphism of
%, let A(g) be given by the natural transformation from A(a) to A(a’) that satisfies A(g)(j) = g for all
objects j of J. This functor is also written as A or A« ;, depending on the extent to which confusion is

possible. We call A ; the diagonal functor for € with respect to J.

1.5.2 DEFINITION. Assume that F':.J — % is a functor, N is an object of 4 and n = (1;);jeon(s) is a

family of ¥’-morphisms.

(1) A cone over F with apex N or a cone from N to F is a pair (N,¢) such that ¢ is a natural transfor-
mation from A(N) to F. That is, such that €; : N — F(j) for all J-objects j and F(f)oe; = ¢ for all
J-morphisms f:j — j'.

A co-cone over F with apex N or a co-cone from F to N is a pair (N,n) such that 1 is a natural
transformation from F' to A(N). That is, such that n; : F'(j) = N for all J-objects j and n; o F(f) =n;
for all J-morphisms f:j — j'.

(2) The pair (N,e) is called a limit of F if (N,¢) is a cone from N to F' and for each cone (M, a) there
is a unique €-morphism &£ : M — N such that €; 0 £ = «; for all objects j of J. By abuse of notation
(morphisms of ¢’/ are not natural transformations according to our definition), we may identify a limit
(N,¢e) of F with a A-final morphism for F'.

The pair (N, n) is called a colimit of F if it is a co-cone from F to N and for each co-cone (M, 3) there
is a unique ¢-morphism ¢ : N — M such that ¢ on; = j3; for all objects j of J. A colimit (NN, 7) may be
viewed as a A-initial morphism for F'.

¢
M
A ‘ﬁl

F(i)

N

F(i F(y
2(f) Q U) 2(f)

(N,&;) is a limit of F (M, mn;) is a colimit of F
(3) The category € is called J-complete (resp. J-cocomplete) if for each functor F' : J — € there exists a

limit (resp. colimit) of F'. It is called complete (resp. cocomplete if it is J-complete (resp. J-cocomplete)

for each small category J.

1.5.3 REMARK. The notions “limit” and “colimit” are dual to each other: A pair (M, a) is a limit of
F: o — 2 if and only if (M, a) is a colimit of F : &/°P — Z°P. Therefore the dual of “(M,a) is a limit
of F': &/ — %" with respect to & and £ is “(M,a) is a colimit of F : &/ — A”.

1.5.4 EXAMPLES.
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1.5 Limits and continuity

(1) (Limits in Set.) Let I be a small category and let F' : I — Set be a functor. Then the set

Ap = {Jc € HF(z) : Teodf = F(f)(Tdomys) for all f € Mor([)}
icob(I)

together with the projection maps pr; : (2;)icon(r) — ; is a limit of F.

First, if f : 4 — j is an J-morphism, then for each z € Ap we have (F(f) o pr;)(z) = F(f)(pr;(x)) =
F(f)(z;) = zj = pr;(z). Consequently, (AF, (pri)ieobu)) is a cone over F. Let (B, (qi)ieob(I)) be another
cone over F and let f :i — j be an I-morphism. Then F(f)oq; = g;, that is, F(f)(¢;(b)) = ¢;(b) for all
b € B. For a Set-morphism g : B — A to have the property that pr;og = ¢; for all ¢ € Ob([) it is neccessary
and sufficient that g(b) = (¢i(b))icon(r) for all b € B, which proves uniqueness of such a morphism; on the
other hand, defining g this way, we have F'(f)(pr;(g(b))) = F'(f)(q:(b)) = q;(b) = pr;(g(b)) for all b € B,

hence g is indeed a function from B to A. Therefore the category Set is complete.

Let (I’, <) be a preordered set and let I be the dual of the associated category (see Example [1.1.5(5)).
That is, there exists a morphism from S to « if and only if a < . Such a morphism is necessarily unique.
A functor F from I to Set can be thought of as an projective system of sets relative to the preordered
set (I’,<): The functor F restricted to the objects of I corresponds to a family (A,)acr of sets and F'
itself corresponds to a family of mappings (fag)a<p having the properties that fog: Ag — A, for a < 3,
fay = fapo fay for < B < v and that fq, is the identity map on A, for a € I'. The set Ap can then be
written as Ap = {2 € [] Aq : 2o = fap(zp) for all a, B € I’ such that o < B}. A limit of F is the same
as a projective limit ofatehle projective system (Aq, fo,3)-

(2) (Limits in categories of modules.) Let R and S be rings. We denote by kMg the category of (R, S)-
bimodules. Let U : pMg — Set be the forgetful functor. If I is a small category arising from a preordered
set (I';<) and F : I — gpMg is a functor, then F has a limit (N, (pr;);). The module N is given by the
set Ayor defined as in (1), where the module structure arises from pointwise addition and multiplications
with scalars. The projections pr; are given as usual, and they turn out to be linear. Similarly we may

construct products in other categories such as CRing or Grp.

(3) (Equalizers and coequalizers.) If the category I is of the form e —% e | then a limit of a functor

F: 1 — % is called an equalizer. Dually, a colimit of such a functor is called a coequalizer.

An equalizer of two parallel arrows f,g: A — B in % is therefore an object E of € together with a pair of
morphisms e : E — A, k: E — B such that foe = goe =k, and if E' is another object and ¢’ : E/ — A,
k' : E' — B are morphisms satisfying f oe’ = goe’ = k’, then there is a unique morphism h : E/ — FE
such that eoh =€’ and ko h = k’. Since E and k are determined by e (and E’ and k' are determined by

e’), it is safe to call the morphism e an equalizer of f and g.

h
E £’ E
\
) % 7
k e’ h A B
/ / i
f e
B A E'
g
Equalizer as a limit Simpler definition

An equalizer in Set of a pair of functions f,g : A — B is given by the inclusion map ¢ : E — A, where
E={zxeA: f(x) = g(x)}. Indeed, for a set C and a function ¢ : C — A the assertion that foc=goc
is equivalent to ¢(C) C E. If ¢ is such a function, then the function ¢ that arises from ¢ by restricting its
target to E is the the unique function h : C' — FE such that to h = c.

21



1 Category theory

This construction carries over to the categories Top, Grp and kMg by furnishing the set E with the

structure of a topological subspace, subgroup and subbimodule respectively.

A coequalizer of two parallel arrows f,g: A — B is a morphism ¢ : B — C such that co f = co g and if
' : B — C' satisfies ¢’ o f = ¢’ o g then there is a unique morphism h : C — C’ having the property that

hoc=~c.

Let f,g: A — B be Set-morphisms. Let () be the equivalence relation on B generated by the relation
E ={(f(a),g(a)) : a € A}. Then the quotient map p: B — B/Q is a coequalizer of f and g:

Clearly, p fulfils the equation po f = pog. If ¢ : B — C' is any map satisfying go f = gog, then ¢(x1) = q(x2)
for all (x1,x2) € E, therefore the equivalence relation ~ on B defined by = ~ y < ¢q(z) = ¢(y) is coarser
than @. Consequently, there is a unique map h : B/Q — C such that hop = gq.

In the category Mg, given (R, S)-linear functions f,g : A — B, a coequalizer for f and g is given by
the projection p : B — B/Q, where @ is the congruence generated by the relation {(f(a),g(a)) : a € A}.
In other words, p is the projection onto the quotient bimodule B/im(f — g). Given another (R, S)-linear
function ¢ : B — C satisfying go f = g o g, it follows that ker(¢) O im(f — g), hence the assertion is a

consequence of the fundamental homomorphism theorem for modules.

(4) Let F : I — ¥ be a functor and let I be a small discrete category. A limit of F is called a product
and a colimit of F is called a coproduct of the family (F;);con(r)- This definition of “product” extends the
definition of a product of sets, groups, modules etc. to general categories. In the category Set, coproducts
are given by the disjoint union of sets; in categories of (bi)modules, coproducts are given by the direct sum
of modules; in the category of commutative, associative and unitary R-algebras (where R is a commutative

ring), coproducts are given by the tensor product of algebras, see section below.

(5) Assume that (I’, <) is an up-directed preordered set, that is, for all a, 8 € I’ there exists a v € I’
such that a < and 8 < 7. Let I be the corresponding category according to Example 5) and let
F : I — Set be a functor. Then F' can be seen as a direct system of sets relative to the preordered set
(I',<): (Fa)acob(r) is a family of sets and (F{3,q))a<p is a family of functions having the properties that
for all a, 8,7 such that o < g < v we have (1) Fg.q) : Fo — F3, (2) Fla,q) is the identity on F, and
(3) Fiy,a) = F(y,8) 0 F(,a) - A direct limit of this direct system is a colimit of the functor F. Analogously,
direct systems of rings, modules, topological spaces etc. relative to (I’, <) correspond to functors and a

direct limit of such a direct system is a colimit of the corresponding functor.
1.5.5 THEOREM. Let F : I — % be a functor.

(1) Suppose that (N, (pi)ieobu)) is a product of the family (F;);con(r) and that (M, (Qf)feMor(I)) is
a product of the family (Feoq(f)) feMor(r)- By the universal property of products, there are unique
% -morphisms x and y from N to M such that

qf°T = Peodf and

groy = F(f)opdoms forall f € Mor(I).
Ife: E — N is an equalizer of x and y, then (E, (pio e)ieOb(I)) is a limit of F.
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1.5 Limits and continuity

(2) Suppose that (N, (pi)icon(r)) is a coproduct of the family (F;);con(r) and that (M, (qf) femor(r)) i
a coproduct of the family (Fyom(s)) femor(r)- There are unique ¢-morphisms x and y from M to N

such that
X o qf = pdomf and
Yo (If = pCOdf o F(f) fOr a]] f S MOI'(I)

If¢: N — C is a coequalizer of x and y, then (C, (c Opi)ieOb(”) is a colimit of F'.

Proof. Tt is enough to prove (1). We have p; oe : E — F(i) and F(f) o p; o e = p; o e, consequently the
pair (E, (p; oe);) is a cone over F.

Assume that (E’, (a;);con(r)) is another cone over F. There is a unique morphism a : £/ — N
with the property that p; o a = oy for all objects i of I. We have qf 0 2 0 a = Peodf © @ = Ocods and
groyoa=F(f)opiomsoa=F(f)oadoms = Qcodf, therefore both of z o a and y o ¢ are morphisms z
from E’ to M such that ¢y 0 2 = acoas for all I-morphisms f. By definition of M, we have zoa =yoa.

x

M N E
Y
Pcod f a
qf h
F /
codf Ceodf E

Since e is an equalizer, there is a unique morphism h : £/ — E such that e o h = a. It has the property
that p;oeoh = p;0oa = «a; for all i € Ob(I). If A’ is another morphism having this property, we have
pio(eoh’) =a; =p;o(eoh) for all i € Ob(I), hence e o h = a = e o b’ by definition of a, from which
h = h' follows. O

We define functors according to Lemma and its dual, Corollary

1.5.6 COROLLARY.

(1) Let F, G : J — % be functors and ¢ : F — G be a natural transformation. Assume that there exist
Iimits (lim(F), p") of F and (lim(G), p®) of G. Then there exists a unique ¢-morphism lim(¢) such
that ij olim(¢) = ¢ opf for all j € Ob(J).

If there exist colimits (colim(F), ") of F and (colim(G), %) of G, then there exists a unique €-
morphism colim(¢) such that colim(¢) o Lf = LjG o (; for all j € Ob(J).
F

G L
G(j) S lim(G) F; —— colim(F)
2 I I im©) ¢ J l colim(¢)
F(j) <—— lim(F) Gj — colim(G)
p; L

(2) Let the category ¢ be J-complete. Then the function lim : Mor(%”) — Mor(%) defined in (1) is
a functor, and (A, lim) is an adjunction. If € is J-cocomplete, then the function colim is a functor

such that (colim, A) is an adjunction.

The functor lim thus defined is often written lim¢ or even lim¢ ;, depending on the context. Likewise
we use the notations colim¢ and colime ;. We call the functor lime ; a limit functor for € with respect

to J and colime, ; a colimit functor for € with respect to J.
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1.5.7 REMARK. There are in general many functors that deserve the name “limit (colimit) functor for €
with respect to I” since there is one for each choice of universal morphisms. For the remaining part of
this text however it will not matter at all which one we take since we will only be interested in functors
“up to natural isomorphism”.

1.5.8 REMARK. Let I, &/ and % be categories, where I is small. Let F' : &/ — % be a functor. A
functor F! : @71 — %' is defined by the claim that F({) = F x ¢ for morphisms ¢ of </!. Identifying the
objects of .71 with functors, we have F/(H) = F o H for each object H of &/!. If G : o/ — % is another
functor and € : F' — G is a natural transformation, then the function e’ : Ob(%/!) — Mor(%) defined by
el(H) = e« H (where H : I — . is a functor) is a natural transformation from F! to G.

1.5.9 REMARK. Let I, o/ and £ be categories, where [ is small. Let L : & — 2 be a functor. Let A
and Ag be the diagonal functors with respect to I for &7 and £ respectively. Then, for each &/-morphism
a, the equation Agz(L(a)) = L x Ay (a) holds. This gives us the following equality:

AgoL=L"oA,.

These are functors from o7 to %'.

1.5.10 LEMMA. Let (n,e) : L 4 R : (#,4/) and let I be a small category. Then (n!,e!) : LT 4 RT :
(BL, a1).

Proof. We verify one of the triangular identities. The proof of the second is analogous. For each %!-
object F, we have ((e! x L) o (LT x n!))(F) = (! x LI)(F) o (L' xn!)(F) = (ex Lx F) o (Lxn* F) =
((exL)o(Lxn))(F)=LxF = L!(F). O

1.5.11 PROPOSITION. Suppose that the categories o/ and 9 are I-complete, where I is a small category,

and that R : %8 — <f is a right adjoint functor. Then the functors Rolimg and lim, oR! from %' to o/

are naturally isomorphic.

Proof. Choose L such that (L, R) is an adjunction. Then Ag o L is left adjoint to R o limg by Theorem
1.4.19|and L’ o A is left adjoint to lim, oR! by the same theorem and Lemma[1.5.10l By Remark
O

the functors AI% oL and L' o A, are equal. From Proposition [1.4.18| the claim follows.
The proof may be visualized by the following diagrams the first of which is commutative.

