
DISSERTATION

Titel

Nowhere-Zero Flows and Structures
in Cubic Graphs

Verfasser

Mag.rer.nat. Arthur Hoffmann-Ostenhof

angestrebter akademischer Grad

Doktor der Naturwissenschaften

Wien, April 2011

Studienkennzahl lt. Studienblatt: A 791 405
Dissertationsgebiet lt. Studienblatt: Mathematik
Betreuer: Ao. Prof. Herbert Fleischner



Acknowledgment

My special thanks go to my supervisor Prof. Herbert Fleischner for giving
me freedom in the choice of my research. Moreover, I thank him for reading
several of my manuscripts. I deeply appreciate his willingness to look at new
problems and to discuss many of my scientific thoughts.

I thank my parents Maria and Thomas who supported me during this time
in various ways.

My thanks also go to my friends Günther and Stefan.

I thank the Technical University of Vienna and in particular, the department
DBAI and its team, especially Therese Schwarz, for their support and the
prevailing pleasant atmosphere.

Finally I want to thank the FWF.



Contents

1 Background and Main Results 5

2 Bipartizing Matchings 13

2.1 Definitions and basic results . . . . . . . . . . . . . . . . . . . 13

2.2 Even and odd colorings . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Generalizing the circle graph . . . . . . . . . . . . . . . . . . . 16

2.4 Construction of a Counterexample . . . . . . . . . . . . . . . . 19

2.5 Weak even colorings . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Graphs without disjoint bipartizing matchings . . . . . . . . . 23

2.7 Counterexamples to the BMC . . . . . . . . . . . . . . . . . . 25

3 Solving Cubic Graphs 33

3.1 B-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 F -Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Mosaics 47

4.1 Wild maps and mosaics . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Nowhere-zero flows and mosaics . . . . . . . . . . . . . . . . . 50

5 Applications Of Mosaics 53

5.1 Mosaics of snarks . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



4 CONTENTS

5.2 Even triangulations . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Quadrangulations 59

6.1 The cyclic chromatic number . . . . . . . . . . . . . . . . . . . 63

7 Open Problems and Conjectures 65

8 Appendix 69

8.1 Deutsche Zusammenfassung . . . . . . . . . . . . . . . . . . . 69

8.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 1

Background and Main Results

In comparison to other disciplines in mathematics, such as number theory
or analysis, graph theory is a rather new branch in mathematics and was
developed mostly in the 20th century. Despite its young history it is inter-
acting with many fields in science such as physics, informatics, chemistry,
neurology, genetics, etc. One essential reason for its wide applicability is
that a discrete problem which - roughly speaking - can be illustrated by dots
and lines can often be transformed into a graph theoretical problem and then
attacked by graph theoretical tools. For instance, the problem of creating
a good navigation-system, stable internet connections, cheap water or elec-
tricity supply systems are good examples which can be modeled as graph
theoretical problems. However, we concentrate exclusively on theoretical
problems.

This thesis is focusing on cubic graphs. Cubic graphs are 3-regular graphs,
i.e., every vertex is adjacent with exactly three edges. At first glance, cubic
graphs might seem to be very special graphs and thus may not deserve special
attention. However, cubic graphs occur in nature, as for instance in the
pattern of dry soil or in the pattern of the veins of someone’s hand, etc.
Structures which occur in nature are usually worth to look at. But there is
also a pure mathematical reason why cubic graphs deserve special attention.
Many graph theoretical problems and several conjectures on very general
classes of graphs can be reduced to the case of cubic graphs. Later, we
present some examples.

The thesis consists of two parts. The common thread of the thesis is the
concept of a flow. We assume that the reader is familiar with the basic
definitions in graph theory as presented, for instance, in [2].
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6 CHAPTER 1. BACKGROUND AND MAIN RESULTS

A flow can most easily be defined on an oriented graph, i.e a graph where
every edge e = xy is replaced by an oriented edge −→e ∈ {(x, y), (y, x)}. An

oriented edge is called an arc. Denote an orientation of the graph G by
−→
G

and the set of arcs by A(
−→
G ). For every arc −→e = (x, y), x is called the tail

and y is called the head of −→e . For every v ∈ V (
−→
G ), denote by A+(v) (A−(v))

the set of arcs incident with v which have v as their tail (head). An integer

flow of
−→
G is a mapping f : A(

−→
G ) 7→ Z such that∑

−→e ∈A+(v)

f(−→e ) =
∑

−→e ∈A−(v)

f(−→e ) ∀ v ∈ V (
−→
G) .

If f(−→e ) ̸= 0 ∀−→e ∈ A(
−→
G) then f is called a nowhere-zero flow. If in addition

|f(−→e )| < k, ∀−→e ∈ A(
−→
G) with k ∈ N, then f is called a nowhere-zero k-flow

of
−→
G . Note that if one orientation of G has a nowhere-zero k-flow then every

orientation of G has a nowhere-zero k-flow. Consequently, a graph G is said
to have a nowhere-zero k-flow if one (and thus every) orientation of G has a
nowhere-zero k-flow. Moreover the flow-number of G is the smallest possible
k ∈ N such that G has a nowhere-zero k-flow. Note that a graph which has
a bridge (a bridge is an edge which is not contained in any circuit) cannot
have a nowhere-zero flow.

A famous (and still unsolved) conjecture in graph theory has been formulated
by W.T. Tutte; it is called the Nowhere-Zero 5-Flow Conjecture (NZ5FC).

NZ5FC: Every bridgeless graph has a nowhere-zero 5-flow.

One can restrict this conjecture to cubic graphs; i.e., if the conjecture is true
for bridgeless cubic graphs then it is generally true for bridgeless graphs.
Seymour [27] proved that every bridgeless graph has a nowhere-zero 6-flow. It
is also known that not every bridgeless graph has a nowhere-zero 4-flow (note
that in cubic graphs, nowhere-zero 4-flows and 3-edge colorings are equivalent
concepts). Such cubic graphs - usually some additional connectivity property
is required - are called snarks. For instance, the Petersen graph is a snark
and thus has no nowhere-zero 4-flow. Note that several conjectures on cubic
graphs can be restricted to snarks, as for instance the NZF5C and the Cycle
Double Cover Conjecture (CDCC) which is stated below.

One of the few approaches to the NZ5FC has been the Bipartizing matching
conjecture (BMC) [10] by Fleischner. This conjecture is related to the ”Cycle
plus Triangles Theorem” (CPTT) [11], which is a solution to a problem of
Erdös. Note that an edge-decomposition of a graph is a partition of the edges
of a graph; also, a triangle is a circuit of length 3.
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CPTT: Every 4-regular graph which can be edge-decomposed into a hamil-
tonian circuit and a set of triangles, has a vertex 3-coloring.

The BMC is also related to the following long-standing conjecture.

CDCC: Every bridgeless graph G contains a set of circuits such that every
edge of G is contained in exactly two circuits of this set.

For our considerations we need some more concepts.

A dominating circuit in a graph G is a generalization of a hamiltonian circuit.
It is a circuit C such that E(G − V (C)) = ∅. The CPTT implies, see [12],
for every cubic graph G with dominating circuit C the existence of a certain
type of matching with respect to C, namely: G has a matching M such that

1. M ∩ E(C) = ∅;
2. G−M has a nowhere-zero 3-flow and;
3. M covers V (G)− V (C)
(see [12]).

G −M having a nowhere-zero 3-flow is equivalent to saying that G −M is
homeomorphic to a cubic bipartite graph. Consequently such a matching is
called a bipartizing matching (BM). The following long-standing conjecture
motivates further investigations of cubic graphs with dominating circuit.

Dominating Cycle Conjecture (DCC): Every cyclically 4-edge connected cubic
graph has a dominating circuit.

Note that the DCC is equivalent to the following statements, see [8]:

1. The Matthews-Sumner conjecture: Every 4-connected claw-free graph is
hamiltonian.

2. Thomassen’s conjecture: Every 4-connected line graph is hamiltonian.

3. Every cubic cyclically 4-edge-connected non 3-edge colorable graph of
girth at least five has a dominating circuit.

We are now able to state the BMC which has been the starting point of the
thesis.

BMC: Every cyclically 4-edge connected cubic non 3-edge colorable graph G
with dominating circuit C has two edge-disjoint bipartizing matchings with
respect to C.

Note that the existence of a BM in a cubic graph G with dominating circuit
C implies the existence of a nowhere-zero 6-flow of G. However, if G has two
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disjoint BMs with respect to C then G has a nowhere-zero 5-flow and a five
cycle double cover, i.e., five 2-regular subgraphs such that every edge of G is
contained in exactly two of them; see [10, 11] for details.

This is essentially the background and has been the motivation for the first
part of the thesis which we describe now.

One main result is that the BMC is not true. We can even construct in-
finitely many counterexamples to this conjecture. As a consequence we also
answer a problem posed in [7]. In determining the structure of a counterex-
ample we achieve results of independent interest. To this end, we introduce
a new intersection graph which generalizes the concept of a circle graph from
hamiltonian circuits to dominating circuits. In terms of this new definition
we obtain a reformulation of the BMC. This reformulation is surprisingly
related to a type of problem, for which Gallai [23] has achieved the following
classical result.

Gallai’s Theorem: The vertex set of every graph can be partitioned into two
sets such that each set induces an eulerian subgraph.

We extend Galai’s theorem by characterizing the graphs for which the ver-
tex set can be covered by two sets of vertices such that each set induces an
anti-eulerian subgraph (i.e every vertex has odd degree). This theorem is im-
portant for the construction of certain counterexamples to the BMC. Finally
we apply several non-standard graph theoretical constructions to obtain our
counterexample. At the end of this chapter some natural modifications of
the BMC are discussed and stated. Note that this first part of the thesis has
already been published by the author, see [17].

Since the BMC is false we modify the definition of a BM and extend the
concept of a BM to a so called generalized BM (gBM) which is not related
to a dominating circuit: a gBM of a cubic graph G is a matching M of G
such that every component of G−M has a nowhere-zero 3-flow and an even
number of 2-valent vertices. We show that every cubic bridgeless graph has
a gBM by proving that the existence of a gBM implies the existence of a
nowhere-zero 6-flow and vice versa. We further generalize the concept of a
gBM and introduce the notion of solving a cubic graph which is an extension
of an already existing concept called frames as follows (frames have been
developed as an attempt to solve the CDCC, see [13, 14]).

Denote by [F ] the set of graphs which is the union of the set of 2-connected
cubic graphs and C2 (the circuit of length 2). We say that a set S ⊆ [F ]
solves a cubic graph G if there is a matching M of G with the following
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properties.

1. Every component of G−M is a subdivision of a graph of S.
2. Every component of G−M has an even number of 2-valent vertices.

Moreover, we say that S solves a family G of cubic graphs if every graph of
G is solved by S.

For instance, the family of 3-edge colorable cubic graphs is solved by S :=
{C2}. We underline that only one element is necessary to solve this huge
class of graphs. We pose the following question:

Which properties must a set S0 ⊆ [F ] have such that every 3-connected cubic
graph G is solved by S0?

