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Abstract

The contribution of Prescott and Mehra (1985) to the asset pricing literature trig-

gered an enormous amount of research addressing the so called equity premium puzzle.

In the following thesis I will briefly review the origins of asset pricing by presenting the

seminal paper of Lucas (1978) and deriving simple closed-form asset pricing equations.

In the second part of the thesis a brief review of the equity premium puzzle based on

Prescott and Mehra (1985) and Hansen and Jagannathan (1991) will be given. Finally,

I will discuss the approach of Campbell and Cochrane (1999) which tries to resolve the

puzzle by introducing an alternative class of utility function that accounts for what is

known as habit formation.
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Equity Premium Puzzle

1 Introduction

The following thesis provides an overview of the so called equity premium puzzle first pub-

lished in Prescott and Mehra (1985). Prescott and Mehra published their paper in response

to seminal works by Lucas (1978) and Breeden (1979). The equity premium observed em-

pirically deviates significantly from its pendant predicted by consumption-based equilibrium

models like the Lucas tree model and the CCAPM. A large number of explanations exist to

adress the problem. I split the thesis into 3 parts. Part 1 serves as a basic introduction to

general equilibrium asset pricing and introduces a simple contingent claims equilibrium as

well as a more realistic setting in the form of a security market equilibrium. The major part

of this section will describe the fundamental tree model as in Lucas (1978) and the closely

related model in Breeden (1979). In part 2 the equity premium puzzle will be introduced as

in Prescott and Mehra (1985). This section will be split into 2 subparts, namely a theory

part to review the basic idea of the Presoctt/Mehra paper and an empirical part to illustrate

the most important findings from real-world data. Empirics will consist mainly of readily

available data and results as in Campbell (1999). The final part then introduces the concept

of habit formation which is one of the most powerful modeling frameworks to explain the

puzzle. I will discuss the external habit version of Campbell and Cochrane (1999).

2 General Equilibrium Asset Pricing

In general equilibrium theory economies are viewed as systems in which the equilibrium

values of the main variables of interest - consumption, production, asset prices - are de-

termined simultaneously. Economic agents interact with each other through anonymous

markets. Markets are assumed to be perfectly competitive, i.e. agents act as price takers

and cannot influence them individually. One of the earliest works on general equilibrium

theory was published by Walras (1874). Debreu (1959) extended Walras’ work and provided

conditions that guarantee existence of an equilibrium. With the two Fundamental Theorems

of Welfare Debreu (1959) provided conditions (local-non satiation and transitivity of pref-

erences) under which a competitive equilibrium leads to a Pareto efficient allocation (first

theorem) and how an efficient allocation may be sustainable by a competitive equilibrium

(convexity of production and consumption set; second theorem). Hirshleifer (1965), Hir-

shleifer (1966) and Radner (1972) were the first papers to provide an integrated approach

by explicitly taking financial markets into account in their models. This literature was in

turn extended by Merton (1973), Lucas (1978) and Breeden (1979). The Lucas tree model

and the Consumption-based Capital Asset Pricing Model (CCAPM ) are two of the major

building blocks of what is called equilibrium asset pricing theory.

2.1 A Contingent Claim Economy

In the following section we will describe a simple one-period pure endowment economy and

show how equilibria are determined in such settings, i.e. what prices and allocations ensure
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2.1 A Contingent Claim Economy Equity Premium Puzzle

utility maximization for all agents as well as market clearing. As stated initially, only a

one-period economy with a finite number of possible future states s is considered. Agents in

such an economy negotiate contracts with each other that yield a certain payoff contingent

on the realized future state s and may trade claims to such contracts for all possible states s.

Such contingent claims are also often referred to as Arrow-Debreu securities (see Danthine

and Donaldson (2005), p. 147). Arrow-Debreu securities are characterzized by the fact that

they yield a payoff of 1 if a certain state s occurs and 0 otherwise. The realization of s is

unknown at t = 0. Only the probability distribution over the set of possible future states

is known. The realized state becomes known as soon as all contracts have been negotiated

and trading takes place.

2.1.1 Model and Assumptions

In the following a formal definition of the underlying model is described as in Altug and

Labadie (2008).

• There are finitely many consumers, {1, 2, . . . , I}.

• Each possible future state s is assigned a probability πs ∈ (0, 1) such that

S∑

s=1

πs = 1.

The set of states and the probabilities associated with each state s are known by all

consumers.

• There is one commodity only.

• Consumption vectors for individual agents are of length S

ci ≡ {ci1, . . . , ciS}.

The vector components cis ∈ R+ denote the consumption of the commodity of agent

i in state s. The commodity space is therefore R
S
+ and is finite-dimensional since we

assumed a finite number of states and one single commodity respectively.

• For each agent i there is an endowment vector of length S of the form

ωi ≡ {ωi
1, . . . , ω

i
S}.

• Each agent i has a utility function ui : R
S
+ → R. The function ui is assumed to be

separable with respect to states.

ui(c
i) =

S∑

s=1

πs · Ui(c
i
s).

1

1This implies that preferences are additively separable across states s. Here total utility ui of a con-
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2.1 A Contingent Claim Economy Equity Premium Puzzle

• Finally, we can summarize a contingent claim economy as a list {(ui, ωi) : i = 1, . . . , I}.
Each agent i is fully characterized by the tuple (ui, ωi) (see Lengwiler (2006), p. 24).

Having introduced the model setup we will proceed with some important definitions.

• A vector C ≡ (c1, . . . , cI) with C ∈ R
S×I
+ is called an allocation.

• An allocation C is called feasible or attainable if

I∑

i=1

(cis − ωi
s) ≤ 0

for all s = 1, . . . , S. Thus, all consumers together can at most consume their total

endowment with the consumption good in state s.

• An allocation C is called Pareto optimal if no other feasible allocation C ≡ (c1, . . . , cI)

exists such that

ui(c
i) ≥ ui(c

i)

for all i = 1, . . . , I and

ui(c
i) > ui(c

i)

for some i.

2.1.2 Contingent Claim Equilibrium

In what follows Altug and Labadie (2008) define a so called complete contingent claims

equilibrium (CCE). Before the realization of a particular state s agents trade contingent

claims. A contingent claim may state that an agent i transfers a certain amount of the

commodity of his endowment ωi to agent k given a certain state s is realized. A total of S

contingent claims are traded in that economy (one claim for each of the S possible states).

Let p ∈ R
S
+ be a price vector of the form p ≡ (p1, . . . , pS) and ps ∈ R+ be the price of a

claim to one unit of the commodity contingent on state s. A mapping p : RS
+ → R+ is called

a price system and assigns a cost to a commodity c and a value to an arbitrary endowment

ω (see also Debreu (1959)). Thus,

p · cT ≡
S∑

s=1

ps · cs = p1 · c1 + . . .+ pS · cS .

So, the cost of a bundle is the inner product of the price vector p and commodity bundle

c. A competitive equilibrium then is a pair (p, C) with price vector p ≥ 0 and C is feasible2

such that ci solves the following constrained optimization problem for all i = 1, . . . , I:

max
ci

ui(c
i)

sumption vector ci can be represented as a weighted sum of utilities Ui of state contingent consumption
cis.

20 denotes the null vector of length S.
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2.1 A Contingent Claim Economy Equity Premium Puzzle

subject to

p · ciT ≤ p · ωiT .

2.1.3 Deriving a Contingent Claim Equilibrium

Altug and Labadie (2008) compute an equilibrium vector of prices by means of simple

Lagrange multipliers. Let cis denote the consumption of agent i in state s. Each agent i

chooses a consumption vector ci ∈ R
S
+ by solving the following optimization problem:

max
{cis}

S
s=1

S∑

s=1

πs · Ui(c
i
s)

subject to

S∑

s=1

ps · (ωi
s − cis) ≥ 0. (1)

The utility function Ui(.) is assumed to satisfy the following properties (Inada conditions).

Let Ui : R+ → R be a concave, increasing C2 function with

lim
cis→0

(

∂Ui(c
i
s)

∂cis

)

= lim
cis→0

U ′
i(c

i
s) = +∞

and

lim
cis→∞

(

∂Ui(c
i
s)

∂cis

)

= lim
cis→0

U ′
i(c

i
s) = 0.

By the Kuhn-Tucker Theorem we can find a multiplier λi ≥ 0 and a consumption vector ci

such that

ui(c
i) + λi · (p · ωiT − p · ciT ) (2)

is maximized with respect to ci. Equation (2) can be rephrased as

L =

S∑

s=1

πs · Ui(c
i
s) + λi ·

(
S∑

s=1

ps · ωi
s − ps · cis

)

being the Lagrangian to be optimized with respect to ci. The first-order conditions (FOC)

thus are

πs · U ′
i(c

i
s)− λi · ps = 0 (3)

for all s and i. Define

gi(.) ≡ (U ′
i)

−1(.) .

7



2.2 An Asset Economy Equity Premium Puzzle

Rearranging equation (3) we get

U ′
i(c

i
s) =

ps · λi
πs

. (4)

One can show that, by the Implicit Function Theorem (IFT), the following holds:

cis = gi

(

ps · λi
πs

)

for all s and i. To obtain the equilibrium allocation we can substitute above equation into

the original budget constraint (1)

S∑

s=1

ps ·
[

ωi
s − gi

(

ps · λi
πs

)]

= 0.

Since prices, endowments and state probabilities are given we obtain a function of λi for all

i = 1, . . . , I. The left-hand side (lhs) is strictly increasing in λi. This can easily be derived

from equation (4). When λi increases marginal utility U ′
i(.) also increases. Since Ui(.) is

concave, marginal utility only increases when consumption decreases. Hence, if λi increases

gi(.) must decrease. Thus, by the IFT, one can express λi as a function of prices. So,

λi = ζi(p), ∀i.

Finally,

I∑

i=1

gi

(

ζi(p) · ps
πs

)

=

I∑

i=1

ωi
s

can be solved for the price vector p for all states s = 1, . . . , S.

2.2 An Asset Economy

The model introduced in the previous section has a few drawbacks. Contingent claim mar-

kets in the narrower sense of its definition do not exist for most commodities. What is

observable for actual economies are (physical) goods as well as financial markets (see Leng-

wiler (2006), p. 37). The following section is therefore supposed to extend the previous

simple general equilibrium model by introducing the notion of an asset market to derive

a security market equilibrium. The claims traded on such financial markets are claims to

random payoffs denominated in monetary terms rather than commodities as shown in the

previous section.

2.2.1 Model and Assumptions

As in the contingent claim economy security trading takes place before the state s is realized.

Also, trading in the commodity markets only takes place after security trading has ended.

Let us assume the following:

8



2.2 An Asset Economy Equity Premium Puzzle

• There are finitely many securities (1, . . . , N).

• Each security n yields a certain (absolute) payoff xn,s for all states s = 1, . . . , S. The

vector of security payoffs in state s thus is xs ≡ (x1,s, . . . , xN,s).

• Let X be an N × S payoff matrix of the form

X ≡







x1,1 . . . x1,S
...

. . .
...

xN,1 . . . xN,S







.

• Let q = (q1, . . . , qN ) denote the vector of security prices.

• Let ps ∈ R+ denote the price of the commodity in state s and p ∈ R
S
+ the price vector

of the commodity for states s = 1, . . . , S (analogous definition to previous section

2.1.1).

A portfolio is a vector θi ≡ (θi1, . . . , θ
i
N ) ∈ R

N . The vector components θin can be interpreted

as the number of shares of security n held by agent i. Hence, the inner product θi ·qT equals

the portfolio value. Since θn ∈ R we allow for negative portfolio weights which is called

short-selling (see Hull (2008) for details).

An agent’s objective is to choose a portfolio θi ∈ R
N and a consumption vector ci ∈ R

S
+ by

solving the following constrained optimization problem for given prices (q, p):

max
ci,θi

ui(c
i) =

S∑

s=1

πs · Ui(c
i
s)

subject to

θi · qT ≤ 0

ps · cis
T ≤ ps · ωi

s

T
+ θi · xsT .

The first constraint simply states that an agent cannot generate positive net wealth by

buying and selling securities, i.e. he can only invest the proceeds earned from short-selling.

Hence, every purchase of a security must be financed by selling another security. This is also

known as a self-financing portfolio. His initial endowment at t = 0 is therefore assumed to

be 0. The major difference to the prior section’s model is the fact that agents cannot trade

arbitrary contingent claims for every possible state of the world. In contrast agents trade in

spot markets which are markets for physical commodities which are not contingent on any

future state s. Hence, in the present framework, an agent faces a different budget constraint

for each state s = 1, . . . , S. His consumption in state s is constrained by his endowment and

the payoff generated from his investment portfolio.

9



2.2 An Asset Economy Equity Premium Puzzle

2.2.2 Security Market Equilibrium

A security market equilibrium (SME) is a list

((θ1, c1), . . . , (θI , cI), (q, p))

such that (θi, ci) solves the optimization problem for all i = 1, . . . , I and markets clear, i.e.

I∑

i=1

θin = 0, ∀n (5)

and

I∑

i=1

(cis − ωi
s) = 0, ∀s (6)

for given prices (q, p). The second condition again states that - in the aggregate - con-

sumption equals supply in each state s. The first condition refers to market clearing for

financial assets. Every asset that is bought by some investor has to be issued by another

one first. Aggregating over all long- and short-positions portfolio holdings must sum to 0,

i.e. securities are “in zero net supply” (see Lengwiler (2006), p. 50).

2.2.3 Deriving a Security Market Equilibrium

Altug and Labadie (2008) normalize the price of the single commodity to ps = 1. Then each

consumer solves

max
ci,θi

S∑

s=1

πs · Ui(c
i
s)

subject to

N∑

n=1

θin · qn ≤ 0

cis ≤ ωi
s +

N∑

n=1

θin · xn,s, ∀s. (7)

Hence, the Lagrangian equals

L =

S∑

s=1

πs · Ui(c
i
s)− µi ·

N∑

n=1

θin · qn +

S∑

s=1

(

λis · (ωi
s +

N∑

n=1

θin · xn,s − cis)
)

.

The first-order conditions with respect to the decision variables cis and θi are

πs · U ′
i(c

i
s) = λis (8)
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2.2 An Asset Economy Equity Premium Puzzle

µi · qn =

S∑

s=1

λis · xn,s, ∀n (9)

for all s = 1, . . . , S and i = 1, . . . , I. The corresponding market clearing conditions are those

as in equation (5) and (6). Equilibrium allocations and prices can then be derived by first

substituting equation (8) into (9) to obtain

µi · qn =

S∑

s=1

πs · U ′(cis) · xn,s, ∀n. (10)

Goods market clearing suggests that

ωs = cis +
I∑

j=1
j 6=i

cjs.

We also have,

ωs = ωi
s +

I∑

j=1
j 6=i

ωj
s.

Hence, combining both, we can express cis as

cis = ωi
s +

I∑

j=1
j 6=i

(ωj
s − cjs)

︸ ︷︷ ︸

≡Aj

with

Aj ≡ −
N∑

n=1

θjn · xn,s.

The latter identity can simply be derived from the budget constraint (7). Substituting cis

into equation (10) we obtain

qn =

S∑

s=1

πs · U ′
i(ω

i
s −

∑I
j=1
j 6=i

∑N
n=1 θ

j
n · xn,s) · xn,s

µi

.

The right-hand side (rhs) is strictly increasing in θjn by the same argument provided in the

prior section (see section 2.1.3). By the Implicit Function Theorem we can express portfolio

holdings θin as a function of µ ≡ (µ1, . . . , µI) and q ≡ (q1, . . . , qN ).

θin = gin(µ, q), ∀i

From here we can simply use the security market budget constraint
∑N

n=1 g
i
n(µ, q) · qn = 0

to solve for µi as a function of security prices q, i.e. µi = hi(q). The market clearing

condition for securities
∑I

i=1 g
i
n(h(q), q) = 0 eventually allows us to solve for q with h(q) ≡

11



2.2 An Asset Economy Equity Premium Puzzle

(h1(q), . . . , hI(q)). A major point to consider is the difference between the contingent claims

prices, which are fixed in advance, and security prices in a security market equilibrium.

