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Abstract

Iterative re�nement is a widely used method to improve the round-o� errors of a solution
of a linear system and is also used in software packets like LAPACK. The cost of the iterative
improvement is very low compared to the cost of the factorization of the matrix but results
in a solution which can be accurate to machine precision. Many variations on the standard
iterative re�nement method exist, which use di�erent worki ng precisions to re�ne the solution.
The extra precise iterative re�nement can use extended precision to improve the result. The
mixed precision iterative re�nement tries to exploit the bene�ts of using lower precisions to
compute a solution and then uses iterative re�nement to achieve the higher precision accuracy.

The focus of this thesis will be the binary cascade iterativere�nement (BCIR), which
chooses the working precisions according to the input data. This algorithm depends on
arbitrary precision arithmetic to support working precisi ons outside the IEEE standard data
types provided by most hardware vendors. The thesis will analyse the properties of BCIR and
conduct experiments which will compare the algorithm to other iterative re�nement methods
and focus on the numerical accuracy and the convergence.

The arbitrary precision arithmetic will be implemented using the GNU MPFR software
library. The simulated arbitrary precision does not provide accurate information about the
gains and losses in performance due to the use of the di�erentprecisions. Therefore a per-
formance model will be introduced in order to be able to compare the performance of the
algorithms and to analyse the possible performance gains, which could be exploited in future
works by hardware implementations for example using recon�gurable hardware like FPGAs.
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Chapter 1

Introduction

The use of iterative re�nement can improve the round-o� errors of a solution of a linear

system. The process computes the residual of the solution, then solves the system for a

correction term using the residual as the right hand side of the equation and �nally updates

the solution with the correction term. These steps are repeated until the requested accuracy

is reached. This method was �rst mentioned by Wilkinson in his book \Rounding Errors in

Algebraic Processes" [49] using �xed point arithmetic and later expanded by Moler [ 35] to

cover 
oating-point arithmetic. The cost of the iterative i mprovement is very low compared

to the cost of the factorization but it results in a solution w hich can be accurate to machine

precision. Iterative re�nement is not limited to linear sol vers, but can also be used for many

other solvers, including eigensolvers and least squares solvers (for example [12, 18]). However,

this thesis will focus on iterative re�nement using linear solvers.

The standard iterative re�nement method (SIR) uses the same precision to compute

both, the initial solution and the correction term for the im proved result, but other iterative

re�nement methods exist, which use di�erent precisions for these computation steps. The

Extra Precise Iterative Re�nement (EPIR) [ 13] uses a higher precision to compute the residual

and the correction term of the solution to compensate for slow convergence and ill-conditioned

systems. The Mixed Precision Iterative Re�nement (MPIR) [ 7] takes a di�erent approach and

computes the matrix decomposition and the initial solution in single precision and applies

iterative re�nement using double precision to improve the result and still have a solution

which reaches double precision accuracy. This exploits thebene�ts of using the lower single

precision, for example exploiting vector instructions andusing less storage which also reduces

the amount of data moved through the memory hierarchy, while still achieving a double

precision result.

The focus of my master thesis will lay on theBinary Cascade Iterative Re�nement (BCIR)

by Kie lbasi�nski [ 26]. The algorithm adapts the precisions for computing the re�nement steps

depending on the input parameters, the size and condition number of the matrix and the

intended target precision. The process can use multiple working precisions throughout the

re�nement process. This provides the ability to choose the appropriate precision to improve

1



1.1. THESIS OUTLINE 2

the result and also compensate for ill-conditioned systems. This algorithm has never been

implemented and therefore no experimental results are available up until now.

The algorithm depends on arbitrary precision, which is not bound to IEEE standard pre-

cision. The hardware support for arbitrary precision is very limited and therefore a software

library, the GNU Multiple Precision Floating-Point Reliab le Library (GNU MPFR) [ 15], will

be used to implement the iterative re�nement methods. This library provides a portable im-

plementation of arbitrary precision and allows the precisions to be set exactly in the number

of bits stored in the mantissa of a 
oating-point number.

The binary cascade iterative re�nement method will be compared to other iterative re-

�nement methods and the numerical accuracy and the convergence will be analysed. The

numerical behaviour of the binary cascade iterative re�nement method will be analysed for

di�erent input systems, which will also include extremely i ll-conditioned Hilbert matrices.

Due to the use of software simulated arbitrary precision, performance measurements would

not provide accurate information about the gains and lossesin performance due to the use

of the di�erent precisions. Therefore a performance model will be introduced in order to be

able to compare the performance of the algorithms and to analyse the possible performance

gains. These result could be used in future works for hardware implementations for example

using recon�gurable hardware like FPGAs.

1.1 Thesis Outline

The binary cascade iterative re�nement depends on arbitrary precision. ThereforeChapter 2

will introduce arbitrary precision, describe the di�erences to the IEEE Standard for Floating-

Point Arithmetic (IEEE 754) [ 10] and introduce the multiple precision 
oating-point relia ble

software library (GNU MPFR) [ 15] which will be used to implement arbitrary precision for

the iterative re�nement algorithms.

Chapter 3 will describe the di�erent iterative re�nement methods whi ch will be compared

in this thesis. Beside the already widely used standard iterative re�nement (SIR) [ 49], the

extra precise iterative re�nement (EPIR) [ 13] will be introduced, which extends the standard

iterative re�nement by adding error bounds at a low computat ional cost and also uses higher

precisions than the targeted precision to compute criticalsteps in the iterative process. The

mixed precision iterative re�nement (MPIR) [ 7] is another algorithm which will be used in the

experiments. It focuses on the possibility of exploiting performance bene�ts based on the use

of lower working precisions for the computationally expensive tasks, the matrix factorization,

while still achieving the target precision accuracy, the same accuracy as the standard iterative

re�nement. In addition to the description of the available i terative re�nement methods, a

model to estimate the number of iterations used by the standard and mixed precision iterative

re�nement is introduced in this chapter, which will later be used as part of the performance

models.
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The binary cascade iterative re�nement (BCIR) is explained and analysed inChapter 4.

The algorithm described by Andrzej Kie lbasi�nski is intro duced, accentuating on the properties

which decide which precisions should be used to compute a result with the described accuracy.

Chapter 5 will describe the implementation of the algorithms and their usage. The chapter

will also include implementation details concerning the di�erent algorithms.

The experiments are the focus ofChapter 6 and will include the numerical accuracy in

terms of accuracy by analysing the relative residual achieved by the di�erent algorithms and

the convergence by observing the number of iterations needed to achieve the speci�ed target

precision. Included in this chapter is the description of the method used to generate the data

and information on the chosen termination criteria for the iterative re�nement methods.

A meaningful performance analysis is almost impossible when using arbitrary precision

arithmetic which is being emulated using software packages, especially when operating at such

low precision levels which are below or just above the standard precision range. Therefore a

performance model is used which represents the theoreticalperformance gains and losses if

the algorithms would be implemented using �eld programmable gate arrays (FPGAs) [16],

which provide the ability to set the precision of the data types exactly to the number of bits

stored in the mantissa. This ability is also supported by the GNU MPFR software library,

which is one of the main reasons it has been chosen for the experiments. The performance

model is described inChapter 7 and the results of the comparison of the performance of the

di�erent iterative re�nement algorithms will be analysed.



Chapter 2

Precisions of Floating Point

Arithmetic

This chapter will introduce arbitrary precision, which wil l allow computations outside the

boundaries set by the standardized 
oating-point precision formats, which are the predomi-

nant precisions implemented in most modern day processors.

Firstly arbitrary precision and the di�erences, advantages and disadvantages compared to

standard precision will be introduced followed by a number of available possibilities of using

arbitrary precisions. The arbitrary precision library MPF R [15, 43], which will be used in

the implementation of the binary cascade iterative re�nement, will be looked at in greater

detail. At the end of this chapter, an analysis of the performance of the arbitrary precision

package will be shown.

2.1 Standard Precision

2.1.1 History

In modern day computing, one can normally resort to standardised 
oating-point precisions

available on most commodity processors which follow theIEEE Standard for Floating-Point

Arithmetic (IEEE 754) [10]. This standard was �rst �nalized and released in 1985 and became

the leading standard for 
oating-point arithmetic followe d by the majority of processor ven-

dors and is implemented in most modern commodity processors. The standard was revised

and extended in 2008 after a seven year review process and still comprises the majority of the

de�nitions from the original document, including the de�ni tion of the standard 
oating-point

formats.

Today, programmers can often rely on the IEEE standard beingimplemented on the

target processors and the processor implementations to follow the IEEE 754 speci�cations.

This was not always the case. Before the standard was passed and adopted by the leading

processor manufacturers, interoperability among processors from di�erent vendors was almost

4



2.1. STANDARD PRECISION 5

out of the question. Often this was not limited to the vendors themselves but also true for

processors produced by the same �rm [8].

The di�erent 
oating-point formats focused on di�erent asp ects of representing a real

number and included the range, i.e. the amount of numbers that could be represented, the

speed of computations, rounding of results and of course theaccuracy of the represented

number. The manufacturers tried to sell their format as the \accurate" 
oating-point im-

plementation, but all representations had their drawbacksand whatever implementation one

chose, a compromise had to be made in at least one of the previously mentioned aspects.

This growing issue needed to be addressed because all these incompatible 
oating-point

representations made the life of a developer very di�cult and an implementation very depen-

dent on the underlying hardware, which reduced the portability of a program and increased

the development time and costs. The behaviour of an algorithm was di�cult to predict and

the results were inconsistent due to the di�erent formats.

In 1977 the �rst IEEE 754 standards working group meeting took place with the goal to

de�ne a standard for the 
oating-point formats. The IEEE wor king group had the bene�t

of many di�erent 
oating-point representations being in us e and their properties could be

analysed in order to avoid their disadvantages. One of the driving forces behind the stan-

dardization process was Intel [9]. In 1976, Intel was developing a 
oating-point co-processor,

the i8087, for their new i8086/8 microprocessor and they wanted to use a new 
oating-point

arithmetic, which would be better than any other format used by their competitors and also

be applicable to a large market. With the help of William Kahan, who was engaged as a

consultant for the new 
oating-point format and had previou sly worked for Hewlett Packard

and improved their processing capabilities, a speci�cation was formulated for the new mi-

croprocessor arithmetic. After the �rst meeting of the IEEE 754 working group, William

Kahan asked for permission from Intel to take part in the standardization process using the

newly de�ned 
oating-point format developed for the i8087 co-processor. He pointed out in

an Interview he gave in 1998 [9] that it was very di�cult for him to present the standard

because he of course was not allowed to reveal details about the upcoming Intel processor

architecture or its transcendental functions (e.g. sine, cosine, logarithms, etc.). He could de-

scribe the reasoning behind the proposals, but not how they were going to be implemented.

There were still some questions left open, some of which greatly hindered the completion of

the standard for many years. One of the disputed aspects of the standard was under
ow,

where a result is between the smallest normalized number andzero. For many years the

working group could not agree on a standard form to handle under
ows.

When the standard was �nally concluded, eight years had passed since the �rst meeting.

Luckily many manufacturers saw the potential of a standard 
oating-point format and had

already started using some early drafts of the standard before it was o�cially �nalised.

The IEEE 754 standard was adopted very quickly by most microprocessor manufacturers.

However, many leading high performance computing vendors had to continue to support

their proprietary 
oating-point format for many years afte r the introduction of the standard
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due to their large base of customers. Today the IEEE standardhas become the dominant


oating-point standard and provides the users with a portable 
oating-point format. [ 8]

Even though the standard provides a uniform representationof a 
oating-point number,

there are still some issues which have not been clearly de�ned in the standard and therefore

can vary between di�erent architectures leading to di�erent results produced by the same

program or algorithm [42, p. D-65]. The main issue is the handling of intermediate results,

which are stored in a \destination" variable which does not have to use the same precision

as the variables of the expression. By design, the standard only de�nes that the results must

be rounded correctly to the destination's precision but it does not de�ne the precision of

the destination variable. This choice is normally made by the system or the programming

language without the ability of the user to change it. The same program can therefore return

signi�cantly di�erent results depending on the implementa tion of the IEEE standard.

2.1.2 IEEE Standard

The main focus for the following descriptions will be the IEEE 754-1985 standard because

this is the one followed by the GNU MPFR arbitrary precision package which will be used

to implement the iterative re�nement algorithms in this the sis.

The IEEE 754-1985 standard and its revised version of 2008 (IEEE 754-2008) [10] speci�es

binary (and decimal) 
oating-point formats, conversions between di�erent formats, arithmetic

operations, rounding modes and 
oating-point exceptions.

One goal of the IEEE 754-1985 standard was to �nd a uniform wayof rounding 
oating-

point numbers correctly. The standard therefore de�nes thefollowing rounding modes.

� Round to nearest, ties to even : rounds the result to the nearest number. If the

result is not representable then the nearest number with theeven least signi�cant digit

will be returned. For example, if the rounding mode would be applied to decimal

numbers, 47:5 would be rounded to 48 and 46:5 would be rounded to 46. This rounding

mode is unbiased.

� Round to nearest, ties away from zero : rounds the result to the nearest number.

If the result is not representable then it is rounded to the nearest number away from

zero. For example, � 47:5 would be rounded to � 48 and 47:5 would be rounded to

48. This rounding mode was included in the revised version ofthe standard (IEEE

754-2008).

� Round toward 0: rounds the result to zero, in other words it truncates the number

� Round toward + inf: rounds the number to positive in�nity

� Round toward � inf: rounds the number to negative in�nity

The last three rounding modes are also called directed rounding.

The standard de�nes four binary 
oating-point representat ions:
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� binary16 - Half precision (11 bit mantissa)

� binary32 - Single precision (24 bit mantissa)

� binary64 - Double precision (53 bit mantissa)

� binary128 - Quadruple precision (113 bit mantissa)

In Figure 2.1 the general representation of a 
oating-point number is shown. The parts of

sign exponent fraction

0fe+f

Figure 2.1: General representation of 
oating-point numbers [48]

the 
oating-point representation are best described usingan example. Thedouble precision


oating-point format or binary64, the new name for double precision since the 2008 revision

of the standard, uses 8 bytes to store a number. The 64 bit of available storage is divided

into the three sections shown inFigure 2.1 as follows:

� Sign bit (blue): the �rst bit is used to store the sign of the nu mber.

� Exponent (green): in this case the exponent has a width of 11 bits.

� Signi�cand precision (red): the signi�cand, which is often also called the mantissa due

to historical reasons, uses 53 bits to represent the number in binary, although only 52

bits are stored explicitly.

In order to explain why only 52 bits are needed to be stored explicitly, but still can

represent 53 bits, it is necessary to take a closer look at theformat the numbers are stored

in: the normalized numbers. A number is callednormalized if it has the form

� d0:d1d2d3 : : : � bn (2.1)

b stands for the base of the representation andn is an integer representing the exponent of

the baseb. The digits di are integers between 0 andb� 1 and d0 6= 0. Storing the numbers

in this representation leads to the most signi�cant bit always being 1. It is unnecessary to

store this bit in the standard binary precision formats. Therefore it is often also called the

\hidden bit". This bene�cial property of the normalized num bers can only be exploited in


oating-point representations using two as its base and notwith other bases.

The number of bits in the signi�cand can be used to determine how many digits of any

other base can be stored in this representation. The following equation is the general form

which can be used to convert the number of digits between all bases.

db1 = db2 � logb1 (b2) (2.2)
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bi stands for the base anddbi describes the number of digits in basebi . To calculate the

number of digits from binary to decimal the equation from (2.2) would be:

d10 = d2 � log10(2) (2.3)

For the IEEE standard double precision 
oating-point forma t with 53 bits stored in the

mantissa this would lead to 15:96: : : � 16 representable decimal digits.

d10 = 53 � log10(2) = 15 :95458977 (2.4)

A good approximation for the number of decimal digits represented by the binary mantissa

can be achieved by multiplying the number of bits in the mantissa by 0:3.

d10 = d2 � 0:3 (2.5)

2.2 Arbitrary Precision

Arbitrary precision allows the user to choose which precision should be used for a calculation

or preferably which precision should be used for each variable to store a value. Arbitrary

precision is not bound to machine dependent or IEEE standardtypes and the precision is

only limited by the memory the host system can provide. Therefore arbitrary precision is also

often called \in�nite-precision arithmetic", which of cou rse is not true in practice because of

the �nite amount of memory which is available or the limits im posed by index variables and

other natural boundaries. Even though limitations exist, the range of precision which can be

provided through the use of arbitrary precision is still very large.

Some arbitrary precision libraries allow the user to set theprecision exactly to the desired

number of bits to store in the mantissa. However, other arbitrary precision systems only

provide the ability to increase the precision in steps of themachine word size, which is

normally 32 or 64 bits wide. This approach is sometimes called multiple precision, where the

signi�cand of a binary number is distributed over multiple m achine words [17].

Arbitrary precision has a wide range of applications, some of which are in use in every

day life. Arbitrary precision plays a great role in cryptography. The long encryption keys can

be integer numbers with hundreds or thousands of digits which could not be represented by

standard integer types provided by most programming languages. This is an ideal task for

arbitrary precision integer arithmetic and is present in modern web browsers using public-

key cryptography. Other common applications of arbitrary precision include calculating

mathematical constants like � or the ability to prevent over
ows and under
ows by increasi ng

the precision of computations. Of course arbitrary precision is used to increase the accuracy

of computations as for example in the binary cascade iterative re�nement by using arbitrary

precision to increase the accuracy of a computed result.
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The advantages of using arbitrary precision to increase theavailable range and gain higher

accuracy come with drawbacks. In most cases, arbitrary precision can only be simulated,

either in hardware or software, which leads to a signi�cant performance decrease. Any kind

of simulation increases the runtime of algorithms comparedto using the fast standard data

types. Most commodity processors only support the standardIEEE 754 data types and

alternatives like �eld programmable gate arrays (FPGAs), which can be programmed by

the user, insert an additional layer of complexity and cannot provide the same speed as the

standard processors optimized to operate with the standarddata types. Another challenge of

arbitrary precision is the special algorithms required by libraries to perform the computations

which have to handle large signi�cands. Sometimes arbitrary precision is the only way to

compute a result accurately due to the limited precisions provided by the standard data types

or the increased complexity of encryption algorithms. Being able to simulate the behaviour of

arbitrary precision data types can help us �nd more e�cient w ays to compute more accurately

and, for example, in the case of iterative re�nement also show the theoretical bene�ts of non

standard precisions in terms of runtime performance.

2.2.1 Constant Folding with Arbitrary Precision

Even though most of the time arbitrary precision comes with performance drawbacks, it

can also be used in the preprocessing phase to increase the accuracy of constants before

they are handled with standard precision data types. A compiler normally replaces constant

expressions with their �nal value in order to reduce the needof recomputing the same result

every time the program executes the line containing the constant. This procedure is called

constant folding [17]. The GNU GCC compiler started to use the GNU MPFR library

with version 4.3 to handle constant folding and evaluate mathematical functions applied to

constants at compile time at arbitrary precision when optimizations are activated. By using

the arbitrary precision library, the result of the mathemat ical operations does not rely on the

underlying architecture and provides reproducibility and correctness.

