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Abstract

Charles Darwin’s theory of ‘The Origin of Species’ (1859) states that species have evolved

from common ancestors. Reconstructing so-called phylogenetic trees to elucidate the

evolutionary relationships among species has since then become one of the main ob-

jectives in biology. In recent years, more and more phylogenetic studies have been

published thanks to the advent of massive sequence data and to the development of

efficient software packages. However, before drawing biological implications from the

inferred evolutionary relationships, several issues should be taken into account. This

thesis investigates two interesting issues in more detail:

First, how can one know that the model used describes the data adequately? We

present MISFITS, a novel approach to evaluate the goodness of fit between a phylo-

genetic model and an alignment, which at the same time pinpoints to alignment site

patterns that do not fit. MISFITS introduces a minimum number of extra substitutions

on the inferred tree to provide a biologically motivated justification for the deviation be-

tween the observed site pattern frequency and the corresponding expectation. The extra

substitutions plus the evolutionary model then fully explain the alignment. Moreover,

the significance of the required number of extra substitutions can be determined by con-

ducting a parametric bootstrap analysis. Therefore, MISFITS rejects inadequate models

in terms of fit to the data. We demonstrate MISFITS on several examples and present

a survey of the goodness of fit of the best-fit models (suggested by model selection) to

thousands of alignments in the PANDIT database.

Second, insights into the performance of tree inference methods are essential because

they may help to avoid wrong conclusions from the inferred phylogenies due to recon-

struction artefacts such as long branch attraction. Among the criteria to evaluate the

performance of a phylogenetic method, robustness to model violation is of particular

practical importance as complete a priori knowledge of evolutionary processes is typ-
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vi Abstract

ically unavailable. We first develop ImOSM, a convenient tool to imbed intermittent

evolution as model violation into an alignment. Intermittent evolution refers to extra

substitutions occurring randomly on branches of a tree and thus changing alignment site

patterns. We then study the robustness of widely used phylogenetic methods: maximum

likelihood (ML), maximum parsimony (MP) and a distance-based method (BIONJ) to

various scenarios of model violation. We show that violation of rates across sites (RaS)

heterogeneity, and simultaneous violation of RaS and the transition transversion ratio

along two nonadjacent external branches hinder all methods recovery of the true topol-

ogy for a four-taxon tree. For an eight-taxon balanced tree these violations cause each

of the three methods to infer a different topology: both ML and MP fail whilst BIONJ

reconstructs the true tree. Furthermore, we report that several tests including the MIS-

FITS test have enough power to detect such model violations. Thus, for analyses of

real data, such reconstruction results require further investigation and these tests are

recommended at the first glance.

Parts of this thesis have been published or submitted:

1. M. A. T. Nguyen, S. Klaere, and A. von Haeseler (2011) MISFITS: Evaluating the

goodness of fit between a phylogenetic model and an alignment. Mol. Biol. Evol.,

28(1): 143-152.

2. M. A. T. Nguyen, T. Gesell and A. von Haeseler. ImOSM: Intermittent evolution

and robustness of phylogenetic methods. Submitted to Mol. Biol. Evol.

Tools developed from the thesis are available at:

1. MISFITS: http://www.cibiv.at/software/misfits

2. ImOSM: http://www.cibiv.at/software/imosm

http://www.cibiv.at/software/misfits
http://www.cibiv.at/software/imosm


Abstract vii

The thesis is organized as follows:

Chapter 1: We first present an introduction to phylogeny reconstruction. This consists

of descriptions of phylogenetic trees, sequence alignments, models of sequence evo-

lution and tree inference methods. We then briefly describe model test techniques

to select the best model for a given data set. Subsequently, several notes that

should be taken into the interpretation of the inferred trees are discussed.

Chapter 2: We introduce the term “intermittent evolution”. Then, we demonstrate the

construction of the one step mutation (OSM) matrix for nucleotide characters to

model intermittent evolution. The OSM matrix is the fundamental concept for

the methods developed in this thesis.

Chapter 3: We outline several methods for testing model fit in phylogeny inference. We

then present and illustrate the MISFITS approach.

Chapter 4: We give a brief review of the performance of phylogenetic methods putting

emphasis on studies of the robustness to model violation. Subsequently, we present

the ImOSM tool to introduce model violation to the data and report our observa-

tion about the robustness of ML, MP and BIONJ.

Chapter 5: We summarize the content of the thesis and discuss an outlook.
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Chapter 1

Introduction

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky

1.1 Introduction to phylogeny reconstruction

Charles Darwin demonstrated in his work ‘On the origin of species by means of natural

selection, or the preservation of favoured races in the struggle for life’ (Darwin, 1859)

that species have evolved from common ancestors. The evolutionary relationships among

species can be depicted by an evolutionary tree, also called a phylogenetic tree or a

phylogeny. In the following, we briefly introduce phylogenetic trees as well as data,

mathematical models, and methods used for their reconstruction.

1.1.1 Phylogenetic trees

Phylogenies or phylogenetic trees (illustrated in Figures 1.1a-b) are leaf-labelled trees,

where the leaves represent contemporary taxa and the internal nodes are hypothetical

ancestors (see e.g. Vandamme, 2009). An internal branch connects two internal nodes

while an external branch connects a taxon with an internal node. Taxa that are con-

nected through a single internal node are adjacent taxa. For example, taxa A and B in

Figures 1.1a-b are adjacent but taxa A and C are nonadjacent. Two adjacent taxa (and

the internal node connecting them) form a so-called cherry. The branching pattern of

1



2 Chapter 1 Introduction

the nodes defines the topology of the tree. Branch lengths, if given, usually indicate the

number of substitutions per site (see the next sections) between the nodes.

(b)

A

B

C
D

E

F

E FDCBA

Root
(a)

Figure 1.1: A rooted (a) and an unrooted (b) phylogenetic tree. A, B, C, D, E, and F

are taxa or external nodes. The internal nodes (not labelled) are hypothetical

ancestors of the taxa. Both trees have the same topology but the rooted tree

has a root node which indicates the start of the evolutionary process toward

the leaves. In the unrooted tree, the direction of evolution is unknown.

Phylogenies can be rooted (Figure 1.1a) or unrooted (Figure 1.1b). A rooted phylogeny

shows the direction of the evolutionary process, whereas an unrooted tree only displays

the relationships of the taxa. Phylogenies are in general bifurcating trees: all external

nodes have a degree of one, all internal nodes have a degree of three except the “root”

node in a rooted tree having a degree of two. A multifurcating or unresolved phylogeny

contains node(s) of degree larger than three.

For n taxa, there are (2n−5)!! = 1×3×· · ·×(2n−5) distinct unrooted bifurcating trees

(Felsenstein, 2004, Chapter 3). To compare two trees, the Robinson and Foulds (RF)

distance (Robinson and Foulds, 1981) is usually employed. The RF distance between

two trees is the number of bipartitions present in one of the two trees but not the other.

A bipartition of a tree is defined by two disjoint subsets of the taxa which are separated

by a branch. Two trees are topologically identical if the RF distance between them is

zero.

1.1.2 Sequence alignment

As species have evolved from common ancestors, they share common characters in-

cluding, e.g., morphological characters (phenotype) and genetic characters (genotype).
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Characters that have descended, usually with divergence, from a common ancestral

character are called homologous characters (Fitch, 2000). Phylogenetic trees are in-

ferred based on these homologous characters. Nowadays, genetic data are prevalent

in phylogeny reconstruction thanks to the rapidly increasing amount of DNA, RNA

and protein sequences in public databases such as GenBank (Benson et al., 2011) and

UniProt (UniProt Consortium, 2010).

In DNA sequences, nucleotides exist in four character states: Adenine (A), Cytosine

(C), Guanine (G), and Thymine (T ). They are classified into either purine (A and G)

or pyrimidine (C and T ). In RNA sequences, Thymine is substituted by Uracil (U).

Protein sequences are sequences of amino acids which are produced from nucleotide

sequences through the well-known protein synthesis process:

DNA
Transcription−→ mRNA

Translation−→ Protein.

Three consecutive nucleotides in a protein-coding DNA sequence form a triplet called a

codon. Every codon either encodes a single amino acid or signals the end of the above

process (stop-codons). According to the standard genetic code (e.g. Vandamme, 2009),

among the 64 possible codons 61 encode amino acids whereas the remaining three are

stop-codons. As multiple codons may encode the same amino acid, there are in total

twenty different amino acids as listed in Table 1.1. Thereby, in protein sequences an

amino acid is available in any of these twenty character states.

Two homologous nucleotide sequences can be different due to mutations, e.g, errors

during DNA replication, during DNA repair or due to environmental factors. Mutations

are categorizied into (see e.g. Li, 1997, pp 23-30):

Substitutions: replacement of one nucleotide by another. Nucleotide substitutions are

classified into transitions between the purines (A and G) or between the pyrim-

idines (C and T ) and transversions between a purine and a pyrimidine.

Deletions: deletion of one or several nucleotides from the sequence.

Insertions: insertion of one or several nucleotides into the sequence.

Recombination: combination of different parts of a sequence(s) into one sequence frag-

ment.

Inversion: rotation by 180◦ of a double-stranded DNA segment.
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Amino acid
Three-letter One-letter

abbreviation abbreviation

Alanine Ala A

Cysteine Cys C

Aspartic Acid Asp D

Glutamic Acid Glu E

Phenylalanine Phe F

Glycine Gly G

Histidine His H

Isoleucine Ile I

Lysine Lys K

Leucine Leu L

Methionine Met M

Asparagine Asn N

Proline Pro P

Glutamine Gln Q

Arginine Arg R

Serine Ser S

Threonine Thr T

Valine Val V

Tryptophan Trp W

Tyrosine Tyr Y

Table 1.1: The twenty amino acids and their abbreviations.

In order to reconstruct phylogenetic trees from nucleotide or amino acid sequences, we

first align the sequences into a so-called multiple sequence alignment such that homolo-

gous characters form a column, also called an alignment site (see e.g. Higgins and Lemey,

2009). An alignment of two sequences is called a pairwise sequence alignment. Table 1.2

shows a multiple sequence alignment of five DNA fragments from human, chimpanzee,

gorilla, rhesus, and mouse. Alignment sites 1-3 contain substitutions. Gap characters (-)

introduced to columns 4-5 indicate insertions/deletions. The remaining columns, from 6

to 12, are constant sites i.e. the nucleotides in all sequences are identical in each column.



1.1 Introduction to phylogeny reconstruction 5

1 2 3 4 5 6 7 8 9 10 11 12

Human A A C C T T T C C A G G

Chimpanzee G A C - T T T C C A G G

Gorilla C C G C - T T C C A G G

Rhesus T C T - - T T C C A G G

Mouse T G G - T T T C C A G G

Table 1.2: Example of a multiple sequence alignment. Columns 1-3 contain mismatches

which indicate substitutions. Gap characters ‘-’ (insertions/deletions) are

introduced to columns 4-5. The remaining columns are all constant sites.

In this thesis, a pattern or a site pattern refers to any possible combination of the

character states in the aligned sequences at one alignment column. An alignment of

n nucleotide sequences shows at most 4n different site patterns. A pattern may occur

many times in the alignment while some patterns might not be present at all.

1.1.3 Models of sequence evolution

In order to employ statistical inference techniques to reconstruct phylogenetic trees from

molecular data (Section 1.1.4) and to estimate the so-called genetic distance between two

homologous sequences (a fundamental concept in phylogenetics and sequence analysis),

one needs a probabilistic description of the substitution process according to which a

sequence evolves, i.e., a model of sequence evolution. Before describing such a model, we

first define distances between a pair of homologous sequences. Given two homologous

sequences x and y of the same length, we distinguish two kinds of distances:

The observed distance between x and y is the number of positions at which the char-

acter states in x and y mismatch divided by the sequence length.

The genetic distance or evolutionary distance between x and y is the actual number

of substitutions per site which have occurred between x and y during evolution.

Thereby, the observed distance is actually the normalized Hamming distance and its

computation is straightforward given the two sequences. The observed distance is a

proper estimation of the genetic distance if the genetic distance is small. However, if

many substitutions (per site) have occurred between the two sequences because of, e.g.,
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a high substitution rate (see the next sections), then their observed distance usually

underestimates their genetic distance (e.g. Strimmer and von Haeseler, 2009). This is

due to the fact that (i) multiple substitutions, i.e. two or more substitutions happening

at the same site such as A to C and then C to T , are counted as one substitution (from

A to T ), and (ii) back substitutions at a site, e.g. A changed to C and then C changed

back to A, are not observed at all. Thereby, one needs to employ statistical techniques

to estimate the genetic distance between two homologous sequences assuming a model

of sequence evolution.

We outline in the next sections the widely used models of sequence evolution including

models of character (nucleotide or amino acid) substitution, models of rates across sites

heterogeneity, and more sophisticated, recently developed evolutionary models.

1.1.3.1 Models of nucleotide substitution

For nucleotide sequences, the substitution process is commonly modeled as a time-

homogeneous, time-continuous, stationary Markov process (Tavaré, 1986). The cen-

tral component of the process is the so-called instantaneous substitution rate matrix

Q = {qij}, which defines the rate of substitution from one nucleotide state (i) to an-

other state (j) per time unit. Usually, time-reversibility is presumed, i.e., the probability

of changing from i to j over a time t is the same as changing from j to i. For one unit

of evolutionary time, the probability of changing from i to j is the product of the in-

stantaneous substitution rate from i to j, qij, and the probability of i, πi. Therefore,

the time-reversibility condition implies that πiqij = πjqji. To this end, the most general

time-reversible model GTR (Tavaré, 1986) is determined by (see also e.g. Felsenstein,

2004, pp. 196-211; Strimmer and von Haeseler, 2009):

Q =



A G C T

A . πGa πCb πT c

G πAa . πCd πT e

C πAb πGd . πTf

T πAc πGe πCf .

, (1.1)

where πA, πG, πC and πT are the stationary equilibrium frequencies of nucleotidesA,G,C,

and T , respectively (πA + πG + πC + πT = 1). Parameters a, b, c, d, e, f indicate the sub-

stitution rates between specific nucleotides, thereafter referred to as relative substitution
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rates to distinguish them from the instantaneous substitution rates. The diagonal ele-

ments qii are determined such that the sum of each row equals zero:

qii = −
∑
j 6=i

qij. (1.2)

Apart from the time-reversibility assumption, the GTR model assumes four condi-

tions: (i) At any given site in the sequence, the rate of change from nucleotide state i

to nucleotide state j is independent of the history of i (Markov property). (ii) The sub-

stitution rates are constant over time (time-homogeneity). (iii) Substitutions between

nucleotides can occur at any time during evolution (time-continuity); and (iv) the base

frequencies π = (πA, πG, πC , πT ) are at equilibrium (stationarity).

The Q matrix is scaled such that the total substitution rate over all nucleotides at

equilibrium is one. This is equivalent to:

2(πAπGa+ πAπCb+ πAπT c+ πGπCd+ πGπT e+ πCπTf) = −
∑

πiqii = 1 (1.3)

This implies that one expects to see one substitution per unit of evolutionary time.

Thereby, the GTR model consists of 8 free parameters: 3 for the base frequencies, and

5 for the relative substitution rates between specific nucleotides. Restrictions imposed

to the GTR model result in nested (less parameter) models such as JC69 (Jukes and

Cantor, 1969) and HKY85 (Hasegawa et al., 1985). Table 1.3 presents a list of widely

used nucleotide substitution models together with the substitution types distinguished,

equal or unequal base frequencies, and the number of free parameters to be estimated.

The Q matrix of the GTR model can be decomposed into two components: the matrix

of relative substitution rates (the R matrix) and the diagonal matrix of base frequencies

(the π matrix):

Q = Rπ =


. a b c

a . d e

b d . f

c e f .



πA 0 0 0

0 πG 0 0

0 0 πC 0

0 0 0 πT

 , (1.4)

where the diagonal entries of R are determined such that Equation 1.2 is satisfied.

Once the instantaneous rate matrix is specified the substitution probability matrix

P(t) = {pij(t)}, which provides the probabilities of changing from a nucleotide i to
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Modela Substitution types distinguished Base freq. #Params

JC69 None (a=b=c=d=e=f) Equal 0

F81 None (a=b=c=d=e=f) Unequal 3

K2P Transitions vs. transversions (a=f , b=c=d=e) Equal 1

HKY85 Transitions vs. transversions (a=f , b=c=d=e) Unequal 4

K3ST Transitions and 2 transversions (a=f , b=e, c=d) Equal 2

K3STuf Transitions and 2 transversions (a=f , b=e, c=d) Unequal 5

TN93ef 2 transitions and transversions (a, f , b=c=d=e) Equal 2

TN93 2 transitions and transversions (a, f , b=c=d=e) Unequal 5

SYM All substitutions (a, b, c, d, e, f) Equal 5

GTR All substitutions (a, b, c, d, e, f) Unequal 8

Table 1.3: List of widely used nucleotide substitution models together with the substitu-

tion types distinguished, equal or unequal base frequencies and the number of

free parameters. aJC69 (Jukes and Cantor, 1969), F81 (Felsenstein, 1981b),

K2P or K80 (Kimura, 1980), HKY85 (Hasegawa et al., 1985), K3ST or K81

(Kimura, 1981), TN93 (Tamura and Nei, 1993), SYM (Zharkikh, 1994), and

GTR (Tavaré, 1986).

another nucleotide j over an evolutionary time t (e.g. a branch length in a tree), can be

calculated by (see e.g. Strimmer and von Haeseler, 2009):

P(t) = exp(Qt). (1.5)

As Q is normalized so that the total substitution rate is one (Equation 1.3), the evolu-

tionary time t is interpreted as the number of substitutions per site. As R is symmetric,

the decomposition of Q as in Equation 1.4 enables an efficient way to compute exp(Qt)

(Felsenstein, 2004, pp. 196-211).