Since trading takes place before the state s is realized security prices reflect expectations

regarding future payoffs, i.e.

qn =

S∑

s=1

πs · U ′
i(c

i
s)

µi
· xn,s.

Each payoff xn,s is discounted by a factor of U ′
i(c

i
s)/µ

i and weighted by the probability

of state s occuring. Finally, one might wonder how both models - the contingent claim

and security market equilibrium - are related. In the contingent claim equilibrium agents

maximize utility subject to a single budget constraint. In contrast to that, in a security

market equilibrium agents face multiple budget constraints, i.e. one for each state. A natural

question that arises in this context is under what conditions both (consumption) allocations

coincide? Arrow (1964) shows that a contingent claims equilibrium can be attained by a

security market equilibrium if the number of states S equals the number of securities N . A

brief summary of these results can be found in Altug and Labadie (2008).

12



2.3 A Representative Agent Equity Premium Puzzle

2.3 A Representative Agent

So far we have allowed for ex ante heterogeneity among the members of a set of individual

agents. As demonstrated in the previous sections one would have to solve the optimization

problem for all agents simultaneously. For a population of multiple agents it may therefore

seem plausible to derive equilibrium allocations and prices by means of one representative

agent. This idea can simply “be justified by the fact that, in a competitive equilibrium

with complete securities markets there is an especially intuitive sense of a representative

agent: one whose utility function is a weighted average of the utilities of the various agents

in the economy” (see Danthine and Donaldson (2005), p. 162). Representative agents

are a powerful tool to deal with the complex issue of aggregation especially when there is

heterogeneity among agents in a population. The circumstances under which a representative

agents exists are evaluated in this section.

2.3.1 Constructing a Representative Agent

Suppose we are in a one-period contingent claim economy with agents i = 1, . . . , I choosing

state contingent consumption cis for period t = 1 (same setup as before). There is only one

perishable consumption good and cis, ps ∈ R+. The procedure that I am presenting here

is based on a central result which is closely related to the second theorem of welfare. One

can show that for every pareto optimal allocation there exists a set of non-negative numbers

{λi}Ii=1 such that the same allocation can be achieved by a central planner who maximizes a

linear combination of individual utility functions using {λi}Ii=1 as weights (see Varian (1992),

pp. 329 and Huang and Litzenberger (1988) ch. 5). We will derive conditions under which

the central planner and individual optimization problems deliver the same equilibrium. The

central planner maximizes

max
I∑

i=1

λi ·
[

S∑

s=1

πs · Ui(c
i
s)

]

where πs denotes the probability of state s occuring and Ui denotes the utility function

of agent i over cis. Assuming that utility is strictly increasing, the weights λi are strictly

positive, i.e.

λi > 0, ∀i.

Since individuals may at most consume the available aggregate consumption level one has

to impose the following budget constraint:

I∑

i=1

cis = Cs, ∀s

where Cs denotes aggregate consumption in state s. Taking this constraint into account one

can set up the Lagrangian

13



2.3 A Representative Agent Equity Premium Puzzle

max
cis

L =

I∑

i=1

λi ·
[

S∑

s=1

πs · Ui(c
i
s)

]

+

S∑

s=1

φs ·
[

Cs −
I∑

i=1

cis

]

. (11)

The FOC then is

∂L
∂cis

= λiπs ·
∂Ui(c

i
s)

∂cis
− φs = 0, ∀i, ∀s. (12)

Accordingly, the optimization problem of an individual agent i then is

max

S∑

s=1

πs · Ui(c
i
s)

subject to

S∑

s=1

ps · cis =
S∑

s=1

ps · ωi
s

where ps denotes the price of a claim on one unit of consumption in state s and ωi
s denotes

the endowment of agent i in state s. The Lagrangian is

max
cis

L =
S∑

s=1

πs · Ui(c
i
s) + ψi ·

[
S∑

s=1

psω
i
s − psc

i
s

]

(13)

with ψi > 0, ∀i. The corresponding FOC then is

∂L
∂cis

= πs ·
∂Ui(c

i
s)

∂cis
− ψi · ps = 0, ∀s. (14)

By setting φs = ps and λi = ψ−1
i the optimality conditions for a single agent (see equation

(14)) and a central planner (see equation (12)) are equivalent. Henceforth, a central planner

who wants to achieve the same pareto optimal allocation as if households optimized indi-

vidually would have to assign a weight of ψ−1
i to individual i. This result has an intuitive

economic interpretation. From equation (13) we get that the parameter ψi is the Lagrangian

multiplier with respect to the budget constraint. Furthermore, since such multipliers are

interpreted as shadow prices, an agent i’s weight λi is equal to the inverse of this shadow

price obviously. From equation (14) one can spot that the product of shadow price ψi and

the price of a claim in state s equals the marginal utility of consumption contingent on state

s, i.e. an agent i is considered important when λi is large which is equivalent to ψi being

small (and hence marginal utility in state s being small). Since marginal utility is small

when consumption is high, a high weight λi corresponds to an “important” agent which

makes sense intuitively. This derivation, however, only works when markets are complete.

A market is considered complete when a complete set of state contingent claims exist. Prices

of such claims are referred to as state prices. Why is market completeness required? In order

to value endowments one needs a state price vector of consumption claims. Although such

a vector exists in both, complete and incomplete markets, it is only unique in complete

14
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markets. Hence, different state prices imply different representative agents leading the idea

of one representative agent ad absurdum.

Now that we have derived conditions under which a representative agent exists one can

construct the representative agent as follows: Define

Ur(x) ≡ max
{xi}I

i=1

I∑

i=1

λi · Ui(xi) (15)

subject to

I∑

i=1

xi = x

with λi = ψ−1
i being the weight that the central planner assigns to an agent i. Taking the

first derivative of this function with respect to aggregate consumption Cs yields

∂Ur(Cs)

∂Cs

= U ′
r(Cs) =

I∑

i=1

λi · U ′
i(c

i
s) ·

∂cis
∂Cs

=

I∑

i=1

λi · ψi
︸ ︷︷ ︸

=1

· ps
πs

· ∂c
i
s

∂Cs

=
ps
πs

with

I∑

i=1

∂cis
∂Cs

= 1.

The product λi · ψi is trivially equal to 1 since λi = ψ−1
i . Similarly, the partial derivatives

of cis with respect to Cs adds up to 1 trivially. The reason is intuitive. When aggregate

consumption increases by one unit each agent i retains his share in that additional unit.

Thus, the sum of these shares must add up to a total of 1. Finally, to show the existence

of a representative agent, let Cs, ∀s denote the representative agents initial endowment in

state s. Let πs denote its subjective probability of state s and let utility be denoted by

Ur(Cs). To show the existence of the representative agent we will derive that state prices

of consumption claims equal ps. Since we are in a representative agent economy no trading

occurs, i.e. prices must be such that the representative agent never wants to trade. In

equilibrium the representative agent’s marginal utility of consumption contingent on state

s πs · U ′
r(Cs) must be equal to the state price ps of the consumption claim. The agent will

“buy” claims as long as ps < πs · U ′
r(Cs) and “sell” them as long as ps > πs · U ′

r(Cs). From

U ′
r(Cs) = ps/πs we trivially get

πs · U ′
r(Cs) = πs ·

ps
πs

= ps.

Hence, the representative agent’s marginal utility equals state prices and therefore our rep-

resentative agent exists.

15
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2.4 The Lucas Model and CCAPM

The following section will introduce the consumption-based capital asset pricing model based

on the papers of Lucas (1978) and Breeden (1979). The setup comprises a simple pure

endowment economy and a representative agent who dynamically optimizes equity portfolio-

as well as consumption allocations. We will therefore use a recursive equilibrium approach.

Recursive methods first appeared in the works of Wald (1945), Bellman (1957) and Kalman

(1960) and provide the necessary tools to study and analyze dynamic economic systems. A

comprehensive summary of the latest methods is the book of Ljungqvist and Sargent (2004).

2.4.1 Model and Assumptions

As in the previous chapters we study a pure endowment economy with a representative

agent, a single, perishable consumption good and n distinct production units. Our aim is

to derive fundamental pricing functions for risky assets. With the equity premium puzzle in

mind our focus will therefore be on the pricing of equity securities.

We will begin by describing the stochastic nature of the output process. In each period

n exogenous shocks st affect the output process yt where yt =
∑n

i=1 yi,t. The component

yi,t refers to the output of unit i in period t. Let st ∈ S ⊂ R
n where S is assumed to be

compact3. The shocks st follow a Markov process with transition function φ. The transition

function is a mapping φ : S × S → [0, 1] such that

φ(s, s′) ≡ Prob(st+1 ≤ s′|st = s)

and can be interpreted as assigning probabilities to certain shocks s′ occuring in period t+1

given that s occured in the prior period. It possesses the Feller property (assumption a), i.e.

for any bounded and continuous function h : S → R the term
∫
h(s′) dφ(s, s′) is continuous

in s (see Lucas (1978), p. 1431). The process generated by the transition function φ has a

stationary distribution Φ (see mathematical appendix A.1 for details). Output is modelled

as a function of the shocks

yt ≡ y(st)

which is invariant with respect to time. Since the shock process st follows a first-order

Markov process the output process is of the same kind. Furthermore, we assume that the

output process takes only positive values in a compact set. Let

Y ≡ [y, y]

with y > 0 being a lower bound and y <∞ an upper bound. Hence, the mapping y : S → Y
is continuous and “bounded away from zero” (assumption b) (see Altug and Labadie (2008),

3In a real vector space this is equivalent to being closed and bounded by the Heine-Borel Theorem.
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p. 163)4. Let {ct}∞t=0 be a sequence of consumptions. Preferences of the representative

agent are given by

E0

{
∞∑

t=0

βt · U(ct)

}

(16)

where β ∈ (0, 1) is a discount factor and E0 is an expected value operator conditional on in-

formation avaiable at t = 0. Preferences are assumed to be additively separable with respect

to consumption across time. Let U : R+ → R+ denote a strictly concave and strictly increas-

ing C2 function representing preferences over consumption with Inada conditions U(0) = 0

and limc→0 U
′(c) = ∞ (assumption c). The latter assumption makes sure that we obtain

an interior solution of the maximization problem (see Danthine and Donaldson (2005), p.

166).

The shares traded in our economy are claims on the output process. Let qt = (q1,t, . . . , qn,t) ∈
R

n
+ denote the price vector of a share ex dividend, i.e. after dividends have been paid. By

zt = (z1,t, . . . , zn,t) ∈ R
n
+ we denote the beginning-of-period share holdings. Each outstand-

ing equity share is assumed to be perfectly divisible. The budget constraint faced by the

representative agent in each period t equals

ct + qt · zt+1 ≤ (yt + qt) · zt (17)

for all t = 0, 1, . . . . Period t consumption ct can then be interpreted as the difference

between total output yt
5 plus the total value of financial assets qt · zt held in period t and

the value of financial assets qt ·zt+1 carried forward to period t+1 such that “the rhs finances

the lhs”. The initial share holdings z0 are taken as given. Trading in financial markets in

any period t only takes place after the corresponding realized output yt has been observed

for that period. The agent chooses sequences for consumption and equity so as to maximize

equation (16) subject to the budget constraint (17) and the following

ct ≥ 0

0 ≤ zt+1 ≤ z, z ≫ e

for all t where e ≡ (1, . . . 1) is an n-element vector of ones. Sequences for equity prices are

taken as given. Market clearing holds when

ct = yt

zt+1 = e

4Lucas (1978) expresses this condition as φ(y, 0) = 0, i.e. for a given y the next period’s realization of
the process can never equal 0.

5Total output yt equals total dividends paid. There are no retained earnings.
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for all t. The first condition simply states that the whole output is consumed (the con-

sumption good is perishable and cannot be stored). The second one implies security market

clearing, i.e. all shares are held by the representative agent.

2.4.2 Recursive Competitive Equilibrium

In the following we will show the existence of a recursive competitive equilibrium, i.e. we

will establish a functional relationship between asset prices and the exogenously determined

production shocks that affect output. As stated previously, total output equals total con-

sumption in an equilibrium allocation. For any equilibrium allocation the agent’s expected

utility must therefore be finite (bounded). Consider the following:

Lemma 2.1 Under assumptions a–c, for any consumption sequence {ct}∞t=0 with ct ≤ yt,

we have

E0

{
∞∑

t=0

βt · U(ct)

}

≤ B <∞.

Proof In the prior section we made sure that output takes values in a compact set by

defining Y ≡ [y, y]. Thus, consumption can be chosen such that ct ∈ [0, y] with yt ≤ y.

Thus, under the continuous mapping U(.) the image of a compact domain is again compact.

Hence, total utility is bounded, i.e.

B ≡
∞∑

t=0

βt · U(y) =
1

1− β
· U(y) <∞.

�

The agent’s problem may then be formulated as a stationary dynamic programming problem.

The relevant state variables are the number of shares z and the exogenous shock parameter s.

The aim is to maximize expected utility subject to a budget constraint and market-clearing

conditions. Let v denote the value function. The price function

q : S → R
n
+

is assumed to be given by the agent. The dynamic optimization problem can then be

formulated recursively as

v(z, s) = max
c,z′

{

U(c) + β ·
∫

v(z′, s′) dφ(s, s′)

}

(18)

subject to

c+ q · z′ ≤ (y + q) · z (19)

c ≥ 0, z′ ∈ Z. (20)

18
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where z′ ∈ Z ⇔ 0 ≤ z′i ≤ zi for all i = 1, . . . , n. Variables with a prime superscript denote

future states and those without prime denote present states6. The relevant choice variables

are current state consumption c and the future allocation of financial assets z′. A recursive

competitive equilibrium can then be defined as follows:

Definition A recursive competitive equilibrium is a price function q : S → R
n
+ and a value

function v : Z × S → R+ such that (i) given q(s), v(z, s) solves the agent’s optimization

problem and (ii) markets clear.

Since we are in a representative agent economy one has to introduce the notion of a so

called no trade equilibrium. In a multi-agent economy one obtains an equilibrium when

supply equals demand, i.e. for a given price some agents are willing to sell exactly what

others are willing to buy. A representative agent does not have any trading counterparts.

Hence, a no trade equilibrium is characerized in such a way that supply equals demand and

both are at the same time equal to zero. At the equilibrium price the agent is thus willing

to own all shares outstanding. “Therefore the essential question being asked is: What prices

must securities assume so that the amount the representative agent must hold (for all markets

to clear) exactly equals what he wants to hold” (see Danthine and Donaldson (2005), p. 154).

In what follows, a proof of the existence of the value function v(.) will be given. The

relevant mathematical preliminaries can be found in the appendix (see section A.3). Let the

price function q(s) be given. Let S ≡ Z × S. S is then a compact set being the cartesian

product of compact sets. Let C(S) be the space of bounded, continuous functions v : S → R+

equipped with the supremums norm

‖u‖ ≡ sup
z,s∈S

|u(z, s)|, ∀u ∈ C(S)

so that we have, in fact, a complete metric space such that every Cauchy sequence (of

functions) converges to an element in that space (see Ljungqvist and Sargent (2004), p.

926).

Theorem 2.2 For any given continuous price function q(s) there exists a unique, bounded,

continuous and nonnegative solution v∗ ∈ C(S) to the functional equation defined by (18).

The function v∗ is concave and increasing in z.

