Lniversitat
wien

MASTERARBEIT

Titel der Masterarbeit

JAnalysis and Evaluation of Binary Cascade Iterative
Re nement and Comparison to other Iterative
Re nement Algorithms for Solving Linear Systems"

Verfasser

Karl E. Prikopa, BSc

angestrebter akademischer Grad

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2011

Studienkennzahl It. Studienblatt: A 066 940
Studienrichtung It. Studienblatt: Scienti c Computing UG 2002
Betreuer: Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

Abstract

Iterative re nement is a widely used method to improve the round-o errors of a solution
of a linear system and is also used in software packets like LIRACK. The cost of the iterative
improvement is very low compared to the cost of the factorizéion of the matrix but results
in a solution which can be accurate to machine precision. May variations on the standard
iterative re nement method exist, which use di erent worki ng precisions to re ne the solution.
The extra precise iterative re nement can use extended preision to improve the result. The
mixed precision iterative re nement tries to exploit the bene ts of using lower precisions to
compute a solution and then uses iterative re nement to acheve the higher precision accuracy.

The focus of this thesis will be the binary cascade iterativere nement (BCIR), which
chooses the working precisions according to the input data. This algorithm depends on
arbitrary precision arithmetic to support working precisi ons outside the IEEE standard data
types provided by most hardware vendors. The thesis will anlyse the properties of BCIR and
conduct experiments which will compare the algorithm to other iterative re nement methods
and focus on the numerical accuracy and the convergence.

The arbitrary precision arithmetic will be implemented using the GNU MPFR software
library. The simulated arbitrary precision does not provide accurate information about the
gains and losses in performance due to the use of the di erenprecisions. Therefore a per-
formance model will be introduced in order to be able to compee the performance of the
algorithms and to analyse the possible performance gains, ich could be exploited in future
works by hardware implementations for example using recongurable hardware like FPGAs.

Contents

Contents

List of Figures

List of Listings

1 Introduction
1.1 Thesis Outline e e e e

2 Precisions of Floating Point Arithmetic

2.1

2.2

2.3

2.4

2.5

3.1
3.2
3.3
3.4

Standard Precision
2.1.1 History e
212 IEEE Standard
Arbitrary Precision e e e e
2.2.1 Constant Folding with Arbitrary Precision.
Arbitrary-precision Software and Libraries
2.3.1 Hardware support
2.3.2 Stand-alone Software
2.3.3 Programming languages and software libraries
GNU MPFR e
241 MPFR Variables
24.2 MPFRRoundingModes
243 MPFRFRunctions
244 MPFR Example Source Code
Performance Evaluation

Iterative Re nement

Standard Iterative Renement (SIR)
Extra Precise Iterative Renement (EPIR)
Mixed Precision lterative Renement (MPIR)
Model Estimating Number of Iterations

Vi

N

© © o oo ~A b

10
10
11
12
12
14
14
15
16

4 BCIR - Binary Cascade Iterative Re nement
4.1 The Algorithm
4.2 The Parameters
4.2.1 Analysis of the Levels of Recursiomp
4.2.2 Analysis of the Precisions ;

4.3 Rened

Version of BCIR

4.4 Accessing Matrix A and Vector b at Di erent Precisions
45 Conclusion e

5 Implementation

5.1 Requirements e e
5.2 Generate Matrix
53 FileFormat
5.4 Block LU decomposition
5.5 Implemented Programs. e
5.5.1 File Structure ofthe Results
5.5.2 Binary Cascade Iterative Renement (BCIR)
5.5.3 Standard IR and MPIR (APIR)
5.5.4 Extra Precise lterative Renement (EPIR)
55,5 DirectLU Solver (NoIR)

6 Experiments

6.1 GeneratedData.
6.2 Target and Working Precisions
6.3 Termination Criteria
6.4 Precisionsused by BCIR.
6.5 Comparison of Iterative Re nement Methods

6.5.1
6.5.2

Random Matrices.
Hilbert Matrices e

6.6 Experiments for Re ned Versionof BCIR

6.6.1
6.6.2
6.6.3
6.6.4

Precisionsused by Rened BCIR
Number of Iterations
Relative Residual o
Conclusionof Rened BCIR

7 Performance Model

7.1 Performance Models e
7.1.1 Performance Model for Direct LU Solver
7.1.2 Performance Modelfor SIR
7.1.3 Performance ModelforMPIR
7.1.4 Performance Model forEPIR
7.1.5 Performance ModelforBCIR

7.2 Results for the Modelled Speed-Up

26
26
27
30
31
33
35
36

37
37
38
39
39
40
41
42
44
46
47

48
49
50
50
51
53
53
58
59
60
61
62
63

8 Conclusion

Bibliography

A Additional and Extended Information

A.1 List of available Arbitrary Precision Libraries

A.2 Project Files . .
A.3 Test Environment

B.1 English Summary

B.2 Deutsche Zusammenfassung

B.3 Curriculum Vitae

Summaries and Curriculum Vitae

71

73

78
78
80
81

82
82
84
86

List of Figures

2.1 General representation of oating-point numbers 8] 7

2.2 Slow down e ect of a matrix multiplication using the buil t-in C variable type
double and arbitrary precision packages GNU MPFR and ARPREC compaied

to DGEMM from the ATLAS BLAS library 17
2.3 Slow down e ect of a matrix multiplication using the GNU M PFR library,
compared to DGEMM from the ATLAS BLAS library 18

3.1 Comparison of the performance of the direct solver and te mixed precision
iterative re nement using the Cell BE processor on the Sony RayStation 3 [27]. 24

4.1 |Initial working precisions ¢ coloured by the number of recursion levelp .. 31
4.2 |Initial working precisions ¢ for the two matrix sizesn = 10and n = 1000 31
4.3 Initial working precisions ¢ coloured by the condition number 32
4.4 Final working precisions , coloured by the number of recursion levelp . . . 33

4.5 Final working precisions , for the two matrix sizesn = 10 and n = 1000 33
4.6 |Initial working precisions ¢ coloured by the number of recursion level$ using

the de nition of cin Equation (4.22) 34
4.7 Initial working precisions ¢ for the two matrix sizesn = 10 and n = 1000

using the de nition of cin Equation (4.22) 34
4.8 Final working precisions p coloured by the number of recursion levelg using

the de nition of cin Equation (4.22) 35
4.9 Final working precisions | for the two matrix sizesn = 10 and n = 1000

using the de nition of cin Equation (4.22). 35
5.1 Block LU factorization [30] 40

6.1 Precisions j used throughout the iterative process forn = 10 plotted on the
left y-axis and the relative residual depicted by the orangedotted line on the
right y-axis e 51

6.2 Precisions j used throughout the iterative process forn = 2000 plotted on
the left y-axis and the relative residual depicted by the orange dotted line on
therighty-axis 52

6.3 Number of iterations for the di erent iterative re neme nt methods forn =100 53
6.4 Number of iterations for the di erent iterative re neme nt methods for n = 2000 54
6.5 Number of iterations for the di erent iterative re neme nt methods for =103 55
6.6 Relative residual for di erent iterative re nement met hods forn=2000 . .. 56

iv

6.7 Relative residual for di erent iterative re nement met hods for =103 57
6.8 Relative residual for di erent iterative re nement met hods for =107 57

6.9 Number of iterations for the di erent iterative re neme nt methods for Hilbert
MAtriCES o o o e e e e e e e e 58

6.10 Relative residual for di erent iterative re nement me thods for Hilbert matrices 59

6.11 Precisions j used throughout the iterative process by the re ned versionof
BCIR plotted on the left y-axis and the relative residual depicted by the orange

dotted lineontherighty-axis 60
6.12 Number of iterations for the di erent iterative re nem ent methods forn = 1000 61
6.13 Relative residual for di erent iterative re nement me thods for =1 62
7.1 Modelled speed-up for dierent systemsizes 69
7.2 Modelled speed-up for di erent condition numbers 70

Listings

2.1
2.2

2.3
2.4
5.1
5.2
5.3
5.4
5.5
5.6

The de nition of the data type mpfrt 13
All available MPFR functions to add two numbers using di erent input data

BYPES . . o e e e e 14
Dot product implemented instandard C 15
Dot product implemented using the GNU MPFR library 16
Example for an output le created by bciro 43
Example for an XML le created by bcir 44
Example for an output le created by apir 45
Example for an XML le created by apir 45
Example for an output le created by apir 47
Example for an XML le created by apir 47

Vi

Chapter 1

Introduction

The use of iterative re nement can improve the round-o errors of a solution of a linear
system. The process computes the residual of the solution,hen solves the system for a
correction term using the residual as the right hand side of he equation and nally updates
the solution with the correction term. These steps are repeted until the requested accuracy
is reached. This method was rst mentioned by Wilkinson in his book \Rounding Errors in
Algebraic Processes" 49 using xed point arithmetic and later expanded by Moler [35] to
cover oating-point arithmetic. The cost of the iterative i mprovement is very low compared
to the cost of the factorization but it results in a solution which can be accurate to machine
precision. Iterative re nement is not limited to linear sol vers, but can also be used for many
other solvers, including eigensolvers and least squareslgers (for example [L2, 18]). However,
this thesis will focus on iterative re nement using linear solvers.

The standard iterative re nement method (SIR) uses the sameprecision to compute
both, the initial solution and the correction term for the im proved result, but other iterative
re nement methods exist, which use di erent precisions for these computation steps. The
Extra Precise Iterative Re nement (EPIR) [13] uses a higher precision to compute the residual
and the correction term of the solution to compensate for slaw convergence and ill-conditioned
systems. The Mixed Precision Iterative Re nement (MPIR) [7] takes a di erent approach and
computes the matrix decomposition and the initial solution in single precision and applies
iterative re nement using double precision to improve the result and still have a solution
which reaches double precision accuracy. This exploits theene ts of using the lower single
precision, for example exploiting vector instructions andusing less storage which also reduces
the amount of data moved through the memory hierarchy, while still achieving a double
precision result.

The focus of my master thesis will lay on theBinary Cascade Iterative Re nement (BCIR)
by Kielbasnski [26]. The algorithm adapts the precisions for computing the re nement steps
depending on the input parameters, the size and condition nmber of the matrix and the
intended target precision. The process can use multiple wding precisions throughout the
re nement process. This provides the ability to choose the apropriate precision to improve

1.1. THESIS OUTLINE 2

the result and also compensate for ill-conditioned systems This algorithm has never been
implemented and therefore no experimental results are avéble up until now.

The algorithm depends on arbitrary precision, which is not bound to IEEE standard pre-
cision. The hardware support for arbitrary precision is vely limited and therefore a software
library, the GNU Multiple Precision Floating-Point Reliab le Library (GNU MPFR) [15], will
be used to implement the iterative re nement methods. This library provides a portable im-
plementation of arbitrary precision and allows the precisons to be set exactly in the number
of bits stored in the mantissa of a oating-point number.

The binary cascade iterative re nement method will be compaed to other iterative re-
nement methods and the numerical accuracy and the convergece will be analysed. The
numerical behaviour of the binary cascade iterative re nermrent method will be analysed for
di erent input systems, which will also include extremely ill-conditioned Hilbert matrices.
Due to the use of software simulated arbitrary precision, peformance measurements would
not provide accurate information about the gains and lossesn performance due to the use
of the di erent precisions. Therefore a performance model Wi be introduced in order to be
able to compare the performance of the algorithms and to angise the possible performance
gains. These result could be used in future works for hardwar implementations for example
using recon gurable hardware like FPGASs.

1.1 Thesis Outline

The binary cascade iterative re nement depends on arbitray precision. ThereforeChapter 2
will introduce arbitrary precision, describe the di erences to the IEEE Standard for Floating-
Point Arithmetic (IEEE 754) [10] and introduce the multiple precision oating-point relia ble
software library (GNU MPFR) [15 which will be used to implement arbitrary precision for
the iterative re nement algorithms.

Chapter 3 will describe the di erent iterative re nement methods whi ch will be compared
in this thesis. Beside the already widely used standard iteative re nement (SIR) [49, the
extra precise iterative re nement (EPIR) [13] will be introduced, which extends the standard
iterative re nement by adding error bounds at a low computational cost and also uses higher
precisions than the targeted precision to compute criticalsteps in the iterative process. The
mixed precision iterative re nement (MPIR) [7] is another algorithm which will be used in the
experiments. It focuses on the possibility of exploiting peformance bene ts based on the use
of lower working precisions for the computationally expensse tasks, the matrix factorization,
while still achieving the target precision accuracy, the sae accuracy as the standard iterative
re nement. In addition to the description of the available i terative re nement methods, a
model to estimate the number of iterations used by the standed and mixed precision iterative
re nement is introduced in this chapter, which will later be used as part of the performance
models.

1.1. THESIS OUTLINE 3

The binary cascade iterative re nement (BCIR) is explained and analysed inChapter 4.
The algorithm described by Andrzej Kielbasnski is intro duced, accentuating on the properties
which decide which precisions should be used to compute a n@dswith the described accuracy.

Chapter 5will describe the implementation of the algorithms and their usage. The chapter
will also include implementation details concerning the dierent algorithms.

The experiments are the focus ofChapter 6 and will include the numerical accuracy in
terms of accuracy by analysing the relative residual achieed by the di erent algorithms and
the convergence by observing the number of iterations needeto achieve the speci ed target
precision. Included in this chapter is the description of the method used to generate the data
and information on the chosen termination criteria for the iterative re nement methods.

A meaningful performance analysis is almost impossible wheusing arbitrary precision
arithmetic which is being emulated using software packagesspecially when operating at such
low precision levels which are below or just above the standd precision range. Therefore a
performance model is used which represents the theoreticgerformance gains and losses if
the algorithms would be implemented using eld programmabk gate arrays (FPGAS) [16],
which provide the ability to set the precision of the data types exactly to the number of bits
stored in the mantissa. This ability is also supported by the GNU MPFR software library,
which is one of the main reasons it has been chosen for the exjraents. The performance
model is described inChapter 7 and the results of the comparison of the performance of the
di erent iterative re nement algorithms will be analysed.

Chapter 2

Precisions of Floating Point
Arithmetic

This chapter will introduce arbitrary precision, which wil | allow computations outside the
boundaries set by the standardized oating-point precisin formats, which are the predomi-
nant precisions implemented in most modern day processors.

Firstly arbitrary precision and the di erences, advantages and disadvantages compared to
standard precision will be introduced followed by a number é available possibilities of using
arbitrary precisions. The arbitrary precision library MPF R [15, 43], which will be used in
the implementation of the binary cascade iterative re nement, will be looked at in greater
detail. At the end of this chapter, an analysis of the performance of the arbitrary precision
package will be shown.

2.1 Standard Precision

2.1.1 History

In modern day computing, one can normally resort to standardsed oating-point precisions
available on most commodity processors which follow thdEEE Standard for Floating-Point
Arithmetic (IEEE 754) [10]. This standard was rst nalized and released in 1985 and beame
the leading standard for oating-point arithmetic followe d by the majority of processor ven-
dors and is implemented in most modern commaodity processorsThe standard was revised
and extended in 2008 after a seven year review process andlstiomprises the majority of the
de nitions from the original document, including the de ni tion of the standard oating-point
formats.

Today, programmers can often rely on the IEEE standard beingimplemented on the
target processors and the processor implementations to flow the IEEE 754 speci cations.
This was not always the case. Before the standard was passeda adopted by the leading
processor manufacturers, interoperability among processs from di erent vendors was almost

4

2.1. STANDARD PRECISION 5

out of the question. Often this was not limited to the vendors themselves but also true for
processors produced by the same rm§].

The dierent oating-point formats focused on di erent asp ects of representing a real
number and included the range, i.e. the amount of numbers thacould be represented, the
speed of computations, rounding of results and of course thaccuracy of the represented
number. The manufacturers tried to sell their format as the \accurate" oating-point im-
plementation, but all representations had their drawbacksand whatever implementation one
chose, a compromise had to be made in at least one of the previsly mentioned aspects.

This growing issue needed to be addressed because all theaedmpatible oating-point
representations made the life of a developer very di cult and an implementation very depen-
dent on the underlying hardware, which reduced the portabilty of a program and increased
the development time and costs. The behaviour of an algoritm was di cult to predict and
the results were inconsistent due to the di erent formats.

In 1977 the rst IEEE 754 standards working group meeting todk place with the goal to
de ne a standard for the oating-point formats. The IEEE wor king group had the bene't
of many di erent oating-point representations being in us e and their properties could be
analysed in order to avoid their disadvantages. One of the dving forces behind the stan-
dardization process was Intel §]. In 1976, Intel was developing a oating-point co-processr,
the 18087, for their new i8086/8 microprocessor and they wated to use a new oating-point
arithmetic, which would be better than any other format used by their competitors and also
be applicable to a large market. With the help of William Kahan, who was engaged as a
consultant for the new oating-point format and had previou sly worked for Hewlett Packard
and improved their processing capabilities, a speci catim was formulated for the new mi-
croprocessor arithmetic. After the rst meeting of the IEEE 754 working group, William
Kahan asked for permission from Intel to take part in the standardization process using the
newly de ned oating-point format developed for the i8087 co-processor. He pointed out in
an Interview he gave in 1998 9] that it was very di cult for him to present the standard
because he of course was not allowed to reveal details abouté upcoming Intel processor
architecture or its transcendental functions (e.g. sine, osine, logarithms, etc.). He could de-
scribe the reasoning behind the proposals, but not how they are going to be implemented.
There were still some questions left open, some of which greg hindered the completion of
the standard for many years. One of the disputed aspects of # standard was under ow,
where a result is between the smallest normalized number andero. For many years the
working group could not agree on a standard form to handle undr ows.

When the standard was nally concluded, eight years had passed since the rst meeting.
Luckily many manufacturers saw the potential of a standard oating-point format and had
already started using some early drafts of the standard bef® it was o cially nalised.
The IEEE 754 standard was adopted very quickly by most micropocessor manufacturers.
However, many leading high performance computing vendors dd to continue to support
their proprietary oating-point format for many years afte r the introduction of the standard

2.1. STANDARD PRECISION 6

due to their large base of customers. Today the IEEE standardhas become the dominant
oating-point standard and provides the users with a portable oating-point format. [8]

Even though the standard provides a uniform representationof a oating-point number,
there are still some issues which have not been clearly de rkin the standard and therefore
can vary between di erent architectures leading to di erent results produced by the same
program or algorithm [42, p. D-65]. The main issue is the handling of intermediate reslts,
which are stored in a \destination" variable which does not have to use the same precision
as the variables of the expression. By design, the standardndy de nes that the results must
be rounded correctly to the destination's precision but it does not de ne the precision of
the destination variable. This choice is normally made by the system or the programming
language without the ability of the user to change it. The same program can therefore return
signi cantly di erent results depending on the implementa tion of the IEEE standard.

2.1.2 |EEE Standard

The main focus for the following descriptions will be the IEEE 754-1985 standard because
this is the one followed by the GNU MPFR arbitrary precision package which will be used
to implement the iterative re nement algorithms in this the sis.

The IEEE 754-1985 standard and its revised version of 2008 HEE 754-2008) Q] speci es
binary (and decimal) oating-point formats, conversions between di erent formats, arithmetic
operations, rounding modes and oating-point exceptions.

One goal of the IEEE 754-1985 standard was to nd a uniform wayof rounding oating-
point numbers correctly. The standard therefore de nes thefollowing rounding modes.

Round to nearest, ties to even : rounds the result to the nearest number. If the
result is not representable then the nearest number with theeven least signi cant digit
will be returned. For example, if the rounding mode would be gplied to decimal
numbers, 475 would be rounded to 48 and 46 would be rounded to 46. This rounding
mode is unbiased.

Round to nearest, ties away from zero : rounds the result to the nearest number.
If the result is not representable then it is rounded to the nearest number away from
zero. For example, 47:5 would be rounded to 48 and 475 would be rounded to
48. This rounding mode was included in the revised version ofhe standard (IEEE
754-2008).

Round toward 0: rounds the result to zero, in other words it truncates the rumber
Round toward +inf: rounds the number to positive in nity
Round toward inf: rounds the number to negative in nity

The last three rounding modes are also called directed roundg.
The standard de nes four binary oating-point representat ions:

2.1. STANDARD PRECISION 7

binaryl6 - Half precision (11 bit mantissa)
binary32 - Single precision (24 bit mantissa)
binary64 - Double precision (53 bit mantissa)
binary128 - Quadruple precision (113 bit mantissa)

In Figure 2.1 the general representation of a oating-point number is shavn. The parts of

sign exponent fraction
|| I |
0

Figure 2.1: General representation of oating-point numbers [48]

e:-f E

the oating-point representation are best described usingan example. Thedouble precision
oating-point format or binary64, the new name for double precision since the 2008 revision
of the standard, uses 8 bytes to store a number. The 64 bit of ailable storage is divided
into the three sections shown inFigure 2.1 as follows:

Sign bit (blue): the rst bit is used to store the sign of the number.
Exponent (green): in this case the exponent has a width of 11 its.

Signi cand precision (red): the signi cand, which is often also called the mantissa due
to historical reasons, uses 53 bits to represent the numbenibinary, although only 52
bits are stored explicitly.

In order to explain why only 52 bits are needed to be stored exgitly, but still can
represent 53 bits, it is necessary to take a closer look at théormat the numbers are stored
in: the normalized numbers. A number is callednormalized if it has the form

doidldzdg SO o & (2.1)

b stands for the base of the representation anad is an integer representing the exponent of
the baseb. The digits d; are integers between 0 and 1 anddp 6 0. Storing the numbers
in this representation leads to the most signi cant bit always being 1. It is unnecessary to
store this bit in the standard binary precision formats. Therefore it is often also called the
\hidden bit". This bene cial property of the normalized num bers can only be exploited in
oating-point representations using two as its base and notwith other bases.

The number of bits in the signi cand can be used to determine fow many digits of any
other base can be stored in this representation. The followig equation is the general form
which can be used to convert the number of digits between all &ses.