A o limw«

o —— ! — ! o —Z I
lim o
L i LR R'||LT R RI
limgg
% ,93[ g %l {@ -—— 1
Az A lim g

The conclusion of this proposition also holds under more general circumstances. In the course of work-
ing out the situation in detail, we are also going to give a more admissible description of the natural
isomorphism whose existence is guaranteed by the theorem.

1.5.12 DEFINITION.

(1) Let F: I — % be a functor. A functor R : % — o is said to preserve the limits of F if (R(F), Rx7)
is a limit of R o F whenever (F, ) is a limit of F. The functor R is said to preserve I-limits if it
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1.5 Limits and continuity

preserves the limits of each functor F' : I — Z. If R preserves I-limits for each small category I,

then R is called continuous.

(2) Let F : I — & be a functor. A functor L : of — A is said to preserve the colimits of F if
(L(F),L*t) is a colimit of Lo F whenever (F,¢) is a colimit of F. The functor L is said to preserve
I-colimits if it preserves the colimits of each functor F : I — &/. If L preserves I-colimits for each

small category I, then L is called cocontinuous.

To prove that R preserves the limits (resp. colimits) of F it is sufficient to show that the image under R

of one limit (resp. colimit) of F is a limit (resp. colimit) of Ro F.

1.5.13 REMARK. Let I be a category. A functor G : € — 2 preserves the limits of F': [ — € if and only
if the following holds:

If F' has a limit, then there exists a limit (N, (pi)ieob(j)) of F' having the property that
(G(N), (G(pi))ieob(l)) is a limit of G o F.

The condition is clearly necessary. Conversely, if the statement holds, and if (M , (ql)l) is any limit
of F, then there exists an isomorphism ¢ : M — N such that p, o ( = ¢; for all . The morphism
G(¢) : G(M) — G(N) is an isomorphism, hence (G(M), (G(pi) © G(C)):) = (G(M), (G(g;)):) is a limit of
GoF.
1.5.14 REMARK. Let G and H be functors from ¢ to 2 and let € : G — H be a natural isomorphism.
Assume that F': I — % is a functor, where [ is a small category. The functor G preserves the limits (resp.
the colimits) of F'if and only H does. In particular, G is continuous (resp. cocontinuous) if and only if H
is.

We prove the statement concerning limits. Assume that G preserves the limits of F' and that (N, 7)

is a limit of F. The following diagram is commutative:

A(e(N))
A(G(N)) A(H(N))
G*m Hxm
GoF — HoF

Since (G(N),G ) is a limit of G o F, that is, a A-final morphism for G o F, by Proposition M(B) it
follows that (H(N), H =) is a limit of H o F..

1.5.15 LEMMA. Suppose that the category € is complete (resp. cocomplete) and that the functor G :
¢ — 2 preserves products and equalizers (resp. coproducts and coequalizers). Then G preserves limits

(resp. colimits).

Proof. Let F': I — % be a functor. Choose products (N, (pi)ie()b(l)) and (M, (qf)feMor([)) of the families
(Fy)icob(ry and (Feodf) femor(r) respectively. Let x,y : M — N be chosen such that ¢y o 2 = peoay and
gr oy = F(f) o pdomys for all morphisms f of I and let e : E — N be an equalizer of z of y.

Now (G(N),(G(p;))i) is a product of (G(F;)); and (G(M),(G(qyr))s) is a product of (G(Feoay))s-
Moreover, the formulas G(gs) o G(z) = G(peoas) and G(gy) o G(y) = G(F(f)) © G(Pdomy) hold for all I-
morphisms f and G(e) : G(E) — G(N) is an equalizer of G(x) and G(y). By Theorem (E, (pioe);)
is a limit of F and (G(E), (G(p:) o G(e));) = (G(E),(G(p; 0 €));) is a limit of G o F. Applying Remark
[[5.13 the claim follows. O
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1.5.16 REMARK. Let functors I —— & —% o be given. Assume that (M, 7) is a limit of F' and that
(N, p) is a limit of RoF'. There exists a unique «7/-morphism 75 : R(M) — N such that po A (7r) = R*7.
In other words, 7p is the unique /-morphism from R(M) to N such that p; o 7p = R(m;) for all objects 4
of I.

N RM
AW(TF)
Az (N) Ay (R(M))
Pj
P Rxm
RoF RFj RFi

RFf

In the following, whenever limits of F' and R o F' are given, we assume that the morphism 7 is defined

this way. The limits in question will be apparent from the context.

1.5.17 THEOREM. Let F : I — % and R : % — </ be functors.

(1) Let the functor F' have a limit and let R preserve the limits of F. For each limit of R o F, the

morphism T is an isomorphism.
(2) Let F and Ro F possess limits. Then R preserves the limits of F' if and only if 7 is an isomorphism.

(3) For each functor F : I — A, let (limg(F),7"") be a limit of F, and let (limy (R o F),p") be a
limit of R o F. Extend lim, oR! and limg to functors according to Lemma That is, for each
%" -morphism ¢ : F — G choose limg(¢) and lim ., (R* () in such a way that the following diagrams

are commutative.

F

F
AglimgF — | RoF ~—X—— A lim,/ (RoF)
Aglimg G — G RoG ~—— Ay limy(RoG)
m p

The family T = (Tr) peob(s!) I @ natural transformation from Rolimg to lim oR!. If in addition

the functor R preserves I-limits, then T is a natural isomorphism.
Proof.

(1) Let (F,7) be a limit of F. The pair (R(F), R+ ) is a limit of R o F, hence the claim follows from
Proposition [[.4.4[1).

(2) Let 77 be an isomorphism and let (E',7) be a limit of F. By Proposition 2) (R(F), Rxm)isa
limit of Ro F.

(3) Putting together the definitions and using Remark we obtain the following diagram.
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1.5 Limits and continuity

RoF
Ay Rlimg F —22r) Ay limy (RoF)
Rx(
A@Rllm@(() AW llmd(R*C)

TN

AyRlimg G A limg (RoG)

Ay(Ta)

Each of limg (R % () o 77 and 7¢ o R(limg(¢)) is an «7/-morphism a : R(limg(F)) — limy (R o G) having
the property that p“ oAz (a) = (Rx()o(Rxn!"). Since (limy (RoG), p©) is a limit, the claim follows. [

We turn to the dual of Theorem [[.5.171

1.5.18 REMARK. Let functors I —— o —= % be given. Assume that (M,¢) is a colimit of F' and that
(N, k) is a colimit of LoF'. There exists a unique #-morphism pp : N — L(M) such that Ag(up)ox = L*t.
In other words, g is the unique #-morphism from N to L(M) such that pup o k; = L(1;) for all objects i
of I.

2 (ur)

\

1.5.19 COROLLARY. Let F': I — &« and L : &/ — A be functors.

(1) Let the functor F have a colimit and let L preserve the colimits of F'. For each colimit of L o F', the

morphism pp is an isomorphism.

(2) Let F and L o F possess colimits. Then L preserves the colimits of F if and only if pup is an

isomorphism.

(3) For each functor F : I — o, let (colimef(F)7 LF) be a colimit of F, and (colim@(L o F), fiF) be a
colimit of L o F. Extend colimg oL! and colim,, to functors according to Corollary That
is, for each @/'-morphism ¢ : G — F choose colim(¢) and colimg(L x ¢) in such a way that the
following diagrams are commutative.

F F

A colimy F F LoF Agcolimg(LoF)
Ay COIimﬂCI [( L*{W IA@ colimgg (L*()
A colimy, G ~— G LoG Agcolimg(LoG)

The family = ((F)peob(wt) IS a natural transformation from colimg oL! to L o colimg. Ifin

addition R preserves I-colimits, then p is a natural isomorphism.

There are many continuous functors: Right adjoint functors and hom-functors are examples.

1.5.20 THEOREM. Right adjoint functors are continuous. Left adjoint functors are cocontinuous.
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Proof. Let (e,n) : L4 R: (%#,4/) be an adjunction. For a %#-morphism f : L(a) — b, we write f¥ for the
/-morphism R(f)on,. Analogously, if g : a — R(b) is an &/-morphism, we write g for the Z-morphism
ep o L(g). By Corollary the morphism f# is the unique .@/-morphism z from a to R(b) with the
property that g, o L(z) = f and g7 is the unique %-morphism = from L(a) to b with the property that
R(z)om, = g. Also, (f4); = f and ()% = g.

Assume that J is a category, that T : J — 2 is a functor and that (X,7) is a limit of T. We
want to prove that (R(X),R  7) is a limit of R oT. Since R x 7 is a natural transformation from
RoAg(X)=Ay(R(X)) to RoT, it is a cone over RoT with apex R(X). Let (Y, o) be another cone over
RoT. We have to prove existence and uniqueness of a Z-morphism x : Y — R(X) such that R(7;)ox = 0,
for all J-objects j.

The pair (L(Y),((O’j)!}(j))j) is a cone over T: If w : ¢ — j is a J-morphism, we have (crj)gq(j) =
(RT()o0:)}, = 150 L(R(T(w))00:) = £ryo(LoR)(T(w))oL(e,) = T(w)oer,oL(o:) = T(u)o(a .

Therefore there is a unique Z-morphism h : L(Y') — X such that 7;0h = (O’j)?(j) for all j. Now the .o/~
morphism 2% : ¥ — R(X) has the property that R(Tj)ohg, = R(7j)oR(h)ony = G(tjoh)ony = (Tjoh)g, =
((Uj)gp(j))uy = ¢,. If z is another, we have o; = R(7;) o (z&)g/ = R(1j) 0 G(2%) oy = R(7j 0 2%) o ny,
that is, 70 zg( = (Uj)bT(j) for all j. But h is the only one with this property, hence h = zg( It follows that
z=hi. O

1.5.21 THEOREM (hom-functors are continuous). Assume that € is a category and that I is a small one.

(1) Let F : I — € be a functor and let E € Ob(%). If (F, (£4);) is a limit of F, then
(hom(E,F), (hom(E, €;));) is a limit of hom(E, _)o F : I — Set.

(2) Let F : I°° — € be a functor and let E be an object of €. If (F,(n;);) is a colimit of F, then
(hom(ﬁ', E), (hom(n;, E));) is a limit of hom(_,E) o F : I — Set.

Proof. The second assertion follows from the first: The pair (F,7;) is a limit of F : T — %°P, hence
(homrgop (E',Z:ﬂ)7 (homegop (Eﬂh))i) = (homg(ljﬂ,E)7 (hom%(m,E))i) is a limit of homger (E, ) o F =
home(_,E)o F : I — Set. We turn to the proof of the first statement. Since hom(E, F(f))(Zdoms) =

F(f) © Zaomy for all I-morphisms f, by example [1.5.4(1) the set A = {z € [[hom(E, F(i)) : Tcoas =
i€Ob(I)

F(f) © Zdomy for all f € Mor(I)} together with the usual projection maps pr; : A — hom(E, F(i)) is a
limit of hom(E, _ )oF. Define a function ¢ : hom(E, F) — A by ((g)(i) = g;09. Asejog = (F(f)oe;)og =
F(f)o(g;0g9) for I-morphisms f : ¢ — j this is well-defined. The function is bijective: The elements of &/

are the cones over F' with apex E, hence for each k € A there is exactly one g : F — F such that ¢; og=kF
for all i € Ob(I). Finally, we have (pr; o {)(g) = pr;(C(g)) = &; 0 g = hom(E,&;)(g) for g : E — F. By
Proposition the claim follows. O

1.6 Associativity of the limit functor

1.6.1 REMARK. Assume that F' : [ x J — ¥ is a functor and that f : £ — y is an [-morphism. By
F(f,_) we denote the natural transformation j — F(f,j) (where j € Ob(J)) from F(z, _) to F(y, _).
The natural transformation F(_ ,g), for J-morphisms g, is defined analogously.

1.6.2 THEOREM. Let € be a category and let I and J be small categories. Then a functor A : €77 —
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1.6 Associativity of the limit functor

(‘KI)J is defined by A(o)(4)(i) = o(4,j), where

o € Ob([I x J,¥]), j € Ob(J) and i € Mor([) or
o € Ob([I x J,¢]), j € Mor(J) and i € Ob([) or
o € Mor([I x J,¢]), j € Ob(J) and i € Mor([).

It is an isomorphism. Similarly, an isomorphism Z : €%/ — (%J )I is defined by the assignment
E(0)(i)(j) = o (i, 4).

Proof. For the first statement, see Herrlich, 1973 [7, Theorem 15.9]. The proof of the second is analogous.
O

For the rest of this section, let ¢, I and J be categories, where I and J are small ones. Let A and =

be the isomorphisms defined in Theorem [1.6.2| and let I' and ® be their inverses.

1.6.3 LEMMA. The following diagrams are commutative.

A =
J I
<g]><J — (cgl) chxJ — ((gJ)
T L]
Ae,rxJ DNyr; Avrxs AN
€ ¢! € ¢’
Ag 1 Ag, g

Proof. We only prove the first part. For ¢ € Ob(%), j € Ob(J) and i € Mor([I), we have
A(As 1x7(0)(15)(0) = Ag 1xs(c)(i,]) = ¢ = Az 1(c)(i) = Agr (A 1(c))(4)(i). The same calculation is
valid for ¢ € Ob(%), j € Mor(J) and i € Ob(I) and also for ¢ € Mor(%), j € Ob(J) and i € Ob(I). O

1.6.4 THEOREM (Associativity of limits). Let F': I x J — % be a functor. Assume that for all I-objects
i the functor F (i, _) possesses a limit (F(z), e'). Let F : I — € be the continuation of F to a functor, as
defined in Lemma (2) For each j € Ob(J), the family €; = (¢%);cob(r) is a natural transformation
from F to F(_,j) = A(F)(j) and (F, (¢j)jeob(s)) is a limit of A(F).

If (F, (K")eon(r)) is a limit of the functor F, then (F, (g} 0 k') (i j)cob(rx 1)) Is a limit of F. Conversely,
if F' has a limit, then F' has one.