Note that such S0, as described above, exists. For instance, the set which
contains all 2-connected bipartite graphs of [F ] solves every 2-connected cubic
graph.

It is conjectured in [14] that every 3-connected cubic graph can be solved by
the set of Kotzig graphs and C2 (Kotzig graphs, see [14], form a subfamily
of the hamiltonian cubic graphs). We need the following notations.

Let H be a graph. Denote by l(H) the smallest natural number such that the
following is true: H contains a circuit C such that for every vertex v ∈ V (H)
there is a path of length at most l(H) connecting v with (a vertex of) C.
For instance, if H is hamiltonian then l(H) = 0. If H has a dominating
circuit but no hamiltonian circuit then l(H) = 1. Let S := {G1, G2, ...} be
an infinite set of graphs such that for very Gi ∈ S there is a Gm ∈ S such
that l(Gi) < l(Gm) with i,m ∈ N, then we write l(S) := ∞.

We prove that S0 with the properties as stated above, must satisfy l(S0) = ∞.
This implies first of all that S0 cannot be of finite order. Second, it implies
that S0 cannot contain hamiltonian graphs only. Hence we disprove the
conjecture stated by Häggkwist and Markström in [14].

In the second part of the thesis we consider certain plane graphs. We call
a plane graph a mosaic if it has only quadrangular and triangular faces.
Hence mosaics form a generalization of triangulations and quadrangulations.
We show that every mosaic corresponds to a unique cubic (not necessarily
planar) graph. We transform nowhere-zero flow problems of arbitrary cubic
graphs into vertex coloring problems of mosaics.

Note that flows have been introduced by W.T.Tutte as a generalization of
coloring plane graphs. For instance, the questions whether a cubic plane
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graph has a face k-coloring (or its dual a vertex k-coloring) or a nowhere-
zero k-flow, are equivalent. (The famous ”Four Color Theorem” thus also
states that every bridgeless cubic planar graph has a nowhere-zero 4-flow.
A cubic graph is not planar in general and thus one cannot color its faces
whereas one still can ask whether the graph has a nowhere-zero k-flow. Hence
the NZ5FC is a natural extension of the already proved 4-color conjecture by
extending the class of plane bridgeless cubic graphs to arbitrary bridgeless
cubic graphs and by increasing the flow-number from 4 to 5.)

Moreover, we show that one can study snarks in the plane. In particular,
we prove that every mosaic which has no proper vertex 4-coloring such that
every quadrangular face Q is incident with an even number of differently
colored vertices (i.e the four vertices incident with Q may have 4 different
colors or 2 different colors) corresponds to a snark. This equivalence enables
us to construct certain snarks. Among the snarks obtained by this approach
there are even cyclically 6-edge connected ones. Note that they can also be
obtained by different methods, see [20, 21, 24].

The usefulness of dealing with mosaics is also expressed by additional results.

First, we generalize a theorem on quadrangulations, i.e. mosaics without
triangular faces, by Hoffmann and Kriegel, see [30, 16]. In particular, we
characterize those mosaics which can be extended to an even triangulation,
i.e. a triangulation where every vertex has even degree, by adding a diagonal-
edge into every quadrangular face.

Second, we improve a theorem of Mohar [25], as follows. Let Q be a quadran-
gulation of the sphere with an arbitrary proper vertex 4-coloring f : V (Q) 7→
{1, 2, 3, 4}. We prove that the number of quadrangular faces of Q whose
vertices are colored 1, 2, 3, 4 in clockwise order equals the number of quad-
rangular faces whose vertices are colored in counterclockwise order 1, 2, 3, 4.
Note that Q may contain quadrangular faces which don’t have 4 different
colors.

Finally, in the last chapter we pose open problems and state several new
conjectures.
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Chapter 2

Bipartizing Matchings

The Nowhere Zero 5-Flow Conjecture (NZ5FC) states that the edges of every
bridgeless graph can be oriented and assigned numbers from the set {1, 2, 3, 4}
such that for every vertex the sum of the incoming values equals the sum of
the outcoming values. A proof of the NZ5FC can be restricted to bridgeless
cubic graphs.

The Bipartizing Matching Conjecture (BMC) by H.Fleischner, [10], is an
approach to this conjecture for cubic graphs with a dominating circuit; a
dominating circuit in a graph is a cycle such that every edge of the graph
is incident with a vertex of the cycle. In view of the Dominating Cycle
Conjecture (DCC) (which states that every cyclically 4-edge-connected cubic
graph has a dominating circuit) it is sufficient for a proof of the NZ5FC to
focus on this type of graphs, since a minimal counterexample to the NZ5FC
must be cyclically 6-edge-connected; see [22].

2.1 Definitions and basic results

For standard terminology we refer to [2, 5]. An eulerian graph is a graph in
which every vertex has even degree (which includes the empty set). An anti-
eulerian graph is a graph in which every vertex has odd degree. Therefore
an anti-eulerian graph has always an even number of vertices.

In this chapter H denotes an arbitrary graph, G a cubic graph and D a
dominating circuit. We write for G often (G,D), and for H, (H,D), in order
to denote which dominating circuit in G, respectively H, we are referring to.

13



14 CHAPTER 2. BIPARTIZING MATCHINGS

A chord vw of (G,D) is an edge with v, w ∈ V (D) and vw /∈ E(D). Define
Q(G,D) := {q1, q2, ..., qk} := V (G) \ V (D).

For v ∈ V (H), Ev denotes the set of edges which are incident with v. For F ⊆
V (H), let ⟨F ⟩H denotes the induced subgraph of H by F . By suppressing a
degree two vertex x we mean the deletion of x and the subsequent addition
of a new edge joining the neighbours of x.

GM D,( M)(G,D)

Figure 2.1: A graph (G,D) with a BM M which is illustrated by dashed
drawn edges. (GM , DM) results from the removement of M and the suppres-
sion of the vertices in (G,D) which are incident with M .

Definition 2.1.1 1. Let M be a matching in H. Then HM is defined to
be the graph which arises by deleting M from H and by suppressing possibly
resulting vertices of degree two. In case H is cubic and V (M) = V (H),
define HM := ∅.
2. Let M be a matching in (H,D) with E(M) ∩ E(D) = ∅. Then DM is
defined to be the cycle of H −M , arising from D by suppressing all vertices
of D with degree two in H −M .

Definition 2.1.2 A bipartizing matching (BM) of (G,D) is a matching
M ⊆ E(G) − E(D) such that GM is bipartite and Eqi ∩ M ̸= ∅ for i =
1, 2, ..., k. Define GM to be bipartite if V (GM) = ∅; see Remark 2.1.3 below.

Remark 2.1.3 Note that D may be a hamiltonian circuit. In this case
Q(G,D) = ∅ and only the first requirement of Def. 2.1.2 must be fulfilled for
M to be bipartizing.

Every (G,D) has a BM which already implies that G has a nowhere zero
6-flow; see [10]. For an illustration of Definition 2.1.1, 2.1.2, see Figure 2.1.
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Definition 2.1.4 Define a snark to be a cubic cyclically 4-edge connected-
graph which is not 3-edge-colorable.

The Bipartizing Matching Conjecture: Let (G,D) be a snark. Then
(G,D) has 2 disjoint bipartizing matchings.

Two disjoint bipartizing matchings (2dBMs) in (G,D) always imply a nowhere
zero 5-flow and a 5-cycle double cover of G (independent on the cyclic edge
connectivity of G); see [9].

2.2 Even and odd colorings

We want to transform 2dBMs into a coloring of a circle graph. To this end
we need the following definitions and results.

Definition 2.2.1 An even (odd) coloring of a graph H is a map f from
V (H) into the set {a, b, c} such that f−1(a) ∪ f−1(c) and f−1(b) ∪ f−1(c)
both induce eulerian (anti-eulerian) subgraphs in H. Set A := f−1(a), B :=
f−1(b) and C := f−1(c). Hence f describes a covering of V (H) by the induced
eulerian (anti-eulerian) subgraphs ⟨A ∪ C⟩ and ⟨B ∪ C⟩.

The next theorem was proved by Gallai and W.K. Chen; see [23].

Theorem 2.2.2 H has an even coloring with C = ∅.

Interestingly, not every H (with |V (H)| > 1) admits an odd coloring, neither
with C = ∅ nor with C ̸= ∅.

Theorem 2.2.3 H has an odd coloring if and only if H has an even coloring
such that A ∪ C and B ∪ C have both even cardinality.

Proof: Let X ∈ {A,B}. Set d(v) = d⟨X∪C⟩(v) and d(v) = d⟨X∪C⟩(v). |V (X ∪
C)| is even, either because X∪C is anti-eulerian or by assumption. Moreover
d(v) + d(v) + 1 = |V (X ∪ C)|. Now the theorem follows.

Example 2.2.4 C2n+1 has no odd coloring.
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2.3 Generalizing the circle graph

We investigate the problem to find 2dBMs in (G,D) with a general definition
of a circle graph which will be extended later. Let D be a hamiltonian circuit
of H. (H does not need to be cubic.) We say two chords c1 := x1x2, c2 :=
x3x4 of (H,D) intersect if one of the following two conditions is fullfilled.
1. c1 and c2 are adjacent.
2. If we start at x1 and pass through D, we pass xi, i = 1, 2, 3, 4 in the order
x1 x3 x2 x4 or x1 x4 x2 x3 .

The circle graph of (H,D) is defined to be the intersection graph of its chords
(w.r.t. D) and denoted by (H,D)c or in short Hc. A vertex in (H,D)c which
corresponds to a chord r in (H,D) will be denoted by rc.

Proposition 2.3.1 [7] Let D be a hamiltonian circuit of G , then (G,D)c is
eulerian if and only if G is bipartite. Hence a matching M ⊆ E(G)− E(D)
is a BM in (G,D) if and only if (GM , DM)c is eulerian.

i

D

z*i

xi iz* * z yi* *

G G G

)(

(

()
c c

xi y*i* )c

i

i

x yii

qi

* y*ix i

z

* c

Figure 2.2: The transformation from G into G∗ and Gc. The edges and vertex
in bold face illustrate the map g on xiqi for i = 1, 2, ..., k.

The next proposition follows directly from Theorem 2.3.4 below and shows
the connection between even colorings and BMs.

Proposition 2.3.2 Let D be a hamiltonian circuit, then (G,D) has 2dBMs
if and only if (G,D)c has an even coloring.

Transform (G,D) into a graph with vertices of degree 3 or 4 by replacing qi
with a triangle containing the neighbours of qi, i = 1, 2, ..., k. Call this graph
(G,D)∗ or G∗ if there is no other dominating circuit mentioned. A vertex
v ∈ V (G) which corresponds to a vertex in V (G∗) will be denoted by v∗. We
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can now extend the definition of a circle graph from a hamiltonian circuit to
a dominating circuit; set

(G,D)c := ((G,D)∗)c.