Ao, = dp, 100y, (1) (2.2)

2.2. ARBITRARY PRECISION 8

b stands for the base andd, describes the number of digits in basdy. To calculate the
number of digits from binary to decimal the equation from (2.2) would be:

dio = d2 10010(2) (2.3)

For the IEEE standard double precision oating-point format with 53 bits stored in the
mantissa this would lead to 1596::: 16 representable decimal digits.

dio = 53 l0g;o(2) = 15:95458977 (2.4)

A good approximation for the number of decimal digits repregnted by the binary mantissa
can be achieved by multiplying the number of bits in the mantissa by 03.

dip=dz 03 (2.5)

2.2 Arbitrary Precision

Arbitrary precision allows the user to choose which precigin should be used for a calculation
or preferably which precision should be used for each varidbe to store a value. Arbitrary
precision is not bound to machine dependent or IEEE standardtypes and the precision is
only limited by the memory the host system can provide. Therdore arbitrary precision is also
often called \in nite-precision arithmetic", which of cou rse is not true in practice because of
the nite amount of memory which is available or the limits im posed by index variables and
other natural boundaries. Even though limitations exist, the range of precision which can be
provided through the use of arbitrary precision is still very large.

Some arbitrary precision libraries allow the user to set theprecision exactly to the desired
number of bits to store in the mantissa. However, other arbirary precision systems only
provide the ability to increase the precision in steps of themachine word size, which is
normally 32 or 64 bits wide. This approach is sometimes call® multiple precision, where the
signi cand of a binary number is distributed over multiple m achine words [L7].

Arbitrary precision has a wide range of applications, some bwhich are in use in every
day life. Arbitrary precision plays a great role in cryptography. The long encryption keys can
be integer numbers with hundreds or thousands of digits whib could not be represented by
standard integer types provided by most programming langua@es. This is an ideal task for
arbitrary precision integer arithmetic and is present in modern web browsers using public-
key cryptography. Other common applications of arbitrary precision include calculating
mathematical constants like or the ability to prevent over ows and under ows by increasi ng
the precision of computations. Of course arbitrary precisbn is used to increase the accuracy
of computations as for example in the binary cascade iteratie re nement by using arbitrary
precision to increase the accuracy of a computed result.

2.3. ARBITRARY-PRECISION SOFTWARE AND LIBRARIES 9

The advantages of using arbitrary precision to increase theavailable range and gain higher
accuracy come with drawbacks. In most cases, arbitrary prdsion can only be simulated,
either in hardware or software, which leads to a signi cant performance decrease. Any kind
of simulation increases the runtime of algorithms comparedo using the fast standard data
types. Most commodity processors only support the standardlEEE 754 data types and
alternatives like eld programmable gate arrays (FPGASs), which can be programmed by
the user, insert an additional layer of complexity and canna provide the same speed as the
standard processors optimized to operate with the standardlata types. Another challenge of
arbitrary precision is the special algorithms required by Ibraries to perform the computations
which have to handle large signi cands. Sometimes arbitray precision is the only way to
compute a result accurately due to the limited precisions povided by the standard data types
or the increased complexity of encryption algorithms. Beirg able to simulate the behaviour of
arbitrary precision data types can help us nd more e cient w ays to compute more accurately
and, for example, in the case of iterative re nement also sha the theoretical bene ts of non
standard precisions in terms of runtime performance.

2.2.1 Constant Folding with Arbitrary Precision

Even though most of the time arbitrary precision comes with performance drawbacks, it
can also be used in the preprocessing phase to increase thecakacy of constants before
they are handled with standard precision data types. A compler normally replaces constant
expressions with their nal value in order to reduce the needof recomputing the same result
every time the program executes the line containing the cortant. This procedure is called
constant folding [17]. The GNU GCC compiler started to use the GNU MPFR library
with version 4.3 to handle constant folding and evaluate mahematical functions applied to
constants at compile time at arbitrary precision when optimizations are activated. By using
the arbitrary precision library, the result of the mathemat ical operations does not rely on the
underlying architecture and provides reproducibility and correctness.

An example of the e ects caused by insu cient precision and inaccurate rounding is
provided in [17] and it is also shown how this problem was resolved when the exmple program
was compiled with the latest GCC compiler using the MPFR library for constant folding.
The authors provided a simple program to calculate the valueof sin(x) . Without any
optimization (compiler ag -00) the MPFR library was not used and the result was not
correctly rounded, but when they increased the level of optinization by adding the compiler
ag -01, the result was correctly rounded. In addition, the standard C mathematical library
was no longer required to be linked with the program due to theuse of the MPFR library.

2.3 Arbitrary-precision Software and Libraries

As mentioned in the last section, there are di erent ways to echieve arbitrary precision. This
section will focus on some of the available methods in hardwa and software which provide

2.3. ARBITRARY-PRECISION SOFTWARE AND LIBRARIES 10

the ability to use the bene ts of arbitrary precision. The methods can be classi ed into the
following three categories:

Hardware support
Stand-alone software

Programming languages and software libraries

2.3.1 Hardware support

The hardware support for arbitrary precision is limited, one example being FPGAs. FPGA
stands for eld programmable gate array 47] and allows the user to recon gure the hard-
ware for di erent applications after the production phase, sometimes even at runtime. The
processors contain programmable logic blocks and intercorects and support massive paral-
lelism. A common eld for the use of FPGAs is prototype develg@ment of application-speci ¢
integrated circuits, but the chips are also used for signal pcessing, cryptography, speech
recognition, medical imaging and many other applications. The users can implement a cus-
tom instruction set which only consists of instructions which are relevant for the application.
Complex functions normally not supported by commodity processors can also be implemented
by directly programming the logic gates. The disadvantagef FPGAs include the low speeds
for general-purpose arithmetic and the high complexity of @signing and programming the
chip.

FPGAs are not bound to the IEEE data types and can operate at abitrary precisions.
Lower precisions result in a higher performance due to the ioreased parallelism and higher
throughput, as shown in [36].

2.3.2 Stand-alone Software

There are some applications which include the ability to usearbitrary precision arithmetic.
One example is the computer algebra system Maple8[l]. Since version 11 the software started
using the GNU MPFR library [43] to provide arbitrary precision arithmetic.

Another example is Matlab's Variable Precision Arithmetic (vpa). Matlab provides the
ability to perform calculations in arbitrary precision usi ng the vpa-command included in the
Symbolic Math Toolbox [33]. Matlab can evaluate calculations at variable precision naking
it possible to increase or decrease the accuracy of a calctian. The vpa-command takes two
arguments:

The rst argument is the expression to evaluate in the specied precision,

the second argument speci es the requested precision by daing the number of decimal
digits to use.

2.3. ARBITRARY-PRECISION SOFTWARE AND LIBRARIES 11

The return value of the vpa-command is a symbolic object, a special data type providedn the
Symbolic Math Toolbox software. Many Matlab functions also accept symbolic expressions as
input parameters and therefore can facilitate the developnent of an algorithm using arbitrary
precision. Matlab also o ers the ability to construct symbolic numbers, which store the
numeric values as a symbolic representation using higher prision. A symbolic object can
be created passing a numeric scalar or matrix variable as thest parameter to the function
sym The newer Matlab versions using Mupad as their symbolic enge show an enormous
decrease in performance compared to the performance of oldMatlab versions using Maple
as their symbolic engine.

2.3.3 Programming languages and software libraries

Many di erent software libraries exist for many di erent pr ogramming languages and each
one has advantages and disadvantages. The libraries di emi the way they store arbitrary
precision numbers, in the way they round intermediate resuis or which data types they pro-
vide arbitrary precision for (integer, oating-point, rat ionals or decimals). Table A.1 shows
a list of available packages which provide arbitrary precigon arithmetic in di erent program-
ming languages and with di erent data types. In the following paragraphs two arbitrary
precision packages will be introduced and some of their advdages and disadvantages will be
discussed.

The rst package is ARPREC which stands for \ARbitrary PRECi sion Computation
Pakackage"] and provides support for integers, binary oating-point numbers and complex
binary oating-point numbers in arbitrary precision. ARPR EC is written in C++ and pro-
vides bindings for C++ and Fortran-90. The package uses opeator overloading provided by
C++ to facilitate development and therefore requires only minor changes to existing source
codes. The precision for oating-point numbers can be set byspecifying the number of deci-
mal numbers to be represented. One drawback to this packages ithat the precision can only
be set globally for all arbitrary precision variables and it is therefore not possible to use two
di erent precision in the same calculation. The performanc is also not very high, as is shown
in Section 2.5

The Multiple Precision Floating-Point Reliable Library (G NU MPFR) is an arbitrary
precision library for oating-point numbers written in C. T he great advantage of the GNU
MPFR library over many other libraries is the ability to set t he precision of each variable
independently and to set the size of the mantissa to exactly e number of bits required. This
also allows computations to be performed with precisions Mer than 53 bits. In fact, the
lower limit of MPFR is 2 bits for the size of the mantissa. This property is one of the main
reasons why this library was chosen for the implementation bthe binary cascade iterative
re nement algorithm. The GNU MPFR library, its properties a nd usage will be explained in
more detail in Section 2.4

An external library is not always necessary. Some programnmg languages provide built-
in support for arbitrary precision data types and arithmeti ¢ or include them in the standard

2.4. GNU MPFR 12

library of their language. Beginning with .NET Framework 4, a Biglnteger structure [34] has
been introduced for Visual Basic, C#, C++ and F# which provid es the ability to represent
an integer with an arbitrary precision. Java also supports aBiginteger class B8] for arbitrarily
large integers and has a BigDecimal class3[] which is used to represent decimal numbers
using arbitrary precision. A further example of a programming languages which provides
built-in support of arbitrary precision is Python, althoug h with Python it is only possible
to set all integer variables to use arbitrary precision and rot to limit the use of increased
precision to a single variable without the help of an externa package.

2.4 GNU Multiple Precision Floating-Point Reliable Library
(MPFR)

As mentioned before, the GNU MPFR library is used for the implementation of the iterative
re nement algorithms and is therefore explained in more dedil in this section.

The M ultiple Precision Floating-Point Reliable Library (GNU MPFR) [43, 15] is an
arbitrary precision package for C/C++ and is based on the GNU Multiple-Precision Library
(GMP) [20]. MPFR supports arbitrary precision oating-point variab les and provides exact
rounding of all implemented operations and mathematical functions. MPFR code is portable
which means it will produce the same result regardless of thenderlying hardware.

The library allows the user to set the precision of the arbitrary precision variables exactly
by specifying the number of bits to use in the mantissa of the oating-point number. The
number of bits in the mantissa has to include the hidden bit, which is normally not stored
by the standard IEEE 754 standard oating-point formats. For example, to emulate IEEE
double precision in MPFR, the precision of the variable has © be set to 53 bits. Due to the
design of the library it is possible to work with any precision between 2 bits and the value
speci ed by the constant MPFEPREQVIAXwhich can be as high as the maximum value of a
long int . However, the precision should never be chosen near to the mi@num precision,
because MPFR has to increase the precision during computatins to provide accurate results
and correct rounding and a precision exceedindlPFEPREQMAXvould lead to an unde ned
behaviour or even crash the program. The ability of MPFR to sd the precision exactly to the
desired precision in bits is one major di erence of this libary compared to its competitors and
the main reason it was chosen for the implementation of the ierative re nement methods.

2.4.1 MPFR Variables
To use the MPFR functions and variables, it is necessary to inlude the MPFR header le.
#include <mpfr.h >

The main data type provided by the MPFR library is mpfr_t, which is \an arbitrary
precision signi cand (mantissa) with a limited precision exponent." [43]. The precision has

2.4. GNU MPFR 13

its own data type, mpfr_prec_t, which is a typedef and normally corresponds to anint
or along int . As mentioned before, the precision has a lower limit of 2 MIPFEPRECQVIN
and an upper limit de ned by the data type used for the precision data type. Therefore
MPFEPREQVIAXNiIl normally either be the maximum number of an int or along int .

mpfr_t is a pointer to an __mpfr_struct , which is shown in Listing 2.1. The struc-
tured type includes the three parts of a oating-point number as described in the IEEE 754
standard (seeFigure 2.1). The rst eld de nes the precision of the variable (mpfr_prec _t
_mpfr_prec). The second eld is used for the sign of the number fnpfr_sign .t _mpfr_sign)
followed by the exponent of the oating-point number (mpfr_exp_t _mpfr_exp). The last
eld is a pointer to the words, called limbs, containing the signi cand. A limb has the size
of a word which is normally 32 or 64 bits wide. The signi cand is split accross the limbs. If
the total length of the limbs is larger than the precision, the remaining bits are lled up with
zeros to ensure the user-de ned number of bits are being used represent the oating-point
number.

1/ Definition of the main structure /[
2 typedef struct f

3 mpfr_prec_.t _mpfr_prec;
4 mpfr_sign_.t _mpfr_sign;
5 mpfr_exp_t _mpfr_exp;
6 mp_limb _t _mpfr_d;

79 _-_mpfr_struct;
Listing 2.1: The de nition of the data type mpfr_t

Before mpfr_t variables can be used, they have to be initialized by callinghe function
mpfr _init2

void mpfr _init2 (mpfr _t x, mpfr _prec_t prec)

The precision is set to the value speci ed byprec and the value is set to \Not-a-Number".
The precision can be changed after initializing the variabé, but should not be done via the
mpfr_init2 function, but rather by calling

void mpfr _set prec (mpfr _t x, mpfr _prec_t prec)

To assign values to the MPFR variables, MPFR provides specibassignment functions for
a large range of di erent input types. The following function is an example for assigning the
value of adouble to an MPFR variable.

int mpfr _set .d (mpfr _t rop, double op, mpfr _rnd_t rnd)

This function will assign the value of the double variable in op to the mpfr_t variable passed
to rop and will round the value using one of the rounding modes spe@&d in the following
subsection provided as the last parameternd. It is also possible to set a value by passing a
string to the function mpfr_set _str , which is extremely useful for oating-point values, which
cannot be represented exactly, e.g. \0.1". A full list of all available assignment functions can
be found in the GNU MPFR documentation [43].

2.4. GNU MPFR 14

2.4.2 MPFR Rounding Modes

MPFR supports exact rounding in compliance with the IEEE 754-2008 standard (described
in Subsection 2.1.2. It implements four of the rounding modes speci ed by the standard

as shown in the following list with their corresponding MPFR keywords. Their MPFR data

type is mpfr_rnd _t .

MPFERNDNRound to nearest, ties to even
MPFERNDZRound toward O
MPFERNDURound toward + inf
MPFERNDDRound toward inf

MPFERNDARound away from O (not in the IEEE 754-2008 standard)

2.4.3 MPFR Functions

The GNU MPFR library is written in C and therefore cannot use operator overloading.
Consequently MPFR has to o er multiple functions for each operation, one for each sup-
ported data type as an input variable. Even the most basic arihmetic operations have do be
performed using function calls.

Each function in MPFR starts with the pre x mpfr_. The syntax of MPFR functions is
designed to resemble the assignment operator. The rst pammeter of each function is the
destination variable, followed by the input values. The lag argument is the rounding mode
which should be used for the current operations and has to bere of the values described in
the previous subsection. Most MPFR functions return a ternary integer value, which provides
information about the correctness of the computed result:

0: the value in the destination variable is exact.

Positive/Negative : the value in the destination variable is greater/lower than the
exact result.

For example, when usingMPFERND[s the rounding mode, the returned integer value will
always be negative unless the result is exact.

The following list should demonstrate the amount of functions available to perform a
basic mathematical operation, in this case for addition.

1 int mpfr_add (mpfr t rop, mpfr .t opl, mpfr_t op2, mpfr_rnd_t rnd)

2 int mpfr_add_ui (mpfr _t rop, mpfr _t opl, unsigned long int op2, mpfr_rnd_t rnd)
3 int mpfr_add_si (mpfr_t rop, mpfr _t opl, long int op2, mpfr_rnd_t rnd)

4 int mpfr_add.d (mpfr_t rop, mpfr_t opl, double op2, mpfr_rnd_t rnd)

5 int mpfr_add_.z (mpfr_t rop, mpfr_t opl, mpz_-t op2, mpfr_rnd_t rnd)

6 int mpfr_add_.q (mpfr_t rop, mpfr .t opl, mpqg.t op2, mpfr_rnd_t rnd)

Listing 2.2: All available MPFR functions to add two numbers using di erent input data
types

2.4. GNU MPFR 15

The rst function is used to add two MPFR variables, the other s are provided to operate
directly with other data types without having to explicitly convert them to MPFR variables.
The data types mpzt and mpqgt are from the GMP library and are included for backward
compatibility.

MPFR does not only provide functions for basic arithmetic functions (square root, power,
absolute value, ...) but also all mathematical functions inplemented in the C99 standard.
This includes functions for logarithm, exponential, sine, cosine, gamma function and many
others. The library also o ers comparison functions to compmare MPFR variables with each
other and with other data types and conversion functions to ®nvert MPFR variables to other
data types or strings. Arbitrary precision oating-point n umbers can also be printed with
mpfr_printf , which works similar to the standard C printf function, but is enhanced with
additional options for MPFR variables.

The large amount of functions for even the simplest arithmetc operations greatly increases
the complexity of the source code, as can be seen in the follavg subsection.

2.4.4 MPFR Example Source Code

The following implementation of a dot product will be used to demonstrate the usage of
MPFR and show the increase of complexity by substituting eat operation by a function call

and the prerequisites before being able to use a MPFR variakl The rst source code in
Listing 2.3 shows the dot product implemented in standard C using standed data types, in

this casedouble for the input vectors and the output result. The second listing (Listing 2.4)

shows the same operation implemented using the GNU MPFR libary. The number of code
lines necessary for such a simple computation has already dbled. The addtitional parameter

prec is also required to specify the precision which should be ugdo compute the dot product

in the MPFR implementation.

1 void cDot (int n, double a, double b, double sum) f
2 int i;

3 sum = 0.0;

4

5 for (i =0; i < n; i+)

6 sum += al[i] b[i];

79

Listing 2.3: Dot product implemented in standard C

The MPFR implementation additionally requires a temporary variable to hold the result
of the multiplication before adding the result to the dot product stored in sum As with
all MPFR variables it has to be initialized with the correct p recision to store the computed
result. In order to use the same precision as the dot productthe precision of the variablesum
can be determined using the functionmpfr_get _prec and used for the intermediate variable
mult. In this case this is only used for demonstration purposes, @aithe precision is already
known through the last parameter of the function call.

2.5. PERFORMANCE EVALUATION 16

1 void mpfrDot (int n, mpfr_t a, mpfr.t b, mpfr.t sum,
mpfr_prec_.t prec) f

2 int i;

3

4 mpfr_init2(sum, prec); // set precision in bits
5 mpfr_set.d(sum, 0.0, MPFRRNDN) ;

6

7 mpfr_t mult;

8 mpfr_init2 (mult, mpfr _get_prec(sum));

9 for (i =0; i <n; i) f

10 mpfr_mul(mult, a[i], b[i], MPFR RNDN) ;
11 mpfr_add(sum, sum, mult, MPFR _RNDN);
12 g

13 mpfr_clear (mult);

14 g

Listing 2.4: Dot product implemented using the GNU MPFR libr ary

The main operations in line 6 of Listing 2.3 require two lines in MPFR (lines 10 and 11
in Listing 2.4). Firstly the two values from the vectors have to be multipli ed usingmpfr_mul.
Then the value has to be added to the dot product sum. Both opeations use the rounding
mode MPFERNDNwhich rounds the results to the nearest value. Finally the emporary
variable mult has to be released by callingnpfr _clear .

2.5 Performance Evaluation

Another interesting aspect of arbitrary precision libraries is the analysis of their perfor-
mance. This was accomplished by using a matrix implementatin in standard C and the
same implementation being transformed using MPFR functioncalls. In order to compare
the performance of MPFR to other arbitrary precision packages, the matrix multiplication

was also implemented using the ARPREC package described iA.3.3 All implementations

were compared and the e cient matrix multiplication provid ed by the ATLAS BLAS [45]

DGEMM function. As a metric for the comparison, the slow down e ect was calculated using
the number of total instructions (T1) measured by PAPI [6].

Tlatias BLas Tl ap library (2.6)

Slow down=
T1 ATLAS BLAS

The details of the test system were as follows:

INTEL Core 2 Quad Q9550 (2,83GHz, 12MB Cache)
DDR2-RAM 2x2048 MB, PC2-800 MHz

Ubuntu 9.10 Server with PAPI 3.7.0 and ATLAS BLAS 3.9.17

2.5. PERFORMANCE EVALUATION 17

Slow down e ect compared to ATLAS BLAS

0 - C double
-250 + GNU MPFR ——
-500 ARPREC oo

Slow down - 720
factor -1000

-1250
-1500

Figure 2.2: Slow down e ect of a matrix multiplication using the built-in C variable type

double and arbitrary precision packages GNU MPFR and ARPREC compaied to DGEMM
from the ATLAS BLAS library

Arbitrary Precision: ARPREC 2.2.3, MPFR 2.4.1

In Figure 2.2 the performance described by the slow down e ect compared téhe ATLAS
BLAS implementation can be seen. The dierent precisions ae shown on the x-axis, the
matrix dimension is shown on the y-axis. The z-axis shows theslow down factor, where zero
refers to the DGEMM function. As can be seen, the performancelecrease introduced by the
usage of the arbitrary precision packages is very high, the MFR package being 293 times
slower than DGEMM and ARPREC 1291 times slower. Compared to he C double precision
implementation MPFR is 21 times slower. ARPREC is 44 times slower than MPFR. All slow

down factors relative to the di erent implementations for t he maximum matrix size 1024 are
shown in Table 1.

BLAS 1.000

Double 13.776| 1.000

MPFR 293.099| 21.275 1.000
ARPREC 1291.649| 93.758 4.407

Table 2.1: Average slow down e ect

In Figure 2.3the MPFR implementation is shown alone in order to see anotheinteresting
e ect. The performance decreases with the number of bits steed in the mantissa which is
displayed by a step wise decrease. This indicates the corretreatment of the size of the
mantissa with the exact number of bits speci ed by the user. L proves the statement that
MPFR only uses the specied precision and does not increase the precision to the next
higher word size without excluding the excess number of bitdy lling them up with zeros.
In Figure 2.2 ARPREC (the blue plane under all other planes) only has one stp within

2.5. PERFORMANCE EVALUATION 18

the speci ed precision range, indicating that the precisio is increased in steps of multiple
machine words and not truncated to the user-de ned precisio.

Matrix multiplication using MPFR
Slow down e ect compared to ATLAS BLAS

0
-50
-100

Slow down ~190

-200
factor 5¢5

-300

Figure 2.3: Slow down e ect of a matrix multiplication using the GNU MPFR library, com-
pared to DGEMM from the ATLAS BLAS library

Chapter 3

Ilterative Re nement

In this chapter di erent iterative re nement methods will b e introduced, which will later be
compared to the binary cascade iterative re nement.

