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Abstract

This text deals with the stochastic version of the Economic Lot Sizing Problem (ELSP) with sequence-
dependent setup times. The problem arises from the fact that it is often more profitable to invest
in a single high-capacity machine that can be used for multiple purposes, than cheaper specialized
machines. Deterministic and setup-independent versions of the problem have been researched exten-
sively. Research approaches that combine both are relatively sparse.

The paper combines some earlier works, as well as metaheuristic concepts to set better production
policies. A genetic algorithm is used to improve the sequence and minimize setup times of the whole
cycle. Then a global optimizer evaluates policies in simulation runs and tries to improve the result by
adapting base stock levels and product frequencies. The results are evaluated in @ numerical study.
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Zusammenfassung

Diese Arbeit behandelt die stochastische Version des Economic Lot Sizing Problem (ELSP) mit sequenzab-
hangigen Setupzeiten. Das Problem entwickelt sich aus der Tatsache, dass es in vielen Fallen gunstiger
ist, eine teurere Maschine mit héherer Kapazitat und breiteren Einsatzmoglichkeiten anzuschaffen, als
eine spezialisierte Maschine, die nur fur einen spezifischen Vorgang einzusetzen ist. Die determinis-
tische Version des Problems wird seit einigen Jahrzehnten behandelt und es ist eine grofRe Masse an
Literatur dazu verfagbar. Auch die sequenzabhangige Version des deterministischen ELSP-Problems
ist als Abwandlung des Traveling Salesman Problem (TSP) relativ gut erforscht. Arbeiten, die beide
Probleme kombinieren sind hingegen fast nicht vorhanden.

Aus diesem Grund versucht die vorliegende Arbeit, Probleme mit beiden Einschrankungen simultan
zu 16sen. Dazu werden vorhandene Arbeiten aus beiden Bereichen ausgewertet und relevante Teile
kombiniert. Metaheuristiken aus dem Gebiet des deterministischen ELSP werden dazu verwendet, um
Startparameter fur Simulationsoptimierung zu erhalten. AnschlieRend versucht ein globaler Optimierer
die Losung sukzessive zu verbessern. Zum Setzen der Produktionssequenzen — welche bei sequenz-
abhangigen Setupzeiten entscheidend sind — wird ein genetischer Algorithmus aus dem Bereich der
TSP-Forschung verwendet.

Im numerischen Teil der Arbeit werden funf verschiedene Produktionsplanungsregeln verglichen. Zwei
davon basieren auf einem gemeinsamen Zyklus, der fur alle Produkte gleich sind. Die restlichen drei
Regeln implementieren fixe Zyklusfolgen, in denen ausgewahlte Produkte mehrfach vorkommen kon-
nen. Die letztgenannten Regeln werden in Hinsicht auf das Optimierungsziel verglichen. Der Zyklus
wird entweder auf Ausgeglichenheit, Kosteneffizienz in Hinsicht auf Setupzeiten oder eine Kombination
aus den beiden optimiert.
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1 Introduction

THIS woRk deals with the stochastic version of the Economic Lot Sizing Problem (ELSP)
with Sequence-Dependent Setup times (SDS). The different dimensions of the problem

are evaluated and solved by using a number of optimization methods to find an optimal policy.

1.1 Problem Introduction

The ELSP is one of the oldest challenges of production planning and has been around since
the first production plants were built in the early 19™ century (Maxwell, 1964, p. 89). The
problem arises from simple economics. In many cases it's cheaper to invest in a single high-

capacity machine that can be used for multiple purposes.

The machine can only produce one item at a time, so items need to be scheduled in a way
that optimizes the production manager’s objectives. These are commonly the reduction of
production costs, i.e. inventory cost, setup cost and the implicit cost of lost sales or backlogs.
Actual expenditures for production or fixed cost positions are not taken into account, because

they are hard to influence by only using improved production schedules.

When research in ELSP started, many tools, like global optimizers and simulation models were
not available. Moreover factories tended to produce a smaller range of products in big quantities
to gain economies of scale and provide cheap consumer goods to high-growth markets. Supply
chains were longer with a series of wholesalers and importers between producer and consumer.
This covered the true cost of holding excess inventory, or even required more of it to account

for long lead times.

With so many intermediaries, the manufacturer had little information about actual market
demand. He would only learn about it through proxies, who often distorted the picture by

batch-ordering or seasonal sell-offs.

In such an environment of high inventory and with little information available, production
decisions were mostly based on experience and anticipated orders, rather than actual sales
forecasts. Production managers required models, allowing them to efficiently schedule orders

they already knew about, rather than expected ones.

Under these conditions, the first ELSP models were constructed. They made many unrealistic
assumptions and were mostly based on the popular Economic Order Quantity (EOQ) model,

with a focus on finding the right batch size at a constant demand rate.
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When better communication technologies and cheap information processing became widely
available, companies started collection data about their markets and analyzed it. What they
found were patterns of seasonality and probability. While precise predictions were still difficult,

demand could be modeled within probability distributions.

At the same time computer simulation allowed for complex production policies could be tested
in a virtual environment, before unleashing them at the real world. The difficulty of proving
the superiority of innovative policies became less dependent on the risk-appetite of the factory

manager. This should lead to a natural increase in innovation.

The same forces that made companies more knowledgable, also brought them new challenges.
Better market information empowered consumers and gave rise to new competitors from re-
gions as remote as China and Japan. This meant better prices for consumers, but also lower
margins for firms. Suddenly excess inventory and misguided production decisions made a
substantial difference in bottom line. Every surplus piece of inventory decreased a firm’s con-

tribution margin.

All of these influences can be seen in more recent ELSP models that do away with some wishful
model assumptions and make production models more robust and useful. The pure cyclical
view of finding the perfect cycle and sticking to it was replaced by dynamic control policies,

accounting for an equally dynamic and ever-changing environment.

Stochastic features and dynamic policies were an important step for some practitioners. For
others, it was more important to remove another unrealistic assumption: sequence-independent
setup costs. Even though setup costs were often considered, most models assumed them only
to be tied to the product currently being produced. While this was true for some environments,
studies (Allahverdi et al., 1999, p. 219) have shown that as many as three quarters of pro-
duction managers report SDS for at least some of their processes. This class of setup costs is
especially relevant in chemical production processes, or when dealing with families of prod-
ucts. Setup costs might be low when switching within a family, but higher when switching

between families.

When taking all of the above mentioned trends and requirements into account, it is surprising
that almost no researchers took the step to relax both restrictions at the same time, namely
sequence-dependent setup costs and stochastically distributed demand. By combining earlier
research and tools that relax one or the other condition, it should be possible to adequately

solve such a model and improve the overall outcome.

1.2 Practical Applications

Chapter 3 describes two supply chains that would benefit from a solid model to solve Sequence-
Dependent Stochastic ELSP (SD-SELSP). The first case study deals with a pharmaceutical com-



1.3 Outline of the paper

pany. Products need to be packaged for sale in three different European countries. The case-
study proposes centralized demand- and production planning, as well as one centralized in-
ventory instead of three local ones. In such a situation the deterministic production scheduling
problem that includes up to three weeks of collected orders becomes a cyclical schedule with

stochastic demands.

The second practical example portrays a manufacturer of pre-Deco material. Inventory is kept
at eight different locations and production planning happens ad-hoc. This leads to excess
inventory at the distributors and high production costs due to unnecessary switching between
product families. An optimized production sequence with the right frequencies should help

the company to decrease production- and inventory cost.

1.3 Outline of the paper

The work starts with an overview of existing literature and solution approaches of the problem,
which can be used to solve the SD-SELSP. The succeeding chapter gives a description of the
problem instances that need to be solved to arrive at a complete production schedule. Then
an illustration of the model, its assumptions and control policies follows. The subsequent
chapter introduces the theoretical foundations of the solution methods that were applied to the
problem. In chapter number six the model is tested on a series of numerical problem instances
and conclusions on the performance of proposed control policies are drawn. The final chapter

gives a conclusion, as well as possibilities for further research.
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HIS CHAPTER gives an overview of existing work related to the Stochastic Economic Lot Sizing
Problem (SELSP) with SDS. Being one of the most fundamental problems in production
planning, this topic has been researched extensively. Especially for the closely related deter-
ministic ELSP, there is a large number of heuristics and analysis available. Even though this
body of research is not directly applicable to the stochastic version of the problem, it can be a

useful source of heuristics.

The SDS-version of the problem also exists in both, the stochastic and deterministic domain. It
removes an essential relaxation of the original model, in that setup times are now dependent on

the previously manufactured product. This brings the model closer to practical applications.

2.1 Deterministic ELSP

Ever since the introduction of industrial production facilities at the beginning of the 20t cen-
tury, factory managers had a motivation to use capital-intensive machines as efficiently as pos-
sible. Using a single production facility to produce more than one kind of product is a good

way to spread the capital expenditure and risk over a number of products.

With such a setup, one will quickly face conflicts between multiple products competing for a

spot on a single machine with finite capacity.

To resolve such conflicts, while at the same time minimizing setup- and holding costs, a number
of approaches have been developed. Depending on the quality of the result and the relationship

to the original problem, they can be classified in analytical and heuristic approaches (Elmaghraby,
1978, p. 587).
Analytical methods solve a simplified version of the situation, but deliver the optimal solution

forit. They are a good choice if the original problem can be abstracted into the required model

without much loss of relevance.

Heuristic approaches provide a solution to the native problem, but don’t guarantee that it is the
optimal one. Depending on the size of the gap between prime- and heuristic solution, reduced

processing time can be worth the tradeoff.

Even though the analytical- and heuristic approaches reviewed in Elmaghraby (1978) can’t be

used to directly solve SELSP with SDS, they provide the basic solution framework for more
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sophisticated solutions and their heuristics can be used to speed up global search heuristics.

For that reason the most popular approaches will still be reviewed here.

2.1.1 Common (rotation) cycle solution

The Common Cycle (CC) is the simplest solution algorithm and also relatively easy to calculate.
It always produces a feasible solution, which might not be optimal under all conditions (A. Raza

& Akgunduz, 2008, p. 95).

This simplicity comes at the cost of a strict model, requiring an unrealistic set of assumptions
that are stated in Maxwell (1964) and conveniently summarized in A. Raza and Akgunduz

(2008, p. 94):
1. The machine can only produce one product at a time.
2. Inventory holding cost is directly proportional to the amount of inventory.

3. The sum of production- and setup times does not exceed the total capacity of the pro-

duction facility.
4. Setup cost and times are independent of the production sequence.

5. Each product has deterministic and constant demand- and production rates.

The first limitation ensures that no dependencies between products exist and no two products
are manufactured in parallel. There might exist production processes that feature parallel pro-
cessing or side products (as in the chemical industry), but they are too specific to be taken into

account in a generalized model.

The second assumption will also not hold in all situations, as conventional warehouse space
can not be increased in a linear fashion. But as for the first point, any other assumption would

harm general applicability.

Assumption number three makes sure that the production facility never runs at a capacity of >
100%. This is important because at such high capacity utilization, the optimal solution would
include a tradeoff between different products that can not be produced. Such a decision would
not be possible with the information traditionally found in a production planning problem. It

would also require some data about sales price and contribution margin.

The two final assumptions can also be found in a more recent classification of SELSP in Winands

etal. (2011, p. 2). They will later be relaxed for a more realistic and versatile model.
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Notations and basic relations

This paper will use the notations found in Elmaghraby (1978), where applicable:

item index
d; demand rate in units per time unit
p; production rate in units per time unit
S; setup time in units of time per production lot; still independent of sequence
A;  setup cost per production run; independent of sequence
h; holding cost per product unit per unit of time

TF  (optimal) cycle time for product i

With these values, the cost for an individual product i, when assuming a certain cycle length
T, can be calculated (Elmaghraby, 1978, p. 588):
A T di
Ci: ?i"’hldlz(l—Z) (2.1.1)
By differentiating this expression, the cost-effective cycle length for an individual product can
be found. This formula is actually quite close to the well-known EOQ formula introduced by

Harris (1913).

2A;

T"=, | ———
hdi (1 — )

(2.1.2)

By summing over these expressions, Maxwell (1964, p. 92) calculates the total cost for all

products in the cycle.

A Te di
i=1 i=1 1

The optimal T* can then be found in a similar way as (2.1.2):

221 1A 2.1
\/Z ) (2.1.4)

Since the total cycle time is restrained by the time required for setup, the lower bound for T* is

n
T* > Zi:l Si

Pi

(2.1.5)
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So the complete solution is

T" = max( - iz s le1d5 ) (2.1.6)
i hdi(1 =) 1=+

i

As can be seen from formulas 2.1.1 to 2.1.6, the CC-approach features a simple and convenient
analytical approach to solve basic ELSP-problems. Unfortunately simplicity comes at a price
and there are a number of disadvantages when using CC. Maxwell (1964, p.92-93) summarizes

arguments against using a rotation cycle:

First of all, it only works well, when there are no gross imbalances in demand rates, production
rates and setup times (or SDS). In practice this is not very often the case, as demand is often
concentrated on a few items that cause most of the volume. This effect is often referred to as
Pareto 8o/20-rule or ABC-analysis (Swamidass, 2000). When high-volume products don't add
too much to (sequence dependent) setup times, producing them multiple times in a cycle can

lower costs significantly.