For (G,D)c we will often write Gc. The triangle of G∗ resulting from the
replacement of a K1,3 with central vertex qi coresponds to a triangle △i in

Gc, i = 1, 2, ..., k; see Figure 2.2. Set T =
∪k

i=1△i.

Definition 2.3.3 Call a map f from V (Gc) into the set {a, b, c, o} a △-
coloring w.r.to T if the following is true.

1. Every triangle of T is colored properly with the colors {a, b, o}.
2. f(v) ̸= o ∀v ∈ Gc − T and f restricted to V (Gc) − f−1(o) is an even
coloring; set A := f−1(a), B := f−1(b) and O := f−1(o).

Note that if D is a chordless dominating circuit of G then C = ∅.

We shall prove the following:

Theorem 2.3.4 (G,D) has 2dBMs if and only if (G,D)c has a △-coloring.

By the above theorem and since 2dBMs imply a nowhere zero 5-flow we
obtain:

Corollary 2.3.5 (G,D) has a nowhere zero 5-flow if (G,D)c has a △-
coloring.

For the proof of Theorem 2.3.4 we need the following lemma below, see Figure
2.3.

Lemma 2.3.6 Replace every chord vw in (G,D) by a K1,3 as follows: Sub-
divide vw and an edge of D incident with w, calling the respective subdivision
vertices q and w′ and add qw′. Denote this graph by (G′, D′). Then the fol-
lowing is true:
1. (G,D) has 2dBMs if and only if (G′, D′) has 2dBMs.
2. (G,D)c has a △-coloring if and only if (G′, D′)c has a △-coloring.

Proof: Denote by R the subgraph induced by the chords of (G,D) and let
R′ denote the subgraph of (G′, D′) whose components are the corresponding
K1,3s.
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1. Denote the 2dBMs in G byM1, M2 and in G′ byM ′
1, M

′
2. Let t ∈ E(G−D)

(t ∈ E(G′ − D′)) and set {j1, j2} = {1, 2}. Define Mj1 (M ′
j1
) dependent on

M ′
j1

(Mj1) as follows:

Case 1. t /∈ E(R) (t /∈ E(R′)). In this case t ∈ Mj1 if and only if t ∈ M ′
j1
.

Case 2. t ∈ E(R) (t ∈ E(R′)).

Assume t ∈ {vw, qv, qw, qw′}, see Figure 2.3.

(a) vw ∈ Mj1 if and only if vq ∈ M ′
j1

and qw′ or qw belongs to M ′
j2
.

(b) vw /∈ Mj1 if and only if qw ∈ M ′
j1

and qw′ ∈ Mj2 , or qw ∈ M ′
j2

and
qw′ ∈ M ′

j1
.

This finishes the proof of statement 1.

GG

w

q

v

w

v

w’ w w’*

v*

G

*

’ ’*

Figure 2.3:

2. Let f be a △-coloring of Gc and f ′ a △-coloring of G′c. Let Rc be the set
of vertices in Gc which correspond to the components R, and let R′c be the
set of vertices of the triangles in G′c which correspond to R′ in G′.

Case 1. x ∈ V (Gc)−Rc, (x ∈ V (G′c)−R′c). In this case we define

f(x) = f ′(x).

Case 2. x ∈ Rc, (x ∈ R′c).

Assume x ∈ {(v∗w∗)c, (w∗w′∗)c, (v∗w′∗)c}. Set

f((v∗w∗)c) = a if and only if f ′((w∗w′∗)c) = b ,

f((v∗w∗)c) = b if and only if f ′((w∗w′∗)c) = a

and
f((v∗w∗)c) = c if and only if f ′((w∗w′∗)c) = o ;

see Figure 2.3. Now the lemma follows.
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Proof of Theorem 2.3.4: By the last lemma we may assume that (G,D) has
no chords. Thus {q1, q2, ..., qk} = V (G)− V (D) are the centers of the K1,3’s.

Let M1,M2 be 2dBMs in (G,D). Using the notation of Figure 2.2, we define
a bijection g :

∪k
i=1Eqi 7→ V (Gc) by setting

g(xiqi) = (z∗i y
∗
i )

c ,

g(yiqi) = (z∗i x
∗
i )

c ,

and
g(ziqi) = (x∗

i y
∗
i )

c .

By the definition of g and sinceM1∩M2 = ∅ it follows that g(M1)∩g(M2) = ∅.
We show that the vertex set g(Mi) for i = 1, 2 induces an eulerian subgraph
in Gc. Then we obtain a △-coloring by defining A := g(M1), B := g(M2),
C := ∅ and O := G− g(M1)− g(M2). Let M ∈ {M1,M2}. Since M is a BM,
(GM , DM) is a bipartite graph. Hence (GM , DM)c is eulerian by Proposition
2.3.1. Since V (g(M)) = V (Gc

M) ⊂ V (Gc) and ⟨g(M)⟩Gc = (GM , DM)c, the
first part of the proof is finished.

Let f be a △-coloring of (G,D)c. We show that g−1(A) and g−1(B) are
2dBMs in (G,D). Let A∗, B∗ and O∗ be the sets of chords in (G,D)∗

which correspond to the sets of vertices A, B, and O in (G,D)c. Since
M1 := g−1(A) and M2 := g−1(B) are disjoint matchings - each covering all
vertices of G − V (D) - it suffices to show that (GMi

, DMi
) is bipartite for

i = 1, 2. By Proposition 2.3.1 this is equivalent to showing that (GMi
, DMi

)c

is eulerian, i = 1, 2. By definition of g and the definition of the sets A,B,O
(see Def.2.3.3) it follows, see Figure 2.2, that

(GM1 , DM1) = ((G∗ −B∗)O∗ , (D −B∗)O∗) .

Since
(GM1 , DM1)

c = ((G∗ −B∗)O∗ , (D −B∗)O∗)c = ⟨A⟩Gc

and ⟨A⟩Gc is eulerian by definition of a△-coloring and because C = ∅, g−1(A)
is a BM in G. The same arguments hold for B. This finishes the proof of
the theorem.

2.4 Construction of a Counterexample

By Theorem 2.3.4 a counterexample to the BMC has no △-coloring. Let
(G,D) have chords. If we want to know whether Gc has a △-coloring w.r.t
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T , we can proceed in the following manner: we color the vertices of the tri-
angles in T (each triangle must be colored by a, b, o), remove O from Gc and
try to extend this coloring of T − O to an even coloring of Gc − O. If we
succeed, we obtain a △-coloring, otherwise we start with a new coloring of
T . If no proper coloring of T can be extended to an even coloring of Gc−O,
Gc has no △-coloring w.r.t T . We will always proceed in this way to show
that G has no 2dBMs. This approach is very promising if |Q(G,D)| = 1 and
Gc − x1 = Gc − y1 = Gc − z1 with {x1, y1, z1} = V (△1). Then we have to
consider only one coloring of △1 since Gc −O is the same for every possible
△-coloring of Gc.

1

1

H

G

H0 0
c

0 G0
c

Figure 2.4: Two cyclically 3-edge-connected graphs without 2dBMs.

Definition 2.4.1 Let H be a graph. Add a new edge xy with x, y /∈ V (H).
Connect both vertices of the new edge to all vertices of H and denote this
new graph by Hxy.

Suppose Hxy is an induced subgraph of a graph H ′′ and suppose {x, y} is
a vertex cut of H ′′. Colour x with color a and y with color b. Then this
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coloring of x and y cannot be extended to an even coloring of Hxy and H ′′

if H has no odd coloring. This consideration implies the following theorem.

Theorem 2.4.2 (G,D) has no 2dBMs if (G,D)c satisfies:
1. |Q(G,D)| = 1.
2. For every pair of vertices {v1, v2} ⊂ V (△1), {v1, v2} is a vertex cut of Gc.
3. Gc = H1x1y1 ∪H2x1z1 ∪H3y1z1.
4. H i has no odd coloring, is connected and H i ∩△1 = ∅ for i = 1, 2, 3.

As an application see the graph G0 in Figure 2.4, already developed by
H.Fleischner, where H i for i = 1, 2, 3 corresponds to a single vertex. A more
complicate graph H0 is also illustrated there. For showing that H0 has no
2dBMs one applies the last theorem and Theorem 2.2.3. We will transform
G0 into a counterexample of the BMC.

In order to make G0 cyclically 4-edge-connected, we will apply the properties
of a graph which are described in the next lemma.

2.5 Weak even colorings

Recall that an even coloring of H, where X ∈ {A,B} requires by definition
that d⟨X∪C⟩(v) is even for all v ∈ X ∪ C. For the next lemma and theorem
the following more general definition is useful.

Definition 2.5.1 Call f : V (H) 7→ {a, b, c} a weak even coloring of H w.r.t.
a set S ⊆ V (H) if d⟨X∪C⟩(v) is even for all v ∈ X ∪ C − S.

Lemma 2.5.2 Let v1, v2 be the vertices of the the graph H1 of Figure 2.5 and
let them be colored as illustrated. Then in both cases there exists no extension
to a weak even coloring f of H1 w.r.t. S = {v1, v2}.

Suppose there is a weak even coloring of H1 satisfying one of the colorings
illustrated in Figure 2.5.

Case 1. f(v1) = a, f(v2) = b.
v3 ∈ A∪C is impossible since otherwise ⟨A∪C⟩ would contain v1 as its unique
odd vertex. Hence v3 ∈ B, implying v4 ∈ B ∪ C ; otherwise v5 /∈ S would
be an odd vertex of ⟨A ∪ C⟩ or ⟨B ∪ C⟩. Clearly, d⟨B∪C⟩(v3) and d⟨B∪C⟩(v4)
have different parity, which is impossible and thus finishes this case.
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v v
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3 4

5

6 ba av1

vv

c

Figure 2.5: H1 denotes the graph on the left hand side. The graph in the
middle illustrates the coloring of case 1 and the graph on the right hand side
the coloring of case 2.

2G H 2

v v21

Figure 2.6:
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Case 2. f(v1) = a, f(v2) = c.
Suppose v3 ∈ B. We conclude as before v4 ∈ B ∪ C, and obtain again a
contradiction because of the different parities of d⟨B∪C⟩(v3) and d⟨B∪C⟩(v4).
Hence v3 ∈ A ∪ C and v4 ∈ A ∪ C. Suppose v3 ∈ A. Hence v6 ∈ B which
implies v4 ∈ C). Thus, independent of the coloring of v5 at least one of
d⟨A∪C⟩(v4) and d⟨B∪C⟩(v4) is odd. Hence v3 ∈ C. v4 ∈ B∪C implies that one
of d⟨B∪C⟩(v3) and d⟨B∪C⟩(v4) is odd independent of the coloring of v5, v6. This
contradiction implies v4 ∈ A. v3 ∈ C and v4 ∈ A implies v5 ∈ A (otherwise,
d⟨B∪C⟩(v5) = 1) and v6 ∈ B (otherwise d⟨A∪C⟩(v6) = 3). This results in the
final contradiction d⟨A∪C⟩(v3) = 3. This finishes the proof.