Proof Let v ∈ C(S) and define an operator T

Tv(z, s) = max
c,z′

{

U(c) + β ·
∫

v(z′, s′) dφ(s, s′)

}

subject to (19) and (20). The sets Y, S and Z are compact by assumption. The utility

function U is also continuous by assumption as is v since v ∈ C(S). Hence, maximizing a

6The recursive nature of the problem allows us to drop the time indices, since the optimization problem
is reduced to a two-period framework “today and tomorrow”.
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continuous real-valued function v over a compact set S yields a maximum. Furthermore,

both, U and v, are bounded. Hence, Tv is bounded and it is continuous as the sum of

continuous functions is again continuous. T is then a mapping, T : C(S) → C(S), which
maps the space of continuous, bounded functions into itself. To show that T is indeed a

contraction mapping one has to prove themonotonicity and discounting properties (Blackwell

conditions) (see A.5). Let u,w ∈ C(S) with u ≥ w, ∀z, s ∈ S. Hence,

Tu = max
c,z′

{

U(c) + β ·
∫

u(z′, s′) dφ(s, s′)

}

≥ max
c,z′

{

U(c) + β ·
∫

w(z′, s′) dφ(s, s′)

}

= Tw

(21)

establishing the argument. The discounting property is easily verfied as follows: Let k be

an arbitrary constant. Then

T (v + k) = max
c,z′

{

U(c) + β ·
∫

[v(z′, s′) + k] dφ(s, s′)

}

= max
c,z′

{

U(c) + β ·
∫

v(z′, s′) dφ(s, s′)

}

+ β · k

= Tv + β · k

and T satisfies the Blackwell conditions. Having shown that T is, in fact, a contraction

mapping and considering that C(S) is a complete, normed, linear space then T has a unique

fixed point and limn→∞ Tnv0 = v∗ for any v0 ∈ C(S) by the contraction mapping theorem

(see A.2).

What remains to be shown is that v∗ is increasing and concave. Let C′(S) ⊂ C(S) be

the subspace of continuous, bounded, increasing and concave real-valued functions equipped

with the supremums norm. C′(S) is a closed, complete, normed, linear space. Let w ∈ C′(S).
Since w is increasing in z we have w(z1, s) < w(z2, s) for z1 < z2

7. Since T satisfies the

Blackwell conditions this implies Tw(z1, s) < Tw(z2, s). Finally, one has to show that T

preserves concavity. Let z0, z1 ∈ Z be arbitrary share allocations and c0, c1 ∈ Y be arbitrary

consumptions. Let α ∈ [0, 1], zα = α · z0 + (1− α) · z1 and cα = α · c0 + (1− α) · c1. Since

(ci, z
′
i) is a feasible allocation for i = 0, 1 any convex combination of them must also be

feasible. Hence, (cα, z
′
α) satisfies (17). Tw(zi, s) is attained at (ci, z

′
i) for i = 0, 1. Then

7The subscripts denote an index i for a whole vector z and do not refer to the i-th element of vector z.
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Tw(zα, s) ≥ U(cα) + β ·
∫

w(z′α, s
′) dφ(s, s′)

≥ α · U(c0) + (1− α) · U(c1) + α · β ·
∫

w(z′0, s
′) dφ(s, s′)

+ (1− α) · β ·
∫

w(z′1, s
′) dφ(s, s′)

= α ·
[

U(c0) + β ·
∫

w(z′0, s
′) dφ(s, s′)

]

+ (1− α) ·
[

U(c1) + β ·
∫

w(z′1, s
′) dφ(s, s′)

]

≥ α · Tw(z0, s) + (1− α) · Tw(z1, s).

Since U and w are concave by assumption the second inequality must hold. Tw(zi, s) is

attained at (ci, z
′
i) for i = 0, 1. Hence, we can factor out α and (1−α) respectively to obtain

the third inequality. Eventually, putting together the fact that T is a contraction mapping

on C(S) and T (C′(S)) ⊆ C′(S) we must have v∗ ∈ C′(S) by corollary A.3 (see Lucas (1978),

p. 1432–1433). �

Hence, a solution to the consumers constrained optimization problem exists for a given price

function q. So far we proved the existence of a value function v given the respective pricing

function q. In the following, we will show the existence of the pricing function q for equities

given that v exists. A proof regarding the differentiability of v is shown in Lucas (1978) (p.

1433–1434) and will be omitted here. The overall approach to follow is very similar to the

one previously taken for v. Using the objective function (18), the budget constraint (19)

and a Lagrange multiplier λ(s) one can set up the Lagrangian

L = U(c) + β ·
∫

v(z′, s′) dφ(s, s′)

+

∫

λ(s) ·
(

y · z − c+ q · z − q · z′
)

dφ(s, s′).

where y = (y1, . . . , yn)
8 for convenience. The FOC with respect to c and z′ are then

∂L
∂c

= U ′(c)− λ(s) = 0

and

∂L
∂z′i

= β ·
∫
∂v(z′, s′)

∂z′i
dφ(s, s′)− λ(s) · qi = 0, ∀i

The envelope conditions, which are the partial derivatives of the Lagrangian with respect to

the parameter z, equal

8yi denotes the output of unit i.
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∂L
∂zi

= λ(s) · (yi + qi) =
∂v(z, s)

∂zi
, ∀i.

The latter equality holds by Lucas (1978) (see proposition 2, p. 1433–1434). Let c∗(z, s)

and z∗(z, s) denote the equilibrium solutions of the policy functions of the Bellman equation

(18). From the market clearing conditions one then gets in equilibrium c∗(1, s) = y(s) (total

output is consumed) and z∗(1, s) = e (all shares are held). Combining the first order- and

envelope conditions one can derive the intertemporal Euler equations which are

U ′(y) · qi = β ·
∫

U ′(y′) · [y′i + (qi)
′] dφ(s, s′)

= β ·
∫

U ′(y′) · y′i dφ(s, s′)
︸ ︷︷ ︸

≡γi(s)

+ β ·
∫

U ′(y′) · (qi)′
︸ ︷︷ ︸

≡ξi(s′)

dφ(s, s′), ∀i.

(22)

As in the previous section one can then prove the existence and uniqueness of a pricing

function qi given the value function v for all i = 1, . . . n. Again, let C(S) denote the space

of bounded and continuous functions ξi : S → R+ equipped with the supremums norm for

all i = 1, . . . , n. Let the mapping γi : S → R+ be defined as

γi(s) ≡ β ·
∫

U ′(y′) · y′i dφ(s, s′), ∀i. (23)

In addition to that, let ξi(s) ≡ U ′(y) · qi and Ti be an operator such that

Tiξi(s) = γi(s) + β ·
∫

ξi(s
′) dφ(s, s′), ∀i. (24)

Above equation resembles the problem studied in the previous section (see equation (18)).

Hence, we can formulate:

Theorem 2.3 There exists a unique, bounded and continuous solution ξ∗i to Tiξi = ξi for

all i = 1, . . . , n. For any ξ0i ∈ C(S) we have limn→∞ Tn
i ξ

0
i = ξ∗i .

Proof The proof works in a similar fashion as the proof of theorem 2.2. Our aim is to show

that Ti is a contraction mapping. The following arguments always hold for all i = 1, . . . , n.

We will first show that the rhs of (24) is bounded and continuous. γi(s) is bounded by

the following: Since U ′ > 0 and yi > 0, we must have γi > 0. By definition y (aggregate

output) takes values in a compact set Y. Since U(.) is continuous and the domain space Y
is compact the image of Y under U must also be compact. Hence, U(.) is bounded and it is

concave by assumption. Thus, the following must hold
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U(y)− U(0) ≥ U ′(y) · (y − 0) = U ′(y) · y − U ′(y) · 0 = U ′(y) · y

Economically, this can be interpreted as “average utility exceeds marginal utility” (see Varian

(1992), p. 489). Hence, U ′(y) · yi ≤ U, ∀y ∈ Y (this must hold since yi ≤ y) and therefore

γi(s) = β ·
∫

U ′(y′) · y′i dφ(s, s′) ≤ β · U,

i.e. a weighted average of bounded functions is again bounded. By the Feller property

(see assumption a on page 16) the rhs of equation (23) is continuous. Hence, the function

Ti : C(S) → C(S) is a mapping from the space of bounded and continuous functions into

itself. Obviously, Ti satisfies the monotonicity property . Let νi ∈ C(S) such that νi(s) ≥
ξi(s), ∀s ∈ S, then Tiνi(s) ≥ Tiξi(s), ∀s ∈ S (see previous result on page 20). The

discounting property is also easily verified as before. Let k be an arbitrary constant. Then,

Ti(ξi + k)(s) = γi(s) + β ·
∫

[ξi(s
′) + k] dφ(s, s′)

= Tiξi(s) + β · k

and we can concluded that Ti is, in fact, a contraction mapping defined on the a complete,

linear and normed space of functions. By the contraction mapping theorem A.2 ξ∗i is a

unique fixed point in C(S). �

Having defined the identity ξi ≡ U ′(y) · qi earlier one can then solve for the equity price as

qi(s) =
ξ∗i (s)

U ′(y(s))
. (25)

Hence, we obtain a unique equilibrium pricing function q(s) = (q1(s), . . . , qn(s)). Asset

prices thus depend on the output/consumption process as well as the shape of the utility

function.

2.4.3 Asset Pricing Functions

Having established the existence and uniqueness of the value function v and the equity price

function q in the previous section, we will now proceed to derive an explicit expression for

the yet to be determined asset pricing function ξ∗. In contrast to the prior section we will

do this for a simplified framework in which there is only one production unit and hence only

one equity share (see Lucas (1978), p. 1439). It follows trivially that individual production

therefore always equals aggregate production. For that purpose it is assumed that the shocks

st ∈ R are independently and identically distributed (iid), i.e. every realization of the shock

has the same probability distribution and realizations are independent of each other. Since

output is a function of the shock parameters, {yt}∞t=0 is a sequence of iid random variables.

Let Φ(y) denote the cumulative distribution function of the stationary output process. The
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intertemporal Euler equation (22) can then be written as

U ′(y) · q = β ·
∫ [

U ′(y′) · [y′ + q′] dΦ(y′)
]

= β ·
∫

U ′(y′) · y′ dΦ(y′) + β ·
∫

U ′(y′) · q′ dΦ(y′)

(26)

which is the function to be solved for q. Let

ξ ≡ β ·
∫

U ′(y′) · y′ dΦ(y′) = β ·E[U ′(y′) · y′] (27)

be constant and define

ξn(y) = Tξn−1(y) = ξ + β ·
∫

ξn−1(y
′) dΦ(y′)

with

ξ(y) = U ′(y) · q(y). (28)

Since T is, in fact, a contraction mapping we have a converging sequence of functions

ξn(y) → ξ∗(y) for any ξ0(y) ∈ C(S). Suppose ξ0(y) = 0. By repeated substitution we

get

ξ1 = Tξ0 = ξ + β ·
∫

0 dΦ(y′) = ξ

ξ2 = Tξ1 = ξ + β ·
∫

ξ dΦ(y′) = ξ · (1 + β)

...

ξn = Tξn−1 = ξ + β ·
∫

ξ · (1 + β + . . .+ βn−2) dΦ(y′)

= ξ · (1 + β + . . .+ βn−1) = ξ ·
n−1∑

j=0

βj

.

More generally, one can express ξn = Tnξ0 (see proof of theorem A.2). Hence, in the limit,

we get
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ξ∗ = lim
n→∞

Tnξ0

= lim
n→∞

ξ ·
n−1∑

i=0

βi = ξ · 1

1− β
.

Resubstituting the relevant expressions for ξ∗ (25) and ξ (27) we get

U ′(y) · q = β

1− β
·E[U ′(y′) · y′].

The sensitivity of equity prices with respect to output can be determined as follows: Differ-

entiating equation (28) with respect to y yields

∂q

∂y
=
ξ∗′ · U ′(y)− U ′′(y) · ξ∗

U ′(y)2
= −U

′′(y) · ξ∗
U ′(y)2

= − U ′′(y)

U ′(y)2
· β ·E[U ′(y′) · y′]

1− β

= −q · U
′′(y)

U ′(y)
> 0

. (29)

The second equality of the first line must hold since ξ∗ is a constant. In the final line q is

substituted for β · E[U ′(y′) · y′]/[(1 − β) · U ′(y)]. Since the utility function is assumed to

be concave we have U ′′(y) < 0 and the whole last expression is positive. Equation (29) can

then be rearranged to state

y · q′
q

= −y · U
′′(y)

U ′(y)
(30)

such that the income elasticity of equity prices equals the Arrow-Pratt measure of relative

risk aversion (where q′ = ∂q/∂y). Agents attempting to transfer part of their income into

the future must therefore hold securities since the consumption good is perishable. Hence,

due to the higher demand for equities, share prices must increase (see Lucas (1978), p. 1439).

2.4.4 Interest Rates, Risk Corrections and the Risk Premium

In what follows we will derive explicit functions for the equity risk premium. For that

purpose, we will reformulate equation (26) as

U ′(yt) · qt = Et

[

β · U ′(yt+1) · (yt+1 + qt+1)
]

(31)
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where U ′(yt) · qt denotes the loss in utility if an agent subsitutes share purchases for con-

sumption while the rhs equals the discounted utility gain obtained from investing in period

t and subsequent consumption in period t+ 1. Above equation is equivalent to

1 = Et

[

β · U
′(yt+1)

U ′(yt)
︸ ︷︷ ︸

≡mt+1

· yt+1 + qt+1

qt
︸ ︷︷ ︸

≡Rt+1

]

= Et[mt+1 ·Rt+1] (32)

where mt+1 is a stochastic discount factor9 and Rt+1 is the real return on equity. The

pricing kernel clearly reflects the time preferences of households as well as the desire to have

smooth consumption paths. Equation (32) is the fundamental asset pricing equation since

it is the starting point for a couple of important conclusions regarding interest rates, risk

corrections and equity premia (see Cochrane (2005), p. 14ff.). In order to derive a premium

we have to relate equity returns to a reference return such as the return of risk-free bonds.

In the present case we assume that these risk-free bonds yield a payoff of 1 with certainty

at the end of a period. Hence, equation (32) reduces to

pbt = Et[mt+1 · 1]

where pbt denotes the bond price in period t and 1 is a certain payoff in t+ 1. The risk-free

return can then be expressed as

Rrf
t =

1

pbt
=

1

Et[mt+1]
. (33)

Since a risk-free asset is not traded in our model economy Rrf is also referred to as a

“shadow” risk-free rate (see Cochrane (2005), p. 20). To establish a relationship between

the risk-free rate and other model parameters we will assume the following: The utility

function U is represented by a power utility function with the constant relative risk aversion

(CRRA) property of the form

U(yt) =







y
1−γ
t

1−γ
if γ 6= 1

ln(yt) if γ = 1

where γ denotes the Arrow-Pratt measure of relative risk aversion. The latter can be shown

by plugging our specification of the utility function into the rhs of (30). Above utility

function is the function of choice in a wide spectrum of areas including growth theory and

real business cycles since it is scale-invariant and allows for a representative agent. However,

an important implication of such preferences is that agents smoothing consumption across

states also do so across time. There is no economic intuition as to why this should be the

case (see Mehra (2008), p. 14). Hence, if there is no uncertainty about future consumption

yt+1, we can express the risk-free interest rate as

9mt+1 is also often referred to as a pricing kernel or the intertemporal marginal rate of substitution of
consumption (MRS).
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Rrf
t =

1

β
·
(

yt+1

yt

)γ

(34)

implying the following. Interest rates are high when 1/β is high, i.e. when β is low. Thus,

interest rates are positively correlated with high impatience. Higher savings can only be

effected when rates are large enough to convince agents to save more. Furthermore, interest

rates are high when yt+1/yt is high, i.e. when consumption growth is high. High interest

rates attract increased savings today and thus shift consumption from today into the future.

Hence, consumption growth rates are high. A large risk aversion coefficient γ implies that

consumers prefer a smooth consumption stream over time. Hence, interest rates must be

high to attract increased savings when the curvature of the utility function is large. This

can easily be seen from the first derivative of Rrf with respect to consumption growth which

is

∂Rrf
t

∂
(

yt+1

yt

) =
γ

β
·
(

yt+1

yt

)γ−1

.

To account for the fact that there is uncertainty about future consumption (as is the case for

the Lucas model) one has to make the following adaptations: Suppose that zt+1 ≡ yt+1/yt

is log-normally distributed such that ln(zt+1) is normally distributed. Thus,

∆ ln yt+1 = ln yt+1 − ln yt ∼ N (gz, σ
2
z)

and

Et[zt+1] = egz+0.5·σ2
z ⇔ lnEt[zt+1] = gz + 0.5 · σ2

z .