Proof. Let H : I — € be a functor and let 0} : H(i) — F(i,j) be a €-morphism for i € Ob(I) and
j € Ob(J). For (H,((n})i);) to be a cone over A(F) it is necessary und sufficient that the following

diagram be commutative, for all I-morphisms f : ¢ — ¢’ and for all J-morphisms g : j — j'.

F(i, j)

% w:g)

F(i,j')

F(f,7)

F(f,3)
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1 Category theory

Setting H = F and 1% = €', the left parallelogram is commutative by the definition of the functor F,
the triangles are commutative since each (F(i),ai) is a cone. Therefore (F7 (Ej)jeOb(J)) is a cone over
A(F). Assume that (K, (x;);) is another cone over A(F). Then for all objects i of I, (K (i), (r;(i))jeon())
is a cone over F(i, ), and so is (F(i),?).

For i € Ob(I), there is then exactly one €-morphism z(i) : K (i) — F(i) such that ehox(i) = ry (i) for
all j € Ob(J). This proves uniqueness of a ¢’/-morphism h : K — F with the property that gjoh = K for
all objects j of J. To finish the proof that (F, (g);) is a limit of A(F), we have to show that the function
= is a natural transformation from K to F. For this, let f :i— 14 be an I-morphism.

First, (K (i), (F(f,j) o kj(i))jcon(s)) is a cone over F(i/, _), as can be seen in the following diagram

which is commutative for each J-morphism ¢ :j — j'.

. FlD o
o F(i,) (i, 5)
K,j(l)/,
K (1) F(i,g) \F(l’,g)

F(Zaj/) m F(Z/aj/)

The two triangles and the left and right parallelograms of the following diagram have already been
shown to be commutative. Therefore F(f) o (i) and z(i') o K(f) are two €-morphisms s from K (i) to
F(i') having the property that sél os=F(f,j)ok;(t) for all J-objects j.

F(i, j)
K (i) ——a(i)— F(i)
F(f,5)
K(f) F F(f)

(@', 5)
) - F(

K(i
( (i)

i')

Since F'(i') is a limit, it follows that F(f)oz(i) = (') o K(f). This proves that z is natural, and therefore
(F, (gj)jeob(s) is really a limit of A(F).

The next statement follows from composition of final morphisms, Proposition 1). Finally, the exis-

tence of a limit of F' implies, by means of Proposition 2), the existence of a limit of F.
O

1.6.5 COROLLARY (Associativity of colimits). Let F': I x J — % be a functor. Assume that the functor
F(i, _) possesses a colimit (colimg, ;(F(i, _)),n") for all i € Ob(I).
Let F : I — € be the functor defined by f v colimg ;(F(f, _)). For each j € Ob(J), the family
(nﬁ)ieOb([) is a natural transformation, 1;, from F(_,j) = A(F)(j) to F and (F, (nj)jeon()) is a colimit
of A(F).
If (F‘, ()\i)ieob(j)) is a colimit of the functor F, then (F, ()\ionj‘)(i,j)eob(li)) is a colimit of F'. Conversely,
if F' has a colimit, then F has one.

Theorem [1.6.4] and Corollary involve the isomorphism A from Theorem Of course, there
are analogous theorems using the isomorphism = instead. The statement of these is left to the reader.
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1.6 Associativity of the limit functor

1.6.6 COROLLARY. Let I and J be small categories.

(1) (Pointwise computation of a limit). If the category ¢ is J-complete, then €' is J-complete. For

each functor G : J — €1 the €!-object i — limg j(G(_)(i)) (where i € Mor(I)) is the object part
of a limit of G.

Define a functor M : €17 — €1 by M(K)(i) = lime ;(K (i, _)), where K is an object (resp. a
morphism) of [I x J, €] and i is a morphism (resp. an object) of 1, that is, M = limfg)K o=. Then

limgr yoA and M are naturally isomorphic.
@gIxJ A (ch)J

hm,gj_"]

() o

LT
hm&f,J

(2) If ¢ is I-and J-complete, then € is also I x J-complete and the functors limg 1« and

lime ; olimg: ;oA are naturally isomorphic.

If ¢ is I-and J-cocomplete, then € is I x J-cocomplete and the functors colimg rxj and

colime ;o colimgr ;oA are naturally isomorphic.

Proof.

(1)

(2)

Each functor G : J — %7 is of the form A(F) for some F : I x J — %. By the theorem, the object
part of a limit of G is given by the object part of a limit of the functor i — lime j(F(3, _)) =
lime 7 (G(_)(i)). We show that the functor M oI : (¢7)7 — €' is right adjoint to A¢r ;. Let
G : J — €' be a functor. Fori € Ob(I) and j € Ob(J), let e s limeg s (G(_)(i)) = G(5)(i) be the j-
th projection. By the above and the theorem, the €Z-object i + lime ;(G(_)(i)) (where i € Mor(I))
together with ((¢%);); is a limit of G. Also, if £ : G — G’ is a natural transformation, where G and
G’ are functors from J to €7, and if €’ : lime ;(G(_)(i)) = G(j)(i) and €] : lime ;(G'(_)(i)) —
G'(j)(4) are the projections, the following diagram is commutative for all € Ob(I) and j € Ob(J).

lim(G(_) (1) = g @ )(0)

7 11
€5 €

GO —— 5 @)

This shows that i — lim(&(_)(7)) is the (uniquely determined) %/-morphism x from (M oT')(G) to
(M oT)(G") having the property that £(5) o (£5)icob(r) = (€} )icob(r) © « for all j € Ob(J), which is
the definition of a limit of £&. Therefore (M ol Acgz)J) is an adjunction. Hence both of M oI and
limgr ; are right adjoint to the functor A¢r ;. Proposition yields the result.

The theorem implies the existence of a limit for each functor F': I x J — %. According to Theorem
the four pairs (A(K’IXJ, lim(g’IXJ)7 (Ach7J,lim<g1)J)7 (A(g’[,hm(g}]) and (F,A) are adjunc-
tions. Applying Theorem the formula A¢ 75 =10 Ay ;o Ay 1 and Proposition the
claim follows. The second statement follows analogously: (colimcg, IxJ A I J), (COhITL:gIV 7, Der, J),

(colimg, 7, Aw, 1) and (A,T) are adjunctions.
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1.6.7 COROLLARY. Let the category € be I-and J-complete. The following diagram is commutative up

to natural isomorphisms.

1.7 Naturally isomorphic bifunctors

1.7.1 LEMMA. Assume that <, ..., %, are categories. Let H and K be functors from o/ X - -+ X oy, to €.
Suppose that there exists a function € : Ob(@# X -+ x &,) — Mor(%) such that for all i in {1,...,n} and
for all (aj)j4i € [[,; Ob() the function 2z — e(ai, ..., ai—1,2,@i11,. .., a,) from Ob() to Mor(%) is
a natural transformation from H(ay,...,a;—1, _,Qit1,...,6,) to K(a1,...,a;—1, _,@it1,...,ay). Then

€ Is a natural transformation from H to K.

Proof. Let f; : x; — y; be an o%-morphism for 1 < j < n. We have e(y1,...,yn) c H(f1,...,fn) =
e, Yn)oH(f1,92, . yyn)o H(x1, fo,. .y fn) = K(f1,92, -y Un)0(X1, Y2, -« ., Yn) o H(x1, fo,. .., fn)
and K(f1,--«y fic1,Uis- -y Un) ©(XT1y ooy Tim1, Uiy oo -5 Yn) © H(X1, ooy Ti1, fige ooy fn) =

K(f1, oy fic1yUis- e sUn) 0 (T, ooy Tic 1, Yiy o+ -5 Yn) © H(x1, ooy i1y fisYit1s- -« s Yn)O

H(xy,. i fivtye s o) = K(f1,- s fic1yYis- oy yn) o K (21, oo, Tie1, fiy Yitds -« Yn)O

e(@1y s @iy firrs ooy fn) o H(w1, oo i, fiv1s ooy fn) = K(f1s ooy fis Yit1, - Yn)o

e(z1, ..., @i, fix1,- s fu) o H(z1, ..., i, fit1, ..., fn) for 2 <i < n. Induction on ¢ finishes the proof. [

1.7.2 THEOREM. Assume that </ is I-complete, that % is J-complete and that € is I- and J-complete.
Let H : &/ x 98 — € be a functor with the property that H(a, ) : 9 — € preserves I-limits for all
a € Ob(«) and that H(_,b) : & — € preserves J-limits for all b € Ob(A).

Define a functor X : /1 x B7 — (o x B)™*7 by X(F,G)(f,9) = (F(f),G(g)) for functors F :
I - o and G : J — B and morphisms f of I and g of J, and X (¢,7)(i,5) = (¢(i),7(j)) for natural
transformations o, v and objects i of I and j of J.

The functors H o (lim x lim) and lim oH'*7 o X from o1 x %’ to € are naturally isomorphic.
a1 B, G IxJ

'Q{I % %J 4X, (sz x %)IXJ e (gIXJ

lim X lim lim
B,J €, IxJ

o X B o - €

A natural isomorphism is given as follows: For all functors F' : I — &/ and G : J — 2, let (p;)icob(r)
be the family of projections for E}I} F, let (q;)jeon(s) be the family of projections for %II}G and let

(74,)(i.5)e0b(1x.;y be the family of projections for sghlnle((i’j) — H(F;, Gj)). There exists a unique mor-

phism ¢ from H(}Ql{r’r}F, %{9 G) to (gl’iInle((i,j) — H(F;,G;)) satistying r;; o opc = H(p;,q;) for
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all (i,5) € Ob(I x J). The family (F,G) — @p¢ Is a natural isomorphism from H o (E{H} X }glgn}) to

) )

lim oH'™7 o X.
€, IxJ

Proof. Let F': I — o/ and G : J — % be functors. Let (m;);cob(r) be the family of projections for
lim(7 — H(F;,lim G)), let (1;);eon(r) be the family of projections for lim(i +— lim(j — H ([, G;))) and for
for all i € Ob(I), let €’ be the family of projections for lim(j — H(F;, G;)). We want to prove the existence
of isomorphisms v; (for i € Ob([I)), ¢1, w2 and @3 such that the following diagram is commutative, for all
(1,7) € Ob(I x J).

lim(i — lim(j — H(F;, G;))) —— lim(j — H(F;,G;))

P2 i H(pi,q;)

lim(i — H(F;,lim G))

H(F;,limG) < H(lim F,lim G)

Let i € Ob(I). Since (H(F;,limG), (H(F;,q;))jeon(s)) is a cone over the functor j — H(F;,G;), there
exists a unique isomorphism v; : H(F;,lim G) — lim(j — H(F;, G;)) such that €} o ¢; = H(F;, q;) for all

4. The function ¢ — 1); is a natural transformation: Let f : ¢ — ¢’ be an J-morphism.

H(F;,G;)

H(F;i, q;)

H(F;,lim G) vy ——|——— lim(j = H(F;,G;))
H(Fy, Gy)
A
H(F;,lim G) H(Fy,Gj) lim(j — H(Fy,Gj))

H(Fy,q;)

’

i

Then & 0ty o H(Fy,im G) = €% olim(j — H(Fy, G;)) o1; for all j, hence s o H(Fy,1im G) = lim(j —
H(Fy,Gj)) o9y because lim(j — H(Fy,G;)) together with (gz-/)jeOb(J) is a limit. It follows that lim (i —
H(F;,lim G)) together with (; o 7;);con(r) is a cone; therefore there exists a unique isomorphism ¢, such
that k; o o = 1; om; for all i € Ob(I).

By the theorem on the associativity of limits, Theorem [I.6.4] there exists a unique isomorphism ¢; from
lim(i — lim(j — H(F;,G;))) tolim((¢, j) = H(F;,G;)) such that r; jop; = e’ or; for all (4, j) € Ob(Ix.J).
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Since H (lim F,lim ) together with the family (H (p;,lim G));con(r) is a cone, there exists a unique iso-
morphism ¢3 such that 7; o 93 = H(p;,lim G) for all i € Ob([).

Putting these pieces together (as seen in the first diagram above) it follows that the isomorphism pp g =
10 @9 03 is the unique morphism a from H (lim F, lim G) to hm((i,j) — H(F;, Gj)) having the property
that that r; ; o a = H(p;, q;) for all (,7) € Ob(I x J).

It remains to show that the the isomorphisms ¢ ¢ define a natural isomorphism from H o (limd X lim@)
to limg oH'*/ o X. First, note that H(lim F,lim G) = (H o (limy x limg))(F,G) and that lim((,7) —
H(F;,G;)) = (limg oH™™/ o X)(F,G). Let T = H™7/ o X for abbreviation. The object lim((i, ) ~
H(F;,G;)) together with (r; ;)@ jyecob(rx) is a limit if T(F,G), that is, a A s« -final morphism for
T(F,G). Since ¢p¢ is an isomorphism, by Proposition [[.4.4] (2) H(lim F,lim G) together with the mor-
phisms 901;,1(; or;; = H(pi,qj) is a Ag 1« - final morphism for T'(F,G) too. These two limits are related
via the equation 7; ; o op ¢ = H(p;,q;). By Lemma [1.4.9(3), (F,G) — ¢r is a natural isomorphism.

This fact can also be seen more directly in the following diagram.
H(F;,G;)

H(pi,q5)

H(lim F,lim G) —yre—/|— lim((4, j) — H(F;, G;))

H(Ci,ny)

H(lim ¢, limn) lim((¢, ) — H({i,m5))

H(pi, 4i)

H(lim £, lim &) > lim((i, §) — H(E, Gy))

PE.G
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2 Isomorphisms in categories of bimodules

All rings are supposed to have an identity element but are not necessarily commutative. Since in the
category gplMg there exist small products, equalizers, small coproducts and coequalizers, by Theorem

categories of bimodules are complete and cocomplete.