3.1 Standard Iterative Re nement (SIR)

Iterative re nement is a method used to improve the accuracy of a computed solution by
trying to reduce round-o errors. This thesis will focus on linear solvers, which compute the
result of linear systems of the form

A x=b (3.1)

with A 2 R" "andx and b2 R", but iterative re nement can be used for many other solvers,
including eigensolvers and least squares solvers (for exahe [12, 18]).

Iterative re nement was rst analysed in detail by Wilkinso n in [49], but had already
been used in desk calculators and computers in the 194084]. The rst implementation
of iterative re nement was probably written by Wilkinson fo r the ACE computer built at
the National Physical Laboratory. Wilkinson rst describe d the process using a scaled xed
point arithmetic, but the analysis was later expanded by Moler [35] to cover oating-point
arithmetic.

The iterative re nement process is described as follows:
1. SolveA k= bwith k being an approximation of x
2. Fori=0;1;2;:::with xo= %

bAXi

(a) Compute residual r;
(b) Solve A Xxj = ;i

(c) Update Xxj+1 = Xi + X

19

3.1. STANDARD ITERATIVE REFINEMENT (SIR) 20

Firstly an approximate initial solution k is computed using Gaussian elimination with partial
pivoting. Subsequently the iterative re nement algorithm tries to increase the accuracy of the
solution by computing the residual r; of the result and using the residual as the right-hand
side to solve the linear system for the correction term x;. Finally the correction term is
added to the result to correct the solution of the linear sysem. This process is repeated until
the accuracy of the solution is su ciently improved.

The literature describes many di erent termination criter ia for iterative re nement, which
use di erent measures to check if the convergence is complet For example, the process can
be halted if the norm of the residualkrjk or the norm of the correction term k Xx;k is under
a described tolerance, which can be the machine epsilonor a tolerance which also includes
the condition number of the input matrix. Other approaches check if the correction term is
changing the solution signi cantly enough. In most cases aimit for the number of iterations
is also included to ensure the process does not continue inaéely or, when applied to
extremely ill-conditioned systems, tries to converge to a derent solution than the exact
solution.

If the initial solution k would already be the exact solutionx to the system, then the
residual would be zero. However, this is hardly ever the case

A X = ri (3.2)
Therefore the correction term x; can be found through
A Xi=AXi+1 Xi)=b (b r)=r; (3.3)

Further it can be shown that the iterative re nement process can produce a better approxi-
mation than k [11], since

AXiz1 = A(Xi+ Xi)=Axi+ A Xxij=(b r)+ri=0Db (3.4)

The convergence of the iterative process is described iB(] for Gaussian elimination with
partial pivoting based on the following factor, where n is the size of the system and the
precision as the number of bits in the mantissa used to storette oating-point number.

= n 2 Al (3.5)

If < 2 Pthen the number of correct binary digits of the solution will increase by at leastp
digits per iteration and the residual will decrease by a facbr of 2° or more. The method will
normally not converge if > 1=2. Naturally, this is only a theoretical value as the in nity
norm of the inverse of A would be to expensive to compute explicitly, but norm estimaors
could be used instead 23].

The cost of iterative re nement is very low compared to the matrix factorization, because
its complexity is O(n?) whereas the LU factorization has a complexity ofO(n?®). The process

3.2. EXTRA PRECISE ITERATIVE REFINEMENT (EPIR) 21

also uses the already computed factorization to solve the send system for the correction
term in the second step of the iterative process. In41], it has been shown that for Gaussian
elimination a single step of iterative re nement is enough © stabilize the solution su ciently.
One disadvantage of iterative re nement is that it requires more storage than a direct solver
without iterative re nement. For the rst step of the iterat ive process, computing the residual,
the original matrix A is required in addition to the factorized matrix, which requires double
the amount of storage.

The process can be used to recover the accuracy for badly sedl systems to full machine
precision 2], but other applications also exist. Iterative re nement has been used to sta-
bilise otherwise unstable solvers, one example being a sE& Gaussian elimination which was
performed without pivoting to increase the performance andthe result was then stabilised
through the use of iterative re nement. [23] The iterative re nement method is extensively
used and is also included in software packages like LAPACKY], where the re nement process
is used by the expert drivers for solving linear equations.

The standard iterative re nement method performs all computations using the same
oating-point precision, but other iterative re nement me thods use di erent precisions for
some steps of the process. To distinguish between the di erg precisions, the following ter-
minology will be used: target precision and working precision. The target precision is the
precision to achieve at the end of the computation. The working precision is the precision
used for certain steps during the computation of the solutimn and is usually higher or lower
than the target precision. All steps in the standard iterative re nement use the same preci-
sion as the target and working precision. In the next sectios, iterative re nement algorithms
which use working precisions di erent than the intended target precision will be introduced.

3.2 Extra Precise Iterative Re nement (EPIR)

The authors in [13] have expanded the standard iterative re nement algorithm to use a higher
working precision than the target precision to compute the residual for the iterative improve-
ment. This idea had already been proposed by the original adtor of iterative re nement,
J. H. Wilkinson, in [32] and also by Moler in the same paper where he analysed iteraté
re nement for oating-point arithmetic [35]. Extra Precise Iterative Re nement also includes
an error bound for the result and a componentwise error boundwhich are both computed
at a low additional cost.

There are some di erences compared to the standard iteratie re nement. Before com-
puting the matrix factorization or a solution of the system, the matrix is equilibrated to try
to avoid over- and under ows and to improve ill-conditioned systems which resulted from
ill-scaling.

As=R A C,s=R b (3.6)

R and C are diagonal matrices containing the scaling factorsA and b are the input data
of the system which is being solved andd\s and bs are the scaled system data which will be

3.3. MIXED PRECISION ITERATIVE REFINEMENT (MPIR) 22

used by the iterative re nement method. In order not to intro duce any additional round-o
errors through the equilibration of the matrix, the scaling factors are computed as powers of
2, the same as the standard IEEE oating-point radix.

At the beginning of the extra precise iterative re nement, all computations are computed
in the same precision, the target precision . The higher working precision is triggered
during the iterative re nement and the triggering depends on the convergence rate and the
decrease of the error estimate. The higher working precisiois chosen to be twice the target
precision and is used to store the solution vector to computehe critical stages of iterative
re nement, the residual and the update of the solution by the correction factor.

The process terminates when one of the following conditiongs ful lled:

1. The error estimate is not decreasing
2. The correction term does not increase the accuracy of signi cantly

3. A prede ned maximum number of iterations has been reached

If the error estimate ceases to decrease the process is notrimadiately terminated unless the
solution has already converged. Instead, the rsttime thistermination criteria is encountered,
the precision of the solution vector is increased to doublehe target precision and the process
continues until one of the above mentioned termination criteria is met or the solution has
converged.

In addition to the solution vector x, which approximates the exact solution of the linear
system, the extra precise iterative re nement returns the normwise and componentwise error
bounds, which can be approximated as follows:

Normwise error bound x() x =kxk
K

Componentwise error bound maxy X Xk ZjXK]

The authors have shown, that the error bounds produce good ésnates for the true error,
but using ill-conditioned systems the error bounds can undeestimate the true error. This
is partly compensated through the increase of the working pecision during the iterative
re nement.

3.3 Mixed Precision Iterative Re nement (MPIR)

In [7], the authors published an iterative re nement algorithm which takes advantage of
the availability of single and double precision. The Mixed Precision Iterative Re nement
takes a di erent approach compared to the extra precise iteative re nement and focusses
on increasing the performance of the linear system solver.t computes the computationally
expensive operations, the matrix decomposition and solvig the linear systems, in a lower
working precision and only performs the critical steps, corputing the residual and updating

3.3. MIXED PRECISION ITERATIVE REFINEMENT (MPIR) 23

the solution, in a higher target precision, while still achieving the target precision accuracy.
Using standard IEEE precisions, the higher target precisio is usually double precision and
single precision is used as the lower working precision. The algorithm for mixed precision
iterative re nement is as follows:

1. SolveA k = bwith variables in precision

2. Fori=0;1;2;::: with xo=®

b A Xx; with variables in precision

(a) Compute residual r;
(b) Solve A x; = r; with variables in precision

(c) Update xj+1 = Xj + X; with variables in precision

As stated in [7], mixed precision iterative re nement using single and dowle precision
achieves at least the same and often higher accuracy than a dble precision direct solver.
Some very ill-conditioned systems may never converge and loérs may need a high number
of iterations until they converge to the correct solution. The number of iterations required
for convergence directly relates to the condition number othe input matrix.

Mixed precision iterative re nement requires less storagecompared to standard iterative
re nement, because the matrix factorization is stored in the lower working precision . The
storage requirements would be 5 times more than the storage requirements of a direct
solver, but less compared to the standard iterative re nemet which uses twice the amount
of storage of a direct solver.

Using the lower working precision has many bene ts. Modern pocessors support vector
instruction sets, which for example in the case of the SSE2 #iruction set enables the proces-
sor to compute two double precision operations in one clockycle. When single precision is
being used, the processor can perform four operations in or@ycle due to SSE2 instructions,
which signi cantly increases the performance. Single preision data also uses less storage,
which results in a lower number of cache misses. Furthermoremoving single precision data
through the memory is faster due to the lower storage requirments.

The mixed precision iterative re nement computes the entire solution of the system with
increased performance as long as the single and double prsicin performance is signi cantly
di erent on the used hardware. On di erent hardware platfor ms, for example GPU or Cell
processors, there is a much greater di erence between the germance of single and double
precision computations than on commodity processors. On geeral purpose GPUs single
precision can be more than 8 times faster than double precisn [3] and the IBM Cell BE
processor can compute single precision roughly 14 times f&s than double precision R7].

In [27], mixed precision iterative re nement was implemented forthe Cell processor using
Cholesky factorization and compared to a direct solver in sigle precision. One of the results
of the performance measurements can be seen kigure 3.1 for the Cell BE processor used

3.3. MIXED PRECISION ITERATIVE REFINEMENT (MPIR) 24

1601

SP peak
140 1

SGEMM peak
120
1001

80+

Gflop/s

60 1

40

201 DP peak

0 500 1000 1500 2000
Size

Figure 3.1: Comparison of the performance of the direct sokr and the mixed precision
iterative re nement using the Cell BE processor on the Sony RayStation 3 [27)].

in the Sony PlayStation 3. The dimension of the linear systemis shown on the x-axis and
the achieved performance in G op/s is plotted on the y-axis.

On the Cell BE processor, the single precision peak performme is 153.6 G op/s and the
double precision peak performance is only 10.8 G op/s. The imgle precision direct solver,
labelled SPOSV in the graph, achieves 122 G op/s for the maximum system sizetested in
these experiments fi = 2048), but the result is at best only accurate to single predsion.
By using the mixed precision solver, labelledDSPOSYV in the graph, the performance for
n = 2048 is 104 G op/s, but the solution of the system is now in double precision accuracy.
The use of the mixed precision implementation produces a pé&rmance overhead of about
15% compared to the direct solver, but it achieves a solutiorwith double precision accuracy
10 times faster than the peak performance of double precisio computations on the Cell
processor.

This implementation is a prime example of the great performace bene ts of mixed pre-
cision iterative re nement using lower precisions to compue the computationally expensive
tasks while still achieving the same or better accuracy thara direct solver in the higher target
precision, especially on hardware platforms where the pesfmance di erence between single
and double precision is very high.

3.4. MODEL ESTIMATING NUMBER OF ITERATIONS 25

3.4 Model Estimating Number of Iterations

The condition number of a matrix provides a means to estimatethe accuracy of the solution
to a linear system. This property can also be used to estimatehe number of iterations
required by standard iterative re nement to achieve a giventarget precision , as described
in [16]. The following is based on the explanations in40], where the author uses the number
of iterations required by iterative re nement to roughly estimate the condition number of the
linear systemAx = h.

The logarithm to base b of the condition number of the matrix A returns an estimate of
the number of baseb digits that are lost while solving the linear system, as desgbed in [29].
Let s denote the number of correct basds digits obtained by solving the linear system, then
the accuracy of the solution can be increased byg digits in each iteration. In order to reach
the target precision to baseb, the required number of iterations i is therefore de ned as

: b

I — 3.8

s (3.8)

gaining s digits of accuracy in each iteration. This leads to the follaving estimate for the
condition number based on the number of iterationsi required by the iterative re nement:

bv S=pbo b7 (3.9)

By using this estimate, it is therefore possible to estimatethe number of iterations of the
iterative re nement based on the knowledge of the conditionnumber. This results in the
following model:

- b
= o Tog() (3.10)

This model can be expanded to cover arbitrary precision iteative re nement by setting the
precision in the numerator to the target precision and the precision in the denominator to
the working precision.

o b
= 7b logs() (3.11)

Chapter 4

BCIR - Binary Cascade lterative
Re nement

4.1 The Algorithm

Binary Cascadelterative Re nement (BCIR) was de ned by Andrzej Kielbasnski in [26].
The main di erence between BCIR and other iterative re nement algorithms is the choice
of the working precision. In standard iterative re nement t he target precision equals the
working precision. The extra precise iterative re nement increases the working precision to
twice the target precision depending on the progress made bthe iterative re nement. The
mixed precision iterative re nement chooses a working presion under the target precision.

BCIR takes a di erent approach in choosing the working precision and does not limit
it to a single working precision for the entire process. The korithm improves the result
recursively and chooses a di erent working precision for eeh recursion level, making the
decision which precision to use based on properties of the put data, more precisely on the
dimension and condition number of the input matrix A and taking into account the target
precision. This enables the algorithm to dynamically chooe the best working precision to
achieve an accurate result for the given system and to compeiate for ill-conditioned input
data.

The algorithm is de ned recursively as seen in Equations(4.1)-(4.3).

P(A; o)

4.1
X := Sp(b) 4.1)
8
% z:=§ 1(f);
d:= S;(f) is equivalent to u=Az o fli(y) (4.2)
g vi=7S 1(u);
d=2z vin fl()
Sp := Solves triangular system infl (o) (4.3)

26

4.2. THE PARAMETERS 27

First the matrix decomposition P is performed onA in the lowest working precision g
chosen by the algorithm. The rst call to the solver S, is executed using the right hand side
vector b. p is the number of recursion levels determined by the algorithm

Each call to the solverS; performs the computations which correspond to the steps usk
in any iterative re nement method at the working precision of the current recursion level.
The rst instruction in Equation (4.2) calls the solver of the next level to solve a system
with f as the right hand side. The second instruction computes the esult of the previous
calculation z and uses the precision j of the current level. The correction term v is then
computed by again calling the solver of the next lower level,this time using the residual
stored in u as the right hand side. These two calls to the solver at the nexlower level are the
reason why the algorithm is namedbinary cascadeiterative re nement. Finally the solution
z is updated using the correction termv. d is returned to the previous call of the solver.

Calling the solver S; to solve the system will cause the algorithm to cascade to théowest
level of the process with the lowest working precision g. This means, that any system is
always solved at the lowest precision o and all other levels only compute the residualu
and update the solution to d. For the LU decomposition, the solver applies the forward aral
back substitutions at the lowest working precision using the decomposition factors computed
before entering the iterative process.

As already mentioned, BCIR uses di erent working precisiors throughout the iterative
re nement process. These are chosen adaptively based on theput arguments and are
computed before entering the iterative process using the taet precision, the dimensionn of
the system and the condition number of the input matrix A. These properties have to be
transformed into the di erent working precisions which should lead to an accurate solution.
This is achieved by computing the four parameters describec&nd analysed in the following
sections.

4.2 The Parameters

For the adaptive precisions used during the binary cascadig process, some parameters have
to be computed before entering the iterative re nement. These parameters will determine
the precisions for each level of recursion of the algorithm rd take into account the desired
target precision and the properties of the input data in order to choose the working precisions
to try to compensate for ill conditioned input data.

The rst parameter, c, is computed using the dimensiom of then n matrix A and two
di erent condition numbers of the matrix.

c=log, (max[Ky ;n (n+6)B=2]) (4.4)

Both condition numbers are multiplied by di erent factors w hich introduce the matrix di-
mensionn into the equation. The factor K, should be of the same order of magnitude as the

4.2. THE PARAMETERS 28

rounding-error accumulation in Gaussian elimination, which is normally of O(n?). Therefore,
K, was chosen to ben?.

The rst condition number is the standard condition number = cond(A) = kAkkA 1k.
The author does not specify which norm should be used to compa |, therefore the euclidean
norm was chosen. In 26], the author refers to the second condition numberB as the Bauer
condition number and de nes this condition number as

B= sup A !H (4.5)
Hij Aj
There is neither an explanation whatH stands for nor a de nition of the norms used in this
equation. The author further cites a paper E] from F. L. Bauer, where the Bauer condition
number should originally have been de ned, but analysing tre speci ed source did not provide
any information on the de nition given in Equation (4.5) or a de nition for H. In fact, in [4]
the condition number is de ned as

cond(A) = lub(A)lub(A 1) (4.6)

which corresponds to the standard condition number . The least upper boundlub is used
throughout [4] as the maximum norm of the matrices, but can also correspontb other matrix
norms, for example to the euclidean norm. The last de nition would imply equality between
and B assuming the same matrix norm is used. The only di erence bateen the condition
numbers would be their preceding factor, which under the assmption of K, = n? would
almost always lead to the rst term using the standard condition number being chosen as
the maximum. Only for matrices with a sizen 6, the second term would take precedence.
In Kielbasnski's report [25], which predates the original BCIR paper 6] and also in-
cluded an earlier form of the binary cascade iterative re nenent, the same de nition as in
Equation (4.5) is given alongside two additional Bauerian condition numbes, Cg and Cg,
again citing the same source by F. L. Bauer as before, which @jn did not include these
de nitions. ot
Ce = supy K2 K with jHj | Aj
0 ka ‘mk . T (4.7)
Cg =SUPy — i With jmj | by
Additionally, the relation between the dierent condition numbers is shown in P5,
p. 6, (2.2.4)], which result in all Bauer condition numbers dways being smaller than or
equal to the standard condition number

B Cg Cp 1 (4.8)

This relation again favours the rst term of the maximum func tion in Equation (4.4), leading
to the second term only being considered whem 6 (with K, = n?).

The Bauer condition number would only have an impact on the canputation, if it were
larger than the standard condition number. This can only ocar when the de nition in

4.2. THE PARAMETERS 29

Equation (4.6) would be used and the norm used would be higher than the one cken for .

This would lead to a decrease of the number of iterations andd an increase of the working
precisions at the di erent levels of recursion. However, tle higher working precisions would
also induce a lower performance and would reduce the possiity of any performance bene ts

of BCIR compared to standard iterative re nement methods. Conversely, the higher working
precisions could increase the accuracy of the result, whictvould be bene cial when solving
extremely ill-conditioned linear systems.

All these ndings regarding the Bauer condition number show, that the factor hardly has
any in uence on the choice of the precisions for the iteratims of the BCIR algorithm. Due
to the ambiguous de nitions of the Bauer condition number and the relation provided in
Equation (4.8) the de nition of c can therefore be reduced tcEquation (4.9).

c=log, (K,), with K, = n? (4.9)

Equation (4.10) is the second parameter required to compute the di erent woking pre-
cisions of the binary cascade iterative re nement.

=2 log, (4.10)
is the machine epsilon, which is de ned in R3, p. 37] by the following equation:
=pt (4.12)

b is the base of the oating-point representation andt de nes the precision. This de nition
of the machine epsilon describes the spacing of oating-poi numbers by computing the
distance between 10 and the next larger representable oating-point number. In standard
double precision, the number of bits used to store the mantisa would be 53 and have a
machine epsilon of 2:220446:: 10 16, Based on the de nition in (4.11) and using
b= 2 as the base of the oating-point representation, Equation (4.10) can be rewritten to:

=2 (1 t)=1+t (4.12)

The next parameter, p, de nes the number of recursion levels used in the binary casad-
ing process. First it chooses the minimum between the relatin of the previously de ned
parameters and c and n=2. Then the maximum of 0 and the result of the logarithm to base
2 is assigned top.

p = max(0 ; blog,(min(=c; n=2))c) (4.13)

In order to be able to compare the algorithm to the other iterative re nement methods, an
equivalent number of iterations can easily be calculated by

Iterations = 2P (4.14)

4.2. THE PARAMETERS 30

Finally, the precision at each recursion level can be compwd using the following equation
and the previously de ned parameters:

j=c+ 2 Pj=01)p (4.15)

j describes the precision at thej t recursion level andj runs from 0 to the maximum
recursion levelp.

4.2.1 Analysis of the Levels of Recursion p

The goal of this section is to analyse the behaviour of paramer p (Equation (4.13)) and
determine how much in uence each factor of the minimum funcion has on the resulting
working precisions for the BCIR process. For the analysis, lie target precision will be
chosen to correspond to the IEEE standard double precision ith a mantissa width of 53 bit.

=2+log, =1+ =54 (4.16)

=Cc = n=2
54=log, (>)= n=2

4.17
n log,(n>)=108 (4.17)
n 141326: for =1
The analysis in (4.17) shows, that for a perfectly conditioned input matrix with =1

the size n has to be lower than 15 in order for the termn=2 to be chosen over =c. For
higher condition numbers, the factor n=2 looses its in uence even more and=c becomes the
dominant factor. For all n 15, =c is always the dominant factor.

Even though the Bauer condition number has been deemed unnessary in the de nition
of ¢, the same analysis can be performed for the second term of thariginal de nition of
parameter c.

=C = n=2
54=log, (n (n+6)=2 B)= n=2
n log,(n (n+6)=2 B)=108
n 14:8475: for B =1

(4.18)

The results are very close to the previous results iri4.17) and the upper limit for the in uence
of n=2 is againn < 15. =c becomes the dominant factor for alln 15.

The number of recursive levels therefore depends primarilyn the value of c. As c ap-
proaches in nity, the number of levels reaches 0.