Let rl,rft ≡ lnRrf
t and β ≡ e−δ. Analogous to equation (34) we then get

Rrf
t = Et

[

1

β
·
(yt+1

yt

)γ
]

= Et

[

e−δ·e−γ·∆ ln yt+1

]−1

=
[

e−δ·e−γ·Et[∆ ln yt+1]+0.5·γ2·σ2(∆ ln yt+1)
]−1

.

Hence, by taking logarithms we obtain

rl,rft = δ + γ · gz − 0.5 · γ2 · σ2
z .

We can basically draw the same conclusions as in the prior case with uncertainty. When δ is

large (which is equivalent to β being low and hence high impatience) interest rates are high.

Interest rates are also high when expected consumption growth gz is high. Furthermore,

when γ is large (strong curvature of the utility function) interest rates must be large to

convince agents to increase savings. The last term captures what is known as precautionary

saving. When consumption is subject to high volatility agents want to insure themselves
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against large fluctuations in consumption by saving more. Hence, interest rates will be lower.

In a final step we will determine return premia based on the notion of risk corrections. Let

xt+1 ≡ yt+1 + qt+1 denote the payoff of an asset in period t+ 1. Equation (32) can then be

written as

qt = Et[mt+1] ·Et[xt+1] + covt[mt+1, xt+1]

=
Et[xt+1]

Rrf
t

+ covt[mt+1, xt+1]

=
Et[xt+1]

Rrf
t

+
covt[β · U ′(yt+1), xt+1]

U ′(yt)

. (35)

The first term equals the present value of payoff xt+1 in a risk-neutral world (no uncertainty

about consumption or risk-neutral (linear) utility). The second term captures a risk pre-

mium that is due to the covariation between the asset’s payoff and the stochastic discount

factor (see Cochrane (2005), p. 23). The implications of (35) are more than obvious. The

larger the covariance between an asset’s payoff xt+1 and the stochastic discount factor mt+1

the higher are asset prices. Since U ′(y) is large when y is small one can conclude that a

negative correlation between the payoff of an asset and consumption leads to higher prices.

The reasoning behind this is intuitive. As agents want to have smooth consumption paths

they will avoid those assets that yield high payoffs during good times and low payoffs in

recessionary periods. Hence, for such assets to be attractive, prices must be comparatively

low. Since we are interested in returns we can rearrange above equation to state

1 = Et[mt+1 ·Rt+1]

=
Et[Rt+1]

Rrf
t

+ covt[mt+1, Rt+1]

(36)

which in turn is equivalent to

Et[Rt+1]−Rrf
t = −Rrf

t · covt[mt+1, Rt+1]

= −σt(mt+1) · σt(Rt+1)

Et(mt+1)
· corrt(mt+1, Rt+1). (37)
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Since mt+1 = β · U ′(yt+1)
U ′(yt)

we get

Et[Rt+1]−Rrf
t = −σt(mt+1) · σt(Rt+1)

β
U ′(yt)

·Et[U ′(yt+1)]
·

β
U ′(yt)

· covt[U ′(yt+1), Rt+1]

σt(mt+1) · σt(Rt+1)

= −covt[U
′(yt+1), Rt+1]

Et[U ′(yt+1)]
(38)

Equation (38) relates the excess return on a risky asset with reference to the risk-free return

to the covariance of the risky return with the marginal utility of consumption in t + 1.

The rhs is therefore the equity premium. The premium is obviously high when the rhs

of (38) is larger than 0 which is the case when future returns Rt+1 and marginal utility

U ′(yt+1) are negatively correlated. Hence, an asset is considered risky when low asset

returns coincide with low consumption and income levels. Such an asset will only be held

when its return is relatively high. Altug and Labadie (2008) term those assets ideal that

yield high returns during recessionary periods when consumption is low (and hence the

covariance between returns and the marginal utility of t+ 1 consumption is positive). The

resulting negative equity premium can then be viewed as some sort of insurance premium

against negative income shocks. Finally, one important aspect to note is the following: Only

such risk is rewarded that originates from the covariance between returns and consumption.

Idiosyncratic risk that is specific for each individual asset is not rewarded even if it is

large, i.e. when an asset’s payoff is subject to large variability, but is uncorrelated with the

stochastic discount factor. The decomposition of a payoff into its idiosyncratic (uncorrelated

with m) and systematic part (correlated with m) can be done by means of a projection of

x on m. The price of the resulting residual component (idiosyncratic part) must then be 0

(see Cochrane (2005), p. 25).

2.5 Summary

In the previous chapter a basic introduction into general equilibrium asset pricing was pro-

vided. The first section introduces the most basic notion of an asset pricing framework in

the form of a contingent claim economy in which agents may trade contracts that yield a

certain payoff conditional on a certain state occuring. Using simple Lagrange optimization

methods one can show the existence of a price vector that satisfies market clearing as well

as utility maximization for individual agents. In the following part we extended this model

to an asset economy in which agents trade in physical commodity markets and financial

markets reflecting an overall more realistic framework. Section 2.3 then provides a short

introduction to a so called representative agent. Representative agent models are a powerful

tool to aggregate a homogeneous population of economic agents into one single agent. One

of the most important representative agent models in the field of financial economics is the

consumption-based approach developed by Lucas (1978) and Breeden (1979). The Lucas
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tree model provides an elementary framework to investigate the behavior of asset prices in

a simple pure endowment economy in which production is subject to exogeneous random

shocks. By means of a dynamic programming approach one can prove the existence of a

recursive competitive equilibrium which is simply a pair of functions, i.e. a value function v

and an asset pricing function q. Starting from the fundamental asset pricing equation one

can derive important implications regarding the economics of interest rates, risk corrections

and the equity premium.

3 The Equity Premium Puzzle

3.1 Theory of the Equity Premium Puzzle

Prescott and Mehra (1985) based their seminal paper on the contribution of Lucas (1978)

and Breeden (1979) to come up with what is widely known as the equity premium puzzle. The

equity premium refers to the return of risky assets earned in excess of a risk-free reference

rate. In the following chapter we will provide a theoretical evaluation of the equity premium

implied by an adapted Lucas tree economy. Furthermore, an additional view on the puzzle

will be provided based on the paper of Hansen and Jagannathan (1991). The major point

of interest in Prescott and Mehra (1985) is whether the large return spread between equities

and default-free debt can be accounted for by standard economic models that abstract from

market frictions such as transaction costs, liquidity constraints, taxes and regulation and

the like. Their initial guess was “that most likely some equilibrium model with a friction will

be the one that successfully accounts for the large average equity premium” (see Prescott and

Mehra (1985), p. 146).

3.1.1 Model and Assumptions

The basic setup is very similar to the one described in section 2.4.1. To account for the

fact that per capita consumption has grown over time Prescott and Mehra (1985) model the

growth rate of consumption as a Markov process in contrast to the Lucas tree model where

the level of consumption follows a Markov process. The only consumer in the model is a

representative agent with preferences of the form

E0

{
∞∑

t=0

βt · U(yt)

}

, 0 < β < 1,

where E0 is an expectation operator, β denotes the time discount factor, yt refers to con-

sumption in period t and U : R+ → R is a concave utility function satisfying the Inada

conditions with the constant relative risk aversion (CRRA) property. It takes the form

U(yt) =







y
1−γ
t

1−γ
if γ 6= 1

ln(yt) if γ = 1
(39)
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where γ denotes the Arrow-Pratt measure of relative risk aversion measuring the curvature

of the function (see page 27). The advantages and disadvantages of such preferences have

already been discussed in section 2.4.4. Furthermore, we consider one single production

unit producing a single, perishable good. Hence, there is only one equity share outstanding

representing a claim on the output process {y}∞t=0 whose return equals the market return

trivially. The growth rate of production is assumed to follow a Markov process since we

try to capture the growth pattern of consumption observed empirically (see above). A

comprehensive treatment of this altered modeling framework can be found in Mehra (1988).

Under the assumption of nonstationary consumption we thus have

yt+1 = yt · zt+1

where zt+1 denotes the growth rate of production between period t and t + 1 and zt+1 ∈
{g1, . . . , gn}, i.e. the growth rate can take on finitely many values. Additionally, let

φ(gi, gj) ≡ Prob(zt+1 = gj |zt = gi)

with transition matrix Π and gi > 0, ∀i10 as well as y0 > 0, i.e. initial production is positive.

Furthermore, the Markov chain is assumed to be ergodic, i.e. it is possible to move from

an arbitrary state to any other state. An ergodic chain is also recurrent, aperiodic and

irreducible. In simple terms recurrence means that once the state has been j the system will

return to this state at some future point with certainty. Aperiodicity implies that any state

j may occur irregularly while irreducibility simply says that any state j may be accessed

from any other state. Security prices are quoted ex dividend as before. Furthermore, the

authors assume that the matrix A with entries

ai,j ≡ β · φi,j · g1−γ
j , ∀i, j = 1, . . . , n (40)

is stable, i.e. limAm = 0 as m → ∞. This is a necessary condition for expected utility

to exist when the representative household consumes yt in every period (see Prescott and

Mehra (1985), p. 151). In what follows we will derive a basic set of return and price functions

that allow us to derive a so called admissible region for the equity premium later on. Let

{d}∞t=0 denote the dividend process. Then an arbitrary stream of dividends attains a price

qt = Et

[
∞∑

s=t+1

βs−t · U ′(ys)/U
′(yt) · ds

]

.

From dt = yt in equilibrium and power utility we get

qt = q(yt, zt) = E

[
∞∑

s=t+1

βs−t · y
γ
t

yγs
· ys|zt, yt

]

. (41)

10gi > 0 does not imply that growth is always positive. A value of g < 1 would, in fact, imply negative
growth.
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The state variables zt and yt are sufficient to determine the future evolution of the economy.

The state of the economy can then be represented by a tuple (c, i) where c = yt (equilibrium

condition) and i represents growth rate gi. Since ys = yt · zt+1 · . . . · zs one can easily see

that prices are homogeneous of degree one in yt. This can be verified by multiplying ys and

yt by an arbitrary factor. Hence, we can express equity prices as

q(c, i) = β ·
n∑

j=1

φi,j ·
cγ

(c · gj)γ
︸ ︷︷ ︸

=
U′(yt+1)

U′(yt)

·
[

q(c · gj , j) + c · gj
]

︸ ︷︷ ︸

=qt+1+yt+1

, (42)

i.e. equity prices can be expressed as a discounted average of the marginal rate of substitu-

tion cγ/(c · gj)γ multiplied by the asset’s payoff q(c · gj , j)+ c · gj . This is just an alternative

representation of the fundamental asset pricing equation (32) under the assumption of a

power utility function.

The homogeneity property implies

q(c, i) = wi · c (43)

with wi being a constant. Substituting (43) into (42) yields

wi = β ·
n∑

j=1

φi,j · (c · gj)−γ · [q(c · gj , j) + c · gj ] · cγ · c−1

= β ·
n∑

j=1

[

φi,j · g1−γ
j · q(c, j)

c
︸ ︷︷ ︸

=wj

+φi,j · g1−γ
j

]

= β ·
n∑

j=1

φi,j · g1−γ
j · (wj + 1)

for all i = 1, . . . , n. This system of n equations has a unique positive solution. Given that

(c, i) denotes the present state and (c · gj , j) the next period state, one-period returns can

be written as

Ri,j =
q(c · gj , j) + c · gj

q(c, i)

=
c · gj · wj + c · gj

wi · c

=
gj · (wj + 1)

wi

.

(44)
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The first line is simply an alternative representation of Rt+1 in (32). In the second line

the homogeneity property of the price function is applied. Hence, the expected one-period

return for a given state i is then

Ri =
n∑

j=1

φi,j ·Ri,j . (45)

Analogously, starting from equation (41) one obtains for the bond price

pbi = pb(c, i)

= β ·
n∑

j=1

φi,j · U ′(gj · c)/U ′(c)

= β ·
n∑

j=1

φi,j · g−γ
j

(46)

which translates into a period return of

Rrf
i =

1

pbi
(47)

given that the current state is (c, i). Since the stochastic process of the consumption growth

rate has been assumed to be ergodic one can find a unique vector v of stationary probabilities

such that v is a solution of

v = v ·Π

where Π denotes the transition matrix of the Markov process and
∑n

i=1 vi = 1. The vector

v represents the probabilities of being in an arbitrary state i. Therefore, the expected

one-period equity return and the expected risk-free rate are

Et[Rt+1] =

n∑

i=1

vi ·Ri and Et[R
rf
t+1] =

n∑

i=1

vi ·Rrf
i . (48)

3.1.2 Testing and Results

In their seminal paper Prescott and Mehra (1985) derive a so called admissible region for

the equity premium in order to demonstrate the large deviation between theoretically im-

plied premia and those empirically observed. For that purpose a simple model economy is

constructed. The Markov chain of the consumption growth process is defined as follows.

The growth rate is restricted to the two values

g1 = 1 + gz + σz, g2 = 1 + gz − σz
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and the transition matrix equals

Π =

(

φ 1− φ

1− φ φ

)

.

The parameter values for gz, σz and φ were chosen to reflect the sample values of the US

economy for the period between 1889 and 1978 which are gz = 0.018, σz = 0.036 and a

first-order serial correlation of −0.14 for gz which translates into a value of φ = 0.43. Given

this set of values one then calibrates the preference parameters γ and β to replicate the

empirically observed averaged risk-free rate and the equity risk premium. A multitude of

papers has addressed the issue of deriving plausible values for the risk aversion coefficient γ

in a variety of contexts with slightly differing results. While Kydland and Prescott (1982)

and Hildreth and Knowles (1982) estimate the parameter to be between 1 and 2, Dolde

and Tobin (1971) derives similar results of about 1.5 as does Friend and Blume (1975) with

a coefficient of about 2. The results of Arrow (1971) and Altug (1989) differ with values

of 1 and “near zero” respectively (see Prescott and Mehra (1985), p. 154). Henceforth,

Mehra and Prescott constrain the value of γ a priori to be less than 10 since otherwise any

risk-free rate and equity premium could be justified by slightly adjusting the parameters

of the consumption process. Deriving admissible regions for the equity premium and the

risk-free rate is a straightforward algorithm (see Prescott and Mehra (1985), p. 159). Using

equations (44) - (48) one can derive the one-period expected return Et[rt+1] and the one-

period risk-free rate Et[r
rf
t+1] (and hence the equity premium) by choosing the risk aversion

coefficient γ and the indiviual’s discount factor β from the set

S ≡ {(γ, β) : 0 < γ ≤ 10, 0 < β < 1}.

The set S reflects our a priori upper bound for γ in the region of 10 (see above) and the

usual impatience assumption about preferences which are reflected by a β of less than 1.

Additionally, γ and β must be chosen such that the existence condition that we imposed

earlier is satisfied (see equation (40) on page 31). The resulting admissible region is depicted

in figure 1. The interval for the risk-free rate that is supported by the underlying economic

model is between 0 and 4 % while the average equity premium ranges between 0 and 0.35

%. These figures are surely a great way off what has been observed empirically in the period

between 1889 and 1978. While the empirical equity premium during that time equals - on

average - 6.98 % with a standard deviation of 1.76 % the observed risk-free is only a mere

0.80 %. Hence, the empirical equity premium is almost 18 times as large as the one implied

by the model if one considers the empirical average and the maximal premium implied by the

model. To verify these results Prescott and Mehra (1985) perform a variety of parameter ad-

justments. Varying the period length of the model to n = 2, 1/2, 1/4, 1/8, 1/16, 1/64, 1/128

and gz = 0.018/n, σz = 0.036/
√
n accordingly to match the annual values of gz = 0.018 and

σz = 0.036 results in negligible changes in the range of hundreths of percentages11. Simi-

11One should note that the variance of a sum of random variables only equals the sum of the variances
when the random variables are independent. In the present case this implies that φ = 0.5.
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Figure 1: Admissible Region of Equity Premium and Risk-Free Rate (Cochrane (2008))

larly, varying gz to a bunch of values between 0.014 and 0.022 with φ = 0.43 and σz = 0.036

results only in miniscule changes as well. For different values of σz between 0.21 and 0.51

the premium varied with the square of σz, i.e. the premium for σz = 0.51 was only 0.09

percentage points larger than for σz = 0.21. Finally, when changing φ between 0.005 and

0.95 with the other two parameters fixed the premium declined as φ increased gradually.