2.1.2 Basic Period

Due to the sub-optimalities observed with CC, researchers came up with a more flexible ap-
proach that was designed to solve some of the problems caused by a rotation cycle. Bomberger
(1966) suggests a Basic Period (BP) (also called Fixed Cycle (FC)) approach, extending CC by
an integer multiplier k. With this approach, high-volume items are allowed to have their own
production cycle, based on a common BP T. Before extending the CC-formulas to account for

different cycle lengths, the following new notations need to be introduced:

k; integer multiple describing how often an item is produced within a full cycle

T basic period (sometimes referred to as W)

First the relationship between k;, T and T;
T, = kT (2.1.7)

on the condition that
n di
d RT—<T (2.1.8)
P b

By substituting T with (2.1.7) in (2.1.1), as suggested in (Elmaghraby, 1978, p. 781), the
following new target function can be deduced:

. - Ai le - di
min C(k;, T) = E += E hd; (1 — IT) (2.1.9)
i=1 =1 i

kT
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Having defined a target function and constraints, the resulting problem is NP-hard and can not
be solved to optimality directly. Even a restricted version of the problem which limits integer

multiples to the power of 2 is still NP-hard (Hsu, 1983).

In his original paper, Bomberger (1966, p. 782) suggests a Dynamic Programming (DP) solu-
tion to find optimal parameters. This is computationally expensive and requires a large number
of DP-problems to be solved. Therefore substantial efforts have been made to solve the prob-
lem heuristically or metaheuristically. One is a Genetic Algorithm (GA) approach by Khouja
et al. (1998). They were able to improve the DP solution of the problem by 2.15%, even for
problems with up to 30 products. A recent comparison of different heuristics can also be found

in A. Raza and Akgunduz (2008).

A well-known heuristic for solving the BP approach was popularized by Doll and Whybark
(1973). Though their solution has been outperformed (slightly) by computationally more elab-
orate solutions, the heuristic gives good solutions for the BP problem and is also quite easy to

understand and implement.

They criticize that existing solutions of the basic period ELSP rely on human judgement to de-
termine T;. This value is usually judged on the basis of comparing individual T;. As mentioned

in the initial part of this chapter, the starting point for the estimate is most commonly EOQ.
Doll and Whybark (1973) strive to determine T; directly in an iterative approach:
Initially T} for each product is determined by using (2.1.2).
Next the smallest T; is used for T.
T = min|[T;] (2.1.10)

Subsequently integer multiples k.~ and k" for each product are selected.

[ next lowest integer multiple
kt next highest integer multiple
< L < g
i S =R (2.1.11)

By using (2.1.3) and (2.1.7), the cost for a certain integer decision is given by

+w(l—é) (2.1.12)

c = A
l_kiT 2 p].
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Once new k; are chosen by finding the lowest cost integer, an aggregate version of (2.1.12) can

be used to calculate total cost of a given basic period T.

b

n A T n d
c(1) = Zki—TﬂLEZhidiki(l——) (2.1.13)
i=1

By differentiating, the cost-minimizing T can be found

23 %
S hdie(L— 5

i

T = (2.1.14)

After determining a new T, the procedure returns to choosing new k" and k. Once two runs

produce identical values of k;, the algorithm stops.

Doll and Whybark (1973) conclude that their heuristic is an effective alternative to solving
analytical ELSP, such as Bomberger (1966), but also acknowledge that there are situations
where the procedure can not be used directly. Elmaghraby (1978, p. 593) points out two
other problems the algorithm might run into. First, it gives no guidance when the solution
parameters produced are infeasible. In such a case, a practitioner would need to resort to
manually adjusting k; to achieve a feasible solution. Second, if multipliers are then adjusted in

such a manual way, the stopping criteria may never be reached.

One major limitation of the basic period approach is the need for equal lot sizes during pro-
duction runs. This was first realized by Elmaghraby (1978), who suggested using two cycles of
length T at a time and loading products by distinguishing between even and odd nj,. He called
the method Extended Basic Period (EBP).

While this new EBP-approach brings some improvement over the best possible plain basic
period model and the recent application of a GA solves it to near-perfection, the approach itself
doesn’t provide enough flexibility to vary production lots within a production cycle. For that

reason most of the current research has been directed to more flexible models.

2.1.3 Time-varying lot size approach

To achieve greater flexibility and overcome the problems faced with a basic period approach,
Maxwell (1964) was the first to suggest time-varying lot sizes. Delporte and Thomas (1977)
combine a number of earlier research papers to form optimized production sequences from

cycle times and product frequencies.

Dobson (1987) uses a similar approach to develop an heuristic that not only solves the feasibility
problem encountered in earlier papers, but also spreads machine utilization more uniformly

by optimizing idle times between production runs.

10
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In addition to the notations used before, Dobson (1987) introduces variables for production-

and idle times within a sequence J.

t production time
u  idle time

f production sequence, e.g. f=(1,2,1,2,3,2,1,2)

The actual solution algorithm consists of two stages. First the production sequence f is deter-
mined. Then a choice of production- and idle times is made. After a series of substitutions he

arrives at the minimization problem P.

. N a; N _ Emzl bix;
M — iXi == 1.
inimize (; x{)(;sx +u) + (z:i:1 o u) (2.1.15)
where
o = 1))
q =2 *‘ (2.1.16)

Ty
b:Ai(l—ZE) (2.1.17)

=1 Pr

The result of problem P would be a vector x.

By using related work from Roundy (1989), they arrive at the relative frequencies of production
n;. These raw results are used by Zipkin (1991) to arrive at a complete and feasible production
cycle. His heuristic uses the set of n; to sort products into “bins”, according to relative frequency.

The bins subsequently become the production schedule f.

This schedule might still be infeasible. But as demonstrated by Dobson (1987) before, any

schedule can be made feasible by adjusting production times ¢ and idle times u.

The heuristics of Dobson (1987) and Zipkin (199 1) combined produce near-optimal schedules
for the ELSP problem (Moon, Silver, & Choi, 2002).

Up until today, the time-varying lot sizing approach by Dobson (1987) is used as a basis for
optimizing the original ELSP. Some successful implementations include a hybrid GA by Moon
etal. (2002), tabu search and neighborhood search by S. Raza et al. (20006), as well as Simulated
Annealing (SA) (A. Raza & Akgunduz, 2008).

2.2 Sequence-dependent deterministic ELSP

In section 2.1.1, general model assumptions for the ELSP were given. The most unrealistic

assumption in this set are Sequence-Independent Setup times (SIS). Researchers have ignored

11
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them for convenience and to easier reach analytically optimal solutions. Probably because it
adds considerably to the complexity of any solution method and was proven to be NP-hard, as

explained in Pinedo (2008, p. 593).

Nevertheless, in many practical situations they play a vital role and can easily erode the advan-
tage won by using a mathematically more efficient model that ignores them. Several studies
presented in Allahverdi et al. (1999, p. 219) found that SDS are especially relevant when a
job shop is operated at almost full capacity. Moreover a survey of production managers found
that about three quarters agreed on the importance of SDS in some production processes, while

15% reported all processes requiring SDS.

It was soon discovered that the sequencing of deterministic ELSP is in fact a Traveling Salesman
Problem (TSP). That’s why literature has closely tracked the progress of TSP and related opti-
mization heuristics. This section will first give an overview of earlier heuristics and limitations
made in this area. Then some popular approximate- and heuristic approaches are presented.

Moreover the influence and usability of different methods is elaborated.

2.2.1 Earlier approaches

One of the first to examine sequence dependent setup times closer is Maxwell (1964, p. 92).
He uses a simple PxP matrix S to store setup times. He then goes on to define a range of special
S matrices that might occur in practice, like Equal-To, Equal-From, Come-Down or the sequence
independent Equal Entry Matrix. In his numerical example consisting of four products, he uses
a TSP to bring his FC sequence in order. His heuristic then works on top of this sequence and
decides on cycle length and time. Though, he doesn’t explain how he arrived at his traveling

salesman solution.

Due to the NP-hardness, researchers in the earlier days focused on special cases of the TSP to
arrive at analytical solutions. A popular example is the one state-variable machine. A practical
example for such a setup would be a size-adjustable iron pressing machine. Before processing
a job, the machine has to be put in state A;. Upon completion of the job, the machine is in state
B;. To start the next job, it needs to be put in state A;,;, which requires an investment of time or
money. A solution for such a simplified TSP was first proposed by Gilmore and Gomory (1964)
and is also elaborated in Pinedo (2008, p. 84). Unfortunately these kinds of setup matrices are

not too common in practice.

2.2.2 Exact approaches

Exact approaches guarantee the best solution available, while a considerable amount of com-
puting power and time. These methods are suitable for smaller problems or to calculate the

lower bound and compare it to heuristic solutions.
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Dynamic Programming

DP was initially popularized by Bellman and strives to find optimal solutions for small- and
medium sized problems. It rests on a simple idea that a problem can be split into a number
of subproblems. These are then solved to optimality, which should be easier than solving the
primary problem at once. As long as subproblems can be improved, the whole solution can be

improved as well.

Bertsekas (2005, p. 18) compares the the principle to a car journey. When the route from
Boston to Los Angeles runs through Chicago, finding a better route from Boston to Chicago

also results in a better overall route.

A promising approach to solve the Sequence-Dependent ELSP (SD-ELSP) by using DP comes
from Buzacott and Dutta (1971). They use a DP heuristic to recursively search for an improved
sequence. An initial feasible solution consisting of a total of P products is produced and then
improved p products at a time. The size of p is left open for experimentation, but they note
that higher values produce better results while adding to execution time. Suffering the curse of

dimensionality, the procedure reaches computational limits of that time at around 12 products.

Branch and Bound

Barnes and Vanston (1981) take lease from ongoing research on traveling salesman heuristics
and apply a Branch and Bound (B&B) algorithm to the problem. B&B works by subsequently
examining branches of a decision tree, while calculating bounds based on the expected minimum
(or maximum) value that can be expected when following a certain branch. Less promising
branches are pruned in favor of those offering better bounds. B&B can limit the decision space
of a problem significantly, when compared to full enumeration. For the SD-ELSP, the search

of a solution for a five-product problem was limited from 82 to 32 states.

One of the drawbacks of B&B is its high computational effort that results in a long running
time when solving large problems (R. Tan et al., 1997, p. 630). Compared to random search
algorithms the running time was about 20 times as long. In a comparison of different search
heuristics, B&B was found to be as much as 10 times larger than GA or SA. It solved smaller

problems quite competitively though (K. Tan et al., 2000, p. 319).

2.2.3 Heuristic and metaheuristic approaches

This class of approaches doesn’t guarantee the best solution, but usually takes less time to com-
pute. An important distinction can be made between ordinary heuristics and metaheuristics.
The former is made specifically to deal with a certain problem, the latter can be used to solve

a wide range of optimization problems.
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While there exist a range of heuristics to solve the TSP, most SD-ELSP literature uses meta-

heuristic approaches (Zhu & Wilhelm, 2006).

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) describes a class of metaheuristic
optimizers that can be used to find solutions for problems with large, but finite sample space.
Similar to Tabu Search (TS) and GA it also tries to avoid getting trapped in local optima by

allowing a degree of non-optimal solutions.

The algorithm works in two phases (Zapfel, 2010, p. 78). In the construction phase candidate
elements are assembled in a Restricted Candidate List (RCL), which is evaluated on the basis
of a performance function. The top elements from a sorted RCL are then selected at random

and added to the partial solution. This concludes the first phase.
In the second phase, candidate solutions are further improved by a local search technique.

GRASP was implemented for a SD-ELSP by Feo et al. (1996). They successfully solve schedul-
ing problems with 20 jobs and get results comparable to TS for bigger problems of 35 to 165
jobs.

Simulated Annealing

Just like a number of other recent optimization concepts, like GA or Ant Colony (AC), SA was
inspired by processes occurring in nature. In this case the inspiration comes from thermo-
dynamics and the cooling process of liquids, before they turn into rock or glass. To achieve
high-quality results (i.e. the most regular atomic alignment), the cooling process needs to be

sufficiently slow.

A global variable for temperature T controls the process. To avoid getting stuck in local optima,
at high temperatures, uphill moves are allowed. As temperatures get lower, small improve-
ments are preferred. The process doesn’t guarantee the best solution, but only a relatively good

solution in a large search space. The complete algorithm is elaborated in Zapfel (2010, p. 112).

R. Tan et al. (1997) tested SA on a 10-job problem to minimize total tardiness and got optimal
results in about half the test cases. During the rest of the time their solutions were within 5%
of the optimum solution. Kim et al. (2002) compare a neighborhood search to a SA algorithm

and find that SA always outperforms the former.

Genetic algorithms

The use of genetic algorithms to solve SD-ELSP is especially promising because it has already

been used to successfully solve closely-related TSP (Merz & Freisleben, 1997).
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The technique also requires less book-keeping than B&B and Integer Non-Linear Programming
(INLP). (Huang & Yao, 2008) By fine-tuning the various settings and crossover algorithms of
an GA and combining it with a local heuristics search outcomes can still be improved (Sengoku
& Yoshihara, 1998).

This paper also uses a GA to determine the sequence of production decisions. While the de-
tailed workings of a GA are describe in section 4.2, the following part will give an overview of
recent work in the field of GA for solving SD-ELSP.