2.0.3 COROLLARY. Let R and S be rings. Then the category rRMg is complete and cocomplete.

2.1 Hom-functors

2.1.1 REMARK. Let R and S be rings. We denote by pM the category of left R-modules, by Mg the
category of right S-modules and by kMg the category of (R, S)-bimodules. Let E and F be left R-modules.
By rHom(E, F') we denote the Abelian group of R-module homomorphisms from F to F. If f : B/ - E
and g : F — F’ are morphisms of left R-modules, then Hom(f, g) : RgHom(E, F)) — gHom(E’, F'), defined
by Hom(f, g)(z) = gox o f, is a homomorphism of Abelian groups, denoted by gpHom(f, g). Similarly,
we write Hompg(E, F') for the Abelian group of R-module homomorphisms in the case that both of E
and F' are right R-modules and Hompg(f, g) for the morphism Hom(f, g) of Abelian groups, given that f
and g are morphisms of right R-modules. Finally, for (R, S)-bimodules E and F, gHomg(E, F) denotes
the Abelian group of (R, S)-bimodule homomorphisms h : E — F and, for (R, S)-linear maps f and g,
rHomg(f, g) denotes the morphism Hom(f, g) of Abelian groups.

If in addition module structures are defined on one of these Abelian groups that are compatible with each
other, we sometimes indicate this by adding the corresponding rings as upper left or right indices. For
example, 3Hom” (E, F') denotes an (S, T')-bimodule of R-linear maps from the left R-module E to the left
R-module F. Should the associated group homomorphisms Hom(f, g) turn out to be linear with respect
to the rings in question, we indicate this by adding the rings as upper indices to the notation.

We will however only be interested in module structures on hom-sets that are defined according to the
following proposition. Since every left R-module is an (R,Z)-bimodule and every right S-module is a

(Z, S)-bimodule, it suffices to examine only bimodules.

2.1.2 PROPOSITION.

(1) Let E be an (R, S)-bimodule and F be a (R, T)-bimodule. For « € S, 8 € T and f € gHom(E, F),
define (a - f)(x) = f(za) and (f - B)(z) = f(x)B. With respect to these operations, RgHom(E, F) is
an (S,T)-bimodule. If f : E' — E and g: F — F’ are (R, S)- and (R, T)-linear respectively, then
rHom(f, g) is (S,T)-linear. A functor

%HOIHT(E, 7) : RMT — SMT

is thus defined.

(2) Let E be an (S,T)-bimodule and let F' be an (R,T)-bimodule. For o € R, § € S and f €
Homy(E, F), define (- f)(z) = af(x) and (f - B)(z) = f(Bx). With respect to these operations,
Homr(E, F) is an (R, S)-bimodule. If f : E' — E and g : F — F’ are (S,T)- and (R, T)-linear

35



2 Isomorphisms in categories of bimodules

respectively, then Homr(f,g) is (R, S)-linear. A functor
RHomi.(E, _) : RMp — Mg

is thus defined.

The proof is by straightforward calculation.

2.1.3 COROLLARY. Suppose that R, S and T are rings. If Uy : gRMg — gM, Us : gRMy — grM and
Vi : sMrp — Set are the forgetful functors, then the following diagram is commutative.

rHom

op
RMS XRMT SMT
U1 X Uz Vl
rRMP°P x p M Set
hom

IfUs : sMp — My, Ug : gRMpr — Mrp and Vo : gRMg — Set are the forgetful functors, then the

following diagram is commutative.

Homp

op
SMT XRMT RMS
U3 X U4 V2
M’ xM
T T hom Set

2.1.4 LEMMA. Let R and S be rings. The forgetful functors from RMg to RM and Mg respectively are

continuous and cocontinuous. Furthermore, the forgetful functor from rMg to Set is continuous.

Proof. Note first that categories of bimodules are complete and cocomplete. We want to apply Lemma
If A = (A;); is a family of (R, S)-bimodules, then a product of A is obtained from a product
(N, (p;);) in Set by equipping N with a bimodule structure. The functions p; are linear with respect to
this structure. The forgetful functor returns the original product. Likewise for equalizers, so that the
forgetful functor is indeed continuous.

The remaining statements are proved with the help of the same argument: Products, equalizers, Coprod-
ucts and Coequalizers in categories of bimodules are obtained from the respective constructions in the

category Ab of Abelian groups by adding scalar multiplications. O

2.1.5 LEMMA. Let A, B and C be (R, S)-bimodules. Suppose that I is a set and that (f;)ic; and (g;)icr
are families of (R, S)-linear maps, where f; : A — C and g; : B — C for i € I. Suppose moreover that
there exists a uniquely determined map | : B — A with the property that f; ol = g; for alli € I. Thenl
is (R, S)-linear.

Proof. For all x € B, the set [(z) is the unique element z of A such that f;(z) = ¢;(x) for all i. Assume
that z, y € B, « € Rand f € S. Then f;(al(z)8 + I(y)) = fi(al(x)B) + fi(l(y)) = agi(x)B + gi(y) =
gi(axf) + gi(y) = gi(axf +y) = fi(l(axB + y)) for all i. By uniqueness, the claim follows. O

2.1.6 LEMMA. Assume that R and S are rings. The forgetful functor U : gMg — Set reflects limits,

which means the following:
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2.2 Multilinear maps

If I is a small category, F : I — Mg is a functor and (N, (p;);) is a cone over F such that
(U(N), (U(p:)):) is a limit of U o F, then (N, (p;);) is a limit of F.

Proof. If (M, (¢;)icr) is another cone over F, then (U(F), (U(g;));) is a cone over U o F, hence there exists
a unique Set-morphism [ : U(M) — U(N) such that U(p;)ol = U(g;) for all i. By Lemma [2.1.5|there is an
rMg-morphism k : M — N such that U(k) = [. The morphism k is the only one with this property, since
U is faithful. On the other hand, each morphism ¢ with this property satisfies U(f;0c) = U(f;)ok = U(g;)
for all 4, hence f; o ¢ = g; for all ¢ because U is faithful. O

2.1.7 PROPOSITION. Assume that R, S and T are rings, that E is an (R, S)-bimodule and that F is an
(R, T)-bimodule. Then the functors

RHOHI(E, 7) . rMpr — sMyr and

gHom(_,F): gMZ — ¢Myg are continuous.

Proof. The following more general statement holds: Assume that K : &/ - %, G: % — € and H : o/ —
% are functors and that H = G o K. If H preserves limits and G reflects limits, then K preserves limits.
If (N,p)is a limit of F' : I — &7, then (K(N),K *p) is a cone over K o F' and (H(N),H xp) =
(G(K(N)),G* (K *p)) is a limit of Ho F = G o (K o F). Since G reflects limits, the claim is proved.
Now the functors hom ,m(E, _ ) and hom m(_, F) = hom,nes (F, _) are continuous by Theorem
Moreover, by Lemma[2.1.4] the forgetful functor from pkMg to gM is cocontinuous and consequently
continous as a functor from gkMZ to gMP. Also, the forgetful functor from zpM7p to gkM is continuous.

Since the composition of continuous functors is continuous, the original statements follow from Lemma

and Corollary O

Theorem |1.7.2] gives us the following natural isomorphism.

2.1.8 THEOREM. Let R, S and T be rings and let I and J be small categories. The functors from
(rRMZ)! x (rRMr)” to sMy defined by

(F,G) — }1&1}((2,]) — pHom(F},G;)) and

(F,G) — gHom (1i}n(F)7 lign(G)) are naturally isomorphic.

2.2 Multilinear maps

2.2.1 DEFINITION.

(1) Let Ey,...,E, and F be Z-modules. A function f : [[E; — F is called distributive if for all

1<i<n
i€{l,...,n} and all (z;)ix; € [],; Es the function x — f(z1,..., 21,2, 2iy1,. .., 2,) from E; to

F' is Z-linear.

(2) For 1 <4 < mnlet E; be an (R;_1, R;)-bimodule and let F' be an (Ry, R, )-bimodule. A function

f:11E: — F is called (Ry,..., R,)-multilinear if the following properties are satisfied:
1<i<n

(a) f is distributive.

(b) For 1 <i<n,a€ R;,_; and x € [[E;, we have
1<i<n

f(xla ey =2, 10, Ty o o 7xn) = f(l'la sy Lj—1, O, T 1, - - - ;xn)~

(c) For all 8 € Ry and all v € R, the formula f(8z1,22,...,Zn-1,2ny) = Bf(21,...,2Tn)y holds.
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2 Isomorphisms in categories of bimodules

We denote the set of (Ry, ..., R, )-multilinear maps f : [[E; — F by Z(F,..., E,, F) or, unambiguously,
1<i<n
b £
Y R, Rn(
Proposition admits the following generalization.

2.2.2 PROPOSITION. Let Ry, ..., R, and S be rings. For 1 <i < n, let E; be an (R;_1, R;)-bimodule.

Ei,...,E, F).

(1) If F is an (R, Ry,)-bimodule, then the set £ (Ei,..., E,, F) of provided with the usual addition

0yeeeydln

of functions is an Abelian group. If f; : E} — E; is (R;—1, R;)-linear for 1 <i<n andifg: F — F’

is (Rg, Ry,)-linear, a homomorphism

Z coisSnr9): L (Fyr,...,En F & (E|,...,E.,F
Ro,...,Rn(fl, af 79) RO,---an( 15 3 5 )_>R0,...,Rn( 1s B, )

of Abelian groups is defined by the rule n .,?R (fi,- s fn,9)(w) = gouo (fi,...,fn). We get a
(OPERERER% )

op op
functor XR from p Mp X=X p Mp X pg,Mg, toAb.

(2) Assume that F is an (S, R, )-bimodule. The Abelian group . R.,? R (E1,...,E,, F) is an (S, Ry)-

bimodule by virtue of the scalar multiplications defined by the formulas

(au)(er,...,en) =afu(er,...,e,)) and

(uB)(e1,...,en) =u(Bey,...,en).

If fi : El — E; is (R;—1, R;)-linear for 1 <i<n andifg: F — F’' is (S, R,,)-linear, an (S, Ry)-linear

function

. / / !/
Z,R;.Z.,Rn(fh'”’fn’g> . Z,R:?.,RW(EI"..7ETI7F) _>Z,R;.Z.,Rn( 17"'7En7F)

. _ S R
is defined by the rule Z,Rf?.,Rn(fl’ coisfnsg)(w) = gouo (fr,..., fn). We get a functor Z,R%u,(;%n

op op
from roMpg, X+ X p  Mp X gMpg, to sMg,.

(3) Assume that F is an (Ry, S)-bimodule. The Abelian group Z (Br,...,E,, F)isan (Ry, S)-

Ro,...;Rn—1,
bimodule by virtue of the scalar multiplications defined by the formulas

(au)(eq,...,e,) =ule,...,e,a) and

(uB)(e1, ... en) =(uler,...,en))B.

If f : El — E; is (R;—1, R;)-linear for 1 <i <mnandifg: F — F' is (Ry, S)-linear, an (R,,, S)-linear

function

Z(fl,...,j"n,g): Z (E1,...,E,,F) — Z (EY,...,E,F)

A
Ro,...,Rn—_1, Ro,...,Rn—1,Z Ro,...,Rn—1,Z

is defined by the rule n £ (fiy-o s fny9)(uw) =gouo(fi,..., fn). A functor R Bn 5 from

TRz yeos R,
ROM%’I X oo X Rn,lM?:pn X Roi\/Is to g, Mg is thus obtained. i 1
Proof. The difference of two (R, ..., R,)-multilinear functions is again (R, ..., Ry)-multilinear, hence
the first statement in (1). It is also easy to show that the prospective scalar multiplications in (2) and (3)
are well-defined and that they define bimodule structures.
Let f; : El — E; be (R;_1,R;)-linear for 1 < i < n and let g : F — F’ be a homomorphism of
Abelian groups. Then for all (Z, Ry,..., R,—1, Z)-multilinear maps u : By X -+ X E, — F| the function
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2.2 Multilinear maps

gouo(fi,...,fn)isalso (Z,Ry,..., Ry_1,Z)-multilinear: It is distributive since each f; is Z-linear, u is
distributive and g is Z-linear; for 1 <4i <n, 8 € R; and (ey,...,e,) € By X -+ X E,, we have

g(u(fi(er),. .., fi—1(ei-1), fileiB), fix1(€it1)s- -, falen))) =
= g(u(fi(er),..., files), fix1(Beir1), firaleira), .., fnlen))).

If moreover g : F — F’ is a homomorphism of right R,-modules and w is (Z, Ry, ..., R,)-multilinear,
we have g(u(fi(e1),..., fa—1(en—1), fu(eny))) = g(u(fi(er), .., falen))y) = g(u(fi(er),. .., falen)))y
for all ¥ € R, and (e1,...,e,) € E1 X --- x E,. If g : F — F’ is a homomorphism of left Ry-
modules and w is (Ro, ..., R,—1,7Z)-multilinear, for all « € Ry and (e1,...,e,) € F1 X -+ X E,, we

have g(u(fi(aer), fa(e2), ..., fulen))) = glau(fi(er), ..., fulen))) = ag(u(fi(er),. .., fu(en))). Therefore

the functions are well-defined.
Let f; : El — E; be (R;_1, R;)-linear for 1 <4 <n and let g : F — F’ be a homomorphism of Abelian
groups. Let u,v € £ (E1,...,E,, F). Then

JRi,. s Rn—1,

,,%(fl,...,fn,g)(u—l—v):gO(u+v)O(f1,...,fn):gO((uO(fl,...,fn))—i—(UO(fl,...,fn))):
:gouo(flv"wf'rt)+govo(f1w~~afn):g(flvnwfnag)(u)+$(f17"'7fnug)(v)'

In particular, if g : F — F” is even (R, R, )-linear, R (f1,--+, fn,g) is Z-linear.
(OPEREE) Ry

Let g : F — F’ be a homomorphism of (S, R, ) bimodules. For all u € <  (Br,...,En, F),