We remark that for this lemma a and b can be exchanged. Observing that
the preceding lemma can be applied to the more genreal situation where H1

is an induced subgraph and {v1, v2} is a vertex cut, we obtain the following

Theorem 2.5.3 Let f be a weak even coloring of the graph H2 of Figure
2.6, w.r.t. S = {v1, v2}; then f(v1) = f(v2).

Proof: By the last lemma , f(v1) = f(v2) or f(v1) = c and f(v2) = a or b.
By symmetry only f(v1) = f(v2) can occur.

2.6 Graphs without disjoint bipartizing match-

ings

By the above considerations and the following observations we are able to
construct cubic graphs without 2dBMs w.r.to a dominating circuit.
The graph H2 in Figure 2.6 is the circle graph of (G2, D). We insert two
copies of (G2, D) − D to G0, as shown in Figure 2.7 and denote this graph
by J .

Lemma 2.6.1 (G,D) is cyclically 4-edge-connected if Gc satisfies the fol-
lowing two conditions: 1. Gc is connected. 2. Gc − v is connected for all
v ∈ V (Gc) −

∪k
i=1 V (△i) and Gc − vi − wi is connected for all vi, wi in △i,

i = 1, ..., k.

Proof by contradiction. SupposeGc satisfies condition 1 and 2 but λc(G,D) <
4. Since D is a dominating circuit, every cyclic edge cut Z of (G,D) satisfies
|Z ∩ E(D)| > 1. Thus we consider the following cases.
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Case 1. |Z| = 2. Then Z ⊂ E(D) by the preceding inequality. Let P1, P2 be
the components of D − Z. Since |Z| = 2 every chord of G has both ends in
Pi for some i ∈ {1, 2} and the endvertices of every K1,3 of G−E(D) also lie
in the same Pj for some j ∈ {1, 2}. Therefore, every chord of D in (G,D)∗

has both ends in P1 or in P2. For i = 1, 2 set E∗
i := {e ∈ E(G∗) − E(D) :

e is incident with a vertex of Pi}. Then no e1 ∈ E∗
1 crosses any e2 ∈ E∗

2 .
Therefore, {E∗

1 , E
∗
2} corresponds to a vertex partition {V c

1 , V
c
2 } of Gc such

that vc1v
c
2 /∈ E(Gc) for every vc1 ∈ V c

1 , v
c
2 ∈ V c

2 . That is, G
c is not connected,

contradicting the validity of condition 1.

Case 2. |Z| = 3. Since case 1 is already treated we may assume w.l.o.g.
that |Z| is minimal. Then we may write Z = {e1, e2, e3} with e1, e2 ∈ E(D)
and e3 ∈ E(G) − E(D). Then Z0 := Z − {e3} is an edge cut of size 2 in
G0 := G− e3.
(a) e3 is a chord of G. Applying the considerations of case 1 to G0, we obtain
a partition {V c

1 , V
c
2 } of Gc − ec3 such that no edge of Gc − ec3 joins a vc1 ∈ V c

1

with a vc2 ∈ V c
2 . That is Gc − ec3 is disconnected, which contradicts the first

part of condition 2.
(b) e3 is not a chord of G, i.e., it is incident to qi of some K1,3 ⊂ G−E(D).
Set K1,3 = ⟨qi, xi, yi, zi⟩. W.l.o.g e3 = qizi. Then Z∗ := Z0 ∪ {x∗

i z
∗
i , y

∗
i z

∗
i }

is a cyclic edge cut of size 4 in (G,D)∗, and Z0 is a cyclic edge cut (of
size 2) in G∗ − {x∗

i z
∗
i , y

∗
i z

∗
i }. Consequently, by arguments similar to those of

case 1 we conclude that ((G∗ − x∗
i z

∗
i )y∗i z∗i )

c is disconnected, i.e, Gc − vi − wi

is disconnected (where vi(wi) corresponds to (x∗
i z

∗
i )

c ((y∗i z
∗
i )

c) in Gc). This
contradicts the second part of condition 2 and finishes the proof of the lemma.

Theorem 2.6.2 (J,D) is cyclically 4-edge-connected and has no 2dBMs.

Proof: Consider the graph Y c of Figure 2.8. There every vertex vc ∈ Y c

is illustrated without the upper index c. The dashed drawn edges form a
minimal edge cut Ê. Thus Y c − Ê has precisely two components the larger
of which is J c. Set for reasons of simplicity rc1 := (x∗

1z
∗
1)

c, rc2 := (z∗1y
∗
1)

c and
rc3 := (x∗

1y
∗
1)

c. Note that △1 is the only triangle of J c which corresponds to
(the unique) K1,3 of (J,D). A straightforward check shows that J c satisfies
condition 1,2 of Lemma 2.6.1 implying that λc(J) > 3.

Suppose J c has a △-coloring f and suppose for △1 ⊂ J c that the coloring of
V (△1) is as indicated in Figure 2.8; i.e. f(rc1) = a, f(rc2) = o,f(rc3) = b.
By Theorem 2.5.3 and since αc

1, α
c
2 is a vertex cut, f must satisfy f(αc

1) =
f(αc

2), which yields the contradiction d⟨A∪C⟩(r
c
5) = 3 or d⟨B∪C⟩(r

c
5) = 3. The

same contradiction is obtained if f(rc1) = b, f(rc3) = a.
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α β βα 11 2 2

Figure 2.7: The graph J .

If f(rc1) = o, then by an argument symmetric to the case f(rc2) = o (utilizing
f(βc

1) = f(βc
2)) we obtain a contradiction w.r.t rc6.

Finally, if f(rc3) = o, then we obtain an analogouse contradiction w.r.t rc4 by
using both equations f(βc

1) = f(βc
2), f(α

c
1) = f(αc

2).
Having obtained contradictions for all possible colorings of △1, we conclude
that Jc has no △-coloring, i.e., J has no 2dBMs. The theorem now follows.

2.7 Counterexamples to the BMC

Unfortunately, J is 3-edge-colorable because it is hamiltonian, see Figure
2.7. However, we extract the following from the second part of the proof of
Theorem 2.6.2.

Proposition 2.7.1 Suppose Xc is the circle graph of some cubic graph X
such that J c ⊂ Xc and dJc(rci ) = dXc(rci ), i = 4, 5, 6. Then there is no
△-coloring of Xc satisfying f(βc

1) = f(βc
2), f(α

c
1) = f(αc

2).
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Figure 2.8: The graph Y c and J c.
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Now we use Proposition 2.7.1 to construct a counterexample to the BMC.
First, form

Y − := (J − v1w1) ∪ (P10 − l1l9) ∪ {v1l1, w1l9}

where P10 is the Peterson graph ( see Figure 2.9). Y − is not 3-edge-colorable.
Let P ′

10 be a copy of P10 and form the dot product [29] of Y − with P ′
10 to

obtain the final graph

Y := (Y − − {l7l3, v2w2}) ∪ (P ′
10 − {l′10, l′9}) ∪ ({l3l′3, l7l′6, l′1v2, l′8w2})

; see Figure 2.9 (the edges in bold face illustrate the dominating circuit of
(Y,D)) and Figure 2.10 which shows Y .

P ’10

l3’

l2’

l7’

l1

v

w1 w2

v2
1l

l 9

l7

l 3

l2

l 4

l5

l 6

l8

4

5

6

8
’

D
D

v1

w1 w2

v2
1l

l 9

l7

l 3

d1 d2

l9’

1

1l ’0

l ’

l’

’l

l’

P10

Figure 2.9: The transformation from the graph J into the graph Y .
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Theorem 2.7.2 (Y,D) is a counterexample to the BMC.

l
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4
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Figure 2.10: The graph (Y,D) without 2dBMs.

Proof: Y is, by construction, not 3-edge-colorable. Since it is straightforward
to verify the validity of condition 1,2 of Lemma 2.6.1 for the graph Y c (see
Figure 2.8), we conclude that λc(Y ) > 3. Looking again at Y c in Figure 2.8
we observe that it contains two copies of H2 (see Figure 2.6) which have only
αc
1 and αc

2, β
c
1 and βc

2 respectively, in common with the rest of Y c. Therefore,
any △-coloring of Y c -if such coloring exists- must satisfy f(αc

1) = f(αc
2),

f(βc
1) = f(βc

2) (Theorem 2.5.3). However, dY c(rci ) = dJc(rci ) for i = 4, 5, 6
implies that Y c has no △-coloring at all (Proposition 2.7.1). Therefore Y
has no 2dBMs. The theorem now follows.

Remark 2.7.3 Note that we can construct infinitely many counterexamples
to the BMC with the aid of Prop. 2.7.1 (by extending Y ). Moreover we
can transform H0, see Fig. 2.4 or some other (G,D) without 2dBMs into
a counterexample of the BMC with the preceding methods which we used for
the transformation of G0 into Y .

Y has no 2dBMs w.r.t. one given dominating circuit. Figure 2.11 shows
Y with another dominating circuit D1 and 2dBMs of (Y,D1). The edges
marked by an a from one BM. The other BM consists of the chords which
are not marked at all and the edge (incident to q) which is marked by b. (One
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can see straightforward that each described BM is indeed a BM by verifying
that YBM is bipartite.)

q

a
a

a

a a a

a

c

a

a

a

a

a

a

a

a

a
b

c

Figure 2.11: The graph (Y,D1) with 2dBMs. The edges in bold face show
D1.

We suggest the following modified BMC:

Conjecture 2.7.4 Every cubic cyclically 4-edge-connected graph G has at
least one dominating circuit D such that (G,D) has 2dBMs.

In contrast to the BMC we do not demand (G,D) to be a snark. We believe
that if there exists a counterexample to Conjecture 2.7.4 then this counterex-
ample can also be transformed to a snark, see Def. 5.1.2.

The truth of Conjecture 2.7.4 and the truth of the DCC would still prove
the NZ5FC and the CDCC, see [9, 10]. However little is known about the
existence and properties of dominating circuit in cubic cyclically 4-edge-
connected graphs, which makes it hard to hope for a proof of the said con-
jectures via the DCC and the modified BMC.

We state a more promising conjecture than the above one which is very close
to the BMC and which would imply that the CDCC holds for all cubic graphs
which have a dominating circuit. We need to generalize some definitions.
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Definition 2.7.5 Define W to be the class of graphs with the following prop-
erty. Every graph W of W is simple, connected, loopless and has a 2-factor
TW consisting only of triangles △i, i = 1, 2, ..., |V (W )|/3, which are con-
nected to each other in the following manner. Every vertex of V (△i) is
adjacent to an even number of vertices of V (△j), 1 ≤ i, j ≤ |V (W )|/3. Only
two configurations satisfy these conditions which are both illustrated in Figure
2.12.

Figure 2.12: The triangles △i and △j are illustrated in bold face.