An example of the e�ects caused by insu�cient precision and inaccurate rounding is

provided in [17] and it is also shown how this problem was resolved when the example program

was compiled with the latest GCC compiler using the MPFR library for constant folding.

The authors provided a simple program to calculate the valueof sin(x) . Without any

optimization (compiler 
ag -O0) the MPFR library was not used and the result was not

correctly rounded, but when they increased the level of optimization by adding the compiler


ag -O1, the result was correctly rounded. In addition, the standard C mathematical library

was no longer required to be linked with the program due to theuse of the MPFR library.

2.3 Arbitrary-precision Software and Libraries

As mentioned in the last section, there are di�erent ways to achieve arbitrary precision. This

section will focus on some of the available methods in hardware and software which provide
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the ability to use the bene�ts of arbitrary precision. The methods can be classi�ed into the

following three categories:

� Hardware support

� Stand-alone software

� Programming languages and software libraries

2.3.1 Hardware support

The hardware support for arbitrary precision is limited, one example being FPGAs. FPGA

stands for �eld programmable gate array [47] and allows the user to recon�gure the hard-

ware for di�erent applications after the production phase, sometimes even at runtime. The

processors contain programmable logic blocks and interconnects and support massive paral-

lelism. A common �eld for the use of FPGAs is prototype development of application-speci�c

integrated circuits, but the chips are also used for signal processing, cryptography, speech

recognition, medical imaging and many other applications.The users can implement a cus-

tom instruction set which only consists of instructions which are relevant for the application.

Complex functions normally not supported by commodity processors can also be implemented

by directly programming the logic gates. The disadvantagesof FPGAs include the low speeds

for general-purpose arithmetic and the high complexity of designing and programming the

chip.

FPGAs are not bound to the IEEE data types and can operate at arbitrary precisions.

Lower precisions result in a higher performance due to the increased parallelism and higher

throughput, as shown in [36].

2.3.2 Stand-alone Software

There are some applications which include the ability to usearbitrary precision arithmetic.

One example is the computer algebra system Maple [31]. Since version 11 the software started

using the GNU MPFR library [ 43] to provide arbitrary precision arithmetic.

Another example is Matlab's Variable Precision Arithmetic (vpa). Matlab provides the

ability to perform calculations in arbitrary precision usi ng the vpa-command included in the

Symbolic Math Toolbox [33]. Matlab can evaluate calculations at variable precision making

it possible to increase or decrease the accuracy of a calculation. The vpa-command takes two

arguments:

� The �rst argument is the expression to evaluate in the speci�ed precision,

� the second argument speci�es the requested precision by de�ning the number of decimal

digits to use.
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The return value of the vpa-command is a symbolic object, a special data type provided in the

Symbolic Math Toolbox software. Many Matlab functions also accept symbolic expressions as

input parameters and therefore can facilitate the development of an algorithm using arbitrary

precision. Matlab also o�ers the ability to construct symbolic numbers, which store the

numeric values as a symbolic representation using higher precision. A symbolic object can

be created passing a numeric scalar or matrix variable as the�rst parameter to the function

sym. The newer Matlab versions using Mupad as their symbolic engine show an enormous

decrease in performance compared to the performance of older Matlab versions using Maple

as their symbolic engine.

2.3.3 Programming languages and software libraries

Many di�erent software libraries exist for many di�erent pr ogramming languages and each

one has advantages and disadvantages. The libraries di�er in the way they store arbitrary

precision numbers, in the way they round intermediate results or which data types they pro-

vide arbitrary precision for (integer, 
oating-point, rat ionals or decimals). Table A.1 shows

a list of available packages which provide arbitrary precision arithmetic in di�erent program-

ming languages and with di�erent data types. In the following paragraphs two arbitrary

precision packages will be introduced and some of their advantages and disadvantages will be

discussed.

The �rst package is ARPREC which stands for \ARbitrary PRECi sion Computation

Pakackage" [2] and provides support for integers, binary 
oating-point numbers and complex

binary 
oating-point numbers in arbitrary precision. ARPR EC is written in C++ and pro-

vides bindings for C++ and Fortran-90. The package uses operator overloading provided by

C++ to facilitate development and therefore requires only minor changes to existing source

codes. The precision for 
oating-point numbers can be set byspecifying the number of deci-

mal numbers to be represented. One drawback to this package is that the precision can only

be set globally for all arbitrary precision variables and it is therefore not possible to use two

di�erent precision in the same calculation. The performance is also not very high, as is shown

in Section 2.5.

The Multiple Precision Floating-Point Reliable Library (G NU MPFR) is an arbitrary

precision library for 
oating-point numbers written in C. T he great advantage of the GNU

MPFR library over many other libraries is the ability to set t he precision of each variable

independently and to set the size of the mantissa to exactly the number of bits required. This

also allows computations to be performed with precisions lower than 53 bits. In fact, the

lower limit of MPFR is 2 bits for the size of the mantissa. This property is one of the main

reasons why this library was chosen for the implementation of the binary cascade iterative

re�nement algorithm. The GNU MPFR library, its properties a nd usage will be explained in

more detail in Section 2.4.

An external library is not always necessary. Some programming languages provide built-

in support for arbitrary precision data types and arithmeti c or include them in the standard
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library of their language. Beginning with .NET Framework 4, a BigInteger structure [34] has

been introduced for Visual Basic, C#, C++ and F# which provid es the ability to represent

an integer with an arbitrary precision. Java also supports aBigInteger class [38] for arbitrarily

large integers and has a BigDecimal class [37] which is used to represent decimal numbers

using arbitrary precision. A further example of a programming languages which provides

built-in support of arbitrary precision is Python, althoug h with Python it is only possible

to set all integer variables to use arbitrary precision and not to limit the use of increased

precision to a single variable without the help of an external package.

2.4 GNU Multiple Precision Floating-Point Reliable Library

(MPFR)

As mentioned before, the GNU MPFR library is used for the implementation of the iterative

re�nement algorithms and is therefore explained in more detail in this section.

The M ultiple Precision Floating-Point R eliable Library (GNU MPFR) [ 43, 15] is an

arbitrary precision package for C/C++ and is based on the GNU Multiple-Precision Library

(GMP) [ 20]. MPFR supports arbitrary precision 
oating-point variab les and provides exact

rounding of all implemented operations and mathematical functions. MPFR code is portable

which means it will produce the same result regardless of theunderlying hardware.

The library allows the user to set the precision of the arbitrary precision variables exactly

by specifying the number of bits to use in the mantissa of the 
oating-point number. The

number of bits in the mantissa has to include the hidden bit, which is normally not stored

by the standard IEEE 754 standard 
oating-point formats. Fo r example, to emulate IEEE

double precision in MPFR, the precision of the variable has to be set to 53 bits. Due to the

design of the library it is possible to work with any precision between 2 bits and the value

speci�ed by the constant MPFRPRECMAX, which can be as high as the maximum value of a

long int . However, the precision should never be chosen near to the maximum precision,

because MPFR has to increase the precision during computations to provide accurate results

and correct rounding and a precision exceedingMPFRPRECMAXwould lead to an unde�ned

behaviour or even crash the program. The ability of MPFR to set the precision exactly to the

desired precision in bits is one major di�erence of this library compared to its competitors and

the main reason it was chosen for the implementation of the iterative re�nement methods.

2.4.1 MPFR Variables

To use the MPFR functions and variables, it is necessary to include the MPFR header �le.

#include < mpfr.h >

The main data type provided by the MPFR library is mpfr t , which is \an arbitrary

precision signi�cand (mantissa) with a limited precision exponent." [43]. The precision has
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its own data type, mpfr prec t , which is a typedef and normally corresponds to anint

or a long int . As mentioned before, the precision has a lower limit of 2 (MPFRPRECMIN)

and an upper limit de�ned by the data type used for the precision data type. Therefore

MPFRPRECMAXwill normally either be the maximum number of an int or a long int .

mpfr t is a pointer to an mpfr struct , which is shown in Listing 2.1. The struc-

tured type includes the three parts of a 
oating-point number as described in the IEEE 754

standard (seeFigure 2.1). The �rst �eld de�nes the precision of the variable ( mpfr prec t

mpfr prec ). The second �eld is used for the sign of the number (mpfr sign t mpfr sign )

followed by the exponent of the 
oating-point number ( mpfr exp t mpfr exp). The last

�eld is a pointer to the words, called limbs, containing the signi�cand. A limb has the size

of a word which is normally 32 or 64 bits wide. The signi�cand is split accross the limbs. If

the total length of the limbs is larger than the precision, the remaining bits are �lled up with

zeros to ensure the user-de�ned number of bits are being usedto represent the 
oating-point

number.

1 / � D e f i n i t i o n o f the main s t r u c t u r e � /

2 t ypedef s t r u c t f

3 mpf r p rec t mpf r p rec ;

4 m p f r s i g n t mp f r s i gn ;

5 mpfr exp t mpfr exp ;

6 mp limb t � mpfr d ;

7 g m p f r s t r u c t ;

Listing 2.1: The de�nition of the data type mpfr t

Before mpfr t variables can be used, they have to be initialized by callingthe function

mpfr init2 .

void mpfr init2 ( mpfr t x, mpfr prec t prec )

The precision is set to the value speci�ed byprec and the value is set to \Not-a-Number".

The precision can be changed after initializing the variable, but should not be done via the

mpfr init2 function, but rather by calling

void mpfr set prec ( mpfr t x, mpfr prec t prec ) .

To assign values to the MPFR variables, MPFR provides special assignment functions for

a large range of di�erent input types. The following functio n is an example for assigning the

value of a double to an MPFR variable.

int mpfr set d ( mpfr t rop, double op, mpfr rnd t rnd )

This function will assign the value of the double variable in op to the mpfr t variable passed

to rop and will round the value using one of the rounding modes speci�ed in the following

subsection provided as the last parameterrnd . It is also possible to set a value by passing a

string to the function mpfr set str , which is extremely useful for 
oating-point values, which

cannot be represented exactly, e.g. \0.1". A full list of all available assignment functions can

be found in the GNU MPFR documentation [43].
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2.4.2 MPFR Rounding Modes

MPFR supports exact rounding in compliance with the IEEE 754-2008 standard (described

in Subsection 2.1.2). It implements four of the rounding modes speci�ed by the standard

as shown in the following list with their corresponding MPFR keywords. Their MPFR data

type is mpfr rnd t .

� MPFRRNDN: Round to nearest, ties to even

� MPFRRNDZ: Round toward 0

� MPFRRNDU: Round toward + inf

� MPFRRNDD: Round toward � inf

� MPFRRNDA: Round away from 0 (not in the IEEE 754-2008 standard)

2.4.3 MPFR Functions

The GNU MPFR library is written in C and therefore cannot use operator overloading.

Consequently MPFR has to o�er multiple functions for each operation, one for each sup-

ported data type as an input variable. Even the most basic arithmetic operations have do be

performed using function calls.

Each function in MPFR starts with the pre�x mpfr . The syntax of MPFR functions is

designed to resemble the assignment operator. The �rst parameter of each function is the

destination variable, followed by the input values. The last argument is the rounding mode

which should be used for the current operations and has to be one of the values described in

the previous subsection. Most MPFR functions return a ternary integer value, which provides

information about the correctness of the computed result:

� 0: the value in the destination variable is exact.

� Positive/Negative : the value in the destination variable is greater/lower than the

exact result.

For example, when usingMPFRRNDDas the rounding mode, the returned integer value will

always be negative unless the result is exact.

The following list should demonstrate the amount of functions available to perform a

basic mathematical operation, in this case for addition.

1 i n t mpfr add ( mpfr t rop , mpfr t op1 , mpfr t op2 , mpf r rnd t rnd )

2 i n t mpf r add u i ( mpfr t rop , mpfr t op1 , uns igned long i n t op2 , mpf r rnd t rnd )

3 i n t mp f r add s i ( mpfr t rop , mpfr t op1 , long i n t op2 , mpf r rnd t rnd )

4 i n t mpfr add d ( mpfr t rop , mpfr t op1 , double op2 , mpf r rnd t rnd )

5 i n t mpfr add z ( mpfr t rop , mpfr t op1 , mpz t op2 , mpf r rnd t rnd )

6 i n t mpfr add q ( mpfr t rop , mpfr t op1 , mpq t op2 , mpf r rnd t rnd )

Listing 2.2: All available MPFR functions to add two numbers using di�erent input data

types
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The �rst function is used to add two MPFR variables, the other s are provided to operate

directly with other data types without having to explicitly convert them to MPFR variables.

The data types mpzt and mpqt are from the GMP library and are included for backward

compatibility.

MPFR does not only provide functions for basic arithmetic functions (square root, power,

absolute value, ...) but also all mathematical functions implemented in the C99 standard.

This includes functions for logarithm, exponential, sine, cosine, gamma function and many

others. The library also o�ers comparison functions to compare MPFR variables with each

other and with other data types and conversion functions to convert MPFR variables to other

data types or strings. Arbitrary precision 
oating-point n umbers can also be printed with

mpfr printf , which works similar to the standard C printf function, but is enhanced with

additional options for MPFR variables.

The large amount of functions for even the simplest arithmetic operations greatly increases

the complexity of the source code, as can be seen in the following subsection.

2.4.4 MPFR Example Source Code

The following implementation of a dot product will be used to demonstrate the usage of

MPFR and show the increase of complexity by substituting each operation by a function call

and the prerequisites before being able to use a MPFR variable. The �rst source code in

Listing 2.3 shows the dot product implemented in standard C using standard data types, in

this casedouble for the input vectors and the output result. The second listing (Listing 2.4)

shows the same operation implemented using the GNU MPFR library. The number of code

lines necessary for such a simple computation has already doubled. The addtitional parameter

prec is also required to specify the precision which should be used to compute the dot product

in the MPFR implementation.

1 void cDot ( i n t n , double� a , double� b , double� sum ) f

2 i n t i ;

3 � sum = 0 . 0 ;

4

5 f o r ( i = 0 ; i < n ; i++ )

6 � sum += a [ i ] � b [ i ] ;

7 g

Listing 2.3: Dot product implemented in standard C

The MPFR implementation additionally requires a temporary variable to hold the result

of the multiplication before adding the result to the dot pro duct stored in sum. As with

all MPFR variables it has to be initialized with the correct p recision to store the computed

result. In order to use the same precision as the dot product,the precision of the variablesum

can be determined using the functionmpfr get prec and used for the intermediate variable

mult . In this case this is only used for demonstration purposes, as the precision is already

known through the last parameter of the function call.
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1 void mpfrDot ( i n t n , mpfr t � a , mpfr t � b , mpfr t � sum ,

mpf r p rec t prec ) f

2 i n t i ;

3

4 m p f r i n i t 2 ( � sum , prec ) ; // s e t p r e c i s i o n in b i t s

5 mpf r se t d ( � sum , 0 . 0 , MPFRRNDN) ;

6

7 mpfr t mult ;

8 m p f r i n i t 2 ( mult , mp f r ge t p rec (sum) ) ;

9 f o r ( i = 0 ; i < n ; i++ ) f

10 mpfr mul ( mult , a [ i ] , b [ i ] , MPFR RNDN) ;

11 mpfr add (� sum , � sum , mult , MPFR RNDN) ;

12 g

13 mpf r c l ea r ( mult ) ;

14 g

Listing 2.4: Dot product implemented using the GNU MPFR libr ary

The main operations in line 6 of Listing 2.3 require two lines in MPFR (lines 10 and 11

in Listing 2.4). Firstly the two values from the vectors have to be multipli ed usingmpfr mul.

Then the value has to be added to the dot product sum. Both operations use the rounding

mode MPFRRNDN, which rounds the results to the nearest value. Finally the temporary

variable mult has to be released by callingmpfr clear .

2.5 Performance Evaluation

Another interesting aspect of arbitrary precision librari es is the analysis of their perfor-

mance. This was accomplished by using a matrix implementation in standard C and the

same implementation being transformed using MPFR functioncalls. In order to compare

the performance of MPFR to other arbitrary precision packages, the matrix multiplication

was also implemented using the ARPREC package described in2.3.3. All implementations

were compared and the e�cient matrix multiplication provid ed by the ATLAS BLAS [ 45]

DGEMM function. As a metric for the comparison, the slow down e�ect was calculated using

the number of total instructions ( T I ) measured by PAPI [6].

Slow down=
T I ATLAS BLAS � T I AP library

T I ATLAS BLAS
(2.6)

The details of the test system were as follows:

� INTEL Core 2 Quad Q9550 (2,83GHz, 12MB Cache)

� DDR2-RAM 2x2048 MB, PC2-800 MHz

� Ubuntu 9.10 Server with PAPI 3.7.0 and ATLAS BLAS 3.9.17
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Figure 2.2: Slow down e�ect of a matrix multiplication using the built-in C variable type
double and arbitrary precision packages GNU MPFR and ARPREC compared to DGEMM
from the ATLAS BLAS library

� Arbitrary Precision: ARPREC 2.2.3, MPFR 2.4.1

In Figure 2.2 the performance described by the slow down e�ect compared tothe ATLAS

BLAS implementation can be seen. The di�erent precisions are shown on the x-axis, the

matrix dimension is shown on the y-axis. The z-axis shows theslow down factor, where zero

refers to the DGEMM function. As can be seen, the performancedecrease introduced by the

usage of the arbitrary precision packages is very high, the MPFR package being 293 times

slower than DGEMM and ARPREC 1291 times slower. Compared to the C double precision

implementation MPFR is 21 times slower. ARPREC is 4:4 times slower than MPFR. All slow

down factors relative to the di�erent implementations for t he maximum matrix size 1024 are

shown in Table 1.

BLAS 1.000
Double 13.776 1.000
MPFR 293.099 21.275 1.000
ARPREC 1291.649 93.758 4.407

Table 2.1: Average slow down e�ect

In Figure 2.3 the MPFR implementation is shown alone in order to see another interesting

e�ect. The performance decreases with the number of bits stored in the mantissa which is

displayed by a step wise decrease. This indicates the correct treatment of the size of the

mantissa with the exact number of bits speci�ed by the user. It proves the statement that

MPFR only uses the speci�ed precision and does not increase the precision to the next

higher word size without excluding the excess number of bitsby �lling them up with zeros.

In Figure 2.2 ARPREC (the blue plane under all other planes) only has one step within
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the speci�ed precision range, indicating that the precision is increased in steps of multiple

machine words and not truncated to the user-de�ned precision.
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Figure 2.3: Slow down e�ect of a matrix multiplication using the GNU MPFR library, com-
pared to DGEMM from the ATLAS BLAS library



Chapter 3

Iterative Re�nement

In this chapter di�erent iterative re�nement methods will b e introduced, which will later be

compared to the binary cascade iterative re�nement.

3.1 Standard Iterative Re�nement (SIR)

Iterative re�nement is a method used to improve the accuracy of a computed solution by

trying to reduce round-o� errors. This thesis will focus on linear solvers, which compute the

result of linear systems of the form

A � x = b (3.1)

with A 2 Rn� n and x and b2 Rn , but iterative re�nement can be used for many other solvers,

including eigensolvers and least squares solvers (for example [12, 18]).