One may employ P(t) to estimate the genetic distance between two sequences using

the maximum likelihood principle (e.g. Strimmer and von Haeseler, 2009, see also Sec-

tion 1.1.4.2). Given two homologous nucleotide sequences of length `, x = x1x2 · · ·x`
and y = y1y2 · · · y`, the likelihood function calculates the probability of observing these

two sequences under the evolutionary model specified by Q given that d substitutions
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per site have taken place between them:

L(d) = Pr(x,y | Q, d) =
∏̀
k=1

πxk
pxkyk

(d). (1.6)

The distance d̂ which maximizes L(d) is called the maximum likelihood estimate of the

genetic distance between the two sequences (Strimmer and von Haeseler, 2009).

1.1.3.2 Models of amino acid substitution

The substitution process between amino acids is also assumed to be a time-homogeneous,

time-continuos, time-reversible, stationary Markov process. However, as twenty possible

amino acid states require estimations of too many substitution model parameters, these

parameters are usually derived from empirical studies from large amounts of data. Such

empirical amino acid substitution models include, e.g., PAM (Dayhoff et al., 1978),

JTT (Jones et al., 1992), mtREV (Adachi and Hasegawa, 1996), WAG (Whelan and

Goldman, 2001) and LG (Le and Gascuel, 2008).

1.1.3.3 Models of rate heterogeneity

So far we have assumed that the instantaneous substitution rates between nucleotide or

amino acid characters are the same for every site in the alignment, i.e. the homogeneous

rate model. However, it has been shown that substitution rates may vary across sites

in an alignment (see e.g. Li, 1997, pp. 74-78 for a brief review and references therein).

This phenomenon is termed rates across sites (RaS) heterogeneity. For example, in

protein-coding nucleotide sequences, rates of substitution at the third codon positions

are typically much larger than those at the first and the second codon positions (see e.g.

Rodŕıguez-Trelles et al., 2006; Bofkin and Goldman, 2007).

Rates across sites heterogeneity has been modeled by, e.g., assuming a proportion of

invariable sites (zero rate of change) in the alignment (e.g. Churchill, 1992), a gamma

distribution (Uzzell and Corbin, 1971; Yang, 1994b), or a combination of invariable sites

and gamma distribution (Gu et al., 1995). More complex models employ site-specific

rates, i.e., every site has its own rate (Meyer and von Haeseler, 2003). It should be

noted, that in order to make the branch length the number of substitutions per site, the

mean of the rates of substitution over all sites must be one, e.g., the Γ-distribution used
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to model RaS heterogeneity must have a mean of one. Assume that every alignment

site ai possesses an evolutionary rate ri with 1
`

∑̀
i=1

ri ≈ 1, then the probability of site ai

given a branch length t is computed based on the probability matrix P(rit) = exp(riQt).

This implies that the “actual” or “average” time of evolution t (the average number of

substitutions per site) is scaled by ri for site ai.

In general, an evolutionary model involves a substitution model between the characters

plus a model of RaS heterogeneity. For instance, ‘JC69+I’ indicates the JC69 model

of nucleotide substitution together with the invariable site model of RaS heterogeneity;

‘+Γ’ specifies a Γ-distribution for RaS heterogeneity; ‘+I+Γ’ for both invariable sites and

a Γ-distribution; or simply JC69 for homogeneous rates across sites. The total number

of parameters to be estimated for an evolutionary model is the sum of the number of

free parameters from the substitution model (c.f. Table 1.3 for nucleotide substitution

models) and the number of parameters to model rates across sites, which is zero for

homogeneous rates; one for the proportion of invariable sites (I); one for the Γ-shape

parameter α; or the number of site patterns in the alignment minus 1 for site-specific

rates under the condition that alignment sites showing the same pattern have the same

evolutionary rate.

1.1.3.4 More complex models of sequence evolution

We have outlined the widely used models of sequence evolution which comprise an

instantaneous rate matrix Q = Rπ and a model of rates across sites (homogeneity or

heterogeneity). While inferring the phylogeny using these models, we assume a single,

constant Q matrix along the tree and across the sites. In the following, we briefly discuss

a number of more complex, more “realistic” models which have been proposed recently.

Compositional heterogeneity commonly refers to the differences in the composition

of nucleotide or amino acid bases, i.e. different π frequencies, among DNA or

protein sequences (see e.g. Jermiin et al., 2009). Models which accommodate

compositional heterogeneity assign to each branch a specific π matrix (e.g. Yang

and Roberts, 1995), or a specific GC content (e.g. Galtier and Gouy, 1998); and

allow for more than one π matrix along the tree, i.e. several branches might have

the same π matrix (e.g. Foster, 2004; Blanquart and Lartillot, 2006; Gowri-Shankar

and Rattray, 2007). Lartillot and Philippe (2004) developed a model of amino acid
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sequence evolution that permits the equilibrium distribution of base frequencies

to differ across sites. More recently, Blanquart and Lartillot (2008) incorporated

both branch- and site-heterogeneous composition of base frequencies. Tools like

SeqVis (Jermiin et al., 2009) detect compositional heterogeneity among aligned

nucleotide sequences.

Relative substitution rate heterogeneity. We refer this class of models to those that

allow for different R matrices across branches or across sites. These models are

mostly applied to nucleotide data only as for amino acid data, the relative sub-

stitution rates are usually taken from the empirical model and fixed while infer-

ring the tree. For instance, Huelsenbeck and Nielsen (1999) sampled the transi-

tion/transversion ratio for each site of the alignment from a gamma distribution.

Pagel and Meade (2004) developed a mixture model to allow for more than one Q

matrix, each has a particular probability or weight at each alignment site. Both

constituents, the π and R matrices, may be different among these Q matrices.

The evolution of a site is mainly characterized by the Q matrices that have the

largest probabilities at this site. As each Q matrix weights differently across sites,

this model incorporates both compositional heterogeneity and relative substitution

rate heterogeneity across sites.

Changing the π or the R matrices leads to different Q matrices. Therefore, models

allowing compositional heterogeneity and/or relative substitution rate heterogene-

ity relax the assumption of a constant Q matrix along the tree or across alignment

sites.

Heterotachy refers to a phenomenon that the substitution rate at a site changes through

time (Philippe and Lopez, 2001; Lopez et al., 2002). According to this definition

covarion models, first introduced by Fitch and Markowitz (1970); Tuffley and Steel

(1998), reflect heterotachy. These models employ, in addition to the substitution

process, a switching process between two classes “on” and “off”. If a site is in

the “on” state, the corresponding (nucleotide/amino acid) character can change

to another character state, otherwise it cannot change. The switching between

“on” and “off” states of a site during the course of evolution has a rate, called

the switching rate. Other covarion-like models allow a proportion of alignment

sites to switch among different substitution rates over time (Galtier, 2001). Wang

et al. (2007) generalized these models so that a site can switch between a variable
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state and an invariable state, and if it is in the variable state, it can switch among

multiple substitution rates.

Mixed branch length models which allow site-specific branch length sets (Tuffley

and Steel, 1997; Kolaczkowski and Thornton, 2004; Spencer et al., 2005) are also

considered to imply heterotachy though the implication is not so straightforward.

The earliest mixed branch length model was described by Tuffley and Steel (1997),

the so-called “no-common-mechanism” model, where every site has its own set of

branch lengths on the same tree topology. Maximum likelihood with no-common-

mechanism and maximum parsimony are shown to be equivalent (Tuffley and Steel

(1997), see also Yang (2006), pp. 198-201 and Fischer and Thatte (2010) for

more discussion). Other mixed branch length models (Kolaczkowski and Thorn-

ton, 2004; Spencer et al., 2005), which were implemented in Kolaczkowski and

Thornton (2008), and the one from Pagel and Meade (2008) partition the align-

ment into different regions where each region evolves under a specific set of branch

lengths. In a simple setting, for instance, half of the alignment sites evolved

under one set of branch lengths whilst the other half evolved under another set

(Kolaczkowski and Thornton, 2004). Mixed branch length models need to be dis-

tinguished from RaS heterogeneity models (Figure 1.2a-b). In RaS heterogeneity

models (Section 1.1.3.3) a “slow-evolving” site ai evolves more slowly than a “fast-

evolving” site aj across the whole tree (Figure 1.2a). This implies that the tree

which gives rise to aj is “scaled” by a factor larger than one with respect to the tree

(same topology) giving rise to ai. In mixed branch length models, a site ai evolves

more slowly than another site aj on some branches, e.g. on the external branches

leading to C and to D in Figure 1.2b, but on some other branches (leading to A

and to B) ai evolves faster than aj. Therefore, one cannot “scale” the tree giving

rise to ai to obtain the tree along which aj evolves. In comparison with site aj the

evolutionary rate of site ai shifts, during the course of evolution, from faster on

the branches leading to A and to B to slower on the branches leading to C and

to D. This might be the reason why mixed branch length models are commonly

considered a kind of heterotachy.

More recently, Whelan (2008) employed the so-called “temporal hidden Markov model”

to accommodate many kinds of heterogeneity for nucleotide data: compositional hetero-

geneity, relative substitution rate heterogeneity (reflected in the transition/transversion
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Figure 1.2: Examples of (a) a RaS heterogeneity model and (b) a mixed branch length

model.

ratio variation), and substitution rate heterogeneity across both branches on the tree

and sites in the alignment. A similar technique was implemented to detect heterotachy

in protein sequences (Whelan et al., 2011).

This is an incomplete list of the growing number of sophisticated evolutionary models

(codon models, e.g., are not mentioned). Clearly, these complex models cast a sub-

stantially large number of parameters to be estimated for likelihood-based phylogeny

inference (Section 1.1.4.2). For distance-based tree reconstruction (Section 1.1.4.3), dis-

tance adjustments to account for such complex scenarios of sequence evolution exist.

For instance, the LogDet (Lockhart et al., 1994) distance accounts for compositional

heterogeneity, and the modified Tamura-Nei distance (Tamura and Kumar, 2002) in-

corporates both compositional and relative rate heterogeneity across branches. Wu and

Susko (2009) accommodate general heterotachy by estimating for each pair of sequences

an individual Γ-shape parameter α and then computing the pairwise genetic distance

accordingly.

1.1.4 Methods for phylogeny reconstruction

Given a sequence alignment A, the task of phylogeny reconstruction is to find a tree

(with branch lengths) that best describes the observed sequence data. In order to find

a best tree, a criterion to score trees is required. There are different optimality criteria

that give rise to the following methods:
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1.1.4.1 Maximum parsimony

Maximum parsimony (MP) searches for a tree that requires the minimum number of

substitutions to explain the variation of the sequences in the alignment (Edwards and

Cavalli-Sforza, 1963; Camin and Sokal, 1965; Fitch, 1971). Given an alignment site ai and

a tree, the parsimonious principle assigns sets of possible character states to all internal

nodes of the tree to attain ai at the leaves with the minimum number of substitutions

along the branches. The number of substitutions needed is called parsimony length (PL).

The total parsimony length is the sum of the parsimony lengths over all alignment sites.

Tree reconstruction with MP selects the trees with the minimum total parsimony length.

Fitch’s algorithm (Fitch, 1971) is often used to compute PL and to derive the possible

ancestral character states on a rooted tree for a given site pattern. The algorithm

consists of two phases. The first phase simultaneously computes PL and determines the

preliminary sets of possible character states at the internal nodes. We initially set PL

to zero and traverse on the tree from the leaves toward the root. The character set at

each leave is always the set containing the corresponding character in the pattern. The

preliminary set at an internal node is then either the intersection of the two preliminary

sets at its intermediate descendants if their intersection is not empty or their union,

otherwise. In case of a union, we increase PL by 1. Figure 1.3a presents an illustration of

this phase, where the parsimony length of the pattern ACGGC on the rooted five-taxon

tree shown is 2. The second phase of the algorithm introduces several rules to derive

the final sets of possible character states at the internal nodes from the preliminary sets

constructed in the first phase (see Fitch, 1971, for more detail). Applying those rules to

our example results in the assignment shown in Figure 1.3b: the character set at every

internal node contains exactly one character state, thus yielding a unique assignment of

substitutions to the branches.

The Fitch algorithm described above does not distinguish different types of substi-

tutions while other variants (e.g. Sankoff, 1975) weight substitutions differently. In

addition, because more than one character state might be possible at the internal nodes

of the MP tree (see e.g. Figure 1b in Fitch (1971)), one can assign substitutions on

the branches according to (i) accelerated transformation ACCTRAN (substitutions are

introduced as close to the arbitrary root as possible), or (ii) delayed transformation DEL-

TRAN which tries to delay substitutions until the external branches if possible (Swofford

and Maddison (1987), see also Farris (1970)).
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Figure 1.3: An illustration of the Fitch algorithm (Fitch, 1971). (a) illustrates the first

phase of the algorithm which simultaneously computes the parsimony length

PL of the pattern ACGGC on the tree and determines the preliminary sets

of possible ancestral character states. (b) shows the final sets of possible

character states at the internal nodes obtained by applying the second phase

of the algorithm.

1.1.4.2 Maximum likelihood

Maximum likelihood (ML) searches for a tree that maximizes the conditional probability

of the alignment given the tree and a model of sequence evolution M (Felsenstein,

1981a). The tree with branch lengths Tbr and the evolutional model M with model

parameters θ compose a hypothesis H of the evolutionary process that gave rise to the

observed data A. The likelihood of H is (proportional to) the conditional probability

of A given M, θ, and Tbr. This conditional probability is computed as the product of

the conditional probabilities of all sites in the alignment under the assumption that

alignment sites evolve independently. Thus:

L(H) = Pr(A | H) =
∏̀
i=1

Pr(ai | M, θ, Tbr) (1.7)

or the log likelihood:

L(H) =
∑̀
i=1

ln (Pr(ai | M, θ, Tbr)) , (1.8)

where ` is the alignment length.
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Recall from the last chapter (Section 1.1.3), that the model M and its parameters

θ specify an instantaneous rate matrix Q and thus we can compute the substitution

probability matrix P(t) for every branch of a tree according to Equation 1.5 (for models

with, e.g., compositional/relative rate heterogeneity across branches, different branches

may have different Q matrices). It should be noted that the likelihood function used to

estimate the genetic distance between two sequences (Equation 1.6) is a simple case of

Equation 1.7 where the tree Tbr has only one branch of length d which connects the two

sequences (taxa). Having P(t) computed for all branches, it is then straightforward to

calculate the conditional probability of each site pattern given the tree and the model

using Felsenstein’s (1981a) pruning algorithm. Subsequently, the likelihood function in

Equation 1.7 is determined. While maximizing the likelihood function, we estimate the

model parameters and the branch lengths. Tree reconstruction with ML selects the trees

with the maximum likelihood.

1.1.4.3 Distance-based methods

Distance-based methods use a given distance matrix consisting of pairwise distances

between every pair of taxa for tree reconstruction. Typically, we use the genetic distance

(Section 1.1.3) estimated for every pair of sequences in the alignment under the maximum

likelihood principle (see Equation 1.6). Distance-based methods can be classified into

three classes:

Least square (LS) method first defines the predicted pairwise distance between two

taxa on a tree as the sum of the branch lengths along the path connecting these two

taxa. Given a distance matrix and a tree, the LS principle estimates the branch

lengths of the tree by minimizing either the sum (Cavalli-Sforza and Edwards,

1967) or the weighted sum (Fitch and Margoliash, 1967), denoted as Sδ, of the

squared differences between the given and predicted pairwise distances. Tree search

under the LS criterion selects the trees with the minimum Sδ.

Minimum evolution (ME) method (Rzhetsky and Nei, 1993) uses the tree length (sum

of all branch lengths in the tree) as the criterion to compare trees. For a given tree,

the least square principle is commonly employed to estimate the branch lengths.

Tree search under the ME criterion selects the trees with the minimum tree length.

Clustering methods directly compute the tree and its branch lengths by grouping the
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subtrees iteratively (a taxon is a trivial subtree). The subtrees are grouped at each

step according to the method’s principle (e.g. Sokal and Sneath, 1963; Saitou and

Nei, 1987; Gascuel, 1997). For example, the unweighted pair-group method with

arithmetic averages (UPGMA) (Sokal and Sneath, 1963) agglomerates, at each

step, two rooted subtrees with the smallest distance into a new rooted subtree.

The distances between the new subtree and the other subtrees are computed;

then, the distance matrix is updated with the dimension reduced by one. The

process continues until all taxa are grouped into a single tree.

Clustering methods do not necessitate any objective function being ‘globally’ op-

timized. Thereby, they do not have to employ any tree search, thus demanding

much less computational resources than methods requiring tree search such as LS

and ME. Nonetheless, the neighbor joining (NJ) method (Saitou and Nei, 1987), a

clustering method, approximately reconstructs the minimum evolution phylogeny

(see Saitou and Nei, 1987; Gascuel, 1997). NJ and one of its variants, BIONJ

(Gascuel, 1997), are widely used distance-based methods.

1.1.4.4 Bayesian methods

Bayesian methods (see Huelsenbeck et al., 2001, for a review) do not attempt to search

for a single best tree but sample a set of plausible trees. They employ the concept

of likelihood (therefore, also assuming a model of sequence evolution) to compute the

posterior probability of a tree given the observed data (alignment) using Bayes’s theorem

(Huelsenbeck et al., 2001; Ronquist et al., 2009). In the end, a list of trees that have the

largest posterior probabilities are reported. A consensus tree computed on these trees

or the maximum a posteriori tree can be viewed as the final phylogeny result of the

analysis.