Being a black box optimizer, it doesn’t need any knowledge of the underlying problem. This
job is handled by the value function that assigns fitness values to the chromosomes it tests.
The fitness evaluation might happen by applying a simple formula or by running a simulation

program with the input parameters.

Due to this versatility, GA has been used to solve a series of problems related to the ELSP.
Huang and Yao (2008) used it to solve a standard ELSP by using the EBP first suggested by
Elmaghraby (1978). They use a hybrid genetic algorithm to solve the EBP approach and com-
pare it to two other heuristics. They encode the multipliers k; in their chromosome by encoding
them as a binary string. Next linear ranking normalization is used to store- and rank the chro-
mosomes in a temporary list. A lower objective function value means a higher fitness, because
the corresponding chromosome is resulting in lower setup- and holding costs. The reproduc-
tion probability of a chromosome increases with higher fitness as compared to the rest of the

population.

To avoid losing too many superior chromosomes in each generation, 20% are copied over
to the next generation. Next uniform crossover and a random mutation are applied to the

chromosome.

The authors then compare their GA to Power-of-Two and Two-Point heuristics suggested in an
earlier paper. The genetic algorithm not only triumphs in solution quality, but also delivers a
steady solution quality as utilization increases. This example demonstrates that a GA approach
can deliver excellent results, but requires a degree of tinkering on all available parameters and

intermediate techniques deployed to reach those results.

Another popular paper (Rubin & Ragatz, 1995) has attempted to minimize total tardiness of
jobs under the condition of SDS. The authors compare a rather simple GA to B&B. In compari-
son to Huang and Yao (2008) they don’t use binary, but integer encoding in their chromosomes
to avoid infeasible solutions. To generate new candidate solutions, a crossover- and random

mutation algorithm are deployed.

They find that their GA outperforms B&B at problems with more than 25 products. In this case
they truncated the B&B and used the best solution found so far. When the B&B was allowed

to run to completion, the GA matched its performance closely.

Experimentation with parameters and the additional use of heuristics to improve candidate
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solutions seems to pay off when using GA. This was also discovered by Miller et al. (1999). The
authors attempt to minimize setup-, inventory- and backlog cost of a press shop for plastic parts,
which consists of a single facility facing SDS. Demands are deterministic and arrive through a
Material Requirements Planning (MRP). The daily production schedules have to be generated

for around 15 products.

Candidate solutions are encoded in integer arrays, storing the position of each item in the
production sequence. Mutation and crossover are organized in a similar fashion as in the
previous papers. Additionally, Miller et al. (1999) incorporate a hill-climbing technique based
on the Wagner-Whitin algorithm to improve every new generation. This improves feasibility

and reduces setup cost.

In a numerical study they observe an improvement of about 35% over a standard GA. The
hybrid approach seems to be especially effective in initially reducing setup costs. These results
confirm the previous observation that GA are well suited for the optimization of SDS scheduling
problems. But at the same time they require more adjustments than other techniques. Mixing

them with heuristics also seems to be beneficial, but requires more initial work.

2.3 Stochastic ELSP

Deterministic ELSP and their sequence-dependent extensions are useful when scheduling a
pre-defined set of jobs in a controlled environment, like daily work assignments on a made-to-
order production facility. But in many situations, demand won't be known exactly in advance.
This will, for example, apply to businesses that sell directly to consumers and face an uncertain

demand.

This section will relax the final assumption made in 2.1.1, i.e. known and constant demand
rates. Stochastic demand rates are a big challenge for production- and inventory planning,
because inventory- and production quantities need to be adapted to an uncertain demand rate.
Moreover no precise outcome of a certain policy is available, but results will always be within
an interval. Winands et al. (2011, p. 2) note that findings from ELSP are still useful as a basis

for planning in a stochastic environment, but also emphasizes some major limitations.

First, a rigid cyclic production plan, as is usually suggested for any cyclic ELSP is not applica-
ble any more due to changing demand rates. Second, inventory plays a more important role
to guard against spikes in demand. Moreover, it is not economical to cover 100% of the de-
mand due to these fluctuations in demand, rather the goal will be to cover demand as far as

economical, given certain holding costs.

As stated in an earlier research paper by Sox et al. (1999), SELSP control policies consist

of two critical elements: lot sizing and sequencing. The former is concerned with adapting
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production- and inventory levels to changing demand situations. The latter is about deciding

on the actual production order. (this will become even more relevant in section 2.4.)

2.3.1 Production sequencing in SELSP

Sequencing policies of SELSP can be classified in two broad categories (Sox et al., 1999). Cyclic
schedules keep a fixed sequence and only vary lot sizes. Their dynamic counterparts reevalu-
ate sequence and lot sizes after each decision period. Cyclic schedules were suggested in the

following works:

Cyclic product sequencing

Gallego (1990) combines earlier research from Zipkin (1991) to construct a full control policy
for Brownian Motion distributed demands. He initially uses expected means of the distribution
to construct a production sequence and cycle length T, as shown in Zipkin (1991). He then
moves on to calculate produce-up-to levels for a given demand variability. Last he uses Monte
Carlo simulation to get estimates for required safety levels. When adding random demands to
his initially deterministic model, he finds that average costs are 23% higher. This is mostly a

result of safety stocks.

An early model, which is related to the technique later described in this paper comes from
Bourland and Yano (1994). They us a two-level hierarchical solution approach to the problem.
At the higher planning level, parameters like idle time and safety stock are set. At a lower control

level these parameters are then used to guide operational decisions.

In terms of sequencing, they evaluate a pure rotation sequence (sometimes also referred to as
common cycle), as well as a fixed cycle sequence, which they determine by using the heuristic
for ELSP, as presented in Dobson (1987). Their model consists of 4 products. The simula-
tion environment GAMS 1is used to test control policies. While they initially fix an idle time
of 10% to account for unexpected demand events, they find that optimizing idle time as yet
another decision variable decreases cost significantly. When using a fixed sequence, calculated
by Dobson (1987), higher setup costs are more than offset by decreased holding costs which

results in a 4% decrease in cost.

Dynamic product sequencing

For stochastic environments, dynamic policies should be preferable because they adapt to
changing demand quantities. An early approach that already relies on simulation modeling
for benchmarking comes from Vergin and Lee (1978). They realize the importance of realis-

tic demand modeling. In their paper they use a compound (stuttering) poisson distribution.
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Time between demand events is modeled as poisson distribution. Units of demand come from

a geometric distribution.

They continue to compare a number of control policies. Rule number one and two are purely
deterministic rules they are using on their stochastic problem. As expected they don’t deliver the
most satisfactory results. Rules three to six are based on Magee. He suggests to only control and
adjust inventory levels, instead of actual production. This idea—though poorly executed—can be
viewed as a predecessor to more fine-grained s,S policies. Magee’s original formula to calculate

Si is

241 - ) o)
Si = m—lch 2.3.1
Zi:i di(l - 17)

i

Production is continued until one of these conditions applies:

1. inventory of a product runs out.

2. inventory of product i currently being produced, reaches S;

Vergin and Lee (1978) expand this rule to produce up to a minimum number of days, to avoid
short production runs and to restrain inventory buildup caused by the original set of rules.
In their tests, the original rule has problems with excess inventory when demand is less than

production capacity.

The authors then use a simulation to benchmark the six decision rules. Rules number one and
two perform quite poorly in a stochastic environment. Magee’s original procedure has problems
with inventory, as explained above. The extensions to Magee made by the authors performs

better.

Though the approach made by Vergin and Lee (1978) is rather simple, they demonstrate that
deterministic production rules can't just be applied to stochastic situations. They also find
that a controlling production through inventory levels is a more effective approach than setting

production rules.

Another approach, which is slightly related to Lohndorf and Minner (2011), can be found in
Graves (1980). The author assumes a stationary distribution and periodic review. Setup cost
are incurred, when the production facility switches from one product to another or wakes up
from an idle period. The objective is to minimized expected cost per period, consisting of

setup, inventory holding and backorder cost.

He then develops an heuristic based on the expected value of a Markov decision problem and
notes that an optimal policy must be based on two numbers, denoted as I* and I**. A point

when production starts and another one at which it finishes. To find suitable values for the
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two parameters, the state space is limited to a number of discrete intervals and then examined

by policy iteration.

Subsequently the author expands his suggested cost function to cases with multiple products.
As long as one product decision doesn't conflict with another, products can be scheduled equiv-
alent to single product cases. When more than one product is scheduled to be produced at the
same time, contradictions occur. In such cases a resolution mechanism is needed. Graves

(1980) initially suggests to use the value function of the one-product case as a benchmark.

This method can resolve product conflicts, but does not anticipate them. To account for this
complication, the author introduces composite products. These are similar to aggregate prod-
ucts in linear programming an help to avoid conflicts by pushing the control policy to use

additional inventory.

A numerical study of five different versions of the control policy reveals a good performance for
the composite product-approach. Heuristics using lowest runout time perform not as good.
The composite product-heuristic is only improved by a preemption policy that delays produc-

tion in case another product reaches a critical level.

Leachman and Gascon (1988) present another interesting approach inspired by a manufac-
turer of fashion items. The authors combine a number of techniques from ELSP scheduling to

dynamically plan upcoming production cycles.

Their method is based on two common cycles—a target cycle and operational cycle. Initially the
target cycle is calculated from moving averages of historical demand patterns. Then they use
the common cycle heuristic proposed by Doll and Whybark (1973) to find appropriate T* and
multiples k;.

The next step is to find the length of an operational cycle based on Runout Time (RO) RO;.
This is a measure of when production needs to start to avoid a stockout situation. Figure 2.1
shows a (not so typical) production system with RO. Demand is assumed to be linear over the
planning period. The black bars denote production time. The white bars represent depletion
of stock. Items 1 and 2 have positive slack available. Production for item 3 should therefor start
earlier because there is negative slack between item 3 and 4. If the total (positive and negative)

slack in the production cycle is negative, the cycle is not feasible.

Notations introduced in section 2.1.1 are still being used. In addition, these values are needed

as well:

RO; runout time of item

I; inventory level of item at start of period
t; time period index

SSi safety stock

ch; changeover (setup) time
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Figure 2.1: Production system out of balance
(Leachman & Gascon, 1988, p. 380)

Without taking stochasticity into account, RO of item i can now be calculated.

1 ¢
_ )
RO, =t + Qv 1[L — s§; — [EO dy] — chi (2.3.2)

ROs are used to get a production sequence, by sorting them from lowest to highest.

RO, < ROs < --- < RO, (2.3.3)

By using ROs as bounds and (2.1.14) from Doll and Whybark (1973), the cost effective T can
be found.

RO —j - Z{:} Gi
— =} (2.3.4)
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1
With cycle lengths T fixed, produce-up-to-levels can be found.

Tidi(p; — di)
P

Si=ss; + (2.3.5)

In the next step Leachman and Gascon (1988) use the standard deviation of forecast errors to

construct a confidence interval of RO.
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Nl
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The strengths of the methodology presented above are relative simplicity and the application
of concepts familiar to many practitioner. The drawbacks are poor performance with more
sporadic demand patterns, since the adaption of RO always assumes a normal distribution.

This would—{for example—be unsuitable for compound distributed demands.

In Leachman et al. (1991), an improvement to the original heuristic that improves the calcula-

tion of production time and yields a cost reduction of about 1-7% is published.

The work of Sox and Muckstadt (1997) also deals with dynamic scheduling in stochastic
demand situations with deterministic holding-, production- and setup cost. They find that
their model is most suited for situations with sporadic demand. The Linear Programming
(LP)-model they suggest relies on historical forecast data to plan the current period. Demand
forecasts are updated after each period and then modeled as distributions, rather than point-

forecasts.

They solve their model by using Lagrangian relaxation to decompose it into different subprob-
lems and then solve it by using B&B. While admitting that their procedure doesn’t eliminate

the complexity of the overall problem, it got reduced to a manageable size.

The model gets tested with data from an aerospace manufacturer. Demand is modeled as neg-
ative binomial distribution (due to high demand variation) for 5, 10 or 15 products. They find
that their solutions are about 5% above the lower bound. This number increases at higher
product counts and high utilization. They also find that setup times make the problem more

difficult to optimize, because their binary variables for SDS have a big influence on the outcome.

In conclusion, the approach presented by Sox and Muckstadt (1997) works well with smaller
problems at relatively low utilization that don’t have SDS. The possibility of using a custom

demand distribution is also a benefit.

As mentioned before, the the SELSP can be solved by using a variety of techniques. New op-
timization techniques are usually applied to the problem sooner or later. Recently a number
of researchers was inspired by Artificial Intelligence (AI) methods, more specifically Reinforce-

ment Learning (RL).

Paternina-Arboleda and Das (2005) use multi-agent RL to dynamically find production deci-
sions. Their work is inspired by a paper that suggests a similar approach to improve routing of

Internet Protocol (IP) packets.

The authors solve the problem by first deriving a mathematical model of the problem. Demand
arrives in random intervals and inventory is constantly monitored. Whenever a base stock level

of R; is reached, their agents make a production decision.
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Next a RL algorithm to either lookup a known action a that minimizes the expected cost of
the decision R,,(i, a) or choose another action from the set A;/a. After the decision, simulation
of the system is continued and the immediate cost ¢un(i, g, j) for the state-action combination

(i, a) is recorded.