Iterative re�nement was �rst analysed in detail by Wilkinso n in [49], but had already

been used in desk calculators and computers in the 1940s [24]. The �rst implementation

of iterative re�nement was probably written by Wilkinson fo r the ACE computer built at

the National Physical Laboratory. Wilkinson �rst describe d the process using a scaled �xed

point arithmetic, but the analysis was later expanded by Moler [35] to cover 
oating-point

arithmetic.

The iterative re�nement process is described as follows:

1. SolveA � bx = b with bx being an approximation of x

2. For i = 0 ; 1; 2; : : : with x0 = bx

(a) Compute residual r i = b� A � x i

(b) Solve A � � x i = r i

(c) Update x i +1 = x i + � x i

19
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Firstly an approximate initial solution bx is computed using Gaussian elimination with partial

pivoting. Subsequently the iterative re�nement algorithm tries to increase the accuracy of the

solution by computing the residual r i of the result and using the residual as the right-hand

side to solve the linear system for the correction term �x i . Finally the correction term is

added to the result to correct the solution of the linear system. This process is repeated until

the accuracy of the solution is su�ciently improved.

The literature describes many di�erent termination criter ia for iterative re�nement, which

use di�erent measures to check if the convergence is complete. For example, the process can

be halted if the norm of the residual kr i k or the norm of the correction term k� x i k is under

a described tolerance, which can be the machine epsilon� or a tolerance which also includes

the condition number of the input matrix. Other approaches check if the correction term is

changing the solution signi�cantly enough. In most cases a limit for the number of iterations

is also included to ensure the process does not continue inde�nitely or, when applied to

extremely ill-conditioned systems, tries to converge to a di�erent solution than the exact

solution.

If the initial solution bx would already be the exact solutionx to the system, then the

residual would be zero. However, this is hardly ever the case.

A � x i = b� r i (3.2)

Therefore the correction term � x i can be found through

A � � x i = A(x i +1 � x i ) = b� (b� r i ) = r i (3.3)

Further it can be shown that the iterative re�nement process can produce a better approxi-

mation than bx [11], since

Ax i +1 = A (x i + � x i ) = Ax i + A� x i = ( b� r i ) + r i = b (3.4)

The convergence of the iterative process is described in [50] for Gaussian elimination with

partial pivoting based on the following factor, where n is the size of the system and� the

precision as the number of bits in the mantissa used to store the 
oating-point number.

� = n � 2� � �



 A � 1






1 (3.5)

If � < 2� p then the number of correct binary digits of the solution will increase by at leastp

digits per iteration and the residual will decrease by a factor of 2p or more. The method will

normally not converge if � > 1=2. Naturally, this is only a theoretical value as the in�nity

norm of the inverse ofA would be to expensive to compute explicitly, but norm estimators

could be used instead [23].

The cost of iterative re�nement is very low compared to the matrix factorization, because

its complexity is O(n2) whereas the LU factorization has a complexity ofO(n3). The process
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also uses the already computed factorization to solve the second system for the correction

term in the second step of the iterative process. In [41], it has been shown that for Gaussian

elimination a single step of iterative re�nement is enough to stabilize the solution su�ciently.

One disadvantage of iterative re�nement is that it requires more storage than a direct solver

without iterative re�nement. For the �rst step of the iterat ive process, computing the residual,

the original matrix A is required in addition to the factorized matrix, which requires double

the amount of storage.

The process can be used to recover the accuracy for badly scaled systems to full machine

precision [22], but other applications also exist. Iterative re�nement h as been used to sta-

bilise otherwise unstable solvers, one example being a sparse Gaussian elimination which was

performed without pivoting to increase the performance andthe result was then stabilised

through the use of iterative re�nement. [23] The iterative re�nement method is extensively

used and is also included in software packages like LAPACK [1], where the re�nement process

is used by the expert drivers for solving linear equations.

The standard iterative re�nement method performs all computations using the same


oating-point precision, but other iterative re�nement me thods use di�erent precisions for

some steps of the process. To distinguish between the di�erent precisions, the following ter-

minology will be used: target precision and working precision. The target precision � is the

precision to achieve at the end of the computation. The working precision� is the precision

used for certain steps during the computation of the solution and is usually higher or lower

than the target precision. All steps in the standard iterati ve re�nement use the same preci-

sion as the target and working precision. In the next sections, iterative re�nement algorithms

which use working precisions di�erent than the intended target precision will be introduced.

3.2 Extra Precise Iterative Re�nement (EPIR)

The authors in [13] have expanded the standard iterative re�nement algorithm to use a higher

working precision than the target precision to compute the residual for the iterative improve-

ment. This idea had already been proposed by the original author of iterative re�nement,

J. H. Wilkinson, in [ 32] and also by Moler in the same paper where he analysed iterative

re�nement for 
oating-point arithmetic [ 35]. Extra Precise Iterative Re�nement also includes

an error bound for the result and a componentwise error bound, which are both computed

at a low additional cost.

There are some di�erences compared to the standard iterative re�nement. Before com-

puting the matrix factorization or a solution of the system, the matrix is equilibrated to try

to avoid over- and under
ows and to improve ill-conditioned systems which resulted from

ill-scaling.

As = R � A � C, bs = R � b (3.6)

R and C are diagonal matrices containing the scaling factors,A and b are the input data

of the system which is being solved andAs and bs are the scaled system data which will be
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used by the iterative re�nement method. In order not to intro duce any additional round-o�

errors through the equilibration of the matrix, the scaling factors are computed as powers of

2, the same as the standard IEEE 
oating-point radix.

At the beginning of the extra precise iterative re�nement, all computations are computed

in the same precision, the target precision� . The higher working precision � is triggered

during the iterative re�nement and the triggering depends on the convergence rate and the

decrease of the error estimate. The higher working precision is chosen to be twice the target

precision and is used to store the solution vector to computethe critical stages of iterative

re�nement, the residual and the update of the solution by the correction factor.

The process terminates when one of the following conditionsis ful�lled:

1. The error estimate is not decreasing

2. The correction term does not increase the accuracy ofx signi�cantly

3. A prede�ned maximum number of iterations has been reached

If the error estimate ceases to decrease the process is not immediately terminated unless the

solution has already converged. Instead, the �rst time thistermination criteria is encountered,

the precision of the solution vector is increased to double the target precision and the process

continues until one of the above mentioned termination criteria is met or the solution has

converged.

In addition to the solution vector x, which approximates the exact solution of the linear

system, the extra precise iterative re�nement returns the normwise and componentwise error

bounds, which can be approximated as follows:

Normwise error bound�



 x(i ) � x




 =kxk

Componentwise error bound� maxk

�
�
�x(i )

k � xk

�
�
� =jxk j

(3.7)

The authors have shown, that the error bounds produce good estimates for the true error,

but using ill-conditioned systems the error bounds can underestimate the true error. This

is partly compensated through the increase of the working precision during the iterative

re�nement.

3.3 Mixed Precision Iterative Re�nement (MPIR)

In [7], the authors published an iterative re�nement algorithm w hich takes advantage of

the availability of single and double precision. The Mixed Precision Iterative Re�nement

takes a di�erent approach compared to the extra precise iterative re�nement and focusses

on increasing the performance of the linear system solver. It computes the computationally

expensive operations, the matrix decomposition and solving the linear systems, in a lower

working precision and only performs the critical steps, computing the residual and updating
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the solution, in a higher target precision, while still achieving the target precision accuracy.

Using standard IEEE precisions, the higher target precision � is usually double precision and

single precision is used as the lower working precision� . The algorithm for mixed precision

iterative re�nement is as follows:

1. SolveA � bx = b with variables in precision �

2. For i = 0 ; 1; 2; : : : with x0 = bx

(a) Compute residual r i = b� A � x i with variables in precision �

(b) Solve A � � x i = r i with variables in precision �

(c) Update x i +1 = x i + � x i with variables in precision �

As stated in [7], mixed precision iterative re�nement using single and double precision

achieves at least the same and often higher accuracy than a double precision direct solver.

Some very ill-conditioned systems may never converge and others may need a high number

of iterations until they converge to the correct solution. The number of iterations required

for convergence directly relates to the condition number ofthe input matrix.

Mixed precision iterative re�nement requires less storagecompared to standard iterative

re�nement, because the matrix factorization is stored in the lower working precision� . The

storage requirements would be 1:5 times more than the storage requirements of a direct

solver, but less compared to the standard iterative re�nement which uses twice the amount

of storage of a direct solver.

Using the lower working precision has many bene�ts. Modern processors support vector

instruction sets, which for example in the case of the SSE2 instruction set enables the proces-

sor to compute two double precision operations in one clock cycle. When single precision is

being used, the processor can perform four operations in onecycle due to SSE2 instructions,

which signi�cantly increases the performance. Single precision data also uses less storage,

which results in a lower number of cache misses. Furthermore, moving single precision data

through the memory is faster due to the lower storage requirements.

The mixed precision iterative re�nement computes the entire solution of the system with

increased performance as long as the single and double precision performance is signi�cantly

di�erent on the used hardware. On di�erent hardware platfor ms, for example GPU or Cell

processors, there is a much greater di�erence between the performance of single and double

precision computations than on commodity processors. On general purpose GPUs single

precision can be more than 8 times faster than double precision [3] and the IBM Cell BE

processor can compute single precision roughly 14 times faster than double precision [27].

In [27], mixed precision iterative re�nement was implemented for the Cell processor using

Cholesky factorization and compared to a direct solver in single precision. One of the results

of the performance measurements can be seen inFigure 3.1 for the Cell BE processor used
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Figure 3.1: Comparison of the performance of the direct solver and the mixed precision
iterative re�nement using the Cell BE processor on the Sony PlayStation 3 [27].

in the Sony PlayStation 3. The dimension of the linear systemis shown on the x-axis and

the achieved performance in G
op/s is plotted on the y-axis.

On the Cell BE processor, the single precision peak performance is 153.6 G
op/s and the

double precision peak performance is only 10.8 G
op/s. The single precision direct solver,

labelled SPOSV in the graph, achieves 122 G
op/s for the maximum system sizetested in

these experiments (n = 2048), but the result is at best only accurate to single precision.

By using the mixed precision solver, labelledDSPOSV in the graph, the performance for

n = 2048 is 104 G
op/s, but the solution of the system is now in double precision accuracy.

The use of the mixed precision implementation produces a performance overhead of about

15% compared to the direct solver, but it achieves a solutionwith double precision accuracy

10 times faster than the peak performance of double precision computations on the Cell

processor.

This implementation is a prime example of the great performance bene�ts of mixed pre-

cision iterative re�nement using lower precisions to compute the computationally expensive

tasks while still achieving the same or better accuracy thana direct solver in the higher target

precision, especially on hardware platforms where the performance di�erence between single

and double precision is very high.
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3.4 Model Estimating Number of Iterations

The condition number of a matrix provides a means to estimatethe accuracy of the solution

to a linear system. This property can also be used to estimatethe number of iterations

required by standard iterative re�nement to achieve a given target precision � , as described

in [16]. The following is based on the explanations in [40], where the author uses the number

of iterations required by iterative re�nement to roughly estimate the condition number of the

linear system Ax = b.

The logarithm to base b of the condition number � of the matrix A returns an estimate of

the number of base-b digits that are lost while solving the linear system, as described in [29].

Let s denote the number of correct base-b digits obtained by solving the linear system, then

the accuracy of the solution can be increased bys digits in each iteration. In order to reach

the target precision � to baseb, the required number of iterations i is therefore de�ned as

i �
� b

s
(3.8)

gaining s digits of accuracy in each iteration. This leads to the following estimate for the

condition number � based on the number of iterationsi required by the iterative re�nement:

� � b� b� s = b� b� � b=i (3.9)

By using this estimate, it is therefore possible to estimatethe number of iterations of the

iterative re�nement based on the knowledge of the conditionnumber. This results in the

following model:

i =
� b

� b � logb(� )
(3.10)

This model can be expanded to cover arbitrary precision iterative re�nement by setting the

precision in the numerator to the target precision and the precision in the denominator to

the working precision.

i =
� b

� b � logb(� )
(3.11)



Chapter 4

BCIR - Binary Cascade Iterative

Re�nement

4.1 The Algorithm

B inary CascadeI terative R e�nement (BCIR) was de�ned by Andrzej Kie lbasi�nski in [ 26].

The main di�erence between BCIR and other iterative re�nement algorithms is the choice

of the working precision. In standard iterative re�nement t he target precision equals the

working precision. The extra precise iterative re�nement increases the working precision to

twice the target precision depending on the progress made bythe iterative re�nement. The

mixed precision iterative re�nement chooses a working precision under the target precision.

BCIR takes a di�erent approach in choosing the working precision and does not limit

it to a single working precision for the entire process. The algorithm improves the result

recursively and chooses a di�erent working precision for each recursion level, making the

decision which precision to use based on properties of the input data, more precisely on the

dimension and condition number of the input matrix A and taking into account the target

precision. This enables the algorithm to dynamically choose the best working precision to

achieve an accurate result for the given system and to compensate for ill-conditioned input

data.

The algorithm is de�ned recursively as seen in Equations(4.1)-(4.3).

(
P(A; � 0)

x := Sp(b)
(4.1)

d := Sj (f ) is equivalent to

8
>>>><

>>>>:

z := Sj � 1(f );

u := Az � f ; in f l (� j )

v := Sj � 1(u);

d := z � v; in f l (� j )

(4.2)

S0 := Solves triangular system inf l (� 0) (4.3)

26
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First the matrix decomposition P is performed onA in the lowest working precision � 0

chosen by the algorithm. The �rst call to the solver Sp is executed using the right hand side

vector b. p is the number of recursion levels determined by the algorithm.

Each call to the solver Si performs the computations which correspond to the steps used

in any iterative re�nement method at the working precision of the current recursion level.

The �rst instruction in Equation (4.2) calls the solver of the next level to solve a system

with f as the right hand side. The second instruction computes the result of the previous

calculation z and uses the precision� j of the current level. The correction term v is then

computed by again calling the solver of the next lower level,this time using the residual

stored in u as the right hand side. These two calls to the solver at the next lower level are the

reason why the algorithm is namedbinary cascadeiterative re�nement. Finally the solution

z is updated using the correction termv. d is returned to the previous call of the solver.

Calling the solver Si to solve the system will cause the algorithm to cascade to thelowest

level of the process with the lowest working precision� 0. This means, that any system is

always solved at the lowest precision� 0 and all other levels only compute the residualu

and update the solution to d. For the LU decomposition, the solver applies the forward and

back substitutions at the lowest working precision using the decomposition factors computed

before entering the iterative process.

As already mentioned, BCIR uses di�erent working precisions throughout the iterative

re�nement process. These are chosen adaptively based on theinput arguments and are

computed before entering the iterative process using the target precision, the dimensionn of

the system and the condition number of the input matrix A. These properties have to be

transformed into the di�erent working precisions which should lead to an accurate solution.

This is achieved by computing the four parameters describedand analysed in the following

sections.

4.2 The Parameters

For the adaptive precisions used during the binary cascading process, some parameters have

to be computed before entering the iterative re�nement. These parameters will determine

the precisions for each level of recursion of the algorithm and take into account the desired

target precision and the properties of the input data in order to choose the working precisions

to try to compensate for ill conditioned input data.

The �rst parameter, c, is computed using the dimensionn of the n � n matrix A and two

di�erent condition numbers of the matrix.

c = log 2 (max [K n �; n (n + 6) B=2]) (4.4)

Both condition numbers are multiplied by di�erent factors w hich introduce the matrix di-

mensionn into the equation. The factor K n should be of the same order of magnitude as the
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rounding-error accumulation in Gaussian elimination, which is normally of O(n2). Therefore,

K n was chosen to ben2.

The �rst condition number is the standard condition number � = cond(A) = kAk kA � 1k.

The author does not specify which norm should be used to compute � , therefore the euclidean

norm was chosen. In [26], the author refers to the second condition numberB as the Bauer

condition number and de�nes this condition number as

B = sup
jH j�j A j




 A � 1H




 (4.5)

There is neither an explanation what H stands for nor a de�nition of the norms used in this

equation. The author further cites a paper [4] from F. L. Bauer, where the Bauer condition

number should originally have been de�ned, but analysing the speci�ed source did not provide

any information on the de�nition given in Equation (4.5) or a de�nition for H . In fact, in [ 4]

the condition number is de�ned as

cond(A) = lub(A)lub(A � 1) (4.6)

which corresponds to the standard condition number� . The least upper bound lub is used

throughout [4] as the maximum norm of the matrices, but can also correspondto other matrix

norms, for example to the euclidean norm. The last de�nition would imply equality between

� and B assuming the same matrix norm is used. The only di�erence between the condition

numbers would be their preceding factor, which under the assumption of K n = n2 would

almost always lead to the �rst term using the standard condition number � being chosen as

the maximum. Only for matrices with a size n � 6, the second term would take precedence.

In Kie lbasi�nski's report [ 25], which predates the original BCIR paper [26] and also in-

cluded an earlier form of the binary cascade iterative re�nement, the same de�nition as in

Equation (4.5) is given alongside two additional Bauerian condition numbers, CB and C
0

B ,

again citing the same source by F. L. Bauer as before, which again did not include these

de�nitions.
CB = supH

kA � 1Hx � k
kx � k , with jH j � j Aj

C
0

B = supm
kA � 1mk

kx � k , with jmj � j bj
(4.7)

Additionally, the relation between the di�erent condition numbers is shown in [25,

p. 6, (2.2.4)], which result in all Bauer condition numbers always being smaller than or

equal to the standard condition number � .

� � B � CB � C
0

B � 1 (4.8)

This relation again favours the �rst term of the maximum func tion in Equation (4.4), leading

to the second term only being considered whenn � 6 (with K n = n2).

The Bauer condition number would only have an impact on the computation, if it were

larger than the standard condition number. This can only occur when the de�nition in
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Equation (4.6) would be used and the norm used would be higher than the one chosen for � .

This would lead to a decrease of the number of iterations and to an increase of the working

precisions at the di�erent levels of recursion. However, the higher working precisions would

also induce a lower performance and would reduce the possibility of any performance bene�ts

of BCIR compared to standard iterative re�nement methods. Conversely, the higher working

precisions could increase the accuracy of the result, whichwould be bene�cial when solving

extremely ill-conditioned linear systems.

All these �ndings regarding the Bauer condition number show, that the factor hardly has

any in
uence on the choice of the precisions for the iterations of the BCIR algorithm. Due

to the ambiguous de�nitions of the Bauer condition number and the relation provided in

Equation (4.8) the de�nition of c can therefore be reduced toEquation (4.9).

c = log 2 (K n � ), with K n = n2 (4.9)

Equation (4.10) is the second parameter required to compute the di�erent working pre-

cisions of the binary cascade iterative re�nement.

