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380 ROBERT C. LEACHMAN AND ANDRE GASCON 

TIME (PERIODS) 

RO4 NEGATIVE 
SLACK 

RO3 
POSITIVE 
SLACKS 

RO2 _ 

ITEM ITEM ITEM ITEM ITEM 
1 2 3 4 5 

FIGURE 2. Production System out of Balance (Negative Total Slack for Item 4). 

Note in Figure 2 that positive slack exists between items I and 2 and between items 2 
and 3. This positive slack may be used to advance the start times of replenishment of 
items 2 and 3 in order to mitigate the negative slack between items 3 and 4. If the total 
slack of item 4 (i.e., the sum of the slacks between items 1 and 2, 2 and 3, and between 3 
and 4) is nonnegative, we expect that cycle quantities of each item may be feasibly 
produced by carrying out production runs one right after another. If, on the other hand, 
total slack of item 4 is negative, we expect that the cycle quantities of the four items 
cannot be fully produced without stockouts. In such a case, the system is said to be out 
of balance. To avoid stockouts, the production run of one of the four items could be cut 
short. Unfortunately, such an action would simply shift negative slack to fall between 
another pair of items, leading to another infeasibility in a following cycle and perhaps 
ultimately leading to stockouts anyway. Alternatively, the production runs of all items 
could be reduced. The key concept of the dynamic cycle lengths heuristic is that the 
cycle lengths of all items should be proportionately reduced from target lengths just 
enough to eliminate negative total slacks. Such adjustments restore balance in the 
production system, permitting the maintenance of rotation cycles. 

A heuristic scheduling policy utilizing this concept may be summarized as follows. 
First, target production cycles are calculated by solving an ELSP with average demand 
rates. Target cycles are recalculated at the start of each period in light of new demand 
forecasts. Next, an analysis of the item total slacks is performed to determine the 
minimal proportional reduction of target cycles for which there is adequate probability 
the production system can maintain such modified cycles. We define the modified 
cycles as the operational cycles of the system. 

The policy then makes operational decisions as follows. Considering the total slack of 
each item, a down period is taken if it is calculated that there is an adequate probability 
that target cycles still can be followed. Otherwise, production is performed according to 
the operational cycles. 

3.2. Mathematical Development of the Basic Heuristic 
We introduce the following notation for prespecified parameters and input data: 
i: Item index, i = I, ... ., n. i = 1 initially designates the item for which changeover of 

the machine has been most recently initiated. The items will be reindexed each time a 
cycle production quantity of an item is completed. 

t: Time period index. t = 1 denotes the first upcoming time period; t = t1 denotes the 
last period in the scheduling horizon. 
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Dwx ¼ gmamemxðiÞ; ð9Þ

where gm is the neuron convergence parameter at decision making epoch m, am is the
learning rate of the Relaxed-SMART algorithm, x(i) is the variable for which the
weights are being updated, and em is the temporal difference error, defined as follows:

cimmði; a; jÞ $ qmsði; a; jÞ þmin
a2Ai

Rmðj; a;wÞ $ Rmði; a;wÞ
! "

; ð10Þ

where w is the vector of weights of the neuron.
Other approaches to learning with networks may be seen in [11,12], where the per-

formance of cognitive networks is analyzed.

6. Numerical example

We consider a three-product example problem as a vehicle for providing further
details on the solution procedure (Fig. 2). We note that the choices of the types of
probability distributions for the example problem are somewhat arbitrary and do
not imply any limitations of our modeling process. These probability distributions
were chosen in order to use the problems that were studied in [1].

In what follows, a description of the single-server multi-product system under
study is given. In addition to those of a classical SELSP problem, the following char-
acteristics apply to this problem:

• Demands arrive in sets with a general distribution of time between arrivals.
• Setups are not incurred unless necessary. When the machine is idling, the sys-

tem waits for the next demand event to occur in the system that makes a product
type have a positive demand (i.e., the D(i) variable that first gets a positive value
triggers production setup for product type i).

• Each item type i has a setup time st(i), a setup cost si, a constant production rate, a
holding cost hi per unit time, and a backorder penalty cost bi per unit.

P1 P2 P3

Flexible 
Station

Demand

P1 P2 P3

Flexible 
Station

Demand

Fig. 2. A three-product flexible production station.
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1998, Chapters 5 and 6), where lot size decisions are
based on setup and inventory costs trade-off and/or
some other costs. Most of the literature ignores the
industry need for a cyclical production planning to
replenish the inventory and those that do, ignore the
strict need for stability of schedule, and cycle length.
Here, the strategy that has been proposed to solve
the problem is a so-called ðTi; kij ;SijÞ-strategy,
which is a cyclical production–inventory modelling
concept. The idea is as follows (see Fig. 1). Articles
that are made on the same production line and have
relatively short changeover times are called a family
(indicated by index i). The length of the time
between production starts of the same family i is Ti,
and is called a family cycle. For each article j within
a family i, a certain integer kij is determined, which
indicates the number of family cycles between two
subsequent production starts of article i, yielding an
article cycle Tikij . In turn, these cyclical plans will
drive the basic material requirements planning for
the articles in order to run the packaging lines as
scheduled (see again Fig. 1).

Brander and Forsberg (2004, 2005) address the
stochastic version of the ELSP (see Sox et al., 1999,
for a nice overview of this literature). Their work
contains the most recent overview of stochastic
ELSP (SELSP) works and considers the problem of
scheduling the production of multiple items, each

with normal demand, on a single resource. They
show how the variance in demand during lead-time
can be estimated and present a model for determi-
nation of safety stocks and order-up-to levels for a
fixed cyclic sequence, both with and without idle
time. Idle times are commonly designed to hedge
against uncertainties, such as demand surge or
production machine failure or manpower problems.
For cycles’ determination, Brander and Forsberg’s
(2004) control model makes the decision to produce
next item in sequence or leave the resource idle. This
may induce different cycle lengths. However, the
management in our case requires absolute stability
in planning for the packaging lines. We define
absolute stability as the ability to preserve the cycle
time Ti for each family at each iteration during a
given planning horizon so that the demand varia-
bility of one article does not disrupt the cycle of the
next article Tikij. Thus, such a planning of
production that concentrates on absolute stability
will tend to prevent schedule drift. This distin-
guishes our problem from the one described by
Brander and Forsberg (2004). Furthermore, the
demand in our case follows a gamma distribution,
which can be far from a normal distribution
when the demand variability is large compared to
average demand. Brander and Forsberg (2004) use a
P1-service criterion (the probability of no stockout

ARTICLE IN PRESS

Fig. 1. The proposed approach.
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124 7 Metaheuristics Based on Solution Recombination

Fig. 7.2: Solution processing of a Genetic Algorithm

population P0. For its operation it uses a solution selection operator. This operator
returns the solutions which are recombined.

At first, an initial population is needed. The construction of the population is
problem dependent. Random sampling (as we have done in our knapsack example)
is one possibility, but only works for certain problem domains. For other problems
it might be easier to use specially designed construction heuristics. As pointed out
e. g. in [168] by Reeves the population should cover the search space uniformly, i. e.
diverse solutions should be preferred. The best algorithm design performs bad on a
non-diverse initial population. The last step in the initialization phase is to determine
the fitness of the individuals using the evaluation function.
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