Definition 2.7.6 Call a coloring f of V (W ) with W ∈ W with colors {a, o}
a BM-coloring if exactly one vertex of every triangle in TW obtains color a
(i.e two vertices of every triangle obtain color o) and < f−1(a) > is eulerian.

Note that a BM-coloring of (G,D)c with (G,D) having no chords corresponds
to a BM of (G,D) and vice versa.

Conjecture 2.7.7 Let W ∈ W. Then W has a BM-coloring with respect to
TW .

We extend Def.2.3.3 in the following manner.

Definition 2.7.8 Let H be an arbitrary graph with a 2-factor TH consisting
only of triangles. A coloring f : V (H) 7→ {a, b, o} is called a △-coloring of
H if every triangle of TH is colored properly and < f−1(a) > and < f−1(b) >
are eulerian.

Conjecture 2.7.9 Let W ∈ W. Then TW can be decomposed into the sub-
graph Tr consisting of red triangles and the subgraph Tb consisting of blue
triangles such that < V (Tr) > (< V (Tb) >) has a △-coloring w.r.to Tr (Tb).

Theorem 2.7.10 If Conjecture 2.7.9 holds, then every (G,D) has a CDC.
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Proof: We may assume that (G,D) has no chords. Consider (G,D)c and
T(G,D)c , then (G,D)c has by assuming the truth of Conjecture 2.7.9, a de-
composition into Tr and Tb (with the described properties above). Denote
the cubic graph which is obtained by deleting the K1,3’s which correspond to
Tb (Tr) by (G,D)r ((G,D)b). Since < Tr > and < Tb > have a △-coloring,
(G,D)r and (G,D)b have 2dBMs. Since the existence of 2dBMs of a cubic
graph G1 with dominating circuit D1 gives rise to a CDC which contains D1,
i.e. the circuit itself is element of the CDC of G1, the union of such CDCs
of (G,D)r and (G,D)b form a CDC of (G,D), which finishes the proof.





Chapter 3

Solving Cubic Graphs

3.1 B-sets

A bipartizing matching (BM) has been defined as a matching with a given re-
striction with respect to a dominating circuitD. We generalize this definition
in the following manner:

Definition 3.1.1 A generalized BM (gBM) in a cubic graph G is a matching
M such that every component of G − M has a nowhere-zero 3-flow and an
even number of 2-valent vertices.

Note that the deletion of a BM from the cubic graph (G,D) leads to a graph
which consists of one component only which contains an even number of
2-valent vertices.

We apply several times the following well-known results, see [2].

Theorem 3.1.2 A cubic graph G has a nowhere-zero 3-flow if and only if
G is bipartite.

Theorem 3.1.3 A cubic graph G has a nowhere-zero 4-flow if and only if
G is 3-edge colorable.

Definition 3.1.4 We say that a set S of graphs solves a cubic graph G or
G is solvable by S if there is a matching M such that every component of
G−M is a subdivision of an element of S and has an even number of 2-valent
vertices. Moreover we say that the graph H solves G if S := {H} solves G.

33
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Definition 3.1.5 Denote by [B] the set of graphs which is the union of the
set of 2-connected bipartite cubic graphs and C2 (the circuit of length 2). We
call a subset of [B], a B-set.

Proposition 3.1.6 A cubic graph G has a gBM if and only if it is solvable
by a B-set.

Proof: A gBM induces a B-set and vice versa.

See Figure 3.1 for an example of the preceding definitions. The gBM is
illustrated by dashed lines.

Note that every even circuit of length greater than two can be regarded as a
subdivision of C2.

Proposition 3.1.7 A cubic graph G has a nowhere zero 4-flow if and only
if G is solvable by C2.

Proof: If G has a nowhere zero 4-flow then G has a 3-edge coloring. The
perfect matching M consisting of the edges of one color of the 3-edge coloring
of G forms a gBM since G−M consists only of even circuits. Hence C2 solves
G. If G is solvable by C2, then M is a perfect matching and every circuit
of G −M is even. Hence G has a 3-edge coloring and thus a nowhere zero
4-flow.

Hence the question of finding a small B-set for cubic graphs with nowhere-
zero 4-flow is not very interesting. However the definitions above motivate
to search for a general structure in cubic graphs which do not have an even
2-factor. We pose the following questions:

1. Is every bridgeless cubic graph solvable by some B-set?

2. Is there a finite B-set which solves every cubic bridgeless graph?

3. Is there a ”nice” infinite B-set which solves every cubic bridgeless graph?

Since for cubic graphs with nowhere-zero 4-flow we need only one bipartite
graph to solve them, one might suspect that we do not need all bipartite
graphs to solve the remaining bridgeless cubic graphs (see question 2. and
3.).

We need the following known lemma [27] for the next theorem which as a
consequence will answer question 1. above in the affirmative..
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Figure 3.1: A cubic graph solved by the B-set S := {K3,3, C2}.

Lemma 3.1.8 A cubic graph G has a nowhere-zero 6-flow if and only if
there is a 2-flow f2 and a 3-flow f3 of G with sup(f2) ∪ sup(f3) = E(G).

Recall that sup denotes the support of a flow.

Theorem 3.1.9 A cubic graph G has a generalized BM if and only if G has
a nowhere-zero 6-flow.

Proof: Let G have a gBM which is denoted by M . Since every component of
G−M is a subdivision of a bipartite graph or an even circuit itself, G−M
has a nowhere-zero 3-flow denoted by g. Define a 3-flow, f3, of G by setting

f3(e) := g(e) ∀e ∈ G−M

and
f3(e) := 0 ∀e ∈ M .

We construct a 2-flow of G by finding a cycle which contains M in or-
der to apply the above Lemma. Denote the components of G − M by
L1, L2, ..., Lk , k ∈ N.

Moreover denote the subset of edges of M where each edge has only one
endvertex in Li, i ∈ {1, 2, ..., k} by M ′, and denote the set of endvertices of
M ′ in Li by V ′(Li), i = 1, 2, ..., k.

Since V ′(Li) has even order (by definition of a gBM), say li, we can partition
V ′(Li) into disjoint pairs, say {vi1, wi

1}, {vi2, wi
2}, ...., {vili/2, w

i
li/2

}. Since Li

is connected, there is a path from vij to wi
j which we denote by P i

j with
j ∈ {1, 2, ..., li/2}. Set P i := P i

1△P i
2...△P i

li/2
, i = 1, 2, ...., k. Then

C := M ′ ∪ P 1 ∪ P 2... ∪ P k
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is a cycle in G containing M ′.

Set Mi := {e ∈ M −M ′ | both endvertices of e are in Li} and set |Mi| = mi,
i ∈ {1, 2, ..., k}. Let e ∈ Mi. Then Li∪e has a circuit which contains e which
we denote by Ci

e.

Define the cycle Ci := C i
e1△C i

e2 ...△Ci
emi where Mi = {e1, e2, ..., emi}. Hence

C ′ := C1 ∪ C2... ∪ Ck

is a cycle in G which contains M −M ′.

Since C ′ and M ′ are edge-disjoint and since C and M−M ′ are edge-disjoint,
C△C ′ is a cycle in G containing M . Define a 2-flow, f2, of G by setting

f2(e) := 1 ∀e ∈ C△C ′

and

f2(e) := 0 ∀e /∈ C△C ′ .

Since E(G)−M ⊂ sup(f3), M ⊂ sup(f2) and thus sup(f2)∪sup(f3) = E(G),
G has a nowhere-zero 6-flow by the previous Lemma.

Let G have a nowhere-zero 6-flow. By the previous Lemma, G has a 2-flow
g2 and a 3-flow g3 with sup(g2) ∪ sup(g3) = E(G). Since G is cubic, sup(g2)
is a cycle which we denote by C. Moreover, set H := sup(g3).
Consider H ⊂ G. Then V (H) = V (G) since E(H)∪E(C) = E(G) and since
C cannot contain all three edges incident with one vertex.
Set M := E(G) − E(H), then M is a matching in G; (otherwise there
would be two edges e1, e2 in M incident with the vertex, say v0). Since
V (H) = V (G), the remaining edge e3 incident with v0 must be contained in
E(H). But in this case H is not bridgeless (v0 has degree 1 in H) which is
a contradiction to the fact that H has a nowhere-zero 3-flow.

We claim that M is a gBM. Since G−M = H and since every component H ′

of H has a nowhere-zero 3-flow and is thus a subdivision of a bipartite cubic
graph or a circuit, it remains to show that H ′ has an even number of 2-valent
vertices. Suppose by contradiction that a component of G−M , say L, has an
odd number of 2-valent vertices. Then it is also incident with an odd number
of edges of M which have only one endvertex in L. Let M ′

L denote this set
of edges. Since E(C) ∪ E(H) = E(G) and since M ′

L is edge-disjoint from
E(H), they must be contained in E(C). Hence M ′

L forms an odd edge-cut
in G, which is a contradiction since an odd edge-cut cannot be contained in
a cycle. Hence the theorem is proven.
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Theorem 3.1.10 Every bridgeless cubic graph is solvable by a B-set.

Proof: Since every bridgeless cubic graph has a nowhere-zero 6-flow, see [27],
the theorem follows by applying the previous theorem.

Thus the original question 1. has been answered. Denote the Petersen graph
by P10.

Proposition 3.1.11 Let Θi, i = 1, 2, 3 be the three graphs illustrated in
Figure 3.2. Then each Θi, i ∈ {1, 2, 3} solves P10 and no other B-set of
order one, solves P10.

Proof: Each component of P10 − gBM (by Definition 3.1.1) is 2-connected.
Thus it must contain at least one circuit. P10 contains only two disjoint 2-
connected subgraphs, namely two circuits of length 5. Since a circuit of length
5 cannot be a component of P10 − gBM (by Definition 3.1.1), P10 − gBM
is connected. Since C2 is not solving P10 (since P10 is not 3-edge-colorable),
P10 can only be solved by a cubic graph which we denote by H.

Since P10 is not bipartite, |V (H)| ≤ 8. Suppose that |V (H)| = 8, then there
must be an edge e0 such that P10−e0 has a nowhere-zero 3-flow. Since this is
not the case which is easy to verify since P10 is edge-transitive, |V (H)| ≤ 6.

Figure 3.2: Θi, i = 1, 2, 3.

There is exactly one simple bipartite cubic graph of order 6, namely K3,3

which solves P10, see Figure 3.3 on the right side. Consider the case that H
is bipartite, not simple and of order 6. There are exactly two graphs which
fulfill these conditions. Both of them contain two disjoint C2’s. Since every
C2 in them would correspond to a circuit of length at least 5 in P10, the
order of P10 would be greater than 10. Hence K3,3 is the only graph of order
6 which solves P10.

The remaining cubic bipartite graphs of order at most 4 solve both P10 (see
Figure 3.3) which finishes the proof.