Storing all the state-action combinations for a bigger production problem is not realistic. The
authors avoid this problem by introducing a Artificial Neural Network (ANN) scheme for ap-
proximation the value function for unknown states-action pairs. They are using a Least Mean
Squares (LMS) algorithm, which assumes linear relations. After each decision made by the RL

algorithm, the corresponding action LMS neurons are updated.

Flexible
Station

P1 P2 P3

Figure 2.2: Production system with inventory
(Paternina-Arboleda & Das, 2005, p. 396)

The production process Paternina-Arboleda and Das (2005) use is illustrated in figure 2.2 and
quite similar to the setup used in this paper. A flexible station is feeding into a Finished Goods
Inventory (FGI). Demand is satisfied from inventory and follows a lognormal-distribution. The
goal is to keep inventory and setup costs low, while at the same time satisfying all customer

demand.

The authors use numbers from an earlier paper to validate their simulation model. They con-
tinue by keeping the base stock levels of the reference paper and compare their RL schedule
to an existing ABAC' schedule. Their RL schedule reaches about the same average cost as a
fixed cycle policy. The improvements are not conclusive when taking into account deviations

of £3% between the simulation models. (Paternina-Arboleda & Das, 2003, p. 398)

Subsequently the authors attempt to use a fixed RL policy to search for better base-stock levels.
They limit the search space by only considering slots of £5 units. Again, the improvements
of the original policy are inconclusive for a case with low variability and only marginal for a
sample with extremely low variability, after accounting for possible differences between the

simulation models in use.

'ABAC describes a fixed cycle that starts with product A and finishes with product C.
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Lohndorf and Minner (2011) deal with a similar SELSP and compare the performance of an
Approximate Dynamic Programming (ADP) approach to a fixed cycle- and base stock solution.
Similar to previous works, their model consists of a single machine capable of producing a
number of different products. Setup- and production times are deterministic. Finished goods
are put in inventory, from which demand is satisfied. Demand follows a stuttering (compound)

poisson distribution.

The production scheduling process is modeled as Semi-Markov Decision Process (SMDP). De-
cisions are made after demand events or after production finishes. States are defined by the

setup state of the machine and inventory states.

They find that ADP works well with as little as three products, but is outperformed by preemp-

tive FC rules based on global policy search at 5 to 10 products.

2.4 Sequence-dependent stochastic ELSP

Up to now, a variety of approaches of solving SDS or SELSP that exist in literature have been
reviewed. This chapter relaxes the two final assumptions from 2.1.1 at the same time. Demand
arrives randomly according to a probability distribution and setup times are dependent on the

last product that was produced.

Research concerning such a case is very sparse compared to the multitude of material avail-
able for SELSP or SDS cases. Ashayeri et al. (2006) present a case study involving minor and
major setup times that are sequence-dependent between product families. To determine the
production sequence, a TSP or experience is suggested. Frequencies and order-up-to levels are
determined by using a simple fixed cycle heuristic with a cycle length T* and multipliers k.
The paper doesn't present any calculations, but point to another case study by Strijbosch et al.

(2002).

The authors of this paper deal with similar issues as Ashayeri et al. (20006). A TSP is suggested
to order sequences. Production sequences are found by using an iterative approach starting
with EOQ, to calculate base cycles and multipliers. This technique is very similar to Doll and
Whybark (1973).

Both papers are more concerned with implementation and strategic improvements to logistics

and inventory and don't suggest any new techniques for solving the problem.
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HIS CHAPTER gives an initial overview of situations that are faced with SDS under stochastic
demand and could benefit from improved production planning. Because research in this

direction is sparse, it should be assumed that many more situations exist.

The second part of the chapter dissects the problem at a high level and elaborates the individual

sub-problems that need to be solved.

3.1 Practical relevance and applicability

3.1.1 Packaging in the pharmaceutical industry

A case study introduced by Strijbosch et al. (2002) deals with a Dutch pharmaceutical company.
The firm is evaluating a system of centralized inventory for three Northern European countries.
Currently inventory is held independently in all three countries by local distributors. Orders
flow from the end user to the distributor to the manufacturer. While there is sufficient scale
with the production of the actual product, packaging remains a challenge due to different
languages and package shapes in the target countries. The distribution system currently in use

is displayed in figure 3.1

Order +
: Forecast Order :
Pharmaceutical | Local ¢ | Medical
Manufacturer Sales Wholesaler
Organisation .
Hospitals
Delivery + I Delivery + I Pharmacy
. . Stores
Invoice Invoice

Figure 3.1: Current supply chain of a Dutch pharmaceutical company
(Strijbosch et al., 2002, p. 551)

Orders are collected one to three weeks in advance and then scheduled for efficient production.
This—in fact—transforms stochastic demand in a deterministic ELSP. An efficient production
schedule can be created after all the orders have arrived. While such a system makes planning
easier, it brings some disadvantages for the supply chain. Orders arriving shortly after a pro-
duction plan has been made, need to wait for the next period. This artificial bottleneck causes

high lead times and requires increased inventory with the distributors.
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Packaging of all articles happens on the same machine. Articles are organized in families.
Switching within families is called a minor setup. These small adjustments take about ten
minutes. Changing from one family to another is called a major setup. This includes extensive
cleaning and reconfiguration of the machine. Such a procedure takes at least 75 minutes or

more.

The authors of the case study propose a fixed cycle time approach to arrive at a cyclical pro-
duction schedule. Additionally, such a move would be accompanied by modifications in the
supply chain. Instead of keeping stocks with each distribution partner, shipments would go
directly from the manufacturer to the final point of use (e.g. hospitals or pharmacies) via a
third party distributor, like UPS or DHL. An outline of the revamped supply chain is presented

in figure 3.2.

Forecast Order
Pharmaceutical Local Medical

Manufacturer < Sales ¢ Wholesaler

Organisation
Hospitals

Pharmacy

Invoice Invoice
Stores

Inventory
Information

Delivery

Inventory Instruction

Information Delivery
Delivery
of
Packed

Medicines

Third Party
Distributor

Figure 3.2: Proposed supply chain of a Dutch pharmaceutical company
(Strijposch et al., 2002, p. 552)

Such a system would combine three stock points into one. This would give the producer more
control over product shipments and reduce total inventory through the portfolio effect. In ad-
dition, the local sales partners can focus on their core activity of selling, instead of maintaining

a parallel logistics infrastructure in each country. (Strijbosch et al., 2002, p. 548)

In such a setup, it would be a great advantage to switch from ad-hoc cycles based on demand
to optimized cyclic schedules. In the current example, products can be grouped into families

(A, Band C). Each family consists of articles. Family A might have 5 articles from a, to as.

The combination of techniques proposed in this work could be used to arrive at an optimized

production- and inventory policy.
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3.1.2 Production planning in the pre-Deco industry

Another case study by Ashayeri et al. (20006) deals with a similar problem. The subject under
study is the production process of a pre-Deco manufacturer. Pre-Deco products are sold in do-
it-yourself (DIY) markets along with other crafting material. Willing consumers use them to
skillfully craft presents or decorate things, like greetings- and birthday cards. The company cur-
rently produces about 250 different products that are shipped in 1000 different Stock-Keeping
Units (SKUs).

The product range can be categorized by sales volume in high- and low volume products, or by
production process in powders, ready-mixed, liquids and others. The first three products are
manufactured internally. The last category includes some slow-moving products or products

that require specialized technical expertise. This requires them to be manufactured externally.

Similar to the previous case study, SKUs are shipped to independent distributors, who orga-
nize sales and logistics in national European markets. These autonomous partners each keep
separate safety stock- and demand forecasts. They also determine production time and batch
size by using a simple time-supply rule in connection to the next possible production date at
the factory. Whenever inventory is below safety stock at the next possible production date, a
production cycle is initiated. So reorder point R equals safety stock s; plus forecast demand
during waiting- and production time p. Production plans are drafted at the end of each week.

Raw material and workers are also hired accordingly.

This production system clearly has a number of drawbacks. Production costs are usually higher
than expected and inventory levels at the independent distributors (for which the factory is re-
sponsible) are too high. The authors of the case study identify the following areas for improve-
ment: First the production plan should be more stable to make procurement of intermediate
material easier. Next, by developing an easy-to-understand inventory model, the number of

changeovers (i.e. setup costs) needs to be reduced.

Similar to the previous example, reorganization and an enhanced cyclical production cycle
could bring big benefits to this supply chain. Figure 3.3 illustrates the proposed planning
cycle. Initially base material is procured, then products are produced in a fixed cycle, starting
with product D, then A, C, D, C. Production quantities are based on probability distributions

derived from locally collected sales data.

The distinction between high- and low volume products is a clear indicator that a fixed pro-
duction cycle might be appropriate. The size of the problem requires a technique that can scale

to a large number of products without suffering from the curse of dimensionality.
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Cyclical Planning — Base Materials & Packaging Lines

. Production
Production Orders for
Orders for Packaging
Base Lines Customer
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Figure 3.3: Proposed cycle planning for pre-Deco production
(Ashayeri et al., 2006, p. 718)

3.2 Critical elements of the production plan

Arriving at a usable production plan to attend to the problems described in the previous chapter
requires the successful unraveling of a series of sub-problems. In short these are production
sequences and lot sizes. The following classification is adopted from Winands et al. (2011, p.

3), who use it to classify SELSP literature.

3.2.1 Production sequence

The production sequence describes the order in which different products are manufactured.
A sequence consists of an order and a frequency. E.g. the sequence Q = {A, C, A, D, B} has four
products from A to D. The frequencies would be f = {2,1,1,1}. Frequencies simply specify
the number of times a product appears in a single production run. As was mentioned in the
second case study, high volume products will show up more often in a cycle than low volume
products. On the condition that setup costs are not too high, it will usually be cheaper to

produce high-volume products more than once per cycle to reduce inventory.

A useful initial classification of production sequences are their order. No matter how often a

product appears, the sequence is either fixed or dynamic.

In the class of fixed sequences, one distinction can be made on the basis of product frequencies.
When every product within the sequence is only produced once, the cycle is called a pure rotation

cycle or common cycle because all products share the same cycle and cycle length.

Sequences that contain one product more than once are referred to as basic period approach, as
explained in (Elmaghraby, 1978). While all products still share a basic period as common de-
nominator, their individual cycles are determined by the value of a multiplier k;. All multipliers

k; together form the frequencies f.
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3.2 Critical elements of the production plan

A further useful distinction can be made on the basis of total cycle length. (Winands et al.,
2011, p. 3) A fixed cycle length means that every cycle has the same length, but not necessarily
the same production quantities. This can be useful, when external distributors rely on a regular

production cycle. In such a case any modifications need to fit within the cycle.

As opposed to a fixed sequence with a fixed cycle length, there can also be a fixed sequence
with dynamic cycle length. These are especially useful, when demand is unknown, but the

production order should be kept the same because of dependences, like SDS.

n/a dynamic policy

dynamic

cycle order

basic period

fixed sequence
with dynamic length

fixed

common cycle
(all freg=1)

fixed dynamic

cycle length

Figure 3.4: Classification of production sequences

Dynamic sequences are not as well researched as fixed sequences, but could theoretically create
the best production schedules in a stochastic environment. Production order is always deter-
mined on an ad-hoc basis, derived from current inventory- and setup states of the facility. This
approach was tried by Lohndorf and Minner (2011) in the form of ADP. The implementation

performed well for very few products, but performed poorly with more than three products.

A summary of possible sequencing policies, according to cycle length and order is given in

figure 3.4.

3.2.2 Lotsizes

After the production sequence has been determined, the next step is to fix production- and
inventory quantities. In a deterministic system lot sizes are easy to determine, once cycle times

are known, because demand for a certain time span is known in advance.

In a stochastic environment, the task is not so easy. The two most common frameworks to do
so are the (R, Q) and (s, S) policy. The benefit of using a framework is that the only problem

left to solve is on deciding on the parameters. Chapter 2 has already introduced a wide range of
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solution approaches that range from using heuristics operating on mean demand to dynamic

approaches working on current inventory levels.

These solutions might work well on SIS. SDS add another problem dimension though. No
matter which control policy is used, as soon as products are skipped or preempted, the most

efficient cycle/sequence is left and inefficiencies arise.

An optimal solution of the SD-SELSP would mostly stick to the most efficient sequence. In
case of low inventory situations, it would only leave the cycle, if by doing so, it can avoid lost

sales cost in excess of the additional setup- and holding cost caused.
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CHAPTER 3 introduced some practical examples for business situation, this work is trying
to improve, as well as the sub-problems that need to be solved first. Namely, finding a
desirable sequence, the corresponding production frequencies, an inventory- and setup cost-

minimizing order- and base stock levels.

To solve each of these three problems, there are a number of different tools, techniques and
approaches available. This chapter will first introduce the necessary building blocks to solve

individual problems and later assemble them candidate policy combinations.

The chapter starts with introducing the global optimizer from Hansen and Ostermeier (2001),
which is used for setting base stock levels and some parameters of other optimizers. Then
a multi-criterion GA is proposed to solve the TSP and produce a balanced sequence. For

benchmarking the GA sequence is compared to a greedy next-neighbor policy.