Finally, to test for sensitivity due to higher moments (i.e. beyond mean and variance) the

authors used a Markov chain with transition matrix

Π =









φ/2 φ/2 (1− φ)/2 (1− φ)/2

φ/2 φ/2 (1− φ)/2 (1− φ)/2

(1− φ)/2 (1− φ)/2 φ/2 φ/2

(1− φ)/2 (1− φ)/2 φ/2 φ/2,









growth parameters g1 = g3 = 1 + gz, g2 = 1 + gz + σz, g4 = 1 + gz − σz and parameters

gz = 0.018, σz = 0.051 and φ = 0.36 to replicate the corresponding properties of the em-

pirical time series. Again, however, this changes the maximal average premium only up to

0.39 % which is still far off the long-run average (see Prescott and Mehra (1985), p. 159–160).
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Finally, the authors identify firm leverage as a possible source of bias. In the analysis

provided above and in the introductory section the security was assumed to be a primitive

claim on the output process by a representative investor. In reality such securities have

varying characteristics including significantly different risk-return profiles. Typical securi-

ties traded in real financial markets entitle its owner to receive part of a profit residual.

The latter is simply “what is left” after other stakeholders such as debt owners, workers

and the like have been served. It is therefore claimed that “a disproportionate part of the

uncertainty in output is probably borne by equity owners” (see Prescott and Mehra (1985),

p. 157). Hence, an adapted version of the model is suggested as follows. It is assmued that

a certain share of the total output in t+1, say ǫ, is reserved for other stakeholders in period

t. Then equation (42) becomes

q(c, i) = β ·
n∑

j=1

φi,j
(c · gj)γ

·
[

q(c · gj , j) + c · gj − ǫ ·
n∑

k=1

φi,k · c · gk
]

· cγ

and hence, by the homogeneity property of prices, we obtain

wi = β ·
n∑

j=1

φi,j · g−γ
j ·

[

gj · wj + gj − ǫ ·
n∑

k=1

φi,k · gk
]

, ∀i = 1, . . . , n.

From here one can then obtain the one-period expected return and the risk-free rate. In their

original contribution Mehra and Prescott used a coefficient ǫ = 0.9 which implies that 10%

of corporate profits go to shareholders on average while the remainder is distributed among

other stakeholders. The effect of this alternative modeling framework was again miniscule

with an equity premium increased by about one-tenth of one percent compared with the

prior case.
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4 An Alternative View on the Puzzle

An alternative perspective on the puzzle is provided by Hansen and Jagannathan (1991).

In contrast to the original Mehra and Prescott paper this more recent approach does not

make use of Markov chain approximations or the like. Instead they derive a mean-variance

frontier for the stochastic discount factor m (see page 26) that is related to the mean-

variance frontier of asset returns introduced by Markowitz (1952). For a better grasp of the

material to follow we will provide a brief introduction to mean-variance analysis in general

and the return frontier in particular.

4.1 Mean-Variance Frontier

A typical mean-variance frontier for a portfolio of 2 assets is depicted in figure 2. The

abscissa represents the standard deviation of expected portfolio returns while the latter are

represented by the ordinate. Hence, the mean-variance frontier answers an intuitive question:

What is the expected return on an investment for a given level of risk or vice versa? In that

regard one has to distinguish between two notions. The mean-variance frontier of risky

assets is represented by the hyperbola connecting both assets. In the presence of a risk-free

security the frontier equals the solid-line wedge-shaped region in figure 2. The minimum

variance portfolio is that portfolio comprised of risky assets with the lowest possible risk.

The tangential portfolio marks that point where the straight line originating at the risk-

free rate is tangent to the mean-variance frontier of risky assets. The tangential portfolio

provides the largest risk-return trade-off among all efficient portfolios, i.e. it possesses the

highest Sharpe ratio which is defined as

SRt+1 =
Et[R

e
t+1]

σt(Rt+1)

where Et[R
e
t+1] = Et[Rt+1] − Rrf

t denotes the excess return of risky assets over the risk-

free rate. The Sharpe ratio measures the excess return of a portfolio relative to its risk and

therefore provides an intuitive way to measure portfolio returns against one another. Finally,

the dashed wedge-shaped region represents the mean-variance frontier when both assets are

perfectly positively correlated (corr1,2 = −1). The straight line connecting them is simply

the reverse case of perfect positive correlation (corr1,2 = +1) in which case no diversification

benefits can be taken advantage of. In the latter case the portfolio risk is always a linear

combination of the risks associated with both assets individually. The derivation of the

mean-variance frontier is a straightforward optimization problem with constraints. A brief

derivation of the closed-form solutions can be found in Cochrane (2005) (see pp. 81). Let

us consider the fundamental pricing equation (32) again and rewrite it as
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Figure 2: Mean-Variance Frontier with 2 Assets

38
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1 = Et[mt+1 ·Rt+1]

= Et[mt+1]Et[Rt+1] + corrt(mt+1, Rt+1) · σt(mt+1) · σt(Rt+1)
︸ ︷︷ ︸

=covt[mt+1,Rt+1]

.

Dividing by Et[mt+1] then yields

Et[Rt+1] = Rrf
t − corrt(mt+1, Rt+1) ·

σt(mt+1)

Et[mt+1]
· σt(Rt+1). (49)

Since any correlation coefficient fulfills corr ∈ [−1, 1] we obtain

−σt(mt+1)

Et[mt+1]
· σt(Rt+1) ≤ Et[Rt+1]−Rrf

t ≤ σt(mt+1)

Et[mt+1]
· σt(Rt+1).

Let us have a closer look at equation (49) first. Letting corrt(mt+1, Rt+1) = 1 or corrt(mt+1, Rt+1) =

−1 one obtains a linear function with an intercept equal to Rrf
t and slopes −σt(mt+1)

Et[mt+1]
and

σt(mt+1)
Et[mt+1]

respectively. Obviously, equation (49) is represented by the solid-line wedge-shaped

region in figure 2 originating at the risk-free rate. Hence, any risk-return tuple must lie be-

tween these two straight lines. Furthermore, every return on any of the two lines is perfectly

correlated with the discount factor m since we assumed corrt(mt+1, Rt+1) to be equal to

either 1 or -1. The returns on the upper part of the frontier having a positive slope are thus

perfectly negatively correlated with the stochastic discount factor while those on the lower

frontier are perfectly positively correlated with it. A positive and negative correlation with

m then implies a negative and positive correlation with consumption respectively. Returns

on the lower frontier have the insurance property that we characterized in the previous sec-

tions. Those on the upper frontier are negatively correlated with the intertemporal marginal

rate of substitution and therefore command a higher return. The argument behind this is

intuitive. When the IMRS is large consumption is low, i.e. assets which yield low returns in

such cases are not favoured by investors. In fact, investors would prefer high yielding assets

in times of low consumption in order to consume more.

4.2 Decomposing Returns in the Mean-Variance Space

In what follows our aim is to derive a mean-variance frontier for the stochastic discount

factor that is directly related to the mean-variance frontier of asset returns. In a first step

we will show that asset returns can be decomposed into a sum of 3 orthogonal components.

The decomposition was first shown by Hansen and Richard (1987). The proof that will

be shown here will be a shortened version based on Cochrane (2005) (see pp. 85). Time

subscripts of variables will be dropped for the moment since they do not matter. “The

price always comes at t, the payoff at t + 1, and the expectation is conditional on time t

information” (see Cochrane (2005), p. 16).
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4.2.1 Payoff Space, State Diagram and the Price Function

In the following section we will introduce a variety of preliminaries and concepts to un-

derstand an alternative derivation of the mean-variance frontier that will be provided in

subsequent chapters. We will briefly discuss the space of payoffs, the free portfolio forma-

tion assumption as well as the law of one price. Additionally, some geometric fundamentals

and properties of returns and payoffs will be provided.

Let the payoff space be denoted by X ⊂ R
S where S denotes the number of possible states

of nature. It is assumed that any payoff can be synthesized by a set of basis payoffs which

are elements in the payoff space (see Cochrane (2005), pp. 65). Mathematically, this can be

expressed as

x1, x2 ∈ X ⇒ α1 · x1 + α2 · x2 ∈ X, ∀ α1, α2 ∈ R,

i.e. a payoff generated from basis payoffs is also an element in the payoff space. We refer

to this as the free portfolio formation property. The factors α1 and α2 can be thought of

as weights. In case of an equally weighted two-asset portfolio we would trivially have α1 =

α2 = 0.5. Above definition rules out short-selling- or leverage constraints since α1, α2 ∈ R.

The portfolio weights can take on any value on the real line. A further assumption is the so

called law of one price which says that portfolios with the same payoff must have the same

price ruling out arbitrage opportunities in equilibrium. Mathematically,

q(α1 · x1 + α2 · x2) = α1 · q(x1) + α2 · q(x2).

Let p ∈ R
S
+ denote the vector of contingent claims prices. More specifically, we have

p = [p1, . . . , pS ].

Also, let

x = [x1, . . . , xS ]

denote an arbitrary payoff vector where xs denotes the payoff in state s. The price of some

payoff x is given by

q(x) =
S∑

s=1

ps · xs = p · xT = |p| × |proj(x|p)| = |p| × |x| × cosκ, (50)

i.e. the price of a payoff is simply the inner product of the contingent claim price vector

and the payoff vector where |.| denotes the vector length, proj(x|p) denotes the projection of

x on p and κ is the angle formed by x and p. We want to derive the intuition behind figure 3.

Let us think of any return as a payoff with unit price. This is easily verified by looking

at the central pricing equation (32). Furthermore, let us consider excess returns. The price
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4.2 Decomposing Returns in the Mean-Variance Space Equity Premium Puzzle

Figure 3: State Price Diagram (Cochrane (2005))

of an excess return equals zero which follows from a trivial argument. Suppose an investor

borrows a certain amount of money at a rate Rb and invests it at some rate Ra. His net

investment (the price i.e.) is equal to zero and his return equals Re = Ra − Rb. In such a

bet it is equally likely to gain or lose. Hence, investors do not pay a price q > 0 to enter

such a lottery. In the case that the borrowing rate Rb equals the risk-free interest rate Rrf

we obtain the excess return of a risky asset over a risk-free rate.

Consider figure 3. There are two possible states. The ordinate represents state 2 payoffs

while the abscissa represents payoffs in the first state. p refers to the contingent claim

price vector which points into the positive orthant from the origin. Prices are obtained by

means of an inner product as in equation (50). Two vectors are called orthogonal when their

inner product is equal to zero. Using our argument from above the plane representing the

set of excess returns must be orthogonal to p since excess returns have a zero price. The

plane of excess returns therefore points out from the origin at right angles to the contingent

claim price vector p. Furthermore, payoffs on the same plane must have the same price. This

simply follows from the fact that all payoffs on a plane of constant price that is perpendicular

to the vector p (e.g. the q = 1 plane) have the same projection onto p. Additionally, planes of

constant price are parallel to each other. Suppose this was not the case. Then one could find

payoffs which lie on both planes implying that they have two different prices. This clearly

contradicts the law of one price assumption that we imposed earlier to rule out arbitrage

opportunities. Finally, the zero payoff trivially has a zero price and planes of constant price

move out linearly (i.e. q(x) = 1 ⇒ q(2x) = 2q(x) = 2) which implies the linearity property

of the pricing function introduced earlier (see Cochrane (2005), p. 62).

41



4.2 Decomposing Returns in the Mean-Variance Space Equity Premium Puzzle

4.2.2 A Payoff x′ as a Discount Factor

The free portfolio formation property and the law of one price ensure that we can, in fact,

find a special payoff x′ ∈ X that can be used as the stochastic discount factor, i.e. we are

looking for a payoff that represents prices by means of an inner product.

Lemma 4.1 There is a unique x′ ∈ X such that q(x) = E[x′ · xT ], ∀x ∈ X, i.e. payoff x′

is, in fact, a discount factor.

The proof is straightforward and works as follows:

Proof Let the payoff space be spanned by N basis payoffs, i.e. any arbitrary payoff can be

constructed from a linear combination of these payoffs. Let

X = [x1, x2, . . . , xN ]

denote a vector containing the N basis payoffs with xn ∈ R
S , n = 1, . . . , N . Each xn is

actually a row vector of the form

xn = [xn,1, . . . , xn,S ]

containing S elements (one outcome for each possible state s). Hence, X maybe interpreted

as a matrix of dimension S ×N . Furthermore, let

Q = [q1, . . . , qN ]

denote the price vector of the basis assets x1, . . . , xN with qn ∈ R+, n = 1, . . . , N . The

payoff space can then be expressed as

X = {c ·XT }

where c ∈ R
N can be thought of as some vector of asset weights. Since we require x′ ∈ X

we must have x′ = c ·XT . Then

Q = E[x′ ·X]

Q = E[c ·XT ·X]

QT = E[XT ·X · cT ]
QT = E[XT ·X] · cT

cT = E[XT ·X]−1 ·QT .

Obvisouly, the random matrix E[XT · X] must be invertible to guarantee existence and

uniqueness of c. Hence, we get

x′ = Q ·E[XT ·X]−1

︸ ︷︷ ︸

≡c

·XT
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4.2 Decomposing Returns in the Mean-Variance Space Equity Premium Puzzle

which is a linear combination of the basis payoffs x1, . . . , xN and therefore x′ ∈ X.

�

Besides the algebraic derivation there also exists a very trivial geometric derivation. Looking

at figure 3 one simply has to pick a payoff vector that is orthogonal to the plane of excess

returns and perpendicular to the other planes of constant price. In order to price arbitrary

payoffs one simply has to choose a vector of the “right length” (see Cochrane (2005), p. 67).

Since q(x) = |x′| × |x| × cosκ the right length is determined as

|x′| = q(x)

|x| × cosκ
.

Hence, one could simply replace the vector p in figure 3 by some vector x′. The payoff x′ is

needed in order to define a special return R′ that corresponds to this payoff. Its properties

are evaluated in the next section.

4.2.3 An Alternative Derivation of the Mean-Variance Frontier

Traditionally, the derivation of the mean-variance frontier is done via a simple maximization

or minimization problem. Closed-form solutions exist for simple cases without any market

frictions such as short-sales constraints and the like. The aim of the following section is to

introduce an orthogonal decomposition of arbitrary returns and derive the mean-variance

frontier from there. We will begin by defining a return R′ which corresponds to the discount

factor x′ that we derived in the previous section. Let

R′ ≡ x′

q(x′)
=

x′

E[x′ · x′T ] .

The first fraction is simply a payoff divided by a price (hence a return). In the second

fraction the price q is replaced by E[m ·xT ] with m = x′ and x = x′. Let the space of excess

return be defined as follows:

Re ≡ {x ∈ X : q(x) = 0}

The space of excess returns contains those payoffs with a price equal to zero. Let the

projection of a variable y onto a variable x be defined as

proj(y|x) = βxT = E[x · xT ]−1 ·E[y · xT ]
︸ ︷︷ ︸

=β

xT

which is simply a linear regression of variable y on the regressor x without a constant. Let

the return Re′ be given by

Re′ ≡ proj(1|Re) (51)

where Re denotes the space of excess returns, i.e. Re′ can be thought of as some sort of

mean excess return. While x′ ∈ X represents prices of arbitrary future payoffs with an
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4.2 Decomposing Returns in the Mean-Variance Space Equity Premium Puzzle

inner product (see proof 4.2.2), the return Re′ ∈ R
e
represents means in the space of excess

returns, i.e.

E[Re] = E[1×Re] = E[proj(1|Re)×Re] = E[Re′ ×Re], ∀Re ∈ Re

where a× b denotes the cross product of vectors a and b. Having established the setup and

major definitions we can state the following theorems in order to construct the mean-variance

frontier using R′ and Re′ :

Theorem 4.2 An arbitrary return Ri can be written as Ri = R′ + wi · Re′ + ni where

wi ∈ R and ni denotes an excess return with E[ni] = 0. Also, E[R′ · Re′
T
] = E[R′ · nT

i ] =

E[Re′ · nT
i ] = 0, i.e. all components are uncorrelated with each other.