Corollary 3.1.12 Every B-set which solves every bridgeless cubic graph must
contain at least one Θi, i ∈ {1, 2, 3}.
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Figure 3.3: The Petersen graph solved by Θi, i = 1, 2, 3. The gBM is illus-
trated by dashed lines.

Corollary 3.1.13 For every gBM M of P10, P10 −M is connected.

The next three theorems do not only hold for B-sets but also for F -sets
(see the next section) which form a generalization of B-sets. Therefore their
proofs are contained in the next section.

Theorem 3.1.14 For every finite B-set S there are infinitely many 3-connected
cubic graphs which are not solvable by S.

Theorem 3.1.15 Let S be the B-set which contains all hamiltonian graphs
of [B]. Then there are infinitely many 3-connected cubic graphs which are
not solvable by S.

For the understanding of the theorem below we need the following definitions.

Definition 3.1.16 The length of a path α is denoted by |α|. Let G be a
graph and Hi, i = 1, 2 a subgraph of G or a subset of V (G). Denote by
P(H1, H2) the set of all paths with connect a vertex of H1 with a vertex of
H2. Then the distance dG(H1, H2) or in short d(H1, H2) := min

α∈P(H1,H2)
|α|.

Definition 3.1.17 Let G be a graph. Denote by U(G) the set of all circuits
of G. Define l(G) := min

C∈U(G)
{ max
v∈V (G)

d(C, v)}. Let S be a set of graphs. Define

l(S) := max
G∈S

l(G) if this maximum exists; otherwise set l(S) := ∞.

Theorem 3.1.18 Let S be a B-set which solves every 3-connected cubic
graphs G, then l(S) = ∞.
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3.2 F -Sets

The concept of a frame has been introduced by Goddyn [13] and investigated
by Häggkwist and Markström, see [14]. We extend the definition of a frame
to F -sets.

Definition 3.2.1 A matching M of a cubic graph G is called an f -matching
if every component of G − M is 2-connected and has an even number of
2-valent vertices.

Definition 3.2.2 Denote by [F ] the set of graphs which is the union of the
set of 2-connected cubic graphs and C2 (the circuit of length 2). We call a
subset of [F ] an F -set.

Note that by definition every B-set is an F -set and every gBM is an f -
matching whereas the converse needs not to be true. As an analogue of
Proposition 3.1.6 we have the following.

Proposition 3.2.3 A cubic graph G has an f -matching M if and only if G
is solvable by an F -set.

Note that M = ∅ may also be an f -matching and that a cubic graph which
contains a bridge has no f -matching and is thus not solvable. We need the
following lemmas for proving the generalized versions of Theorems 3.1.14,
3.1.15 and 3.1.18.

Notation. Set P := P10 − z, z ∈ V (P10) where P10 denotes the Petersen
graph.

Lemma 3.2.4 For every f -matching M of P10, P10 −M is 2-connected.

Proof: P10 contains exactly two disjoint 2-connected subgraphs, namely two
circuits of length 5. The definition of an f -matching thus implies that P10−M
is connected.

Lemma 3.2.5 Suppose a cubic graph G has a minimal 3-edge cut E0. Then
for every f -matching M of G, |M ∩ E0| ∈ {0, 1}.

Proof: Suppose |M∩E0| = 3. Let L be a component of G−E0 which contains
an odd number of 2-valent vertices. Then L− (M −E0) contains at least one
component which has an odd number of 2-valent vertices, in contradiction
to Def. 3.2.1.
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Suppose |M ∩ E0| = 2. Then one edge of E0 is a bridge in a component of
G−M which contradicts Def. 3.2.1. Hence the proof is finished.

Lemma 3.2.6 Let E0 := {e1, e2, e3} be a minimal 3-edge cut in a bridgeless
cubic graph G such that P is one component of G − E0. Then for every
f -matching M of G the following is true.

1. Consider P ⊆ G as a graph and M restricted to P . Then P − M is
connected.

2. G−M contains a 3-valent vertex within V (P ), i.e. at least one vertex of
P ⊆ G is not matched by M .

Proof: Let W0 := {w1, w2, w3} denote the set of the 2-valent vertices of P
and let ei be incident with wi, i = 1, 2, 3. Since E0 is a 3-edge cut and by
Lemma 3.2.5, |M ∩ E0| ∈ {0, 1}.

Proof of the first statement:

Case 1. |M ∩ E0| = 0.
All wi’s are contained in the same component, say L, of P − M since oth-
erwise one component of G − M would have ei, i ∈ {1, 2, 3} as a bridge in
contradiction to Def. 3.2.1. Suppose by contradiction that v′ ∈ V (P ) is in a
different component than L, say L′. Since V (L′)∩W0 = ∅ and by Def. 3.2.1,
L′ ⊆ P must be 2-connected and must therefore contain a circuit. There is
exactly one circuit C ′ in P which contains no vertex of W0, see Figure 3.4
in which case wi, i = 1, 2, 3 is a bridge in G − M contradicting Def. 3.2.1.
Hence P −M is connected.

Case 2. |M ∩ E0| = 1. Let w.l.o.g. M ∩ E0 = e3.
Then w1 and w2 are contained in the same component, say L, of P − M
(otherwise one component of G−M has a bridge consisting of ei, i ∈ {1, 2}).
Suppose by contradiction that v′ ∈ V (P − M) is in a different component
than L, say L′. Since e3 is matched and wi ∈ L, i = 1, 2 there is in G −M
no to L vertex disjoint path connecting V (L′) with a vertex v ̸∈ P − M .
Hence Def. 3.2.1 implies that L′ ⊆ P −M is 2-connected. Hence L′ contains
a circuit C ′. Since L ⊆ P is connected it contains a path β (which is vertex-
disjoint with C ′) connecting w1 with w2. P10 is obtained from P ∪ E0 by
identifying the three endvertices of ei, i = 1, 2, 3 (which are not in P ). Then
β corresponds to a circuit in P10. Since P10 contains only two disjoint circuits
L′ can only be a circuit of length 5 which contradicts Def. 3.2.1.

Proof of the second statement:
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Suppose by contradiction that every vertex of P is matched by M . Since
|V (P )| is odd, |E0 ∩M | = 1. Such matching M covering V (P ) corresponds
to a perfect matching of P10. Hence, P −M would consist of a path and a
circuit of length 5 which contradicts Def. 3.2.1.

Lemma 3.2.7 Let G, E0 and P be as in the previous lemma. Let α be a
path in G which passes through P , i.e. < E(α) ∩ E(P ) > is a path in P
and |E(α)∩E0| = 2. Then for every f -matching with E(α)∩E(M) = ∅ the
following is true: G−M contains a 3-valent vertex within V (α)∩V (P ), i.e.
at least one vertex of V (α) ∩ V (P ) is not matched by M .

Proof: Suppose by contradiction that every vertex of V (α)∩V (P ) is matched
by M . Then α∩P is a component of P −M and thus by the previous lemma
the only component of P −M . Since α ∩ P contains no 3-valent we obtain
a contradiction to the previous lemma which finishes the proof.

Definition 3.2.8 Let G be a graph with d(v) ≤ 3 ∀v ∈ V (G). A vertex v
in G is replaced by P by deleting v, adding P and connecting each former
neighbor of v to one distinct 2-valent vertex of P . We call this operation a
P -inflation of G at v. Moreover, G0, G1, G2, ..., Gk with k ∈ N and G0 := G,
is defined to be the sequence of graphs where Gi, i ∈ {1, 2, ..., k} results from
Gi−1 by applying the P -inflation to every vertex in Gi−1; see Figure 3.4 for
an example.

GG G 21

Figure 3.4: A vertex in a cubic graph G and the corresponding P -inflations
in G1 and G2.
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Definition 3.2.9 Let X1, X2, ..., Xm, m ∈ N, be vertex disjoint subgraphs
in a loopless graph G. Then G/X1, X2, ..., Xm denotes the graph which is
obtained from G by contracting every Xi, i = 1, 2, ...,m to a distinct vertex
and by removing all loops arising by this contraction procedure.

Lemma 3.2.10 Let G be a loopless 2-edge connected graph and Xi, i =
1, 2, ...,m defined as above. Then G/X1, X2, ..., Xm is also 2-edge connected.

Proof: The lemma follows from the the observation that the contraction of
an edge in G or the identification of two of its vertices does not increase the
numbers of bridges in G.

Lemma 3.2.11 For every f -matching M of P k
10, k ∈ N, P k

10 − M is 2-
connected.

Proof: Write Q for P k
10 and Q′ for P k−1

10 , k > 0.

M ⊆ E(Q) corresponds to an edge set M ′ ⊂ E(Q′), where |M ′| ≤ |M | since
M may also contain edges in copies of P ’s which correspond to vertices of Q′.
By Lemma 3.2.5, at most one edge of M is incident with a 2-valent vertex of
a copy of P ⊂ Q. Hence M ′ is a matching of Q′.

We show that M ′ is an f -matching of Q′.

Let Ṗ1, Ṗ2, ..., Ṗz, z ∈ N be the disjoint subgraphs in Q isomorphic to P .
Then

Q′ −M ′ = (Q−M)/Ṗ1 −M, Ṗ2 −M, ..., Ṗz −M .

Therefore and by Lemma 3.2.10 and since every component of Q−M is, by
the choice of M , 2-connected, every component of Q′ −M ′ is 2-connected.

Thus it remains to show that every component of Q′ − M ′, say L′, has an
even number of 2-valent vertices. Since Ṗi−M , i = 1, 2, ..., z is connected (by
Lemma 3.2.6), every component, say L, of Q −M corresponds to a unique
component, say L′, of Q′ −M ′. Therefore and since M −M ′ is contained in
the edge set of the subgraphs (of Q) isomorphic to P and since they satisfy
by Lemma 3.2.6 that Ṗi−M is connected, the number of all 2-valent vertices
in L and L′ have the same parity. Therefore and since L has an even number
of 2-valent vertices by assumption, M ′ is an f -matching of Q′.

The previous considerations imply that Q−M and Q′ −M ′ have the same
number of components. Hence, by induction on k and by Lemma 3.2.4, the
proof is finished.
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Theorem 3.2.12 For every finite F -set S, there are infinitely many 3-connected
cubic graphs which are not solvable by S.

Proof: Let M be an f -matching of P k
10, k ∈ N. P k

10 − M is 2-connected
by Lemma 3.2.11. Moreover, by Lemma 3.2.6 every induced subgraph of P k

10

which is isomorphic to P has at least one vertex which is 3-valent in P k
10−M .

Therefore P k
10 is not solvable by S if the number of disjoint copies of P in

P k
10 is greater than the maximum order of all graphs in S. Hence if k is large

enough, P k
10 is not solvable by S which finishes the proof.

Definition 3.2.13 Let G be a cubic graph and H a graph where every com-
ponent is either a 2-connected cubic graph or a C2. Then H is called a frame
of G if and only if there is an f -matching M of G such that G − M is a
subdivision of H.