CI!llm p= p =0 (4.19)

This results in the system only being solved and improved at asingle level using only one
working precision. The maximum number of recursion levelsdr n 15 and target precision

4.2. THE PARAMETERS 31

=53 is 2.
54

%% log,157 1)
For smaller linear systems with dimensionn < 15, the equation becomes independent of the
condition number and has a maximum of 6 recursive levels forhte binary cascade iterative
re nement.

p= =2 with n=15; =1 (4.20)

54

log, 100,(1=2) =6 withn=1 (4.21)

p:

4.2.2 Analysis of the Precisions

The next factor which is of interest for analysis is the working precisions at the di erent
recursion levels. As we have seen ihapter 3, there are di erent approaches as to how
to choose the working precision for the iterative re nement The extra precise iterative
re nement increases the precision for the computation of tle critical sections. The mixed
precision iterative re nement runs the critical sections using the target precision and lets the
computationally expensive tasks be computed in the lower wiking precision. BCIR chooses
the working precisions based on the input arguments and trise to nd the best precision to
accurately solve the linear system. The following gures sbw the initial and nal working
precisions used by BCIR for di erent condition numbers between 1 and 18° and di erent
system sizesn from n =10 to n = 1000.

140

120 |

100 |

80 [

Precision o

60 |
(TP) 53
a0 |

20 |

0 10 20 30 40 50 60
c=logy(n®)

Figure 4.1: Initial working precisions o Figure 4.2: Initial working precisions g
coloured by the number of recursion levels for the two matrix sizes n = 10 and

p n = 1000

Figure 4.1 shows the initial working precisions for the lowest level otthe algorithm. The
x-axis shows the parameterc, which depends on the dimensiom and the condition number
. The size of the input system is plotted on the y-axis and the mitial working precision ¢ is
shown on the z-axis. The surface is coloured by the number okcursive levelgp. As shown in
the last section, the maximum number of recursive levels ip = 2. The lowest initial working
precision g for well conditioned input data is 21 for n = 10 and 47 for n = 1000. ¢ =47
is already very close to the target precision =53 and for slightly larger and slightly worse

4.2. THE PARAMETERS 32

conditioned systems, the working precision rapidly increaes and is always larger than the
target precision. The highest initial and, due to p = 0, also the nal working precision in
the range computed for these plots is ¢ = 128 for ill-conditioned matrices with = 106
and n = 1000. The number of recursive levels rapidly decreases tad limit (Equation (4.19))
and results in the binary cascade iterative re nement only performing one iteration at a high
working precision for most input data.

140 .
120. -
100
80
60 .

53 (TP)
40...

Precision By

20

1000

Sizen 0 o 5
c= Iogz(n -K)

Figure 4.3: Initial working precisions ¢ coloured by the condition number

In Figure 4.3 the same values as inFigure 4.1 are shown but in this case, the working
precisions are coloured by the exponent of the condition nutmer . This shows the in uence
of on the number of recursive levels and the initial working preision. Systems with a
condition number > 10* already only perform the computations on the lowest level ad the
working precision rises with the condition number. For larger systems, the boundary of the
in uence of the condition number decreases and the size of thinput data gains in uence on
determining the number of recursive levels and the working pecisions.

Figure 4.4 shows the nal working precision , which in casep = 0 is the same as the
initial working precision . The precision , never falls lower than the target precision.
The lowest nal working precision for well conditioned input matrices is 61, which is higher
than the target precision = 53, and increases with the dimension of the system. For the
maximum value of n displayed here,n = 1000, the working precision , = 74. For large and
ill conditioned matrices the maximum precision is the same a before (, = 128) because
p=0.

4.3. REFINED VERSION OF BCIR 33

2
140
120}

P

Precision

60 | 1
(TP) B3 fmmmmmmmmmeeee el 4

sizon 0o °) 10 20 30 40 50 60
c=log,(? - 1) »
c=log(n®)

Figure 4.4: Final working precisions , Figure 4.5: Final working precisions ,
coloured by the number of recursion levels for the two matrix sizes n = 10 and

p n = 1000
4.3 Re ned Version of BCIR

In Section 4.2 it has been shown that the Bauer condition number has hardlyany in uence

on the binary cascade iterative re nement process. Therefie, it was even more intriguing to
read a statement made by A. Kielbasnski in the section \Finale Remarks" of his paper, which
describes a slightly more re ned version of BCIR"[26] by replacing the previous de nition

of parameter ¢ (Equation (4.4)) with

c=log,B +5 (4.22)

The author further states that this rede nition demonstrat es the dependency ot on the
Bauer condition number B, which now becomes the dominant term.

This would contradict all ndings on the Bauer condition num ber described inSection 4.2
Due to the ambiguous and incomplete de nitions of the Bauer @ndition number mentioned
earlier, it is not possible to verify this statement by computing and comparing the di erent
condition numbers. The de nitions in [25 and [26] regarding the Bauer condition number
have shown, that it is either equal to or smaller than the stardard condition number
Furthermore, the analysis of parameterp and the precisions ; have conrmed these initial
ndings (see Subsection 4.2.1and Subsection 4.2.2respectively).

With the new de nition in Equation (4.22), the matrix dimension n is no longer taken
into account when calculating the necessary working preciens to achieve an accurate result.
n would only occur as the second facton=2 in Equation (4.13). Using the same assumptions
as in Subsection 4.2.1 B = 1 and the target precision = 53, the factor n=2 would a ect
the working precisions for alln 41, but for larger and not perfectly conditioned matrices

4.3. REFINED VERSION OF BCIR 34

=c would again become the dominant factor andn would no longer be considered.

54=log, (1 +5) = n=2

(4.23)
n = 41:78010318

Assuming that B = (see relationship in Equation (4.8)), Equation (4.22) would cause
the number of recursion levels to rise and the working precisns to decrease. One advantage
of this de nition is therefore that the performance could be increased due to the lower working
precision. In Figure 4.6, the di erent precisions are shown for the initial precision . The
parameter ¢ is shown on the x-axis for between 1 and 18°. The y-axis plots the matrix
sizen for matrices from n = 10 to n = 1000. The z-axis shows the initial working precisions

0. The surface plot is coloured by the level of iterations needd for the di erent condition
numbers and starting at the precision .

Compared to Figure 4.1from the previous analysis of parameter, the rst di erence that
can be seen is the maximum value op, which has increased to 4 recursion levels, compared
to 2 in the previous analysis. The second important observdon is that the values of ¢ have
decreased signi cantly for well conditioned matrices and ae still lower for ill-conditioned
matrices. The lowest initial working precision is 6 for well conditioned matrices for any size
n. In Figure 4.1, the lowest ¢ for well conditioned input data was 21 forn = 10 and 47 for
n = 1000.

140

120 |

100 |

80 |

Precision

60 |
) 53

3
T

S

o

20

0 10 20 30 40 50 60
c= log:(B +5)

Figure 4.6: |Initial working precisions Figure 4.7: Initial working precisions o

o coloured by the number of recur- for the two matrix sizes n = 10 and
sion levelsp using the de nition of c in n = 1000 using the de nition of c in
Equation (4.22) Equation (4.22)

The second gure, Figure 4.8, shows the highest working precisions used for the di er-
ent condition numbers. It is important to notice that the low est used precision for well
conditioned input matrices is now 57, which is just slighty higher than the target precision

= 53. Due to the lack of the matrix dimension in the new de niti on of ¢, the precision
is independent fromn. In Figure 4.4, the lowest precision was 61, but it increased withn
(n = 1000 ! p = 74). The maximum precision shown in Figure 4.4 was |, = 128 for

4.4. ACCESSING MATRIX A AND VECTOR B AT DIFFERENT PRECISIONS 35

large and ill conditioned matrices. In this case, the maximumn working precision is 108.

140

120 ¢
100 |
80 [

60
(TP) B3 T mm e m o ee el 4
40F

Precision ,
. \ .

20 |

0 10 20 30 40 50 60
c= log:(B +5)

Figure 4.8: Final working precisions Figure 4.9: Final working precisions ,

p coloured by the number of recur- for the two matrix sizes n = 10 and
sion levelsp using the de nition of c in n = 1000 using the de nition of c in
Equation (4.22) Equation (4.22)

The alleged re ned version of BCIR will be analysed in the exmriments (Section 6.9
using B = as the Bauer condition nhumber and comparing the results to tle standard
binary cascade iterative re nement.

4.4 Accessing Matrix A and Vector b at Dierent Precisions

The binary cascade iterative re nement uses di erent working precisions throughout the
re nement process. Each level of recursion requires the ingt values A and b to be in the
corresponding working precision. Even though the amount ofrecursive levels is limited, as
shown in previous sections, this issue still needs to be addssed.

In the mixed precision iterative re nement the input matrix A only has to be available
in the working and target precision and in order to improve peaformance is therefore ad-
ditionally allocated in the working precision, assuming that the data was provided in the
target precision. In the BCIR algorithm this would increase the amount of storage byn? for
each level of recursion for the conversion to the working preision. Analysing the algorithm
reveals that at each level, except for the lowest level usinghe precision o, each element
of the matrix A is required and read only once, to be speci c when computinghe residual.
Therefore it is better for the performance of the algorithm and for memory reduction not
to preallocate the matrix for all the working precisions, but to convert them on-the-y to
the precision required by the corresponding recursive leve Similarly to the mixed precision
iterative re nement, the matrix then only exists twice: onc e in the input precision and in the
lowest working precision g, which is accessed 2times to solve a linear system.

If the input precision of A and bis lower than the working precision in which the residual
is being computed, then the elements of the matrix do not needo be converted at all, because

4.5. CONCLUSION 36

their precision would not increase and instead the excess tsi would only be lled up with
zeros. Therefore the matrix elements are only converted todwer precisions compared to their
input precision. As previously shown, the working precisims are almost always higher than
the target precision and therefore the conversion of the inpt arguments to lower precisions
does not occur very often.

4.5 Conclusion

The binary cascade iterative re nement aims to compensate dr ill-conditioned system with
the use of higher working precisions. This approach resemb$ more the extra precise iterative
re nement than the mixed precision iterative re nement, wh ich reduces the working precision
in favour of performance bene ts. Furthermore, similarly to the standard iterative re nement,
the number of iterations is very often limited to one iteration.

The working precisions of the binary cascade iterative re rement hardly ever fall beneath
the target precision . The binary cascade iterative re nement requires arbitrary precision to
compute the result of the linear system with the precisions @termined by the algorithm. It
therefore relies on either simulating the arbitrary precigon in software or being implemented
on hardware which supports the use of multiple arbitrary precisions, for example FPGAs.

Chapter 5

Implementation

This chapter will focus on the programs, which were develope for this master thesis, and
describe the requirements and the program which generatese input data, which consists of
the matrices with the speci ed condition number and the right hand sides of the equation. The
implemented programs for BCIR, EPIR, SIR and MPIR, which bot h use the same program by
setting the working precision to the target precision for the standard iterative re nement,
and a direct LU solver (program noir) to demonstrate the improvement of the accuracy of
the solution achieved by iterative re nement will be explained. Important implementation
details will also be discussed in this chapter.

All iterative re nement algorithms were implemented using arbitrary precision even
though some of the algorithms could have been implemented usy the standard single and
double precision. The extra precise iterative re nement calld have been realised with ex-
tended or quadruple precision supported by many hardware vedors and also part of the IEEE
754 standard. GNU MPFR provided a portable, hardware indep@&dent implementation of
arbitrary precision data types which could avoid any discrgpancies which could occur due
to di erences in the hardware implementation of the IEEE standard data types. Using the
same data type implementation for all algorithms facilitates the comparison of the numerical
properties of the iterative re nement methods .

A complete list of all project les can be found in the Appendix Section A.2

5.1 Requirements

The programs developed for this thesis rely on the followindibraries:

The arbitrary precision is achieved by using the GNU MPFR library [15].

The singular value decomposition included in LAPACK [1] is used to calculate the
condition number of the input matrix A. Other LAPACK routines are used outside
the iterative re nement processes and also for equilibrating the matrix as required by
the extra precise iterative re nement.

37

5.2. GENERATE MATRIX 38

The results are written to an XML le using the libxmlI2 [44] library.
The performance is measured using PAPI].

The data les are compressed usingar and gzip .

5.2 Generate Matrix

generateMatrix creates a matrix A and vector b with the dimension n and a condition
number and writes the data to a le using the format described in Secton 5.3.

Usage: generateMatrix n <DIM> [¢ <CondNr>] f <FNPrefix> [d <DIR>] [date]
[rmin <RANDMIN >] [rmax <RANDMAX >] [gzip] [verify] [type
<MATRIXTYPE >]

n Matrix dimension n
f Prefix for the data file
d Data directory
() ¢ Condition number for matrix A
() date Inserts the current date in the file name
() rmin Minimum value for the random values
() rmax Maximum value for the random values
() gzip Compress data file with gzip
() verify Verify the generated data and condition number
() type Specify the type of matrix to be generated
random generates a random matrix (default)
Hilbert generates a Hilbert matrix

Parameters marked with () are optional

Apart from the required parameter -n for the size of the matrix and vector, a pre x for
the output le has to be speci ed using -f <PREFIX> All other parameters are optional. An
output directory can be speci ed by the parameter -d <DIR>. The current date and time
can be included in the le name by specifying the parameter--date .

The program generateMatrix currently supports two di erent kinds of matrices. The
rst type, which is also the default type if the parameter --type is not explicitly provided, is
a random matrix which can be modi ed to have the condition number speci ed by parameter
-c . For details, how the matrix is created with the speci ed condition number, please refer
to Section 6.1 The minimum and maximum of the range of the random values of he matrix
can be de ned by providing --rmin and --rmax , respectively. By default the random values
will be in the interval [1.0;1:0]. The second supported matrix type is a Hilbert matrix,
which can be speci ed by --type=hilbert

The data can be compressed to reduce the amount of storage bypecifying --gzip .
generateMatrix also provides the ability to verify the created data. The data is loaded from
the input le and the condition number is calculated and compared to the condition number
provided by -c.

The following command shows an example of the usage of the pgoam:

5.3. FILE FORMAT 39

JgenerateMatrix -n 2500 -c 1e3 -f ir -d data --date --gzip

This will produce a random matrix with size n = 2500 and a condition number =102 and
store the data in the compressed le

data/ir _20110701123030000000.random.2500.cn_e3.data.tar.gz

using the size and the exponent of the condition nhumber in thele name.

5.3 File Format

The matrix A and the right-hand side vector b are stored together in a plain text le using
the following format.

TIMESTAMP
DIM1 DIM2
DATA Matrix

DATA Vector

The rst line of the data le contains an identi cation numbe r which is the timestamp at

the time of creation. The second line de nes the dimensions fothe matrix A, m and n. The

following block of data is the matrix, each row of the matrix being separated by a newline
character. The last line of the le holds the data for the vector, which has the size ofDIM1
and is separated from the matrix data by three newline charaters.

The functions required to read and write the data les are provided in ir _io.h.

5.4 Block LU decomposition

A blocked version of the LU factorization was implemented asdescribed in L9, 14] as an

e cient LU factorization. The block LU factorization explo its the bene ts of operating on

the data that already exists in the local caches and reduceshie number of calls to fetch the

data from the computationally more expensive entities higker up in the memory hierarchy.
The n n matrix A 2 R is partitioned as follows

!
A A
A= 11 A12 (5.1)
A1 A
The blocked LU factorization rst computes the factors L1; and Uy, for the upper left block
A11. In the next step the triangular system L11U12 = A1z is solved for the multiple right-hand

5.5. IMPLEMENTED PROGRAMS 40

Figure 5.1: Block LU factorization [30]

sides ofUi, and the triangular system L,>1U1; = A»q for the multiple right-hand sides of L ;.
Finally the last block, the lower right matrix A,», has to be updated by

A=Az LaUp (5.2)

using a matrix multiplication. This update is called the Schur complementof A1;. The steps
for the blocked algorithm are also shown inFigure 5.1

The same arithmetic operations are performed for the block U factorization as for other
LU decompositions. They are simply executed in a dierent oder. The majority of the
computations are performed in the matrix multiplication. T he performance of the blocked
algorithm therefore largely depends on an e cient implementation of the matrix multiplica-
tion.

5.5 Implemented Programs

The call signature of the programs which prepare and executthe di erent iterative re nement
methods are all very similar. In fact they only di er in the pa rameter to de ne the working
precision. All other available parameters are identical aml will be explained in the following
paragraphs.

Usage: ir a<PREC> [no bits] (f <FileName> OR n <DIM> [type
<MatrixType >] [no save]) [o <Directory >]
a target precision alpha
() no bits interpret precisions as number of decimal digits, not number
of bits
() o output directory
(~) f file containing input data
(=) n size of the matrix
() type specify the type of matrix to be generated
random generates a random matrix (default)
Hilbert generates a Hilbert matrix

5.5. IMPLEMENTED PROGRAMS 41

() no save automatically generated input data will not be saved (d oes not
affect result files)

Parameters marked with () are optional.
One of the parameters marked with (~) has to be provided.

The parameter -a is used to specify the target precision for the iterative re nement. If
the method supports the choice of a working precisions, an atitional parameter -b will be
available. The target and working precisions can either beriterpreted as the number of bits
stored in the mantissa of the oating-point number, which is the default behaviour, or as the
number of decimal digits by providing the optional parameter --no-bits

The applications can load already existing data for the matix A and vector b or generate
new data for the computation. The user can either provide thesize of then n matrix A and
the vector b with the parameter -n or the le name of a le containing a matrix and vector
using the parameter-f . The le must conform to the format described in Section 5.3, which
can be generated by the prograngenerateMatrix as described inSection 5.2 If no input
le is speci ed, the matrix A and the right-hand side vector b are generated automatically
using the sizen provided by -n and stored in the folder data _autogen, which will be created
if it does not exist. It is also possible to prevent the storag@ of the automatically generated
data by providing the parameter --no-save . When the matrix is generated in the program,
the type of the matrix can also be speci ed (-type <MatrixType>) using the same types as
seen bygenerateMatrix . The parameter -0 enables the user to specify an output directory
for the result les described in Subsection 5.5.1and will be created by the program if it does
not exist.

The following command is an example for the usage of the progms:

dir a 53 f data/ir _.20110701123030000000.random.2500.cne3.data o results

The target precision is specied as the number of bits stored in the mantissa and tle
program uses a previously generated data le to compute the alution of the linear system
using the iterative re nement, storing the information abo ut the process in the folderresults

5.5.1 File Structure of the Results

The results of the iterative re nement methods are stored intwo di erent les.

The rst le is a text le containing the results in the form of a table, which can easily
be plotted by programs like gnuplot*. The rst line is the header of the columns, the second
line contains the results. Listings 5.1, 5.3 and 5.5 show examples of this output le. As
described in Section 5.5 the target and working precisions can be specied as eithethe
number of bits stored in the mantissa or the number of decimaldigits. Regardless of the
choice of the representation, the precisions are printed athe number of bits in column 2 and
3 of the output le. In addition, the precision is also printe d as the number of decimal digits

http:/iwww.gnuplot.info/

A W N PP

5.5. IMPLEMENTED PROGRAMS 42

in the column AlphaDPand BetaDP The relative residual norm is stored in the last column
RelNormRes

The other le is an XML le containing more detailed data abou t the convergence of the
iterative re nement. Examples of this XML le can be seen in Listings 5.2and 5.4. The XML
structure is divided into two sections: the input and output data. The input data includes
the name of the le used by the program, the corresponding leid as described in Section
5.3, the sizen, the condition number and the target and working precisions as the number
of bits in the mantissa and the number of decimal digits.

The rst node of the output data stores the number of iteratio ns performed by the iterative
re nement. The relative residual norm of the solution after the iterative re nement is stored in
the node<rel _normres>. The performance measurements are divided into di erent setions
which depend on the dierent algorithms. The XML le contain s all the de ned sections
for the execution time (XML node <times>), the number of oating-point operations (XML
node <fp _ops>) and the number of total cycles (XML node <tot _cyc>).

The data is stored using a le name that contains the sizen of the matrix, the precision
and depending on the iterative re nement also the precision, the exponent of the condition
number and the date and time of the experiment. The XML le uses the extension*.results
the text le the extension *.log . An example of the le names is shown here:
bcir_.n002500.a53.condnr3_DT20110701.123030000000. log
bcir_.n002500.a53.condnr3_DT20110701.123030000000. results

apir_-n002500.a53.b24_condnr3_DT20110701.123030000000. log
apir_-n002500.a53_.b24_condnr3_DT20110701.123030000000. results

5.5.2 Binary Cascade lterative Re nement (BCIR)

Usage: bcir a <PREC> [no bits] (f <FileName> OR n <DIM> [type
<MatrixType >] [no save]) [o <Directory >]
a target precision alpha

The parameter -a is used to specify the target precision for the binary cascael iterative
re nement. The parameter for the working precision is missing, because the working
precisions are computed automatically by the binary cascad algorithm for each recursive
level and depend on the target precision, the condition numier (A) and the size of the input
systemn.

Accessing Matrix A and Vector b at Dierent Precisions

As described in Section 4.4 if the input precision of the matrix is higher than the current
working precision, then the elements are converted on-they as they are accessed. They
are copied into a temporary variable with the required working precision and the need for
converting and storing the entire matrix in memory is eliminated. When computing the

5.5. IMPLEMENTED PROGRAMS 43

residual at higher precisions than the input precision it isnot necessary to copy the values to
a corresponding working precision variable, because the egss bits would only be lled up

with zeros. Therefore the matrix elements can be used direbt without the loss of accuracy

and the result will still be stored in and rounded to the higher working precision of the

destination variable.

Output from bcir

The result les are extended by some BCIR speci ¢ parameters The last columns of the table
based results le, Listing 5.1, contain the properties computed by the algorithm to determine
the di erent working precisions and a comma separated list ¢ all working precisions used by
the binary cascade iterative re nement.

The performance measurements for BCIR are divided into the dllowing sections:

bcirprepcondnr - computing properties required by the binary cascade algathm and
calculating the condition number using the singular value deccomposition

plu - the LU decomposition using partial pivoting in the lowest working precision
determined by the algorithm

bcir - the entire binary cascade iterative re nement, which is further divided into the
following sections

convert - converting the data to the required precisions and allocaing necessary
temporary storage

iterref - the iterative re nement

norm - computing the norm of the residual krk and the relative residual

The XML le expands the <output> node by BCIR specic values. The node<bcir>
contains the values of the computed parameterg, and p required to determine the work-
ing precisions. These precisions are then explicitly stoik in the node <precisions> . The
XML le includes the value of krk (XML node <norm.res>) for the last step of the iterative
re nement.