� = 2 � log2 � (4.10)

� is the machine epsilon, which is de�ned in [23, p. 37] by the following equation:

� = b1� t (4.11)

b is the base of the 
oating-point representation and t de�nes the precision. This de�nition

of the machine epsilon describes the spacing of 
oating-point numbers by computing the

distance between 1:0 and the next larger representable 
oating-point number. In standard

double precision, the number of bits used to store the mantissa would be 53 and have a

machine epsilon of� � 2:220446::: � 10� 16. Based on the de�nition in (4.11) and using

b = 2 as the base of the 
oating-point representation, Equation (4.10) can be rewritten to:

� = 2 � (1 � t) = 1 + t (4.12)

The next parameter, p, de�nes the number of recursion levels used in the binary cascad-

ing process. First it chooses the minimum between the relation of the previously de�ned

parameters� and c and n=2. Then the maximum of 0 and the result of the logarithm to base

2 is assigned top.

p = max(0 ; blog2(min( �=c; n=2))c) (4.13)

In order to be able to compare the algorithm to the other iterative re�nement methods, an

equivalent number of iterations can easily be calculated by

Iterations = 2 p (4.14)
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Finally, the precision at each recursion level can be computed using the following equation

and the previously de�ned parameters:

� j = c + � � 2j � p, j = 0(1) p (4.15)

� j describes the precision at thej th recursion level and j runs from 0 to the maximum

recursion levelp.

4.2.1 Analysis of the Levels of Recursion p

The goal of this section is to analyse the behaviour of parameter p (Equation (4.13)) and

determine how much in
uence each factor of the minimum function has on the resulting

working precisions for the BCIR process. For the analysis, the target precision � will be

chosen to correspond to the IEEE standard double precision with a mantissa width of 53 bit.

� = 2 + log 2 � = 1 + � = 54 (4.16)

�=c = n=2

54=log2 (n2 � � ) = n=2

n � log2 (n2 � � ) = 108

n � 14:1326::: for � = 1

(4.17)

The analysis in (4.17) shows, that for a perfectly conditioned input matrix with � = 1

the size n has to be lower than 15 in order for the term n=2 to be chosen over�=c. For

higher condition numbers, the factor n=2 looses its in
uence even more and�=c becomes the

dominant factor. For all n � 15, �=c is always the dominant factor.

Even though the Bauer condition number has been deemed unnecessary in the de�nition

of c, the same analysis can be performed for the second term of theoriginal de�nition of

parameter c.
�=c = n=2

54=log2 (n � (n + 6) =2 � B ) = n=2

n � log2 (n � (n + 6) =2 � B ) = 108

n � 14:8475::: for B = 1

(4.18)

The results are very close to the previous results in(4.17) and the upper limit for the in
uence

of n=2 is againn < 15. �=c becomes the dominant factor for alln � 15.

The number of recursive levels therefore depends primarilyon the value of c. As c ap-

proaches in�nity, the number of levels reaches 0.

lim
c!1

p =
�
c

= 0 (4.19)

This results in the system only being solved and improved at asingle level using only one

working precision. The maximum number of recursion levels for n � 15 and target precision
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� = 53 is 2.

p =
�

log2
54

log2(152 � 1)

�
= 2 with n = 15; � = 1 (4.20)

For smaller linear systems with dimensionn < 15, the equation becomes independent of the

condition number and has a maximum of 6 recursive levels for the binary cascade iterative

re�nement.

p =
�

log2
54

log2(1=2)

�
= 6 with n = 1 (4.21)

4.2.2 Analysis of the Precisions � j

The next factor which is of interest for analysis is the working precisions at the di�erent

recursion levels. As we have seen inChapter 3, there are di�erent approaches as to how

to choose the working precision for the iterative re�nement. The extra precise iterative

re�nement increases the precision for the computation of the critical sections. The mixed

precision iterative re�nement runs the critical sections using the target precision and lets the

computationally expensive tasks be computed in the lower working precision. BCIR chooses

the working precisions based on the input arguments and tries to �nd the best precision to

accurately solve the linear system. The following �gures show the initial and �nal working

precisions used by BCIR for di�erent condition numbers � between 1 and 1016 and di�erent

system sizesn from n = 10 to n = 1000.

Figure 4.1: Initial working precisions � 0

coloured by the number of recursion levels
p

n = 10
n = 1000

c = log2(n2 � � )
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Figure 4.2: Initial working precisions � 0

for the two matrix sizes n = 10 and
n = 1000

Figure 4.1 shows the initial working precisions for the lowest level ofthe algorithm. The

x-axis shows the parameterc, which depends on the dimensionn and the condition number

� . The size of the input system is plotted on the y-axis and the initial working precision � 0 is

shown on the z-axis. The surface is coloured by the number of recursive levelsp. As shown in

the last section, the maximum number of recursive levels isp = 2. The lowest initial working

precision � 0 for well conditioned input data is 21 for n = 10 and 47 for n = 1000. � 0 = 47

is already very close to the target precision� = 53 and for slightly larger and slightly worse
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conditioned systems, the working precision rapidly increases and is always larger than the

target precision. The highest initial and, due to p = 0, also the �nal working precision in

the range computed for these plots is� 0 = 128 for ill-conditioned matrices with � = 1016

and n = 1000. The number of recursive levels rapidly decreases to its limit ( Equation (4.19))

and results in the binary cascade iterative re�nement only performing one iteration at a high

working precision for most input data.

Figure 4.3: Initial working precisions � 0 coloured by the condition number �

In Figure 4.3 the same values as inFigure 4.1 are shown but in this case, the working

precisions are coloured by the exponent of the condition number � . This shows the in
uence

of � on the number of recursive levels and the initial working precision. Systems with a

condition number � > 104 already only perform the computations on the lowest level and the

working precision rises with the condition number. For larger systems, the boundary of the

in
uence of the condition number decreases and the size of the input data gains in
uence on

determining the number of recursive levels and the working precisions.

Figure 4.4 shows the �nal working precision � p, which in casep = 0 is the same as the

initial working precision � 0. The precision � p never falls lower than the target precision.

The lowest �nal working precision for well conditioned input matrices is 61, which is higher

than the target precision � = 53, and increases with the dimension of the system. For the

maximum value of n displayed here,n = 1000, the working precision � p = 74. For large and

ill conditioned matrices the maximum precision is the same as before (� p = 128) because

p = 0.



4.3. REFINED VERSION OF BCIR 33

Figure 4.4: Final working precisions � p

coloured by the number of recursion levels
p
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Figure 4.5: Final working precisions � p

for the two matrix sizes n = 10 and
n = 1000

4.3 Re�ned Version of BCIR

In Section 4.2, it has been shown that the Bauer condition number has hardlyany in
uence

on the binary cascade iterative re�nement process. Therefore, it was even more intriguing to

read a statement made by A. Kie lbasi�nski in the section \Fi nale Remarks" of his paper, which

describes a \slightly more re�ned version of BCIR"[ 26] by replacing the previous de�nition

of parameter c (Equation (4.4)) with

c = log 2 B + 5 (4.22)

The author further states that this rede�nition demonstrat es the dependency ofc on the

Bauer condition number B , which now becomes the dominant term.

This would contradict all �ndings on the Bauer condition num ber described inSection 4.2.

Due to the ambiguous and incomplete de�nitions of the Bauer condition number mentioned

earlier, it is not possible to verify this statement by computing and comparing the di�erent

condition numbers. The de�nitions in [ 25] and [26] regarding the Bauer condition number

have shown, that it is either equal to or smaller than the standard condition number � .

Furthermore, the analysis of parameterp and the precisions� j have con�rmed these initial

�ndings (see Subsection 4.2.1and Subsection 4.2.2respectively).

With the new de�nition in Equation (4.22), the matrix dimension n is no longer taken

into account when calculating the necessary working precisions to achieve an accurate result.

n would only occur as the second factorn=2 in Equation (4.13). Using the same assumptions

as in Subsection 4.2.1, B = 1 and the target precision � = 53, the factor n=2 would a�ect

the working precisions for all n � 41, but for larger and not perfectly conditioned matrices
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�=c would again become the dominant factor andn would no longer be considered.

54=log2 (1 + 5) = n=2

n = 41:78010318
(4.23)

Assuming that B = � (see relationship in Equation (4.8)), Equation (4.22) would cause

the number of recursion levels to rise and the working precisions to decrease. One advantage

of this de�nition is therefore that the performance could be increased due to the lower working

precision. In Figure 4.6, the di�erent precisions are shown for the initial precision � 0. The

parameter c is shown on the x-axis for� between 1 and 1016. The y-axis plots the matrix

sizen for matrices from n = 10 to n = 1000. The z-axis shows the initial working precisions

� 0. The surface plot is coloured by the level of iterations needed for the di�erent condition

numbers and starting at the precision � 0.

Compared to Figure 4.1 from the previous analysis of parameterc, the �rst di�erence that

can be seen is the maximum value ofp, which has increased to 4 recursion levels, compared

to 2 in the previous analysis. The second important observation is that the values of � 0 have

decreased signi�cantly for well conditioned matrices and are still lower for ill-conditioned

matrices. The lowest initial working precision is 6 for well conditioned matrices for any size

n. In Figure 4.1, the lowest � 0 for well conditioned input data was 21 for n = 10 and 47 for

n = 1000.

Figure 4.6: Initial working precisions
� 0 coloured by the number of recur-
sion levels p using the de�nition of c in
Equation (4.22)
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Figure 4.7: Initial working precisions � 0

for the two matrix sizes n = 10 and
n = 1000 using the de�nition of c in
Equation (4.22)

The second �gure, Figure 4.8, shows the highest working precisions used for the di�er-

ent condition numbers. It is important to notice that the low est used precision for well

conditioned input matrices is now 57, which is just slighty higher than the target precision

� = 53. Due to the lack of the matrix dimension in the new de�niti on of c, the precision

is independent from n. In Figure 4.4, the lowest precision was 61, but it increased withn

(n = 1000 ! � p = 74). The maximum precision shown in Figure 4.4 was � p = 128 for
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large and ill conditioned matrices. In this case, the maximum working precision is 108.

Figure 4.8: Final working precisions
� p coloured by the number of recur-
sion levels p using the de�nition of c in
Equation (4.22)
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Figure 4.9: Final working precisions � p

for the two matrix sizes n = 10 and
n = 1000 using the de�nition of c in
Equation (4.22)

The alleged re�ned version of BCIR will be analysed in the experiments (Section 6.6)

using B = � as the Bauer condition number and comparing the results to the standard

binary cascade iterative re�nement.

4.4 Accessing Matrix A and Vector b at Di�erent Precisions

The binary cascade iterative re�nement uses di�erent working precisions throughout the

re�nement process. Each level of recursion requires the input values A and b to be in the

corresponding working precision. Even though the amount ofrecursive levels is limited, as

shown in previous sections, this issue still needs to be addressed.

In the mixed precision iterative re�nement the input matrix A only has to be available

in the working and target precision and in order to improve performance is therefore ad-

ditionally allocated in the working precision, assuming that the data was provided in the

target precision. In the BCIR algorithm this would increase the amount of storage byn2 for

each level of recursion for the conversion to the working precision. Analysing the algorithm

reveals that at each level, except for the lowest level usingthe precision � 0, each element

of the matrix A is required and read only once, to be speci�c when computing the residual.

Therefore it is better for the performance of the algorithm and for memory reduction not

to preallocate the matrix for all the working precisions, but to convert them on-the-
y to

the precision required by the corresponding recursive level. Similarly to the mixed precision

iterative re�nement, the matrix then only exists twice: onc e in the input precision and in the

lowest working precision� 0, which is accessed 2p times to solve a linear system.

If the input precision of A and b is lower than the working precision in which the residual

is being computed, then the elements of the matrix do not needto be converted at all, because
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their precision would not increase and instead the excess bits would only be �lled up with

zeros. Therefore the matrix elements are only converted to lower precisions compared to their

input precision. As previously shown, the working precisions are almost always higher than

the target precision and therefore the conversion of the input arguments to lower precisions

does not occur very often.

4.5 Conclusion

The binary cascade iterative re�nement aims to compensate for ill-conditioned system with

the use of higher working precisions. This approach resembles more the extra precise iterative

re�nement than the mixed precision iterative re�nement, wh ich reduces the working precision

in favour of performance bene�ts. Furthermore, similarly t o the standard iterative re�nement,

the number of iterations is very often limited to one iterati on.

The working precisions of the binary cascade iterative re�nement hardly ever fall beneath

the target precision � . The binary cascade iterative re�nement requires arbitrary precision to

compute the result of the linear system with the precisions determined by the algorithm. It

therefore relies on either simulating the arbitrary precision in software or being implemented

on hardware which supports the use of multiple arbitrary precisions, for example FPGAs.



Chapter 5

Implementation

This chapter will focus on the programs, which were developed for this master thesis, and

describe the requirements and the program which generates the input data, which consists of

the matrices with the speci�ed condition number and the right hand sides of the equation. The

implemented programs for BCIR, EPIR, SIR and MPIR, which bot h use the same program by

setting the working precision � to the target precision � for the standard iterative re�nement,

and a direct LU solver (program noir ) to demonstrate the improvement of the accuracy of

the solution achieved by iterative re�nement will be explained. Important implementation

details will also be discussed in this chapter.

All iterative re�nement algorithms were implemented using arbitrary precision even

though some of the algorithms could have been implemented using the standard single and

double precision. The extra precise iterative re�nement could have been realised with ex-

tended or quadruple precision supported by many hardware vendors and also part of the IEEE

754 standard. GNU MPFR provided a portable, hardware independent implementation of

arbitrary precision data types which could avoid any discrepancies which could occur due

to di�erences in the hardware implementation of the IEEE standard data types. Using the

same data type implementation for all algorithms facilitates the comparison of the numerical

properties of the iterative re�nement methods .

A complete list of all project �les can be found in the Appendix Section A.2.

5.1 Requirements

The programs developed for this thesis rely on the followinglibraries:

� The arbitrary precision is achieved by using the GNU MPFR library [15].

� The singular value decomposition included in LAPACK [1] is used to calculate the

condition number � of the input matrix A. Other LAPACK routines are used outside

the iterative re�nement processes and also for equilibrating the matrix as required by

the extra precise iterative re�nement.

37



5.2. GENERATE MATRIX 38

� The results are written to an XML �le using the libxml2 [ 44] library.

� The performance is measured using PAPI [6].

� The data �les are compressed usingtar and gzip .

5.2 Generate Matrix

generateMatrix creates a matrix A and vector b with the dimension n and a condition

number � and writes the data to a �le using the format described in Section 5.3.

Usage : genera teMat r ix � n <DIM> [� c < CondNr > ] � f < FNPrefix > [� d < DIR > ] [�� date ]

[�� rmin <RANDMIN > ] [�� rmax <RANDMAX > ] [�� gz ip ] [�� v e r i f y ] [ �� type

<MATRIXTYPE > ]

� n Matrix dimension n

� f P r e f i x f o r the data f i l e

� d Data d i r e c t o r y

( � ) � c Condi t ion number f o r matr ix A

( � ) �� date I n s e r t s the cu r ren t date in the f i l e name

( � ) �� rmin Minimum value f o r the random va lues

( � ) �� rmax Maximum value f o r the random va lues

( � ) �� gz ip Compress data f i l e with gz ip

( � ) �� v e r i f y Ve r i f y the genera ted data and c o n d i t i o n number

( � ) �� type S p e c i f y the type o f matr ix to be genera ted

� random � gene ra tes a random matr ix ( d e f a u l t )

� H i l b e r t � gene ra tes a H i l b e r t matr ix

Parameters marked with ( � ) a re o p t i o n a l

Apart from the required parameter -n for the size of the matrix and vector, a pre�x for

the output �le has to be speci�ed using -f <PREFIX>. All other parameters are optional. An

output directory can be speci�ed by the parameter -d <DIR>. The current date and time

can be included in the �le name by specifying the parameter--date .

The program generateMatrix currently supports two di�erent kinds of matrices. The

�rst type, which is also the default type if the parameter --type is not explicitly provided, is

a random matrix which can be modi�ed to have the condition number speci�ed by parameter

-c . For details, how the matrix is created with the speci�ed condition number, please refer

to Section 6.1. The minimum and maximum of the range of the random values of the matrix

can be de�ned by providing --rmin and --rmax , respectively. By default the random values

will be in the interval [ � 1:0; 1:0]. The second supported matrix type is a Hilbert matrix,

which can be speci�ed by--type=hilbert .

The data can be compressed to reduce the amount of storage by specifying --gzip .

generateMatrix also provides the ability to verify the created data. The data is loaded from

the input �le and the condition number is calculated and compared to the condition number

provided by -c .

The following command shows an example of the usage of the program:
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./generateMatrix -n 2500 -c 1e3 -f ir -d data --date --gzip

This will produce a random matrix with size n = 2500 and a condition number � = 103 and

store the data in the compressed �le

data/ir 20110701123030000000.random.2500.cn e3.data.tar.gz

using the size and the exponent of the condition number in the�le name.

5.3 File Format

The matrix A and the right-hand side vector b are stored together in a plain text �le using

the following format.

TIMESTAMP

DIM1 DIM2

DATA Matrix

DATA Vector

The �rst line of the data �le contains an identi�cation numbe r which is the timestamp at

the time of creation. The second line de�nes the dimensions of the matrix A, m and n. The

following block of data is the matrix, each row of the matrix being separated by a newline

character. The last line of the �le holds the data for the vector, which has the size ofDIM1

and is separated from the matrix data by three newline characters.

The functions required to read and write the data �les are provided in ir io.h.

5.4 Block LU decomposition

A blocked version of the LU factorization was implemented asdescribed in [19, 14] as an

e�cient LU factorization. The block LU factorization explo its the bene�ts of operating on

the data that already exists in the local caches and reduces the number of calls to fetch the

data from the computationally more expensive entities higher up in the memory hierarchy.

The n � n matrix A 2 R is partitioned as follows

A =

 
A11 A12

A21 A22

!

(5.1)

The blocked LU factorization �rst computes the factors L 11 and U11 for the upper left block

A11. In the next step the triangular system L 11U12 = A12 is solved for the multiple right-hand
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Figure 5.1: Block LU factorization [30]

sides ofU12 and the triangular system L 21U11 = A21 for the multiple right-hand sides of L 21.

Finally the last block, the lower right matrix A22, has to be updated by

A
0

22 = A22 � L 21U12 (5.2)

using a matrix multiplication. This update is called the Schur complementof A11. The steps

for the blocked algorithm are also shown inFigure 5.1.

The same arithmetic operations are performed for the block LU factorization as for other

LU decompositions. They are simply executed in a di�erent order. The majority of the

computations are performed in the matrix multiplication. T he performance of the blocked

algorithm therefore largely depends on an e�cient implementation of the matrix multiplica-

tion.

5.5 Implemented Programs

The call signature of the programs which prepare and executethe di�erent iterative re�nement

methods are all very similar. In fact they only di�er in the pa rameter to de�ne the working

precision. All other available parameters are identical and will be explained in the following

paragraphs.

Usage : i r � a <PREC> [�� no� b i t s ] ( � f < FileName> OR � n <DIM> [�� type

< MatrixType > ] [�� no� save ] ) [� o < Di rec tory > ]

� a t a r g e t p r e c i s i o n alpha

( � ) �� no� b i t s i n t e r p r e t p r e c i s i o n s as number o f dec imal d i g i t s , not n umber

o f b i t s

( � ) � o output d i r e c t o r y

(~) � f f i l e con ta in i ng input data

(~) � n s i z e o f the matr ix

( � ) �� type s p e c i f y the type o f matr ix to be genera ted

� random � gene ra tes a random matr ix ( d e f a u l t )

� H i l b e r t � gene ra tes a H i l b e r t matr ix
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( � ) �� no� save au toma t i ca l l y genera ted input data w i l l not be saved ( d oes not

a f f e c t r e s u l t f i l e s )

Parameters marked with ( � ) a re o p t i o n a l .