Theorem 4.3 Rmv is on the mean-variance frontier ⇔ Rmv = R′ + w ·Re′, w ∈ R.

Proof In the following proof we will look at things mainly from an algebraic perspective.

For the moment we will stick with the mathematics and later on provide an economic

interpretation for each component. For the geometric part we will mostly refer to figures

4 and 5 which is a three-dimensional extension of figure 3. Let 0 denote the origin. As we

pointed out before one can use the payoff x′ as the discount factor to price arbitrary payoffs

by means of an expectations inner product (see section 4.2.2). Additionally, we reasoned

why excess returns have a zero price. The lower plain in figure 4 represents the space of

excess returns as defined earlier. Obviously, putting together the facts we have

0 = E[x′ ·Re′
T

] =
1

q(x′)
·E[x′ ·Re′

T

] = E

[

x′

q(x′)
︸ ︷︷ ︸

=R′

·Re′
T

]

= E[R′ ·Re′
T

]. (52)

Using x′ as the discount factor we obtain a zero price for any excess return, hence also for

the return Re′ . Multiplying on both sides with 1/q(x′) and getting the fraction into the

expected value operator we deduce that R′ is orthogonal to the vector Re′ . In fact, R′ is

orthogonal to any vector in the space of excess returns. The parameter wi can be interpreted

as some kind of control variable for an investor to choose his desired mean return on the

frontier. Finally, ni is defined such that

ni ≡ Ri −R′ − wi ·Re′ (53)

and it is an excess return by assumption. One should think of ni as an idiosyncratic return

component that is attributable to the specifics of a company e.g. and hence can be diversified

away in a portfolio context. Investors are not rewarded for non-systematic risk and therefore

E[ni] = 0 must hold. We can also derive this result mathematically as follows. In equation

(52) we showed that R′ is orthogonal to any excess return.

Thus,

E[R′ · nT
i ] = 0
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Figure 4: Orthogonal Decomposition in State Space (Cochrane (2005))

must hold trivially since ni is an excess return. In section 4.2.1 we introduced Re′ as an

excess return that represents means on Re. Then

E[ni] = E[1× ni] = E[proj(1|Re)× ni] = E[Re′ × ni].

So, in order to get E[ni] = 0 we need an ni that is orthogonal to R
e′. Using

wi =
E[Ri]−E[R′]

E[Re′]

we obtain

⇔ E[ni] = E[Ri]−E[R′]− wi ·E[Re′]

⇔ E[ni] = E[Ri]−E[R′]− E[Ri]−E[R′]

E[Re′]
·E[Re′]

⇔ E[ni] = 0.

The first equality is simply the expected value operator applied to the definition of ni as in

equation (53). Plugging in wi yields E[ni] = 0. Finally, having

Ri = R′ + wi ·Re′ + ni (54)
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and

E[R′ ·Re′
T
] = E[R′ · nT

i ] = E[Re′ · nTi ] = 0 (55)

delivers the mean-variance frontier with

E[Ri] = E[R′] + wi ·E[Re′] (56)

and

σ2(Ri) = σ2(R′) + w2
i · σ2(Re′) + σ2(ni). (57)

Equation (56) follows from (54) simply by applying the expected value operator and the

fact that E[ni] = 0. Since all return components are orthogonal the variance of some return

Ri equals equation (57). �

More intuition is provided in figures 4 and 5. Mean-variance analysis is all about minimizing

variance for a given level of expected return. In figure 4 we are looking for the shortest way

from the origin to some point Ri in the space of returns. One can interpret the length of a

return vector as a second moment (variance i.e.). Hence, it is natural to seek the shortest

way or smallest variance possible to the corresponding return level Ri which is along the

lines of R′ +wi ·Re′ . R′ is the minimum second-moment return. Firstly, among all returns

it is closest to the origin which can be seen easily in figure 4. Secondly, we can verify this

property from equation (57). Let wi = 0 and ni = 0 then

Ri = R′ + wi ·Re′ + ni

⇔ E[Ri ·RT
i ] = E[R′ ·R′T ] + w2

i ·E[Re′ ·Re′T ] +E[ni · nT
i ]

⇔ σ2(Ri) = σ2(R′) + w2
i · σ2(Re′) + σ2(ni)

⇔ σ2(Ri) = σ2(R′).

For any other tuple (wi, ni) we get σ2(Ri) > σ2(R′). In the second step all “covariance

terms” drop out since each component is orthogonal to any other component by construction.

Hence, all returns of the same “length” originating at 0 have the same variance. Since lines

of constant second moment are circles the minimum second-moment return is that vector

where the smallest possible circle and the mean-variance frontier intersect in figure 5 at R′.

By changing wi one moves along the frontier. As indicated earlier ni is an idiosyncratic

return component that is not rewarded by the market and hence has zero expected value.

As shown in figure 5 ni only increases variance, but not the expected return. Investors may
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Figure 5: Mean-Variance Frontier (Cochrane (2005))

diversify such risks by altering their asset allocation.

4.3 Hansen-Jagannathan Bounds

Following the previous section on the mean-variance frontier of asset returns we will derive an

analogous decomposition and a corresponding mean-variance frontier of the discount factor

m as in Hansen and Jagannathan (1991) and Cochrane (2005). In the original contribution

the authors use a non-parametric approach for a broader set of dynamic economic models.

It is broader in a sense that it “does not depend either on a Markov chain approximation

with a small number of states or on a narrow class of asset valuation models.” (see Hansen

and Jagannathan (1991), p. 229). Recapitulate from section 4.1
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Figure 6: Duality between Mean-Variance Frontier and HJ-Bounds (Cochrane (2005))

1 = Et[mt+1 ·Rt+1]

⇔ 1 = Et[mt+1] ·Et[Rt+1] + corrt(mt+1, Rt+1) · σt(mt+1) · σt(Rt+1)

⇔ Et[Rt+1] = Rrf
t − corrt(mt+1, Rt+1) ·

σt(mt+1)

Et[mt+1]
· σt(Rt+1)

⇔ −σt(mt+1)

Et[mt+1]
≤ Et[Rt+1]−Rrf

t

σt(Rt+1)
≤ σt(mt+1)

Et[mt+1]

⇔ σt(mt+1)

Et[mt+1]
≥ |Et[Rt+1]−Rrf

t |
σt(Rt+1)

.

Figure 6 shows the duality between the mean-variance frontier of excess returns and the

stochastic discount factor. The latter frontier can be derived intuitively by deriving those

pairs {E(m), σ(m)} that are consistent with the mean-variance frontier of excess returns.

For any given risk-free rate one has to find the tangency portfolio and the corresponding

Sharpe ratio. One should note that for any given risk-free rate there are always two tan-

gency portfolios. We select that portfolio that has the higher Sharpe ratio in absolute terms.

The Sharpe ratio of the tangency portfolio can then be equated to σ(m)/E(m) deliver-

ing the frontier of the stochastic discount factor (also see Cochrane (2005), p. 93). We look
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at figure 6 twofold. Let us first consider the mean-variance frontier in the left-hand panel.

We first consider those expected returns which are smaller than the expected return that

corresponds to minimum-variance portfolio (i.e. the vertex of the parabola). Shifting the

capital market line (the straight line connecting the risk-free rate and the parabola) upwards

its slope and hence the Sharpe ratio decreases. The upward shift corresponds to an increase

in the risk-free rate and a decrease in E(m). This leads us to the mean-variance frontier of

the stochastic discount factor in the right-hand panel of figure 6. First we only consider the

part on the rhs of the vertex. As E(m) decreases the slope of the capital market line and

hence also the Sharpe ratio decreases. From equation (58) it is then obvious that σ(m) must

decrease as well. In a second step we consider those risk-free rates that are larger then the

expected return that corresponds to the minimum-variance portfolio. By decreasing E(m)

the slope of the capital market line becomes more and more negative. However, since we are

looking at Sharpe rations on an absolute basis, the Sharpe ratio increases and hence also

σ(m) must increase. The mechanics work in the same manner as they did before yielding

the left-hand part of the parabola of the stochastic discount factor.

min
{all m that price x ∈ X}

σt(mt+1)

Et[mt+1]
= max

{all excess returns Re ∈ X}

Et[Rt+1]−Rrf
t

σt(Rt+1)
(58)
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5 Solving the Puzzle

One can spot two major streams of research addressing the puzzle. The first stream proposes

modifications of the utility functions being used since the CRRA class of functions can

only be made consistent with the observed equity premium when agents are extremely and

unplausibly risk averse. The second stream addresses issues such as borrowing constraints,

transaction costs, liquidity, taxes and regulation as well as potential disaster states.

5.1 Habit Formation

The heart of the model is to propose an alternative specification of the agent’s utility func-

tion. This non-time separable utility function incorporates what is known as habit formation

in economics. Major works in the field include - among others - Abel (1990), Deaton (1992),

Ryder and Heal (1973), Sunderasan (1989) and Constantinides (1990) (see Cochrane (2005),

pp. 207). One can, in general, distinguish between external and internal habit formation.

Within those classes there exist models that use additive as well as multiplicative utility

functions to model preferences. The habit formation approach used in this paper can be

attributed to what is widely known as “catching up with the Joneses”. The term was first

used in Abel (1990) and is synonimously used for external habit. The key feature distin-

guishing external and internal habit is whether an agent’s habit level depends on the agent’s

own past consumption level (internal) or on aggregate consumption (external).

5.2 Campbell-Cochrane Model

In the following section I will review a model by Campbell and Cochrane (1999) which has an

alternative, non-time separable utility function at its core to solve the equity premium puzzle.

Their model captures a wider variety of stock market phenomena such as the procyclical

variation of stock prices, the long-horizon predictability of excess stock returns and the

countercyclical variation of stock market volatility among others. In what follows we will

focus our attention on the model’s capability to explain the short- and long-run equity

premium puzzles with a constant risk-free rate.

5.2.1 Utility, Stochastic Discount Factors and the Interest Rate

In their original contribution Prescott and Mehra (1985) assumed a standard power utility

function to express preferences. The key feature of the model to follow is a slight adaptation

by including a parameter Xt which represents the agent’s habit level. One can think of

the habit level as some kind of consumption level the agent “is used to” or some reference

level that determines consumer satisfaction for subsequent periods. Therefore, in general, an

agent always seeks consumption above such a reference level. The model will be presented in

a discrete time, representative agent setup. Preferences over consumption take the following

form:
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E

∞∑

t=0

β
(Ct −Xt)

1−γ − 1

1− γ
. (59)

One should note that above utility functional is only defined for Ct ≥ Xt, but not for Ct <

Xt. Why? Suppose γ = 0.5. Then
√
Ct −Xt is not defined for Ct < Xt. This implication

will be useful later on when we specify the particular form of a so called sensitivity function

λ(.) that is part of the model. The relation between current consumption and habit can

expressed conveniently as

St ≡
Ct −Xt

Ct

.

Campbell and Cochrane (1999) refer to above fraction as surplus consumption ratio. Obvi-

ously, when Ct = Xt the surplus ratio amounts to 0 which implies a bad state. Furthermore,

as Ct rises relative to the habit level we get St → 1. Additionally, one can relate the lo-

cal curvature of the utility function as expressed in (59) to the surplus consumption ratio

as follows. The first- and second-order derivatives of the utility function with respect to

consumption Ct are

U ′(Ct, Xt) = (Ct −Xt)
−γ and U ′′(Ct, Xt) = −γ · (Ct −Xt)

−γ−1. (60)

Then

ηt ≡ −Ct ·
U ′′(Ct, Xt)

U ′(Ct, Xt)
= −Ct ·

−γ · (Ct −Xt)
−γ−1

(Ct −Xt)−γ
= γ · Ct

Ct −Xt

=
γ

St

(61)

which implies that the lower the surplus consumption ratio, the higher is the curvature of

the utility function. From an economic perspective relative risk aversion (high η) of an agent

is high during bad times (low S). Hence, asset prices are low and expected returns are high.

As we have already indicated at the beginning of the section Campbell and Cochrane (1999)

use an external habit approach, i.e. an agent’s habit is determined by past realizations of

aggregate consumption as opposed to individual consumption. Let

Sa
t ≡ Ca

t −Xt

Ca
t

where the a superscript denotes average consumption of all agents in the economy. In

order to assess how average consumption Ca
t determines individual habit Xt we assume the

following stochastic process for Sa
t . In what follows lowercase letters denote logarithms, i.e.

sat = logSa
t . We then model the log surplus consumption ratio as an AR(1) process of the

form

sat+1 = (1− φ) · s+ φ · sat + λ(sat ) · ǫt+1 (62)

where φ, g and s are parameters and
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∆ct+1 = g + ǫt+1, ǫt+1 ∼ iid N
(
0, σ2

ǫ

)
.

The function expressed in equation 62 contains non-linear terms such as the sensitivity

function λ(sat ).

Modeling the surplus consumption ratio as in 62 means that consumption is always

larger than habit. Otherwise it might be the case that consumption becomes smaller than

habit in which case utility would be undefined. Modeling the logarithm of Sa
t ensures that

Sa
t > 0 and hence Ca

t −Xt > 0. Since we are operating in a representative agent framework

Ct = Ca
t must hold trivially for all t in equilibrium since each individual chooses the same

consumption level Ct. In (60) we already derived the first- and second-order derivative of

the power utility function U(Ct, Xt) we defined in (59).

Marginal utility can then be written as

U ′(Ct, Xt) = (Ct −Xt)
−γ =

(

Ct −Xt

Ct

)−γ

· C−γ
t = S−γ

t · C−γ
t .

The intertemporal marginal rate of substitution (see equation (32)) then becomes

mt+1 = β · U
′(Ct+1, Xt+1)

U ′(Ct, Xt)
= β ·

(

St+1

St

· Ct+1

Ct

)−γ

. (63)

We can relate (63) to the state variable st and the consumption innovation ǫt+1 as follows

mt+1 = β ·
(

St+1

St

· Ct+1

Ct

)−γ

= β · exp(−γ · (st+1 − st)) · exp(−γ · (ct+1 − ct))

= β · exp(−γ · (st+1 − st)) · exp(−γ · (g + ǫt+1))

= β · exp(−γ · (st+1 − st)) · exp(−γ · g) · exp(−γ · ǫt+1)

= β ·G−γ · exp(−γ · (st+1 − st + ǫt+1))

Substituting (62) for st+1 we arrive at

mt+1 = β ·G−γ · exp(−γ · [(φ− 1) · (st − s) + [1 + λ(st)] · ǫt+1]).
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From section 4.3 we recapitulate that

σt(mt+1)

Et[mt+1]
≥ −corrt(mt+1, Rt+1) ·

σt(mt+1)

Et[mt+1]
=

Et[Rt+1]−Rrf
t

σt(Rt+1)
.

Let the stochastic discount factor mt+1 be a lognormal random variable such that

E(X) = exp(µ+ σ2/2) and σ2(X) = exp(2µ+ σ2) · (exp(σ2)− 1)

imply

σ(X)

E(X)
=
√

exp(σ2)− 1.

Then

max
{all assets}

Et[Rt+1]−Rrf
t

σt(Rt+1)
=
σt(mt+1)

Et[mt+1]

=
√

exp(γ2 · (1 + λ(st)2) · σ2
ǫ )− 1

≈ γ · σǫ · (1 + λ(st)).

Economically, we can relate the Sharpe ratio to a function of the surplus consumption ratio.

We have not yet specified what this function might look like. Intuitively, it should produce

a high Sharpe ratio (and hence a high excess return) during bad times. So, λ(st) must take

on large values when st is small. Before we find a specific functional form for λ(st) we have

a look at the risk-free rate. In section 2.4.3 we derived the risk-free rate to be equal to the

inverse of the conditionally expected stochastic discount factor, i.e.

Rrf
t =

1

Et[mt+1]
.