Remarks: Because the number of trees grows exponentially concerning the number of

taxa, searching for the global optimum or the best tree is impractical for large numbers

of taxa. Heuristic search strategies need to be employed. Many algorithms have been

developed resulting in a large number of software programs for phylogeny reconstruction

such as PHYLIP (Felsenstein, 1993), PAUP* (Swofford, 2002), PhyML (Guindon and

Gascuel, 2003), IQPNNI (Vinh and von Haeseler, 2004; Minh et al., 2005), MEGA4 (Ku-

mar et al., 2008), RAxML (Stamatakis, 2006), and MrBayes (Huelsenbeck and Ronquist,
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2001) (see Lemey et al., 2009, for a collection).

As the objective functions to search for best trees are different among the methods,

they may reconstruct different trees. It is, therefore, exciting to explore the performance

with respect to reconstruction accuracy of the various approaches.

1.2 Model selection

In Section 1.1.3 we have discussed a wide range of models of sequence evolution in terms

of model complexity. Model based phylogeny inference depends on the model used.

Studies have shown that oversimplified models may result in inconsistency of tree re-

construction methods (e.g. Sullivan and Swofford, 2001). These models are inadequate

to describe the data. On the other hand, more complex models require more compu-

tational resources and may lead to increased uncertainty in parameter estimates as the

same amount of data are used for the estimation. For example, Buckley et al. (2001)

showed that both the GTR+I+Γ and GTR+Γ models yielded a more accurate estima-

tion of branch lengths than a more parameter rich model, GTR plus site-specific rates

with 10 rate categories (i.e. 9 free parameters to model rates across sites heterogeneity

compared with 2 in the GTR+I+Γ model or 1 in the GTR+Γ model). In some extreme

cases, overparameterized models may lead to nonidentifiable parameters (e.g. Rannala,

2002). Therefore, to select the model that best explains the data with a minimum

number of free parameters, the so-called best-fit model, is necessary.

A typical way to test whether a more complex model significantly fits the data better

than a simpler model is the likelihood ratio test, LRT (Navidi et al., 1991; Goldman,

1993b; Huelsenbeck and Rannala, 1997; Frati et al., 1997; Sullivan et al., 1997). The

LRT statistic is twice the difference between the two maximum log likelihoods under the

compared models:

LRT = 2(L1 − L0), (1.9)

where L1 is the maximum log likelihood under the more complex model (alternative

model) and L0 is the maximum log likelihood under the simpler model (null model).

When the compared models are nested (the simpler model is a special case of the more

complex model) and the simpler model is correct, this test statistic asymptotically follows

a χ2 distribution with the number of degrees of freedom equal to the difference in the
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number of free parameters between the two models (Navidi et al., 1991; Goldman, 1993b;

Whelan et al., 2001, and references therein). When the realized LRT value is significantly

large (i.e. the P -value is smaller than 0.05 or 0.01), the null model is rejected. On the

contrary, a small LRT value indicates that the alternative model does not describe the

data significantly better than the null model and we cannot reject the null model.

Whelan and Goldman (1999) showed cases in which the χ2 distribution is an inap-

propriate approximation of the null distribution of the LRT statistic, e.g. when the

compared models differ by the inclusion of the Γ-shape parameter to model rates across

sites heterogeneity in one model (see Goldman and Whelan, 2000, for explanations). In

such a case, the null distribution of the test statistic can be achieved via simulation.

First, data are simulated under the stochastic process specified by the null model using

the ML estimated parameters based on the original data. This is called parametric boot-

strapping and the simulated data are called parametric bootstrap replicates (Felsenstein,

2004, pp. 357-358). The simulated data are then analysed under both models and the

test statistic is calculated accordingly. Values of the test statistic from many replicates

form the null hypothesis distribution to which the realized test statistic is compared

(Goldman, 1993b; Whelan et al., 2001).

To choose the best-fit model from a set of nested models (e.g. the GTR “family”

shown in Table 1.3) hierarchical likelihood ratio tests (hLRTs) are employed (e.g.

Huelsenbeck and Crandall, 1997; Huelsenbeck and Rannala, 1997; Posada and Crandall,

1998). One starts, for example, with the simplest model (JC69), then gradually includes

more model parameters until the likelihood does not increase significantly. The last

model on the trace is the best-fit model. A detailed diagram of the hLRTs to select the

best-fit model is depicted in, e.g., Posada and Crandall (1998) and Posada (2009).

For non-nested models, hLRTs are not applicable. As a remedy, one may use information-

based criteria like the Akaike information criterion AIC (Akaike, 1974) and the

Bayesian information criterion BIC (Schwarz, 1978). AIC and BIC assess fit via

the maximum log likelihood or the logarithm of the maximum a posteriori probability

plus penalty for overparameterization. Available software packages such as Model-Test

(Posada and Crandall, 1998; Posada, 2008) allow to select the best-fit model from a

collection of evolutionary models for a given alignment. It should be noted that the

above tests compare the fit (as reflected by the likelihood) of two models to the data

but do not provide any statement about how well the favored model explains the data.
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The best-fit model selected via model selection is not necessary a model that describes

the data adequately. Therefore, it is essential to test the adequacy between model and

data even if the best-fit model is used for the inference.

1.3 Notes before drawing conclusions based on the

inferred trees

We have introduced essential materials for reconstructing phylogenies from molecular

data. Table 1.4 depicts a workflow of phylogeny inference recruiting these materials.

Input: A set of homologous sequences.

Step 1: Align the sequences into a multiple sequence alignment.

Step 2: Determine which reconstruction method(s) to use.

Step 3: Select the best-fit model from a collection of evolutionary models if the meth-

ods assume a model of sequence evolution (MP does not explicitly assume

an evolutionary model).

Step 4: Reconstruct the tree using the methods of choice (and the evolutionary mod-

els).

Output: The inferred tree(s).

Table 1.4: A pipeline for inferring phylogeny from molecular data.

Before drawing conclusions about the evolutionary relationships among the taxa with

regards to the inferred trees, several issues should be taken into account:

Quality of the alignment: As sequence alignments are the input for phylogeny recon-

struction, their quality, i.e., the accuracy of aligning homologous residues (see

Edgar and Batzoglou (2006) for a review) influences the phylogeny result (see e.g.

Landan and Graur, 2007). Recently, a few approaches to evaluate the reliability

of an alignment have been proposed such as the HoT method (Landan and Graur,

2007) and the GUIDANCE method (Penn et al., 2010). Nevertheless, the align-

ment is typically taken as given in phylogeny inference except several attempts to
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simultaneously align the sequences and reconstruct the phylogeny (e.g. Fleissner

et al., 2005; Metzler and Fleissner, 2009; Liu et al., 2009; Löytynoja and Goldman,

2009).

Data support for the branches: Heuristic searches for a best tree employ some rear-

rangements on trees such as nearest neighbor interchange (NNI) and sub-tree prun-

ing and regrafting (SPR) to explore the tree space. This implies that when the data

contain little phylogenetic signal, such an operation (e.g. an NNI move) cannot de-

tect any difference between the two topologies under consideration. Consequently,

some branches (internal nodes) of the inferred tree may be poorly supported by the

data or even unresolved. The bootstrap technique (Efron, 1979), first introduced

to phylogenetics by Felsenstein (1985), is widely used to estimate the reliability of

the branches. The inferred tree is then reported together with the so-called boot-

strap support for its internal branches. The bootstrap support for a branch is the

proportion of trees estimated from the bootstrap replicates (obtained by sampling

the alignment columns with replacement) that contain this branch. The larger the

bootstrap support for a branch is, the better do the data agree on this branch.

Goodness of fit between a model and data shows whether or not the data are ade-

quately explained by the model. Model adequacy has been tested by comparing

the maximum likelihood yielded by the examined model with the unconstrained

likelihood computed directly from the data (Navidi et al., 1991; Goldman, 1993b;

Bollback, 2002). We briefly summarize several tests of model adequacy available

and present a novel method for evaluating the goodness of fit in Chapter 3.

Insights into the performance of the method may help avoid wrong interpretation

due to reconstruction artefacts such as long branch attraction (Felsenstein, 1978).

Performance of phylogeny reconstruction methods can be evaluated under several

criteria such as consistency (the ability to estimate the correct tree with sufficient

data), efficiency (the ability to quickly converge on the correct phylogeny), and

robustness (the ability to infer the correct tree in the presence of model violation).

Among these, robustness to model violation may be the most practically impor-

tant as complete a priori knowledge of the evolutionary processes is typically not

available. Thus, studies to gain more insights into the robustness of phylogenetic

methods against different model violations are encouraged. We outline some main

outcomes from previous evaluations of the performance in phylogenetics and re-
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port new observations about the robustness of different phylogenetic methods in

Chapter 4.



Chapter 2

Intermittent evolution: A new view of

sequence evolution

The progress of science requires more than new data; it needs novel

frameworks and contexts.

Stephen Jay Gould

2.1 Intermittent evolution

Given a tree and an alignment that evolved along the tree, we define intermittent evo-

lution as extra substitution(s) occurring randomly on branch(es) of the tree and thus

changing site pattern(s) in the alignment. The introduction of intermittent evolution is

motivated by the following question: How does the alignment change, if an additional

substitution on an arbitrary branch of the tree took place (Klaere et al., 2008)? Such

an extra substitution implies a stochastic effect that acts somewhere on the tree and

disturbs the observed signal (the alignment).

Klaere et al. (2008) showed how to model the impact of a single additional substi-

tution on a multiple sequence alignment for binary character states. To this end, they

constructed a so-called one step mutation (OSM) matrix, a doubly stochastic matrix.

For a tree of n taxa the OSM matrix is a 2n × 2n-dimension permutation matrix where

every non-zero entry describes how the extra substitution changes a site pattern into

23
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another site pattern. In the following, we extend the concept of the one step mutation to

nucleotide characters by employing the Kimura three parameter (K3ST) model (Kimura,

1981). We then demonstrate the construction of the OSM matrix for a given tree T .

2.2 Modelling intermittent evolution of nucleotide

sequences

2.2.1 Impact of an extra substitution on an alignment site pattern

The K3ST model distinguishes three types (classes) of substitutions as summarized in

the following permutation matrices:

s1 =



A C G T

A 0 0 1 0

C 0 0 0 1

G 1 0 0 0

T 0 1 0 0

, s2 =



A C G T

A 0 1 0 0

C 1 0 0 0

G 0 0 0 1

T 0 0 1 0

, s3 =



A C G T

A 0 0 0 1

C 0 0 1 0

G 0 1 0 0

T 1 0 0 0

.

s1 describes the transitions within purines (A,G) and pyrimidines (C, T ). s2 represents

the transversions within the nucleotide pairs (A,C) and (G, T ), and s3 the remaining

transversions within the nucleotide pairs (A, T ) and (C,G). Using this model, we now

study the effect of an extra substitution on a certain branch of the tree. Consider the

rooted two-taxon tree in Figure 2.1a. Assume that the mutation history of the nucleotide

on this tree is known: The root state is C and a substitution s2 occurs on the branch

leading to taxon 1. Therefore, we observe the nucleotide A in taxon 1. How will the

observed nucleotide change if we introduce an extra substitution, e.g. an s1 substitution,

on the branch leading to taxon 1? We can introduce s1 either “before” or “after” s2

occurs. If the extra substitution s1 occurs before s2, it changes the root nucleotide C

into T . Then T is changed into G by s2; hence G would be observed in taxon 1 instead

of A (Figure 2.1b). If the extra substitution occurs after s2, it changes the observed

nucleotide A also into G (Figure 2.1c). Thus, independent of the order of substitutions,

the outcome is always a G in taxon 1. Hence, placing an extra substitution on a branch of

the tree results in a unique outcome independent of the unknown substitution history of

the observed nucleotide. This is essentially due to the fact that the substitution matrices
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C

Figure 2.1: Placing an extra substitution on a branch. (a) shows a rooted two-taxon

tree, where the mutation history of the nucleotide position is known: a sub-

stitution s2 occurred on the branch leading to taxon 1. An extra substitution

s1 was introduced (b) “before” and (c) “after” the substitution s2 occurred.

Wherever the extra substitution s1 was placed, the nucleotide observed in

taxon 1 is the same.

s1, s2, s3 and the identity matrix s0 form a commutative group (Klein four-group, see

e.g. Humphreys (1996), pp. 26-28) with respect to matrix multiplication. We also note

that the K3ST model is the most general model for nucleotide substitution that allows

for the formation of such a group.

2.2.2 Formation of the one step mutation (OSM) matrix

The algebraic structure of the K3ST model allows for an analytical way to construct the

OSM matrix for a given tree. Figure 2.2 illustrates the connection between the K3ST

model and the OSM matrix. For the left branch e1 of the two-taxon tree (Figure 2.2a),

a transition s1 of the K3ST model (Figure 2.2b) produces a unique 16× 16-dimensional

(permutation) matrix σs1,e1 (Figure 2.2c). The matrix is symmetric, and each row and

each column has exactly one non-zero entry (red-horizontal-stripe cell) which describes

how a transition on this branch changes a pattern (row) into a new pattern (column). We

note that σs1,e1 is nothing else but the Kronecker product (see e.g., Horn and Johnson,

1991, pp. 242-243) of the permutation matrix s1 for the left branch and the identity
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matrix s0 for the right branch:

σs1,e1 = s1 ⊗ s0.

Similarly, for the right branch e2 the substitution class s1 generates a permutation matrix

σs1,e2 shown in Figure 2.2d and we have:

σs1,e2 = s0 ⊗ s1.

For the internal branch e12 the substitution class s1 generates a permutation matrix

σs1,e12 shown in Figure 2.2e and

σs1,e12 = s1 ⊗ s1.

On the other hand, σs1,e1 · σs1,e2 = (s1 ⊗ s0) · (s0 ⊗ s1) = (s1 · s0) ⊗ (s0 · s1) = s1 ⊗ s1

because s1 ·s0 = s0 ·s1 = s1, where · denotes matrix multiplication. From this we derive:

σs1,e12 = σs1,e1 · σs1,e2 .

In other words, for an internal branch the permutation matrix produced by a substitution

class si ∈ {s1, s2, s3} is the product of the permutation matrices generated by the same

substitution class for the descendant branches.

Thus, it is straightforward to construct the permutation matrices for every branch of a

tree T . For each of the substitution classes, si, we first construct the permutation matrix

for every external branch of T by computing the Kronecker product of the matrix si for

this branch and the identity matrices s0 for the other external branches. The order of the

terms in the Kronecker product must be the same as the order of the taxa or sequences

in the patterns. We then recursively establish the permutation matrices generated by

si for all internal branches of T by traversing on the tree from the leaves toward the

root. The construction of the OSM matrix MT for the tree T is completed by taking

into account the relative contribution of each branch in the tree and the probabilities

for the three substitution classes for each branch. Thus, we obtain:

MT =
∑
e∈E

(αs1,eσs1,e + αs2,eσs2,e + αs3,eσs3,e)pe, (2.1)

where αs1,e, αs2,e, αs3,e are the probabilities of the three substitution classes for branch

e (αs1,e + αs2,e + αs3,e = 1), E the set of all branches of T , and pe the ratio between
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Figure 2.2: (a) A rooted tree with leaves 1 and 2. (b) The K3ST model (Kimura, 1981)

distinguishes transitions s1 (black) and two transversions s2 and s3 (gray

and light-gray, respectively). A transition s1 on the left branch e1 (the red

branch) changes a pattern into exactly one new pattern as depicted by the

red horizontal stripe cells of the permutation matrix σs1,e1 (c). The matrix

has 16 rows and 16 columns representing the possible site patterns for the

alignment of two nucleotide sequences. The permutation matrices generated

by s1 for the right branch e2 (blue) and for the branch leading to the “root”

e12 (green) are displayed in (d) and (e), respectively. The sum of all the

permutation matrices generated by all substitution classes for all branches is

the unweighted OSM matrix of the tree (including the branch leading to the

root in this example) as shown in (f). Horizontal stripe cells represent

the transitions s1; diagonal stripe the transversions s2; and thin reverse

diagonal stripe the transversions s3. The colors of these cells follow the

colors of the branches as in (a) and thus, depicting the branch origin of the

substitution.

the length of branch e and the sum of all branch lengths (pe ≥ 0 and
∑
e∈E

pe = 1). pe is

called the relative branch length of e. MT is the weighted exchangeability matrix for all

patterns given that an extra substitution occurs somewhere on the tree T . Figure 2.2f

depicts the unweighted OSM matrix (just the sum of all permutation matrices without

multiplying by αe or pe) for the tree in Figure 2.2a (including the branch leading to the

root).

The constructed OSM matrix conveys both the tree and the substitution model to

the description of sequence evolution. A positive MT (a,b) entry indicates that there is

a branch e on the tree T and a substitution class si so that a substitution si occurring

on e changes the pattern a to the pattern b. In each row and each column of MT ,

every relative branch length is presented exactly three times, each time together with

the probability of one substitution class. Therefore, the sum of each row or each column

is always one and the k-th power of MT produces the probabilities to move from one

pattern to another in k substitutions.

Modelling the impact of intermittent evolution on an alignment by the OSM matrix
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provides an alternative description of evolutionary processes. Klaere et al. (2008) showed

how to compute the exact posterior probability of the number of substitutions on a given

tree with branch lengths that give rise to an alignment site pattern. They also demon-

strated how to derive the parsimony length and the likelihood for a pattern from the

OSM matrix. Moreover, the pairwise distance between two sequences can be computed

based on the OSM matrix of a tree of two taxa. Thereby, it is possible to use the OSM

description of sequence evolution in MP, ML and distance-based tree reconstruction.

In this thesis, it suffices to employ the OSM matrix as in Equation 2.1. We note that

the OSM matrix allow us to describe heterogeneous substitution processes along the tree,

e.g., the relative substitution rates between nucleotides as reflected by (αs1,e, αs2,e, αs3,e)

can be different across branches.
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Chapter 3

MISFITS: Evaluating the Goodness of

Fit between a Phylogenetic Model and

an Alignment

Remember that all models are wrong; the practical question is how wrong

do they have to be to not be useful.