One o f the parameters marked with (~) has to be prov ided .

The parameter -a is used to specify the target precision� for the iterative re�nement. If

the method supports the choice of a working precisions, an additional parameter -b will be

available. The target and working precisions can either be interpreted as the number of bits

stored in the mantissa of the 
oating-point number, which is the default behaviour, or as the

number of decimal digits by providing the optional parameter --no-bits .

The applications can load already existing data for the matrix A and vector b or generate

new data for the computation. The user can either provide thesize of then � n matrix A and

the vector b with the parameter -n or the �le name of a �le containing a matrix and vector

using the parameter-f . The �le must conform to the format described in Section 5.3, which

can be generated by the programgenerateMatrix as described inSection 5.2. If no input

�le is speci�ed, the matrix A and the right-hand side vector b are generated automatically

using the sizen provided by -n and stored in the folder data autogen, which will be created

if it does not exist. It is also possible to prevent the storage of the automatically generated

data by providing the parameter --no-save . When the matrix is generated in the program,

the type of the matrix can also be speci�ed (--type <MatrixType> ) using the same types as

seen bygenerateMatrix . The parameter -o enables the user to specify an output directory

for the result �les described in Subsection 5.5.1and will be created by the program if it does

not exist.

The following command is an example for the usage of the programs:

. / i r � a 53 � f data / i r 20110701 123030000000 . random . 2 5 0 0 . cne3 . data � o r e s u l t s

The target precision � is speci�ed as the number of bits stored in the mantissa and the

program uses a previously generated data �le to compute the solution of the linear system

using the iterative re�nement, storing the information abo ut the process in the folderresults .

5.5.1 File Structure of the Results

The results of the iterative re�nement methods are stored in two di�erent �les.

The �rst �le is a text �le containing the results in the form of a table, which can easily

be plotted by programs like gnuplot 1. The �rst line is the header of the columns, the second

line contains the results. Listings 5.1, 5.3 and 5.5 show examples of this output �le. As

described in Section 5.5, the target and working precisions can be speci�ed as eitherthe

number of bits stored in the mantissa or the number of decimaldigits. Regardless of the

choice of the representation, the precisions are printed asthe number of bits in column 2 and

3 of the output �le. In addition, the precision is also printe d as the number of decimal digits
1http://www.gnuplot.info/
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in the column AlphaDPand BetaDP. The relative residual norm is stored in the last column

RelNormRes.

The other �le is an XML �le containing more detailed data abou t the convergence of the

iterative re�nement. Examples of this XML �le can be seen in L istings 5.2 and 5.4. The XML

structure is divided into two sections: the input and output data. The input data includes

the name of the �le used by the program, the corresponding �le id as described in Section

5.3, the sizen, the condition number � and the target and working precisions as the number

of bits in the mantissa and the number of decimal digits.

The �rst node of the output data stores the number of iteratio ns performed by the iterative

re�nement. The relative residual norm of the solution after the iterative re�nement is stored in

the node<rel norm res> . The performance measurements are divided into di�erent sections

which depend on the di�erent algorithms. The XML �le contain s all the de�ned sections

for the execution time (XML node <times>), the number of 
oating-point operations (XML

node <fp ops>) and the number of total cycles (XML node <tot cyc>).

The data is stored using a �le name that contains the sizen of the matrix, the � precision

and depending on the iterative re�nement also the� precision, the exponent of the condition

number and the date and time of the experiment. The XML �le uses the extension*.results ,

the text �le the extension *.log . An example of the �le names is shown here:

1 bci r n002500 a53 condnr3 DT20110701 123030000000 . l og

2 bci r n002500 a53 condnr3 DT20110701 123030000000 . r e s u l t s

3 api r n002500 a53 b24 condnr3 DT20110701 123030000000 . l og

4 api r n002500 a53 b24 condnr3 DT20110701 123030000000 . r e s u l t s

5.5.2 Binary Cascade Iterative Re�nement (BCIR)

Usage : b c i r � a <PREC> [�� no� b i t s ] ( � f < FileName> OR � n <DIM> [�� type

< MatrixType > ] [�� no� save ] ) [� o < Di rec tory > ]

� a t a r g e t p r e c i s i o n alpha

. . .

The parameter -a is used to specify the target precision for the binary cascade iterative

re�nement. The parameter for the working precision � is missing, because the working

precisions are computed automatically by the binary cascade algorithm for each recursive

level and depend on the target precision, the condition number � (A) and the size of the input

system n.

Accessing Matrix A and Vector b at Di�erent Precisions

As described in Section 4.4, if the input precision of the matrix is higher than the current

working precision, then the elements are converted on-the-
y as they are accessed. They

are copied into a temporary variable with the required working precision and the need for

converting and storing the entire matrix in memory is eliminated. When computing the
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residual at higher precisions than the input precision it isnot necessary to copy the values to

a corresponding working precision variable, because the excess bits would only be �lled up

with zeros. Therefore the matrix elements can be used directly without the loss of accuracy

and the result will still be stored in and rounded to the higher working precision of the

destination variable.

Output from bcir

The result �les are extended by some BCIR speci�c parameters. The last columns of the table

based results �le, Listing 5.1, contain the properties computed by the algorithm to determine

the di�erent working precisions and a comma separated list of all working precisions used by

the binary cascade iterative re�nement.

The performance measurements for BCIR are divided into the following sections:

� bcirprepcondnr - computing properties required by the binary cascade algorithm and

calculating the condition number using the singular value decomposition

� plu - the LU decomposition using partial pivoting in the lowest working precision

determined by the algorithm

� bcir - the entire binary cascade iterative re�nement, which is further divided into the

following sections

� convert - converting the data to the required precisions and allocating necessary

temporary storage

� iterref - the iterative re�nement

� norm - computing the norm of the residual kr k and the relative residual

The XML �le expands the <output> node by BCIR speci�c values. The node<bcir>

contains the values of the computed parametersc, � and p required to determine the work-

ing precisions. These precisions are then explicitly stored in the node <precisions> . The

XML �le includes the value of kr k (XML node <norm res>) for the last step of the iterative

re�nement.

Listings 5.1 and 5.2 show examples of the di�erent output formats for the same output

data.

Dimension Alpha Beta I t e r a t i o n s BCIRPrepTime LUFactTime I te rRe fT ime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm BCIRPrepFLOPs BCIRPrepTotCyc LUFact FLOPs LUFactTotCyc IterRefFLOPs
I te rRe fTo tCyc AlphaDP AlphaDPE BetaDP BetaDPE F i l e I D RelN ormRes BCIR c BCIR tau BCIR p
BCIR precs

2500 53 0 1 193 .1206109999999967 610 .7720430000000533 8 .6 616289999999996 1 .00000000 e+03 0
0 .00000000 e+00 5 .42793596 e � 13 0 .00000000 e+00 43203280678 439336573020 9996 14002715 47370 0
19825485762 16 1 5 . 9 5 4 6 0 0 . 0 0 0 0 1303169780948568 2 .097120 29 e � 17 3 .25412090 e+01 54 0 87

Listing 5.1: Example for an output �le created by bcir
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< ? xml v e r s i o n = " 1 . 0 " encod ing= "ISO � 8859 � 1" ?>
< b c i r r e s u l t s da te= "2011 � 07 � 01" t ime= " 12 : 3 0 : 3 0 " >

< inpu t >
< f i l e n a m e > i r 2 0 1 1 0 7 0 1 1 2 3 0 3 0 9 4 7 0 5 3 . random . 2 5 0 0 . c n e 3 . data < / f i l e n a m e >
< d a t a i d > 1303169780948568 < / d a t a i d >
< s i z e > 2500 < / s i z e >
< a lpha b i t s= " 53 " dps= " 16 " d p s e x a c t= " 1 5 . 9 5 4 6 " / >
< beta b i t s= "0" dps= "0" d p s e x a c t= " 0 . 0 0 0 0 " / >
< condnr > 1 .000000 e+03 < / condnr >

< / i npu t >
< output >

< i t e r a t i o n s > 1< / i t e r a t i o n s >
< b c i r >

< c> 3 .25412090 e+01 < / c >
< tau > 54< / tau >
< p> 0< /p >

< / b c i r >
< p r e c i s i o n s >

< p r e c i s i o n s t e p= "0" > 87< / p r e c i s i o n >
< / p r e c i s i o n s >
< t imes >

< t i m e s e c t i o n s e c t i o n= " b c i r p r e p c o n d n r " > 193 .12061100 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " p lu " > 610 .77204300 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " b c i r " > 11 .75304900 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " c o n v e r t " > 1 .14143000 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " i t e r r e f " > 8 .66162900 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= "norm" > 1 .05945400 < / t i m e s e c t i o n >

< / t imes >
< f p o p s >

< f p o p s s e c t i o n s e c t i o n= " b c i r p r e p c o n d n r " > 43203280678 < / f p o p s s e c t i o n >
. . .

< / f p o p s >
< t o t c y c >

< t o t c y c s e c t i o n s e c t i o n= " b c i r p r e p c o n d n r " > 439336573020 < / t o t c y c s e c t i o n >
. . .

< / t o t c y c >
< accu racy / >
< norm res>

< n o r m r e s s t e p s t e p= "1" > 5 .4279359632387033 e � 13< / n o r m r e s s t e p >
< / norm res>
< r e l n o r m r e s > 2 .0971202862984781 e � 17< / r e l n o r m r e s >

< / output >
< / b c i r r e s u l t s >

Listing 5.2: Example for an XML �le created by bcir

5.5.3 Standard IR and MPIR (APIR)

apir runs the standard and mixed precision iterative re�nement methods and accepts the

parameters-a and -b to specify the target and working precision, respectively.The working

precision � can either be 53 bits to match the standard iterative re�nement or 24 bits for

mixed precision iterative re�nement.

Usage : a p i r � a <PREC> � b <PREC> [�� no� b i t s ] ( � f < FileName> OR � n <DIM> [�� type

< MatrixType > ] [�� no� save ] ) [� o < Di rec tory > ]

� a t a r g e t p r e c i s i o n alpha

� b working p r e c i s i o n beta

. . .

Output from apir

The table based results �le stores the working precision in the third column as the number

of bits in the mantissa and in one of the last columns as the number of decimal digits
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(Listing 5.3).

The XML �le contains detailed information about the converg ence of the iterative re�ne-

ment (Listing 5.4). The section containing the input data includes � as the number of bits in

the mantissa and the number of decimal digits. The �rst node of the output data stores the

number of iterations required for the convergence and the setting of the maximum number of

iterations. It also includes the values ofk� xk (XML node <norm dx>) and kr k (XML node

<norm res>) for each step of the iterative re�nement.

The performance measurements for SIR and MPIR are divided into the following sections:

� condnr - calculating the condition number using the singular valuedecomposition

� plu - the LU decomposition using partial pivoting in � precision

� apir - the entire iterative re�nement, which is further divided i nto the following sections

� convert - converting the data to the required precisions

� initsol - calculating the initial solution

� iterref - the iterative re�nement

Listings 5.3 and 5.4 show examples of the di�erent output formats for the same output

data.

Dimension Alpha Beta I t e r a t i o n s LUFactTime I n i t S o l T i m e I t e rRe fT ime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm LUFactFLOPs LUFactTotCyc In i tSolFLO Ps In i tSo lTo tCyc IterRefFLOPs
I te rRe fTo tCyc AlphaDP AlphaDPE BetaDP BetaDPE F i l e I D RelN ormRes

2500 53 24 3 583 .0899170000000140 2 .5646000000000000 8 .64 38039999999994 1 .00000000 e+03 0
0 .00000000 e+00 7 .87519820 e � 13 6 .72706868 e � 11 9996 1336616742278 0 5873981362 83 19797637958 16
1 5 . 9 5 4 6 8 7 . 2 2 4 7 1303169780948568 3 .01435415 e � 17

Listing 5.3: Example for an output �le created by apir

< ? xml v e r s i o n = " 1 . 0 " encod ing= "ISO � 8859 � 1" ?>
< a p i r r e s u l t s da te= "2011 � 07 � 01" t ime= " 12 : 3 0 : 3 0 " >

< inpu t >
< f i l e n a m e > i r 2 0 1 1 0 7 0 1 1 2 3 0 3 0 9 4 7 0 5 3 . random . 2 5 0 0 . c n e 3 . data < / f i l e n a m e >
< d a t a i d > 1303169780948568 < / d a t a i d >
< s i z e > 2500 < / s i z e >
< a lpha b i t s= " 53 " dps= " 16 " d p s e x a c t= " 1 5 . 9 5 4 6 " / >
< beta b i t s= " 24 " dps= "8" d p s e x a c t= " 7 . 2 2 4 7 " / >
< condnr > 1 .000000 e+03 < / condnr >

< / i npu t >
< output >

< i t e r a t i o n s max i te r= " 30 " > 3< / i t e r a t i o n s >
< t imes >

< t i m e s e c t i o n s e c t i o n= " condnr " > 32 .03412200 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " p lu " > 583 .08991700 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " a p i r " > 13 .57390400 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " c o n v e r t " > 1 .06414500 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " i n i t s o l " > 2 .56460000 < / t i m e s e c t i o n >
< t i m e s e c t i o n s e c t i o n= " i t e r r e f " > 8 .64380400 < / t i m e s e c t i o n >

< / t imes >
< f p o p s >

< f p o p s s e c t i o n s e c t i o n= " condnr " > 43203280657 < / f p o p s s e c t i o n >
. . .

< / f p o p s >
< t o t c y c >

< t o t c y c s e c t i o n s e c t i o n= " condnr " > 73284036761 < / t o t c y c s e c t i o n >
. . .

< / t o t c y c >
< accu racy / >
< norm res>
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< n o r m r e s s t e p s t e p= "0" > 1 .7685828077005059 e � 02< / n o r m r e s s t e p >
< n o r m r e s s t e p s t e p= "1" > 3 .8548877412407704 e � 06< / n o r m r e s s t e p >
. . .

< / no rm res>
< r e l n o r m r e s > 3 .0143541517324874 e � 17< / r e l n o r m r e s >
< norm dx >

< norm dx s tep s t e p= "0" > 3 .4291620774316110 e � 03< / norm dx s tep >
< norm dx s tep s t e p= "1" > 5 .2978759174469239 e � 07< / norm dx s tep >
. . .

< /norm dx >
< / output >

< / a p i r r e s u l t s >

Listing 5.4: Example for an XML �le created by apir

5.5.4 Extra Precise Iterative Re�nement (EPIR)

Usage : e p i r � a <PREC> [� b <PREC> ] [�� no� b i t s ] ( � f < FileName> OR � n <DIM>

[�� type < MatrixType > ] [�� no� save ] ) [� o < Di rec tory > ]

� a t a r g e t p r e c i s i o n alpha

( � ) � b working p r e c i s i o n beta ( d e f a u l t : 2 � a lpha )

. . .

epir provides the ability to de�ne the � precision explicitly and override the default value

of 2� , but it only has to be greater than � to be accepted. This would further allow to test

the precision used when extending the target precision and o�ers a �ne grained choice in the

working precision. This analysis would exceed the scope of this thesis and will therefore not

be analysed, but could be an interesting topic for future experiments. An algorithm that

does not necessarily require double the target precision but can solve the same problem with

the same accuracy by only slightly increasing the precisionand at the same time provide

reliable error bounds would probably require the working precision to be chosen according to

the properties of the input data.

In [13], the authors suggest to perform the row and column scaling of the equilibration of

the input matrix A with multiples of the power of 2 in order not to introduce any additional

round-o� errors. LAPACK provides the function DGEEQUB[28] to meet this requirement.

The extra precise iterative re�nement uses the in�nity norm to compute the condition

number, which in
uences the triggering of the extended working precision. Based on the

de�nition of the condition number

� 1 = kAk1




 A � 1






1 (5.3)

the inverse of the scaled matrixAs was required to compute� 1 . The inverse can be com-

puted using an LU decomposition andn forward and back substitutions. Due to the LU

decomposition already existing for the iterative re�nement, only the forward and back sub-

stitutions have to be computed. In praxis, a condition number estimator [21, 39, 5] would

be used instead of explicitly computing the inverse of the matrix, which would be bene�cial

for the performance. Furthermore, an estimate of the power of magnitude of the condition
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number provides su�cient information to decide whether the higher working precision should

be used or if the iterative re�nement should continue using the target precision.

Output from epir

The output of the extra precise iterative re�nement is almost identical to the standard and

mixed precision iterative re�nement. It has been expanded by the number of iterations which

were performed in the target precision and the extended working precision.

The only di�erence in the XML �le compared to Listing 5.4 is the <iterations> node,

which includes the number of iterations performed in� and � precision.

The performance measurements for EPIR are divided into the following sections:

� condnr - calculating the condition number using the singular valuedecomposition

� epir - the entire extra precise iterative re�nement, which is further divided into the

following sections

� equilibrate - equilibrating the input matrix and applying the scaling fa ctors to

A and b

� kappainf - computing the condition number � using the in�nity norm

� plu - the LU decomposition using partial pivoting in � precision

� initsol - calculating the initial solution

� iterref - the iterative re�nement

Dimension Alpha Beta I t e r a t i o n s LUFactTime I n i t S o l T i m e I t e rRe fT ime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm LUFactFLOPs LUFactTotCyc In i tSolFLO Ps In i tSo lTo tCyc IterRefFLOPs
I te rRe fTo tCyc AlphaDP AlphaDPE BetaDP BetaDPE F i l e I D RelN ormRes I t e r I n A l p h a I t e r I n B e t a

2500 53 106 4 617 .2460290000000214 12 .6525449999999999 55 .4796710000000033 1 .00000000 e+03 0
0 .00000000 e+00 6 .88361891 e � 12 2 .83350419 e � 13 9996 1414986219429 0 28831631365 340 126341721904
16 1 5 . 9 5 4 6 32 3 1 . 9 0 9 2 1303169780948568 2 .89100157 e � 17 2 2

Listing 5.5: Example for an output �le created by apir

< ? xml v e r s i o n = " 1 . 0 " encod ing= "ISO � 8859 � 1" ?>
< e p i r r e s u l t s da te= "2011 � 07 � 01" t ime= " 12 : 3 0 : 3 0 " >

. . .
< output >

< i t e r a t i o n s max i te r= " 30 " a l p h a i t e r= "2" b e t a i t e r= "2" > 4< / i t e r a t i o n s >
. . .

< / output >
< / e p i r r e s u l t s >

Listing 5.6: Example for an XML �le created by apir

5.5.5 Direct LU Solver (NoIR)

The direct LU solver only requires one precision, the targetprecision, and uses no iterative

re�nement.

Usage : n o i r � a <PREC> [�� no� b i t s ] ( � f < FileName> OR � n <DIM> [�� type

< MatrixType > ] [�� no� save ] ) [� o < Di rec tory > ]

� a t a r g e t p r e c i s i o n alpha

. . .