Substituting the stochastic discount factor into the denominator yields

1

Et[mt+1]
= 1/ exp(lnβ − γ · g − γ · (φ− 1) · (st − s) + 0.5 · γ2[1 + λ(st)]

2 · σ2
ǫ ) (64)

and

lnRrf
t = − lnβ + γ · g − γ · (1− φ) · (st − s)− 0.5 · γ2[1 + λ(st)]

2 · σ2
ǫ . (65)

One can identify 2 sources that influence the risk-free rate, intertemporal substitution as

well as precautionary savings. The former is represented by the term st − s. When the

surplus consumption ratio is small relative to its average (i.e. Ct is close to habit Xt) then

marginal utility of consumption is high. Since an agent wants to consume more in that
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case he will borrow and thus drive up the interest rate. The precautionary savings reflects

uncertainty. During uncertain periods consumers are willing to save more and consume less

which drives the interest rate down.

5.2.2 Sensitivity Function

Campbell and Cochrane (1999) notice that there is relatively little variation in the data

with regard to the risk-free interest rate. Hence, either the parameter φ is close to one in

which case the impact of st−s on the risk-free rate vanishes or λ(st) is chosen such that the

precautionary savings effect offets the intertemporal substitution effect. This would be the

case when λ(st) increases as st declines. Thus, one requirement for the sensitivity function

is a constant risk-free interest rate making the model consistent with the empirical data. A

second condition is that habit is predetermined at the steady state st = s. Finally, habit is

also predetermined near the steady state which is equivalent to positive consumption shocks

increasing habit, but never reducing it. Mathematically, this is equivalent to ∂x/∂c ≥ 0.

The latter two conditions ensure that consumption is always larger than habit. Otherwise

it might happen that consumption is below habit in which case the utility function is not

defined as outlined before. In fact, the sensitivity could be chosen such that the interest

rate is a linear function of the state variable st. However, this does not have any effect on

the results to follow (see Campbell and Cochrane (1999), p. 216). The authors propose the

following functional relationships

S = σ ·
√

γ

1− φ
(66)

and

λ(st) =







1
S
·
√

1− 2(st − s)− 1 if st ≤ smax

0 if st > smax

(67)

respectively in order to fulfill above criteria. smax refers to the maximum surplus consump-

tion ratio which is defined as

smax ≡ s+ 0.5 · (1− S
2
). (68)

Above identity can be derived by setting the upper expression of the sensitivity function

equal to zero and solve for st = smax. Now, how do we eventually arrive at above function?

From the previous section we briefly recapitulate the risk-free interest rate to be of the form

lnRrf
t = − lnβ + γ · g − γ · (1− φ) · (st − s)− 0.5 · γ2[1 + λ(st)]

2 · σ2
ǫ . (69)

Let

Q ≡ − lnRrf
t − lnβ + γ · g.
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Equation (69) then becomes

0 = Q− γ · (1− φ) · (st − s)− 0.5 · γ2[1 + λ(st)]
2 · σ2

ǫ .

Solving for λ yields

λ(st) =

√

2 · (Q− γ · (1− φ)(st − s))

σ2
ǫ · γ2

− 1.

Let

Y ≡ 2 ·Q
σ2
ǫ · γ2

such that

λ(st) =

√

Y − 2 · (1− φ)(st − s)

σ2
ǫ · γ

− 1. (70)

We then have to find a solution for Q such that the conditions 2 and 3 are fulfilled, i.e. the

habit level should be predetermined at and near the steady state. Let us first recapitulate

equation (62) from the previous section, i.e.

st+1 = (1− φ) · s+ φ · st + λ(st) · ǫt+1

where ǫt+1 = ct+1 − ct − g. The surplus consumption ratio is a function of both, Ct as well

as Xt. We will first evaluate the total derivative of st+1 which is

∂st+1

∂ logXt+1
· d logXt+1 +

∂st+1

∂ logCt+1
· d logCt+1 = λ(st) · d logCt+1. (71)

From

st+1 = log

(

Ct+1 −Xt+1

Ct+1

)

we can obtain the partial derivatives with respect to logCt+1 and logXt+1. We first restate

the log surplus consumption ratio as
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st+1 = log

(

Ct+1 −Xt+1

Ct+1

)

= log

(

1− Xt+1

Ct+1

)

= log(1− exp(log(Xt+1/Ct+1)))

= log(1− exp(logXt+1 − logCt+1))

Then

∂st+1

∂ logXt+1
= − exp(logXt+1 − logCt+1)

1− exp(logXt+1 − logCt+1)

= −
Xt+1

Ct+1

1− Xt+1

Ct+1

= −
Xt+1

Ct+1

Ct+1−Xt+1

Ct+1

= −Xt+1

Ct+1
· Ct+1

Ct+1 −Xt+1
= − Xt+1

Ct+1 −Xt+1

= −Xt+1 + Ct+1 − Ct+1

Ct+1 −Xt+1

= −
(

Ct+1

Ct+1 −Xt+1
− 1

)

= −
(

1

St+1
− 1

)

.
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The partial derivative with respect to logCt+1 is

∂st+1

∂ logCt+1
=

exp(logXt+1 − logCt+1)

1− exp(logXt+1 − logCt+1)

=
1

St+1
− 1.

We can now substitute both expressions into (71) to get

−
(

1

St+1
− 1

)

· d logXt+1 +

(

1

St+1
− 1

)

· d logCt+1 = λ(st) · d logCt+1.

Eventually, dividing by d logCt+1 and rearrganging we obtain

d logXt+1

d logCt+1
= 1− λ(st)

1
St+1

− 1
= 1− λ(st)

exp(−st+1)− 1
≈ 1− λ(st)

exp(−st)− 1

where the latter approximation holds close to the steady state. Since we are looking for a

function λ such that d logXt+1/d logCt+1 = 0 holds at st = s the following must hold

1− λ(s)

exp(−s)− 1
= 0 ⇔ λ(s) =

1

S
− 1.

Using above result and substituting in (70) one can solve for Y.

λ(s) =

√

Y − 2 · (1− φ)(s− s)

σ2
ǫ · γ

− 1 ⇔ Y = exp(−2 · s).

Having derived Y we obtain the function as outlined in equatin (67). Finally, using the

third requirement that habit is also predetermined near the steady state one can derive the

expression in equation (66) as follows. We evaluate the first derivative of λ with respect to

st at st = s. Then

d

dst

d logXt+1

d logCt+1
=

d

dst

(

1− λ(st)

exp(−st+1)− 1

)

= −
[
λ′(st) · (exp(−st+1)− 1)− λ(st) ·

(

− ∂st+1

∂st

)

· exp(−st+1)

(exp(−st+1)− 1)2

]

= −
[

λ′(st)

exp(−st+1)− 1
+
λ(st) · ∂st+1

∂st
· exp(−st+1)

(exp(−st+1)− 1)2

]
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Figure 7: Sensitivity Function λ with Steady State Surplus Consumption Ratio (Bold) and
Maximum Surplus Consumption Ratio (Dashed) (Campbell and Cochrane (1999))

where

∂st+1

∂st
=
d
(

(1− φ) · s+ φ · st + λ(st) · ǫt+1

)

dst
= φ+ λ′(st) · ǫt+1.

Substituting above expression for the partial derivative yields

d

dst

d logXt+1

d logCt+1
= − λ′(st)

exp(−st+1)− 1
− λ(st) · (φ+ λ′(st) · ǫt+1) · exp(−st+1)

(exp(−st+1)− 1)2

= − λ′(st)
1

St+1
− 1

− φ · λ(st)
(

1
St+1

− 1
)2 · 1

St+1
− λ′(st) · λ(st) · ǫt+1

(
1

St+1
− 1
)2 · 1

St+1
.

Hence, at st = s, above expression becomes

d

dst

d logXt+1

d logCt+1
= − λ′(s)

1
S
− 1

− φ · λ(s)
(

1
S
− 1
)2 · 1

S
− λ′(s) · λ(s) · ǫt+1

(
1
S
− 1
)2 · 1

S
≡ 0.

In order to eliminate the stochastic term ǫt+1 we take expectations of above expression

to obtain
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Figure 8: Derivative of the logX wrt logC (Campbell and Cochrane (1999))

0 ≡ − λ′(s)
1
S
− 1

− φ · λ(s)
(

1
S
− 1
)2 · 1

S

⇔ 0 ≡ −λ′(s) · (1− S)− φ · λ(s).

We arrive at the second line multiplying the first line by 1
S
− 1 = 1−S

S
. Eventually we get

λ′(s) = −φλ(s)
1− S

=
φλ(s)

S − 1
=
φ · (exp(−s)− 1)

exp(s)− 1
= −φ · exp(−s).

Putting together the facts we have

λ(st) =

√

exp(−2 · s)− 2 · (1− φ)(st − s)

σ2
ǫ · γ

− 1,

λ′(st) = −2 · (1− φ)

γσ2
ǫ

· 1

2 ·
√

exp(−2 · s)− 2·(1−φ)(st−s)
σ2
ǫ ·γ

and

λ′(s) = −φ · exp(−s).

Hence, at st = s
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− 1

exp(−s) ·
1− φ

γσ2
ǫ

= −φ · exp(−s)

and thus

S = exp(s) = σǫ ·
√

γ · φ
1− φ

≈ σǫ ·
√

γ

1− φ
.

The approximation holds since φ is close to 1 empirically. E.g. Campbell and Cochrane

(1999) use a value of φ = 0.87 in their analysis (see table 1). Last, but not least, the resulting

function is depicted in figure 7. One can immediately spot the countercyclical nature that is

imposed upon the Sharpe ratio. The abcissa contains the surplus consumption ratio that we

use as a proxy for good and bad times. The higher it is the better is the perceived economic

climate since - in that case - consumption is well above habit. For large values of S the

sensitivity function yields small values λ(s) resulting in small Sharpe ratios. The latter then

imply that excess returns over the risk-free rate are relatively low and asset prices high which

makes sense intuitively. On the contrary when s is small λ yields large values which in turn

results in high Sharpe ratios. Hence, excess returns relative to the risk-free rate are large

and asset prices are low. So, our sensititivy function has the desired properties to model

the countercyclical nature of returns, asset prices and Sharpe ratios. The bold vertical line

marks the steady state surplus consumption ratio while the dashed vertical line refers to the

maximum surplus consumption ratio as defined in equation (68). Mathematically, as the

surplus consumption ratio approaches zero λ goes to infinity. It goes to zero as the surplus

consumption ratio approaches its upper bound smax. Figure 8 shows the sensitivity of habit

with respect to consumption. Again, the bold vertical line indicates the steady state surplus

consumption ratio. What we can spot nicely is the feature that habit does not change at

and close to the steady state level. Furthermore, habit moves positively with consumption

everywhere so as to keep habit below consumption all the time.

5.2.3 Data, Simulation and Empirical Results

Campbell and Cochrane (1999) use 2 different datasets to test the validity of the model.

Both datasets differ significantly in length. The first set contains value-weighted NYSE

stock index returns taken from the Center for Research in Security Prices (CRSP), 3-month

Treasury bill rate and per capita non-durables and services consumption for the postwar

period between 1947 and 1995. The second dataset contains annual data for the S&P 500

index, commercial paper returns (both 1871–1993) as well as per capita consumption (1889–

1992). Parameters to calibrate the model were chosen such that certain moments in the data

are matched. The corresponding parameters and their values are summarized in table 1.

To assess the validity of the model the authors use those parameters to simulate 500,000

months of artifical data. Monthly data is then used to construct time-averaged annual data.

Table 2 compares simulated data with actual market statistics. Those values marked with an

asterisk are calibration targets and hence coincide with the real data. E.g. the risk aversion
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Parameter Variable Value

Assumed:

Mean consumption growth in % g 1.89*
Std. Dev. of cons. growth in % σǫ 1.50*

Log risk-free rate in % logRrf
t 0.94*

Persistence Coefficient φ 0.87*
Utility curvature γ 2.00
Implied:

Subjective discount factor β 0.89*
Steady state surplus cons. ratio S 0.057
Maximum surplus cons. ratio Smax 0.094

Table 1: Model Parameters (asterisks indicate annual values)

coefficient γ = 2 was chosen to match the Sharpe ratio of log returns in the postwar sample

of 0.43 and the Sharpe ratio of 0.5 of the discrete returns. A fair objection would be that

parameters are chosen such that certain moments in the data are matched. Hence, by any

choice of parameters one would be able to obtain the desired outcome. In case of the risk

aversion coefficient γ was chosen to match a ratio. That, however, does not reveal anything

further about the levels of the two variables involved. Focusing our attention on the first

column of table 2 one can spot that the model does not only match the ratio, but also the

level of expected excess returns as well as the standard deviation thereof. Campbell and

Cochrane (1999) particularly calibrate the model to resemble the postwar sample “because

they are a significantly harder target” (see p. 225). In addition to the equity premium the

model is able to explain a broad variety of asset pricing phenomena. As outlined above the

proposed model is empirically consistent with the data regarding the equity premium and

the risk-free rate. Similar to the prior section one can show that a standard power utility

function and iid lognormal consumption growth with mean g and standard deviation σǫ the

stochastic discount factor becomes

mt+1 = β ·
(

Ct+1

Ct

)−γ

.

The Sharpe ratio can then be expressed as

Et[Rt+1]−Rrf
t

σt(Rt+1)
≈ γ · σǫ

with interest rate

logRrf
t = − log β + γ · g − 0.5 · γ2 · σ2

ǫ .

The latter expression was already derived in section 2.4.4. Plugging in the respective values

for the Sharpe ratio ≈ 0.5 and the standard deviation of consumption growth σǫ = 1.22

percent one needs a risk aversion coefficient of γ ≈ 41 which is unplausibly high. Why? If
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Consumption Dividend Postwar Long
Statistic Claim Claim Sample Sample

E(∆c) 1.89* 1.89 1.72
σ(∆c) 1.22* 1.22 3.32
E(rrf ) 0.94* 0.94 2.92
E(r − rrf )/σ(r − rrf ) 0.43* 0.33 0.43 0.22
E(R−Rrf )/σ(R−Rrf ) 0.50 0.50
E(r − rrf ) 6.64 6.52 6.69 3.90
σ(r − rrf ) 15.2 20.0 15.7 18.0
exp[E(p− d)] 18.3 18.7 24.7 21.1
σ(p− d) 0.27 0.29 0.26 0.27

Table 2: Means and Standard Deviations of Simulated and Historical Data

we plug in the respective values into the risk-free rate equation with γ = 41 and g = 1.89%

one would need a discount factor in the region of β = 1.9 in order to get a risk-free interest

rate of about 1 percent. Since we require the discount factor to be β ≤ 1 this implies a risk-

free rate of approximately 90% annually. Furthermore, the risk-free rate is not as sensitive to

changes in mean consumption growth as indicated by a risk aversion coefficient in the region

of 41. How are these drawbacks overcome in the Campbell and Cochrane (1999) model?

In the new setup the risk aversion parameter is set equal to 2 (see table 1). Additionally,

curvature is influenced by the surplus consumption ratio as shown in equation (61). The

curvature is high during bad states (low S), low during good states (high S) and ≈ 35 at

the steady state level where S = 0.057. From (65) and (67) we obtain a constant risk-free

interest rate which has the functional form

logRrf
t = − log β + γ · g − 0.5 ·

(

γ

S

)2

· σ2
ǫ . (72)

In the latter case the risk-free rate is influenced by a risk aversion coefficient in the region

of 2 which allows for a discount factor β = 0.89 smaller than 1. In addition to that the

sensitivity of the interest rate with respect to consumption growth is significantly lower than

in the case without habit formation.

5.2.4 Model Criticism

Despite the models ability to achieve the desired outcome of a high equity premium a

couple of reservations exist - some of which are addressed by the authors in their original

contribution. The first drawback is the representative agent setup that does not allow

for consumer heterogeneity. The habit level is about 5% below actual consumption across

individuals. If one considers the distribution of wealth and income for some poor agents

it might be the case that Ct < Xt in which case utilitiy is not defined (see section 5.2.1).