George E. P. Box and Norman R. Draper

3.1 Introduction to goodness of fit tests in phylogeny

inference

In recent years, the complexity of models of sequence evolution steadily increased (cf.

Swofford et al., 1996; Felsenstein, 2004, see also Section 1.1.3). The general time re-

versible model allows for the estimation of nucleotide-specific substitution rates (e.g.,

Yang, 1994a), the assumption of different rates across sites is included (e.g., Yang, 1993,

1994b; Gu et al., 1995) and even heterotachy and change in evolutionary substitution

models along a tree can be modeled (e.g., Tuffley and Steel, 1998; Foster, 2004). More-

over, we are able to compute the likelihood of a hypothesis (a model and a tree) by

using rapid maximum likelihood tree reconstruction methods (Stamatakis, 2006; Minh

et al., 2005; Jobb et al., 2004; Guindon and Gascuel, 2003; Huelsenbeck and Ronquist,

2001). Tools are also available to select the best model from a collection of available
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models (Posada and Crandall, 1998; Posada, 2008, see also Section 1.2). Recent sur-

veys (Ripplinger and Sullivan, 2008; Sullivan and Joyce, 2005) indicate that the most

complex model is typically selected. The selected model leads to a tree that yields a

significantly higher likelihood than trees based on other models do. However, in many

instances the selected model fails to explain the data adequately as reflected by large

deviations between the observed pattern frequencies and the corresponding expectation.

Thus, the next step in a regular phylogenetic analysis would be to evaluate how well the

selected model fits the alignment. The easiest such approach is a parametric form of

the classical likelihood ratio statistics, where the likelihood under the assumed model is

compared to the unconstrained likelihood (Navidi et al., 1991; Goldman, 1993a,b). The

unconstrained log likelihood or the multinomial log likelihood sets an upper bound on

the log likelihood under any model of sequence evolution and is determined by:

Lunc = ln

(
N∏
i=1

(
`i
`

)`i)
=

(
N∑
i=1

`iln(`i)

)
− ` ln(`), (3.1)

where N is the number of distinct site patterns in the alignment, `i the number of

alignment sites showing the ith pattern, and ` the alignment length (
N∑
i=1

`i = `). This

equation is applicable to gapless alignments with unambiguous character states. For

data with gap characters and ambiguous character states, Waddell (2005) showed a

means to compute the unconstrained likelihood.

Goldman (1993b) applied Cox’s (1961; 1962) method to test the goodness of fit be-

tween a model and an alignment, thereafter this test is referred to as the Goldman-Cox

test or shortly the Cox-test. First the ML tree with branch lengths and model param-

eters are estimated under the examined model. The Goldman-Cox test then computes

as the test statistic the observed difference between the unconstrained log likelihood as

determined by Equation 3.1 and the maximum log likelihood from the ML inference. A

number of parametric bootstrap replicates are generated using the examined model and

the ML tree. For each replicate, the difference between the unconstrained log likelihood

and the log likelihood under the examined model (both are based on the replicate) is

then calculated. This difference represents the expected difference under the null hy-

pothesis of an adequate fit as the tested model was used to generate the data. Thus,

the differences obtained from all the replicates form the null distribution to which the

observed difference is compared. The P -value is the proportion of the replicates where

the difference is larger than or equal to the observed difference. A small P -value (e.g.
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less than 5%) indicates that the model cannot explain the data sufficiently, and thus

should be rejected. On the other hand, a large P -value implies that the model may

describe the data adequately (a schematic workflow to perform this test is provided in

Appendix A, Table A.1).

Similarly, Bollback (2002) used the multinomial log likelihood as the test statistic to

test model adequacy in a Bayesian framework. First, a Bayesian analysis is conducted

under the examined model to provide posterior distribution of tree topologies, branch

lengths, and model parameters. Simulated data are generated using the tested model but

for each replicate the tree topology, branch lengths, and model parameters are sampled

from the corresponding marginal posterior distributions obtained from the Bayesian

analysis. The multinomial log likelihoods computed on the simulated data provide the

posterior predictive distribution to which the multinomial log likelihood from the original

data, i.e. the realized test statistic, is compared. The P -value is interpreted analogously

as in the Goldman-Cox test.

The Goldman-Cox test and Bollback’s (2002) are two tests of absolute model fit that

are accessible to practical analyses. Waddell et al. (2009) introduced another method,

which has more power, using marginal tests. Nevertheless, all these tests are typically

not applied possibly due to the unpleasant outcome that the model and the inferred

tree do not explain the alignment very well. However, it has been shown that a careful

combination of such tests and then going back to the alignment can help to improve the

phylogenetic analysis (Schöniger and von Haeseler, 1999). Unfortunately, this analysis

was instance based, and it is not possible to apply it routinely to alignments.

Here we present MISFITS, a novel approach to evaluate the goodness of fit between a

phylogenetic model and an alignment. At the same time the method suggests alignment

positions that may not fit and a biologically plausible explanation for the deviation.

3.2 The MISFITS method

In a nutshell, MISFITS does the following: Based on the alignment, the substitution

model, and the inferred ML tree we compute the conditional probability given the tree

and the model (shortly called the likelihood) of the site patterns in the alignment and

the corresponding unconstrained likelihood (Navidi et al., 1991; Goldman, 1993a,b). A
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confidence region is then computed to determine a set of over-represented patterns and

a set of under-represented patterns with respect to the expected number of occurrence.

We then apply a maximum parsimony (MP) approach to determine the minimal num-

ber of extra substitutions on the ML tree necessary to convert an alignment column

that belongs to an over-represented pattern into a pattern that is under-represented in

the alignment. The theoretical basis to compute the minimal number of substitutions

utilizes the concept of the one step mutation (OSM) matrix (Klaere et al., 2008). Subse-

quently, a parametric bootstrap analysis is performed to determine whether the number

of extra substitutions is significantly elevated. Moreover, the over-represented patterns

are mapped back to the alignment to pinpoint to potentially problematic regions in the

alignment and to enable a more thorough analysis.

Table 3.1 presents a schematic workflow of MISFITS. We next describe the steps in

more detail.

Step 1: Count the observed frequency of patterns in the alignment.

Step 2: Compute pattern likelihood under the model and the inferred tree.

Step 3: Determine the set of over-represented patterns D+ and the set of under-

represented patterns D−.

Step 4: For all pairs of patterns (a, a′), a ∈ D+ and a′ ∈ D−, compute the minimal

number of extra substitutions to convert a into a′.

Step 5: Select a matching which pairs every pattern in D+ with one pattern in D−

such that the total number of extra substitutions is minimal.

Step 6: Map the extra substitutions on the tree.

Step 7: Determine the significance of the number of extra substitutions computed in

Step 5 by parametric bootstrap.

Table 3.1: Schematic workflow of the MISFITS method.

Step 1 and 2: Consider a gap free, multiple nucleic acid alignment of n sequences

with length `, a nucleotide substitution model and the inferred ML tree. For n taxa,

a total of 4n site patterns are possible. The sites of the alignment constitute a subset
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of these patterns. Given the ML tree and the substitution model (thereafter jointly

referred to as tree-model), we compute the expected pattern-likelihood vector (ptree)

for the patterns in the alignment using, e.g. TREE-PUZZLE (Schmidt et al., 2002),

PHYML (Guindon and Gascuel, 2003), IQPNNI (Vinh and von Haeseler, 2004; Minh

et al., 2005). The unconstrained likelihood vector (punc) of the patterns is simply the

number of alignment sites showing the pattern divided by the length of the alignment

(Navidi et al., 1991; Goldman, 1993a,b). punc is actually the observed frequency of the

patterns in the alignment. Thus, it will be called observed pattern frequency vector.
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Figure 3.1: Observed pattern frequencies and expected pattern likelihood under the tree-

model. Each circle represents a pattern in the alignment by its expected log

likelihood under the tree-model (x-axis) and the logarithm of its frequency

or unconstrained likelihood (y-axis). The dashed lines indicate the 95% Gold

confidence region. The open circles represent patterns within the confidence

region; the black-filled circles are under-represented patterns while the gray-

filled circles are over-represented patterns.

Step 3: If the tree-model is an adequate description of the data, the difference between

the two vectors ptree and punc should be small. In fact, they are the basis for the Cox-test

suggested by Goldman (1993b). Instead of looking at the overall fit, we compare the

two vectors position-wise. Figure 3.1 displays a parametric plot of the logarithms of the

two likelihood vectors computed on a primate complete mitochondrial genome dataset
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under the GTR model. The x-axis displays the logarithm of the entries in ptree and the

y-axis the logarithm of the unconstrained likelihood punc. If the tree-model describes the

data adequately, all points will approximately lie on the identity line. However, residuals

(deviation from the identity line) are often observed. To account for variability in the

data, we compute a simultaneous α = 95% Gold confidence interval for multivariate

proportions (Gold, 1963) for the entries in ptree:

CI(ptreeai
) = ptreeai

±
√
κ2 ·

ptreeai
(1− ptreeai

)

`
. (3.2)

CI(ptreeai
) is the confidence interval for the likelihood of pattern ai under the tree-model

where κ2 = χ2
k(α/(2`)) is the 1−α/(2`)-quantile of the χ2 distribution with k degrees of

freedom. The number of degrees of freedom in this case is the total number of estimated

variables, i.e. the sum of the number of parameters of the evolutionary model (see

Section 1.1.3) and the number of branches of the ML tree, i.e (2n− 3) for n taxa. The

dashed lines in Figure 3.1 show the logarithms of the upper bound and the lower bound

of the confidence interval.

We call pattern ai over-represented if puncai
is greater than the upper bound of CI(ptreeai

).

If puncai
is smaller than the lower bound of CI(ptreeai

), then pattern ai is under-represented

in the alignment. We denote the set containing the over-represented patterns D+ and

the set of the under-represented patterns D−. D− also contains patterns not observed

in the alignment, where the pattern likelihood under the tree-model is larger than 1/`.

Thus, we would expect to find them at least once in an alignment of length `. These

patterns can be easily constructed using the unweighted OSM matrix (Section 2.2.2).

Thereby:

D+ = {ai | puncai
> upper bound of CI(ptreeai

)}, (3.3)

D− = {aj | 0 < puncaj
< lower bound of CI(ptreeaj

)}∪{unobserved am | ptreeam
> 1/`}. (3.4)

The over-represented site patterns indicate alignment sites that occur more often

than expected under the tree-model. This means the tree-model does not capture these

alignment sites adequately. On the other hand, the under-represented patterns are

expected to occur more often in the alignment than they actually do. Thus, it appears

plausible to compute the minimal number of substitutions that are required to change the

over-represented sites in the alignment (site patterns in D+) into patterns that are more
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likely to occur given the ML tree (patterns in D−). The number of extra substitutions

can then be used as a measure to evaluate the goodness of fit of a model to the data:

the less the number, the better the fit.

We note that for an over-represented pattern ai, the number of alignment columns

showing this pattern that should be converted into under-represented patterns is de-

termined by puncai
· ` − bupper bound of CI(ptreeai

) · `e, where b·e denotes the ordinary

rounding of a real number (rounding a real number to its closest integer). For an under-

represented pattern aj the total number of alignment columns it can occupy should not

exceed bupper bound of CI(ptreeaj
) · `e.

Step 4: We now describe how to compute the minimal number of extra substitutions

to convert a pattern into another pattern. The mathematical intricacies will be described

elsewhere (Klaere S, Nguyen MAT, Fischer M and von Haeseler A, in preparation). For

this work it suffices to recapitulate the OSM matrix (Klaere et al., 2008) applied to the

K3ST model (Kimura, 1981) (see Section 2.2). The algebraic structure of the K3ST

model allows for an efficient way to convert an alignment pattern a into another pattern

a′ by putting a minimal number of extra substitutions on the tree. In a straightforward

approach, one could simply generate all possible patterns from a by putting a number

of extra substitutions on branches of the tree until a′ is produced. This means one

would need to compute the minimal power of the unweighted OSM matrix (excluding

αe and pe from Equation 2.1) such that the cell corresponding to the two patterns a and

a′ is non-zero. However, this approach is computationally infeasible for large numbers

of taxa. Klaere S, Nguyen MAT, Fischer F and von Haeseler A (in preparation) show

that a parsimony algorithm produces the required number of extra substitutions. Here,

we discuss an example.

Consider the rooted four-taxon tree in Figure 3.2a and the pattern GTAA at the

leaves. Assume that the pattern GTAA is to be converted into ACAA. By comparing

patterns position-wise, we need a substitution s1 on the branch leading to taxon 1 to

convert G into A at the first position (the first taxon). Similarly, we need a substitution

s1 on the branch leading to taxon 2; no changes are needed for taxa 3 and 4. Thus, a

series of substitutions (s1, s1, s0, s0) on the four external branches of the tree transfers

the pattern GTAA into the pattern ACAA. Since taxon 1 and taxon 2 form a cluster on

the tree and the two substitutions are from the same matrix s1, they are equivalent to

a substitution s1 on the corresponding internal branch. As shown before, the outcome
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is independent of the order of the extra substitutions to other substitutions; therefore,

the extra substitution s1 on the internal branch is enough to switch the pattern GTAA

into the pattern ACAA.

AG
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G T A A

A C A A

1
s
1 0

s
0

s
1

s
1

s s
G A AG

2 31 4

(a)

2 31 4

(b)

Figure 3.2: Exchanging two patterns on the tree. (a) displays a rooted four-taxon tree

with pattern GTAA observed at the leaves. If we want to convert the pattern

GTAA into ACAA, we may introduce a series of substitutions (s1, s1, s0, s0)

to the 4 external branches. Under the K3ST model and the OSM setting

(Klaere et al., 2008), this series is equivalent to an “extra substitution” s1

on the internal branch leading to taxa 1 and 2 as the two taxa form a cluster

on the tree. Therefore, the one extra substitution is enough to switch the

observed pattern GTAA into ACAA regardless of the substitution process

the pattern GTAA has undergone. On the other hand, the above substitu-

tion series converts a constant pattern AAAA into a unique pattern GGAA.

Hence, converting the pattern GTAA into ACAA is equivalent to evolving

the ancestral character A along the tree such that pattern GGAA is obtained

at the leaves. Applying the Fitch algorithm (Fitch, 1971) to the latter results

in a unique assignment in (b): an s1 substitution, which changes A into G,

occurs on the internal branch leading to taxa 1 and 2. This assignment is

identical to the assignment in (a).

On the other hand, we have shown in Section 2.2 that the series of substitutions

(s1, s1, s0, s0) can also act on any other pattern to produce another unique pattern.

Applying this series of substitutions on a constant pattern, AAAA, leads to the pattern

GGAA. Therefore, converting the pattern GTAA into the pattern ACAA is equivalent
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to converting the constant pattern AAAA into the pattern GGAA. Hence, computing

the minimal number of substitutions to change the pattern GTAA into the pattern

ACAA is equivalent to computing the minimal number of character changes required

along the tree to explain the pattern GGAA observed at the leaves given that the root

state is A. The latter can be efficiently computed using the first part of Fitch algorithm

(Fitch, 1971, see also Section 1.1.4.1) with the extension that if the root character set

does not contain A, we increase the number of character changes by 1. The Fitch

algorithm also assigns the substitutions on the branches of the tree. In our example,

this results in an unique assignment in Figure 3.2b, which agrees with the assignment

in Figure 3.2a.

Step 5: After computing the number of substitutions to convert each pattern in

D+ into every pattern in D−, we determine a matching which pairs every pattern in

D+. This is done by applying the Munkres algorithm for assignment and transportation

problems (Munkres, 1957). The minimal number of substitutions, thereafter referred to

as the number of extra-substitions and denoted as m, is then considered as the minimal

“cost” to fit the tree-model to the observed data.

Step 6: Subsequently, we apply the second part of Fitch algorithm (Fitch, 1971) to

assign extra substitutions to the branches of the tree to exchange the paired patterns

between D+ and D−.

Step 7: Finally, we assess the significance of the number of extra substitutions using

parametric bootstrap. We generate a number of alignments (e.g. 1,000 alignments)

on the tree under the substitution model with the respective parameter values using

a sequence generator program such as SEQ-GEN (Rambaut and Grassly, 1997). We

then re-estimate the tree and compute the number of extra substitutions for each simu-

lated alignment. Subsequently, we determine whether the number of extra substitutions

computed on the original alignment (m0) is significantly large according to a given sig-

nificance level (5%). It should be noted that if m0 is close the critical value (5% point),

one should increase the number of simulated alignments for a more accurate estimation

of the P -value.
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3.3 Results

3.3.1 Artificial alignments

We used artificial alignments to investigate the positions of over-represented patterns

MISFITS recognizes. Two cases were simulated.

3.3.1.1 Alignments containing sites with random nucleotides

Figure 3.3: The ten-taxon tree used to generate artificial alignments.

The artificial alignments contain 10 sequences of length ` = 10, 000. Site patterns in

the alignment are partitioned into two regions:

(i) Region of random nucleotides, i.e. the nucleotides in each site are randomly drawn

from the uniform distribution. The length of this region, denoted as `R, varies
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from 1% to 50% of the alignment length (1, 10, 20, 30, 40, and 50%).

(ii) Region of site patterns simulated under the JC69 model (i.e. the true model) along

the ten-taxon tree shown in Figure 3.3.

For each `R, we generated 100 alignments and then reconstructed the ML tree using the

JC69 model. Subsequently, we investigated the location of the over-represented patterns

reported by MISFITS.