Listings 5.1 and 5.2 show examples of the di erent output formats for the same ouput
data.

Dimension Alpha Beta Iterations BCIRPrepTime LUFactTime | terRefTime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm BCIRPrepFLOPs BCIRPrepTotCyc LUFact FLOPs LUFactTotCyc IterRefFLOPs
IterRefTotCyc AlphaDP AlphaDPE BetaDP BetaDPE FilelD RelN ormRes BCIR _c BCIR _tau BCIR _p
BCIR _precs

2500 53 0 1 193.1206109999999967 610.7720430000000533 8.6 616289999999996 1.00000000e+03 0
0.00000000e+00 5.42793596e 13 0.00000000e+00 43203280678 439336573020 9996 14002715 47370 0
19825485762 16 15.9546 0 0.0000 1303169780948568 2.097120 29e 17 3.25412090e+01 54 0 87

Listing 5.1: Example for an output le created by bcir

5.5. IMPLEMENTED PROGRAMS 44

<?xml version ="1.0" encoding= "ISO 8859 1" ?>
< bcir _results date= "2011 07 01" time= "12:30:30" >
<input >

< filename >ir _20110701 -123030947053 .random.2500.cn _e3.data </filename >
< dataid >1303169780948568 </dataid >
< size>2500</size >
< alpha bits= "53" dps= "16" dps_-exact= "15.9546" />
< beta bits= "0" dps="0" dps_exact= "0.0000" />
< condnr >1.000000e+03 </condnr >
<linput >
< output >
< iterations >1</iterations >
< bcir >
<c>3.25412090e+01 </c>
< tau > 54</tau >

<p>0</p>

</bcir >

< precisions >
< precision step= "0">87</precision >

</precisions >

< times >
< timesection section= "bcirprepcondnr" >193.12061100 </timesection >
<timesection section= "plu" >610.77204300 </timesection >
< timesection section= "becir" >11.75304900 </timesection >
<timesection section= "convert" >1.14143000 </timesection >
< timesection section= “iterref" >8.66162900 </timesection >
< timesection section= "norm" >1.05945400 </timesection >

</times >
< fp _ops>
< fp _ops_-section section= "bcirprepcondnr" > 43203280678 </fp _ops_section >
</fp _ops>
< tot _cyc>
< tot _cyc _section section= "bcirprepcondnr”® > 439336573020 </tot _cyc _section >

</tot _cyc>
< accuracy/ >
<norm _res>
<norm _res_step step= "1">5.4279359632387033e 13</norm _res_step>
</norm _res>
<rel_norm _res>2.0971202862984781e 17</rel _norm _res>
</output >
</bcir _results >

Listing 5.2: Example for an XML le created by bcir

5.5.3 Standard IR and MPIR (APIR)

apir runs the standard and mixed precision iterative re nement methods and accepts the
parameters-a and -b to specify the target and working precision, respectively.The working
precision can either be 53 bits to match the standard iterative re nement or 24 bits for
mixed precision iterative re nement.

Usage: apir a <PREC> b <PREC> [no bits] (f <FileName> OR n <DIM> [type
<MatrixType >] [no save]) [o <Directory >]
a target precision alpha
b working precision beta

Output from apir

The table based results le stores the working precision in he third column as the number
of bits in the mantissa and in one of the last columns as the nurfer of decimal digits

5.5. IMPLEMENTED PROGRAMS 45

(Listing 5.3).

The XML le contains detailed information about the converg ence of the iterative re ne-
ment (Listing 5.4). The section containing the input data includes as the number of bits in
the mantissa and the number of decimal digits. The rst node d the output data stores the
number of iterations required for the convergence and the s8ng of the maximum number of
iterations. It also includes the values ofk xk (XML node <normdx>) and krk (XML node
<normres>) for each step of the iterative re nement.

The performance measurements for SIR and MPIR are divided ito the following sections:

condnr - calculating the condition number using the singular valuedecomposition

plu - the LU decomposition using partial pivoting in precision

apir - the entire iterative re nement, which is further divided i nto the following sections
convert - converting the data to the required precisions

initsol - calculating the initial solution

iterref - the iterative re nement

Listings 5.3 and 5.4 show examples of the di erent output formats for the same ouput
data.

Dimension Alpha Beta Iterations LUFactTime InitSolTime It erRefTime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm LUFactFLOPs LUFactTotCyc InitSolFLO Ps InitSolTotCyc IterRefFLOPs
IterRefTotCyc AlphaDP AlphaDPE BetaDP BetaDPE FilelD RelN ormRes

2500 53 24 3 583.0899170000000140 2.5646000000000000 8.64 38039999999994 1.00000000e+03 0O
0.00000000e+00 7.87519820e 13 6.72706868e 11 9996 1336616742278 0 5873981362 83 19797637958 16
15.9546 8 7.2247 1303169780948568 3.01435415e 17

Listing 5.3: Example for an output le created by apir

<?xml version ="1.0" encoding= "ISO 8859 1" ?>
< apir _results date= "2011 07 01" time= "12:30:30" >
<input >

< filename >ir _20110701 _123030947053 .random.2500.cn -e3.data </filename >
< dataid >1303169780948568 </dataid >

< size>2500</size >

< alpha bits= "53" dps="16" dps_-exact= "15.9546" />

< beta bits= "24" dps= "8" dps-exact= "7.2247" />

< condnr > 1.000000e+03 </condnr >

<linput >
< output >
< iterations maxiter= "30" >3</iterations >
< times >
< timesection section= "condnr" >32.03412200 </timesection >
< timesection section= “plu" >583.08991700 </timesection >
<timesection section= "apir" >13.57390400 </timesection >
< timesection section= "convert" >1.06414500 </timesection >
< timesection section= "initsol" >2.56460000 </timesection >
< timesection section= “iterref" >8.64380400 </timesection >

</times >
< fp_ops>

< fp _ops_section section= "condnr" > 43203280657 </fp _ops_section >
</fp -ops>
< tot _cyc>

< tot _cyc _section section= "condnr" > 73284036761 </tot _cyc _section >

</tot _cyc>
<accuracy/ >
< norm _res>

5.5. IMPLEMENTED PROGRAMS 46

<norm _res_step step= "0">1.7685828077005059e 02</norm _res_step>
<norm _res_step step= "1">3.8548877412407704e 06</norm _res_step>

</norm _res>

<rel_norm _res>3.0143541517324874e 17</rel _norm _res>

<norm _dx>
<norm _dx _step step= "0" > 3.4291620774316110e 03</norm _dx _step>
<norm _dx _step step= "1">5.2978759174469239e 07</norm _dx _step>

</norm _dx>
< /output >
</apir _results >

Listing 5.4. Example for an XML le created by apir

5.5.4 Extra Precise lterative Re nement (EPIR)

Usage: epir a <PREC> [b <PREC>] [no bits] (f <FileName> OR n <DIM>
[type <MatrixType >] [no save]) [o <Directory >]
a target precision alpha
() b working precision beta (default: 2 alpha)

epir provides the ability to de ne the precision explicitly and override the default value
of 2 , but it only has to be greater than to be accepted. This would further allow to test
the precision used when extending the target precision and ers a ne grained choice in the
working precision. This analysis would exceed the scope ohis thesis and will therefore not
be analysed, but could be an interesting topic for future exgriments. An algorithm that
does not necessarily require double the target precision liican solve the same problem with
the same accuracy by only slightly increasing the precisiorand at the same time provide
reliable error bounds would probably require the working piecision to be chosen according to
the properties of the input data.

In [13], the authors suggest to perform the row and column scaling fothe equilibration of
the input matrix A with multiples of the power of 2 in order not to introduce any additional
round-o errors. LAPACK provides the function DGEEQUBS] to meet this requirement.

The extra precise iterative re nement uses the in nity norm to compute the condition
number, which in uences the triggering of the extended workng precision. Based on the
de nition of the condition number

1 = kAk; A (5.3)
the inverse of the scaled matrixAs was required to compute ; . The inverse can be com-
puted using an LU decomposition andn forward and back substitutions. Due to the LU
decomposition already existing for the iterative re nemen, only the forward and back sub-
stitutions have to be computed. In praxis, a condition numbe estimator [21, 39, 5] would
be used instead of explicitly computing the inverse of the m&ix, which would be bene cial
for the performance. Furthermore, an estimate of the power bmagnitude of the condition

5.5. IMPLEMENTED PROGRAMS a7

number provides su cient information to decide whether the higher working precision should
be used or if the iterative re nement should continue using the target precision.

Output from epir

The output of the extra precise iterative re nement is almost identical to the standard and
mixed precision iterative re nement. It has been expanded ly the number of iterations which
were performed in the target precision and the extended woring precision.

The only di erence in the XML le compared to Listing 5.4 is the <iterations> node,
which includes the number of iterations performed in and precision.

The performance measurements for EPIR are divided into the dllowing sections:

condnr - calculating the condition number using the singular valuedecomposition

epir - the entire extra precise iterative re nement, which is further divided into the
following sections

equilibrate - equilibrating the input matrix and applying the scaling fa ctors to
A andb

kappainf - computing the condition humber using the in nity norm
plu - the LU decomposition using partial pivoting in precision
initsol - calculating the initial solution

iterref - the iterative re nement

Dimension Alpha Beta Iterations LUFactTime InitSolTime It erRefTime CondNr CondNrLowHigh Accuracy
ResidualNorm dxNorm LUFactFLOPs LUFactTotCyc InitSolFLO Ps InitSolTotCyc IterRefFLOPs
IterRefTotCyc AlphaDP AlphaDPE BetaDP BetaDPE FilelD RelN ormRes IterInAlpha IterinBeta

2500 53 106 4 617.2460290000000214 12.6525449999999999 55 .4796710000000033 1.00000000e+03 0O
0.00000000e+00 6.88361891e 12 2.83350419e 13 9996 1414986219429 0 28831631365 340 126341721904
16 15.9546 32 31.9092 1303169780948568 2.89100157e 17 2 2

Listing 5.5: Example for an output le created by apir

<?xml version ="1.0" encoding= "ISO 8859 1" ?>
< epir _results date= "2011 07 01" time= "12:30:30" >

< output >
< iterations maxiter= "30" alpha _iter= "2" beta _iter= "2" >4</iterations >

< /output >
</epir _results >

Listing 5.6: Example for an XML le created by apir

5.5.5 Direct LU Solver (NoIR)

The direct LU solver only requires one precision, the targetprecision, and uses no iterative
re nement.

Usage: noir a <PREC> [no bits] (f <FileName> OR n <DIM> [type
<MatrixType >] [no save]) [o <Directory >]
a target precision alpha

Chapter 6

Experiments

The aims of the experiments were to compare the di erent iteative re nement methods based
on their numerical behaviour, more precisely the accuracy bthe re ned solution based on

the relative residual
_ krabskl

frel = 1Ak, kxk, 1)

and the rate of convergence based on the number of iterationsach method required. It
is important to mention, that the number of iterations requi red by the iterative re nement

methods can not be mapped directly to the performance of the lgorithms. For example, if a
method only requires one iteration to re ne the result, but computes the improvement at a
very high precision, then the performance for computing ths result will normally be low. If a
method requires more iterations but can compute these iterions at lower precisions, then it
can achieve better or the same performance as one iterationsing the higher precision. This
point will be described in more detail while examining the results of the experiments.

All algorithms were implemented using the arbitrary precision library GNU MPFR to
guarantee the use of the same implementation of the di erentprecisions for all algorithms
and not comparing hardware dependent IEEE standard precigin implementations to the
arbitrary precision library. The performance was not compaed based on the experimental
data due to the insigni cant di erences when emulating di e rent mantissa lengths in arbitrary
precision when operating in the small range of precisions as the case of these experiments.
To provide information about the performance of the di erent iterative re nement methods, a
performance model was de ned taking into account the di erent precisions and their bene ts
and losses. The performance model is not part of this chapterbut will be described in
Chapter 7.

The experiments were conducted for the following di erent g/stem dimensions and con-
dition numbers:

Dimensions: n = 10; 25; 50; 75; 100, 250, 500, 1000 1500 200Q 2500

Condition numbers: =109:::10’

48

6.1. GENERATED DATA 49

For each sizen and condition number , seven square dense random matrices were gener-
ated. The results show the average of all the measurements.aed on previously conducted
experiments, random matrices with condition numbers highe than =107 did not produce
good results with some iterative re nement methods. As alrady mentioned, the arbitrary
precision arithmetic is being emulated using the software ibrary GNU MPFR. Although
GNU MPFR is one of the fastest arbitrary precision libraries available, it still slows down
the execution of a program considerably. Therefore the dimesion of the linear systems was
limited to n = 2500 in the conducted experiments.

The measurement covered well-conditioned systems as welkall-conditioned systems.
However, in order to also test extremely ill-conditioned sywtems, Hilbert matrices with the
same dimensions as mentioned above were used. Hilbert matds have entries of the form

HG) = g

e (6.2)

and are very ill-conditioned. A small 10 10 Hilbert matrix already has a condition number
of =1:6025 10'3 and a 1000 1000 Hilbert matrix has =5:0201 10%°.

6.1 Generated Data

To generate matrices with a desired condition number, the sigular value decompaosition is
used and the singular values are scaled to the targeted cortibn number +. The rst step
is to compute the condition number of the randomly generated matrix using the largest
and smallest singular value of the diagonal matrix of the singular value decomposition.

= =it (6.3)

nn

If the condition number of the randomly generated matrix is lower than the targeted condition
number, then the largest singular value, the rst element of the diagonal matrix, is set to be

T times the smallest singular value, the last element of the digonal matrix. Otherwise the
diagonal matrix is traversed checking if the following condtion has been reached:

— 7 (6.4)
n KN |1

If the targeted condition number has been found, then all valies of the upper part of the
diagonal above this position are set to the largest matchingvalue ; and all values of the
lower diagonal below this position are set to the smallest meching value n . Finally
the rst element of is setto be 1 times the smallest singular value. If the condition in
Equation (6.3) is not ful lled, then all singular values are set to 1 and the rst singular value
is set to the targeted condition number. One special case estis if 1t = 1, then all singular
values are set to 1.

6.2. TARGET AND WORKING PRECISIONS 50

6.2 Target and Working Precisions

The target precision is represented by , the working precision by except in the case of
BCIR, where the di erent target precisions are de ned by ; with j = 0:::p, as described
in Section 4.2 For all experiments, the target precision will be IEEE double precision with

= 53 bits. MPIR will use IEEE single precision = 24 bits as the lower working precision.

In the following sections the di erent algorithms will be ad dressed by using their abbre-
viations de ned in the previous chapters:

LU solver : This corresponds to a standard LU decomposition with forwad and back
substitution, but without the use of iterative re nement.

SIR : Standard Iterative Re nement with = = double precision
EPIR : Extra Precise Iterative Re nement with =2 =106 bits
MPIR : Mixed Precision Iterative Re nement with 1=2 =single precision

BCIR : Binary Cascade lIterative Re nement

6.3 Termination Criteria
The standard and mixed precision iterative re nement both use the same termination criteria,
krk, <n or k xk,<n (6.5)

wheren is the system dimension, is the machine epsilon of the target precision and is the
condition number of the matrix A. Furthermore the iterative process is halted if a maximum
number of iterations is reached, which based on heuristic adervations was chosen to be 30
iterations.

As described inSection 3.2 the extra precise iterative re nement will terminate if th e error
estimate is decreasing too slowly or if the correction term des not increase the accuracy of
the solution signi cantly. Again the iterative re nement i s also terminated, if the maximum
number of iterations is reached. This was chosen to be 30 itations, the same as for the
standard and mixed precision iterative re nement.

The binary cascade iterative re nement behaves di erently than the other iterative re ne-
ment methods. During the iterative process the algorithm daes not check for the convergence
of the solution. BCIR computes the number of iterations and the working precision to use in
each iteration based on the input data before starting the ierative improvement. This should
guarantee that after the precomputed number of iterations the speci ed target precision will
be reached. Therefore the convergence and the accuracy ofehesult have to be evaluated
after the process has terminated.

6.4. PRECISIONS USED BY BCIR 51

6.4 Precisions used by BCIR

A brief look at the precisions used by BCIR at the di erent recursive levels will be provided,
before turning the attention to the comparison of the iterative re nement methods.

The following two gures, Figure 6.1 and Figure 6.2, show the di erent precisions j of
the binary cascade iterative re nement for di erent condit ion numbers, shown on the x-axis.
The precision is plotted on the y-axis as the number of bits sbred in the mantissa. The dotted
black line is a reference for the standard double precisionsing 53 bits in the mantissa, which
is the target precision . The second y-axis on the right shows the relative residual ehieved
for each system with the corresponding condition number.

Precisions ; for BCIR (n = 10)

10 16
100
80 | — R A A “ =
- K . o a A .5
[t “a n
o 60 A .. o (0]
17 N 1 =) -t H S e 110 Y
o el 2
x X 2
20 x
0 L 10 18

10! 10 100 1* 16 100 10° 1Cf 100 1C®

Figure 6.1: Precisions j used throughout the iterative process forn = 10 plotted on the left
y-axis and the relative residual depicted by the orange doted line on the right y-axis

In Figure 6.1the precisions j are shown for a very small linear system withn = 10. For
condition numbers < 103, the algorithm uses three di erent recursion levels and theefore
three di erent precisions. For perfectly conditioned systems, the rst precision is 21 bits and
the second precision uses 34 bits, both signi cantly lower han the target precision =53
bits. The last precision used for the perfectly conditionedsystems is higher than the target
precision and requires 61 bits.

As the condition number rises, the working precisions ; also increase and the number
of iterations diminishes. Between =103 and = 108, two precisions are used to improve
the result and for = 10° all precisions used by BCIR are higher than the target preci®n,
the lowest precision used being just slightly over with 54 bits. For = 107, the iterative
method uses only one recursive call and only one precision vudh is as high as 84 bits.

The last plot only showed the precisions for a very small linar system. In Figure 6.2,
the size of the linear system has been increased to = 2000. As seen in the graph, only
systems with a condition number 10 use two di erent precisions for their computations.
Otherwise only one precision is used, all of them being sigmiantly higher than the target

6.4. PRECISIONS USED BY BCIR 52

Precisions for BCIR (n =2000)

T T T T T T T T 10 16
100 | . & *
o, A “
gof a4 =
_ S, CYTTTTTTTIe @ srriiianan s =)
S ol . g
@ (TP)53 f---c--omoeeiia oo R R j10 7 P
3 2
a 40 | Toriiniine k|
(&)
2
20 +
0 \ 10 18

10! 10 100 1* 106 10* 10° 10°¢ 100 1C®

Figure 6.2: Precisions j used throughout the iterative process forn = 2000 plotted on the
left y-axis and the relative residual depicted by the orangedotted line on the right y-axis

precision with the worst conditioned system of the measurements with = 107 using a
precision with 100 bits to store the mantissa of the oating-point numbers.

This already shows that the number of iterations is very low br the binary cascade
iterative re nement, but that the process always chooses ateast one of the working precisions
higher than the target precision. This provides a good relaive residual for the solution of the
linear system, but also incurs a higher computational cost de to the high working precision.

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 53

6.5 Comparison of Iterative Re nement Methods

6.5.1 Random Matrices
Number of iterations

The number of iterations provides information about the rate of convergence of the di erent
iterative re nement methods.

Figure 6.3 shows the number of iterations for all iterative re nement methods for a linear
system with n = 100 for di erent condition numbers plotted on the x-axis. T he number
of iterations can not be compared without considering the dierent working precisions the
di erent methods operate at.

Number of Iterations for di erent Iterative Re nement Algo rithms

n =100
9 L L E A L EL L B R BN T
EPIR - Y
8 rMPIR - i
v | BCIR —s— J . i
SIR g N %
w OF 7 » .
c G
S 5t J i
@ !
9 4 - o e o 'y —
3L i
2 - - - -
1+t a a a -

10t 10 100 1¢ 10* 100 100 10° 100 10
Figure 6.3: Number of iterations for the di erent iterative re nement methods for n = 100

The standard iterative re nement requires the least number of iterations. Except for per-
fectly conditioned systems, where the process requires twiterations, the algorithm computes
the improvement in one iteration using the same precision foall operations. The mixed pre-
cision uses more iterations than SIR, but these are perforntat the lower working precision,
which is single precision. Therefore MPIR achieves a higheperformance than SIR while
using a higher number of iterations. The extra precise iteréive re nement not only requires
the highest number of iterations, but also performs some oftiem at higher working preci-
sions. On average 2 iterations are performed at the target mcision and the other iterations
are performed at the extended working precision =2 . For ill-conditioned systems, more
iterations are required and these are computed using the eended working precision.

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 54

Binary cascade iterative re nement computes the number of ierations to execute before
entering the iterative re nement process. It is therefore drectly dependent on the condition
number of the linear system, which is used to computep, the number of recursive levels,
and corresponds to 2 iterations. For perfectly conditioned systems, more iterdions are
executed than for ill-conditioned systems, but for systemswith a higher condition number
the working precisions used by BCIR are also higher. BCIR dog not use the same precision
for all iterations and therefore some iterations are compuationally cheaper than others. In
addition to this, not all iterations perform the same amount of work. The lowest level of
the recursion solves two triangular systems in the lowest wking precision o, whereas the
other iterations only compute the residual and update the sdution. Therefore it is di cult to
directly compare the number of iterations of BCIR with other iterative re nement methods.

Number of Iterations for di erent Iterative Re nement Algo rithms

n = 2000
9 ——
EPIR --=m
8 FMPIR i
- | BCIR —a— |
SIR B
o O6F i
[
S 5t .) |
E e S “‘_M" o P S ~
g 4 B S - S i
3 B —
2 B —
1r & i} &] a i

L L L P | L Ll L Ll L Ll L Ll L Ll L L L L
10t 10° 10 107 10° 10t 10° 10° 10’ 108
Figure 6.4: Number of iterations for the di erent iterative re nement methods for n = 2000

The second plot, Figure 6.4, shows the number of iterations for di erent condition num-
bers for a larger system withn = 2000. The number of iterations is more consistent for all
di erent condition numbers. EPIR still requires the most it erations, followed by MPIR which
computes the iterations at a lower working precision. The sandard iterative re nement still
only requires one iteration to improve the result except forthe perfectly conditioned linear
system. BCIR requires 2 iterations for systems with a conditon number of =1and =10,
but otherwise also only executes one iteration but at a much fgher working precision than
the standard iterative re nement.