Note that if H is a frame of G, then every component of H is in [F ] and
the set of the components of H solves G. It is conjectured in [14] that every
3-connected cubic graph can be solved by certain hamiltonian graphs. With
the help of Theorem 3.2.17 we disprove this conjecture. To achieve this we
need some more notation and a lemma.

Definition 3.2.14 Let G be a graph and Hi, i = 1, 2, a subgraph of G or
a subset of V (G) and α a path in G. Denote by p(α) the number of copies
of P in G with which α has a non-empty vertex-intersection. Moreover set
p(H1, H2) := min

α∈A
{p(α)} where A is the set of all paths which connect H1

with H2.

Definition 3.2.15 Denote by ak := max
v∈Pk

p(Wk, v) where Wk denotes the set

of the three 2-valent vertices of P k.

Lemma 3.2.16 Let ak be defined as above, then ak < ak+1 and a0 = 1.

Proof: For k = 0, a0 = 1 since P 0 = P and p(α) = 1 for every path α in P 0.

Let αn be a minimal path w.r.to p(αn) connecting Wn with a vertex xn ∈ P n

such that p(αn) = an. Every copy of P in P n+1 corresponds to a vertex
in P n. Denote by xn+1 an arbitrary vertex in a copy of P in P n+1 which
corresponds to xn ∈ V (P n). Then there is a path αn+1 in P n+1 connecting
Wn+1 with xn+1 such that

p(αn+1) ≤ an+1 . (1)
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The path αn+1 corresponds to a path βn in P n with

|βn|+ 1 = p(αn+1) . (2)

Since βn connects Wn with xn and since αn is minimal,

p(αn) ≤ p(βn) . (3)

Since one endvertex of βn is a 2-valent vertex of P n, not every vertex of βn

can be in a distinct copy of P in P n. Hence

p(βn) < |βn|+ 1 . (4)

Thus, by (1), (2), (3) and (4), an+1 > an.

Theorem 3.2.17 Let S be an F -set which solves every 3-connected cubic
graphs G, then l(S) = ∞.

Proof: Denote by T (k) the set of all frames of P k
10, k > 0. Lemma 3.2.11

implies that every element of T (k) is cubic and 2-connected. We show that

min
T∈T (k)

{l(T )} → ∞

as k tends to ∞, which proves the theorem since S contains at least one
T ∈ T (k) for every k.

Set Q := P k
10. Consider the ten disjoint induced subgraphs, say Xi, i =

1, 2, ..., 10 of Q isomorphic to P k−1 or vk (by regarding v as the trivial graph
consisting of one vertex). Then each of them contains three 2-valent vertices
and they satisfy

Q/X1, X2, ..., X10 = P10 . (2)

Let M be an f -matching of Q. Denote the 2-connected cubic graph which is
homeomorphic to Q−M by Q(k). Suppose that M is chosen in such a way
that l(Q(k)) is minimal.

A subgraph (vertex set) of Q(k) is denoted by H, say, and the corresponding
graph (vertex set) in Q and Q−M by H, and vice versa. Moreover, denote
the set of 3-valent vertices of a graph J by V3(J).

Let C be a circuit of Q(k) such that max
v∈Q(k)

dQ(k)(C, v) = l(Q(k)). C does not

pass through every Xi since otherwise (2) would imply that P10 is hamilto-
nian. Let us denote one distinct Xi for which V (Xi) ∩ V (C)) = ∅ by X.
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That is, V 3(X −M) ∩ V (C) = ∅. Set

bk := max
x∈V 3(X−M)

dQ(k) (C, x) .

By definition of l(Q(k)) and bk, we have bk ≤ l(Q(k)).

Denote by Wk−1 the vertex set in X corresponding to Wk−1 in X = P k−1 (for
Wk−1, see Definition 3.2.15). By Lemma 3.2.7, every path α in X contains
a 3-valent vertex in X for every copy of P which α passes through in X.
Since, by Lemma 3.2.6, every copy of P ⊆ X contains a 3-valent vertex of
X, bk ≥ max

v∈Pk−1
p(Wk−1, v)− 2 = ak−1 − 2. Since l(Q(k) ≥ bk ≥ ak−1 − 2 and

since by Lemma 3.2.16, ak tends to infinity, the proof is finished.

Corollary 3.2.18 Let S be the F -set consisting of all hamiltonian graphs of
[F ], then S does not solve every 3-connected cubic graph.

Proof: Since l(G) = 0 for every G ∈ S we have l(S) = 0. The Corollary now
follows by the preceding theorem.
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Chapter 4

Mosaics

For standard terminology which is not defined here, we refer to [2, 5]. The
graphs which we consider are of finite order and may have multiple edges and
loops if not otherwise stated. We say a vertex v is incident with a face F if v
is a vertex of the facial cycle of F . A quadrangle is a face with a facial cycle
consisting of 4 distinct edges and 4 distinct vertices. A quadrangulation is a
plane graph where every face is a quadrangle. When we speak of a coloring of
a quadrangle, we always mean a coloring of the vertices of the quadrangle. A
triangle is a face with a facial cycle consisting of 3 distinct edges and 3 distinct
vertices. A snark is defined to be a non-3-edge-colorable cubic graph. All
colorings which are considered are proper colorings if not otherwise stated.
A trail is a walk where no edge appears more than once. An orientation of a

graph G is denoted by
−→
G . Note that we also regard ∅ as a cubic graph.

4.1 Wild maps and mosaics

We introduce a generalization of C-simple 4-regular maps, which we call
”wild maps”. C-simple 4-regular maps are plane 4-regular graphs which
are constructed by superposition of simple closed curves (tangencies are not
allowed); for details see [6, 19].

A wild map of a cubic graph G is, roughly speaking, obtained by drawing
G in the plane with possible crossings, by adding some closed curves and
transforming the crossings (which need to be all transversal) into additional
vertices. For an illustration, see Figure 4.1.

47
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G   G’

Figure 4.1: Producing a wild map G′ (on the right side) of a cubic graph
G (on the left side). The mt-trails which contain no 3-valent vertices are
illustrated (in the middle) by dashed lines.

To be more precise we make the following definitions.

Definition 4.1.1 Let H34 denote the class of graphs where every member,
say H34, is a plane connected graph which satisfies:
1. Every vertex is 3- or 4-valent.
2. Every vertex v is incident with d(v) distinct faces.

Moreover we call the 4-valent vertices in H34 cross-vertices and we set
Vi := {v ∈ V (H34) | d(v) = i, i ∈ {3, 4}}.

Definition 4.1.2 Call two edges e1, e2 which are incident with a vertex v of
a graph in H34, opposite if no face incident with v contains e1 and e2 in its
facial cycle.

Hence, for H34 ∈ H34, no two edges incident with a 3-valent vertex are oppo-
site and every cross-vertex contains 2 disjoint pairs of opposite edges. Call
a trail in H34 transversal if all pairs of consecutive edges in it are opposite.
Then the maximal transversal trails, abbreviated by mt-trails, decompose
uniquely E(H34) by passing through every cross-vertex in a transversal man-
ner. Let us call two (not necessarily distinct) vertices v, w ∈ V3 ⊆ V (H34) to
be trans-adjacent if there is an mt-trail S such that S ∩ V3 = {v, w}. Note
that for every mt-trail S, |S ∩ V3| ∈ {0, 1, 2}.

Definition 4.1.3 Call H34 ∈ H34 a wild map of a cubic graph G if there is
a bijection between V (G) and V3 ⊆ V (H34) such that two (not necessarily
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α

Figure 4.2: A mosaic X, illustrated in bold face, of the Petersen graph P10.

distinct) vertices in G are adjacent if and only if the corresponding vertices
in V3 are trans-adjacent. Then we denote H34 by G′.

From the above definition it follows that every mt-trail in G′ which contains
a 3-valent vertex corresponds to an edge in G. Note that condition 2 in
Definition 4.1.1 implies that G′ is 2-connected and loopless whereas G may
even be disconnected.

Lemma 4.1.4 Every H34 ∈ H34 is a wild map of a unique cubic graph G.

Proof: Form the unique cubic graph G from V (H34) by letting V (G) = V3 ⊆
V (H34) and by connecting two vertices by an edge if and only if they are
trans-adjacent.

Definition 4.1.5 A mosaic is a connected plane graph X where every face
is a triangle or a quadrangle.

Definition 4.1.6 Let G′ be a wild map of a cubic graph G. Then the dual
graph of G′ is a mosaic which we call, in particular, a mosaic of G.
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See Figure 4.2 for an illustration of a mosaic X of the Petersen graph P10.
There X is constructed from the classical drawing of P10, by transforming
the cross-vertices into vertices to obtain a wild map P ′

10 and by forming the
dual graph of P ′

10.

Since the dual graph of a mosaic is a graph contained in H34 and since this
graph is by Lemma 4.1.4 a wild map of a unique cubic graph, we obtain the
following proposition.

Proposition 4.1.7 Every mosaic corresponds to a unique cubic graph.

Hence every mosaic can be regarded as a mosaic of a special cubic graph; see
Definition 4.1.6.

Since there are infinitely many wild maps of a cubic graph G there are also
infinitely many mosaics of G. Note that a mosaic of G = ∅, is a quadrangu-
lation since a wild map of G = ∅ is a plane 4-regular graph.

4.2 Nowhere-zero flows and mosaics

Nowhere-zero integer flows can be regarded as a natural extension of color-
ing plane graphs according to Tutte’s Theorem [28] which states that every
nowhere-zero k-flow of a plane graph G implies a proper face k-coloring of
G and vice versa. The next theorem states nowhere-zero flow problems of
possibly non planar graphs as special planar problems.

Definition 4.2.1 We define that the cubic graph G = ∅ has a 3-edge coloring
and a nowhere-zero A-flow for every abelian group A of order k > 1.

Theorem 4.2.2 Let X be a mosaic of a cubic graph G and let (A,+) be
an additive abelian group of order k > 1. Then G has a nowhere-zero A-
flow if and only if X has a vertex coloring q : V (X) 7→ A such that every
quadrangle satisfies

q(x1) + q(x3) = q(x2) + q(x4) (4.2.1)

where x1, x2, x3, x4 denotes the vertices of the quadrangle in cyclic order.

Proof: We first prove the second part of the theorem, i.e. we assume that
X has the above vertex coloring. If X is a quadrangulation, then the cor-
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responding cubic graph G = ∅ and has by definition a nowhere-zero A-flow.
Hence we suppose that X is a mosaic which contains triangles.
The dual graph of X is a wild map of G and will be denoted by G′. The
coloring q of V (X) induces by duality a proper face coloring of G′ which we
denote by q′. Let us orient every mt-trail in G′ according to one of its two
possible traversals . Since the set of mt-trails decompose E(G′), we obtain an

orientation of G′ which we denote by
−→
G′. Since every mt-trail which contains

a 3-valent vertex corresponds to an edge in G,
−→
G′ also induces an orientation

of G which we denote by
−→
G .