4.1 CMA-ES

The Covariance Matrix Adaption Evolutionary Strategy (CMA-ES) is a stochastic search algo-
rithm that can minimize a non-linear objective function by sampling it and internally con-
structing a multi-variant normal distribution to derive new candidate solutions. (Hansen &

Ostermeier, 2001)

It doesn’t require any knowledge about the search domain, but uses the function values of
evaluated search points. A minimal function value should be found in as little evaluations as

possible.

4.1.1 Multi-variate normal distribution

The core of the CMA-ES is a multi-variate normal distribution N(m, C). m denotes the distri-
bution’s mean value. C stands for a covariance matrix of size n x n. The matrix contains the
covariances between elements. In CMA-ES the multi-variate normal distribution is used to
generate new search points, evaluating their values and updating the distribution generation

after generation. (Hansen, 2000, p. 78)

The objective of the search algorithm is to fit the search distribution to the contour lines of

the objective function. This adaption process consists of two steps. First a new mean of the
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search distribution is selected by taking a weighted average of u selected points from the current
sample. Points are selected on the basis of their rank after evaluating the objective function.

(Hansen, 2006, p. 79)

sampling estimation new distribution

Figure 4.1: Adaption- and sampling process in CMA-ES
(Hansen, 2006, p. 82)

Figure 4.1 illustrates a single adaption step of the multi-variate normal distribution. Initially
the search space is sampled and a new mean and covariance matrix is calculated. This shifts the

distribution and should produce a better sample of candidate solutions in the next generation.

4.1.2 Adapting the Covariance Matrix

In the next step, the covariance matrix C is updated. Initially C is derived from a single popula-
tion of the first generation. When the population is small, this estimate is likely to be unreliable.

To improve this, an adaption procedure that works with multiple generations is used.

Similar to estimating the mean of the normal distribution, a weighted estimator over several
generations is used to construct the next covariance matrix. To account for an improved posi-
tion of the search distribution over time, more recent generations are assigned a higher weight,
through the application of exponential smoothing. A parameter c,, is used to direct the weight
of newer generations. Similar to the mutation rate in GA this value is necessary for a balance

between fast learning and a stable covariance matrix. (Hansen, 2006, pp 82-84)

4.1.3 Step size control

In addition to a weighted adaption of the covariance matrix, CMA-ES also employs cumulative
step size adaption to arrive at an optimal learning rate. For this the length of the evolution path
is evaluated on the basis of its length. If the evolution path is long, the steps that have been
taken towards the optimum are small and the distance could also be covered by longer steps

in the same direction. As a result the step size is increased.
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When the evolution path is short, small steps in different directions cancel each other out and

the step size should be decreased.

As a measurement, whether an evolution path is long or short, the expected step size under

random selection is used. (Hansen, 20006, pp 87)

4.1.4 Algorithm

To illustrate the concepts presented in this section, a simplified version of the CMA-ES is dis-

played in figure 4.2.

#preparations
set dimension, fitness function, stop criteria , start values
initialize dynamic strategy parameters and constants

k] > )

#generation loop
while (stop criteria != true) {
generate and evaluate offspring
sort results by fitness and compute weighted mean
adapt covariance matrix
update dynamic strategy parametrs
adjust step size

#finish
return best point of last generation.

Figure 4.2: Pseudocode of CMA-ES
Compare original Matlab code in Hansen and Ostermeier (2001, p. 33)

The CMA-ES is a robust optimizer that has the ability to adapt to a large number of situations.
Therefor it should work well for the optimization of base-stock levels, which are based on an

unknown and noisy value function.

4.2 Genetic algorithms

GAs belong to the class of directed random search heuristics. They were inspired by the idea

of natural selection and have moved many of the terms used in biology to the field of AL

This section first gives an overview of the biological background that served as inspiration for
GAs. Then the encoding of candidate solutions in chromosomes and basic steps in a GA are

discussed. The last part deals with multi-criterion GAs.
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4.2.1 Biological background

Genetic optimization, as well as other evolutionary algorithms are based on a model of natu-
ral, biological evolution, going back to Charles Darwin’s theory of evolution. It explains the
adaptive change of a species by natural selection. In addition to this constant evaluation of a
species’ features by its environment, new variations are introduced into the Deoxyribonucleic
acid (DNA) by random errors occurring during the copying process. If these mutations prove

beneficial in the current environment, they retain and spread throughout the population.

The main driver of selection is the production of offspring. When both parents have success-
fully survived in their respective environment, their genetical traits life on in their offspring.
The concept of “fitness” is only evaluated indirectly. In simulated genetic optimization, fitness

is measured directly through a value function.

An important concept in genetics is the distinction between genotype and phenotype. The former
describes an individual’s genetic information, as is encoded in its DNA. It is passed on from
its parents and remains fixed. The latter means an individual’s physical features that can be
described as realization of its genotype. An individual might have a potential for blue eyes
and a potential for green eyes in its DNA. It can not be known in advance, which one will

materialize.

Tiness

Figure 4.3: Example of a fitness landscape with two traits
(Back, 1996, p. 10}

The collective genetic information of a population is described as gene pool. It consists of all
the successful (surviving) individual’s genotype. Over time, as only individuals well adapted
to their environment survive, the gene pool adapts to the environment. This is sometimes

described as adaption. A popular metaphor for this is Wright’s model of a fitness landscape
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(see figure 4.3). Different trait combinations result in different levels of fitness in a rocky
fitness landscape. Note that this landscape changes over time and formerly useful traits become

obsolete.

To prevent early stagnation on a local optimum, genetics has some built-in functions that allow
a population to cross a fitness valley, namely random mutation and genetic drift. (Back, 1996,
ch. 1.1)

4.2.2 Representation through chromosomes

As explained in Back (19906), in living organisms genetic information is encoded in DNA. The
details of this process are not relevant for optimization applications, but their logical struc-
ture is. Starting from the top, an individuals genetic information is encoded in its genotype.
A genotype is mostly an abstract word for genome, which contains the same amount of in-
formation. Below a genome, there are a number of chromosomes (23 for humans). Further
below, two units follow that are mainly important for transcription and reproduction and are
generally not used in GA. The important point is that a chromosome consists of a number of
genes, several thousand in nature, a few dozen in a typical optimization application. Genes use
four nucleotide bases to encode information. A gene contains enough information to encode
a single protein. So changing one gene could be interpreted as changing a single trait in an

individual’s genotype. For a complete hierarchy see Back (1996, table 1.2)

For optimization applications the most important units of measurement are the gene pool, a
chromosome and a gene. The first describes all the candidate solutions available at a single
moment. The second means one complete solution to a problem and the last describes a single

parameter of a solution.

4.2.3 Main steps of a genetic algorithm

First an initial population needs to be created. This can happen through random sampling or
by using a heuristic. For the best performance, the population should cover the search space
uniformly. If there is a bias in the population towards a certain area in the search space, the

results might not be optimal.

After the population has been initialized, the first round of evaluation is started. Every candi-
date solution is evaluated on the basis of a pre-defined fitness function. This could be simple

function or a simulation model. (Zapfel, 2010, p. 125)

Once candidate solutions have been evaluated, a procedure for selection is required. In nature
selection happens through survival of the fittest. In an optimization environment, a simple
ranking is sufficient. Only the fittest X% of each generation are retained and carried over into

the next generation.
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Figure 4.4: Solution process of a genetic algorithm
(Zapfel, 2010, p. 124)

The next step in a GA is recombination. Successful solutions are combined to create new ones
that exhibit favorable traits of both parents. To keep a higher degree of variety in the gene pool
and avoid getting trapped on local optima, random mutation is applied to some of the new

individuals as well. (Zapfel, 2010, p. 125)

After the next generation has been created through recombination and mutation, it is evaluated.
Then the fittest part of the population is used as basis for the next generation. This process
continues, after a stopping criteria is reached. This might be a certain number of generations,

or a pre-defined fitness value. Figure 4.4 summarizes the main steps required for a GA.

4.2.4 Multi-criterion evolutionary algorithm

An additional problem encountered in this work is mult-criterion optimization with GA. This
problem can be solved in a variety of ways. Ghosh and Dehuri (2004) provide a good overview
of available methods. They note that optimization problems with more than one objective func-
tion don't have a single optimal solution, but a range of solutions of equal quality. This is called
Pareto optimal front. The solution can’t be improved in one regard without making it worse to
another regard. Figure 4.5 presents a Pareto optimal front with three solutions p, ¢ and r on
it. All of these solutions are optimal, despite their objective function being suboptimal when

observed in isolation. The main difference with multi-criterion problems is the combination
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of a number of objective functions.

Pareto-optimal front

Space

v

Time

Figure 4.5: Pareto optimal solutions
(Ghosh & Dehuri, 2004, p. 40)

The authors present a number of solution approaches. The one used in this paper is one of
the simplest and easiest to use, calls Weight-based Genetic Algorithm (WBGA) Each objective
function f, is multiplied by a weight w;. The sum of the weighted functions is then used to

arrive at the chromosome’s fitness.

4.3 Closest neighbor heuristic

The Nearest/Closest Neighbor (NN) is a TSP-specific heuristic that can easily adapted to solve
SD-ELSP instances. It mimics human behavior, in that it starts at a random point and always
chooses the nearest city. Earlier research has shown that it keeps the tour within 25% of the
lower bound. (Matai, Shing, & Mittal, 2011) This didn’t apply to sequence-dependent setup

costs as was observed in this paper.

select random city
while (unvisited cities left)

find nearest city and go there
return to first city

Figure 4.6: Pseudocode of closest neighbor heuristic

Compare (Matai et al., 2011, p. 13)

4.4 Base stock inventory policy

This section introduces the two most commonly used frameworks for inventory control. Both

policies work under stochastic, as well as deterministic demand.
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4.4.1 (R, Q) policy

When using this policy, inventory is reviewed on a periodic basis, every T periods. Whenever
the stock level drops below a fixed reorder quantity R, a fixed quantity Q is ordered. As this
policy is closely related to batch processing, it is sometimes denoted as (R, nQ). This means

that multiple batches are ordered. (Axsater, 2000, p. 48)

The main weakness of this policy is its lack of flexibility in adapting the value of Q on the basis

of available inventory. If demand is exceptionally high, an order of Q might not be enough.

4.4.2 (s, S) policy
This policy is similar to the previous one. The main difference is that in case of inventory falling
below reorder point s, it is replenished up to maximum level S.

For systems that operate on a flexible production quantity, using the (s, S) policy offers a slight
advantage. In practice the difference is small and an (R, Q) policy with a fixed batch size is

sometimes easier to use. (Axsater, 2000, p. 49)
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HIS CHAPTER first explains the assumptions, this model is based on and why they were used.
Later the implementation and the inner workings of the model’s transition function are

explained.

5.1 Assumptions

In section 2.1.1, the assumptions found in the first ELSP models were presented. They were
quite restrictive and unrelated to many production planning problems found in practice (see

chapter 3).

Building on the assumptions introduced before, this model presupposes the following:

1. The machine can only produce one product at a time.
2. Inventory holding cost is directly proportional to the amount of inventory.
3. Production costs- and time are proportional to the quantity produced.

4. The sum of production- and setup times does not exceed the total capacity of the pro-

duction facility.
5. Setup cost and times are dependent on the production sequence.

6. Each product has stochastic demand rates that follow a known (compound) distribution.

5.1.1 Production

The first assumption is quite straight-forward and can be found in the majority of ELSP papers.
Only one product can be produced on the machine at a time. No production can happen in
parallel and there are no by-products or cogeneration. While such features might be relevant

in practice, they would be too specific to include in a general model.

Point two describes production costs. The model assumes that producing 5 pieces costs half
as much as producing 10 pieces. For situations with batch production, the batch size of a
production run could be set accordingly. Currently the model doesn't account for stochastic

production times, but if necessary it could be adapted for it.
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Assumption number three is concerned with production load. Since this paper’s model doesn't
presuppose any information about contribution margin, an efficient production scheduling
when load is higher than 100% is not possible. In order to do this, sales margins need to be

taken into account in addition to production costs.

5.1.2 Inventory

The next assumption can be satisfied on similar grounds. While linear holding costs are unre-
alistic in practice, any other assumption would make the model too specific for general use. If
there should be an application that requires a different inventory cost function, like step-fixed

costs, this could easily incorporated into the model implementation.

5.1.3 Setup

The second last point deals with setup costs, depending on the predecessor product. Such
setup costs are quite frequent in practice (Allahverdietal., 1990, p. 219) and their deterministic
version can be easily represented in a setup time matrix. For the moment, this paper doesn't
account for stochastic setup times, but they too could be modeled and optimized within the

existing framework.

5.1.4 Demand

The final assumption describes demand modeling. While demand in early ELSP models was
deterministic, or transformed into one by bundling orders that arrive within a certain time
span, this model assumes deterministically distributed demand. Demand in the current version
is based on a compound (stuttering) poisson distribution, i.e. demand time and quantity are
modeled separately. This allows a demand distribution to be fitted to a wide variety of demand

series found in practice, including series that are too arbitrary for most standard distributions.

5.2 Model description

The first section of this chapter evaluated the assumptions, this model supposes. The current

section builds on these assumptions and describes how they were reproduced in a model.