The last plot, Figure 6.5, shows the number of iterations for di erent system sizes, potted
on the x-axis, for linear systems with a condition number = 103. The standard iterative
re nement always uses one iteration to improve the solutionand the mixed precision iterative

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 55

Number of Iterations for di erent Iterative Re nement Algo rithms

=103
9 T T T T
EPIR -=a--
8 FMPIR -
7 BCIR —a—v0
T SIR > e]
o 6F }
c 1
S 5l J— ——]
§ l| ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ e +
2 4 e - .
3
2 i
1 @l o o) o) 1] T
0 500 1000 1500 2000 2500
n

Figure 6.5: Number of iterations for the di erent iterative re nement methods for =103

re nement is also almost constant and uses 3 iterations at sigle precision. EPIR requires
the most iterations and the number di ers depending on the ske of the linear system. Binary
cascade iterative re nement computes the re nement most ofthe time in one iteration and
only requires more iterations for smaller systems.

Relative Residual

The next numerical aspect to be analysed is the accuracy achved by the di erent iterative
re nement methods by comparing the relative residual (Equation (6.1)).

In Figure 6.6, the relative residual is plotted for a large linear system vith n = 2000
for di erent condition numbers shown on the x-axis. The rst, the turquoise line is the
LU solver without iterative re nement. Through the use of it erative re nement, the relative
residual can be improved by almost 2 orders of magnitude. Thevery ill-conditioned systems
do not prot as much from the iterative re nement, but still i mprove the result by almost
1 order of magnitude. Only the mixed precision iterative re nement fails to nd a better
result for the worst conditioned system in these experimerd and the extra precise iterative
re nement is hardly any better than the direct LU solver for systems with = 107. In all other
cases the iterative re nement methods have signi cantly improved the result and for systems
with a condition number 10* they all achieve almost the same results, with the exception
of binary cascade iterative re nement. BCIR consistently returns slightly better results than
all other methods. Another interesting observation is that the standard iterative re nement
performs better with ill conditioned systems than the extra precise iterative re nement, but

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 56

Residual Norm of the Solution of the Linear System

n = 2000
10 14 T T T T T T T T T
g LU solver
MPIR
_ s | EPIR --s--
5 10%¢ SIR
E i BCIR —=—
8 L
x 10 16
() E
2 y —
2 107}
10 18 - . | \ | \ | \ | \ | \ |

Figure 6.6: Relative residual for di erent iterative re ne ment methods for n = 2000

only uses one precision for the re nement process whereas HR uses higher precisions to
improve the result.

Figure 6.7 shows the relative residual for linear systems with a xed cadition number

= 102 and variable system sizes plotted on the x-axis. The relatie residual of the direct

LU solver increases with the dimension of the linear systembut the re ned solutions remain

at the same level of accuracy for all larger systems. All iteative re nement methods achieve

again approximately the same improvement for systems largethan n = 100 and binary
cascade iterative re nement always achieves a slightly beer accuracy.

The convergence behaviour of the iterative re nement methals for ill-conditioned linear
systems with = 107 is displayed in Figure 6.8. Extra precise iterative re nement achieves
the worst results for these linear systems and the solution &s a lower accuracy than the direct
LU solver. Mixed precision iterative re nements can produce worse results for larger systems,
but most of the time has similar results as the direct LU solve. Only the standard iterative
re nement and the binary cascade iterative re nement have better relative residuals than the
direct solver, with BCIR being slightly better than the stan dard iterative re nement.

All these gures also show that the choice for the termination criteria for the standard
and mixed precision iterative re nement methods (Equation (6.5)) is very good, especially for
the standard iterative re nement which achieves only slightly worse results than the binary
cascade iterative re nement, which computes the necessaryumber of iterations and the
required precisions before entering the iterative procesbased on the input data to guarantee
that the process terminates after achieving the target pregsion.

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 57

Residual Norm of the Solution of the Linear System

=103
10 14] T T T UL | T T T LR |
f LU solver
EPIR --#--

. | SIR o -
= 107¢ MPIR
3 Z BCIR —s—]
3 :]
@ 10 16| .
[} E 1
= _

E [*oimee B w,ﬁ‘:w'-m-'*_cz-w:rnx £ -5

g 1w0v|

10 100 1000 10000
n

Figure 6.7: Relative residual for di erent iterative re ne ment methods for =102

Residual Norm of the Solution of the Linear System

=10’
10 14 R | T T T L | T T T UL |
: EPIR -=s--

LU solver
o 15 MPIR]
5 0% SIR g
3 i BCIR —=—]
.g :]
@ 10 16 L 4
[} E 1
=
5 I
g 10 17 _ 4

10 100 1000 10000

n

Figure 6.8: Relative residual for di erent iterative re ne ment methods for =107

6.5. COMPARISON OF ITERATIVE REFINEMENT METHODS 58

6.5.2 Hilbert Matrices

Hilbert matrices are extremely ill-conditioned by nature and were therefore chosen as an
alternate input system to the randomly generated matrices. The main reason was to observe
how good the iterative re nement methods can handle the illconditioned linear systems.

Especially interesting was the behaviour of the binary casade iterative re nement because

it adapts the working precisions based on the input data.

Number of Iterations for di erent Iterative Re nement Algo rithms

4 . | | |
i EPIR --vmm
iMPIR
i SIR g
3 iBCIR —a— |
0 i
[1
je) !
® i
Y ———————— R o o |
1 == - - . . |

0 500 1000 1500 2000 2500
n

Figure 6.9: Number of iterations for the di erent iterative re nement methods for Hilbert
matrices

The rst numerical aspect is the number of iterations required until the iterative improve-
ment converged or a termination criteria was met. As seen irFigure 6.9, all methods except
for EPIR required one iteration to converge. For the smalles system in the experimental
data, n = 10, the mixed precision iterative re nement ran for two ite rations, but otherwise
also halted the improvement after one iteration. The extra precise iterative re nement always
used two iterations. The rst iteration computed in the targ et precision did not converge and
the error estimate did not decrease signi cantly enough. Trerefore the working precision of
EPIR was doubled and the process continued for a second iteti@an. The error estimate still
did not return a satisfactory result and therefore the process was terminated.

As expected after the analysis and the previous experimenfBCIR used very high pre-
cisions to improve the solution of the ill-conditioned linear system with > 130 bits. For a
large system with n = 2500, BCIR used = 152 bits as the working precision, almost three
times the target precision =53.

In Figure 6.10 the relative residual is shown on the y-axis for variable sgtem sizes plotted
on the x-axis. It is interesting to note that the mixed precision iterative re nement achieved

6.6. EXPERIMENTS FOR REFINED VERSION OF BCIR 59

Residual Norm for Hilbert Matrices

lo 9 T T T T L | T T T L |
10 10| i
10 1} i
5 w00 _
o 13 | MPIR
a 10 EPIR --#---
x 10 Mt SIR il
Q 15 LU solver
% 10 6 i BCIR —s—
° 10 - i
o 10 7 | i
10 18 |]
10 19

Figure 6.10: Relative residual for di erent iterative re n ement methods for Hilbert matrices

the worst relative residual with a di erence of 8 orders of magnitude compared to all other
methods, including the direct LU solver. This behaviour is aresult of the use of the lower
working precision and the iterative re nement being halted after one iteration. The termi-
nation criteria (Equation (6.5)) has been met because the residual or the correction term is
belown . The other iterative re nement methods performed hardly better than the direct
LU solver, although the binary cascade iterative re nement sometimes produced a slightly
better result.

Nevertheless, the solution for the linear system with a Hilkert matrix returns inaccurate
solutions for all methods with absolute residuals signi cantly larger than 1. With such large
absolute errors, the di erence between MPIR and the other stvers is almost irrelevant,
because the result will always be wrong.

6.6 Experiments for Re ned Version of BCIR

BCIR does not check for convergence during the iterative, mm precisely the recursive, pro-
cess. Therefore the precomputed parameters are the only ctyolling mechanism of the iter-

ative re nement. The algorithm computes the number of recursive callsp and the working

precisions j before entering the re nement phase, both values dependingn parameterc.

In Section 4.3 the original de nition of parameter c was replaced byc = log,B +5,
showing that the BCIR process should mainly depend on the Baar condition number. The
following experiments should help con rm or disprove this daim. The program bcir was
therefore extended to use the new de nition ofc under the assumption ofB = based on
Equation (4.8). In the following plots, this version of BCIR will be called Re ned BCIR

6.6. EXPERIMENTS FOR REFINED VERSION OF BCIR 60

6.6.1 Precisions used by Re ned BCIR

Figure 6.11shows the precisions used by the re ned version of BCIR for lege linear systems
with n = 2000 and di erent condition numbers, which are plotted on the x-axis. The relative
residual achieved for the tested systems is plotted on the send y-axis on the right. The
dotted horizontal line marks the target precision , which is the standard double precision
with 53 bits to store the signi cand of the oating-point num bers.

Precisions ; for Re ned BCIR (n = 2000)

T T T T T T T T 1@
100 + '-.__ 410 2
' {104
80 + %
— 3 {10 ¢ 3
5 60 [{108 '&3
v (TPYK53 E - --- - - e o e e e e e e e e e e e e e e m e e e e e e m - g = = =
.g (TP) 53 N o ®] 10 20 v
a 40 + o ° ° 11012 B
o o, [}
A A 110 14 o
20 + N A . A
410 16
*x CTTTTPPrT YT @ iiiinia,, P s "
0 1 1 10 18

10! 1 100 1* 100 100 1®¢ 10° 100 1C¢®

Figure 6.11: Precisions j used throughout the iterative process by the re ned versionof
BCIR plotted on the left y-axis and the relative residual depicted by the orange dotted line
on the right y-axis

The rst notable dierence compared to the results of the standard BCIR method
(Section 6.9 is that the precisions used by the re ned version of BCIR are much lower.
The highest precision used for the most ill-conditioned syem is 78 bits compared to 100
bits used by the standard BCIR. The number of recursive leved has also increased compared
to the standard binary cascade iterative re nement, which only used two di erent working
precisions for systems with a condition number =1 or =10 and otherwise only used one
recursive call operating at a very high working precision. The re ned version of BCIR uses
ve recursive calls for perfectly conditioned linear systans with the initial working precision
being as low as 6 bits. The number of recursive level reduces dhe condition number rises,
but even for the most ill-conditioned system in the experimants, the process still uses two
recursive re nement steps. Except for the last working predsion, all working precisions are
lower than the target precision, most of the time signi cantly lower.

This plot is identical for almost all input dimensions because parameterc no longer de-
pends on the sizen as part of its calculation. The only di erence occurs for wel-conditioned
systems withn 41. As described inEquation (4.23), for these small systems the second
term n=2 of the parameter p takes precedence and in uences the choice of the working pre
cisions. However, this only result in a small change as the West working precisions are not

6.6. EXPERIMENTS FOR REFINED VERSION OF BCIR 61

used for well-conditioned systems but all other linear systms are improved using the same
precisions as seen irfrigure 6.11

The relative residual achieved by the re ned version of BCIRfor well-conditioned systems
is very bad. As the condition number rises, the relative regiual is similar to the accuracy
achieved by the standard BCIR. The failure of achieving a beter relative residual for the
perfectly conditioned system is most likely due to the low waking precision used by BCIR.
Using only 6 bits of accuracy for the factorization of the matix and solving the linear systems
for the solution and the correction terms is too low to return any signi cant digits. In decimal
digits, 6 bits would only be under 2 decimal digits, obviousy not enough information to
compute the entire solution or to improve the result due to the error accumulation over all
matrix elements.

6.6.2 Number of Iterations

Number of Iterations for di erent Iterative Re nement Algo rithms

n = 1000
16 — ™. - - r - - r - -~ r - 1 T I T
*‘__ EPIR -=a--
14 + Y Re ned BCIR == Xemrim .
3 MPIR
12 + % BCIR —a— -
@ 10 | "’\,_‘ SIR o o i
o %
T 8 P =, §
3] ,
= 6 | ‘\ i
4 T s, o K ';.':.':.T'.‘..'.-*:’: ,,,,,,, _‘,“"’\—‘*I- -1
2 W l\'\”_ IIIIIIIIIII M imime b i
"""" s r——. r—. Jo——. 2

10 10° 10t 107 10° 104 10° 10° 10’ 108
Figure 6.12: Number of iterations for the di erent iterativ e re nement methods forn = 1000

As seen in the last plot, the number of iterations of the re ned version have greatly in-
creased compared to the standard BCIR versionFigure 6.12 shows the number of iterations
for all iterative re nement algorithms for a xed system siz e of n = 1000 and di erent con-
dition numbers plotted on the x-axis. The maximum number of iterations of the re ned
version is 16 for perfectly conditioned linear systems. Fomvell-conditioned systems it uses
more iterations than the extra precise iterative re nement, but the majority of these itera-
tions are performed at signi cantly lower working precisions, whereas EPIR uses a working
precision higher than the target precision for at least halfof its total number of iterations.

6.6. EXPERIMENTS FOR REFINED VERSION OF BCIR 62

For ill-conditioned systems, the re ned version of BCIR requires fewer iterations than MPIR,
but for these systems the mixed precision iterative re nemat computes the improvement at
a much lower working precision than the re ned BCIR. In all cases, the re ned version uses
more iterations than the standard BCIR version.

6.6.3 Relative Residual

The relative residual achieved by all iterative re nement methods is plotted in Figure 6.13
for varying system sizes on the x-axis. The plot shows the acracy of the improved solution
for systems with a condition number of = 1. The re ned version of BCIR produces the
same relative residual up ton = 100, but then performs very poorly and fails completely
to achieve any acceptable accuracy. The process never comges forn 500. This e ect
can be accounted to the use of the low working precision of onl6 bits for the factorization
of the matrix and solving the linear systems for the solutionand the correction terms. The
number of signi cant digits is far too low, especially when accumulating the errors over larger

matrices.
Residual Norm of the Soluti%n of the Linear System
=10
1o LU solver -« e .
- solver B 1
10 2 | EPIR --s-im " .
L 4 | MPIR 4 i
T 10 SIR g i
2 10°F RenedBCIR -w-sm- ;]
'g 10 8 [BCIR —e— i]
& 10w S Q
= ! s]
& 1012 i]
€ 104 B i
10 ® i '_-_-—"-&-T-.-NWMM = 2 loE R or6zel N
1018 Ll . P | . P |
10 100 1000 10000
n

Figure 6.13: Relative residual for di erent iterative re n ement methods for =1

This e ect also occurred for experiments with linear systens having a condition number
of = 10, but the results started to deviate from the relative residual achieved by the
other iterative re nement methods later than for perfectly conditioned systems. The new
de nition of c uses only the condition number to compute the working preci®ns. Therefore
the working precisions used for the improvement process havincreased compared to systems
with =1 and the lowest working precision is ¢ = 11 bits instead of ¢ = 6 bits for perfectly
conditioned systems. The accumulated errors therefore inruence the accuracy of the solution
at a later stage than for lower working precisions.

6.6. EXPERIMENTS FOR REFINED VERSION OF BCIR 63

All other measurements resulted in a very similar accuracy a the standard implementa-
tion of BCIR, but this does not mean that the same e ect will not occur when the matrix
dimensions increase. The e ect will more than likely only ocur later in the plots when
computing the result of larger linear systems with the same ondition nhumber using the low
working precisions.

6.6.4 Conclusion of Re ned BCIR

The dimension of the system in the original de nition of ¢ has a greater in uence than
assumed in the nal remark of the author [26] and is recommended to be used to guarantee
a convergence of the re ned results. This comes at the cost gferformance because higher
working precisions will be used throughout the process, evethough, as can be seen by the
results in the previous subsections, they are not always nessary. In the experiments, all
matrices with a condition number higher or equal 1¢ and up to a dimension ofn = 2500,
the maximum size measured due to the performance of the simated arbitrary precision,
showed very similar convergence and accuracy compared to ¢hstandard BCIR algorithm
using higher precisions at each recursive level.

By including the dimension n of the matrix in the re ned de nition of ¢ (Equation (4.22))
the results could already be stabilised for well-conditioed matrices. However, it cannot be
guaranteed that the same e ect as before will not occur at a léer point using larger input
matrices. Including n? as the factor before the condition number , as in the original de nition
of ¢ (Equation (4.4)), makes sense in order to cover all input errors for alh? elements of the
n n matrix.

Of course it would be desirable to reduce the working precisins necessary at each recursive
level in order to gain performance due to the lower precisios, but the experiments have
shown, that this will also cause the iterative re nement to fail when handling certain input
data. Modifying the parameters as inSection 4.3can lead to undesirable results and a loss in
accuracy. The dimension of the system is an important factorfor the choice of the working
precisions and should not be left out of the equation.

Chapter 7

Performance Model

Simulating arbitrary precision with software libraries has a large negative impact on the per-
formance and the time measurements are therefore not condiive when trying to identify the
performance gain through the use of di erent precisions. The performance bene ts of using
mixed precision algorithms can only be measured on specialahdware implementations, for
example FPGAs. Using the software libraries, there is hardf any performance di erence
when operating within the small range of mantissa widths usd here for the iterative re-
nement methods. Therefore the performance will be compard using performance models,
which account for the gains and losses due to the lower and higger working precisions.

Before de ning the di erent performance models for all iterative re nement algorithms
tested in this thesis, some basic values used in all models ¥&to be de ned. The performance
models take into account fused multiply add and subtract, mdtiplication, division, addition
and subtraction operations.

The number of fused multiply subtract operations for both, the standard and blocked LU

decomposition, is
lUgps := 213 (7.1

3

The di erent working precisions have to be included in the madels using working preci-
sions which di er from the target precision to simulate the performance gain of the algorithm
if these operations were e ectively implemented in hardwae, e.g. in FPGAs. A valid as-
sumption for FPGAs [16] would be that the performance increases quadratically wih the

decrease of the precision.
2

speedugf;)= — (7.2)

To determine the theoretical number of iterations, the iterations model previously de-
scribed in Section 3.4will be used.

iterations (; ;):= ~om() (7.3)

64

7.1. PERFORMANCE MODELS 65

7.1 Performance Models

7.1.1 Performance Model for Direct LU Solver

The simplest performance model is the one used for the algdhm using no iterative re ne-
ment at all, and therefore only consists of the LU decomposibn and the forward and back
substitution, which each require n?=2 fused multiply subtract operations, and only uses the
target precision for all computations.

NOIr gps = —5=+ n2 (7.4)

7.1.2 Performance Model for SIR

The standard iterative re nement also only uses the target precision for all computations,
but additionally requires a number of iterations to increase the accuracy of the result. In
each iteration, the residual is computed usingn? multiply operations followed by n subtract
operations. Then the linear system is solved using the forwa and back substitution and
the correction term x is added to the result x using n addition operations. Finally the
norm of the residual and the norm of x is calculated to check if the process has converged
or if the iterative re nement has to continue. The two norms require n fused multiply add
operations. The performance model for the standard iteratve re nement is de ned by the
following equation:

, 2n3 o
Sir ops = ? + n2 + jterations (-) 2 r.]2 +4n (75)

7.1.3 Performance Model for MPIR

The mixed precision iterative re nement uses exactly the sane number of operations as
the standard iterative re nement, but most operations are computed using a lower working
precision . The LU decomposition, the initial solution and solving the linear equation in the
loops of the iterative re nement are all computed using the working precision and therefore
have to be multiplied by the inverse of the theoretical speeelp gained through the usage of
the lower precision. The residual, adding x and computing the norms are all performed at
the target precision and do not require any additional term.

nd® 1) 1

mpir gps := ——+ N° ———————+iterations (; ;) speedu .)

2
3 speedud ;) *onoHan

(7.6)

7.1.4 Performance Model for EPIR

The extra precise iterative re nement algorithm requires additional computations before solv-
ing the linear system and starting the iterative re nement. This includes equilibrating the
input system and computing the in nity norm of the equilibra ted matrix.

7.1. PERFORMANCE MODELS 66

Equilibrating the system requires 2 (n?+ 2n) operations for the row and column scaling
factors. An additional 2n? multiplication operations for applying the scaling factors to the
matrix A and n operations to scaleb by the row scaling factors also have to be included in
the equation.

The extra precise iterative re nement requires the condition number 1 of the equili-
brated matrix As to determine whether the working precision should be incresed or not.
By de nition as in Equation (5.3), in order to compute the condition number, the inverse of
the matrix As would be required. Due to the high computational cost ofO(n3) for comput-
ing the inverse, a condition number estimator R1] would be used in praxis. The condition
number estimator requires the LU decomposition of the matrk, which already exists for the
iterative re nement process. On average the estimator regires a very low number of only 4
or 5 matrix-vector products to compute a reliable estimation of the norm of the matrix [23,
p.294]. Therefore, the estimation of the norm ofA ! will be included in the performance
model as using B2 operations. The in nity norm of the matrix As requiresn? operations for
the absolute value andn comparison operations, which are not as expensive as the migli-
cation or fused-multiply add operations and will therefore not be included in the performance
model.

All these operations, as well as the LU decomposition and thénitial solution (n? oper-
ations), are performed in the target precision . The extended working precision is only
used during the iterative process and only if certain conditons (explained in Section 3.2 are
met. In the rstiteration of the extra precise iterative re nement all computations except the
nal update operation are always performed in precision. During the process the precision
can be increased to precision. This depends on the quality of the input data as wé as the
rate of convergence. Adding the correction term x to x is performed after the precision is
increased to the extended precision and therefore the last precision iteration will perform
this update in precision. If the working precision is increased, the extrgprecise iterative
re nement by default doubles the target precision . The speed-up factor for the extended
working precision =2 s therefore reduced to @25.

The experiments have shown that in the majority of cases for gstems with a condition
number between =1 and =107, the extra precise iterative re nement performs two iter-
ations in precision before changing the working precision to twice tk target precision and
then performs on average another two iterations in precision. Therefore the performance
model will use 2 as an estimate for the number of iterations in and precision.