Figures 3.4a-c display the results. Firstly, we observed that the estimated number of

over-represented sites (the box plots in Figure 3.4a) is a bit larger than the number of

sites containing random nucleotides as the line connecting the mean of these boxes is

constantly above the identity line. Secondly, MISFITS recognizes from 90% to approxi-

mately 100% of the sites containing random nucleotides as over-represented site patterns

(Figure 3.4b). Lastly, the percentage of over-represented sites located at Region (i) in-

creases to more than 80% as the length of this region increases to 50% of the alignment

length (Figure 3.4c). Thus, MISFITS detects random alignment positions.

3.3.1.2 Alignments containing sites from different models

The artificial alignments are generated along the ten-taxon tree (Figure 3.3) with length

` = 10, 000. The alignment is partitioned into two regions, where each region evolves

according to a different model.

(i) Region (i) evolves according to the GTR+I+Γ with relative rates (5.0, 10.0, 3.0,

1.0, 15.0, 1.0). The nucleotide frequencies for A, C, G, T are 0.30, 0.25, 0.15,

and 0.30, respectively. The proportion of invariant sites is 0.5 and the Γ-shape

parameter α is 0.5. The length of this region, denoted as `G (“guest” model),

varies from 1% to 50% of the alignment length (1, 10, 20, 30, 40, and 50%).

(ii) Region of site patterns simulated under the JC69 model, i.e. the “true” model.

For each `G, we generated 100 alignments and then reconstructed the ML tree under the

true model. Subsequently, we investigated the location of the over-represented patterns

reported by MISFITS.
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Figure 3.4: MISFITS recognizes sites of random nucleotides in artificial alignments as over-represented patterns. The x-axis

shows the length (in percentage of the alignment length) of the region containing alignment sites with random

nucleotides, referred to as random sites/region. The remaining sites in the alignments are generated along a

ten-taxon tree using the JC69 model. The ML trees are then reconstructed using the JC69 model. The y-axis

shows (a) the percentage of the alignment sites which are recognized as over-presented sites, (b) the percentage of

the random sites being recognized as over-presented and (c) the percentage of the over-represented sites located

at the random region.
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Figure 3.5: MISFITS recognizes alignment sites evolving under a different (guest) model as over-represented patterns. The

x-axis shows the length (in percentage of the alignment length) of the region containing alignment sites evolving

under the guest model GTR+I+Γ, referred to as GTR sites/region for short. The remaining sites in the alignments

are generated according to the JC69 model, i.e. the true model. The ML trees are then reconstructed using the

true model. The y-axis shows (a) the percentage of the alignment sites which are recognized as over-represented

sites, (b) the percentage of the GTR sites being recognized as over-represented and (c) the percentage of over-

represented sites located at the GTR region.
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Figures 3.5a-c display the results. Firstly, the inferred number of over-represented

sites is much less than (namely, about one third of ) the number of sites evolving under

the GTR+I+Γ model (Figure 3.5a). Therefore, the percentage of the GTR+I+Γ sites

being recognized as over-represented sites is also small. Nevertheless, this percentage

increases as the number of GTR+I+Γ sites increases (Figure 3.5b). Moreover, similar

to the above study, the percentage of over-represented sites located at the GTR+I+Γ

region also increases to more than 80% as the length of this region increases to 50% of

the alignment length (Figure 3.5c).

The two studies demonstrate that MISFITS detects alignment positions that may not

fit to the model and the tree, especially when some alignment sites consist of random

nucleotides.

3.3.2 Primate mitochondrion, complete genome

The data set under consideration contains the complete mitochondrial DNA from five

primates: chimpanzee, bonobo, human, gorilla and orangutan (Horai et al., 1995). The

alignment, after removing sites containing gaps, is 16,271 bp long and is composed of 241

distinct patterns. As discussed earlier, Figure 3.1 shows the logarithm of the observed

pattern frequencies and the expected pattern likelihood under the GTR model. We

counted 207 patterns within the confidence region (open circles), 30 over-represented

patterns (gray-filled circles) and four under-represented ones (black-filled circles). Using

the OSM matrix (Klaere et al., 2008), we generated 94 patterns one substitution away

from the constant patterns, twelve of which are not observed in the alignment but are all

expected to occur at least once. The average likelihood of these 12 patterns is 1.09 ·10−4

while the average likelihood of the 25 over-represented patterns, each occurring once

in the alignment, is 5.28 · 10−7. Thus, the unobserved one-substitution patterns are

on average 207.5 times more likely to occur in the alignment. The inferred ML tree

is rooted at the external branch leading to the orangutan and the resulting number of

extra substitutions was 61. This was excessively high compared to the simulated null

hypothesis distribution (Figure 3.6a).

We then included invariant sites (I) and Γ−rate heterogeneity into the GTR model

and also examined a simpler model, JC69+I+Γ. Under JC69+I+Γ, the number of extra

substitutions on the original alignment (m0) was 2,168 and it was way out of the range of
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Figure 3.6: Primate complete mitochondrial genome. Histogram of the number of extra

substitutions computed on 1,000 generated alignments under (a) GTR and

(b) GTR+I+Γ models. The attained value (m0) was significantly high under

both models.

the simulated null hypothesis distribution (data not shown). Remarkably, m0 estimated

under GTR+I+Γ, though very low (m0 = 6), was still significantly high (P -value =

0.002 based on 1,000 simulated alignments, Figure 3.6b). This demonstrates the power

of our approach in terms of rejecting models that do not really fit the data.

This study involves a simple model, JC69+I+Γ, and the more complex ones, GTR

and GTR+I+Γ. Nevertheless, these models are rejected by the Goldman-Cox test (data

not shown) as well as under our approach. Thus, there might be factors in the process

of evolution that even the complicated model GTR+I+Γ was unable to cover. A closer

look at the data revealed four over-represented site patterns. Two of these are located at

genes ND1 and ND5, both at the third codon position: position 747 in the human ND1

gene and position 981 in the human ND5 gene (positions 4,053 and 13,317, respectively,

in the human mitochondrial genome). The other two are located at the D-loop at

positions 151 and 16,293 in the human mitochondrial genome. Moreover, it should be

noted that the test of homogeneity of the substitution process on a phylogeny advocated

by Weiss and von Haeseler (2003) also rejected GTR and GTR+Γ on this data set. It
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implied that there may be heterogeneous substitution processes within the phylogeny

describing the data.

3.3.3 Fungi, metazoa CDC45-like region

The protein coding DNA alignment PF02724 was taken from the PANDIT database

(Whelan et al., 2006). It encodes the CDC45 -like protein. The sequences are homologs,

as studied by Saha et al. (1998), from 7 fungi, metazoa species: Ustilago maydis (Corn

smut), Saccharomyces cerevisiae (Budding yeast), Schizosaccharomyces pombe (Fission

yeast), Caenorhabditis elegans (C. elegans), Drosophila melanogaster (Fruit fly), Xeno-

pus laevis (Xenopus) and Homo sapiens (Human). After removing sites containing gaps,

1,503 sites remain.
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Figure 3.7: Fungi, metazoa CDC45 -like region. Figures (a) and (b) present the max-

imum likelihood trees reconstructed under GTR+I+Γ and JC69+I+Γ, re-

spectively. Branch lengths are scaled according to the ML estimation. The

number above each branch is the number of extra substitutions assigned by

MISFITS.

Model testing under AIC suggested the GTR+I+Γ model. However, the inferred tree

failed to recover the generally accepted taxonomic groupings (Figure 3.7a). The internal

branch leading to one of the inappropriate groupings (Xenopus, C. elegans) is weakly

supported by 31%. Remarkably, the tree inferred by a simpler model, JC69+I+Γ, was

congruent with the generally accepted phylogeny (Figure 3.7b). Moreover, this tree needs

15 extra substitutions less than the tree in Figure 3.7a. Figures 3.7a-b also display the

assignment of the extra substitutions on the trees using accelerated transformation, AC-

CTRAN (Farris, 1970; Swofford and Maddison, 1987). The number above each branch
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shows the number of extra substitutions. Branch lengths are scaled according to the

number of substitutions per site under the ML estimation. The root was placed on the

branch separating the fungal species from the metazoa.

From 1,000 bootstraps

Branch leads to mb0 min max mean P -value

Budding yeast (BY) 0 0 6 0.529 1.000

Fission yeast (FY) 3 0 7 0.778 0.076

(BY, FY) 1 0 7 0.546 0.366

Corn smut (S) 2 0 5 0.393 0.079

(BY, FY, S) 2 0 5 0.450 0.090

Human (H) 14 0 46 5.812 0.109

Xenopus (X) 13 0 33 5.912 0.132

(H, X) 0 0 8 0.587 1.000

Fruit fly (F) 1 0 11 1.204 0.560

(H, X, F) 1 0 10 1.181 0.599

C. elegans (E) 4 0 12 1.815 0.153

(H, X, F, E) 6 0 16 1.818 0.065

Root 2 0 9 1.458 0.358

Table 3.2: Number of extra substitutions assigned to the branches of the tree inferred

by JC69+I+Γ for the alignment of CDC45 -like region (PF02724). mb0 is the

number of extra substitutions assigned to each branch of the tree, computed

on the original alignment. The P -value is the proportion of the number of

parametric bootstrapped alignments where the number of extra substitutions

assigned to a certain branch was greater or equal to that computed on the

original alignment.

Notably, we observed the tendency to place extra substitutions on short branches, for

instance, on the two external branches leading to Human and Xenopus. A reason may

be that substitutions on short branches are rarely captured by the ML model. They

are then accounted for by our approach as extra substitutions. We therefore studied

the significance of the number of extra substitutions assigned to the branches of the

tree under JC69+I+Γ. We generated 1,000 alignments, used them to re-estimate the
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branch lengths and then computed the number of extra substitutions on the branches

of this tree. Table 3.2 displays the results. The number of assigned extra substitutions

on all branches of the tree, including the two external branches leading to Human and

Xenopus, are not significantly high (significance level α = 0.05).

Highlighting the over-represented positions in the alignment, we observed most of them

at the third codon position: 88.6% under GTR+I+Γ and 87.5% under JC69+I+Γ. This

is congruent with the fastest evolutionary rate of the nucleotides at the third codon

position (Swofford et al., 1996; Rodŕıguez-Trelles et al., 2006; Bofkin and Goldman,

2007).
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Figure 3.8: Fungi, metazoa CDC45 -like region. Histogram of the number of extra sub-

stitutions computed on 1,000 generated alignments under (a) GTR+I+Γ, (b)

JC69+I+Γ and (c) GTR models. The attained value (m0) falls in the null

hypothesis distribution (not significant) under GTR+I+Γ and JC69+I+Γ.

It is significantly high under GTR though (c).

Finally, we studied the significance of the number of extra substitutions on the trees

under the above two models and GTR (1,000 alignments were generated for each model).

Under JC69+I+Γ and GTR+I+Γ, the number of extra substitutions (m0 = 49 and

64, respectively) fell in the corresponding simulated null hypothesis distribution (no

significance). However, m0 = 196 under GTR was way too high (see Figure 3.8). It

implies that models without rate heterogeneity across sites would be inadequate for this

data set.

Most importantly, this alignment demonstrates a case in which a simpler model,
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JC69+I+Γ, performed better than a more complex one, GTR+I+Γ, with regard to the

inferred trees (c.f. Sullivan and Swofford, 2001) and to the number of extra substitutions.

Thus, MISFITS is capable of indicating such a situation.

3.3.4 Study on a large range of data

We applied MISFITS to study a wide range of multiple alignments of protein-coding

DNA sequences from the PANDIT database, release 17 (Whelan et al., 2006). The

PANDIT database contains 7,738 alignments in total. Alignments with less than four

sequences (1,247 alignments) were discarded from our analysis as the tree space (only one

unrooted topology) and the pattern space (not more than 64) are too small for a typical

phylogenetic analysis. Alignments with more than 100 sequences (320 alignments) were

also discarded because the gapless alignment lengths are too short: the average of gapless

alignment sites per taxon (alignment length divided by number of sequences) is 1.23.

Alignments with short sequence length and large number of taxa may lead to a bias

in phylogeny inference (Revell et al., 2005). Thus, the study involved 6,171 alignments

containing from 4 to 100 sequences with gapless alignment length ranges from 15 to

6,288 bp.

First, we used jModelTest (Posada, 2008) to select the best model for each alignment

using the AIC criterion (Akaike, 1974). Under the selected model, the ML tree and

pattern likelihood were computed by using the PHYML package (Guindon and Gascuel,

2003) and the TREE-PUZZLE program (Schmidt et al., 2002), respectively. We observed

that the GTR models with and without rate heterogeneity across sites (GTR, GTR+I,

GTR+Γ (4 rate categories), GTR+I+Γ) were mostly selected (70.65%). Furthermore,

models with one rate across sites were rarely selected (only 1.54%, see Table 3.3).

Subsequently, we studied the goodness of fit of the selected models to the alignments.

For 777 alignments (12.59%) the observed frequencies of all patterns are within the

confidence region. The number of sequences in these alignments ranges between four

and eight. The number of extra substitutions needed for these 777 alignments is 0. For

alignments with more than eight sequences, D+ or D− are never empty.

We observed over-represented patterns in the remaining 5,394 alignments. There were

98 alignments in which all patterns are over-represented. Thus, not a single pattern fell

into the confidence region. This is attributed to the fact that they contain only singleton
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Rate

Modela One rate I Γ I + Γ
∑

Model

JC 0.05 0.02 0.02 0.00 0.08

F81 0.15 0.16 0.18 0.10 0.58

K80 0.03 0.29 0.58 0.21 1.12

HKY 0.29 1.39 3.34 2.85 7.88

K3ST 0.02 0.13 0.28 0.13 0.55

K3STuf 0.16 0.92 1.70 1.70 4.49

TN93ef 0.03 0.15 0.13 0.19 0.50

TN93 0.19 0.79 1.59 1.81 4.39

SYM 0.13 0.39 3.21 6.03 9.76

GTR 0.49 3.68 26.06 40.43 70.65∑
Rate 1.54 7.92 37.09 53.45 100.00

Table 3.3: Percentages (%) of the selected models for 6,171 alignments in the PANDIT

database. a refer to Table 1.3 for a detailed description of the models.

patterns (occurring only once in the alignment). Phylogenies based on such alignments

with tremendously diverse patterns are probably arbitrary. Therefore, we discarded

these alignments from the next steps.

The next step of MISFITS thus comprised 5,296 alignments. However, for 1,028

alignments (19,41%), there were not enough unobserved patterns having a likelihood

greater than 1/`, i.e. not enough under-represented patterns, to exchange for all the

over-represented patterns. These alignments were also discarded.

Thus, 4,268 alignments went into the final analysis. The percentages of the models

being selected for these alignments were similar to those in Table 3.3 (see Table A.2).

Thus, the removal of the above alignments did not change the model selection substan-

tially. On average, MISFITS introduced 13.73 extra substitutions per 100 characters

(number of extra substitutions per site divided by the number of sequences in the align-

ment times 100). Figure 3.9 shows the histogram of the number of alignments against

the number of extra substitutions per 100 characters.

Based on the parametric bootstrap analysis consisting of 100 simulations for each of
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Figure 3.9: Results on PANDIT database under the selected models for the 4,268 align-

ments where over-represented patterns were observed and there were enough

under-represented patterns to exchange with them. The histogram displays

the number of alignments (the y-axis) versus the number of extra substitu-

tions per 100 characters (the x-axis).

the 4,268 alignments, MISFITS showed that the number of assigned extra substitutions

was not significant for 3,918 alignments (91.80%) and significantly high for 350 align-

ments (8.20%). This means our approach would reject 350 models. The Goldman-Cox

test rejected 478 models (11.20%), which is in the same order of magnitude. Two-

hundred and seventeen models were rejected by both approaches. Figures 3.10a-b dis-

play the number of alignments (the height indicated by the non-filled bars) and the

number of alignments (models) being rejected by MISFITS (black bars) and by the

Goldman-Cox test (gray bars) with respect to the number of sequences in the alignment

(a) and to the alignment length (b). These figures (see also Figures A.1 and A.2) show

that the proportion of models being rejected by both methods tends to increase when

the number of sequences grows as well as when the alignment length becomes longer.

This implies that it becomes more and more difficult to have a single model that can

adequately explain the data.

We learned from this survey that in a number of instances (8.20%), the selected

models and the resulting trees do not really fit the data. Moreover, typically singleton
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Figure 3.10: Results on PANDIT database under the selected models for the 4,268 align-

ments where over-represented patterns were observed and there were enough

under-represented patterns to exchange with them. The height indicated

by the non-filled bars display the number of alignments in logarithm to base

10 (the corresponding decimal values are depicted by the dashed horizontal

lines together with the numbers on the right). The filled bars show the

number of alignments (models) being rejected by MISFITS (black bars)

and by the Goldman-Cox test (gray bars) with respect to the number of

sequences in the alignment (a) and to the alignment length (b).

patterns are over-represented. One reason for this is the discrete nature of the patterns.

Occasionally, some patterns have a very small likelihood to occur on the inferred tree.

Therefore, it is more plausible to explain the occurrence of such a pattern by extra-

subsitutions, which are not covered by the model but are more likely to happen on the

tree.

3.4 Discussion

MISFITS provides a guided efficient way to pinpoint to site patterns in the alignment

which are not captured well by the substitution model and the inferred tree. The differ-
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ences (residuals) between their observed frequencies and the corresponding expectation

manifest themselves in a clear deviation from the identity line (c.f. Figure 3.1). We then

introduced a computationally feasible method which puts extra substitutions on the

tree to explain the residuals. The extra substitutions reduce over-represented site pat-

terns in the alignment and at the same time increase under-represented patterns. This

has the ultimate effect that these extra substitutions pull over-represented patterns and

simultaneously push under-represented patterns into the confidence region.