The first part will deal with the model’s global architecture and building blocks. The second

part evaluates its core: the transition function, which is modeled as SMDP
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5.2.1 Implementation

The model is implemented in object-oriented Java. It consists of a number of classes that
interact through interfaces and functions. This design has the big benefit that individual parts
can be optimized and interchanged. E.g. a common cycle policy can easily be interchanged for

a fixed cycle policy. Or a GA TSP sequencer can be interchanged for closest neighbor.

Experiment F-------------------
: I
| |
| |
— v |
. . . 1
- - Policy | ___,| Objective \
CMA-ES Iteration Function ! TSP-GA
L e Lo -4 A
| : [ | |
v . v ! !
Policy SMDP =% ProductGroup
sequence policy setupCost
getParam <--- products L variability
setParam setupState I setDollWhybarkS
nextProduct simulation : getGASequence
transitionFunc ! getNNSequence
: | getFreqVar
| |
v I
CommonCycle | | FixedCycle Event i | Product
Policy Policy type Lo |id
time | mean
guantity : variance
L —pp| prodTime
setupTimes|]
maxInventory
currentinventory
safetyStock s
order-up-to S
updatelnventor
getSetupTime

Figure 5.1: Class diagram of simulation- and optimization model

Figure 5.1 shows a simplified UML class diagram with the model’s main components. At its
core there is the class SMDP. It evaluates policies and uses information from instances of the
Product-class to calculate rewards and time events. Demand is modeled in the class Event. At
each call an Event instance is generated, which consists of a product type, demand time and

demand quantity.

Policy is a super-class that can be extended by a number of sub-classes. The two examples shown
in figure 5.1 are a common cycle- and fixed cycle policy. Policy instances pull they information
they require about Product from ProductGroup. This includes calculating aggregate setup cost

and sequence variability, or creating a sequence by using the attached TSP GA optimizer'.

"The Java source code for this genetic optimizer for TSP-problems is licensed under the GNU GPL and available
from http://code.google.com/p/java-traveling-salesman/
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The Experiment class represents the interface for the end user. It might contain a simulation
study or a simple optimization task for a real production facility. Experiment uses a specific
policy and sets up Product via ProductGroup. Subsequently the CMA-ES from section 4.1 is used

to adapt Policy parameters.

| Experiment |

T
[} -
! | ProductGroup | | Policy |
: | 1
L H
I [}
! | TSP-GA
:— populate —p» ] | T |
! |
! 1
: create | !
! |
[}
' |
| seq —P»
[}
' i
[}
: <— set sequence —| ﬁ:
I
[}
l . | SMDP
I (< setinit. 5,5 — P :
I
| [}
: | initialize > -
: L1  with products
[}
[} '
: evaluate heuristic solution P
[ '
\ | return average
:ﬂ : reward of —
: 1 heuristic solution
i |
! 1

Figure 5.2: Sequence diagram of the initialization phase

When an experiment is started, the first step is to populate a ProductGroup with products and
their attributes, like mean demand, setup cost, production time and maximum inventory. Next
a new Policy instance is created. During initialization, the policy uses the TSP-GA optimizer to
find a cost-minimizing production sequence, which is saved as a production sequence with the
product group. Then the heuristic from Doll and Whybark (1973) is used to calculate rough

base stock levels.

Once the policy is initialized, the SMDP simulation module and CMA-ES? are used to improve

the initial heuristic solution.

The process is started by Policylteration. The class first initializes the CMA-ES, who reads the
existing Policy parameter to create new points to probe. Subsequently, another class called
ObjectiveFunction is used as an intermediary to simulate a series of production runs on the SMDP.
SMDP uses Policy as a controller to decide on the next product that gets produced, depending
on a certain system state. This process is repeated until a certain number of transitions has

passed and a good estimation of the current policy parameters average reward can be made.

*The CMA-ES implementation used in this model is available from http://www.lri.fr/~hansen/cmaes
_inmatlab.html
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Figure 5.3: Sequence diagram of the optimization phase

This value of the ObjectiveFunction is returned to the CMA-ES. After internal evaluation of the pa-
rameters, it sets new parameters and repeats the evaluation process, after a pre-defined number

of enumerations has been reached.

5.2.2 Transition function

The SMDP class of the Java model that was explained in the previous section, uses a SMDP to
model a production period or demand event. This section gives a rough introduction to SMDP

and how they are used to model the production- and decision process presented in this work.

Semi-Markov Decision Process

Markov Decision Processs (MDPs) are a way to model sequential decision that depend on each
other and change the state of a system by actions taken by an agent or controller. As shown in
figure 5.4, at each stage two things happen. First the decision maker receives a reward. Second,
the system moves into the next state. Previous to this transition, a decision or action was taken.
Decisions are often based on a policy, who take a specific action based on the current system

state. The challenge is to come up with a policy that maximizes reward over a series of states.

As opposed to ordinary MDPs, who follow a discrete time distribution, SMDPs are a more
generalized version. They allow a decision maker to choose an action whenever the system
state changes. This can also happen at random intervals (like random demand events). The
time spent in a particular state is not known in advance. Such models are also referred to as
continuous-time models. Their more general form makes them suitable for a wider variety of

models than a simple MDP.
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Action Action

— »»| Present state ——p» Next state  |———»

Reward Reward
Present decision Next decision
epoch epoch

Figure 5.4: Symbolic representation of a sequential decision problem.
(Puterman, 2005, p. 2)
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between production and
demands demand time

return new
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Figure 5.5: Flow chart of transition process in SMDP class.

44



5.2 Model description

Model of the transition function

Puterman (20035, p. 531) also notes that in a SMDP, two parallel processes can be distinguished.
This comes from the very nature of having random state changes even without actions taken
by the decision maker. They refer to the underlying events as natural process, the states and

decision points relevant for actions are called SMDP.

The difference between the natural and SMDP becomes more clear, when taking a look at figure
5.5. Whenever a decision is necessary, the current system state is sent to the policy instance.
Depending on the decision rule used, it finds a decision. The transition function gets the next

product to manufacture as input.

Initially the system checks, whether actual production is scheduled to take place or not. In
cases of high inventory, the policy instance might decide not to produce anything for a period
of time. In case production takes place, the setup state needs to be checked. If the machine
is already set to the right product, no setup is necessary and production can start. In cases a

setup is necessary, the setup time and cost is recorded in the reward array.

The further part of the process can be considered to be natural. A new demand event is gener-
ated and the system state changes, i.e. inventory levels are updated. Finishing production runs
restock inventory. Then total time and inventory cost are recorded. At this point the system

requires another input from the decision policy based on the new state.
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5.3 Control policies

Policies are used to combine the different parts that jointly make production decisions. Two
main building blocks are required for a control policy. First a production sequence needs to
be set. Production on the machine happens according to this sequence. Second, the safety-
and order-up-to levels need to be set. These might be subject to batch sizes required by the

economics of the manufacturing facility.

Based on the properties of the sequence, a major distinction between common- and fixed cycle
policies can be made. Common cycle policies only have their sequence set at the beginning
of the optimization process. Each product is produced exactly once in a cycle and only stock

levels are subject to optimization by the CMA-ES.

The second policy class are fixed cycle policies. These can contain some products more than

once and the sequence’s parameters are also subject to optimization by the CMA-ES.

The following section describes each policy and how it is different from the others. The inte-
gration of a policy in the optimization procedure is elaborated in figure 5.3. The next sections

will focus on the inner workings of the policies and differences between them.

Start Start

i

Figure 5.6: Comparison of optimization process within a common cycle (left) and fixed cycle (right) policy.
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5.3 Control policies

5.3.1 Common cycle policies

This policy class is based on fixed production cycles with all product multipliers R = 1, ie.
every product is manufactured once in a cycle. This makes these policies relatively simple,
because only safety stock- and order-up-to levels need to be established. On the downside they

perform worse on heterogeneous product mixes.

The strict nature of common cycle policies limits the optimization methods that can be applied
to them, when compared to a fixed cycle. Therefor the main focus is on improved sequencing.
Here a simple closest-neighbor algorithm is compared to a genetic sequence. This optimization
might be based on setup time or setup cost. This would mainly depend on the particular

application environment. The current work is focused on setup times.

The left part of figure 5.6 illustrates such a policy. After initial base stock levels have been
determined, the policy supplies production decisions to the transition function, as described
in figure 5.3. After each optimization run, new base stock levels are set, whereas the sequence

stays the same. The process of finding a suitable sequence can be summarized as follows:

1. Receive preliminary, sorted sequence S.
2. Optimize sequence S to get final sequence Q with minimized setup cost.

3. Start production with first product in queue Q at position j = 0.

Note that the sequence remains untouched after the initial optimization. The CMA-ES-optimizer
only tests base stock- and safety levels. The differentiation between policies is made in the sec-
ond step. The two policies that were tested use a clostst-neighbor and a genetic sequencing

algorithm.

Common cycle with closest neighbor sequence (CN)

This is the simplest and most naive policy available. Each product appears exactly once in the
cycle. The production sequence is set at the beginning by using the closes neighbor heuristic
introduced in section 4.3. Once the sequence has been determined, different base stock levels
are tried- and evaluated by CMA-ES.

The nextProduct-function uses the product sequence and reorder points to make production

decisions for the transition function. This process can be found in (5.3.1).

n(s;S) =4 Qp elseif y,,) <sj (5.3.1)
0 else

47
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First the inventory level y; of the current product in the queue Q at position j is determined. If
it has not reached its order-up-to level S; yet, production continues. In case the current product
is finished and the next product in the queue is below its reorder level s;, production of this

product will start. If it should be above its reorder point, the facility goes idle.

Common cycle with genetic sequence (CG)

This policy is very similar to the previous one, in that it sets a sequence once at the beginning
and then only evaluates base stock levels. The sequence does not follow the closest neighbor
heuristic, but tries to find the best production order globally by using a genetic algorithm. This

should reduce setup times by at least 25%. (Matai et al., 2011)

Since setup costs are omitted in this paper, only setup times are evaluated. In production
environments with more dominant setup costs, this might be different. Without setup costs, a
better production cycle should be able to reduce holding costs. Some of the savings will come

from reduced cycle stock, others from reduced safety stock.

The process of deciding on the next product is analogous to (5.3.1).

5.3.2 Fixed cycle policies

As opposed to common cycle policies, which have all products on the same cycle, this kind
of policy allows for different cycles. By doing so, products with low demand can have longer

cycles and products with high demand are produced more often to keep holding cost low.

The optimization algorithm does not only change base stock levels, but also tests different

multipliers for products. The actual procedure works like this:

1. Receive product multipliers R from CMA-ES.
2. Use multipliers R and products P to get preliminary sequence S.
3. Optimize sequence S to get final sequence Q with minimized setup- or holding costs.

4. Start production with first product in queue Q at position j = 0.

Using an example with three products, this series of steps can be illustrated with a numerical

example. First the multipliers are received either from CMA-ES or the initial heuristic solution.
R={3,1,2} (5.3.2)
Next the multipliers are used to expand the products in a preliminary sequence.

$={0,0,0,1,2,2} (5.3.3)
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The final step will sort the sequence in an optimized queue.
Q = {07270717072} (534)

The first two steps are the same for each policy with a fixed cycle. The differentiation of the
individual policies happens in the third step, which basically offers two optimization objectives.

There can either be a focus on setup times or holding costs.

In case the former objective is chosen, the optimization algorithm tries to lower setup cost
without regard to holding cost. This has a number of advantages and disadvantages. On the
upside the time spend with setups over the full cycle, is minimized and therefor more time
can be spent on the actual production process. On the other hand, it is also possible that the
nature of the setup time matrix favors a clustering of one or more products at the beginning or
the end of a sequence. In such a case setup times might be slightly shorter than otherwise, but
will be paid for in extra holding cost. This is because in an unbalanced sequence, base stock
levels need to be higher than in a balanced one. When very few production runs at one point
in the sequence need to satisfy demand for the whole cycle, holding cost are naturally higher.

This can outweigh the savings from faster setup times.

For policies that opt for a more balanced sequence and therefor lower base stock levels, similar
arguments apply in an inverse way. Most importantly, a balanced cycle allows for lower safety
levels because the gaps between production runs are smaller. This will result in lower holding

cost, but does not take into account the dependencies caused by sequence-depenent setup cost.

To avoid the problems encountered with the pure variants of the two sequencing options, a

mixed multi-objective policy is proposed as an alternative.

Fixed cycle policy with minimized holding cost (FH)

This control policy also uses a genetic algorithm to improve the production sequence. As op-
posed to the previous policy, the objective are not low setup times, but a balanced sequence.
This means that products are spread evenly over the whole cycle and don’ cluster at the be-

ginning or end. By taking this into account, overall inventory can be lower.

To determine how “balanced”, i.e. evenly spread a production sequence is, a production se-
quence is converted into frequencies. E.g. sequence Q = {2,1,3,4,5,3,2,3,5,2,5,1} be-
comes the following frequency, when only considering product F; = [2, 1, 6]. This would put

the average distance between product 3 in the sequence at #4+° = 3.

Next the variance of frequencies is calculated by summing over the difference between the
average- and individual distances. var = (2 —3)* + (1 — 3)* + (6 — 3)* = 14. This example

results in a rather high frequency variance for product 3, because it only gets produced in the
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beginning of the sequence. The last batch would need to be higher to cover for the extended

period between the first and last production run.