The complete performance model for the extra precise iterate re nement method is
shown in the following de nition, with iter = iter =2.

epirops = ¥+ 10n?+5n +iter 2n?+5n n + .7)

+ iter 2n2+5n +n gk

7.1. PERFORMANCE MODELS 67

7.1.5 Performance Model for BCIR

The binary cascade iterative re nement uses di erent working precisions throughout the
process, which also have to be considered in the performaneeodel. At the nal recursion
level, twice a linear system is solved using the lowest workg precision . The forward
and back substitution both require n®=2 fused multiply subtract operations each. In the
second step of the recursive function of the BCIR algorithm éee Listing (4.2)), the residual
is computed which requires a matrix vector multiplication and a vector-vector subtraction
with n? multiply and n subtraction operations. Finally, subtracting v from z requires an
additional n subtracting operations. This leads to the following numberof operations at the
lowest level of the recursive algorithm, which is executed 2times.

2 3n%+2n (7.8)

On all other levelsj of the iterative re nement, only the residual and the subtraction of the
correction term is computed, which is executed at each leveh total of 2P I times, at di erent
working precisions and therefore the number of operations auld be:

2 1 n%+2n (7.9)

The complete number of operations for BCIR including the LU decomposition and taking
into account the speed-up gained through the use of arbitray precision can therefore be
expressed as:

2n3 1 X 1

bCirops = ?+2p 3n%+2n —— =~ + 21 np2+2n

speedu; o) speedurf ;)

(7.10)

7.2. RESULTS FOR THE MODELLED SPEED-UP 68

7.2 Results for the Modelled Speed-Up

All tables and plots in this section show the modelled speedyp of the dierent iterative
re nement methods based on the previously de ned performace models compared to the
direct LU solver using no iterative re nement. In the plots, the speed-up is always shown on
the y-axis and the direct LU solver is represented as a dottedhorizontal line as a reference.
The target precision is always double precision with = 53 bits and the working precisions
are also the same as described iSection 6.2

| Method | Speed-up|

MPIR 3.5887
BCIR 1.0533
SIR 0.9431
EPIR 0.6958

Table 7.1: Modelled speed-up for di erent working precisims with =53, n = 100 and
= 350

In Table 7.1 the speed-up is shown for a linear system withn = 100 and a condition
number = 350. The standard iterative re nement, using the same predsion as the target
and working precision, is naturally slower than not using ary iterative re nement. However,
the slow-down e ect is very small with 0:94 and can be justi ed because the method can
produce better results than not using iterative re nement. The second method being slower
than the direct LU solver is the extra precise iterative re nement, which uses higher working
precisions to compute the critical sections and has a slowawn e ect of 0.70. This is already
a high performance decrease, but the process also providedditional information about the
guality of the improved result. Binary cascade iterative renement achieves a speed-up, but
the performance increase of 1.05 is very low. The best speeqy is achieved by the mixed
precision iterative re nement with 3.59 using standard single precision.

| Method | Speed-up)|

MPIR 4.7103
SIR 0.9940
EPIR 0.9583
BCIR 0.4065

Table 7.2: Modelled speed-up for di erent working precisims with =53, n = 1000 and
=350

The performance behaviour of the methods changes when largeystems are solved. In
Table 7.2 the same table is shown for a larger linear system witm = 1000. The standard
iterative re nement is of course still slower than the direct solver, but the slow down e ect has
decreased to 0.99, which indicates that the extra computatnal work is insigni cant especially
compared to the gain of the improved accuracy of the solution The in uence of the extra
precise iterative re nement has also dropped signi cantly and now only has a slow-down

7.2. RESULTS FOR THE MODELLED SPEED-UP 69

e ect of 0.96, still providing more information about the error bounds than other iterative
re nement methods. Binary cascade iterative re nement has become the slowest method
and has a slow-down e ect of 0.41, which is explained by the fgh working precisions used by
the process (compare withSection 6.4. BCIR still produces the best relative residual, but
this slight improvement over the other iterative re nement methods comes with a high cost
at the expense of the performance. The mixed precision itetave re nement achieves again
the highest speed-up, which is even higher than for smalleiriear systems, with 4.71 for the
standard single precision as the working precision.

Modelled Speed-u

=53, =35 1
5MP|R' T
5 AS[BCIR mmimm :
2 41 SIR .
& 3g|EPIR ----- |
2 .
| 3L i
¢ 25¢t i
o
o 2} i
=]
-O —
(o))
(D]
o By e L L R L T
0 T e t
1000 10000
n

Figure 7.1: Modelled speed-up for di erent system sizes

Figure 7.1 shows the modelled speed-up for di erent dimension of lineasystems, plotted
on the x-axis. For larger problems the e ect of the standard axd extra precise iterative
re nement becomes insigni cant and for linear systems overn = 1000 both methods only
have a small in uence on the performance compared to the diret LU solver. The e ect of
MPIR already seen in the last two tables continues although he increase in performance
attens for larger linear systems. For a large system withn = 10000 the process achieves a
speed-up of 4.86 when using single precision as the workingqeision. BCIR also achieves
a speed-up but only for a small range of problems and the perfmance increase compared
to the direct solver is extremely low. For larger linear sysems, the method has a slow-down
factor of under 0.5 due to the higher working precisions. Eve though the algorithm produces
a slightly better relative residual compared to the other iterative re nement methods, the
cost of this improvement is very high.

Finally, Figure 7.2, shows the modelled speed-up for di erent condition numbes of the
input matrix A and a small system size oh = 100. Standard and extra precise iterative
re nement are not in uenced by the condition nhumber and have the same slow-down e ect
as in Table 7.1. Mixed precision iterative re nement requires more iterations if the condition

7.2. RESULTS FOR THE MODELLED SPEED-UP 70

Modelled Speed-up
n=100, =53, =24

4 L L L D |

Speedup over LU solver
N
I DT kil

Figure 7.2: Modelled speed-up for di erent condition numbes

number rises and therefore the speed-up decreases with thése of the condition number.
The speed-up ranges from 3.84 for perfectly conditioned syams to 3.37 for ill-conditioned
systems, but for most systems the speed-up is 3.59. Binary saade iterative re nement is
strongly in uenced by the condition number due to the in uen ce of on the choice of the
working precisions . At the beginning, for perfectly conditioned systems, BCIR achieves
a high speed-up of 2.76, but this decreases immediately anaif systems with a condition
number higher than = 103 no speed-up is achieved. For the ill-conditioned systems #
slow-down factor is 0.31. The large leaps in the graph can bexplained by the decrease of the
number of recursive levels of BCIR and the simultaneous inaase of the working precisions.

Chapter 8

Conclusion

The binary cascade iterative re nement introduced two very good ideas to iterative re ne-
ment: the choice of the working precisions should be based oproperties of the input data
and the working precisions can increase with each iteration

One problem that arose during the examination of the binary @ascade iterative re nement
was the ambiguous de nition of the Bauer condition humber. Based on all available infor-
mation it was concluded that the Bauer condition number was rot vital to the choice of the
working precisions and was therefore removed from the equain. However, the author men-
tioned an alternative approach for the choice of the workingprecisions which, contradictory
to the previous ndings, relies completely on the Bauer condgtion number. The experiments
have shown that this variation of the algorithm results in an unreliable process in terms of
the accuracy of the solution.

In the experiments, the binary cascade iterative re nementalmost always returned the
best relative residual for all tested input data. The termination criteria of the standard and
mixed precision iterative re nement has proven to be a good hoice, because the accuracy
was only slightly worse compared to BCIR, which chooses the arking precisions to achieve
the best accuracy. One goal of the extra precise iterative reaement is to compensate for ill-
conditioned systems by increasing the working precision. Bwever, in the experiments, EPIR
often returned larger relative residuals than other iterative re nement methods, a result which
especially occurred for ill-conditioned systems. MPIR praluced very good relative residuals
in most cases, but failed to return a good relative residual dr the extremely ill-conditioned
Hilbert matrices due to the use of the lower working precisiom. For these problems, even
the direct LU solver produced a better relative residual than most other iterative re nement
methods.

The experiments have shown that BCIR uses a very low number oiterations but these
are performed at very high working precisions which are norrally signi cantly higher than
the target precision. As seen in the performance model, for wst input data the process
will not achieve a speed-up, but instead will be consideralyl slower than the other tested
algorithms and the direct LU solver. BCIR often executes ony one iteration of the re nement

71

72

process, which is executed at a working precision higher thrathe target precision. The matrix
factorization in BCIR is also executed at this higher precison and therefore the process is
naturally slower than a standard iterative re nement operating at the target precision.

The extra precise iterative re nement uses the highest numler of iterations and most
of these iterations are performed at a higher working precien which is double the target
precision. The performance of EPIR is not very good for smallinear systems, but the model
predicts that the in uence of the re nement process on the owrall performance decreases
with the increase of the dimension of the linear system, beagse the computationally more
expensive task of computing the factorization will dominate the performance and the higher
working precisions used in the few iterations will no longetbe a deciding factor. The accuracy
may not always be as good as the standard iterative re nementbut the process also returns
error bounds which provide information about the quality of the result. The mixed precision
iterative re nement aims on achieving a high performance am the performance model con-
rms this behaviour. Due to the use of the lower working precision for the computationally
expensive steps of the solver, MPIR can achieve a very high permance while still achieving
the target precision accuracy.

In terms of accuracy of the solution, the binary cascade iteative re nement is unbeaten
by the other iterative re nement methods compared in this thesis, which is largely due to the
adaptive choice of the working precisions. However, from a @formance point of view, BCIR
cannot compete with the other iterative re nement methods. The di erences in the relative
residual of the results compared to the standard iterative e nement are not signi cant enough
to justify the high computational costs.

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmé J. J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen| APACK Users' guide
(third ed.). Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
1999.

[2] D. H. Bailey, Y. Hida, X. S. Li, and O. Thompson, \ARPREC: A n arbitrary precision
computation package,"” Tech. Rep., 2002.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort, and
G. Quintana-Ort, \Exploiting the capabilities of modern gpus for dense matrix
computations,” Concurr. Comput. : Pract. Exper., vol. 21, pp. 2457{2477, December
2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=1656506.1656515

[4] F. Bauer, \Genauigkeitsfragen bei der Lesung linearerGleichungssysteme,"Z. Angew.
Math. Mech, vol. 46, no. 7, pp. 409{421, 1966.

[5] C. H. Bischof, J. G. Lewis, and D. J. Pierce, \Incremental condition estimation
for sparse matrices,” vol. 11, no. 4, pp. 644{659, 1990. [Ome]. Available:
http://dx.doi.org/doi/10.1137/0611047

[6] S. Browne, J. Dongarra, N. Garner, K. London, and P. Muccj \A portable programming
interface for performance evaluation on modern processofs The International Journal
of High Performance Computing Applications vol. 14, pp. 189{204, 2000.

[7] A. Buttari, J. Dongarra, and J. Kurzak, \Using mixed prec ision for sparse
matrix computations to enhance the performance while achieing 64-bit ac-
curacy,” ACM Transactions on, vol. 34, no. 4, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1377596.1377597

[8] S. Charles and K. Dowd, \Floating-Point Numbers - History of IEEE
Floating-Point Format," 2010, [accessed 25-April-2011]. [Online]. Available:
http://cnx.org/content/m32770/1.3/

[9] Charles Severance, \An Interview with the Old Man of
Floating-Point," 1998, [accessed 12-May-2011]. [Online] Available:
http://lwww.cs.berkeley.edu/ wkahan/ieee754status/754story.html

73

BIBLIOGRAPHY 74

[10] Committee, Microprocessor Standards, \IEEE Standardfor Floating-Point Arithmetic,"
IEEE Std 7542008 vol. 2008, no. August, pp. 1{58, 2008. [Online]. Available
http://dx.doi.org/10.1109/IEEESTD.2008.4610935

[11] B. N. Datta, Numerical linear algebra and applications 2nd ed. Society for Industrial
Mathematics, 2010.

[12] P. I. Davies, N. J. Higham, and F. Tisseur, \Analysis of the Cholesky Method with
Iterative Re nement for Solving the Symmetric De nite Gene ralized Eigenproblem,”
SIAM J. Matrix Anal. Appl. , vol. 23, pp. 472{493, February 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=587704.587754

[13] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E J. Riedy,
\Error bounds from extra-precise iterative re nement,” ACM Transactions on
Mathematical Software vol. 32, no. 2, pp. 325{351, Jun. 2006. [Online]. Available
http://portal.acm.org/citation.cfm?doid=1141885.114 1894

[14] J. Demmel, N. Higham, and R. Schreiber, \Block LU Factorization,” Circulation re-
search vol. 109, no. 2, pp. 202{4, Jul 1992.

[15] L. Fousse, G. Hanrot, V. Letvre, P. Relissier, and P. Zimmermann, \MPFR: A multiple-
precision binary oating-point library with correct round ing," ACM Trans. Math. Softw. ,
vol. 33, no. 2, p. 13, 2007.

[16] W. Gansterer, M. Mucke, and K. Prikopa, \Arbitrary Pre cision lterative Re nement,"
2011, in preparation.

[17] K. Ghazi, V. Lefevre, P. Theveny, and P. Zimmermann, \W hy and how to use arbitrary
precision,” Computing in Science & Engineering vol. 12, no. 3, pp. 5{5, 2010. [Online].
Available: http://perso.ens-lyon.fr/philippe.theveny/cise.pdf

[18] G. Golub and J. Wilkinson, \Note on the iterative re nem ent of least squares solution,"
Numerische Mathematik vol. 9, pp. 139{148, 1966, 10.1007/BF02166032. [Online].
Available: http://dx.doi.org/10.1007/BF02166032

[19] G. Golub and C. Loan, Matrix computations, ser. Johns Hopkins studies in the mathe-
matical sciences. Johns Hopkins University Press, 1996.

[20] T. Granlund, GNU MP: The GNU Multiple Precision Arithmetic Library , 2011.
[Online]. Available: http://www.gmplib.org

[21] W. W. Hager, \Condition estimates,” vol. 5, no. 2, pp. 311{316, 1984. [Online].
Available: http://dx.doi.org/doi/10.1137/0905023

[22] M. Heath, Scienti c computing: an introductory survey, ser. McGraw-Hill series in com-
puter science. McGraw-Hill, 2002.

BIBLIOGRAPHY 75

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Society for
Industrial and Applied Mathematics Philadelphia, Mar. 2002, vol. 94, no. 445.

[24] N. Higham, \lterative re nement for linear systems and LAPACK," IMA Journal
of Numerical Analysis, vol. 17, no. 4, pp. 495{509, Oct. 1997. [Online]. Available
http://imanum.oupjournals.org/cgi/doi/10.1093/imanu m/17.4.495

[25] A. Kielbashski, \Solving Linear Systems in Unusually High Precisions," Dept. of Math.,
Linkeping University, Report 32, 1979.

[26] ||, \lterative re nement for linear systems in variabl e-precision arithmetic,"
BIT Numerical Mathematics, vol. 11, pp. 97{103, 1981. [Online]. Available:
http://dx.doi.org/10.1007/BF01934074

[27] J. Kurzak, A. Buttari, and J. Dongarra, \Solving systems of linear equations on
the CELL processor using Cholesky factorization,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 19, no. 9, pp. 1175{1186, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2007.70813

[28] LAPACK, \LAPACK 3.2: DQEEQUB," 2011, [Online; accesse d 11-July-2011]. [Online].
Available: http://www.netlib.org/lapack/explore-3.2-html/dgeeq ub.f.html

[29] D. Lichtblau and E. W. Weisstein, \Condition Number." [Online]. Available:
http://mathworld.wolfram.com/ConditionNumber.html

[30] A. Lumsdaine, J. Siek, and L.-Q. Lee, \The Matrix Template Library (MTL) LU
Factorization Example,” 2006, [Online; accessed 9-July-211]. [Online]. Available:
http://osl.iu.edu/research/mtl/tutorial.php3

[31] Maplesoft, \Maplesoft - Technical Computing Software for Engineers, Mathematicians,
Scientists, Instructors and Students," 2011, [Online; acessed 16-May-2011]. [Online].
Available: http://www.maplesoft.com

[32] R. Martin, G. Peters, and J. Wilkinson, \lterative ren ement of the solution of a
positive de nite system of equations,” Numerische Mathematik vol. 8, pp. 203{216,
1966, 10.1007/BF02162558. [Online]. Availablehttp://dx.doi.org/10.1007/BF02162558

[33] Mathworks, \Variable precision arithmetic - Matlab," Retrieved 3 2010. [Online]. Avail-
able: http://www.mathworks.com/access/helpdesk/help/toolb ox/symbolic/vpa.html

[34] Microsoft, \BigInteger Structure (System.Numerics)," 2011,
[Online; accessed 14-May-2011]. [Online]. Available:
http://msdn.microsoft.com/en-us/library/system.nume rics.biginteger.aspx

[35] C. B. Moler, \lterative Renement in Floating Point," Journal of the
ACM, wvol. 14, no. 2, pp. 316{321, Apr. 1967. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=321386.3213 94

BIBLIOGRAPHY 76

[36] M. Macke, B. Lesser, and W. N. Gansterer, \Peak Performance Model for a Custom Pre-
cision Floating-Point Dot Product on FPGAs," in Third Workshop on UnConventional
High performance Computing 2010 (UCHPC 2010)2010.

[37] Oracle, \Class BigDecimal," 2011, [Online; accessed4iMay-2011]. [Online]. Available:
http://download.oracle.com/javase/1.4.2/docs/api/ja va/math/BigDecimal.html

[38] ||, \Class Biginteger,” 2011, [Online; accessed 14-Ma y-2011]. [Online]. Available:
http://download.oracle.com/javase/1.4.2/docs/api/ja va/math/Biglnteger.html

[39] D. J. Pierce and R. J. Plemmons, \Fast adaptive conditin estimation," vol. 13, no. 1,
pp. 274{291, 1992. [Online]. Available: http://dx.doi.org/doi/10.1137/0613021

[40] J. Rice, Matrix computations and mathematical software McGraw-Hill, 1981.

[41] R. Skeel, \lterative re nement implies numerical stability for Gaussian elimination,"
Mathematics of Computation vol. 35, no. 151, pp. 817{832, 1980.

[42] Sun Microsystems, Sun Studio 11: Numerical Computa-
tion Guide. Sun Microsystems, Inc., 2005. [Online]. Available:
http://download.oracle.com/docs/cd/E19422-01/819-36 93/819-3693.pdf

[43] The MPFR Team, GNU MPFR: The Multiple Precision FLoating-Point Reliable
Library, 2011. [Online]. Available: http://www.mpfr.org

[44] D. Veillard, \The XML C parser and toolkit of Gnome," Ret rieved 7 2010. [Online].
Available: http://xmlsoft.org/

[45] R. C. Whaley and J. Dongarra, \Automatically Tuned Line ar Algebra Software," in
Ninth SIAM Conference on Parallel Processing for Scienti c Computing, 1999, cD-ROM
Proceedings.

[46] Wikipedia, \Arbitrary-precision arithmetic | Wikipe dia, The Free En-
cyclopedia,” 2011, [Online; accessed 13-May-2011]. [Oné&]. Available:
http://en.wikipedia.org/w/index.php?title=Arbitrary -precision arithmetic&oldid=428303523

[47] ||, \Field-programmable gate array | Wikipedia, The Fr ee En-
cyclopedia,” 2011, [Online; accessed 15-May-2011]. [Oné&]. Available:
http://en.wikipedia.org/w/index.php?title=Field-pro grammable gate array&oldid=427670193

481 1, \General Floating Point Frac | Wikipedia, The Free
Encyclopedia,” 2011, [accessed 23-April-2011]. [Online] Available:
http://en.wikipedia.org/wiki/File:General _oating _point_frac.svg

[49] J. Wilkinson, Rounding Errors in Algebraic Processes Her Majesty's Stationery O ce,
London, 1963.

BIBLIOGRAPHY 77

[50] |, The algebraic eigenvalue problem Oxford University Press, USA, Oct. 1965,
vol. 20.

Appendix A

Additional and Extended

Information

A.1 List of available Arbitrary Precision Libraries

The following table provides an overview of available arbitary precision libraries for di erent

programming languages and data types.

Package / Library Name N¢|mber Type Lan@uage

GNU MPFR Integers, rationals and | C and C++ with bindings
oats

ap oat Decimal oats, integers, ra- | Java and C++

tionals, and complex

BeeCrypt Cryptography Li-
brary

Integers

Assembly, C, C++, Java

ARPREC and MPFUN

Integers, binary oats, com-
plex binary oats

C++ with C++ and For-
tran bindings

Base One Number Class

Decimal oats

C++

bbnum library

Integers and oats

Assembler and C++

Numbers

and complex

phpseclib Decimal oats PHP

BigDigits Naturals C

BigFloat Binary Floats C++

BigNum Binary Integers, Floats | C#/ .NET
(with math functions)

C++ Big Integer Library Integers C++

CLN, a Class Library for | Integers, rationals, oats | C and C++

Computable Real Numbers

Reals

Common Lisp

IMSL

C

78

A.l. LIST OF AVAILABLE ARBITRARY PRECISION LIBRARIES 79
decNumber Decimals C
FMLIB Floats Fortran
GNU Multi-Precision Li- | Integers, rationals and| C and C++ with bindings
brary (and MPFR) oats (GMPY,..))
MPCLI Integers C#/ .NET
C# Bindings for MPIR | Integers, rationals and| C#/.NET
(MPIR is a fork of the GNU | oats
Multi-Precision Library)]
GNU Multi-Precision Li- | Integers C#/ .NET
brary for .NET
Eiel Arbitrary Precision | Integers Eiel
Mathematics Library
HugeCalc Integers C++ and Assembler
IMath Integers and rationals C
IntX Integers C#/ NET
JScience Largelnteger Integers Java
libgcrypt Integers C
libmpdec (and cdecimal) Decimals C, C++ and Python
LibTomMath Integers C and C++
LiDIA Integers, oats, complex | C and C++
oats and rationals
MAPM Integers and decimal oats | C (bindings for C++ and
Lua)
MIRACL Integers and rationals C and C++
MPI Integers C
MPArith Integers, oats, and ratio- | Pascal / Delphi
nals
mpmath Floats, complex oats Python
NTL Integers, oats C and C++
biginteger (and bigRa- | Integers and rationals C and Seed7
tional)
TTMath library Integers and binary oats Assembler and C++
vecLib.framework Integers C
W3h.Sine Decimal oats C#/ .NET
Eiel Arbitrary Preci- Integers Eiel
sion Mathematics Library
(GMP port)
BigInt Integers JavaScript

A.2. PROJECT FILES 80

Table A.1: This table shows a list of available arbitrary precision libraries for di erent pro-
gramming languages and number types46]

A.2 Project Files

The following table provides an overview of the di erent le s created and used in the project
and provides a short description of their functions.