A big advantage of the approach is the possibility to map the extra substitutions on

the tree. Moreover, the extra substitutions required give a biological interpretation why

the data may not be adequately described by the tree-model. The reasons for significant

deviations, however, may be different for every single instance. They depend on the

selected sequences, the selected organisms and the unknown evolutionary history of the

sequences. This needs to be elucidated on a case-by-case basis, and our tool points to

potential regions in the alignment that may deserve a closer analysis. On the other

hand, the assignment of extra substitutions to branches of the tree provides additional

information concerning the interpretation of the inferred phylogeny: the branches of the

tree where such extra substitutions would help to justify the residuals.

The approach we suggest also sheds additional light on the goodness of fit in model

testing approaches that are discussed, for example, by Goldman (1993b); Posada (2008).

It even may point to the risk of overfitting the data that may lead to biologically im-

plausible results such as in the fungi, metazoa CDC45 -like region example.

From the computational point of view, it is practical in terms of running time to apply

MISFITS routinely to alignments. Firstly, the computational complexity required to find

the number of substitutions that change a pattern in D+ into a pattern in D− is indeed

the complexity of the preliminary phase in the Fitch algorithm, i.e. O(n), where n is the

number of sequences (Fitch, 1971). Thus, computing the number of substitutions for

every pair of patterns between D+ and D− has complexity O(n · |D+| · |D−|), where |.|
denotes the cardinality of a set. Secondly, finding an optimal matching between patterns

in D+ and D− such that the total number of extra substitutions is minimal according to

the Munkres algorithm runs in the worst-case time O(V 3), where V = max{|D+|, |D−|}.
Moreover, the number of patterns in D+ is not larger than the number of distinct

patterns observed in the alignment. The number of distinct patterns in the alignment

cannot exceed both the alignment length and the total number of possible patterns (4n).
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Hence, |D+| ≤M = min{`, 4n}. The cardinality of D− is in the same order of magnitude

with the cardinality of D+, as D− contains patterns whose likelihood under the tree-

model is larger than 1/`. Therefore, in the worst case where all alignment sites are

distinct and over-represented, computing the number of substitutions for every pair of

patterns and then finding the optimal matching between D+ and D− requires O(nM2)

and O(M3) complexity, respectively. Nevertheless, while studying alignments with a

large number of sequences from the PANDIT database we never observed 4n patterns in

the alignment. On average the computation of m0 for one of the 4,268 alignments going

through all analysis steps took 8.4 seconds on a single core of a 3-year old dual core

AMD Opteron CPU 2220 SE. A more detailed depiction of the computing time with

respect to the sequence length and number of sequences is given in Figure A.3.

We have discussed so far the biological implications and the computational complexity

MISFITS may cause. It should be noted that there is also room for methodological

extensions. For example, different locations of the root on the tree may result in different

numbers of extra substitutions as there is a constraint about the character state at the

root while employing the Fitch algorithm in our approach. It is feasible to implement an

exhaustive or heuristic search for the location of the root which gives the minimal number

of extra substitutions. However, it is more useful to provide a biologically meaningful

rooting based on preliminary knowledge about the data.

One limitation of our approach is the restriction to the K3ST model for nucleotide

characters. For more complex models of nucleotide evolution, the algebra does not

work (see Section 2.2). Nevertheless, this is not a true drawback of the method, since

the method is applied after tree reconstruction and model selection. If we have by

statistical standards the best model selected, then it is pointless to have a second model

that is again complex. We simply want to know where we still observe deviations; hence,

MISFITS is a final step to find significant deviations.

It will be interesting to see how the phylogeny changes if we systematically introduce

additional signals into the alignment. We may put a number of extra substitutions on

several branches of the tree to change a number of patterns in the alignment accordingly.

Each extra substitution will be placed on one branch and will change one site in the

alignment. Thus, the sample (pattern) space varies in a controlled manner and the

impact of such a variation on phylogeny reconstruction can be observed easily.



Chapter 4

ImOSM: Imbedding of Intermittent

Evolution and Robustness of

Phylogenetic Methods

Without deviation, progress is not possible.

Frank Zappa

4.1 Introduction

4.1.1 Performance evaluation in phylogeny inference

Phylogeny reconstruction implies inference of the tree topology, branch lengths, and

model parameters for model-based methods. Thus, statistical criteria to evaluate the

performance of inference methods in general can be used to assess phylogeny reconstruc-

tion methods. Nevertheless, performance of phylogenetic methods is typically judged by

the inferred tree topology. In this perspective, phylogeny inference methods are usually

evaluated by (see also Yang, 2006, pp. 185-188):

Consistency: the ability to estimate the correct tree with sufficient data. Thereby, a

phylogenetic method is considered consistent if the probability that the estimated

tree is the true tree approaches 1 when the alignment length approaches infinity.

For model-based methods such as ML, consistency assessment implies the correct-

55
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ness of the model, i.e the model used for the inference is the same as the model

used to generate the data.

Efficiency: the ability to quickly converge on the correct phylogeny. Normally, efficiency

of a phylogenetic method is gauged in relation with another method. The relative

efficiency of two methods can be measured by the ratio of the amount of data or the

alignment length they require to recover the true tree with the same probability

P . It is, however, difficult to estimate the amount of data that a method requires

to achieve a given P although there have been several attempts to tackle this

problem (e.g. Churchill et al., 1992; Yang, 1998; Fischer and Steel, 2009). On the

other hand, the probability of recovering the true tree given the alignment length `,

P (`), can be easily obtained via simulations. P (`) is considered the reconstruction

accuracy and is calculated as the proportion of the simulated alignments yielding

the true tree. Therefore, one can measure the relative efficiency of method 1 over

method 2 as:

E12 =
1− P2(`)

1− P1(`)
(4.1)

where P1(`) and P2(`) are the reconstruction accuracies of methods 1 and 2, re-

spectively (Yang, 2006, pp 188).

Robustness: the ability to infer the correct tree in the presence of model violation. A

model-based method is considered robust to model violation if it still performs well

even when its assumptions are wrong. Maximum parsimony tree reconstruction

does not explicitly assume any model or any assumption except its own criterion

that evolution requires as least changes as possible. Nonetheless, studies of the

robustness in phylogeny inference usually include MP to investigate the behavior

of MP in such circumstances.

To assess a tree reconstruction method, the true tree should be known. The most

accessible way is to conduct simulations where the evolutionary process is simulated

along a “true” tree under a “known” model of evolution. Thanks to the continuous

effort to develop more realistic models of sequence evolution (Section 1.1.3) and to

implement efficient phylogeny inference programs (Section 1.1.4), abound studies of the

performance of phylogenetic methods under a variety of evolutionary scenarios have been

carried out. These studies, though aiming at different purposes and sometimes reporting

contradicting observations, have arrived at several common records of the performance of
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different phylogenetic methods, such as (see e.g. Felsenstein, 1988; Huelsenbeck, 1995a;

Nei, 1996; Yang, 2006, pp. 188-190, for reviews):

(i) MP is inconsistent when the true tree contains long nonadjacent branches (Felsen-

stein, 1978). In such a case, MP biases towards the long branch attraction tree.

Similarly, distance- and likelihood-based methods under oversimplified models are

also prone to long branch attraction. Later studies with trees of more than four

taxa showed that MP is also inconsistent in the existence of a molecular clock

(Hendy and Penny, 1989; Zharkikh and Li, 1993; Takezaki and Nei, 1994).

(ii) Likelihood methods are most of the time consistent given that the model used

for the inference is the true model (Felsenstein, 1978; Yang, 1995; Swofford et al.,

2001). ML under the no common mechanism model can be inconsistent as ML is

equivalent to MP in such a case (see Section 1.1.3.4).

(iii) Under the true model likelihood methods are often more efficient than MP and

distance-based methods (Hasegawa et al., 1991; Kuhner and Felsenstein, 1994;

Tateno et al., 1994; Huelsenbeck, 1995a) except cases in which the true tree itself

is always favored by the latter methods. For example, if the true tree contains a

cluster of long branches, MP can be the most efficient method.

(iv) The relative branch lengths in the true tree greatly affect the success of tree re-

construction methods. Trees with long internal branches compared to the external

branches are much “easier” to recover than trees with short internal branches

versus long external branches.

Undoubtedly, such insights may help to avoid wrong interpretation regarding the inferred

phylogeny from real data due to reconstruction artefacts such as long branch attraction

(see e.g. Anderson and Swofford, 2004; Brinkmann et al., 2005).

4.1.2 Overview of studies of the robustness in phylogeny inference

Among the criteria to evaluate the performance of phylogenetic methods, robustness to

incorrect assumptions about the underlying evolutionary model is of particular practical

importance as complete and accurate a priori knowledge of evolutionary processes is

typically not available. An evolutionary model makes a variety of assumptions about the

substitution rates, character (e.g. nucleotide) frequencies, rates across sites, and even
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heterotachy and heterogeneous substitution rates across branches. Violation of some

assumptions affect tree inference methods more than violation of other assumptions.

Studies of robustness are therefore abundantly diverse but can be summarized according

to which assumptions are violated.

The first studies used an evolutionary model and a tree to generate alignments and

then assessed the accuracy of phylogenetic methods using different models of sequence

evolution. Several points can be highlighted from previous studies:

(i) Overall, these studies suggested that ML is more robust to model violations than

other methods such as NJ and MP (Fukami-Kobayashi and Tateno, 1991; Hasegawa

et al., 1991; Tateno et al., 1994; Kuhner and Felsenstein, 1994; Gaut and Lewis,

1995; Huelsenbeck, 1995b; Yang, 1995).

(ii) Violation of transition transversion difference and violation of unequal base com-

positions has minor (almost no) impact on tree reconstruction accuracy (Fukami-

Kobayashi and Tateno, 1991; Huelsenbeck, 1995b).

(iii) Violation of rates across sites heterogeneity greatly influences tree reconstruction

methods in recovering the true tree. ML assuming a homogeneous rate across sites

is inconsistent when data are generated with more than one rates across sites e.g.

two rates (Chang, 1996) or Γ-distributed rates (Huelsenbeck, 1995b; Yang, 1995;

Bruno and Halpern, 1999; Sullivan and Swofford, 2001). On the other hand, when

the inferring model includes rates across sites heterogeneity, ML is consistent.

Using one evolutionary model for the whole tree and for all sites to generate data

is evidently a simplification (see e.g., Lopez et al., 2002). More sophisticated studies

of robustness have employed several techniques to violate the underlying model such

as adding different GC content to different parts of the simulated data, changing the

proportions of variable sites along branches of the tree, and using different sets of branch

lengths to simulate partitioned data (a type of heterotachy). Kolaczkowski and Thorn-

ton (2004) demonstrated, on a four-taxon tree with different branch length sets, that

MP is immune to heterotachy; however, contradictions to their “general conclusion”

have been established (Spencer et al., 2005; Gadagkar and Kumar, 2005; Gaucher and

Miyamoto, 2005; Philippe et al., 2005; Lockhart et al., 2006; Shavit Grievink et al.,

2010). Kolaczkowski and Thornton (2009) showed that Bayesian phylogenetics exhib-

ited long branch attraction bias when sequence sites evolve heterogeneously (e.g. with
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different GC content), even when this complexity is incorporated in the inferring model;

whereas, ML inference is more robust. Shavit Grievink et al. (2010) reported that for a

four-taxon tree in which two nonadjacent branches undergo a change in the proportion

of variable sites, tree reconstruction under the best-fit model often infers a wrong tree.

In the next chapters we show that the reconstruction accuracy of ML, MP, and BIONJ

is hampered by a violation of rates across sites (RaS) heterogeneity and a simultaneous

violation of the transition transversion ratio and RaS heterogeneity along two nonadja-

cent external branches of a four-taxon, clock-like tree. For an eight-taxon balanced tree,

these violations cause each of the three methods to infer a different topology: ML and

MP reconstruct wrong trees while BIONJ recovers the true tree. In addition, we report

that tests of model homogeneity and model fit have enough power to detect such model

violations. Based on the results, we draw recommendations for phylogenetic analyses of

real data.

4.1.3 A call for a flexible tool to introduce model violation

Clearly, studies of performance in phylogenetics require tools to simulate sequence evolu-

tion. Currently available sequence simulation programs incorporate increasingly complex

evolutionary scenarios to account for insertion and deletion events (e.g., Fletcher and

Yang, 2009), lineage-specific models (Shavit Grievink et al., 2008) or site-specific inter-

actions (Gesell and von Haeseler, 2006). Nonetheless, studies of the robustness need

an additional utility: a systematic means to introduce model violation to the simulated

alignments. Unfortunately, it is not so straightforward how to use programs like the

ones above to incorporate complex scenarios of model violation such as violating the

relative substitution rates between the character states or violating rates across sites

along several branches of the tree. We therefore introduce ImOSM, a flexible tool to

“pepper” a model tree with well-defined deviations from the original model on arbitrary

branches.

4.2 The ImOSM method

Assume that we have a phylogenetic tree T and an alignment A that evolved along

T under a model of sequence evolution M. ImOSM simulates intermittent evolution,
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i.e. extra substitution(s) which are thrown on arbitrary branch(es) of the tree, thus

changing the otherwise ideal alignment with respect to the substitution process defined

byM. Extra substitutions are modeled by the one step mutation (OSM) matrix (Klaere

et al., 2008) applied to the K3ST model (Kimura, 1981) (see Section 2.2). Thus, ImOSM

actually Imbeds One-S tep M utations into the alignment.

We now explain the different options ImOSM offers. Given a rooted tree and an align-

ment, one can, on the one hand, explicitly introduce an extra substitution to change a

given alignment site by specifying a substitution class and a branch. For example, an

extra substitution s2 occurring on the external branch leading to taxon 1 of the rooted

four-taxon tree (Figure 4.1a) changes the site pattern AACA at the first position (col-

umn) of the alignment (Figure 4.1b) into the pattern CACA. Another extra substitution

s3 on the internal branch leading to taxa 3 and 4 changes the site pattern GGAC at the

second position into the pattern GGTG. Figure 4.1c depicts the resulting (disturbed)

alignment. This explicit specification is worthwhile if one wants to study the effect of a

(small) number of extra substitutions.

s
2

s
3

(c)(b)(a)

ImOSM

AGCTAG...

AGCCAG...

CACCTG...

ACCCTG...

AGCTAG...

AGCCAG...

AACCTG...

CACCTG...

21 3 4 C

G

T

Figure 4.1: An example of an explicit setting in ImOSM. An extra substitution s2 oc-

curring on the external branch leading to taxon 1 of the rooted four-taxon

tree (a) changes the site pattern AACA at the first position of the align-

ment (b) into the pattern CACA. An extra substitution s3 on the internal

branch leading to taxa 3 and 4 changes the site pattern GGAC at the second

position into the pattern GGTG. The disturbed alignment is depicted in (c).

On the other hand, one may want to introduce the extra substitutions systematically

and in a more convenient way. ImOSM provides a variety of settings to accomplish this.

Firstly, for each branch different substitution classes may have different probabilities

as described in Section 2.2.2, Equation 2.1. By providing equal probabilities for all
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the three substitution classes or for the two transversion classes, the more specialized

models JC69 (Jukes and Cantor, 1969) or K2P (Kimura, 1980) are derived, respectively.

Thereby, ImOSM can simulate relative substitution rate heterogeneity (Section 1.1.3.4)

across branches of the tree. Secondly, one can assign the number of extra substitutions

per site to each branch by providing the corresponding branch length in the input tree.

A branch is free from intermittent evolution by setting its length to zero. Lastly, the

extra substitutions can be distributed to alignment sites according to a user defined

rates across sites distribution.

Accordingly, ImOSM introduces various model violation scenarios to the data: (i)

putting extra substitutions on a specific subset of branches violates the assumption

of model homogeneity along the tree, (ii) the probabilities of the three substitution

classes of the K3ST model violate the underlying relative substitution rates between the

nucleotides along these branches, and (iii) distributing extra substitutions to alignment

sites under a different rate distribution violates the underlying RaS distribution. For

example, if intermittent evolution is distributed uniformly to alignment sites and along

several branches, the assumption of RaS heterogeneity is violated. This also implies

heterotachy as the rate at a site shifts along these branches (Philippe and Lopez, 2001,

see also Section 1.1.3.4).

Implementation of ImOSM

The k-power of the MT matrix (Section 2.2.2) provides the weighted exchangeability for

all pairs of patterns given that k extra substitutions have occurred on the tree T . The

generation of MT as in Equation 2.1 is analytically feasible. However, for a large number

of sequences, computing the power of MT (a 4n× 4n matrix for n nucleotide sequences)

is unnecessarily computationally expensive as we hardly observe all 4n patterns in the

alignment.

In practice, as the tree is rooted, ImOSM encodes every branch e ∈ E as a vector of

n binary numbers, ve, where entries of 1 indicate the taxa (sequences) descended from

this branch. If an extra substitution si ∈ {s1, s2, s3} occurs on branch e and is assigned

to a given alignment site, it will change the nucleotide states of this site pattern at the

sequences, whose entries in ve are 1, according to the substitution class si.

If we want to introduce brie extra substitutions per site to branch e then in the tree



62 Chapter 4 Intermittent Evolution and Robustness of Phylogenetic Methods

input to ImOSM, branch e must have branch length brie. We assume the number of

extra substitutions that occur on this branch across the whole alignment is Poisson

distributed with associated parameter brie`. brie corresponds to the rate parameter,

that is the expected number of extra substitutions (events) per site (time unit). The

alignment length represents the “time” interval (` sites mean ` time units). ImOSM

simulates waiting times for the extra substitutions under an exponential distribution

with mean 1/brie. While the remaining time tr > 0 (at the beginning tr is set to `),

ImOSM repeatedly draws a waiting time tw from this distribution and compares tw with

tr. If tw > tr, no extra substitution happens within time tr; ImOSM finishes with this

branch. If tw ≤ tr, an extra substitution occurs. The extra substitution will be assigned

to alignment sites with probabilities proportional to their relative rates (if given) or

under a uniform distribution, otherwise. The substitution class (s1, s2 or s3) of the extra

substitution is selected with probabilities αs1,e, αs2,e, αs3,e, respectively. The alignment

is updated right after the extra substitution takes place and the remaining time is reset

to tr − tw.