Z,R1,....,Rp
a €S, B e Ryand forall e; € E; (1 <i<n), we have

(f17 .- '7fn’g)(au)(€17 s 7en) = g((au)(fl(el)v i 7fn(€n))) =

Z,R .....
= gla(u(filer), .., fulen)))) = ag(u(fi(er),. .., falen))) =
=a(, & g @ere) = (o, L (f fug)®) (e en)
and
o o Ui Fan )@ ens ) = g(@A) (i (er)s - fulen))) =
= g(u(Bfiler), falez), ..., fulen))) = g(u(fi(Ber), f2(e2), - .., fulen))) =
= ZRl, R (fla"'afn’g)(u)(ﬂelve%"'aen) = (Z R R, (flv--wfnag)(u)ﬂ)(el""»en)'
Therefore (f1s--+, fn,g) is (S, Ro)-linear. An analogous calculation gives (R,,, S)-linearity of the
function n , f " (f1,-++y fn,g), where g : F — F' is a homomorphism of (Ry, S)-bimodules.
05+ ftn—1,
Finally, if f/ : E/ — E! and f; : E. — FE; are (R,—1,Ry)-linear for 1 < ¢ < n, g : F — F’
and ¢ : F/ — F” are Z-linear and u : Fy X --- X E,, — F is (Z,Ry,...,R,_1,7Z)-multilinear, we
/ / / —_ ! / / —
have Z,Rl,.%n,l,Z((fl"“’ nag) o (flaﬂfTL?g))(u) - Z,Rl,.%%n,l,Z(fl o flﬂ"'ﬂfn o fn’g o g)(u) -
(o 09 0u0 (o fron fuo fi) =9 0 (gouo oo f)o (oo S = (, 0 £ (e g
S RO R‘n, S
Z(f1,.. .,fmg))(u). Hence functors Ro%Rn’ Z’R%MR" and Ro,...,R'Z,j,l,Z are defined. O
2.2.3 PROPOSITION. Let rings Ry, ..., R, be given, where n > 2.
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2 Isomorphisms in categories of bimodules

(1) Assume that F is an (S, R,)-bimodule and that E; is an (R;_1, R;)-bimodule for 1 < i < n. The

function

Sp,..p,p: SR (El,...7EmF)—>SHom§g(E1, S PR (E27...,En,F))

%R, Ry Z,Ra,....Rn
defined by g, ... g, r(u)(e1)(ez, ... ,e,) = uler,...,e,) is an isomorphism of (S, Ry)-bimodules.
If S = Ry, restricting 0g, ... g, F to the set of (Ry, ..., Ry,)-multilinear maps induces an isomorphism

(;IEl,...,ET,,,F : ROXR (El,...7En,F) — ROHOle (El’Zngé’%RII% (EQ,---,EnaF))

of Abelian groups. Moreover, these isomorphisms are natural in all variables: The functors

S gRo (7,7,...,7,7)andSHomgo(i, S i (77...,7,7)) from
Z,Ri,...,R, 1 2 n 1 1 Z,R3,...R, 9 n
op op . .
roMpg, X - X p  Mp x sMpg, to sMg, are naturally isomorphic, and the functors
... and p, Hom ( o oy o ) from
Ro,m,Rn(T’E’ 7;7:) Ro Ry T7Z,R2,...,Rn(37 7;7:)

rRoME XX p My x p,Mg, to Ab are also naturally isomorphic.
(2) Assume that E; is an (R;_1, R;)-bimodule for 1 < i < n and that F is an (R, S)-bimodule. The

function

. R S R, S R,_ S
om0 LS (By,... EnF) =% Hom (En -1 g (El,...,En,l,F))
Ro,....Rn-1,Z Ro,....,Rn—2,Z

defined by og, .. g, ru)(ey)(e1,...,en—1) =ulel,...,e,) is an isomorphism of (R,,, S)-bimodules.
If S = R, restricting og, .. g, r to the set of (Ry, ..., R,)-multilinear maps induces an isomorphism
: : Ei,...,En,F) = p. H (E R R"E...E_F).
UE17___,En7F RO%RTL( 1, s Linyy ) R,_,Hompg n7R0,A..,Igfz,Z( 1, y Ln—1, )

of Abelian groups. These isomorphisms are natural in all variables.

Proof. We give the proof of (1), that of (2) being similar. We have to show the well-definedness of
0g, ....B, F, which we simply call ¢ for the sake of brevity. Let u: Ey X --- x E,, = F be (Z,Ra,...,Ry,)-

multilinear. It is easy to see that for each e; € Fj the function u®* : [[ E; = F, (e2,...,en) —
2<i<n
u(er,ea,...,ey) is (Z,Ra, ..., R,)-multilinear, so that it is enough to prove right R;-linearity of the

function e — u°. Equality of uete and u® + ¢ is obvious from the distributivity of u. For f € Ry, e € F;
and (ez,...,e,) € By x --- x E,, we have u’(ea,...,e,) = u(ef, ez, ...,e,) = ule, Bea,es,...,e,) =
u®(Bea,es,...,en) = (uB)(ea,...,e,) by multilinearity of u and the definition of right multiplication in

Zfsz;% (Eay...,E,, F). The Z-linearity of ¢ is very easy to see. Using the definitions of the scalar
IEL> RRREREAZ (1

multiplications on the participating sets of multilinear maps, for a € S, u € <  (Fy,...,En, F)and

3410y flny

(€1,....en) € By X -+ x E, we have (ad(u))(e1)(e2, ..., e,) = (a(d(u)(e1)))(e2, ..., €,) =

a(6(u)(er)(ez, ... en)) = aluler, ... en)) = (au)(er,. .., en) = 6(au)(er)(e2, ..., e,) and for B € Ry, we
have (6(u)B)(e1)(ea,...,en) = 0(u)(Ber)(ea, ..., en) =u(Ber,ea,...,en) = (ub)(er,...,en) =
o(up)(er)(eay ... en).

We want to show that the inverse of § is given by the function 7 from Hompg, (El, Z(Es,..., E,, F)) to
ZL(En,...,En, F) defined by the rule 7(u)(ey,...,e,) = uler)(ea, ..., e,). The function 7 is well defined:
Let u be a right Rj-linear function from F; to Z(Es,..., FE,,F). We have to show that the function
(e1y...,en) — uler)(es, ... e,) i8 (Z, Ry,..., Ry)-multilinear. First, it is distributive, since u is Z-linear
and u(ey) is (Z, Ra, . .., Ry,)-multilinear for all e; € Ej.
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2.2 Multilinear maps

Let ¢, € E; for 1 < ¢ < n. If 1 < i < n, then for § € R; and e; € E; for all i we have
u(er)(ez, ... ei—1,€8,€i41,...,en) = uler)(ea, ..., €, Lit1,€i12,...,6p) since u(er) is (Z, Ra, ..., Ry,)-
multilinear for all e; € E;. Moreover, if 5 € Ry and e; € E; for all i, we have u(e18)(ez,...,e,) =
(u(e1)B)(ea, ..., en) = uler)(Bea, es3,...,e,) by right Rj-linearity of w and the definition of right multi-
plication in Z(Es,...,E,, F). If v € R, we have u(e1)(ea,...,en7y) = (u(er)(ez,...,ep))y since u(e) is

(Z, Ry, ..., Ry,)-multilinear, so that 7 is a well-defined function. Obviously,  and 7 are inverse to each
other.

Now assume that S = Ry. To prove the well-definedness of ¢, it is sufficient to show that for
each (Ry,..., R,)-multilinear function u, the function e — u®, where u®(es,...,e,) = ule,ea,...,ey,), is
left Rg-linear. For a € Ry, e,e’ € Ey and (ea,...,e,) € Ey X -+ x E, we have uae+e/(eg7...,en) =
u(ae+ e es, ... en) = alule e, ... en)) +ule e ... en) =a(u(es,... en)) +uc (eg,...,en) =
(au®)(eg, ... en) +u (ea, ..., en) = (qu® +u )(ea,...e,) by multilinearity of u and the definition of left
multiplication in ZRU?},%” (Eq,...,E,, F). Conversely, let u: By — £ (FEa,...,E,, F) be (Ry, Ry)-linear.

We have already shown that 7(u) is (Z, Ry, ..., R,)-multilinear, where 7 is the inverse of §. Let ¢; € E;
for 1 < i < n. For a € Ry, we have u(aei)(ea,...,en) = (au(e))(ea,...,en) = alu(er)(e1,...,en))
by left Rp-linearity of w and the definition of left multiplication in Z(FEs, ..., E,, F'), therefore 7(u) is
(Ro, - .., Ry)-multilinear.

There remains to be proven that these isomorphisms are natural. Let f; : El — E; be (R;—1, R;)-
linear for 1 <i <nandlet g: F — F' be (S, R,)-linear. f ue ¥ (Ei,...,E,, F)ande; € E] for

IR R R )

1 <i < n, we have

(Ot oy o (i) ) @)(er) e, o) =
= 6E1: I 2 (g ouo (f17 e ,fn))(el)(eg7 N ,€n) =
= g(u((fla cee afn)(eh cee ,6n))) = g(u(fl(el)7 s 7fn(en)))
and
(HOHIR1 (fl,Z’R% R, (f27~-~,fn79)> 05E1,...,En,F)(U)(el)(ez,-~-,€n) =
= (, pZ o Uz fung) 0 Gy () 0 fr) (e) (e en) =
_ZR (f27"'7fnﬂg)<5E1, o ( )(fl( )))(627"'7671):
2. 1
=9(0m,....5, p(W)(file1)(f2(e2), .., fu(en))) = g(ulfiler), ..., fu(en))).
O
2.2.4 REMARK. For a given (Ry, ..., Ry,)-multilinear map u : Ey X --- X E, — F, we will sometimes call
the (Ry, R1)-linear map 4 : E —>Z A n (Ea,...,E,, F) defined by t(e1)(e2,...,en) =uler,...,ep,) the
3 A2 I
associated (Rg, Ry)-linear map for u, and the (R, _1, R,)-linear map @ : E, —> .,Sf Z(El, oy En_q, F)
05 ln —2
defined by u(en)(e1,-..,en—1) = ule1,...,e,) the associated (Ry,—_1, Ry)- hnear Inap for u. Similarly, u is

called associated to 1 and also to 1.
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2 Isomorphisms in categories of bimodules

2.3 The tensor product

2.3.1 DEFINITION. Let Ry,..., R, be rings. For 1 <1i < n let E; be an (R;_1, R;)-bimodule. The tensor

product of E1,...,E, is an (R, R,)-bimodule, written as Q) FE;, together with an (Ry, ..., R, )-multilinear
1<i<n
map ® : [[E; — @FE; such that the following property is satisfied.
1<i<n 1<i<n

For any (Rp, R,)-bimodule G and any (R, ..., R,)-multilinear map ¢ : [[E; — G there is a

1<i<n
unique (R, Ry,)-linear map f : QF; — G such that f(z1 ® -+ ® x,) = h(x1,...,2z,) for all
1<i<n
S HEl
1<i<n

By abuse of language, we also call the module @QFE; (without the map ®) a tensor product of the modules
1<i<n
Fq, ..., F,. The multilinear mapping ® is however always understood to be defined.
For 1 <i < nlet E; and F; be (R;_1, R;)-bimodules and u; : E; — F; be an (R;_1, R;)-linear map.

Suppose that @F; is a tensor product of Ey,...,E, and that QF; is a tensor product of Fi,..., F,.
1<i<n 1<i<n
Then the function (z1,...,2,) — u1(z1) ® -+ @ up(xy,) from [[E; to QF; is (Ry, ..., R,)-multilinear.
1<i<n 1<i<n
The unique (R, Ry,)-linear map v from QF; to @QF; that satisfies
1<i<n 1<i<n

w(T1 @ @xy) =ur(x1) @ - Quy(xy,) for all z € T[E;
1<i<n

is called the tensor product of the family (uq,...,u,) and is written as u3 X -+ X u, or Xu;.
1<i<n
It is well known that each family (E;)1<;<n of (R;_1, R;)-bimodules has a tensor product. Furthermore,
forming the tensor product of families of linear maps is functorial: If F;, F; and G; are (R;_1, R;)-bimodules
and if u; : By — F; and v; : F; — G; is (R;_1, R;)-linear for 1 < i < n, then (vou)(z1 ® -+ Q@ z,) =

v(ug(21)® - Qup(2,)) = (viour)(21)®- - - (vy0ouy)(z,) for all x € [[E;, therefore Xv;0Xu; = X (v;0u;).
1<i<n 1<i<nl<i<n 1<i<n

For each choice of tensor products of modules we obtain a tensor product functor

>< :ROMRl X X Rn—lMRn — ROMRn'

Since we are not interested in the particular choice of tensor products but only in functors up to natural

isomorphism, we will speak of the tensor product functor.

2.3.2 PROPOSITION. Let E; be an (R;_1, R;)-bimodule for 1 < i < n, where n > 2 is a natural number.
Let H and K be (Ry, Ry,)-bimodules and let h : [[E; — H and k : [[E; — K be (Ry, ..., Ry)-multilinear.

1<i<n 1<i<n
Assume that h : Ey - <  (Es,...,En, H) andk: By — & (Es,...,E,, K) are the associated
y 42,505 LU0 3 A2y M

(Ro, Ry)-linear functions for h and k respectively and that
h:E, — < (E1,...,E,_1,H) and k:E, — < (E1,...,E,_1,K) are the associated
s Rz, 0yesRn—2,Z

(Ry—1, Ry)-linear functions for h and k respectively. For all (R, Ry,)-linear maps ¢ : H — K, we have

poh =k if and only if
Z,R;?.,Rn(E% oy Enyp)oh =k if and only if
(Bi,....,Epn_1,9)0h=F.

Ro,....,Rn—2,Z
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2.3 The tensor product

In particular,

(H,h) is a tensor product of E1,...,E, if and only if
(H,h)isan % (Bs,...,E,, _)-initial morphism for By if and only if

Z,R3,....Rn
(H, fL) is an 07“.%/_27 (E1,...,E,_1, _)-initial morphism for E,.
h/' H i Z,R;’?.,R,L(EQ""’E"’H) : Ro,...%L,2,Z(E1"”’En_l’H)
Eix---xE, @ El/ ZL(Bz2,...,En, ) E, ZL(B1,...,En1,9)
T >~
Pt oL (Eao By K) o L (Bu By K)

Proof. The statement that ¥ (Eay...,E,,p)0 h = k is equivalent to saying that k(er,...,en) =
3 d125.00y L0y

ii(e1)(es, ... en) = (ZvR;?an(E% o B p)o h) (e1) (€2, en) = (o (h(er)))(en, ... en) =
o(hler)(ea, ... en)) = @(h(er,....en)) = (poh)(er,... e,) for all (e1,...,e,) € By X --- x E,. Also,

7 (Ery...,Ey_1,9) 0 h =k if and only if k(ey,...,e,) = k(en)(e1,...,en 1) =
Ro,...;Rn—2,7Z
oy % :
RO7---aRn727Z

(E1,...,En_1,0)0 k:) (en)(€1y. . en_1) = (cpo
,e

(h(en))) (61, ey €n71) =
plhlen)(er,- - en1)) = @(hler, - en)) = (poh)(er, - en)

n) foralle; € E; (1 <i<n).
O

We have seen that the tensor products of modules can be seen as initial morphisms. Also, the tensor
product f xidp of a linear map f : E — E’ with a module coincides with the “mediating morphism” from
E®F to E' ® F, as the following remark shows.