File Description

bcir.c Reads input parameters and input data, calls the BCIRfunc-
tion and saves the results to a le.

apir.c Reads input parameters and input data, calls the APIRfunc-
tion and saves the results to a le.

extir.c Reads input parameters and input data, calls the EPIR func-
tion and saves the results to a le.

noir.c Reads input parameters and input data, calls the NolRfunc-
tion and saves the results to a le.

generateMatrix.c Generates a matrix and vector and saves th data in a le.

bitdpconverter.c Program to convert between the dierent representations

(bits and decimal digits).

bcir_mpfr.h Functions for running binary cascade iterative re nement.

apir_mpfr.h Functions for running arbitrary precision iterativ e re ne-
ment.

epir_mpfr.h Functions for running extra precise iterative re ne ment.

noir_mpfr.h Functions for running a standard LU decomposition with
subsequent forward and back substitution.

mpfr_lu.h LU decomposition with and without partial pivoting and

with and without using the blocked implementation. Ver-

sions for double and mpfr are included.

conditionNumber.h | Calculates the condition number and canchange the condi-
tion number of a matrix.

arbitrary _precision.h | Provides functions for converting precisiondetween the dif-
ferent representations.

ir_io.h Provides functions for loading and saving matrices andvec-
tors from and to a le.
iocompression.h Provides functions for compressing and dempressing data

les and determining if a le is compressed or not.

A.3. TEST ENVIRONMENT 81

bcir_results.h
apir_results.h

epir_results.h Provides functions for printing the results as a table to the

noir_results.h screen or to a le and saving detailed results as an XML le.

ir _clapack.h
Declarations of the LAPACK functions used by the iterative

f2eh re nement implementations.

papi_extras.h De nes which PAPI counters to activate and the function to
handle PAPI errors.

timings.h Includes the functions for measuring the executn time and
for processing the measured times.

vector_matrix The folder contains functions for creating, copying, lling
and deleting vector and matrix data structures for double,
int and mpfr.

A.3 Test Environment

All tests were conducted on a Sun Fire X4600 M2 Server with thdollowing speci cations:

8 AMD Opteron 8218 Dual-Core processors with 2.6 GHz resultig in 16 cores, each
with 1 MB Level 2 cache

HyperTransport link used to connect the CPUs to each other (8GB/s)
32GB of main memory

Operating System: Ubuntu 10.04.2 LTS
The following versions of the libraries were used:

GNU MPFR 3.0.1 with GNU GMP 5.0.1
ATLAS BLAS 3.9.17

LAPACK 3.2.1

Appendix B

Summaries and Curriculum Vitae

B.1 English Summary

Iterative re nement is a widely used method to improve the round-o errors of a solution
of a linear system and is also used in software packets like LPACK. The process computes
the residual of the solution, then solves the system for a coection term using the residual
as the right hand side of the equation and nally updates the lution with the correction
term. These steps are repeated until the requested accuradg reached. This method was
rst mentioned by Wilkinson in his book \Rounding Errors in A Igebraic Processes" using
xed point arithmetic and later expanded by Moler to cover o ating point arithmetic. The
cost of the iterative improvement is very low compared to thecost of the factorization of the
matrix but results in a solution which can be accurate to mactine precision.

The standard iterative re nement (SIR) uses the same precifon to compute both, the ini-
tial solution and the correction term for the improved result, but other iterative re nement
methods exist, which use di erent precisions for these comgtation steps. The Extra Precise
Iterative Re nement (EPIR) uses a higher precision to compue the residual and the cor-
rection term of the solution to compensate for slow convergece and ill-conditioned systems.
The Mixed Precision lterative Re nement (MPIR) takes a di e rent approach and computes
the matrix decomposition and the initial solution in single precision and applies iterative re-
nement using double precision to improve the result and stil have a solution which reaches
double precision accuracy. This exploits the bene ts of ugig the lower single precision, for
example exploiting vector instructions and using less staaige which also reduces the amount
of data moved through the memory hierarchy, while still achieving a double precision result.

The focus of the master thesis lays on the analysis and evaltian of the Binary Cas-
cade Iterative Re nement (BCIR) by Kielbashski. The alg orithm adapts the precisions for
computing the re nement steps depending on the input parameers, the size and condition
number of the matrix and the intended target precision. The process can use multiple work-
ing precisions throughout the re nement process. This prowdes the ability to choose the
appropriate precision to improve the result and also compesate for ill-conditioned systems.
This algorithm has never been implemented prior to this maser thesis and therefore no ex-
perimental results were available in the literature. The binary cascade iterative re nement
introduced two very good ideas to iterative re nement: the choice of the working precisions
should be based on properties of the input data and the workig precisions can increase with
each iteration.

82

B.1. ENGLISH SUMMARY 83

The algorithm depends on arbitrary precision, which is not bound to IEEE standard pre-
cision. The hardware support for arbitrary precision is very limited and therefore a software
library, the GNU Multiple Precision Floating-Point Reliab le Library (GNU MPFR), is used
to implement the iterative re nement methods. This library provides a portable implemen-
tation of arbitrary precision and allows the precisions to be set exactly in the number of bits
stored in the mantissa of the oating point number.

BCIR was compared to other iterative re nement methods and the numerical accuracy
and the convergence have been analysed. The numerical behiaur of BCIR was analysed
for di erent input systems, which also included extremely ill-conditioned Hilbert matrices.
Due to the software simulated arbitrary precision, performance measurements do not provide
accurate information about the gains and losses in performace due to the use of the di erent
precisions. Therefore a performance model was introducedhiorder to be able to compare
the performance of the algorithms and to analyse the possikl performance gains.

In the experiments, BCIR almost always returned the best rehtive residual for all tested
input data. The termination criteria of SIR and MPIR has prov en to be a good choice,
because the accuracy was only slightly worse compared to BRI, which chooses the working
precisions to achieve the best accuracy. EPIR often returng larger relative residuals than
other iterative re nement methods, a result which especialy occurred for ill-conditioned
systems. MPIR produced very good relative residuals in mostases, but failed to return a
good relative residual for the extremely ill-conditioned Hilbert matrices due to the use of the
lower working precision. For these problems, even the dirécLU solver produced a better
relative residual than most other iterative re nement meth ods.

The experiments have shown that BCIR uses a very low number ofterations but these
are performed at very high working precisions which are norrally signi cantly higher than
the target precision. The performance model shows that for mst input data the process
will not achieve a speed-up, but instead will be consideralyl slower than the other tested
algorithms and the direct LU solver. BCIR often executes ony{ one iteration of the re nement
process, which is executed at a working precision higher thathe target precision. The matrix
factorization in BCIR is also executed at this higher precison and therefore the process is
naturally slower than a standard iterative re nement operating at the target precision.

EPIR uses the highest number of iterations and most of thesetérations are performed at
a higher working precision which is double the target precimn. The performance of EPIR
is not very good for small linear systems, but the model predits that the in uence of the
re nement process on the overall performance decreases witthe increase of the dimension
of the linear system, because the computationally more expwsive task of computing the
factorization will dominate the performance and the higher working precisions used in the
few iterations will no longer be a deciding factor. The accuacy may not always be as good
as the standard iterative re nement, but the process also réurns error bounds which provide
information about the quality of the result. MPIR aims on achieving a high performance
and the performance model con rms this behaviour. Due to theuse of the lower working
precision for the computationally expensive steps of the duoer, MPIR can achieve a very high
performance while still achieving the target precision acaracy.

In terms of accuracy of the solution, the binary cascade iteative re nement is unbeaten
by the other iterative re nement methods compared in this thesis, which is largely due to the
adaptive choice of the working precisions. However, from ag@formance point of view, BCIR
cannot compete with the other iterative re nement methods. The di erences in the relative
residual of the results compared to the standard iterative e nement are not signi cant enough
to justify the high computational costs.

B.2. DEUTSCHE ZUSAMMENFASSUNG 84

B.2 Deutsche Zusammenfassung

Iterative Re nement ist eine weitverbreitete Methode um die Rundungsfehler einer Lesung
eines linearen Gleichungssystems zu verbessern und wird @uin Software Bibliotheken wie
LAPACK verwendet. Der Algorithmus berechnet zuerst das Resduum der Lesung des Glei-
chungssystems und lest das System fur einen Korrekturtem unter Verwendung des Resi-
duums als rechte Seite der Gleichung. Diese Schritte werdersolange wiederholt bis die
gewdnschte Genauigkeit erreicht wird. Diese Methode wur@ erstmals von Wilkinson in sei-
nem Buch ""Rounding Errors in Algebraic Processes™ dr Fixpunktarithmetik erwahnt und
wurde spater von Moler um Gleitkommaarithmetik erweitert . Die Kosten der iterativen
Verbesserung sind sehr gering im Vergleich zu den Kosten deviatrixfaktorisierung. Das
Verfahren fahrt aber zu einem Ergebnisse welches bis zur Mechinengenauigkeit korrekt sein
kann.

Standard Iterative Re nement (SIR) verwendet dieselbe Gerauigkeit um die erste Lesung
des Systems und den Korrekturterm zu berechnen, aber es gil@ndere Iterative Re nement
Methoden, welche unterschiedliche Genauigkeiten fdar digeweiligen Schritte des Verfahrens
verwenden. Extra Precise lterative Re nement (EPIR) verwendet eine hehere Genauigkeit
um das Residuum und den Korrekturterm zu berechnen, um far éne langsame Konvergenz
oder schlecht konditionierte Systeme zu kompensieren. Mied Precision Iterative Re ne-
ment (MPIR) verwendet einen anderen Ansatz und berechnet d¢ Matrixzerlegung und die
erste Lesung des Systems in einfacher Genauigkeit (singlgrecision) und fahrt das Iterative
Re nement in doppelter Genauigkeit (double precision) durch. Das Ergebnis erreicht da-
durch eine Genauigkeit von double precision. Dieses Verfabn nutzt die Vorteile, welche die
Verwendung der einfachen Genauigkeit mit sich bringt, zum Reispiel die Verwendung von
Vektorinstruktionen oder den niedrigeren Speicherverbraich, welcher auch den Transport
der Daten durch die Speicherhierarchie beschleunigt, undreeicht trotzdem ein Ergebnis in
doppelter Genauigkeit.

Der Fokus dieser Masterarbeit liegt auf der Analyse und Evalierung des Binary Cascade
Iterative Re nements (BCIR) von Kielbasnski. Der Algor ithmus wahlt die Arbeitsgenauig-
keiten fur die Schritte des Iterative Re nements basierend auf den Eingabedaten, der Dimen-
sion und der Konditionszahl der Matrix und die gewdanschte Zielgenauigkeit. Des Weiteren
ist die Genauigkeit nicht auf eine Arbeitsgenauigkeit beshrankt, sondern kann mehrere Ge-
nauigkeiten wahrend des Prozesses verwenden. Dies erniaght dem Verfahren, die bemstigte
Genauigkeit auf das Problem abzustimmen und far schlecht knditionierte Systeme zu kom-
pensieren. Dieser Algorithmus wurde vor dieser Masterarkienoch nie implementiert und es
existierten daher auch keine Daten von Experimenten in der iteratur. BCIR stellt zwei gute
Ideen fur Iterative Re nement Methoden vor. Die Wahl der Ar beitsgenauigkeit sollte auf den
Eigenschaften der Eingangsdaten basieren und sollte walend der Iterationen ansteigen.

BCIR beruht auf der Verwendung von beliebigen Genauigkeita, welche nicht auf die
IEEE Standarddatentypen beschrankt sind, welche von den neisten Hardwareherstellern
unterstatzt werden. Da es kaum Hardwareunterstatzung fur beliebige Genauigkeiten gibt,
wurde eine Softwarebibliothek, die GNU Multiple Precision Floating-Point Reliable Library
(GNU MPFR), fur die Implementation der Verfahren verwende t. Die Bibliothek ermeglicht
eine exakte Angabe uber die Anzahl der zu verwendeten Bits ur Speicherung der Mantisse
der Gleitkommazahl.

Die Eigenschaften von BCIR wurden analysiert und es wurden Kperimente durchgefuhrt,
welche diesen Algorithmus mit anderen lIterative Re nement Methoden vergleichen und be-
sondere Aufmerksamkeit auf die numerische Genauigkeit undie Konvergenz der Verfahren

B.2. DEUTSCHE ZUSAMMENFASSUNG 85

legten. Das numerische Verhalten wurde fur unterschiediche Eingangsdaten, darunter auch
extrem schlecht konditionierte Hilbert Matrizen, untersu cht. Die verschiedenen Genauigkei-
ten werden in Software simuliert und liefern daher keine ausagekraftigen Informationen uber
einen Performancegewinn oder -verlust durch die Verwendupder verschiedenen Genauigkei-
ten. Daher wurde ein Performancemodel vorgestellt, um die Brformance der verschiedenen
Methoden miteinander vergleichen zu kennen und Aufschlus uber megliche Performancege-
winne zu erhalten.

In den Experimenten lieferte BCIR fast immer das beste relaive Residuum far alle Ein-
gangsdaten zunack. Die Abbruchbedingung far SIR und MPIR erwies sich als eine gute Wahl,
da die Genauigkeit nur geringfagig schlechter war im Vergeich zu BCIR. EPIR lieferte oft
gm ere relative Residuen zumick als die anderen lterative Re nement Methoden, besonders
im Fall von schlecht konditionierten Problemen. MPIR erzeugt in den meisten Fallen sehr
gute relative Residuen, aber erreichte keine guten Ergebage far die extrem schlecht kon-
ditionierten Hilbert Matrizen aufgrund der Verwendung der niedrigeren Arbeitsgenauigkeit.
Far diese Probleme erzielte sogar der direkte LU Leser ohe Iterative Re nement bessere
Ergebnisse als die meisten anderen Methoden.

Die Experimente haben gezeigt, dass BCIR nur eine sehr gemge Anzahl an Iterationen
benetigt, diese werden aber mit einer viel h®heren Genaujkeit als der Zielgenauigkeit be-
rechnet. Das Performancemodell wies auf, dass fur die mdaisn Eingangsdaten kein Speed-up
erreicht werden kann. Stattdessen wird BCIR signi kant langsamer als die anderen gete-
steten Verfahren sein. In vielen Fallen fahrt BCIR nur ein e einzige Iteration durch, welche
noch dazu eine deutlich hehere Genauigkeit als die Zielgewigkeit verwendet. Da auch die
Matrixzerlegung in BCIR auf diesem hohen Genauigkeitsnivau ausgefshrt wird ist es leicht
nachvollziehbar, dass der Prozess langsamer ist als ein $idard Iterative Re nement Ver-
fahren, welches die Zielgenauigkeit fur alle Berechnungeverwendet.

EPIR benetigt die hechste Anzahl an Iterationen und die meisten davon werden auch mit
der heheren Arbeitsgenauigkeit ausgefshrt, welche der dppelten Zielgenauigkeit entspricht.
Far kleinere lineare Systeme ist die Performance nicht sehgut, aber das Modell zeigt auf,
dass der Ein uss des Iterative Re nements auf die Gesamtpdiormance mit der ansteigenden
Problemgre e stark abnimmt. Die rechenintensive Zerlegung der Matrix dominiert die Per-
formance und die Iterationen, welche in der heheren Arbeisgenauigkeit ausgefahrt werden,
werden vernachlssigbar. Die relativen Residuen sind vikicht nicht immer so gut wie bei
SIR, aber dafur liefert das Verfahren auch Informationen uber die Qualiat des Ergebnisses
zunsck. Das Ziel von MPIR ist das Erreichen einer hohen Perbrmance, welches auch vom
Modell bestatigt wird. Durch die Verwendung der niedrigeren Genauigkeit far die aufwendi-
gen Operationen des Gleichungssystemiesers kann MPIR einsehr hohe Performance erzielen
und dabei trotzdem die Zielgenauigkeit erreichen.

Im Hinblick auf die Genauigkeit der Lesung ist Binary Cascade Iterative Re nement
ungeschlagen im Vergleich mit den anderen in dieser Arbeit gtesteten Verfahren. Dies liegt
hauptsachlich an den adaptiv gewahlten Arbeitsgenauiglkeiten von BCIR. Aus der Perspektive
der Performance kann BCIR allerdings nicht mit den anderen \érfahren mithalten. Die
Unterschiede in den relativen Residuen der Ergebnisse falh im Vergleich zum Standard
Iterative Re nement zu gering aus, um den hohen rechnerischn Aufwand zu rechtfertigen.

B.3. CURRICULUM VITAE 86

B.3 Curriculum Vitae

Karl Prikopa,

Birth
Nationality
E-Mail
Education
2009-present

2006-2009

2004-2006

1996-2004

1992-1996

Research

10/2010-present

01/2010-09/2010

02/2009-12/2009

BSc

10" March 1986, Vienna, Austria
Austrian and British

karl.prikopa@univie.ac.at

Masterstudium Scienti c Computing, University of Vienna

Bachelorstudium Informatik mit Schwerpunkt Scientic Com-

puting, University of Vienna

Abschluss mit Auszeichnung bestanden

(Bachelor of Science (BSc) with distinction)

Bachelor thesis: \Performance Analysis of MPI-based Distributed Appli-
cations on Multicore Computers Using Dynamic Tracing"

Diplomstudium Chemie, University of Vienna

Gymnasium Sace Coeur Pressbaum

Gymnasium mit 2. lebender Fremdsprache ab 3. Klasse

Abschluss 2004: Matura mit ausgezeichnetem Erfolg (Maturawith dis-
tinction)

Volksschule der Dominikanerinnen in Hietzing, Vienna

Wissenschaftlicher Projektmitarbeiter

Fakultat fur Informatik / Research Lab Computational Tec hnologies and
Applications

Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

Research Project

Development of an Arbitrary Precision Iterative Re nement Code
Research Lab Computational Technologies and Applications
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

Research Project: CPAMMS

Performance Analysis of CHARMM with OpenSolaris DTrace
Research Lab Computational Technologies and Applications
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer, Dipl.-Ing. Dr. Manfred
Macke

B.3. CURRICULUM VITAE 87

Publications

W. Gansterer, M. Mucke, and K. Prikopa, \Arbitrary Precisi on Iterative Re nement," 2011,
in preparation.

Employment

03/2011-06/2011 Tutor: PR Praktikum aus Computational Drug Design
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

03/2011-06/2011 Tutor: PR Praktikum aus Computational Technologies
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

10/2010-02/2011 Tutor: VU Software Tools and Libraries
Arbitrary Precision with MPFR
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer, Dipl.-Ing. Dr. Dieter
Kvasnicka

03/2010-06/2010 Tutor: VU Algorithmen und Programmierung im Scientic
Computing
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer

03/2010-06/2010 Tutor: VU Visualisierung
Programming with OpenGL
Dipl.-Ing. Dr. Ganter Wallner, Dipl.-Ing. Dr. Alexander W ilkie

10/2009-02/2010 Tutor: VU Software Tools and Libraries
Arbitrary Precision packages (MPFR and ARPREC)
Univ.-Ass. Privatdoz. Dr. Wilfried Gansterer, Dipl.-Ing. Dr. Dieter
Kvasnicka

03/2009-06/2009 Tutor: VU Visualisierung
Programming with OpenGL
Dipl.-Ing. Simone Kriglstein, Dipl.-Ing. Dr. Ganter Wall ner

Awards, Distinctions

2008/2009 Best of the Best in the category bachelor studiesni computer science
ranking position #3

2009 Bachelor with distinction (Bachelor mit Auszeichnung bestanden)

2004 Matura with distinction (Matura mit ausgezeichnetem Erfolg)

Languages German and English (mother tongues), French, Latin

	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Thesis Outline

	2 Precisions of Floating Point Arithmetic
	2.1 Standard Precision
	2.1.1 History
	2.1.2 IEEE Standard

	2.2 Arbitrary Precision
	2.2.1 Constant Folding with Arbitrary Precision

	2.3 Arbitrary-precision Software and Libraries
	2.3.1 Hardware support
	2.3.2 Stand-alone Software
	2.3.3 Programming languages and software libraries

	2.4 GNU MPFR
	2.4.1 MPFR Variables
	2.4.2 MPFR Rounding Modes
	2.4.3 MPFR Functions
	2.4.4 MPFR Example Source Code

	2.5 Performance Evaluation

	3 Iterative Refinement
	3.1 Standard Iterative Refinement (SIR)
	3.2 Extra Precise Iterative Refinement (EPIR)
	3.3 Mixed Precision Iterative Refinement (MPIR)
	3.4 Model Estimating Number of Iterations

	4 BCIR - Binary Cascade Iterative Refinement
	4.1 The Algorithm
	4.2 The Parameters
	4.2.1 Analysis of the Levels of Recursion p
	4.2.2 Analysis of the Precisions beta j

	4.3 Refined Version of BCIR
	4.4 Accessing Matrix A and Vector b at Different Precisions
	4.5 Conclusion

	5 Implementation
	5.1 Requirements
	5.2 Generate Matrix
	5.3 File Format
	5.4 Block LU decomposition
	5.5 Implemented Programs
	5.5.1 File Structure of the Results
	5.5.2 Binary Cascade Iterative Refinement (BCIR)
	5.5.3 Standard IR and MPIR (APIR)
	5.5.4 Extra Precise Iterative Refinement (EPIR)
	5.5.5 Direct LU Solver (NoIR)

	6 Experiments
	6.1 Generated Data
	6.2 Target and Working Precisions
	6.3 Termination Criteria
	6.4 Precisions used by BCIR
	6.5 Comparison of Iterative Refinement Methods
	6.5.1 Random Matrices
	6.5.2 Hilbert Matrices

	6.6 Experiments for Refined Version of BCIR
	6.6.1 Precisions used by Refined BCIR
	6.6.2 Number of Iterations
	6.6.3 Relative Residual
	6.6.4 Conclusion of Refined BCIR

	7 Performance Model
	7.1 Performance Models
	7.1.1 Performance Model for Direct LU Solver
	7.1.2 Performance Model for SIR
	7.1.3 Performance Model for MPIR
	7.1.4 Performance Model for EPIR
	7.1.5 Performance Model for BCIR

	7.2 Results for the Modelled Speed-Up

	8 Conclusion
	Bibliography
	A Additional and Extended Information
	A.1 List of available Arbitrary Precision Libraries
	A.2 Project Files
	A.3 Test Environment