Chapter 6

Experiments

The aims of the experiments were to compare the di�erent iterative re�nement methods based

on their numerical behaviour, more precisely the accuracy of the re�ned solution based on

the relative residual

r rel =
krabsk1

kAk1 kxk1
(6.1)

and the rate of convergence based on the number of iterationseach method required. It

is important to mention, that the number of iterations requi red by the iterative re�nement

methods can not be mapped directly to the performance of the algorithms. For example, if a

method only requires one iteration to re�ne the result, but computes the improvement at a

very high precision, then the performance for computing this result will normally be low. If a

method requires more iterations but can compute these iterations at lower precisions, then it

can achieve better or the same performance as one iteration using the higher precision. This

point will be described in more detail while examining the results of the experiments.

All algorithms were implemented using the arbitrary precision library GNU MPFR to

guarantee the use of the same implementation of the di�erentprecisions for all algorithms

and not comparing hardware dependent IEEE standard precision implementations to the

arbitrary precision library. The performance was not compared based on the experimental

data due to the insigni�cant di�erences when emulating di�e rent mantissa lengths in arbitrary

precision when operating in the small range of precisions asin the case of these experiments.

To provide information about the performance of the di�erent iterative re�nement methods, a

performance model was de�ned taking into account the di�erent precisions and their bene�ts

and losses. The performance model is not part of this chapter, but will be described in

Chapter 7.

The experiments were conducted for the following di�erent system dimensions and con-

dition numbers:

� Dimensions: n = 10; 25; 50; 75; 100; 250; 500; 1000; 1500; 2000; 2500

� Condition numbers: � = 100 : : : 107

48



6.1. GENERATED DATA 49

For each sizen and condition number � , seven square dense random matrices were gener-

ated. The results show the average of all the measurements. Based on previously conducted

experiments, random matrices with condition numbers higher than � = 107 did not produce

good results with some iterative re�nement methods. As already mentioned, the arbitrary

precision arithmetic is being emulated using the software library GNU MPFR. Although

GNU MPFR is one of the fastest arbitrary precision libraries available, it still slows down

the execution of a program considerably. Therefore the dimension of the linear systems was

limited to n = 2500 in the conducted experiments.

The measurement covered well-conditioned systems as well as ill-conditioned systems.

However, in order to also test extremely ill-conditioned systems, Hilbert matrices with the

same dimensions as mentioned above were used. Hilbert matrices have entries of the form

H (i; j ) =
1

i + j � 1
(6.2)

and are very ill-conditioned. A small 10� 10 Hilbert matrix already has a condition number

of � = 1 :6025� 1013 and a 1000� 1000 Hilbert matrix has � = 5 :0201� 1020.

6.1 Generated Data

To generate matrices with a desired condition number, the singular value decomposition is

used and the singular values are scaled to the targeted condition number � T . The �rst step

is to compute the condition number � of the randomly generated matrix using the largest

and smallest singular value of the diagonal matrix � of the singular value decomposition.

� =
� 1;1

� n;n
(6.3)

If the condition number of the randomly generated matrix is lower than the targeted condition

number, then the largest singular value, the �rst element of the diagonal matrix, is set to be

� T times the smallest singular value, the last element of the diagonal matrix. Otherwise the

diagonal matrix is traversed checking if the following condition has been reached:

� i;i

� n� i;n � i
� � T (6.4)

If the targeted condition number has been found, then all values of the upper part of the

diagonal above this position are set to the largest matchingvalue � i;i and all values of the

lower diagonal below this position are set to the smallest matching value � n� i;n � i . Finally

the �rst element of � is set to be � T times the smallest singular value. If the condition in

Equation (6.3) is not ful�lled, then all singular values are set to 1 and the � rst singular value

is set to the targeted condition number. One special case exists if � T = 1, then all singular

values are set to 1.
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6.2 Target and Working Precisions

The target precision is represented by� , the working precision by � except in the case of

BCIR, where the di�erent target precisions are de�ned by � j with j = 0 : : : p, as described

in Section 4.2. For all experiments, the target precision will be IEEE double precision with

� = 53 bits. MPIR will use IEEE single precision � = 24 bits as the lower working precision.

In the following sections the di�erent algorithms will be ad dressed by using their abbre-

viations de�ned in the previous chapters:

� LU solver : This corresponds to a standard LU decomposition with forward and back

substitution, but without the use of iterative re�nement.

� SIR : Standard Iterative Re�nement with � = � = double precision

� EPIR : Extra Precise Iterative Re�nement with � = 2 � = 106 bits

� MPIR : Mixed Precision Iterative Re�nement with � � 1=2� = single precision

� BCIR : Binary Cascade Iterative Re�nement

6.3 Termination Criteria

The standard and mixed precision iterative re�nement both use the same termination criteria,

kr k2 < n� � � or k� xk2 < n� � � (6.5)

wheren is the system dimension,� � is the machine epsilon of the target precision and� is the

condition number of the matrix A. Furthermore the iterative process is halted if a maximum

number of iterations is reached, which based on heuristic observations was chosen to be 30

iterations.

As described inSection 3.2, the extra precise iterative re�nement will terminate if th e error

estimate is decreasing too slowly or if the correction term does not increase the accuracy of

the solution signi�cantly. Again the iterative re�nement i s also terminated, if the maximum

number of iterations is reached. This was chosen to be 30 iterations, the same as for the

standard and mixed precision iterative re�nement.

The binary cascade iterative re�nement behaves di�erently than the other iterative re�ne-

ment methods. During the iterative process the algorithm does not check for the convergence

of the solution. BCIR computes the number of iterations and the working precision to use in

each iteration based on the input data before starting the iterative improvement. This should

guarantee that after the precomputed number of iterations the speci�ed target precision will

be reached. Therefore the convergence and the accuracy of the result have to be evaluated

after the process has terminated.
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6.4 Precisions used by BCIR

A brief look at the precisions used by BCIR at the di�erent recursive levels will be provided,

before turning the attention to the comparison of the iterat ive re�nement methods.

The following two �gures, Figure 6.1 and Figure 6.2, show the di�erent precisions � j of

the binary cascade iterative re�nement for di�erent condit ion numbers, shown on the x-axis.

The precision is plotted on the y-axis as the number of bits stored in the mantissa. The dotted

black line is a reference for the standard double precision using 53 bits in the mantissa, which

is the target precision � . The second y-axis on the right shows the relative residual achieved

for each system with the corresponding condition number.
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�

R
el

at
iv

e
R

es
id

ua
lr

P
re

ci
si

on
� j

10� 16

10� 17

10� 18

10810710610510410310210110010� 1

100

80

60

40

20

0

(TP) 53

Figure 6.1: Precisions� j used throughout the iterative process forn = 10 plotted on the left
y-axis and the relative residual depicted by the orange dotted line on the right y-axis

In Figure 6.1 the precisions� j are shown for a very small linear system withn = 10. For

condition numbers � < 103, the algorithm uses three di�erent recursion levels and therefore

three di�erent precisions. For perfectly conditioned systems, the �rst precision is 21 bits and

the second precision uses 34 bits, both signi�cantly lower than the target precision � = 53

bits. The last precision used for the perfectly conditionedsystems is higher than the target

precision and requires 61 bits.

As the condition number rises, the working precisions� j also increase and the number

of iterations diminishes. Between� = 103 and � = 106, two precisions are used to improve

the result and for � = 106 all precisions used by BCIR are higher than the target precision,

the lowest precision used being just slightly over� with 54 bits. For � = 107, the iterative

method uses only one recursive call and only one precision which is as high as 84 bits.

The last plot only showed the precisions for a very small linear system. In Figure 6.2,

the size of the linear system has been increased ton = 2000. As seen in the graph, only

systems with a condition number � � 10 use two di�erent precisions for their computations.

Otherwise only one precision is used, all of them being signi�cantly higher than the target
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Precisions� j for BCIR ( n = 2000)
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Figure 6.2: Precisions� j used throughout the iterative process forn = 2000 plotted on the
left y-axis and the relative residual depicted by the orangedotted line on the right y-axis

precision � with the worst conditioned system of the measurements with� = 107 using a

precision with 100 bits to store the mantissa of the 
oating-point numbers.

This already shows that the number of iterations is very low for the binary cascade

iterative re�nement, but that the process always chooses atleast one of the working precisions

higher than the target precision. This provides a good relative residual for the solution of the

linear system, but also incurs a higher computational cost due to the high working precision.
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6.5 Comparison of Iterative Re�nement Methods

6.5.1 Random Matrices

Number of iterations

The number of iterations provides information about the rate of convergence of the di�erent

iterative re�nement methods.

Figure 6.3 shows the number of iterations for all iterative re�nement methods for a linear

system with n = 100 for di�erent condition numbers plotted on the x-axis. T he number

of iterations can not be compared without considering the di�erent working precisions the

di�erent methods operate at.

SIR
BCIR
MPIR
EPIR

n = 100
Number of Iterations for di�erent Iterative Re�nement Algo rithms

�

Ite
ra

tio
ns

10810710610510410310210110010� 1

9

8

7

6

5

4

3

2

1

Figure 6.3: Number of iterations for the di�erent iterative re�nement methods for n = 100

The standard iterative re�nement requires the least number of iterations. Except for per-

fectly conditioned systems, where the process requires twoiterations, the algorithm computes

the improvement in one iteration using the same precision for all operations. The mixed pre-

cision uses more iterations than SIR, but these are performed at the lower working precision,

which is single precision. Therefore MPIR achieves a higherperformance than SIR while

using a higher number of iterations. The extra precise iterative re�nement not only requires

the highest number of iterations, but also performs some of them at higher working preci-

sions. On average 2 iterations are performed at the target precision� and the other iterations

are performed at the extended working precision� = 2 � . For ill-conditioned systems, more

iterations are required and these are computed using the extended working precision.
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Binary cascade iterative re�nement computes the number of iterations to execute before

entering the iterative re�nement process. It is therefore directly dependent on the condition

number of the linear system, which is used to computep, the number of recursive levels,

and corresponds to 2p iterations. For perfectly conditioned systems, more iterations are

executed than for ill-conditioned systems, but for systemswith a higher condition number

the working precisions used by BCIR are also higher. BCIR does not use the same precision

for all iterations and therefore some iterations are computationally cheaper than others. In

addition to this, not all iterations perform the same amount of work. The lowest level of

the recursion solves two triangular systems in the lowest working precision � 0, whereas the

other iterations only compute the residual and update the solution. Therefore it is di�cult to

directly compare the number of iterations of BCIR with other iterative re�nement methods.
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Figure 6.4: Number of iterations for the di�erent iterative re�nement methods for n = 2000

The second plot,Figure 6.4, shows the number of iterations for di�erent condition num-

bers for a larger system withn = 2000. The number of iterations is more consistent for all

di�erent condition numbers. EPIR still requires the most it erations, followed by MPIR which

computes the iterations at a lower working precision. The standard iterative re�nement still

only requires one iteration to improve the result except for the perfectly conditioned linear

system. BCIR requires 2 iterations for systems with a condition number of � = 1 and � = 10,

but otherwise also only executes one iteration but at a much higher working precision than

the standard iterative re�nement.

The last plot, Figure 6.5, shows the number of iterations for di�erent system sizes, plotted

on the x-axis, for linear systems with a condition number� = 103. The standard iterative

re�nement always uses one iteration to improve the solutionand the mixed precision iterative
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Figure 6.5: Number of iterations for the di�erent iterative re�nement methods for � = 103

re�nement is also almost constant and uses 3 iterations at single precision. EPIR requires

the most iterations and the number di�ers depending on the size of the linear system. Binary

cascade iterative re�nement computes the re�nement most ofthe time in one iteration and

only requires more iterations for smaller systems.

Relative Residual

The next numerical aspect to be analysed is the accuracy achieved by the di�erent iterative

re�nement methods by comparing the relative residual (Equation (6.1)).

In Figure 6.6, the relative residual is plotted for a large linear system with n = 2000

for di�erent condition numbers � shown on the x-axis. The �rst, the turquoise line is the

LU solver without iterative re�nement. Through the use of it erative re�nement, the relative

residual can be improved by almost 2 orders of magnitude. Thevery ill-conditioned systems

do not pro�t as much from the iterative re�nement, but still i mprove the result by almost

1 order of magnitude. Only the mixed precision iterative re�nement fails to �nd a better

result for the worst conditioned system in these experiments and the extra precise iterative

re�nement is hardly any better than the direct LU solver for s ystems with � = 107. In all other

cases the iterative re�nement methods have signi�cantly improved the result and for systems

with a condition number � � 104 they all achieve almost the same results, with the exception

of binary cascade iterative re�nement. BCIR consistently returns slightly better results than

all other methods. Another interesting observation is that the standard iterative re�nement

performs better with ill conditioned systems than the extra precise iterative re�nement, but
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Figure 6.6: Relative residual for di�erent iterative re�ne ment methods for n = 2000

only uses one precision for the re�nement process whereas EPIR uses higher precisions to

improve the result.

Figure 6.7 shows the relative residual for linear systems with a �xed condition number

� = 103 and variable system sizes plotted on the x-axis. The relative residual of the direct

LU solver increases with the dimension of the linear system,but the re�ned solutions remain

at the same level of accuracy for all larger systems. All iterative re�nement methods achieve

again approximately the same improvement for systems larger than n = 100 and binary

cascade iterative re�nement always achieves a slightly better accuracy.

The convergence behaviour of the iterative re�nement methods for ill-conditioned linear

systems with � = 107 is displayed in Figure 6.8. Extra precise iterative re�nement achieves

the worst results for these linear systems and the solution has a lower accuracy than the direct

LU solver. Mixed precision iterative re�nements can produce worse results for larger systems,

but most of the time has similar results as the direct LU solver. Only the standard iterative

re�nement and the binary cascade iterative re�nement have better relative residuals than the

direct solver, with BCIR being slightly better than the stan dard iterative re�nement.

All these �gures also show that the choice for the termination criteria for the standard

and mixed precision iterative re�nement methods (Equation (6.5)) is very good, especially for

the standard iterative re�nement which achieves only slightly worse results than the binary

cascade iterative re�nement, which computes the necessarynumber of iterations and the

required precisions before entering the iterative processbased on the input data to guarantee

that the process terminates after achieving the target precision.
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Figure 6.7: Relative residual for di�erent iterative re�ne ment methods for � = 103
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Figure 6.8: Relative residual for di�erent iterative re�ne ment methods for � = 107
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6.5.2 Hilbert Matrices

Hilbert matrices are extremely ill-conditioned by nature and were therefore chosen as an

alternate input system to the randomly generated matrices.The main reason was to observe

how good the iterative re�nement methods can handle the ill-conditioned linear systems.

Especially interesting was the behaviour of the binary cascade iterative re�nement because

it adapts the working precisions based on the input data.
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Figure 6.9: Number of iterations for the di�erent iterative re�nement methods for Hilbert
matrices

The �rst numerical aspect is the number of iterations required until the iterative improve-

ment converged or a termination criteria was met. As seen inFigure 6.9, all methods except

for EPIR required one iteration to converge. For the smallest system in the experimental

data, n = 10, the mixed precision iterative re�nement ran for two ite rations, but otherwise

also halted the improvement after one iteration. The extra precise iterative re�nement always

used two iterations. The �rst iteration computed in the targ et precision did not converge and

the error estimate did not decrease signi�cantly enough. Therefore the working precision of

EPIR was doubled and the process continued for a second iteration. The error estimate still

did not return a satisfactory result and therefore the process was terminated.

As expected after the analysis and the previous experiments, BCIR used very high pre-

cisions to improve the solution of the ill-conditioned linear system with � > 130 bits. For a

large system with n = 2500, BCIR used � = 152 bits as the working precision, almost three

times the target precision � = 53.

In Figure 6.10, the relative residual is shown on the y-axis for variable system sizes plotted

on the x-axis. It is interesting to note that the mixed precision iterative re�nement achieved
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Figure 6.10: Relative residual for di�erent iterative re�n ement methods for Hilbert matrices

the worst relative residual with a di�erence of 8 orders of magnitude compared to all other

methods, including the direct LU solver. This behaviour is a result of the use of the lower

working precision and the iterative re�nement being halted after one iteration. The termi-

nation criteria ( Equation (6.5)) has been met because the residual or the correction term is

below n� � � . The other iterative re�nement methods performed hardly better than the direct

LU solver, although the binary cascade iterative re�nement sometimes produced a slightly

better result.

Nevertheless, the solution for the linear system with a Hilbert matrix returns inaccurate

solutions for all methods with absolute residuals signi�cantly larger than 1. With such large

absolute errors, the di�erence between MPIR and the other solvers is almost irrelevant,

because the result will always be wrong.

6.6 Experiments for Re�ned Version of BCIR

BCIR does not check for convergence during the iterative, more precisely the recursive, pro-

cess. Therefore the precomputed parameters are the only controlling mechanism of the iter-

ative re�nement. The algorithm computes the number of recursive callsp and the working

precisions� j before entering the re�nement phase, both values dependingon parameter c.

In Section 4.3, the original de�nition of parameter c was replaced byc = log 2 B + 5,

showing that the BCIR process should mainly depend on the Bauer condition number. The

following experiments should help con�rm or disprove this claim. The program bcir was

therefore extended to use the new de�nition ofc under the assumption ofB = � based on

Equation (4.8). In the following plots, this version of BCIR will be called Re�ned BCIR .
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6.6.1 Precisions used by Re�ned BCIR

Figure 6.11shows the precisions used by the re�ned version of BCIR for large linear systems

with n = 2000 and di�erent condition numbers, which are plotted on t he x-axis. The relative

residual achieved for the tested systems is plotted on the second y-axis on the right. The

dotted horizontal line marks the target precision � , which is the standard double precision

with 53 bits to store the signi�cand of the 
oating-point num bers.
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Figure 6.11: Precisions� j used throughout the iterative process by the re�ned versionof
BCIR plotted on the left y-axis and the relative residual depicted by the orange dotted line
on the right y-axis

The �rst notable di�erence compared to the results of the standard BCIR method

(Section 6.4) is that the precisions used by the re�ned version of BCIR are much lower.

The highest precision used for the most ill-conditioned system is 78 bits compared to 100

bits used by the standard BCIR. The number of recursive levels has also increased compared

to the standard binary cascade iterative re�nement, which only used two di�erent working

precisions for systems with a condition number� = 1 or � = 10 and otherwise only used one

recursive call operating at a very high working precision. The re�ned version of BCIR uses

�ve recursive calls for perfectly conditioned linear systems with the initial working precision

being as low as 6 bits. The number of recursive level reduces as the condition number rises,

but even for the most ill-conditioned system in the experiments, the process still uses two

recursive re�nement steps. Except for the last working precision, all working precisions are

lower than the target precision, most of the time signi�cant ly lower.

This plot is identical for almost all input dimensions because parameterc no longer de-

pends on the sizen as part of its calculation. The only di�erence occurs for well-conditioned

systems with n � 41. As described inEquation (4.23), for these small systems the second

term n=2 of the parameter p takes precedence and in
uences the choice of the working pre-

cisions. However, this only result in a small change as the lowest working precisions are not
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used for well-conditioned systems but all other linear systems are improved using the same

precisions as seen inFigure 6.11.

The relative residual achieved by the re�ned version of BCIRfor well-conditioned systems

is very bad. As the condition number rises, the relative residual is similar to the accuracy

achieved by the standard BCIR. The failure of achieving a better relative residual for the

perfectly conditioned system is most likely due to the low working precision used by BCIR.