The right part of figure 5.6 displays a generic fixed cycle policy. In addition to setting heuristic
base stock levels, the policy also needs to determine multipliers for each product. These are
then used to construct a sequence and optimizing it by keeping the frequency variability as low

as possible.

After each optimization run, new multipliers are set and a new sequence is constructed. This

makes a fixed cycle policy computationally more expensive than a common cycle policy.

Fixed cycle policy with minimized setup cost (FS)

In the previous policy, the pure variant of a balanced sequence with holding cost as an indirect
objective was used. The current policy implements a pure form of a minimized setup cycle.

The genetic optimizer has the objective to achieve the shortest possible setup times.

At the same time, its not allowed to have the same product consecutively in the cycle. For
such a case setup times are set to an arbitrary high value and the CMA-ES should reduce the

multipliers R if it can not fit all the products within the cycle in a sensible way.

Fixed cycle with multi-objective sequence (FM)

This production policy is mixture of the two previous ones. The main difference lies in the
objective function of the sequence optimization. The target function is multi-objective and
uses a weight based genetic algorithm, as described in section 4.2.4. The first objective of
achieving a balanced cycle to save inventory cost stays the same. In addition, the GA also

attempts to lower setup times over a full production cycle.

The importance (weight) of a short, as opposed to a balanced cycle is determined by CMA-ES.
Over time the optimizer can find the best combination of production sequence- and base stock

parameters.
5.3.3 Preemptive policies
In previous research projects by Graves (1980) and Lohndorf and Minner (201 1), the authors

suggest a preemption-rule for “emergencies” with low inventory levels. In situations without

sequence-dependent setup times, this enhancement lowered average cost in all cases. This
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consideration could be accounted for by an extension of the formula introduced in (5.3.1).

Q ifyj <5

T .
Qr elseifIn:y <s
0 else

where Q.+ is defined as the next occurance of product n in queue Q.

The policy also needs to introduce a new stock level s’. Lohndorf and Minner (201 1) call this
variable preemption point. In contrast, s as was used in previous policies can be described as
can-order point. In normal operation the policy cycles along the fixed cycle product queue.
Products below their can-order level s are produced up to their target level S. After each pro-
duction run, the policy also checks for products below their preemption point. Ifit finds them,

production jumps to the next occurence of the affected product in the cycle.

When applying such an additional rule to SDS, the policy has to weigh the cost of leaving the
efficient setup time cycle against possible lost-sales cost. Excess setup times arise at the point of
preemption and when reentering the cycle. For a preemption to actually lower reward, the extra
holding cost caused by these two steps need to be balanced against average expected demand

events in the same time span.
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THIS FINAL CHAPTER presents the results of the simulation study that was conducted to com-
pare different performance aspects of the production scheduling policies introduced ear-
lier. The experimental setup and generation of sample data is based on Lohndorf and Minner

(2011) with minor modifications to account for sequence-dependent setup times.

6.1 Experimental design

To make substantiated claims on the performance and influence of different control policies,
they need to be tested on a larger number of sample instances. To do so, a number of de-
sign parameters were introduced. Then a Sobol sequence was used to create different product
parameters for sample runs. Since the number of products determines the complexity of the

problem, samples were generated for groups of 3, 5, 10 and 15 products.

6.1.1 Design parameters

To have more control over sample properties, design parameters are used. They set the upper-
and lower bounds of sample instances. By tweaking them, the model can be tested to account

for various aspects, like load factor or demand variability.

The intervals used to sample the product parameters are displayed in table 6.1. Avg Mean
Demand per period describes the average demand for a product, CV demand represents the
degree of demand variability. Higher variability means less predicatiblity because rare, large
orders can have a big impact on inventory. With increasing specialization and diversification
happening in many sectors, variability for single products is expected to increase, while selling

a small number of standardized products should reduce demand variability.

Lost Sales Cost are used as a “punishment” for stockout situations. In practice this value is
difficult to measure. It doesn’t only include contribution margins lost on sales, but also intrinsic

losses, like a decrease in customer satisfaction and trust.

The Avg Holding Cost parameter governs the cost of inventory that needs to be paid per item
on stock. In general it includes a wide range of cost, a company can be face. These include

capital expenditures, depletion, shrinkage, storage and risk of price fluctuations. To avoid
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excessive holding cost, one aim of the optimization procedure is to keep inventory levels as

low as possible, while still avoiding stockout situations.

Load Factor is used to derive production times. This parameter needs to be < 1. Otherwise
demand can’t be met any more and the more profitable products need to be prioritized. This is
beyond the scope of traditional production planning and shouldn’t occur on a regular basis in
practice. In the case of constant shortages and lost sales of products with positive contribution
margin, any rational firm would either increase the sales price of their product or invest in

additional capacity.

Avg Setup/Prod Time gives the time necessary for production of items and setups between pro-
duction runs. Production time is assumed to be linear, i.e. a higher quantity means a longer
production time. Since this work deals with SDS, simple average setup times are not enough.
A whole setup time matrix is required to govern relationships between different products. For
this reason, an extra parameter, Avg CV Setup Times was introduced. This design parameter was
not used in Lohndorf and Minner (201 1) and describes the coefficient of variance of the setup
time matrix for each product. First average setup times for each product is determined in the
same way as in the reference paper mentioned before. Subsequently the setup times for each
product are expanded one more time to arrive at cross-setup times for each product. The pa-
rameter Avg CV Setup Times governs the interval of setup times, with average setup time for each
product as base value. Like all other values, the interval is then samples and mixed randomly.

The results are written in a setup time matrix.

Design Parameter Min. Value Max. Value
Avg Mean Demand 5 25
Avg Lost Sales Cost 100 100
Avg Holding/LS Cost 0.001 0.01
Avg Setup/Prod Time 70 100
Avg CV Demand 0.5 1.5
Div CV Demand 0.3 0.9
Avg Load Factor 0.3 0.6
Avg CV Setup Times 0.0 0.5

Table 6.1: Intervals of design parameters used in the experiment

6.1.2 Product parameters

In order to arrive at definitive sample instances, the design parameters described in section
6.1.1 need to be sampled in some way. This could be achieved by random sampling. To
cover the whole sample space more efficiently, a technique calles quasi-Monte Carlo sampling
will be used. The aim is to generate a low-discrepancy sample that closely follows a uniform
distribution. One way to arrive at such a sample are digital nets/sequences. They use the

expansion of i — 1 in a certain base. (Lemieux, 2009, p. 139)
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This work uses a Sobol sequence with 11 dimensions for each sample instance. The points are
calculated by using the Java-based SSJ-library’. In total 4 times 1000 instances were generated,

with the number of products ranging from 3 to 15.

6.1.3 Simulation runs

Subsequently the five sets of sample instances generated in the previous section were then
solved with each production policy and the results recorded. To decrease variability, average

rewards are collected using batch means.

The actual processing was done on Virtual Machine (VM) instances in the Amazon Elastic
Computing Cloud (EC2). A VM was set up to receive a new task from a central command and
control database that contained all the 4 ooo problem instances necessary for each of the five

policies.

In the next step, the VM was cloned and simultaneously executed on 100 instances with a

combined number of 8oo CPU cores and 700 GB of memory.

<—— transmit task
command and
control
virtual machine ————— return solution ——— P database
Amazon EC2 Cloud Public Internet Researcher

Figure 6.1: Simulation runs in the Amazon cloud, using a control database.

6.2 Analysis of results

By using the data generated from the simulation runs, the performance of control policies, as

well as the environment in which they’re most effective can be tested.

First the total setup cycle times are of interest. If a simple greedy NN algorithm can find the
shortest sequence as well, there would be no need to choose a computationally more expensive
GA. After arriving at a lower setup sequence time, this advantage also has to translate in lower
average rewards. If lower setup times don't decrease holding cost significantly, they can as well
be ignored. It should be noted that this is naturally dependent on the sample data. There will
definitely be cases, when setup times are so insignificant that setup cycle optimization does not

make a big difference.

"The SSJ-library is available from http://www.iro.umontreal.ca/~simardr/ss]
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Next, the difference between fixed- and common cycle solutions shall be analyzed. A more
flexible cycle with some products appearing more often than others should lead to lower overall
costs, compared to having all products on the same (common) cycle. By differentiating between
sample groups with low- and high demand variability, the cost advantage gained by using a

flexible cycle can be observed as well.

In the realm of fixed cycle policies, the performance of the two possible objectives for opti-
mization is of interest. As discussed in section sec:fixedCyclePolicies, the sequence can either
be optimized to low holding cost, low setup times, or a mix of both. The numerical study will

show which objective yields the best outcome.

6.2.1 Length of common cycle production sequence

Under SDS the total setup times (or cost) are an important aspect. By comparing the length of

closest-neighbor and GA sequences, improvements in cycle time can be observed.

N Size CN GA A

3 1000 204 5.7 72%

5 T 27.6 104 62%
10 " 454 233 49%
15 " 625 377 40%
20 " 80.9 539 33%

Table 6.2: Comparison of total cycle setup times for different problem sizes.

Neither the average setup time, nor the variance of setup times seem to have a big influence
on the performance gap between NN and GA sequence. The only factor that influences the
performance gap is the number of products to optimize. The more products there are in the
cycle, the closer is the NN to GA. This observation is in line with Matai et al. (2011), who

suggest a performance gap of about 25% for a high number of products.

6.2.2 Influence of design parameters on policy performance

Some design parameters have a bigger impact on the final result than others. To make forecasts,
about the impact of different settings, coefficients of determination were calculated for each
design parameter and policy. The average reward was normalized by dividing through the
number of products. This leaves the reward per product as dependent variable in the analysis.

Individual design parameters are the independent variables.

The results are similar to those observed by Lohndorf and Minner (2011, p. 21). The highest
influence is exerted by the average load factor. In the two common cycle cases, about 40% of
the average reward can be explained by changes in the production facility’s rate of utilization.

In the case of fixed cycle policies, this value decreases to about one third.
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CN CaG FM FH FS

Factor ) F r F ) F 5} F 1 F

Number of Products  0.01 51 0.01 49 0.00 27 0.00 24 0.01 54
Div Mean Demand 0.04 183 0.04 191 0.04 196 0.04 198 0.03 165
Div Lost Sales Cost 0.00 0.1 0.00 0.0 0.00 0.0 0.00 0.0 0.0 0.0
Avg Holding/LS Cost  0.23 1225 0.24 1290 0.34 2135 030 1780 0.30 1731

Div Holding/LS Cost  0.00 0.0 0.00 0.0 0.00 0.5 0.00 1.2 0.00 0.1
Avg CV Demand 0.02 106 0.04 144  0.05 214 0.03 118 0.01 58
Div CV Demand 0.00 2 0.00 3 0.00 2 0.00 0.1 0.00 2
Avg Load Factor 0.43 3042 040 2726 0.32 1914 025 1354 035 2159
Div Load Factor 0.00 2 0.00 3 0.00 2 0.00 0.1 0.00 2
Avg Setup/ProdTime  0.00 19 0.00 20 0.00 19 0.00 21 0.01 28
Div Setup/ProdTime  0.00 0.1 0.00 0.6 0.00 0.2 0.00 0.1 0.00 0.8
Linear Model 0.73 420.9 0.73 4025 0.75 410.0 0.62 317.9 0.71 381.8

Sample Size = 4000, r, = coefficient of determination, F = F test statistic.

Table 6.3: Relationship between design parameters and cost per product.

With lost sales cost fixed at 100 the ratio of lost sales to holding cost also seems to have a

relatively high influence. The influence is higher for fixed- than for common cycle cases.

These two parameters are the only ones exerting major influence. Lohndorf and Minner (2011)
also observed a relatively high influence of the setup- to production time ratio. This was not
the case in this work. This is most likely caused by two factors. First the corresponding interval
was chosen narrower than in the reference paper to arrive at higher setup times in relation to

production time.

Next it should be noted that only a small subset of the actually generated setup times is really
used. In the ten-product case, only 10 setup times out of a matrix of 100 are used. Those values
are most likely on the lower end, because both, the closest-neighbor and genetic algorithm try

to keep setup times low.

Besides the two design parameters displaying major influence, there are the two demand pa-
rameters. They seem to have a minor positive correlation on the outcome. Meaning higher
average demand or demand variance slightly increase average rewards (cost). Still, this effect

is not strong enough to draw any conclusions.

6.2.3 Comparison of policies

The most important benchmark of the performance of a policy is average reward. A lower aver-
age reward means less holding- and lost sales cost. At the same time there is a variety of factors

that can influence the end result. These influences were established in table tab:relationship.

The most relevant factor in this table was load factor, which is also the first classification made
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for comparing different policies.

The next highest influence can be contributed to average holding- and lost sales cost. Using this
ratio is problematic, because lost sales cost are mostly used to direct the optimization heuristic.
The next best choice is the diversity between mean product demands. This parameter is also

relevant to companies seeking to deploy a certain policy.