2.3.3 REMARK. Assume that n > 2 is a natural number. Let E; be an (R;_1, R;)-bimodule for 2 <i <n
and let f: Ey — Ef be a homomorphism of (R, R;)-bimodules.

Let @ : By x-+xE, 5> E1® - QFE,and @ : F{X Eyx---xE, - E]®F>®---®E, be the canonical

R1 Rp-1 Ri Rz Rp-1
(Ro, . .., Ry)-multilinear mappings. The (Ry, R, )-linear map f x idg, X -+ x idg, from F; ® --- ® E,,
Ry Rp-1
to B ® B3 ® --- ® E, is the only one with the property that f x idg, x - x idg, (1 ® --- @ e,) =
Ry R, n—1

flen)® e ® - R e, foralle € E; (1<i<mn).

E1®E2®®En indE2><-..><idEn E1®E2®®En
Ry Ry Rp-1 Ry Ry Rp-1

® ®

Eix By x---x B, , B{ X Ey x--- X E,
(fiidgy,-..,idE,)

If we denote by n and n’ the (R, R1)-linear mappings 7 : Fy — . Ri” (Eoy...,Ep, By ®---® E,) and

silg,. iy R1 n—1

n":E— £ (FEa...,E, Ei®@FE;®- - ®E,) associated to ® and &' respectively, then n’ o f is the
Z,R R, Ry Rp-1

(Ro, Ry)-linear map associated to (e;)i1<i<n — f(e1) @ e2 @ --- ® e, as is easy to see.
From Proposition it follows that f x idg, X -+ - x idg, is also the unique (Ry, R, )-linear mapping

u:E® - QE,— E]®FE,®---® E, with the property that & (Es,...,E,,u)on=n'of.
R1 Rna Ry Rz Rn, 1 Z,Rsz,...,Rn,

3402505 Ml
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2 Isomorphisms in categories of bimodules

L(Ba,..., Bnyu)

¥ (Ea...,Ep,E1®---QE,) . ¥ (E3...,Ep,E1@E®---QE,)
Z,Rs,...,R, Ry R,_1 Z,Rz,...,Rn Ry Ry Rp-1
n n'
E . T/
7 E

Similarly, if E; is an (R;_1, R;)-bimodule for 1 < i <n —1 and if g : E,, — E), is a homomorphism of
1><gZE1 ®En—1®En—>
R1 Rnfz Rnfl

Ei® - ® E,_1 ® E/, is the only one with the property that < (E1,...,Eh_1,u) 00 =6 og,
Ry

Rp—2 Ry -1 05ees Rn—2,

(Rn—1, Ryp)-bimodules, the (Ry, R,)-linear map u = idg, X -+ X idg, _

where 6 and 0" are the associated (R, _1, Ry )-linear maps for the canonical (Ry, ..., R,)-multilinear maps
® and ®’.

The tensor product as it is usually defined therefore gives rise to the following adjunctions.
Assume that E; is an (R;_1, R;)-bimodule for 2 < i < n. For each (R, R1)-bimodule Ej, let n(E;) :

Ey — ¥ (BEa,...,E,,F1 ®---® R,,) be the associated (Rp, R;)-linear map for ® : E; X --- X
Ri  Rn 1

Z,Rs3,....,Ryp,
E, - E1® --® E,. Then n is a natural transformation from the identity functor on r,Mpg, to
R1  Rn-
¥ (FEa,...,E,, _ ®F;®---® R,). By Corollary [1.4.12] 7 is the unit of an adjunction _ ®
Z7RZ’~~an R] RQ Rn71 Rl
21% R.(?il n Z,RQ,...,RW,( 2, ) THf)

If Fy is an (R;—1, R;)-bimodule for 1 < i < n — 1, the canonical bilinear maps ® : By X --- X E,, —

E,® - ®E, (where E, is an (R,,_1, R,)-bimodule) give rise to a natural transformation 6 from the
Ri1  Rn-1

identity functor on g, Mg, to &z (E1,...,E4_1,E1®---® E,_1 ® _) such that it is the unit
Ro,..., Ry —2,Z Ry Ry _2 Ry—1

of an adjunction F1 ® - - @ F, 1 ® _ - < Ey,....E,1, ).
J 1R1 R"72 " %nfli RUv---an—27Z( ! nt 7)

2.3.4 THEOREM. Let R; be a ring for 0 < ¢ < n, where n > 2 is a natural number. For all (R;_1, R;)-
bimodules E; (where 1 <i <n) and for all (Ry, R,)-bimodules F, define a function ug, . . g, r by

uEl,m’EmF:ROHomRn< ® EZF) % (Ei,...,E.F),
1<i<n Ro R

yeeesdln

pE,. B, p(u)(er . en) = uler @ ©en).

The functions pug, ... g, r are isomorphisms of Z-modules. Furthermore, they define a natural isomorphism

between functors from g, My X --- X g, ,Mp X g,Mg, to the category Ab of Abelian groups:
prpHomp (_®--® _,_ )= 2L (_,...,_,_).
’ (1 Ri Rp-—1in *> RUv"'aRn(l n *)

Proof. The Z-linearity of pug,, . g, r is obvious as soon as well-definedness has been established. By
Remark [2.3.3] we have the adjunction _ ® Era ® --- ® E,, 4 ¥ (Ea,...,E,, ) having the unit 7

TRy Ry R,_1 Z,Rs3,...,Rp,
defined by n(E1)(e1)(es,...,en) = €1 ® -+ ® e, for (R, Ry)-bimodules Fy and ¢; € E; for 1 <i <n. For
(Ro, Ry)-linear mapsu: Q) E; — F, define pg, .. g, r(u) = ” R,i” n (Es,...,E,,u)on(Er). According
1<i<n Ra,....R,
to Theorem|1.4.15] the function (E1, F') — ¢g, ... g, r is a natural isomorphism from p,Hompg, (7 QR Fo®
Ry Ro
- @ Eny, 7) to p,Hompg, (7,ZR.$ R (Eay...,E,, 7)) We show that ¢ is natural in the remaining
n—1 - sdiz, . iy -
variables too. The definition of g, . g, r reads as ¢g, .. g, r(u)(e1)(ez,....en) = ule1 @ -+ R ey),
where u: @ E; — F is (Ro, R,)-linear and e; € E; for 1 <1i < n.
1<i<n
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2.4 Associativity of the tensor product

Let E; be an (Ry, R1)-bimodule, let F' be an (Ry, R,,)-bimodule and let f; : E/ — E; be a morphism
of (R;—1,R;)-bimodules for 2 < ¢ < n. Let f; : E1 — FEj be the identity. Then for all e; € E; and

L<i<n, wehave (¢p, p,, .m0 o Hom(fi x - x fo, F))(u)(er) €2, €n) = 0py my,.py, p(Hom(fy
X o F)(u))(en) (€2, en) = Hom(fy <X for, F)(w)(e1®-+-®en) = (uo(fix- X fu)) (1@ +-@ey) =
u(file1) @ - @ fn(en)) and
(Hom(El, L(foy- s fns F)) o @El,...,En,F)(U)(€1)(62, Cen) =
=Hom(E1, Z(f2,-- - fn, F))(@Ey,... 5., p(w)(e1) (€2, ... €5) =
=ZL(fo,- s fa F)@Es,...E. . p(u)(e1))(e2, - .. en) = (PE,,... ., F(u)(e1) o (fo,. .., fn))(e2,. .., €n) =
= @El,‘..,En,F(U)(€1)(f2(€2)7 ceey fn(en)) = u(fl(el) ®R--® fn(en))

By Lemma © is a natural isomorphism. The claim now follows from the associativity of multilinear
maps, Proposition 2.2.3] O

2.4 Associativity of the tensor product

We give a proof of the associativity of the tensor product in terms of initial morphisms. Let n > 3 and
assume that F; is an (R;_1, R;)-bimodule for 1 <i <n. Set F, = E1 ® Ey and F; = E; for 3 <i <n. We
Ry

have the canonical mappings

p1: B — Hong(E2,E1§ Es), p1(e1)(e2) = e1 ®ez
1
(p22E1®E2—> < (E37...,En, ® FZ), @2(33)(63,...7671):$®63®"‘®€n
Ry Z7R31~~7Rn 2<i<n
SO?):-E‘I_> Z (E27"'7En7 ® E’L)7 ()03(61)(62,...76,”):€1®"'®6n.
JRa,... Ry 1<i<n

By Proposition [2.3.2 the pair (E1 ® Fy, gol) is an initial morphism for Fy with respect to Hompg, (Ea, _ ),
Ry

the pair ( X F;, <p2> is an initial morphism for F1 ® E5 with respect to ¢  (Es,..., E,, ) and the

2<i<n Ry Z,Rs,...,Rn

pair ( X E;, <p3) is an initial morphism for Ey with respect to ” ¥  (BEa,...,E,, ). By composition

1<i<n

of initial morphisms, the (Ry, R,,)-bimodule (F; ® F2) ® - -- ® E,, together with the (Rg, R1)-linear map
Ry

2 ln—1

3 E2500 M

Hompg, (E2, ¢2) o ¢ is an initial morphism for F; with respect to Hompg, (Eg, , R.i” R (E3,...,Ey,, 7))
3413500y fn

to: £ (By... E, E) — H (E % (Bs,....E,, Ei)'th' :
o Z,Rg,...,Rn< 2 1;8;1 ) omg, 2Z,R3,...,Rn( 3 1;8;71 )) is the isomor

phism given by o(u)(ez2)(es,...,e,) = ulea,...,e,), then by Proposition and Corollary also
the (Rg, Ry )-bimodule & E; together with the (Ro, Ry)-linear map o o 3 is an initial morphism for F4

1<i<n
with respect to Homp, (EQ,Z R.i” n (Es,....E,, _)).
94135000y dln
There is therefore a unique isomorphism ¢z, g, from @ E; onto (B4 ® E3) ® --- ® E, with the

1<i<n R, Ro Rn,_1

property that Hompg, (E2, p2) o1 = Hompg, (EQ, ” £ (BEay...,Ey, ¢E1,~.,En>) o0 ops, in other words,

24125005 il
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2 Isomorphisms in categories of bimodules

such that for all (e1,...,e,) € By X --- X E,

(e1®e2)We3®- - ®e, = pa(e1 ®ea)(es, ... en) = pa(pi(er)(e2))(es, ... en) =
= (p2 0 (piler)))(e2)(es; . .-, en) = (Homp, (B2, a) 0 g1)(e1)(e2)(es, - en) =
= (Hom32 (E27Z z (EQ,...,En,wEmEn)) oo—wg)(el)(ez)(eg,...,en) -

241250005 0

- (Zny”Rn(Eg, o B ¥p,...5,) 0 (U((pg(el))))(eg)(eg, en) =

= (Ym,....5, 0 (0(pser))(e2)) (e, .- en) = Vp, ... 1, (0(@s(e1))(e2))(es, ..., en) =
=VYE,,..B.(0(p3(e1))(e2)(ess ... en)) = V¥, B, (p3(e1)(e2, ... en)) = VE,, B, (1@ ... ®en).

Furthermore, this isomorphism is natural in all n variables: Let w; : E; — E! be (R;_1, R;)-linear

for 1 <4 < mn. Then ((u1 X uz) X uz X -+ X up) 0 Yg,,. . g, and VE;,.. B, © (up X -+ X up) are two
(Ro, Ry,)-linear functions s from F; ® --- ® E, to (E; ® F3) ® B3 ® --- ® E, with the property that
Ry n—1 Ry R2 R3 n—1

s(e1®--®ep) = (ur(e1) ®ua(es)) @us(es) - - uy(ey,) for all (er,...,e,) € [] E;. Since the function
1<i<n

(e1,...,6n) = (u1(e1) @ua(ez)) @us(es) ®- - - @un(en) is (Ro, . - ., Rp)- multilinear, the universal property
of the tensor product gives us ((u1 X uz) X ug X --- X Uyp) 0 Yg, . B, = VY, B, © (ug X -+ X uy). We
have therefore proved the first part of the following theorem. The second part follows from an analogous

argument.

2.4.1 THEOREM. Let n > 3 be a natural number and let Ry, ..., R, be rings.

(1) For each family (E;)i<i<n, where E; is an (R;_1, R;)-bimodule for 1 < i < n, there is a unique
(Ro, Ry,)-linear function ¥, .. g, : Q@ E;— (ElgEg)}(%@Egk@- ~}-2®En such that Yp, . g, (1@ --®
1 2 3

1<i<n n—1
en) = (e1Qe2)Res®- - -Qe, forall (e1,...,e,) € E1x---xXE,. The function (E1,...,E,) — ¥g,.  E,
is a natural isomorphism from _ X _ X _ X---X _ to(_ X _)x _ X---Xx _, both of which are
1 2 3 n 1 2 3 n
functors from r,Mpg, X --- X g, Mg, to r,Mg,, .

El}?"'(@En VB, En ‘(E1®E2)®E3®...®En
1

Rp—1 R, R, R3 Rnp_1
Uy X e X Up (w1 X ug) Xug X «++ X Up
E|®---®E, (B ®E)®E,®- & E,
R1 Rp—1 Vg g Ry Ro 3 Rp—1
10 n

(2) For each family (E;)1<i<n, where E; is an (R;_1, R;)-bimodule for 1 < i < n, there is a unique

(Ro, Ry,)-linear function Y, . g QR E—-FE® --QFE, 28 (E,—1®FE,) such that

_—

1<i<n R1 Rp-3 Ry—2 Rp—1
Ve, B, (61® - Rep) =€ @ - Qep_2® (en_1 @ ey) for all (e1,...,en) € By X -+ X E,. The
function (E1,...,E,) — ¥g,, . g, IS a natural isomorphism from _ X ---x _ X _ X _ to
1 n—2 n—1 n
X ---x _ x(_ x_), both of which are functors from p,Mpg, X --- X g, _,Mpg, to rR, Mg, .