Furthermore it is obvious that agents with differing income levels have differing stock market
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Figure 9: log marginal utility wrt S (surplus consumption ratio) (Campbell and Cochrane
(1999))

participation ratios. The wealthier an agent is the higher is his participation in the stock

market and vice versa. A second drawback is the fact that the model works under the

assumption of high risk aversion. The curvature parameter of the utility function takes on

a value of about 35 at the steady state. The model is, however, able to avoid unrealistically

high interest rates when β is constrained to be smaller than 1. A third point is the external

habit specification. In contrast to above model in an internal framework habit is determined

by an agents own consumption history. While consumption grows so does habit. Hence,

marginal utility for a given level of consumption declines as habit increases. Since assets are

priced based on relative marginal utility of consumption today and tomorrow a proportional

increase or decline in both does not change the discount factor and hence external and

internal models yield the same results. Campbell and Cochrane (1999) provide conditions

under which this is the case (see p. 245), one being that habit accumulation is linear. This is

different in the present setup in order to obtain a random walk in the consumption process.

In the linear framework habit accumulation would only be close to a random walk. Figure 9

plots the logarithm of marginal utility with respect to the surplus consumption ratio for the

internal as well as the external setup. The major features that one can spot is the fact that

marginal utility has a similar behavior close to the steady state level (indicated by vertical

line), but drifts apart as the surplus consumption ratio reaches its maximum (vertical dotted

line). The larger the change in consumption, the larger is the increase in the habit level

and hence marginal utility declines. Campbell and Cochrane (1999) see the similar behavior

near the steady state of their model and one with an internal specification as an indicator

for the robustness of their model (see p. 246).
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A Mathematical Appendix

A.1 Markov Processes

A stochastic process {X(t)}t=0,1,2,... has the so called Markov property if, for a finite set

with n elements t1 < t2 < . . . < tn, we have

φ(X(tn) ≤ xn|X(t1) = x1, . . . , X(tn−1) = xn−1) = φ(X(tn) ≤ xn|X(tn−1) = xn−1) (73)

for any x1, . . . , xn ∈ R, i.e. the conditional distribution of X(tn) for given realizations

{X(t1), . . . , X(tn−1)} only depends on the most recent value X(tn−1). A Markov chain

{st}t=0,1,2,... is a discrete random process with st ∈ S, where S = (1, . . . , k) is a set of

integers called the state space, and the property

φ(st+1 = j|st = i, . . . , s0 = k) = φ(st+1 = j|st = i).

A Markov chain is called time-invariant if

φ(st+1 = j|st = i) = φ(st+l+1 = j|st+l = i).

Let πi,j ∈ [0, 1] denote the probability that the process takes the value st+1 = j given that

st = i, i.e.

φ(st+1 = j|st = i) = πi,j .

For each i we have φi,1 + . . . + φi,k = 1 meaning that, given the realization i, the process

takes on an arbitrary value in S with certainty. The same holds for t = 0 with
∑k

i=1 π0,i = 1,

i.e. the initial value of the process is also on element in S. One can then define a so called

transition matrix for a Markov chain of the form

Π =









φ1,1 φ1,2 . . . φ1,k

φ2,1 φ2,2 . . . φ2,k
...

...
. . .

...

φk,1 φk,2 . . . φk,k









.

The transition matrix shows the probability that j is realized in t + 1 given that i was

realized in t for all i = 1, . . . , k and j = 1, . . . , k.

A.2 Metric Spaces

The following section will give a very brief overview of the fundamentals of metric spaces.

Definition A metric space (X, ρ) is a set X and a function ρ called a metric with ρ :

X ×X → R with the following properties:
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1. Positivity: ρ(x, y) ≥ 0, ∀x, y ∈ X.

2. Strict Positivity: ρ(x, y) = 0 iff x = y.

3. Symmetry: ρ(x, y) = ρ(y, x), ∀x, y ∈ X.

4. Triangle Inequality: ρ(x, y) ≤ ρ(x, z) + ρ(z, y), ∀x, y, z ∈ X

Definition A sequence {xn} in a metric space (X, ρ) is called a Cauchy sequence if for each

ǫ > 0 there exists an N(ǫ) such that ρ(xn, xm) < ǫ for any n,m ≥ N(ǫ). Hence, a sequence

is called Cauchy if limn,m→∞ ρ(xn, xm) = 0.

Definition A sequence {xn} in a metric space (X, ρ) converges to a limit x ∈ X if for every

ǫ > 0 there exists an N(ǫ) such that ρ(xn, x) < ǫ for n ≥ N(ǫ).

Lemma A.1 Every convergent sequence {xn} in a metric space (X, ρ) is a Cauchy sequence.

Proof Let ǫ > 0. Let x be the limit of {xn}. By the triangle inequality

ρ(xn, xm) ≤ ρ(xn, x) + ρ(x, xm).

Since xn → x, there exists an N such that ρ(xn, x) < ǫ/2 for n ≥ N . This also holds for the

sequence {xm}. Hence, ρ(xn, xm) < ǫ/2 + ǫ/2 = ǫ for n,m ≥ N(ǫ). �

Definition A metric space (X, ρ) is called complete if every Cauchy sequence in (X, ρ)

converges to a point in (X, ρ).

A.3 Contraction Mappings

In the following section we will introduce the notion of a special operator called contraction

mapping.

Definition A function T : X → X mapping a metric space (X, ρ) into itself is called an

operator.

Definition Let (X, ρ) be a metric space and T : X → X a mapping. T is called a contrac-

tion mapping of modulus β if

ρ(Tf, Tg) ≤ β · ρ(f, g), ∀f, g ∈ X

with 0 ≤ β < 1.

From the latter condition imposed on β one can see that the distance of elements in the range

space is smaller than their respective counterparts in the domain. Hence, one can think of

a contraction mapping as a method to bring elements of a metric space closer together.

Theorem A.2 Let (X, ρ) be a complete metric space and let T : X → X be a contraction

mapping with modulus β. Then (i) T has exactly one fixed point v ∈ X, (ii) for any v0 ∈ X,

ρ(Tnv0, v) ≤ βn · ρ(v0, v) for all n = 1, 2, . . . .
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Proof Let the iterates of T , which are a sequence of mappings {Tn}, be defined as T ◦X = X

and TnX = T (Tn−1)X for all n = 1, 2, . . . . Let v0 ∈ X and define a sequence {vn}∞n=0 by

vn = Tvn−1. Hence, we must have vn = Tnv0. This result can easily be verified by repeated

substitution.

vn = Tvn−1

= T (Tvn−2)

= T (T (Tvn−3))

...

= Tnv0

T is a contraction mapping by assumption. Hence,

ρ(v2, v1) = ρ(Tv1, T v0) ≤ β · ρ(v1, v0)

from which we can conclude by induction

ρ(vn+1, vn) ≤ βn · ρ(v1, v0). (74)

Suppose m > n. By the triangle inequality we have

ρ(vm, vn) ≤ ρ(vm, vm−1) + . . .+ ρ(vn+2, vn+1) + ρ(vn+1, vn)

≤ [βm−1 + . . .+ βn+1 + βn] · ρ(v1, v0)
= βn · [βm−n−1 + . . .+ β + 1] · ρ(v1, v0)

≤ βn

1− β
· ρ(v1, v0).

The second line is simply an application of the result in (74). X is a complete metric space

by definition and {vn}∞n=0 is a Cauchy sequence. Hence, we get vn → v as n→ ∞. To show

that Tv = v we can apply the triangle inequality again to obtain

ρ(Tv, v) ≤ ρ(Tv, Tnv0) + ρ(Tnv0, v)

for all n and v0 ∈ X. T being a contraction then yields

ρ(Tv, v) ≤ β · ρ(v, Tn−1v0) + ρ(Tnv0, v).

Both terms on the rhs converge to 0 as n → ∞. This can easily be verified from the

above result. Hence, ρ(Tv, v) = 0 which implies that Tv = v. So, v is a fixed point in X.
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Uniqueness is established using the following argument. Suppose ∃v̂ ∈ X such that T v̂ = v̂

and v̂ 6= v. Thus, we get

0 < a = ρ(v̂, v) = ρ(T v̂, Tv) ≤ β · ρ(v̂, v) = β · a.

Since β < 1 by assumption we obtain a contradiction as a 6= β · a. Hence, a can only be

equal to 0 and v̂ = v. So, v ∈ X is unique. Finally, to prove statement (ii) let n ≥ 1. Then

ρ(Tnv0, v) = ρ[T (Tn−1v0), T v] ≤ β · ρ(Tn−1v0, v)

and (ii) simply follows by induction. �

Corollary A.3 Let (X, ρ) be a complete metric space and T : X → X be a contraction

mapping with fixed point v ∈ X. If X ′ is a closed subset of X and T (X ′) ⊆ X ′ (where

T (X ′) is the image of X ′ under T ). Then v ∈ X ′.

Proof Let v0 ∈ X ′ and {Tnv0} denote a sequence in X ′ with limit v. Since {Tnv0} → v as

n→ ∞ and X ′ closed, we have v ∈ X ′. �

Corollary A.4 Let (X, ρ) be a complete metric space, let T : X → X and suppose that for

some integer N , TN : X → X is a contraction mapping with modulus β. Then (i) T has

one fixed point in X, (ii) for any v0 ∈ X, ρ(T k·Nv0, v) ≤ βk · ρ(v0, v) for all k = 1, 2, . . . .

Proof Let v be a fixed point of the contraction mapping TN . Then

ρ(Tv, v) = ρ[T (TNv), TNv] = ρ[TN (Tv), TNv] ≤ β · ρ(Tv, v).

The first equality holds since TNv = v. The final inequality holds since TN is a contraction

mapping with modulus β by assumption. By definition 0 < β < 1. Hence, ρ(Tv, v) can only

happen to be 0. Thus, Tv = v and v is a fixed point of X. The second statement (ii) can

be derived in the same manner as in the contraction mapping theorem. �

Theorem A.5 Let B(S) be the space of bounded functions f : S → R with the sup norm.

Let T : B(S) → B(S) be an operator defined on B(S) satisfying: (i) Let f, g ∈ B(S). For

each s ∈ S, f(s) ≥ g(s) implies Tf(s) ≥ Tg(s) (monotonicity). (ii) Let a ∈ (0,∞) be

a constant. There is a β ∈ (0, 1) such that, for f ∈ B(S), T (f + a)(s) ≤ Tf(s) + β · a
(discounting). If T : B(S) → B(S) satisfies both properties, then T is a contraction mapping

with modulus β.

Proof If f(s) ≤ g(s) for all s ∈ S, then f ≤ g. By the definition of a metric ‖.‖ we have

f ≤ g + ‖f − g‖ for any f, g ∈ B(S). Applying both properties to the latter inequality we

obtain

Tf ≤ T (g + ‖f − g‖) ≤ Tg + β · ‖f − g‖.

Reversing the initial assumption to g ≤ f we have
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Tg ≤ T (f + ‖f − g‖) ≤ Tf + β · ‖f − g‖.

The first inequality holds by the monotonicity assumption while second one reflects the

discounting property. Combining both we get

‖Tf − Tg‖ ≤ β · ‖f − g‖.

�

A.4 Mean-Variance Frontier Graphs

Figure 2 may be reproduced using the following R code. All analyses were performed using

the R statistical software R version 2.9.2 (2009-08-24).

#install.packages("tseries")

#install.packages("dynlm")

#install.packages("zoo")

#install.packages("fSeries")

#install.packages("fBasics")

#install.packages("fArma")

library("tseries")

library("dynlm")

library("zoo")

library("fSeries")

library("fBasics")

library("fArma")

# Vector of expected returns

r_i = c(0.05, 0.12)

# Target return and risk free rate

r_P <- 0.07

r_rf <- 0.06

# Vector of standard deviations for each asset

sig_i <- c(0.09, 0.10)
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# Vector containing 1s

e <- c(1,1)

# Correlation and covariance

correl <- -0.8

cova <- correl*sig_i[1]*sig_i[2]

# Covariance matrix and inverse

covar <- matrix(c(sig_i[1]^2, cova, cova, sig_i[2]^2), 2, 2)

icovar <- inv(covar)

# Closed form optimization

a <- as.vector(t(r_i)%*%icovar%*%r_i)

b <- as.vector(t(r_i)%*%icovar%*%e)

cc <- as.vector(t(e)%*%icovar%*%e)

d <- a*cc-b*b

w_a <- icovar%*%(r_i-e*r_rf)

w_b <- r_P-r_rf

w_c <- t(r_i-e*r_rf)%*%w_a

w_d <- w_b/w_c

# Vector of optimal weights

w <- w_a*as.vector(w_d)

w_rf <- 1 - sum(w)

# Tangential portfolio

gam_ma <- a-2*b*r_rf+cc*r_rf^2

w_tang <- w_a/(b-cc*r_rf)

r_tang <- t(w_tang)%*%r_i

risk_tang <- gam_ma / (b-cc*r_rf)^2

portrisk <- w_b^2/gam_ma

# Minimum variance portfolio
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mvp_risk <- 1/cc

mvp_return <- b/cc

w_mvp <- 1/cc*icovar%*%e

portret <- seq(from=0, to=max(r_i)+0.02, length=1000)

# Vector containing portfolio returns

portvar <- NULL

# Vector containing portfolio variances of combined assets

for(i in 1:length(portret)){

# loop calculating variances for corresponding returns

risk <- (portret[i]-r_rf)^2/gam_ma

portvar <- c(portvar, risk)

}

portstd <- portvar^0.5

# Efficient Frontier without Riskless Asset

portrett <- seq(from=0, to=max(r_i)+0.02, length=1000)

portvarr <- NULL

# loop calculating variances for corresponding returns

for(i in 1:length(portrett))

{

portvarr <- c(portvarr, 1/d*(cc*portrett[i]^2-2*b*portrett[i]+a))

}

portstdd <- portvarr^0.5

# Mean variance frontier asymptotes with perfect negative correlation

stddev <- seq(from=0, to=sig_i[2], length=1000)

stddev1 <- seq(from=0, to=sig_i[1], length=1000)

portret2 <- sig_i[2]/sum(sig_i)*r_i[1] +

sig_i[1]/sum(sig_i)*r_i[2] + (r_i[2]-r_i[1])/sum(sig_i)*stddev

portret3 <- sig_i[2]/sum(sig_i)*r_i[1] +
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sig_i[1]/sum(sig_i)*r_i[2] + (r_i[1]-r_i[2])/sum(sig_i)*stddev1

plot(stddev, portret2, type="l", lty=2)

lines(stddev, portret3, type="l", lty=2)

# Mean variance frontier asymptotes with perfect positive correlation

w <- seq(from=0, to=1, length=1000)

portret4 <- w*r_i[1]+(1-w)*r_i[2]

stddev2 <- (w^2*sig_i[1]^2+(1-w)^2*sig_i[2]^2+2*w*(1-w)*sig_i[1]*sig_i[2])^0.5

plot(stddev2, portret4, type="l", lty=2)

# Plot

color <- "black"

plot(portstd, portret, col=color, type="l", lty="solid",

lwd="1", main="Mean-Variance Frontier",

xlab="Standard Deviation", ylab="Expected Return",

cex.lab=0.75, cex.main=0.75, xlim=c(0,0.15))

lines(portstdd, portrett, lty="solid", lwd="1")

lines(stddev, portret2, type="l", lty=2)

lines(stddev1, portret3, type="l", lty=2)

lines(stddev2, portret4, type="l", lty=2)

points(sig_i[1], r_i[1], col=color, bg=color, pch=21)

points(sig_i[2], r_i[2], col=color, bg=color, pch=21)

points(mvp_risk^0.5, mvp_return, col=color, bg=color, pch=21)

points(sqrt(risk_tang), r_tang, col=color, bg=color, pch=21)

points(0, r_rf, col=color, bg=color, pch=21)

text(0, r_rf, "risk free rate", font=1, cex=0.75, pos=4)

text(sig_i[1], r_i[1], "asset 1", font=1, cex=0.75, pos=4)

text(sig_i[2], r_i[2], "asset 2", font=1, cex=0.75, pos=4)

text(mvp_risk^0.5, mvp_return, "minimum variance portfolio",

font=1, cex=0.75, pos=4)

text(sqrt(risk_tang), r_tang, "tangential portfolio", font=1,

cex=0.75, pos=4)
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