Using only 6 bits of accuracy for the factorization of the matrix and solving the linear systems

for the solution and the correction terms is too low to return any signi�cant digits. In decimal

digits, 6 bits would only be under 2 decimal digits, obviously not enough information to

compute the entire solution or to improve the result due to the error accumulation over all

matrix elements.

6.6.2 Number of Iterations
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Figure 6.12: Number of iterations for the di�erent iterativ e re�nement methods for n = 1000

As seen in the last plot, the number of iterations of the re�ned version have greatly in-

creased compared to the standard BCIR version.Figure 6.12shows the number of iterations

for all iterative re�nement algorithms for a �xed system siz e of n = 1000 and di�erent con-

dition numbers plotted on the x-axis. The maximum number of iterations of the re�ned

version is 16 for perfectly conditioned linear systems. Forwell-conditioned systems it uses

more iterations than the extra precise iterative re�nement, but the majority of these itera-

tions are performed at signi�cantly lower working precisions, whereas EPIR uses a working

precision higher than the target precision for at least halfof its total number of iterations.
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For ill-conditioned systems, the re�ned version of BCIR requires fewer iterations than MPIR,

but for these systems the mixed precision iterative re�nement computes the improvement at

a much lower working precision than the re�ned BCIR. In all cases, the re�ned version uses

more iterations than the standard BCIR version.

6.6.3 Relative Residual

The relative residual achieved by all iterative re�nement methods is plotted in Figure 6.13

for varying system sizes on the x-axis. The plot shows the accuracy of the improved solution

for systems with a condition number of � = 1. The re�ned version of BCIR produces the

same relative residual up ton = 100, but then performs very poorly and fails completely

to achieve any acceptable accuracy. The process never converges for n � 500. This e�ect

can be accounted to the use of the low working precision of only 6 bits for the factorization

of the matrix and solving the linear systems for the solutionand the correction terms. The

number of signi�cant digits is far too low, especially when accumulating the errors over larger

matrices.
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Figure 6.13: Relative residual for di�erent iterative re�n ement methods for� = 1

This e�ect also occurred for experiments with linear systems having a condition number

of � = 10, but the results started to deviate from the relative residual achieved by the

other iterative re�nement methods later than for perfectly conditioned systems. The new

de�nition of c uses only the condition number to compute the working precisions. Therefore

the working precisions used for the improvement process have increased compared to systems

with � = 1 and the lowest working precision is� 0 = 11 bits instead of � 0 = 6 bits for perfectly

conditioned systems. The accumulated errors therefore in
uence the accuracy of the solution

at a later stage than for lower working precisions.
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All other measurements resulted in a very similar accuracy as the standard implementa-

tion of BCIR, but this does not mean that the same e�ect will no t occur when the matrix

dimensions increase. The e�ect will more than likely only occur later in the plots when

computing the result of larger linear systems with the same condition number using the low

working precisions.

6.6.4 Conclusion of Re�ned BCIR

The dimension of the system in the original de�nition of c has a greater in
uence than

assumed in the �nal remark of the author [26] and is recommended to be used to guarantee

a convergence of the re�ned results. This comes at the cost ofperformance because higher

working precisions will be used throughout the process, even though, as can be seen by the

results in the previous subsections, they are not always necessary. In the experiments, all

matrices with a condition number higher or equal 102 and up to a dimension ofn = 2500,

the maximum size measured due to the performance of the simulated arbitrary precision,

showed very similar convergence and accuracy compared to the standard BCIR algorithm

using higher precisions at each recursive level.

By including the dimension n of the matrix in the re�ned de�nition of c (Equation (4.22))

the results could already be stabilised for well-conditioned matrices. However, it cannot be

guaranteed that the same e�ect as before will not occur at a later point using larger input

matrices. Including n2 as the factor before the condition number� , as in the original de�nition

of c (Equation (4.4)), makes sense in order to cover all input errors for alln2 elements of the

n � n matrix.

Of course it would be desirable to reduce the working precisions necessary at each recursive

level in order to gain performance due to the lower precisions, but the experiments have

shown, that this will also cause the iterative re�nement to fail when handling certain input

data. Modifying the parameters as inSection 4.3can lead to undesirable results and a loss in

accuracy. The dimension of the system is an important factorfor the choice of the working

precisions and should not be left out of the equation.



Chapter 7

Performance Model

Simulating arbitrary precision with software libraries has a large negative impact on the per-

formance and the time measurements are therefore not conclusive when trying to identify the

performance gain through the use of di�erent precisions. The performance bene�ts of using

mixed precision algorithms can only be measured on special hardware implementations, for

example FPGAs. Using the software libraries, there is hardly any performance di�erence

when operating within the small range of mantissa widths used here for the iterative re-

�nement methods. Therefore the performance will be compared using performance models,

which account for the gains and losses due to the lower and higher working precisions.

Before de�ning the di�erent performance models for all iterative re�nement algorithms

tested in this thesis, some basic values used in all models have to be de�ned. The performance

models take into account fused multiply add and subtract, multiplication, division, addition

and subtraction operations.

The number of fused multiply subtract operations for both, the standard and blocked LU

decomposition, is

luops :=
2n3

3
(7.1)

The di�erent working precisions have to be included in the models using working preci-

sions which di�er from the target precision to simulate the performance gain of the algorithm

if these operations were e�ectively implemented in hardware, e.g. in FPGAs. A valid as-

sumption for FPGAs [16] would be that the performance increases quadratically with the

decrease of the precision.

speedup(�; � ) :=
� 2

� 2 (7.2)

To determine the theoretical number of iterations, the iterations model previously de-

scribed in Section 3.4will be used.

iterations (�; �; � ) :=
�

� � log2(� )
(7.3)

64
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7.1 Performance Models

7.1.1 Performance Model for Direct LU Solver

The simplest performance model is the one used for the algorithm using no iterative re�ne-

ment at all, and therefore only consists of the LU decomposition and the forward and back

substitution, which each require n2=2 fused multiply subtract operations, and only uses the

target precision for all computations.

noir ops :=
2n3

3
+ n2 (7.4)

7.1.2 Performance Model for SIR

The standard iterative re�nement also only uses the target precision for all computations,

but additionally requires a number of iterations to increase the accuracy of the result. In

each iteration, the residual is computed usingn2 multiply operations followed by n subtract

operations. Then the linear system is solved using the forward and back substitution and

the correction term � x is added to the result x using n addition operations. Finally the

norm of the residual and the norm of � x is calculated to check if the process has converged

or if the iterative re�nement has to continue. The two norms r equire n fused multiply add

operations. The performance model for the standard iterative re�nement is de�ned by the

following equation:

sir ops :=
2n3

3
+ n2 + iterations (�; �; � ) �

�
2 � n2 + 4n

�
(7.5)

7.1.3 Performance Model for MPIR

The mixed precision iterative re�nement uses exactly the same number of operations as

the standard iterative re�nement, but most operations are computed using a lower working

precision � . The LU decomposition, the initial solution and solving the linear equation in the

loops of the iterative re�nement are all computed using the working precision � and therefore

have to be multiplied by the inverse of the theoretical speed-up gained through the usage of

the lower precision. The residual, adding � x and computing the norms are all performed at

the target precision � and do not require any additional term.

mpir ops :=
�

2n3

3
+ n2

�
�

1
speedup(�; � )

+ iterations (�; �; � )�
�
n2 �

1
speedup(�; � )

+
�
n2 + 4n

�
�

(7.6)

7.1.4 Performance Model for EPIR

The extra precise iterative re�nement algorithm requires additional computations before solv-

ing the linear system and starting the iterative re�nement. This includes equilibrating the

input system and computing the in�nity norm of the equilibra ted matrix.
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Equilibrating the system requires 2� (n2 + 2n) operations for the row and column scaling

factors. An additional 2n2 multiplication operations for applying the scaling factors to the

matrix A and n operations to scaleb by the row scaling factors also have to be included in

the equation.

The extra precise iterative re�nement requires the condition number � 1 of the equili-

brated matrix As to determine whether the working precision should be increased or not.

By de�nition as in Equation (5.3), in order to compute the condition number, the inverse of

the matrix As would be required. Due to the high computational cost ofO(n3) for comput-

ing the inverse, a condition number estimator [21] would be used in praxis. The condition

number estimator requires the LU decomposition of the matrix, which already exists for the

iterative re�nement process. On average the estimator requires a very low number of only 4

or 5 matrix-vector products to compute a reliable estimation of the norm of the matrix [23,

p.294]. Therefore, the estimation of the norm ofA � 1
s will be included in the performance

model as using 5n2 operations. The in�nity norm of the matrix As requiresn2 operations for

the absolute value andn comparison operations, which are not as expensive as the multipli-

cation or fused-multiply add operations and will thereforenot be included in the performance

model.

All these operations, as well as the LU decomposition and theinitial solution ( n2 oper-

ations), are performed in the target precision� . The extended working precision� is only

used during the iterative process and only if certain conditions (explained in Section 3.2) are

met. In the �rst iteration of the extra precise iterative re� nement all computations except the

�nal update operation are always performed in � precision. During the process the precision

can be increased to� precision. This depends on the quality of the input data as well as the

rate of convergence. Adding the correction term � x to x is performed after the precision is

increased to the extended� precision and therefore the last� precision iteration will perform

this update in � precision. If the working precision is increased, the extraprecise iterative

re�nement by default doubles the target precision � . The speed-up factor for the extended

working precision � = 2 � is therefore reduced to 0:25.

The experiments have shown that in the majority of cases for systems with a condition

number between� = 1 and � = 107, the extra precise iterative re�nement performs two iter-

ations in � precision before changing the working precision to twice the target precision and

then performs on average another two iterations in� precision. Therefore the performance

model will use 2 as an estimate for the number of iterations in� and � precision.

The complete performance model for the extra precise iterative re�nement method is

shown in the following de�nition, with iter � = iter � = 2.

epirops :=
h

2n3

3 +
�
10n2 + 5n

�
+ iter � �

�
2n2 + 5n

�
� n

i
+

+
�
iter � �

�
2n2 + 5n

�
+ n

�
� 1

0:25

(7.7)
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7.1.5 Performance Model for BCIR

The binary cascade iterative re�nement uses di�erent working precisions throughout the

process, which also have to be considered in the performancemodel. At the �nal recursion

level, twice a linear system is solved using the lowest working precision � 0. The forward

and back substitution both require n2=2 fused multiply subtract operations each. In the

second step of the recursive function of the BCIR algorithm (see Listing (4.2)), the residual

is computed which requires a matrix vector multiplication and a vector-vector subtraction

with n2 multiply and n subtraction operations. Finally, subtracting v from z requires an

additional n subtracting operations. This leads to the following numberof operations at the

lowest level of the recursive algorithm, which is executed 2p times.

2p �
�
3n2 + 2n

�
(7.8)

On all other levels j of the iterative re�nement, only the residual and the subtraction of the

correction term is computed, which is executed at each level, a total of 2p� j times, at di�erent

working precisions and therefore the number of operations would be:

2p� j �
�
n2 + 2n

�
(7.9)

The complete number of operations for BCIR including the LU decomposition and taking

into account the speed-up gained through the use of arbitrary precision can therefore be

expressed as:

bcirops :=
�

2n3

3
+ 2 p �

�
3n2 + 2n

�
�

�
1

speedup(�; � 0)
+

pX

j =1

2p� j �
�
n2 + 2n

�
�

1
speedup(�; � j )

(7.10)
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7.2 Results for the Modelled Speed-Up

All tables and plots in this section show the modelled speed-up of the di�erent iterative

re�nement methods based on the previously de�ned performance models compared to the

direct LU solver using no iterative re�nement. In the plots, the speed-up is always shown on

the y-axis and the direct LU solver is represented as a dottedhorizontal line as a reference.

The target precision is always double precision with� = 53 bits and the working precisions

are also the same as described inSection 6.2.

Method Speed-up

MPIR 3.5887
BCIR 1.0533
SIR 0.9431
EPIR 0.6958

Table 7.1: Modelled speed-up for di�erent working precisions � with � = 53, n = 100 and
� = 350

In Table 7.1 the speed-up is shown for a linear system withn = 100 and a condition

number � = 350. The standard iterative re�nement, using the same precision as the target

and working precision, is naturally slower than not using any iterative re�nement. However,

the slow-down e�ect is very small with 0:94 and can be justi�ed because the method can

produce better results than not using iterative re�nement. The second method being slower

than the direct LU solver is the extra precise iterative re�n ement, which uses higher working

precisions to compute the critical sections and has a slow-down e�ect of 0.70. This is already

a high performance decrease, but the process also provides additional information about the

quality of the improved result. Binary cascade iterative re�nement achieves a speed-up, but

the performance increase of 1.05 is very low. The best speed-up is achieved by the mixed

precision iterative re�nement with 3.59 using standard single precision.

Method Speed-up

MPIR 4.7103
SIR 0.9940
EPIR 0.9583
BCIR 0.4065

Table 7.2: Modelled speed-up for di�erent working precisions � with � = 53, n = 1000 and
� = 350

The performance behaviour of the methods changes when largersystems are solved. In

Table 7.2 the same table is shown for a larger linear system withn = 1000. The standard

iterative re�nement is of course still slower than the direct solver, but the slow down e�ect has

decreased to 0.99, which indicates that the extra computational work is insigni�cant especially

compared to the gain of the improved accuracy of the solution. The in
uence of the extra

precise iterative re�nement has also dropped signi�cantly and now only has a slow-down
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e�ect of 0.96, still providing more information about the er ror bounds than other iterative

re�nement methods. Binary cascade iterative re�nement has become the slowest method

and has a slow-down e�ect of 0.41, which is explained by the high working precisions used by

the process (compare withSection 6.4). BCIR still produces the best relative residual, but

this slight improvement over the other iterative re�nement methods comes with a high cost

at the expense of the performance. The mixed precision iterative re�nement achieves again

the highest speed-up, which is even higher than for smaller linear systems, with 4.71 for the

standard single precision as the working precision.
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Figure 7.1: Modelled speed-up for di�erent system sizes

Figure 7.1 shows the modelled speed-up for di�erent dimension of linear systems, plotted

on the x-axis. For larger problems the e�ect of the standard and extra precise iterative

re�nement becomes insigni�cant and for linear systems overn = 1000 both methods only

have a small in
uence on the performance compared to the direct LU solver. The e�ect of

MPIR already seen in the last two tables continues although the increase in performance


attens for larger linear systems. For a large system with n = 10000 the process achieves a

speed-up of 4.86 when using single precision as the working precision. BCIR also achieves

a speed-up but only for a small range of problems and the performance increase compared

to the direct solver is extremely low. For larger linear systems, the method has a slow-down

factor of under 0.5 due to the higher working precisions. Even though the algorithm produces

a slightly better relative residual compared to the other iterative re�nement methods, the

cost of this improvement is very high.

Finally, Figure 7.2, shows the modelled speed-up for di�erent condition numbers of the

input matrix A and a small system size ofn = 100. Standard and extra precise iterative

re�nement are not in
uenced by the condition number and have the same slow-down e�ect

as in Table 7.1. Mixed precision iterative re�nement requires more iterations if the condition
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Figure 7.2: Modelled speed-up for di�erent condition numbers

number rises and therefore the speed-up decreases with the rise of the condition number.

The speed-up ranges from 3.84 for perfectly conditioned systems to 3.37 for ill-conditioned

systems, but for most systems the speed-up is 3.59. Binary cascade iterative re�nement is

strongly in
uenced by the condition number due to the in
uen ce of � on the choice of the

working precisions � j . At the beginning, for perfectly conditioned systems, BCIR achieves

a high speed-up of 2.76, but this decreases immediately and for systems with a condition

number higher than � = 103 no speed-up is achieved. For the ill-conditioned systems the

slow-down factor is 0.31. The large leaps in the graph can be explained by the decrease of the

number of recursive levels of BCIR and the simultaneous increase of the working precisions.



Chapter 8

Conclusion

The binary cascade iterative re�nement introduced two very good ideas to iterative re�ne-

ment: the choice of the working precisions should be based onproperties of the input data

and the working precisions can increase with each iteration.

One problem that arose during the examination of the binary cascade iterative re�nement

was the ambiguous de�nition of the Bauer condition number. Based on all available infor-

mation it was concluded that the Bauer condition number was not vital to the choice of the

working precisions and was therefore removed from the equation. However, the author men-

tioned an alternative approach for the choice of the workingprecisions which, contradictory

to the previous �ndings, relies completely on the Bauer condition number. The experiments

have shown that this variation of the algorithm results in an unreliable process in terms of

the accuracy of the solution.

In the experiments, the binary cascade iterative re�nement almost always returned the

best relative residual for all tested input data. The termination criteria of the standard and

mixed precision iterative re�nement has proven to be a good choice, because the accuracy

was only slightly worse compared to BCIR, which chooses the working precisions to achieve

the best accuracy. One goal of the extra precise iterative re�nement is to compensate for ill-

conditioned systems by increasing the working precision. However, in the experiments, EPIR

often returned larger relative residuals than other iterative re�nement methods, a result which

especially occurred for ill-conditioned systems. MPIR produced very good relative residuals

in most cases, but failed to return a good relative residual for the extremely ill-conditioned

Hilbert matrices due to the use of the lower working precision. For these problems, even

the direct LU solver produced a better relative residual than most other iterative re�nement

methods.

The experiments have shown that BCIR uses a very low number ofiterations but these

are performed at very high working precisions which are normally signi�cantly higher than

the target precision. As seen in the performance model, for most input data the process

will not achieve a speed-up, but instead will be considerably slower than the other tested

algorithms and the direct LU solver. BCIR often executes only one iteration of the re�nement
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process, which is executed at a working precision higher than the target precision. The matrix

factorization in BCIR is also executed at this higher precision and therefore the process is

naturally slower than a standard iterative re�nement operating at the target precision.

The extra precise iterative re�nement uses the highest number of iterations and most

of these iterations are performed at a higher working precision which is double the target

precision. The performance of EPIR is not very good for smalllinear systems, but the model

predicts that the in
uence of the re�nement process on the overall performance decreases

with the increase of the dimension of the linear system, because the computationally more

expensive task of computing the factorization will dominate the performance and the higher

working precisions used in the few iterations will no longerbe a deciding factor. The accuracy

may not always be as good as the standard iterative re�nement, but the process also returns

error bounds which provide information about the quality of the result. The mixed precision

iterative re�nement aims on achieving a high performance and the performance model con-

�rms this behaviour. Due to the use of the lower working precision for the computationally

expensive steps of the solver, MPIR can achieve a very high performance while still achieving

the target precision accuracy.

In terms of accuracy of the solution, the binary cascade iterative re�nement is unbeaten

by the other iterative re�nement methods compared in this thesis, which is largely due to the

adaptive choice of the working precisions. However, from a performance point of view, BCIR

cannot compete with the other iterative re�nement methods. The di�erences in the relative

residual of the results compared to the standard iterative re�nement are not signi�cant enough

to justify the high computational costs.
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Appendix A

Additional and Extended

Information

A.1 List of available Arbitrary Precision Libraries

The following table provides an overview of available arbitrary precision libraries for di�erent

programming languages and data types.