1 n—2 n—1 n

2.4.2 COROLLARY. Suppose that n > 3 is a natural number and that R; is a ring for 0 < i < n.

Let 2 < i < n — 1. There is a natural isomorphism 1 from the functor _ x --- X _ to the functor
1 n
(_ X-++x _)X _ x---x _ having the property that for all (R;,_1, R;) modules E; and e; € E; (where
1 i it1 n
1<i<n), wehave g, g, (e1Q - Qe,)=(€1Q - ®e;)Ret1Q - Qey.

Also, there is a natural isomorphism 1 from the functor _ X --- X _ to the functor _ X --- X X
1 n 1 i—1

,,,,,
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2.5 Tensor products preserve colimits

(7. X «-+ X _ ) having the property that for all (R;_1, R;) modules E; and e; € F; (where 1 <i <n), we

3

K2
have Yp, g (1® - Qe,)=e1® - Qe_1® (6, Q- ®ep).

Proof. By induction on n, it is easy to show that the statement holds for ¢ = 2 and i = n — 1. As a second

step, apply induction on i for fixed n to obtain the general result. We leave the details to the reader. [

2.5 Tensor products preserve colimits

Let n > 2 and let R; be a ring for 1 < i < n. By Remark [2:3.3] we have the following adjunctions:
QB B, <  (Bay...,E,,_ ) forall (R;_1, R;)-bimodules E; (2 <i < n) and
Ry Rz Rp-1 Z,Rs,...,R,
Ei@ - @F,1® _ < Z(El,...,En,l,i) for all (R;—1, R;)-bimodules E; (1 < i < n—1).
Ry

L —2 Rn71 0yeeeydln—2,

From Theorem [1.5.20] it follows that the functors _ ® Fo ® - - ® E, and F1 ® --- @ B, 1 ® _ are
Ry R Rp_1 Ri R, 2 R, 1

cocontinuous. (Note that these adjunctions also give an alternative proof of the fact that the functors
SHom™ (E, _) : gMg — sMy for an (R, S)-bimodule E and fHom3(E, _) : RMy — pMg for an
(S, T)-bimodule F are continuous.) From Theorem we may deduce the following corollary.

2.5.1 COROLLARY. Let I and J be small categories. If R, S and T are rings, then the functors from
(rRM3g)! x (sMr7)” to RMr defined by
(F,G) — C?}(lgn((l,j) — F; QS@ G,) and
(F,G) — collim(F) ® co}]im(G) are naturally isomorphic.
5

With the aid of Corollary we see that the tensor product is cocontinuous not only in the leftmost

and rightmost argument, but in each argument.

2.5.2 COROLLARY. Let Ry,..., R, be rings and let E; be an (R;_1, R;)-bimodule for 1 <i < n. Assume
that 1 < k < n. The functor

Ei® - QE1®_QE41®--®FE,: g,_,Mg, = rMg,

Ry Ry _o Rr_1 Ry Rk+1 Rp—1
is cocontinuous.

Proof. The case that k =1 or k = n is clear from the above.
Let 2 <k <n-—1. The functors _ ® Ep41 ® ---® E, and Ey ® --- ® Er_1 ® _ are cocontinuous, and
Ry

k1 Rn—1 R1  Rg_»2 Ry_1
so is the composite functor Fp @ -+ - ® Ex_1 @ (_ ® --- ® E,,). The latter is naturally isomorphic to the
R1  Rg_2 k—1 R n—1
functor F1 ® -+ Q@ Fr-1 ® _ ® Fr11 ® --- ® E, by Corollary [2.4.2} The claim now follows from Remark
R1  Rg-2 Ri—1 Ry Riy1 Rn—1
1514 O
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3 Special cases

3.1 Associativity of products

Let I and J be sets, that is, small discrete categories, and let (A; ;)i j)erxs be a family of sets. Then

A (i,7) = A is a functor from I x J to Set. The product [JA; ; together with the family (i ;)¢ j)erx
(i,5)EIxT
of projections is a limit of A. By the theorem on the associativity of limits, Theorem a limit of A
can also be computed the following way: For j € J, we have the product []A; ; of the family (A; ;)ier
icl
together with the family (p]);cr of projections, that is, a limit of the functor A(_,j). Also, the product
[T [TA:; together with the family (g;);jes of projections is a limit of j — []A; ;. Consequently there

jeJiel iel

exists a unique function ¢ : [[ [[A4;; — [[A;; such that r; j oo = p] og; for all (i,5) € I x J. It is a
jeTiel ieljed

bijection.

[TA:; % [T [TAi;

i€l jeJiel
pl @

Aij = , H Aij
’ Ti,j JjeJiel

Following the usual construction of products, the bijection ¢ has the property that ¢(((ai ;)icr)jes) =
(aij)jyerxs forall a; j € A; j and (4,7) € I x J.

3.2 Associativity of quotients

Assume that N and K are normal subgroups of the group L (written multiplicatively) and that N C K.
It is well known that K/N is a normal subgroup of L/N and that (L/N)/(K/N) is isomorphic to L/K.

We show that this result can be understood as a special case of the associativity of colimits.
!

Let I = J be the category a —% b . Define a functor F' from I x J to the category Grp of groups
g

according to the following table, where .5 denotes the embedding of A into B for groups A and B such
that A C B and 15 denotes the homomorphism a + 1, for all groups A and B.

Fl a b f g
N K 1§ K
N L 1% L

IV 1k 1k 1%

Q@ - o 2

N L L L
itk 1k oy

A colimit of F' can be computed in two different ways.
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3 Special cases

(1) First, we form colimits of the functors F'(a, _) and F(b, _). The group K/N together with the

functions n?¢ = 1§/N and 7y = prg/N is a colimit of F(a, ) and the group L/N together with

L/N /N

nt=1y" andn} = pré is a colimit of F'(b, __ ), see Example MS) Now, according to Corollary

colim F(f, _) is the unique homomorphism ¢ from K/N to L/N having the properties that

con? =nboF(f,a)and cond = ntoF(f,b), that is, colﬁ/N = 1§/N01% and coprg/N = pri/Nolf’{.
The homomorphism 12//]1\\][ has this property. By analogous reasoning, we get colim F'(g, _ ) = Li//]\\[]

Employing Example 3) again, it follows that a colimit of the functor k — colim F'(k, __) (where
k € Mor(I) = {a,b, f,g}) is given by the group A = (L/N)/(K/N) together with 1‘;‘(/N and prf/N.
Now, by Corollary the group A together with the four maps 1%, 14, 14 and pr{ /N © pri/N i

a colimit of F.

(2) The group N/N together with p? = lx/N and ¢f = lx/N is a colimit of F(_,a) and L/K together

/K is a colimit of F(_,b). The only homomorphism from N/N to L/K
is IZLV//]KV, hence colim F(_, f) = colim F(_,g) = 1JLV//]I\(, A colimit of the functor k — colim F(_, k)
(where k € {a,b, f,g}) is L/K together with 1]LV//§ and idy,/x. By Corollary the group L/K
L/K |L/K |L/K /K
N ik AN

with b = IIL(/K and ¢} = pré

together with the four maps 1 and pré is a colimit of F.

There is therefore a unique isomorphism 1 : L/K — (L/N)/(K/N) such that ¢ o pré/K = prf/N o prf/N,
that is, such that ¥(aK) = (aN)(K/N) for all a € L.

3.3 Direct sums and quotients commute

f
Let I be a set (considered as a discrete category) and let J be the category a — p . Let € be a category
g

of (bi)modules. Assume that (E;);c; and (F;);c; are families of ¥-objects and that F; is a submodule of

E; for i € I. A functor H from I x J to € is defined by H(i,a) = F;, H(i,b) = E;, H(i, ) = O%’ and

H(i,g) = L?l fori € I. For each i € I, the module F;/F; together with the linear maps O%/Fi :F, — E;/F;
and prgz/Fi : BE; = E;/F; is a colimit of H(i, _). Moreover, since the direct sum of modules is the same

as a coproduct (a colimit with respect to a discrete category), the module G = @(EZ /F;) together with
the embeddings Lgi/Fi (i € I) is a colimit of the functor ¢ — colim H (i, _ ). Itli"(l)llows that G together
with the linear maps 0% and Lgi/Fi o prgz/Fi (where i € I) is a colimit of G.

On the other hand, the module A = €D F; together with the family (Léi)ief is a colimit of G(_,a) and
the module B = @El together with tllleelfamily (Lgi)iej is a colimit of G(__,b). The colimit of the natural
transformation é(ei , f) is the map OE, since 05 ) L‘;{_ = Lgi o Og for all ¢ € I, and a colimit of G(_, g) is

the map 5, since /& o Lﬁ = Lgi ) L? for all ¢ € I. Hence, by associativity of colimits, B/A together with

the linear maps Og/ A

It follows that there exists a unique isomorphism ¢ : @(E;/F;) — (DE;)/(F;) having the property
iEl il i€l
that @(Lg(/%/m)(l‘ + FZ)) = L%B, Bi(z)+ @F, foralli e I and z € E;.
R ) icl

and prg/A oup, (for i € I) is a colimit of G.

3.4 Pullbacks and products commute

Asume that % is a category and that the category J is of the form e — e «— e . A limit of a functor

F :J — € is called a pullback. By abuse of notation, we call a €-object P together with morphisms
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3.5 The free product of free groups is a free group

p1: P — Aand ps : P — B a pullback of a pair (fi, fo) of morphisms such that f; : A — C and
f2 1 B — C if the following property is satisfied:

fiopr = foopy and if Q is a € object and ¢; : @ — A and g2 : Q — B are morphisms
satisfying f1 0 q1 = f2 0 qo, there is a unique €-morphism ¢ : Q — P such that p; o p = g1 and

P20 = Q2.
P« z Q
P2 /
P1 / q2
A > (C = B

We use the notation PB(f1, f2) to denote the object part P of the pullback of f; and fs.
Let A, B,C and P be objects of ¥ and let f1 : A —>C, fo: B—C,p;: P— Aand py: P — B. Let a

functor F' from I to € be defined by the diagram A KL C L B . Then the following equivalence holds:
The object P together with (p1,p2) is a pullback of (f1, f2) if and only if P together with (p1, pa, f1 o p1)
(or, equivalently, (p1,pe, fo 0o p2)) is a limit of F.

Using this fact and Example 1), we see that in the category Set a pullback of f; : A — C and
f2 : B — C is given by the set P = {(a,b) € A x B : fi(a) = f2(b)} together with the projections
pr:P—Aand ps: P— B.

Let (Aj)icr, (Bi)icr and (Cy)ier be families of sets and let f; : A; — C; and g¢; : B; — C; be functions
for i € I. Fori € I, let p; : PB(fi,9:) = Ai, ¢; : PB(fi,9:) = By, i : EHIPB(fi,gi) — PB(fi,9:), € :
[TA: = A; and n; : [[ B; — B; be the canonical projections. Moreover, iet T PB(Hfi, ng) = [TA:
i€l i€l iel i€l i€l

and s : PB(Hfi, Hgl) — [[ B; be the projections.
iel i€l iel

PB(an ng)

i€l iel

VAN

[TA4: [IPB(fi,g:)  IIBs

i€l iel iel

A

A; D PB(fi, 9:) — B

By associativity of limits, there exists a unique function ¢ : PB(I] f;, [T9:) — [IPB(fi, i) such that
iel i€l iel
piomop=c;orand gomop=mn;0s for all i € I. It is a bijection.

3.5 The free product of free groups is a free group

We generalize the result from Example 1). The forgetful functor V from the category Grp of groups
to the category Set of sets has a left adjoint functor L: For a set A, the free group F4 with generating
set A together with the “insertion of generators” map f4 : A — F4 (which assigns to each a € A the set

of words in A that reduce to a) constitutes an initial morphism for A with respect to the functor V.
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3 Special cases

Moreover, for each discrete small category I the categories Set and Grp are I-cocomplete. For each
functor K : I — Set (a family (K;);cr of sets), the disjoint union | | K; of the sets K; together with the
i€l
embeddings K; — | |K; (i € I) is a colimit of K, and for each functor G : I — Grp (a family (G;)ier
=
of groups), the free product * G; of the groups G; together with the canonical injective homomorphisms
1€

G; — ‘*IGi (¢ € I) is a colimit of G.
1€

U
i€l
Set «— Set’

L L

Grp . Grpl
ier

According to Corollary [1.5.19(3), the functors X oL! and Lo | | from Set’ to Grp are naturally isomor-
e icl
phic. More specifically, assume that A = (4;);cs is a family of sets. Let M = | | A; be their disjoint union
iel
and let ¢; : A; — M be the map z — x (x € A;). Also, assume that N = '*IFAi is the free product of the
1€

(free) groups Fu, and that k; : Fa, — N (i € I) are the canonical homomorphisms. Then (M, (¢;)icr) is
a colimit of A and (N, (k;)ier) is a colimit of L o A.

f U A;
Fyu. H F . i€l A,
i;kl As ilglel V(Filglei) % i|E|1
s FLi V(FII) L
Fy, V(Fy. A;
A ( Al) fAi

There is a unique homomorphism g from _*IF 4; to F'| | 4, having the property that por; = F), for all
1€ il
1 € I. It is an isomorphism, which means that a free product of free groups is a free group.

3.6 Inductive limits and the ring of fractions

We recall the notation from Example 5). All rings are assumed to be commutative and unitary. For
a given ring R, we denote by R* the group of invertible elements of R. Let CRing be the category of
rings with unitary ring homomorphisms as morphisms. Let o/ be the category whose objects are pairs
(R, S), where R is a ring and S is a submonoid of (R, -) and whose morphisms (R, S) — (R, S’) are the
ring homomorphisms f : R — R’ having the property that f(S) C S’. Let G : CRing — & be the functor
defined by G(R) = (R, R*) for rings R and G(f) = f for morphisms f: R — R'.