4.3 Simulations

We study the robustness of three phylogeny reconstruction methods ML, MP, and

BIONJ against model violation yielded by ImOSM. Intermittent evolution is intro-

duced to two nonadjacent external branches of a four-taxon tree and an eight-taxon

balanced tree. The four-taxon tree allows for a unique choice of two nonadjacent exter-

nal branches (ignoring the leaf labels); the eight-taxon tree allows for two possibilities

(Figure 4.2). We call the trees C4, C8, and C8f, respectively. The internal branch

lengths are set to 0.05 substitutions per site; while the external branch lengths (br) vary

in {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.75, 1.00}.

SEQ-GEN (Rambaut and Grassly, 1997) generates 100 alignments of length ` ∈
{104, 105} under the K2P + Γ model, assuming a transition transversion ratio (Ts/Tv)

of 2.5 and a Γ-shape parameter α of 0.5 to model RaS heterogeneity. ImOSM then

disturbs each of these alignments by putting brie extra substitutions on the indicated

external branches such that brie + 0.05 = br. Thus, the trees are “clock-like” but two

nonadjacent external branches evolve only partially according to the original K2P + Γ

model. We note that 100 replicates are sufficient to produce stable results in our study
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Figure 4.2: Trees used in our simulation and the corresponding abbreviations. Extra

substitutions are introduced to the indicated external branches.

as the sequence length is substantially large.

Abbr. Model ImOSM setting Extents of violation

vNONE K2P + Γ∗ Ts/Tv = 2.5 and RaS No violation

vTsTv K2P + Γ Ts/Tv = 1.0 and RaS Ts/Tv violation

vRaSV K2P + Γ Ts/Tv = 2.5 and no RaS RaS violation

vBOTH K2P + Γ Ts/Tv = 1.0 and no RaS Violating both Ts/Tv and RaS

Table 4.1: Different settings illustrate different extent of model violation introduced by

ImOSM. ∗The underlying model is K2P+Γ with transition transversion ratio

of Ts/Tv = 2.5 and Γ-shape parameter α of 0.5 to model rates across sites

(RaS) heterogeneity.

Table 4.1 summarizes the different simulation settings. First, intermittent evolution

retains Ts/Tv = 2.5 and the extra substitutions follow the site-specific rates as deter-

mined by SEQ-GEN. Hence, the simulation does not introduce any model violation. We

refer to this simulation setting as vNONE. Second, extra substitutions are selected uni-

formly from the substitution classes (JC69 model) but site-specific rates are not changed.

Thus, ImOSM “violates” Ts/Tv ratio on the indicated branches. We abbreviate this

setting as vTsTv. Third, intermittent evolution retains Ts/Tv = 2.5 but now the extra

substitutions are uniformly distributed. Therefore, ImOSM violates RaS heterogene-

ity assumption on the indicated branches. This setting is referred to as vRaSV. Lastly,



64 Chapter 4 Intermittent Evolution and Robustness of Phylogenetic Methods

extra mutations are selected uniformly from the substitution classes and distributed uni-

formly to alignment sites. Thus, both Ts/Tv and RaS heterogeneity are violated on the

indicated branches. This setting is abbreviated as vBOTH.

The disturbed alignments are subject to tree reconstruction. We use IQPNNI (Vinh

and von Haeseler, 2004; Minh et al., 2005) and PAUP* (Swofford, 2002) to estimate

the ML and MP trees, respectively. For the ML inference we use the K2P + Γ model

and estimate the model parameters. Neighbor joining trees are computed with BIONJ

(Gascuel, 1997) with the ML distances based on the inferred model parameters from the

ML tree estimation. This means the ML and BIONJ inferences are conducted under a

misspecified model for the vTsTv, vRaSV, and vBOTH settings. In addition, we perform

Model-Test (Posada and Crandall, 1998), test of model homogeneity across branches

(Weiss and von Haeseler, 2003) and goodness of fit tests (Goldman, 1993b; Nguyen

et al., 2011).

4.4 Results

4.4.1 Tree reconstruction accuracy

Figure 4.3 presents tree reconstruction accuracy for all simulation settings: vNONE (first

row), vTsTv (second row), vRaSV (third row), and vBOTH (last row). The accuracy, i.e.

the proportion of alignments that yield the true tree, is shown on the y-axis. The x-axis

displays the external branch length br or (brie+0.05). The first two columns show the

results for the four-taxon tree C4 with the sequence length of 104 and 105, respectively.

The last two columns show the results for the eight-taxon tree C8. Results for C8f are

similar to those for C8 and can be found in the supplementary material, Figure B.1.

No model violation and Ts/Tv violation

The first two rows of Figure 4.3 show the accuracy for simulations with no model viola-

tion (vNONE) and with the violation of the transition/transversion ratio (vTsTv), respec-

tively. For sequence length ` = 104, the accuracy of all the three tree-building methods

decreases as br increases for both scenarios (vNONE, vTsTv). ML performs the best while

MP performs the worst on the eight-taxon tree (C8). Nonetheless, as the sequence
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length increases to 105 all the methods successfully recover the true topology. Thus,

the violation of the Ts/Tv ratio has almost no impact on reconstruction accuracy; the

accuracy is governed by the sequence length. This observation corroborates previous

results (Fukami-Kobayashi and Tateno, 1991; Huelsenbeck, 1995a).

Rates across sites violation

The third row of Figure 4.3 displays the accuracy for simulations with rates across sites

heterogeneity violation (vRaSV). For the four-taxon tree C4 (the first two columns) the

reconstruction accuracy, independent of the methods and independent of the alignment

length, dramatically drops to 0 as br exceeds 0.4. Thus, the violation of RaS hetero-

geneity causes dramatic changes in tree reconstruction accuracy.

Surprisingly, for the eight-taxon tree C8 (Figure 4.3, third row, last two columns)

BIONJ constantly performs the best and recovers the true tree once the sequence length

is large. ML performs slightly better than MP. However, they both suffer from the RaS

heterogeneity violation: their accuracy drops to 0 if br exceeds 0.4.

It should be noted that we have checked and recorded no possible bias of BIONJ due to

the input order of the sequences in the distance matrix. All runs with the “randomized

input order” option in the NEIGHBOR program (the PHYLIP package, Felsenstein,

1993) produced the same tree as the BIONJ tree.

Both RaS and Ts/Tv violation

The last row of Figure 4.3 shows the accuracy for simulations with violation of both

RaS heterogeneity and the Ts/Tv ratio (vBOTH). Similar to the vRaSV setting, this si-

multaneous violation yields not only a dramatic change in the accuracy, but also distinct

patterns for the C4 and C8 trees. For C4 the accuracy of all methods decreases indepen-

dently of the sequence length as br increases. Interestingly, we observe a slow recovery

of the accuracy for ML and BIONJ as br exceeds 0.75; nonetheless, their accuracy never

exceeds 2
3
, even when we extend br to 2.0 (Figure B.2). The reason for the increase in

the accuracy of ML and BIONJ remains unclear to us. Nevertheless, we note that Ho

and Jermiin (2004) observed similar behavior of ML in their studies with compositional

and/or rate heterogeneity among two external branches on a four-taxon tree.



66 Chapter 4 Intermittent Evolution and Robustness of Phylogenetic Methods

C4, 104 bp

p(
T

0)
● ● ● ● ● ●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●ML MP BIONJ

C4, 105 bp

p(
T

0)

● ● ● ● ● ● ● ●

●ML MP BIONJ

C8, 104 bp

p(
T

0)

● ● ● ● ● ●

●

●

●ML MP BIONJ

C8, 105 bp

p(
T

0)

● ● ● ● ● ● ● ●

●ML MP BIONJ
p(

T
0)

● ● ● ● ●
●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(
T

0)
● ● ● ● ● ● ●

●

p(
T

0)

● ● ● ● ●
●

●

●

p(
T

0)

● ● ● ● ● ● ● ●

p(
T

0)

● ● ●

●

● ● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(
T

0)

● ● ●

●

● ● ● ●

p(
T

0)
● ● ● ●

●

● ● ●

p(
T

0)

● ● ● ●
●

● ● ●

p(
T

0)

● ● ●

●

● ● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

p(
T

0)

● ● ●

●

● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

p(
T

0)

● ● ● ●

●

● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

p(
T

0)

● ● ● ● ●

● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

External branch length br = brie + 0.05

Figure 4.3: Tree reconstruction accuracy, i.e. the proportion of alignments that yield

the true tree, is shown on the y-axis for simulations with no model violation

(vNONE, first row), with Ts/Tv violation (vTsTv, second row), with RaS

violation (vRaSV, third row), and with both Ts/Tv and RaS violation (vBOTH,

last row). The first two columns show the results for the four-taxon tree

C4 with alignment length 104 and 105, respectively. The last two columns

show the results for the eight-taxon tree C8. The x-axis displays the external

branch length br or (brie+0.05). Accuracy of ML is depicted by +, MP by

◦, and NJ by ×.
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For C8, the accuracy of ML and MP suffers severely from the violation vBOTH while

BIONJ’s accuracy is not affected for large sequence lengths.

4.4.2 Parameter estimation

The observed behavior of ML and BIONJ provokes a further investigation of the ML

estimated model parameters. Without any kind of model violation, vNONE, the ML

estimations of both parameters the transition transversion ratio and the Γ-shape α are

very close to the corresponding true values (Figure B.3). This confirms the statistical

consistency of ML inference for the model parameters if the sequence length is large

enough.

Transition transversion ratio violation, vTsTv, has no influence on the estimation of

α: the inferred α is very close to the true value 0.5 (Figure 4.4, first row). However,

the inferred Ts/Tv ratio substantially decreases from approximately 2.50 to 1.67 (C4)

and to 2.07 (C8) as brie increases (Figure 4.4, second row). We note that the estimated

Ts/Tv ratio roughly agrees with the branch length weighted average of the two Ts/Tv

ratios that were used in the simulations.

Notably, rates across sites heterogeneity violation, vRaSV, influences the estimation

of α but also the Ts/Tv inference (Figure 4.5, first and last row, respectively). The

estimated α for the C4 and C8 trees are both larger than 0.5 reflecting lower RaS

heterogeneity induced by ImOSM. A substantially larger α is inferred for C4 than for

C8. For the C4 tree, the inferred α grows almost linearly with increasing external

branch length. Whereas the estimated α for C8 increases to a maximum of 1.11 and

then decreases. Similarly, the inferred Ts/Tv deviates from 2.5 more dramatically for

C4 than for C8. Note that the proportion of intermittent evolution, i.e. the total branch

length of the parts along which sequences evolve under intermittent evolution divided

by the tree length, is larger on the four-taxon tree (2(br−0.05)
4br+0.05

) than on the eight-taxon

tree (2(br−0.05)
8br+0.25

). This leads to the above differences and results in the distinct patterns of

behavior (in terms of reconstruction accuracy) of BIONJ between the C4 and C8 trees.

Finally, the estimation of α and Ts/Tv under the violation of both RaS and Ts/Tv

(vBOTH) shows similar patterns to those under vRaSV (Figure B.4). The parameters esti-

mated for the C8f tree are similar to those for C8 as summarized in the supplementary

material, Figure B.5.
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Figure 4.4: ML parameter estimation in the presence of transition transversion ratio

violation (vTsTv). The first and the last rows show estimation of the Γ-shape

parameter α and the Ts/Tv ratio, respectively. Results for the four-taxon

tree C4 are presented on the left and for the C8 tree on the right. The x-axis

displays the external branch length br or (brie+0.05).
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Figure 4.5: ML parameter estimation in the presence of rates across sites violation

(vRaSV). The first and the last rows show estimation of the Γ-shape pa-

rameter α and the Ts/Tv ratio, respectively. Results for the four-taxon tree

C4 are presented on the left and for the C8 tree on the right. The x-axis

displays the external branch length br or (brie+0.05).
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4.4.3 Possible topological bias

We further check for possible topological bias, i.e. consistently inferring a “wrong”

topology, under the vRaSV setting. For the four-taxon tree C4, as the sequence length

increases to 105 and br exceeds 0.4, all three methods always infer the wrong topology

(A,C,(B,D)); which groups taxa that evolve similarly, i.e. (A,C), and (B,D). We

noted that a unique MP tree is reconstructed for each of the alignments. Remarkably,

although evolution was clock-like, all methods infer substantially larger branch lengths

for the external branches leading to A and to C than the other external branch lengths.

Moreover, the estimated internal branch length is significantly larger than zero (the

average internal branch lengths inferred by all the three methods are larger than 0.03,

Table 4.2). This means we did not observe any unresolved or multifurcating internal

node in the inferred trees.

Inferred tree Method
Mean external branch length Internal branch length

to A to B to C to D mean st. deviation

D

B

A

C ML 0.600 0.278 0.599 0.280 0.030 0.003

MP∗ 0.289 0.180 0.289 0.180 0.127 0.001

NJ 0.596 0.276 0.595 0.275 0.039 0.004

Table 4.2: Trees and branch lengths inferred by ML, MP and BIONJ for the four-taxon

tree (C4) with external branch length br = 0.5 under the vRaSV setting for

sequence length ` = 105. All methods infer the same wrong tree as depicted.

Recall that ImOSM introduced extra substitutions to the indicated external

branches. ∗ Branch lengths for MP are the numbers of substitutions assigned

to the branches as reported by PAUP* divided by the sequence length.

For the eight-taxon trees BIONJ always infers, independently of the external branch

lengths, the true tree as ` grows to 105. In contrast, as br exceeds 0.4 neither ML nor

MP estimation converges to a single tree. Therefore, we increased ` up to 107. Table 4.3

shows the number of tree topologies reconstructed by ML and MP for the C8 and

C8f trees with br = 0.5. As ` increases to 107 ML inference converges to a single tree,

whereas, MP reconstructs more than one tree.
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Method Tree
Seq. length `

105 106 107

ML
C8 2 1 1

C8f 9 4 1

MP
C8 2 2 2

C8f 4 3 2

Table 4.3: Number of tree topologies inferred by ML (first block) and MP (second

block) for the C8 and C8f trees with external branch br = 0.5 under the

vRaSV setting for sequence length ` ∈ {105, 106, 107}.

Table 4.4 shows the tree topologies and their frequency inferred by ML (first block)

and MP (second block) for the C8 tree (left) and C8f (right) with {br = 0.5, ` = 106}.
For both the C8 and C8f trees, ML constantly recovers the innermost branch. On each

side of the innermost branch, ML then groups taxa that evolve under the pure K2P + Γ

model. For C8, the sub-tree ((E,F),(G,H)) is accurately reconstructed, however, taxa

B and D are always incorrectly clustered in the other sub-tree. In addition, ML cannot

resolve the positions of taxa A and C, thus yielding a multifurcating node in the tree. For

C8f the two cherries (C,D) and (G,H), each in one sub-tree of the innermost branch,

are correctly inferred. However, in 67% the cherry (C,D) is wrongly grouped with taxon

B in one sub-tree and the cherry (G,H) is erroneously clustered with taxon F in the

other sub-tree. The remaining 33 trees are multifurcating. Nonetheless, as ` grows to

107, the ML reconstruction converges to the first (the highlighted) tree. Hence, ML fails

to recover the true tree for both the C8 and C8f trees.

MP also fails to reconstruct the true tree for both the C8 and C8f trees but shows a

different behavior than ML. For C8, MP infers two tree topologies for ` = 106 (Table 4.4,

second block, left column). In both topologies, the two taxa A and C, which are affected

by intermittent evolution, erroneously form a cherry. For C8f, three topologies are

reconstructed and they all group taxa A and E (Table 4.4, second block, right column);

therefore, MP cannot recover the internal branch separating {A,B,C,D} from {E,F,G,H}.

Thus, MP does not converge to a single tree (even if ` = 107) and always clusters

taxa evolving with lower RaS heterogeneity (induced by ImOSM) regardless of their

positions in the tree (refer to the C8 and C8f trees) and regardless of the tree size
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Method
Inferred trees for C8 Inferred trees for C8f

#trees Topology #trees Topology

E

H

G

F

AB

D

C

B A E FD

C H

G
ML 100 67

H

GD

C

E FAB

19

A

H

GD

C

B FE

12

AB

H

G

C

D

E F

2

DBA

C

E

H

G

F

B F

G

H

C D

E

A

MP 55 50

A

C

E

H

G

F

D B

HG

D

B FC E

A

45 45

B F

G

H

D

C

A E

5

Table 4.4: Tree topologies inferred by ML (first block) and MP (second block) for the

C8 (left) and C8f (right) trees with external branch br = 0.5 under the

vRaSV setting for sequence length ` = 106. Recall that ImOSM introduced

extra substitutions to the indicated external branches.
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(four- and eight-taxon trees). In contrast, ML infers a single wrong tree and tends to

group “relatively close” taxa (on the same side of the innermost branch of the eight-

taxon trees) evolving with larger RaS heterogeneity, i.e. taxa evolving under the pure

K2P + Γ model. Finally, we note that the behavior of the methods is similar under the

vBOTH setting.