Package / Library Name Number Type Language

GNU MPFR Integers, rationals and


oats

C and C++ with bindings

ap
oat Decimal 
oats, integers, ra-

tionals, and complex

Java and C++

BeeCrypt Cryptography Li-

brary

Integers Assembly, C, C++, Java

ARPREC and MPFUN Integers, binary 
oats, com-

plex binary 
oats

C++ with C++ and For-

tran bindings

Base One Number Class Decimal 
oats C++

bbnum library Integers and 
oats Assembler and C++

phpseclib Decimal 
oats PHP

BigDigits Naturals C

BigFloat Binary Floats C++

BigNum Binary Integers, Floats

(with math functions)

C# / .NET

C++ Big Integer Library Integers C++

CLN, a Class Library for

Numbers

Integers, rationals, 
oats

and complex

C and C++

Computable Real Numbers Reals Common Lisp

IMSL C

78



A.1. LIST OF AVAILABLE ARBITRARY PRECISION LIBRARIES 79

decNumber Decimals C

FMLIB Floats Fortran

GNU Multi-Precision Li-

brary (and MPFR)

Integers, rationals and


oats

C and C++ with bindings

(GMPY,...)

MPCLI Integers C# / .NET

C# Bindings for MPIR

(MPIR is a fork of the GNU

Multi-Precision Library)]

Integers, rationals and


oats

C# / .NET

GNU Multi-Precision Li-

brary for .NET

Integers C# / .NET

Ei�el Arbitrary Precision

Mathematics Library

Integers Ei�el

HugeCalc Integers C++ and Assembler

IMath Integers and rationals C

IntX Integers C# / .NET

JScience LargeInteger Integers Java

libgcrypt Integers C

libmpdec (and cdecimal) Decimals C, C++ and Python

LibTomMath Integers C and C++

LiDIA Integers, 
oats, complex


oats and rationals

C and C++

MAPM Integers and decimal 
oats C (bindings for C++ and

Lua)

MIRACL Integers and rationals C and C++

MPI Integers C

MPArith Integers, 
oats, and ratio-

nals

Pascal / Delphi

mpmath Floats, complex 
oats Python

NTL Integers, 
oats C and C++

bigInteger (and bigRa-

tional)

Integers and rationals C and Seed7

TTMath library Integers and binary 
oats Assembler and C++

vecLib.framework Integers C

W3b.Sine Decimal 
oats C# / .NET

Ei�el Arbitrary Preci-

sion Mathematics Library

(GMP port)

Integers Ei�el

BigInt Integers JavaScript
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Table A.1: This table shows a list of available arbitrary precision libraries for di�erent pro-

gramming languages and number types [46]

A.2 Project Files

The following table provides an overview of the di�erent �le s created and used in the project

and provides a short description of their functions.

File Description

bcir.c Reads input parameters and input data, calls the BCIRfunc-

tion and saves the results to a �le.

apir.c Reads input parameters and input data, calls the APIRfunc-

tion and saves the results to a �le.

extir.c Reads input parameters and input data, calls the EPIR func-

tion and saves the results to a �le.

noir.c Reads input parameters and input data, calls the NoIRfunc-

tion and saves the results to a �le.

generateMatrix.c Generates a matrix and vector and saves the data in a �le.

bitdpconverter.c Program to convert between the di�erent r epresentations

(bits and decimal digits).

bcir mpfr.h Functions for running binary cascade iterative re�n ement.

apir mpfr.h Functions for running arbitrary precision iterativ e re�ne-

ment.

epir mpfr.h Functions for running extra precise iterative re�ne ment.

noir mpfr.h Functions for running a standard LU decomposition with

subsequent forward and back substitution.

mpfr lu.h LU decomposition with and without partial pivoting and

with and without using the blocked implementation. Ver-

sions for double and mpfr are included.

conditionNumber.h Calculates the condition number and canchange the condi-

tion number of a matrix.

arbitrary precision.h Provides functions for converting precisionsbetween the dif-

ferent representations.

ir io.h Provides functions for loading and saving matrices andvec-

tors from and to a �le.

iocompression.h Provides functions for compressing and decompressing data

�les and determining if a �le is compressed or not.
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bcir results.h

apir results.h

epir results.h

noir results.h

Provides functions for printing the results as a table to the

screen or to a �le and saving detailed results as an XML �le.

ir clapack.h

f2c.h
Declarations of the LAPACK functions used by the iterative

re�nement implementations.

papi extras.h De�nes which PAPI counters to activate and the function to

handle PAPI errors.

timings.h Includes the functions for measuring the execution time and

for processing the measured times.

vector matrix The folder contains functions for creating, copying, �lling

and deleting vector and matrix data structures for double,

int and mpfr.

A.3 Test Environment

All tests were conducted on a Sun Fire X4600 M2 Server with thefollowing speci�cations:

� 8 AMD Opteron 8218 Dual-Core processors with 2.6 GHz resulting in 16 cores, each

with 1 MB Level 2 cache

� HyperTransport link used to connect the CPUs to each other (8GB/s)

� 32GB of main memory

� Operating System: Ubuntu 10.04.2 LTS

The following versions of the libraries were used:

� GNU MPFR 3.0.1 with GNU GMP 5.0.1

� ATLAS BLAS 3.9.17

� LAPACK 3.2.1



Appendix B

Summaries and Curriculum Vitae

B.1 English Summary

Iterative re�nement is a widely used method to improve the round-o� errors of a solution
of a linear system and is also used in software packets like LAPACK. The process computes
the residual of the solution, then solves the system for a correction term using the residual
as the right hand side of the equation and �nally updates the solution with the correction
term. These steps are repeated until the requested accuracyis reached. This method was
�rst mentioned by Wilkinson in his book \Rounding Errors in A lgebraic Processes" using
�xed point arithmetic and later expanded by Moler to cover 
o ating point arithmetic. The
cost of the iterative improvement is very low compared to thecost of the factorization of the
matrix but results in a solution which can be accurate to machine precision.

The standard iterative re�nement (SIR) uses the same precision to compute both, the ini-
tial solution and the correction term for the improved result, but other iterative re�nement
methods exist, which use di�erent precisions for these computation steps. The Extra Precise
Iterative Re�nement (EPIR) uses a higher precision to compute the residual and the cor-
rection term of the solution to compensate for slow convergence and ill-conditioned systems.
The Mixed Precision Iterative Re�nement (MPIR) takes a di�e rent approach and computes
the matrix decomposition and the initial solution in single precision and applies iterative re-
�nement using double precision to improve the result and still have a solution which reaches
double precision accuracy. This exploits the bene�ts of using the lower single precision, for
example exploiting vector instructions and using less storage which also reduces the amount
of data moved through the memory hierarchy, while still achieving a double precision result.

The focus of the master thesis lays on the analysis and evaluation of the Binary Cas-
cade Iterative Re�nement (BCIR) by Kie lbasi�nski. The alg orithm adapts the precisions for
computing the re�nement steps depending on the input parameters, the size and condition
number of the matrix and the intended target precision. The process can use multiple work-
ing precisions throughout the re�nement process. This provides the ability to choose the
appropriate precision to improve the result and also compensate for ill-conditioned systems.
This algorithm has never been implemented prior to this master thesis and therefore no ex-
perimental results were available in the literature. The binary cascade iterative re�nement
introduced two very good ideas to iterative re�nement: the choice of the working precisions
should be based on properties of the input data and the working precisions can increase with
each iteration.
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The algorithm depends on arbitrary precision, which is not bound to IEEE standard pre-
cision. The hardware support for arbitrary precision is very limited and therefore a software
library, the GNU Multiple Precision Floating-Point Reliab le Library (GNU MPFR), is used
to implement the iterative re�nement methods. This library provides a portable implemen-
tation of arbitrary precision and allows the precisions to be set exactly in the number of bits
stored in the mantissa of the 
oating point number.

BCIR was compared to other iterative re�nement methods and the numerical accuracy
and the convergence have been analysed. The numerical behaviour of BCIR was analysed
for di�erent input systems, which also included extremely ill-conditioned Hilbert matrices.
Due to the software simulated arbitrary precision, performance measurements do not provide
accurate information about the gains and losses in performance due to the use of the di�erent
precisions. Therefore a performance model was introduced in order to be able to compare
the performance of the algorithms and to analyse the possible performance gains.

In the experiments, BCIR almost always returned the best relative residual for all tested
input data. The termination criteria of SIR and MPIR has prov en to be a good choice,
because the accuracy was only slightly worse compared to BCIR, which chooses the working
precisions to achieve the best accuracy. EPIR often returned larger relative residuals than
other iterative re�nement methods, a result which especially occurred for ill-conditioned
systems. MPIR produced very good relative residuals in mostcases, but failed to return a
good relative residual for the extremely ill-conditioned Hilbert matrices due to the use of the
lower working precision. For these problems, even the direct LU solver produced a better
relative residual than most other iterative re�nement meth ods.

The experiments have shown that BCIR uses a very low number ofiterations but these
are performed at very high working precisions which are normally signi�cantly higher than
the target precision. The performance model shows that for most input data the process
will not achieve a speed-up, but instead will be considerably slower than the other tested
algorithms and the direct LU solver. BCIR often executes only one iteration of the re�nement
process, which is executed at a working precision higher than the target precision. The matrix
factorization in BCIR is also executed at this higher precision and therefore the process is
naturally slower than a standard iterative re�nement operating at the target precision.

EPIR uses the highest number of iterations and most of these iterations are performed at
a higher working precision which is double the target precision. The performance of EPIR
is not very good for small linear systems, but the model predicts that the in
uence of the
re�nement process on the overall performance decreases with the increase of the dimension
of the linear system, because the computationally more expensive task of computing the
factorization will dominate the performance and the higher working precisions used in the
few iterations will no longer be a deciding factor. The accuracy may not always be as good
as the standard iterative re�nement, but the process also returns error bounds which provide
information about the quality of the result. MPIR aims on ach ieving a high performance
and the performance model con�rms this behaviour. Due to theuse of the lower working
precision for the computationally expensive steps of the solver, MPIR can achieve a very high
performance while still achieving the target precision accuracy.

In terms of accuracy of the solution, the binary cascade iterative re�nement is unbeaten
by the other iterative re�nement methods compared in this thesis, which is largely due to the
adaptive choice of the working precisions. However, from a performance point of view, BCIR
cannot compete with the other iterative re�nement methods. The di�erences in the relative
residual of the results compared to the standard iterative re�nement are not signi�cant enough
to justify the high computational costs.
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B.2 Deutsche Zusammenfassung

Iterative Re�nement ist eine weitverbreitete Methode um die Rundungsfehler einer L•osung
eines linearen Gleichungssystems zu verbessern und wird auch in Software Bibliotheken wie
LAPACK verwendet. Der Algorithmus berechnet zuerst das Residuum der L•osung des Glei-
chungssystems und l•ost das System f•ur einen Korrekturterm unter Verwendung des Resi-
duums als rechte Seite der Gleichung. Diese Schritte werdensolange wiederholt bis die
gew•unschte Genauigkeit erreicht wird. Diese Methode wurde erstmals von Wilkinson in sei-
nem Buch "`Rounding Errors in Algebraic Processes"' f•ur Fixpunktarithmetik erw•ahnt und
wurde sp•ater von Moler um Gleitkommaarithmetik erweitert . Die Kosten der iterativen
Verbesserung sind sehr gering im Vergleich zu den Kosten derMatrixfaktorisierung. Das
Verfahren f•uhrt aber zu einem Ergebnisse welches bis zur Maschinengenauigkeit korrekt sein
kann.

Standard Iterative Re�nement (SIR) verwendet dieselbe Genauigkeit um die erste L•osung
des Systems und den Korrekturterm zu berechnen, aber es gibtandere Iterative Re�nement
Methoden, welche unterschiedliche Genauigkeiten f•ur diejeweiligen Schritte des Verfahrens
verwenden. Extra Precise Iterative Re�nement (EPIR) verwendet eine h•ohere Genauigkeit
um das Residuum und den Korrekturterm zu berechnen, um f•ur eine langsame Konvergenz
oder schlecht konditionierte Systeme zu kompensieren. Mixed Precision Iterative Re�ne-
ment (MPIR) verwendet einen anderen Ansatz und berechnet die Matrixzerlegung und die
erste L•osung des Systems in einfacher Genauigkeit (singleprecision) und f•uhrt das Iterative
Re�nement in doppelter Genauigkeit (double precision) durch. Das Ergebnis erreicht da-
durch eine Genauigkeit von double precision. Dieses Verfahren nutzt die Vorteile, welche die
Verwendung der einfachen Genauigkeit mit sich bringt, zum Beispiel die Verwendung von
Vektorinstruktionen oder den niedrigeren Speicherverbrauch, welcher auch den Transport
der Daten durch die Speicherhierarchie beschleunigt, und erreicht trotzdem ein Ergebnis in
doppelter Genauigkeit.

Der Fokus dieser Masterarbeit liegt auf der Analyse und Evaluierung des Binary Cascade
Iterative Re�nements (BCIR) von Kie lbasi�nski. Der Algor ithmus w•ahlt die Arbeitsgenauig-
keiten f•ur die Schritte des Iterative Re�nements basierend auf den Eingabedaten, der Dimen-
sion und der Konditionszahl der Matrix und die gew•unschte Zielgenauigkeit. Des Weiteren
ist die Genauigkeit nicht auf eine Arbeitsgenauigkeit beschr•ankt, sondern kann mehrere Ge-
nauigkeiten w•ahrend des Prozesses verwenden. Dies erm•oglicht dem Verfahren, die ben•otigte
Genauigkeit auf das Problem abzustimmen und f•ur schlecht konditionierte Systeme zu kom-
pensieren. Dieser Algorithmus wurde vor dieser Masterarbeit noch nie implementiert und es
existierten daher auch keine Daten von Experimenten in der Literatur. BCIR stellt zwei gute
Ideen f•ur Iterative Re�nement Methoden vor. Die Wahl der Ar beitsgenauigkeit sollte auf den
Eigenschaften der Eingangsdaten basieren und sollte w•ahrend der Iterationen ansteigen.

BCIR beruht auf der Verwendung von beliebigen Genauigkeiten, welche nicht auf die
IEEE Standarddatentypen beschr•ankt sind, welche von den meisten Hardwareherstellern
unterst•utzt werden. Da es kaum Hardwareunterst•utzung f•ur beliebige Genauigkeiten gibt,
wurde eine Softwarebibliothek, die GNU Multiple Precision Floating-Point Reliable Library
(GNU MPFR), f•ur die Implementation der Verfahren verwende t. Die Bibliothek erm•oglicht
eine exakte Angabe •uber die Anzahl der zu verwendeten Bits zur Speicherung der Mantisse
der Gleitkommazahl.

Die Eigenschaften von BCIR wurden analysiert und es wurden Experimente durchgef•uhrt,
welche diesen Algorithmus mit anderen Iterative Re�nement Methoden vergleichen und be-
sondere Aufmerksamkeit auf die numerische Genauigkeit unddie Konvergenz der Verfahren
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legten. Das numerische Verhalten wurde f•ur unterschiedliche Eingangsdaten, darunter auch
extrem schlecht konditionierte Hilbert Matrizen, untersu cht. Die verschiedenen Genauigkei-
ten werden in Software simuliert und liefern daher keine aussagekr•aftigen Informationen •uber
einen Performancegewinn oder -verlust durch die Verwendung der verschiedenen Genauigkei-
ten. Daher wurde ein Performancemodel vorgestellt, um die Performance der verschiedenen
Methoden miteinander vergleichen zu k•onnen und Aufschluss •uber m•ogliche Performancege-
winne zu erhalten.

In den Experimenten lieferte BCIR fast immer das beste relative Residuum f•ur alle Ein-
gangsdaten zur•uck. Die Abbruchbedingung f•ur SIR und MPIR erwies sich als eine gute Wahl,
da die Genauigkeit nur geringf•ugig schlechter war im Vergleich zu BCIR. EPIR lieferte oft
gr•o�ere relative Residuen zur•uck als die anderen Iterative Re�nement Methoden, besonders
im Fall von schlecht konditionierten Problemen. MPIR erzeugt in den meisten F•allen sehr
gute relative Residuen, aber erreichte keine guten Ergebnisse f•ur die extrem schlecht kon-
ditionierten Hilbert Matrizen aufgrund der Verwendung der niedrigeren Arbeitsgenauigkeit.
F•ur diese Probleme erzielte sogar der direkte LU L•oser ohne Iterative Re�nement bessere
Ergebnisse als die meisten anderen Methoden.

Die Experimente haben gezeigt, dass BCIR nur eine sehr geringe Anzahl an Iterationen
ben•otigt, diese werden aber mit einer viel h•oheren Genauigkeit als der Zielgenauigkeit be-
rechnet. Das Performancemodell wies auf, dass f•ur die meisten Eingangsdaten kein Speed-up
erreicht werden kann. Stattdessen wird BCIR signi�kant langsamer als die anderen gete-
steten Verfahren sein. In vielen F•allen f•uhrt BCIR nur ein e einzige Iteration durch, welche
noch dazu eine deutlich h•ohere Genauigkeit als die Zielgenauigkeit verwendet. Da auch die
Matrixzerlegung in BCIR auf diesem hohen Genauigkeitsniveau ausgef•uhrt wird ist es leicht
nachvollziehbar, dass der Prozess langsamer ist als ein Standard Iterative Re�nement Ver-
fahren, welches die Zielgenauigkeit f•ur alle Berechnungen verwendet.

EPIR ben•otigt die h•ochste Anzahl an Iterationen und die meisten davon werden auch mit
der h•oheren Arbeitsgenauigkeit ausgef•uhrt, welche der doppelten Zielgenauigkeit entspricht.
F•ur kleinere lineare Systeme ist die Performance nicht sehr gut, aber das Modell zeigt auf,
dass der Ein
uss des Iterative Re�nements auf die Gesamtperformance mit der ansteigenden
Problemgr•o�e stark abnimmt. Die rechenintensive Zerlegung der Matrix dominiert die Per-
formance und die Iterationen, welche in der h•oheren Arbeitsgenauigkeit ausgef•uhrt werden,
werden vernachl•assigbar. Die relativen Residuen sind vielleicht nicht immer so gut wie bei
SIR, aber daf•ur liefert das Verfahren auch Informationen •uber die Qualit•at des Ergebnisses
zur•uck. Das Ziel von MPIR ist das Erreichen einer hohen Performance, welches auch vom
Modell best•atigt wird. Durch die Verwendung der niedrigeren Genauigkeit f•ur die aufwendi-
gen Operationen des Gleichungssysteml•osers kann MPIR eine sehr hohe Performance erzielen
und dabei trotzdem die Zielgenauigkeit erreichen.

Im Hinblick auf die Genauigkeit der L•osung ist Binary Cascade Iterative Re�nement
ungeschlagen im Vergleich mit den anderen in dieser Arbeit getesteten Verfahren. Dies liegt
haupts•achlich an den adaptiv gew•ahlten Arbeitsgenauigkeiten von BCIR. Aus der Perspektive
der Performance kann BCIR allerdings nicht mit den anderen Verfahren mithalten. Die
Unterschiede in den relativen Residuen der Ergebnisse fallen im Vergleich zum Standard
Iterative Re�nement zu gering aus, um den hohen rechnerischen Aufwand zu rechtfertigen.
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