In the example it was shown that for each object (R, S) of o7 the ring of fractions T of R with denominators
in S, denoted R[S™!], together with the canonical embedding eg : R — T is an F-initial morphism for
(R, S). Therefore there exists a “ring of fractions-functor” H from & to CRing. It is left adjoint to G
and consequently it preserves colimits.

Let (I’,<) be a nonempty up-directed set and let I be the corresponding category. Let R be a ring and
for i € I let S; be a submonoid of the multiplicative structure of R. For all ¢,j € I such that i < j,
let S; € S;. Let F(i) = (R,S;) for i € I’ = Ob(I) and if f is the unique I-morphism from ¢ to j, let
F(f): (R, S;) = (R, S;) be given by the identity map on R. A functor F' from I to 7 is then defined and
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3.7 Products as projective limits of finite products

the «/-object (R, [JS;) together with the morphisms (R, S;) — (R, |JS;) given by the identity maps is a
i€l icl
colimit of F'. This is the case because |JS; together with the embeddings S; — |J.S; is an inductive limit
iel =

of the inductive system ((Si)ie I, (L? )i< j), where (5 denotes the canonical inclusion map of a subset A of
B into B.

Let S = |JS;. Since formation of the ring of fractions preserves colimits, the ring of fractions R[S™!]

i€l

of R with denominators in S together with the maps egs, : R[S; '] — R[S™'] defined by the formula
€s,5, 0€s, = €g is a colimit of the functor H o F' : I — CRing. Therefore, if we denote by &; : R[Si_l] —
ligR[S; '] the canonical homomorphism for i € I, there exists a unique homomorphism ¢ : lim R[S —

R[S™!] such that o k; = eg.g, for all i € I. It is an isomorphism.

3.7 Products as projective limits of finite products

Assume that (4;);er is a family of sets, where I # (). Let F' be the set of finite nonempty subsets of T
supplied with the partial order < defined by J < K < J C K. Let .% be the dual of the category arising
from the ordered set (F, <) according to Example 5). That is, for finite nonempty subsets J and K
of of I there is a morphism from J to K if and only if J O K. Define a functor G from the category % x [

ey
to Set as follows. If J € F and i € I, define G(J,4) = Oy S0 gd K, that is, it
A,j if 4 eJ
0; ificeJ\K
JeF, KeFand K CJ, define G(f,i) = idg, ifieK , where (); is the function from A; to

idggy ifigJ
{03
We compute a limit of G in two ways. First, for each J € F, the set [[A; together with the functions
jEJ
pr! : [T4; = A;, (aj)jeq > a; fori € Jand pr/ : [[A; — {0}, (a;)jes + 0 fori ¢ J is a limit of G(J, _).
jeJ JjeJ
For each .#-morphism f : J — K, the limit of G(J, f) is the function hg s : (a;)jes — (ar)rex from [[A;

jeJ
to HAk
keK

1 Ax ‘(aj)jEJ = (ak)rek HAj
keK jeJ

J
pr; pr;

Ai - A’L

By the theorem on the associativity of limits, the object part of a limit of G if given by the object part
of a limit of the functor f — lim G(J, f), that is, by the projective limit of the projective system given by

the sets [[A; for all nonempty finite subsets J of I and the functions hg s : [[A; — [[Ax for nonempty
finite su{oeséts K and J of I satisfying K C J. < e

On the other hand, let i € I. A limit of G(_,i) is the set A; together with the maps ¢ =

idy, ifieJ

0; ifigJ
Let (B, (rs)ser) be another cone over G(_,4). If f: J — K is an %-morphism and ¢ € K, we have
rk = G(f,i) ory =idy, ory = ry. Since for all J, K € F there exists a set L € F such that J C L

and K C L, there exists a function a from B to A; such that r; = a for all J € F satisfying i € J. The

for J € F. To see this, note first that the pair (Al-, (qf,)Jep) is a cone over G(_,1).

53



3 Special cases

function a has the property that ¢4 o a = r; for all J € F, and it is obviously the only one with this

property. Therefore the set A; is indeed the object part of a limit of G(_,4). By associativity of limits,

the set [[A; is the object part of a limit of G. Combining this with the result from above, we see that a
iel

product of sets is a projective limit of finite products.

3.8 The tensor product of commutative algebras

Suppose that R is a commutative ring and let p Alg be the category of associative, unitary and commutative
R-algebras, where the morphisms are given by unitary R-algebra homomorphisms. Let (E;)1<i<n be a
finite family of pAlg-objects and let A be its tensor product. (The underlying module structure of A
is given by the tensor product of the modules E;; multiplication is defined to be the unique function
fiAXxA— Asatistying f(21 ® - Q@ Zp, 1 @ - QYpn) = 1Y1 @ -+ @ xny, for all z;,y; € E; and
1 <i< n) For 1 < i < n, assume that e; is the unit of E;. Define functions w; : E; — A by
ui(z;) =e1 @ - ®em1 DT Qe ® - - ® e,. By multilinearity of the function (z;)1<i<n = @Qq<ic, Ti
and by the definition of multiplication in A, the function u; is an R-algebra homomorphism. -
We show that the pair (A7 (Ui)lgign) is a coproduct of the family (F;)1<;<n. To this end, note first

that JJui(z;) = 21 ® - @ @, for all z; € E; and 1 < i < n. Let B be any (associative, unitary and
1<i<n
commutative) R-algebra and v; : E; — B an unitary R-algebra homomorphism for 1 < ¢ < n. Then it is

easy to see that the function [Jv; from [[E; to B is R-multilinear. There exists therefore a unique R-linear
1<i<n 1<i<n
map w : A — B such that w(z1 ® - ®@x,) = v1(x1) - - vp(xy,) for all z; € F; and 1 < ¢ < n, which implies

wou; =v; for 1 <i < n. The function w is an R-algebra homomorphism: Since A (as an R-module) is

generated by elements of the form @x;, it is sufficient to show the formula w(zy) = w(z)w(y) for such x

1<i<n
and y. We have w(®xl ®yt) = w(@( lyi)) Hv (zy;) = H%( I vi(yi) = w(@xl) (®yl) for all
1<i<n 1<i<n 1<i<n <i<n <i<n 1<iln 1<i<n

zi,y; € E;and 1 <i<n. Nowifw: A — Bis another R- algebra homomorphlsm such that wou; = v;
for 1 <i < mn, we have (21 ® -+ @ x,) = w(]_[uz(xl)) = [Tw(w;(z;)) = [vi(z;) and therefore w = w.

1<i<n 1<i<n 1<i<n
Summarizing: In the category rpAlg finite coproducts are given by the tensor product.

Let m > 1 and n > 1 be integers and let (E;)o<i<mn be a family of pAlg-objects. For 0 < ¢ < mn,
kn+n—1
let e; be the identity of F;. For 0 < k < m and 0 < i < n, let uf : Eppgi — ®Ej be the R-
j=kn
algebra homomorphism defined by the rule z — e, @ - ® €pnti—1 @ T @ €kntit1 @+ @ €gpyn—1. Let
kn+n 1 m—1kn+n—1
:QFE; - Q@ QE; be the homomorphism &+ €y ® -+ ® €1 ® T ® €1 @ -+ @ €1, Where & is

j=kn k=0 j=kn
In+n—1 mn—1
the unity of @FE; for 0 <1 < m, that is, & = e/, ® - -+ ® €jpn—1. Moreover, let w; : E; = @ E; be the
j=ln =0

homomorphism z = ey ® - ®e;i_1 QT ®e;i11 Q@+ ® emn—1 for 0 < i < mn.

kn+n—1 m—1kn+n—1
QE; ® QE;
j=kn =0 j=kn
ub v
mn—1
B L , QFE.
kn+1 Whn 41 J@) J
mn—1 m—1kn+n—1
By associativity of colimits, there exists a unique R-algebra homomorphism ¢ : ®E — @ QE; such
j= k=0 j=kn
that ¢ o wgpei = vg oul for all i € {0,...,n — 1} and all k € {0,...,m — 1}. It is an isomorphism.
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3.9 The tensor product and direct sums

Expanding the definitions, we see that the isomorphism ¢ has the property that ¢(zg ® -+ ® Tyn_1) =
(To® - @Tp1) @ (T @ @ Top_1) @ @ (T(m—1)n @+ @ Tyupn—1) for all z; € E; and 0 < i < mn.
3.9 The tensor product and direct sums

Assume that R, S and T are (not necessarily commutative) rings and let I and J be sets. Let (E;);er be a
family of (R, S)-bimodules and let (F}),cs be a family of (S, T)-bimodules. For i € I, let ¢; : E;, - @E;

iel
be the canonical (R, S)-linear map and for j € J, let x; : F; — €D F; be the canonical (S, T)-linear map.
jed
Moreover, for (i,5) € I x J, let n;; : E; %) F, - & (EZ ® Fj) be the canonical (R, T)-linear map. The

(i,5)EIXJ
tensor product of two modules is cocontinuous in each argument (see Corollary [2.5.2)), therefore we can

apply the dual of Theorem [1.7.2t There exists a unique (R, T)-linear map v : @ (E;® F;) - @E; @ @ F;
(i,))eIxJ S iel  SjeJ

such that ¢ on; ; = ¢; x k; for all (z,7) € I x J. It is an isomorphism.

@(Ei®Fj) Y PE@F, . ¢  @DE xDF;

(i,j)elxJ S iel S jeJ iel jeJ

Li X Kj (i, Kj)

Ei®Fj‘ EiXFj

3.10 The Hom-functor, products and direct sums

Assume that R, S and T are rings and let (E;);cr and (F}),cs be families of (R, S)- and (R, T)-modules
respectively. For i € I, let ¢; : E; — E; be the canonical (R, S)-linear map and for j € J, let pr; :
iel

[1 F; — Fj be the canonical (R, T)-linear map. Moreover, fori € I and j € J let r; ; : [[3Hom” (E;, Fj) —
jed (i.)eIxJ

ZHom” (E;, F;) be the canonical (S, T)-linear map. Then the module @ F; together with the maps ¢; is

icl

a colimit of the functor ¢ — FE; from the category I to gMg, therefore a limit of the same functor,
considered as a functor from I°P to pkMg’. Since I°? = I and the functor pHom from pMJY x pMrp
to sMr is continuous in each argument, by Theorem we have an (5, T)-module isomorphism ¢ :

rHom (@ E;, [] F;) — [[rHom(E;, F}) such that r; j o ¢ = gHom(ss,pr;) for alli € I and j € J.
icl JjEJ (i,7)eIxJ
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Abstract

The language of category theory was initially developed by Samuel Eilenberg and Saunders Mac Lane, in
order to be able to talk about the concept of “natural transformation” in a precise manner. Since then, it
has proven to be a convenient means to talk about topics as diverse as algebraic topology and computer
science.

In the present work, we introduce some basic concepts and theorems of category theory and relate them
to mathematical results, mainly from the field of algebra. Application of category theoretic results to
mathematics may help to see similarities between areas that seem unrelated at first sight. Also, in the
same process, it may yield shorter proofs for theorems. On the other hand, the process of translating
mathematical statements into a form on which category theoretic tools can be applied, may introduce
tedious passages that obfuscate the main argument.

In the first chapter, we introduce a number of important terms and theorems of category theory. Starting
from the definition of the term category, we investigate the important concepts of adjunction and limit of
a functor. Central results are the theorem on the associativity of limits and the fact that right adjoint
functors preserve limits.

The second chapter covers multilinear maps and the tensor product. These concepts are connected by
means of an adjunction. Starting from this fact we prove the theorem on the associativity of the tensor
product of bimodules using category theoretic means.

In the third chapter we show some applications of the theorems in the first chapter. These results are
well-known; but the reduction to category theory reveals similarities between the examples that are not

as easy to see without this theory.
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Zusammenfassung

Die Sprache der Kategorientheorie wurde urspriinglich von Samuel Eilenberg und Saunders Mac Lane
entwickelt, um prézise iiber den Begriff der natiirlichen Transformation sprechen zu kénnen. Seither hat
sie sich in vielen Themengebieten, zum Beispiel in der algebraischen Topologie oder in der Informatik, als
praktisches und vielseitiges sprachliches Mittel erwiesen.

In der vorliegenden Arbeit fithren wir grundlegende Konzepte und Sétze aus der Kategorientheorie ein und
behandeln damit bekannte mathematische Tatsachen hauptséichlich algebraischer Natur. Die Kategorien-
theorie auf mathematische Fragestellungen anzuwenden kann Ahnlichkeiten zwischen Gebieten sichtbar
machen, die auf den ersten Blick sehr verschieden aussehen. Auflerdem werden so manchmal kiirzere Be-
weise von Sétzen erzielt. Auf der anderen Seite kénnen durch die Ubersetzung mathematischer Aussagen
in eine Form, auf die man kategorientheoretische Mittel anwenden kann, umsténdliche Formulierungen
entstehen, die das eigentliche Argument verschleiern.

Im ersten Kapitel werden einige wichtige Begriffe und Sétze aus der Kategorientheorie behandelt. Bei der
Definition einer Kategorie beginnend, behandeln wir die wichtigen Begriffe Adjunktion und Limes eines
Funktors. Zentrale Resultate sind die Assoziativitdt von Limiten und die Tatsache, dass rechtsadjungierte
Funktoren Limiten bewahren.

Das zweite Kapitel behandelt multilineare Abbildungen und das Tensorprodukt. Diese beiden Begriffe
sind vermdge einer Adjunktion miteinander verbunden. Ausgehend von dieser Tatsache beweisen wir die
Assoziativitat des Tensorproduktes von Bimoduln mit kategorientheoretischen Mitteln.

Im dritten Kapitel werden einige Anwendungen der Sétze aus dem ersten Kapitel aufgezeigt. Es sind
das Resultate, die wohlbekannt sind; durch die Zuriickfithrung auf die Kategorientheorie werden jedoch

Gemeinsamkeiten zwischen den Beispielen sichtbar, die man ohne sie nicht so leicht erkennt.
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