4.4.4 Model test and goodness of fit evaluation

br = (brie + 0.05)

Test Tree 0.05 0.10 0.20 0.30 0.40 0.50 0.75 1.00

C4 0.99 1 1 1 1 1 1 1

(a) C8 1 1 1 1 1 1 1 1

C8f 1 1 1 1 1 1 1 1

C4 0.05 0.92 1 1 1 1 1 1

(b) C8 0.04 1 1 1 1 1 1 1

C8f 0.04 1 1 1 1 1 1 1

C4 0.03 1 1 1 1 1 1 1

(c) C8 0 1 1 1 1 1 1 1

C8f 0 1 1 1 1 1 1 1

C4 0 0 0.21 0.79 0.7 0.65 0.28 0.13

(d) C8 0 0.32 1 1 1 1 1 1

C8f 0 0.35 1 1 1 1 1 1

Table 4.5: Proportion of alignments of length ` = 105 under the vRaSV setting for which

(a) the BIC criterion selects the K2P + Γ model, (b) the assumption of model

homogeneity along the tree is rejected, (c) the K2P + Γ model is rejected by

the Goldman-Cox test, and (d) MISFITS rejects the model and the inferred

tree.

We perform several tests to complete the ML analysis for ` = 105 under the vRaSV set-

ting. The Bayesian information criterion, BIC, (Schwarz, 1978) selects K2P+Γ for more

than 99% of the alignments (Table 4.5a). This means BIC does not identify local devi-

ation from the original model. Markedly, the test proposed by Weiss and von Haeseler
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(2003) rejects the assumption of model homogeneity across lineages (significance level

α = 0.05) for almost all alignments (more than 99% on average) if brie > 0 (Table 4.5b).

We further investigate the goodness of fit of the K2P + Γ model and the inferred

ML tree to the data using the Goldman-Cox test (Goldman, 1993b) and MISFITS

(Nguyen et al., 2011). For each of the 100 disturbed alignments, we performed parametric

bootstrap with 100 replicates. The Goldman-Cox test rejects independently of the tree

size the K2P + Γ model for all alignments if brie > 0 (Table 4.5c). MISFITS rejects the

K2P + Γ model and the inferred tree for a smaller proportion of alignments from the

four-taxon tree (an average of 46% for brie > 0) than from the eight-taxon trees (90%,

Table 4.5d).

4.5 Discussion

We introduced ImOSM, a tool to imbed intermittent evolution into phylogenetic data

in a systematic manner. The intermittent evolution may possess an arbitrary number

of distinct sets of relative substitution rates (within the K3ST model) and different dis-

tributions of rates across sites across branches on the tree. This is possible because

the OSM matrix allows ImOSM to work directly on the alignment site patterns, i.e. the

character states at the leaves, instead of evolving an ancestral sequence at the root along

the tree like other sequence simulation programs. Thereby, ImOSM provides a conve-

nient means to simulate relative substitution rate heterogeneity across branches (e.g.

the vTsTv setting) and heterotachy (e.g. the vRaSV setting). For studies of robustness

in phylogeny inference, ImOSM complements currently available sequence simulation

programs by providing a flexible utility to incorporate various types of model violations

into the simulated alignments.

We investigated the robustness of ML and BIONJ inference under a misspecified model

as well as MP to model violations introduced to a four- and eight-taxon clock-like trees.

We showed that the accuracy of all methods was unaffected by the violation of the Ts/Tv

ratio on two nonadjacent external branches. RaS heterogeneity violation hampered all

methods to recover the true topology for the four-taxon tree as the external branch

length increased. For the eight-taxon balanced trees, the violation of RaS heterogeneity

and the simultaneous violation of RaS and the Ts/Tv ratio on two nonadjacent external

branches caused each of the three methods to infer a different topology. BIONJ using the
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ML estimated distances always returned the correct tree; MP incorrectly grouped the

two branches undergoing the intermittent evolution (i.e. with lower RaS heterogeneity)

whereas ML tended to cluster close taxa evolving with higher RaS heterogeneity. In

addition, if the affected branches are close, i.e. on the same side of the innermost branch

in the C8 tree, ML inferred a multifurcating tree.

Previously, Kolaczkowski and Thornton (2004) reported that MP outperforms mis-

specified ML inference and is resistant to a specific setting of heterotachy in which con-

catenated data are generated from the same four-taxon tree but with different branch

length sets. Their result stimulated numerous discussions about the performance of MP

and ML tree estimation in the presence of heterotachy. Contradictions to this result

were demonstrated for many other combinations of branch lengths (see e.g., Spencer

et al., 2005; Gadagkar and Kumar, 2005; Gaucher and Miyamoto, 2005; Philippe et al.,

2005; Lockhart et al., 2006). More recently, Wu and Susko (2009) proposed a pair-

wise alpha heterotachy adjusted (PAHA) distance approach such that NJ with PAHA

distances outperformed ML in several settings of heterotachy including the one from Ko-

laczkowski and Thornton (2004). Here we reported cases in which all methods (ML, MP

and BIONJ) incorrectly grouped two nonadjacent branches affected by RaS violation

for the four-taxon clock-like tree if the external branch length exceeds 0.4. Moreover,

they all estimated larger branch lengths for these two branches. This implies that quar-

tet based analyses, where different methods reconstruct the same tree with long branch

attraction, should be interpreted with caution for real data.

The superiority of BIONJ over ML and MP for the eight-taxon trees is surprising. ML

was reported in previous studies (e.g., Hasegawa et al., 1991; Huelsenbeck, 1995b) to be

more robust to model violation than distance methods such as NJ; nonetheless, the sim-

ulation settings (one evolutionary model) and the model trees (four-taxon trees) used in

these studies were different from our simulations. Unfortunately, as the three methods

infer three different topologies (Figure B.6), the joint analysis of such alignments by

different tree reconstruction methods does not provide any indication of which tree may

be the correct one. Thus, a more detailed analysis of the data is advised. Model-Test

(Posada and Crandall, 1998), which selects a model from a collection of available mod-

els but makes no statement about the goodness of fit, did not help in these cases. BIC

consistently selected K2P + Γ as the best model for the disturbed alignments. Fortu-

nately, the test proposed by Weiss and von Haeseler (2003) does reject the assumption
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of a homogeneous substitution process along the tree. This indicates that the data show

model violation. Subsequently, the Goldman-Cox test (Goldman, 1993b) and MISFITS

(Nguyen et al., 2011, see also Chapter 3) demonstrated that the violation is so severe

that the selected model and the inferred tree cannot explain the data adequately; hence,

one should be careful in interpreting the tree. Therefore, we recommend tests of model

homogeneity test when applicable and tests of model fit to complete practical phyloge-

netic analyses. These tests may help to avoid wrong conclusions about the evolutionary

relationship as some inferred phylogenies might be unreliable due to model violation and

model inadequacy to data.

Finally, we note that our simulations imply a kind of heterotachy. Thus, an interest-

ing extension of this work would be to evaluate the accuracy of mixed branch length

models that aim to account for heterotachy (Kolaczkowski and Thornton, 2008; Pagel

and Meade, 2008). We also note that this is not an exhaustive simulation study for

different model violations. We provide a tool to introduce model violations and show

that already very simple violations of the model on two branches of the tree can lead to

bewildering results, like the three different trees inferred by the three different phylogeny

reconstruction methods.
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Conclusions and Outlook

I am still confused. But on a higher level.

Enrico Fermi

After providing an excursion into the basic tasks of phylogenetic analyses (Chapter 1)

and an introduction to statistical tests of evolutionary models (Section 1.2 and Sec-

tion 3.1), this thesis investigates two issues in phylogeny reconstruction. First, testing

the absolute fit of an evolutionary model to an alignment enables us to reject inade-

quate models and to gain confidence in an accepted model. We proposed a new method,

called MISFITS, to evaluate the goodness of fit between an evolutionary model and

an alignment (Chapter 3). Different from previously developed methods, which as-

sess fit based on the unconstrained likelihood and the likelihood under the model over

the whole alignment, MISFITS compares the two likelihoods site-wise. This allows

our method to pinpoint to site patterns that are inadequately captured by the model.

Simultaneously, MISFITS assists the model in elucidating the presence of these site

patterns in the alignment by introducing a minimum number of extra substitutions to

the inferred tree. To the best of our knowledge, this is the first time the inadequacy

of an evolutionary model to the data is quantified and explained in a maximum par-

simony framework. The software program implementing MISFITS (freely available at

http://www.cibiv.at/software/misfits) makes it possible to apply the method routinely

in practical phylogenetic analyses. Our survey of the goodness of fit conducted on the

PANDIT alignments (Whelan et al., 2006) indicates that in a number of instances (350

of 4,268 alignments), the best-fit models do not fully explain the data. Therefore, more

thorough investigations are advisable in such cases.

77

http://www.cibiv.at/software/misfits


78 Chapter 5 Conclusions and Outlook

Second, awareness of the performance of different phylogenetic methods aids in avoid-

ing incorrect conclusions from the inferred phylogenies due to reconstruction artefacts.

We briefly summarized previous simulation-based studies of the performance in phy-

logeny inference putting emphasis on studies of the robustness to model violation, a

practically important criterion to assess a phylogenetic method (Chapter 4). We then

developed a flexible utility named ImOSM (http://www.cibiv.at/software/imosm), an

add-on tool to sequence simulation programs, to introduce various kinds of model viola-

tions for studies of the robustness. Our simulation study with model violation caused by

ImOSM provides additional insights into the robustness of ML, MP and BIONJ meth-

ods. On the one hand, it is an interesting observation that each of the three methods

infers a different topology for the eight-taxon tree in the presence of rates across sites

heterogeneity violation along two nonadjacent external branches. Nonetheless, such a

result directly provokes further examination. On the other hand, the fact that the three

methods agree on the same tree topology does not necessarily mean they recover the

true tree (c.f. simulations with violation of rates across sites heterogeneity along two

nonadjacent branches of the four-taxon tree). A hasty conclusion with regard to the

reconstructed tree in such a case would be misleading. Fortunately, tests of absolute

model fit including MISFITS do reject the best-fit model in both instances. This im-

plies that the inferred trees are possibly unreliable due to the inadequacy of the model

to the data. Thus, these tests should be applied to every practical phylogenetic analysis

regardless of how pleased one might be about the inferred phylogeny.

Both MISFITS and ImOSM utilize the concept of extra substitutions occurring on

arbitrary branches of a phylogeny which we call intermittent evolution. We demonstrated

how to model intermittent evolution for nucleotide characters (Chapter 2) using the one

step mutation (OSM) matrix proposed recently by Klaere et al. (2008). The OSM

matrix integrates both components of an evolutionary process, the phylogeny and the

substitution model, into a unified framework. The two applications, MISFITS and

ImOSM, show how this framework sheds additional light on our understanding of the

complexity of sequence evolution.

From the methodology point of view, modelling sequence evolution using the OSM

matrix has one limitation, that is the permutation matrices from the substitution model

and the identity matrix have to form a commutative group with respect to matrix

multiplication. For nucleotide substitution, the K3ST model is the most general model

http://www.cibiv.at/software/imosm
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that allows for the formation of such a group (i.e. an Abelian group of order four

with matrix multiplication as the group operation). Abelian groups of order 20 exist

(Humphreys, 1996, Appendix B); therefore, extensions of MISFITS and ImOSM to

amino acid data are possible. In general, the OSM matrix is applicable to any alphabet

where an Abelian group can be constructed. The important point is to assign the

permutation matrices of the group to the character states that make biological sense.

This will be analysed in future work.
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Null hypothesis H0: A given evolutionary model M is an adequate model to describe

a given alignment A.

Step 1: Estimate the ML tree for A underM and all the parameters (model param-

eters and branch lengths).

Step 2: Calculate the unconstrained log likelihood for the original alignment A as in

Equation (3.1) and compute its difference to the maximum log likelihood (L)

from the ML inference: σobs = LuncA − LA.

Step 3: Use the parameters in Step 1 to generate say 100 alignments A1 · · · A100,

i.e. parametric bootstrap replicates under M.

Step 4: For each generated alignment Ai: (i) compute the unconstrained likelihood,

(ii) estimate the ML tree and all parameters under the model M, then (iii)

calculate the difference σj = LuncAj
− LAj

.

Step 5: Determine the P -value as the proportion of the generated alignments where

σj ≥ σobs.

Interpretation: The differences σ1 · · ·σ100 represent the expected difference under the

null hypothesis as the model M was used to generate the data A1 · · · A100. Thus,

σ1 · · ·σ100 form the null distribution to which the observed difference σobs is com-

pared. If the P -value attained at Step 5 is smaller than 5% then H0 is rejected.

This indicates that the model M (and the inferred ML tree) are insufficient to

explain the data A. On the other hand, a large P -value does not reject H0.

Table A.1: Recapitulation of the procedure to perform the Goldman-Cox test (Goldman,

1993b) of absolute model fit in phylogeny inference (see also e.g. Whelan

et al., 2001; Jermiin et al., 2008).
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Rate

Modela One rate I Γ I + Γ
∑

Model

JC 0.07 0 0.02 0 0.09

F81 0.16 0.16 0.16 0.09 0.57

K80 0.02 0.35 0.68 0.31 1.36

HKY 0.23 1.20 3.87 3.47 8.77

K3ST 0 0.12 0.33 0.09 0.54

K3STuf 0.09 0.77 2.09 1.78 4.73

TN93ef 0.05 0.12 0.16 0.19 0.52

TN93 0.16 0.70 1.92 2.23 5.01

SYM 0.12 0.33 3.40 4.52 8.37

GTR 0.31 2.51 26.57 40.65 70.04∑
Rate 1.21 6.26 39.20 53.33 100.00

Table A.2: Percentages (%) of the selected models for the 4,268 PANDIT alignments

going through all analyses. a refer to Table 1.3 for a detailed description of

the models.
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Figure A.1: Results on PANDIT database under the selected models for the 4,268 align-

ments where over-represented patterns were observed and there were enough

under-represented patterns to exchange with them. The barplots display the

proportion of models being rejected by MISFITS (black bars) and by the

Goldman-Cox test (light gray bars) with respect to the number of sequences

in the alignment (a) and to the alignment length (b).



Appendix A Supplemental tables and figures to Chapter 3 101

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

nu
m

be
r 

of
 a

lig
nm

en
ts

 (
lo

g1
0)

  
 

 

  

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

x

x

x

x

x

x

x

x

x

x
x

x

x x

x x

x

x x
x

x
x

x
x

x

o

o

o

o

o

o o

o

o
o

o

o

o o

o o

o

o

o

o o
o

o

o

o

40−45
35−40

30−35
25−30

20−25
15−20

10−15
5−10

0−5

4−
10

11
−

20

21
−

30

31
−

40

41
−

50

51
−

60

61
−

70

71
−

80

81
−

90

91
−

10
0

number of sequences

alignment_length/100

x
o

Rejected by MISFITS
Rejected by Cox−test

Figure A.2: Number of alignments and rejected alignments for the 4,268 PANDIT align-

ments where over-represented patterns were observed and there were enough

under-represented patterns to exchange with them. The x-axis represents

the number of sequences in the alignment, the y-axis shows the alignment

length divided by 100. The bars along the z-axis displays the number of

alignments (in logarithm to base 10) with certain ranges of the alignment

length and the number of sequences. Points on each bar shows the number

of alignments (models) being rejected by MISFITS (x) and by the Goldman-

Cox test (o).
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Figure A.3: Empirical computation time to compute m0 given D+ and D− for the 4,268

PANDIT alignments. The x-axis displays the number of sequences in the

alignment, the y-axis shows the alignment length divided by 100. The bars

along the z-axis displays the average running time to compute m0 given D+

and D− for these alignments with the corresponding ranges of the alignment

length and the number of sequences.
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Figure B.1: Tree reconstruction accuracy for C8f. The accuracy, i.e. the proportion of

alignments that yield the true tree, is shown on the y-axis for simulations

with no model violation (vNONE, first row), with Ts/Tv violation (vTsTv,

second row), with RaS violation (vRaSV, third row), and with both Ts/Tv

and RaS violation (vBOTH, last row). The x-axis displays the external branch

length br or (brie+0.05). Accuracy of ML is depicted by +, MP by ◦, and

BIONJ by ×.
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Figure B.2: Tree reconstruction accuracy p(T0), i.e. the proportion of alignments that

yield the true tree, is shown on the y-axis for simulations with the C4 tree

with simultaneous violation of RaS and TsTv (vBOTH) and external branches

grows to 2.0 branch length. The two columns show the results for sequence

length 104 and 105, respectively. The x-axis displays the external branch

length br or (brie+0.05). Accuracy of ML is depicted by +, MP by ◦, and

BIONJ by ×.
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Figure B.3: Parameter estimation for C4 and C8 settings in the absence of model vio-

lation. The first and the last rows show estimation of the shape parameter

α and the Ts/Tv ratio, respective. Results for the four-taxon tree C4 are

presented on the left and for the C8 tree on the right. The x-axis displays

the external branch length br or (brie+0.05).
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Figure B.4: Parameter estimation in the presence of the simultaneous TsTv and RaS

violation (vBOTH). The first and the last rows show estimation of the shape

parameter α and the Ts/Tv ratio, respective. Results for the four-taxon

tree C4 are presented on the left and for the C8 tree on the right. The

x-axis displays the external branch length br or (brie+0.05).
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Figure B.5: Parameter estimation for the C8f tree without and with different kinds of model violation. The first and the

last rows show estimation of the shape parameter α and the Ts/Tv ratio, respectively. Columns from left to

right display the results for simulations with no model violation (the first column), with TsTv violation (second

column), with RaS violation (third column) and with simultaneous TsTv and RaS violation (the last column).
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Figure B.6: Pairwise comparison between trees inferred by ML, MP and BIONJ for

simulations under the vRaSV setting for the C8 tree (first row) and the

C8f tree (last row). The first and second columns show the results for

alignment length 104 and 105, respectively. The x-axis displays the external

branch length br or (brie+0.05). The y-axis shows the proportion of align-

ments that yield the same tree topologies between: ML and BIONJ (+), ML

and MP (×), and MP and BIONJ (◦). As shown, all the lines drop to 0 as

br exceeds 0.5. This means each of the three methods produces a different

tree.
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