N load c<cvDemand Size BEST CN CG FM FH FS

low low 250 056 0.65 0.60 0.62 0.89 0.8I

3 high 250 0.78 085 0.83 0.89 1.08 1.00
hiah low 250 110 1.76 147 1.16 1.47 1.42

9 high 250 1.38 198 1.69 143 1.68 1.64

low low 250 055 067 0.62 0.57 078 0.82

s high 250 079 093 0.88 0.82 0.95 0.95
hiah low 250 1.08 1.67 150 1.12 140 1.54

9 high 250 135 199 1.81 1.38 1.58 1.64

low low 250 057 073 0.65 0.59 0.63 0.81

0 high 250 081 1.03 0.94 0.82 0.87 0.97
hiah low 250 119 1.74 1.51 1.20 1.27 1.69

9 high 250 146 210 1.91 147 153 1.88

low low 250 0.61 080 0.70 0.65 0.64 0.87

5 high 250 085 1.11 1.01 0.90 0.88 1.03
hiah low 250 1.30 2.07 181 140 135 1.84

9 high 250 1.55 245 217 1.63 1.62 2.03
Mean 5000 1.00 1.41 1.26 1.04 1.16 1.31

Table 6.4: Normalized average reward for each product policy.

Table 6.4 is split by these two design parameters, as well as the number of products. The
values displayed are the average observed rewards over a sample of 1000 in total. Because
the samples are split based on design parameters, every subgroup comprises a sample of 250
cases. In addition to the four policies that were tested, an extra pseudo-group comprising the

best value observed over all available results was calculated as well.

As expected, the biggest impact is caused by the load factor. The sample with higher load
factor has about 70% higher cost than the lower half when taking all four policies into account.
Higher load factors are a general challenge for production planning. They require more precise

planning and less room for errors.

When comparing the five policies over all sample groups and numbers of products, the fixed
cycle policy with GA-optimized sequence that takes setup cost and a sequence variability into
account finishes first. On average it’s only 5% worse than the corresponding best result ob-

served.
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The difference in setup cycle times has already been elaborated in table 6.2. When comparing
total rewards, the impact of a shorter setup cycle on average rewards can be observed as well. As
expected the genetically optimized sequence is always better than the closes-neighbor version.

The difference is most significant at a high load factor.

CN CG FM FH FS

N load cvDemand MAD frg  MAD frg MAD frg MAD frqg MAD frg
low 0.13 26% 0.08 45% 0.08 17% 038 12% 0.26 5%

I
3 ow high 0.13 40% 0.09 42% 0.13 13% 0.33 6% 0.23 5%
hiah low 0.69 3% 045 16% 0.14 61% 046 19% 037 15%
9 high  0.65 56 041 22% 0.14 53% 039 21% 03 17%
low low 0.14 7% 0.09 12% 0.08 67% 0.28 14% 0.29 8%
5 high 0.16 10% O0.11 17% 0.07 60% 0.19 12% 0.18 18%
hiah low 0.6 1% 0.43 1% 0.15 80% 0.39 18% 0.48 7%
9 high  0.67 1% 0.48 0% 0.13 77% 03 22% 035 18%
low low 0.18 2% 0.11 16% 0.07 50% 0.1 31% 0.25 2%
0 high  0.24 1% 0.16 7% 0.05 62% 0.1 30% 0.19 10%
hiah low 0.59 0% 0.39 8% 0.12 58% 0.17 34% 0.54 1%
9 high  0.69 0% 0.5 3% 0.11 60% 0.16 37% 045 3%
low low 0.2 2% 0.13 21% 0.07 32% 0.05 46% 0.26 1%
5 high 026 0% 0.18 9% 0.08 37% 0.06 53% 0.19 7%
hiah low 0.79 0% 0.57 9% 0.15 32% 0.15 60% 055 2%
9 high  0.91 0% 0.64 2% 0.16 43% 0.15 54% 0.48 3%
Mean 043 6% 030 15% 0.10 49% 0.22 30% 0.33 7%

Table 6.5: Frequency of choosing the best policy and corresponding MAD.

When comparing the average advantage gained by using a flexible cycle with different product

frequencies, the advantage is slightly higher with more heterogeneous demand. (0.19 to 0.23).

Another interesting result is the comparison between the three fixed cycle policies FM, FH and
FS. The latter two use just one objective for optimization (setup times or holding cost). The
first one is multi-objective and the CMA-ES decides on the specific weight of the two objectives.
In the numerical study, the mixed policy FM yielded the best results and was on average only

5% worse than the best result observed.

FH, which focuses on holding cost, performed rather poorly for 3 and 5 products. At 10 and

15 products, the policy closed up to FM and clearly outperforms FS

The fixed cycle policy with a pure focus on setup times (FS) performs worst of all fixed cycle
policies. This means that minimizing setup times is not sufficient in fixed cycle sequences.
There has to be an additional focus on a balanced cycle, i.e. low holding cost. Especially when

sequences get longer, a badly balanced cycle can initiate the CMA-ES to increase base stock
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levels too much. One explanation for this behavior might be holding cost becoming more

relevant in comparison to lower setup times (which cause holding cost as well).

It can also be assumed, that CMA-ES is setting the a-parameter higher, when encountering
a higher number of products. Meaning it gives a higher priority to holding- than setup cost.

Otherwise the results wouldn’t be so close. Especially when comparing FH and FS.

The final table complements 6.4. It shows the normalized Mean Average Deviation (MAD) from
the corresponding best policy in the sample class, as well as the frequency of how often the
policy was equal to the best observed reward. All in all the findings in table 6.4 are confirmed.
The FM policy gives the best result for about half the time. When omitting the sample instance

with 15 products, the number increases to 54%. For all instances it is 49%.

The CN-policy performs worst and only corresponds with the best result in 6% of the cases.
Most of these occur in the two 3-product, low load-factor cases. With only three products to
choose from, there is a relatively good chance for the NN to pick the same optimal sequence

as the GA. With a rising number of products, this probability gets smaller.

The next CG-policy performs rather well in the first two sample instances and even beats the
FG in these two cases. The gap is not significant, as can be seen from the tiny MADs. The
differences to FM stay small in the low load-factor cases, but are more significant with higher
load factors. In total the CG-policy equals the best result in 15% of the cases. In comparison

to the CN-policy the MAD rises in a similar, but slightly lower way.

Next in line is the FM-policy. It equals the best policy around half the time. It also features
the lowest MAD, meaning that when it is not the best policy, the difference is very minor and
insignificant in most cases. The next-best fixed cycle policy FH delivers the best policy in about
a third of the sample cases. This is mainly due to its good performance in the high 15-products
case. In the high-load samples with 15 products, FH finds the best policy in 60% and 54%
of the time. This is about 10% better than FM. The MAD from the best solution is about the

same, meaning that the difference between the two policies is rather small.

All in all the numerical study presents the FM-policy with multiple objectives as clear recom-
mendation for up to 10 products. When the policy is used for more than 15 or 20 products,
holding cost should be compared to the importance of SDS. For a small number of similar

products (or maybe product families) a simple common cycle CG also works.
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7.1 Summary

7.1.1 Literature review

HIS WORK started out with an overview of existing research in ELSP. Conditions of the re-
T spective solution method were used to guide through the process. While the first attempts
to solve ELSP-problems relied on very restrictive conditions, like strictly deterministic demand
rates and sequence-independent setup times, these were later relaxed to give rise to more com-

plicated models.

Next the notations for solving common cycle models were introduced. By using the formu-
las found in Elmaghraby (1978), it was shown that deterministic ELSP without SDS can be
solved by using one common cycle length for all products and balancing the length against
the holding- and setup cost. This is similar calculating optimal order quantities by using the

well-known EOQ-formula.

A common drawback of the common cycle method is its inflexibility when demand rates be-
tween products are very heterogeneous. In many practical cases, a small percentage of products
accounts for the largest share in revenue and sales volume. By contrast, many other products
are sold less often. It would be more beneficial for companies to produce high-volume products

more often.

To solve this issue, researchers introduced basic periods. The common cycle model was ex-
tended by integer multiples and a basic period term. This made it possible to differentiate be-
tween high- and low volume products. On the downside computational complexity increased

and the research community resorted to DP and metaheuristics.

Despite some improvement, the basic period approach still had some drawbacks. Namely the
need equal production sizes in all runs. This led to the introduction of time-varying lot sizes.
Instead of integer multiples, this method features a whole production sequence. Lot sizes are
no longer equal, but vary according to the time between production runs. This approach is

still the most popular, but is NP-hard and requires the use of a search heuristic.

The succeeding section of the literature review introduces sequence-dependent setup times to

deterministic ELSP. While earlier researchers, like Maxwell (1964) tried to work out special
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cases in the setup time (or cost) matrix, most researchers moved on to apply TSP techniques

to the problem. SD-ELSP literature has closely tracked this related research class ever since.

To solve TSP, three kinds of solution approaches are available. Exact methods, like branch-
and-bound or dynamic programming guarantee the best solution, but are infeasible for larger
problems. Heuristic- and metaheuristic techniques can find a “good” solution faster. Some
popular metaheuristics that have been applied to the problem include GRASP, simulated an-

nealing and a variety of genetic algorithms.

Then the literature available on the stochastic version of the problem was summarized. While
the preceding problem classes could still be solved to optimality, stochastic problems require
a different approach. First the problem of product sequencing needs to be solved, i.e. when
to produce what. This could either happen by cyclic or dynamic sequencing. The former is
easier to simulate and optimize. The latter should theoretically offer a better sequence, but also

requires constant decision-making by a set of rules or an Al

The chapter is concluded by a section on sequence-dependent stochastic ELSP. For the lack
of specified research, only two case studies that deal with the problem are cited. Those are

explained in greater detail in a succeeding chapter.

7.1.2 Problem description

The next part specifies the problem and introduces two practical applications of it. The first
of them deals with a Dutch pharmaceutical company, wishing to consolidate their inventory
holdings from three to one location. While the actual produce sold in these three markets is
the same, packaging represents a bottleneck. Currently the firm artificially creates a determin-
istic production problem, by planning in cycles. With the added sales data and flexibility, a
consolidated inventory would require stochastic planning. Another possible application comes
from a pre-Deco company. Similar to the first case study, the company also wishes to reduce
inventory by consolidating it. Secondly production costs are unnecessarily high because of

suboptimal sequencing.

Then the critical elements of a production plan were elaborated. First a sequence needs to be
determined. This might be done by using a fixed- or common cycle. The key difference is that
a fixed cycle can contain a product more than once. This gives added flexibility for products

with heterogeneous demand.

In addition to a sequence, lot sizes are required as well. When facing deterministic demand,
lot sizes can be derived from the sequence. In a stochastic environment, frameworks are used

to set inventory boundaries.
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7.1.3 Solution methods

In the fourth chapter, some tools and methods for solving the SD-SELSP were introduced. One
of them is the CMA-ES. It uses a multi-variate normal distribution to sample a solution space
and generate new solution parameters. A genetic algorithm is used to solve the sequencing
problem. GAs are modeled from natural selection and work on the basis of chromosomes and
fitness functions. The former encode possible solutions. The latter represent the objective
function. Mutation and combination are used to generate new candidate solutions. In addition

to a GA, a closes neighbor heuristic is introduced to provide a benchmark.

7.1.4 Model and control policies

The fifth chapter introduces the model and suggested control policies. First the model’s as-
sumption, like production, inventory, setup and demand behavior are clarified. Then the
high-level implementation of the Java simulation-model, as well as the interaction of individual
components with each other are described. In terms of control policies, two common- and two

fixed cycle implementations are suggested.

7.1.5 Numerical comparison of policies

The final chapter made a numerical comparison of the four control policies. Each of them
was tested on 1000 problem instances, which were generated by using a number of design
parameters. Then results were analyzed in terms of setup cycle time and average rewards.
The results confirmed the improved cycle times of the GA, as well as better results for a more
flexible sequence, instead of a common cycle policy. Sample instances with more heterogeneous

product demands benefit more from added flexibility than those with less variability.

On the comparison between the two possible optimization objectives in a fixed cycle sequcene,
a pure focus on setup times does not seem to be too benefitial. It is better to take both criteria

into account and let the CMA-ES decide on the right weights.

7.2 Outlook and further research opportunity

This work can be viewed as a first proposal on how to solve the class of SD-SELSPs, which is
harder than it seems at first. Despite the big volume of research done in ELSPs, only some of
the concepts can be applied to this problem. Solutions need to be found for the sequencing, as
well as the lot sizing problem. Methods that can solve both of them at the same time probably

exist as well.

A weakness of the current model is the lack of a preemption policy, when a product runs low on

inventory outside its usual production sequence. Both Graves (1980) and Lohndorf and Minner
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(2011) find their respective preemption policy to outperform other policies. With sequence-
dependent setup times, it is not as simple. Whenever a low inventory situation occurs, the
optimal sequence has to be left. This can cause higher-than-necessary setup time at the initial
switch. This can result in another shortage, before production of the preempted product is

over. Subsequently the optimal sequence is left again, amplifying the effect even further.

The solution might be a more sophisticated preemption rule that takes potential lost sales
cost and extra holding cost for increased setup times into account. That way the number of
preemptions can be reduced. In addition, any such policy needs to ensure that preemptions
are the exception, not the rule. Maybe ADP can be used for this purpose. Another possibility
would be a preemption-threshold that is set by CMA-ES.

An additional research direction might be the adaption of a version of ADP for SD-SELSP. This
policy was also proposed by Lohndorf and Minner (201 1), but did not perform well for sample

cases with more than 3 products.
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