Assign to every arc e⃗ of
−→
G′ the A-flow value,

f(e⃗) := q′(F )− q′(F̂ ) ,

where F and F̂ are the faces of
−→
G′ incident with e⃗ (i.e e⃗ is an arc of the facial

cycle of F and F̂ ), and F (F̂ ) is on the left (right) side of e⃗. Then, f is a

nowhere-zero A-flow of
−→
G′.

By applying the definition of f towards opposite (Definition 4.1.2) arcs e⃗1,

e⃗2 which are incident with a cross-vertex v ∈ V (
−→
G′) and by using the dual

version of equation (4.2.1) (for the four faces incident with v), it follows that

f(e⃗1) = f(e⃗2). Hence all arcs in an mt-trail in
−→
G′ have the same flow value.

Assign to every arc in
−→
G the flow value of the corresponding oriented mt-trail

in
−→
G′. Then we obtain a nowhere-zero A-flow of

−→
G which finishes the second

part of the proof.

We prove the first part of the theorem. Let g be a nowhere-zero A-flow of
G⃗, where G⃗ denotes a fixed orientation of G. G′ denotes the wild map of G
which is also the dual graph of X.
Every mt-trail in G′ which contains a 3-valent vertex corresponds to an edge
in G. Assign to every such mt-trail in G′ the corresponding orientation and
g-flow value of the corresponding arc in G⃗. To every mt-trail S which does
not correspond to an edge in G, i.e. S is an eulerian subgraph of G′, assign
an orientation and an arbitrary element of A−{0} to S; this covers the case
G = ∅.
Then all these assignments together induce an orientation of G′ which we

denote by
−→
G′ and a nowhere-zero A-flow of

−→
G′ which we call f .

We define a coloring q′ of the faces of
−→
G′, using colors from A by the following

common coloring algorithm: Let one face in
−→
G′ be arbitrarily precolored. Set

q′(F̂ ) := q′(F )− f(e⃗)
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where F and F̂ are the faces incident with e⃗, and F (F̂ ) is on the left (right)
side of e⃗. Then this algorithm executed step by step leads to a coloring of
all faces of G′. For proving that q′ is well defined, see the arguments used in
the proof of Theorem 1.4.5 in [29]. By definition of q′ and since opposite arcs

have the same f -values by definition of
−→
G′, the coloring q′ induces by duality

a vertex coloring of the mosaic X for which equation (4.2.1) is fulfilled for q′

(in place of q). Hence the proof is finished.



Chapter 5

Applications Of Mosaics

5.1 Mosaics of snarks

Recall that in our terminology a snark is a cubic graph which is not 3-
edge colorable. Let q be a vertex coloring of a mosaic X. We say that a
quadrangle Q in X is colored with exactly k different colors if and only if
|{q(v) | v ∈ V (Q)}| = k.

Definition 5.1.1 A vertex 4-coloring of a plane graph is called a q4-coloring
if no quadrangle is colored by exactly three different colors.

Thus, in a q4-coloring every quadrangle is colored with exactly 2 or exactly
4 distinct colors. We obtain the following theorem concerning q4-colorings.

Theorem 5.1.2 A mosaic X has a q4-coloring if and only if the correspond-
ing cubic graph G is 3-edge colorable.

Proof: First suppose that G is 3-edge colorable, then G has a nowhere-zero
4-flow and thus, in general, a nowhere-zero A-flow, where A is an arbitrary
abelian group of order 4, see [29, 28]. Then we obtain, by applying Theorem
4.2.2, and by setting A := Z2 × Z2, a coloring q of X satisfying equation
(4.2.1). Let f be a bijection from Z2 × Z2 into {1, 2, 3, 4}.

We claim that f(q) is a q4-coloring of X (using colors 1, 2, 3, 4). Suppose
not, then there is a quadrangle Q which is colored by exactly three different
colors. Hence two vertices of Q which are non-adjacent in Q, must be colored
with the same q-values which sum up to (0, 0), whereas the two remaining
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vertices must be colored differently which contradicts equation (4.2.1) and
thus finishes the first part of the proof.

Now let a q4-coloring of X be given, using colors 1, 2, 3, 4. Let f be as above.
Then q := f−1(q4) satisfies equation (4.2.1) in Theorem 4.2.2 and thus, G
has a nowhere-zero Z2 ×Z2-flow and therefore a nowhere-zero 4-flow. Hence
G is 3-edge colorable which finishes the proof.

Definition 5.1.3 Let X0 be a plane graph where every face except the face
of infinite area which we denote by F∞ is a triangle or quadrangle; i.e. F∞
may also be a triangle or a quadrangle but need not to be. Let ∂(X0) denote
the facial cycle of F∞ which we name the outer cycle. Let X be the mosaic
which is obtained from X0 by adding one new vertex called α to F∞ and by
connecting α to all vertices of ∂(X0). Let G be the corresponding cubic graph
of X (Proposition 4.1.7) then X0 is called an open mosaic of G. Moreover
G is called the corresponding cubic graph of X0.

For instance X0 := X − α in Figure 4.2 is an open mosaic of P10 and thus
P10 is the corresponding cubic graph of X and X0.

Corollary 5.1.4 Let X0 be an open mosaic of a snark G. Then for every
q4-coloring of X0, the outer cycle ∂(X0) contains all four colors.

Proof: Suppose there is a q4-coloring of X
0 using less than 4 colors for ∂(X0),

then this coloring can be extended to a q4-coloring of the mosaic X. Hence,
by Theorem 5.1.2 we obtain a 3-edge coloring of G and thus a contradiction
to the above assumption that G is a snark.

We have the following more general corollary (of Theorem 4.2.2) which is
analogous to Corollary 5.1.4

Corollary 5.1.5 Let X0 be an open mosaic of a cubic graph G without a
nowhere-zero Zk-flow, k > 1. Let q : V (X0) 7→ Zk − {0} be a vertex coloring
of X0 which satisfies for every quadrangle in X0

q(x1) + q(x3) = q(x2) + q(x4) (5.1.1)

where x1, x2, x3, x4 denote the vertices of the quadrangle in cyclic order.
Then the outer cycle ∂(X0) contains all k colors.

Proof: The proof is analogous to the proof of Corollary 5.1.4, applying The-
orem 4.2.2 in place of Theorem 5.1.2.
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We demonstrate in Figure 5.1 some constructions of snarks which follow
easily from Corollary 5.1.4.

Remark 5.1.6 Note that the so constructed snarks in Figure 5.1 can be
constructed by different methods, see [20, 21, 24]. (If the reader is mainly
interested in snarks, choose k = 4 in the next theorem and its proof. Moreover
replace q by q4 and apply Corollary 5.1.4 instead of Corollary 5.1.5.)

Description of Figure 5.1: on the top, the Blanusa snark is shown together
with one corresponding (overlapping) open mosaic of it. (The open mosaic
of the Blanusa snark is constructed by two open mosaics of the Petersen
graph; see Figure 4.2.) Below are three open mosaics denoted by X1, X2,
X3 illustrated. The outer boundary of Xj, j ∈ {1, 2, 3} is illustrated by
dotted lines. Si, i = 1, 2, ..., 7 is a subgraph of the respective Xj and an open
mosaic itself. The outer boundary of Si is illustrated by the circuit around
the character Si which consists of a path (illustrated by dotted lines) and a
path of length j + 1 illustrated by j edges in bold face; with one exception:
∂(S1) in X3 consists of 6 edges which are illustrated in bold face. Finally, Y
is a subgraph of X2 and an open mosaic itself with E(∂(Y )) = {e1, e2, ..., e5}.

Theorem 5.1.7 Let the corresponding cubic graph of Si, i = 1, 2, ..., 7 in
Figure 5.1 have no nowhere-zero k-flow, k > 1. Then the corresponding
cubic graph G of X0 ∈ {X1, X2, X3} has no nowhere-zero k-flow.

Proof: X0 ∈ {X1, X2, X3}. Suppose by contradiction that G has a nowhere-
zero k-flow. Thus X (Definition 5.1.3) has a coloring q using colors 1, 2, ..., k,
satisfying equation (4.2.1) for A = Zk (Theorem 4.2.2). Moreover, without
loss of generality, suppose that α (Definition 5.1.3) has color k.

1. X0 = X1. Since ∂(Si), i = 1, 2 has by Corollary 5.1.5 a vertex of color k
and since only one vertex vi in ∂(Si) is not adjacent to α, vi must have color
k. Since v1 and v2 are adjacent, X has no coloring q. Hence by Theorem
4.2.2, G has no nowhere-zero k-flow.

2. X0 = X2. By Corollary 5.1.5 and since α has color k, one endvertex of
every edge ej of Sj has color k, j = 1, 2, ..., 5. Since |∂(Y )| is odd, no coloring
q of X is possible. (Note that Y need not to be an open mosaic of a snark.)
Hence by Theorem 4.2.2, G has no nowhere-zero k-flow.

3. X0 = X3. By Corollary 5.1.5 one vertex w of ∂(S1) has color k. Then
there is a unique Si, i ∈ {2, 3, ..., 7} which has 3 vertices adjacent to w. Since
α and w have color k and every vertex of ∂(Si) is adjacent to α or w, ∂(Si)
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cannot contain color k which contradicts Corollary 5.1.5. Hence there is no
coloring q of X. Hence by Theorem 4.2.2, G has no nowhere-zero k-flow.

Remark 5.1.8 (The preceding constructions of snarks by mosaics using Corol-
lary 5.1.4 follow the idea of constructing from one illusionary counterexample
to the 4-color problem another one.) Note that the Blanusa snark is obtained
by X1 as indicated in Figure 5.1. Moreover X1 can correspond to a cyclically
4, X2 to a cyclically 5 and X3 to a cyclically 6-edge-connected snark. This
depends on the structure of the Si’s and Y in Figure 5.1.

5.2 Even triangulations

Definition 5.2.1 A vertex 3-coloring of a mosaic X is called a q3-coloring
if every quadrangle of X is colored with all three colors.

Theorem 5.2.2 A mosaic X has a q3-coloring if and only if the correspond-
ing cubic graph G has a nowhere zero 3-flow.

Proof: Suppose G has a nowhere-zero 3-flow, then G has a nowhere-zero Z3

flow. By setting A := Z3 and applying Theorem 4.2.2 we obtain a coloring q
of X satisfying equation (4.2.1). Let f be a bijection from Z3 into {1, 2, 3}.

We claim that f(q) is a q3-coloring of X, using colors 1, 2, 3. Suppose not,
then there is a quadrangle in X which vertices are colored with exactly two
distinct colors a, b ∈ Z3, satisfying a+a ≡ b+b (mod 3) , a ̸= b (by equation
(4.2.1) of Theorem 4.2.2) which is impossible and thus finishes the first part
of the proof.

Conversely, let a q3-coloring of X be given, using colors 1, 2, 3. Then q :=
f−1(q3) satisfies equation (4.2.1) in Theorem 4.2.2 since 2a ≡ b+ c (mod 3)
where {a, b, c} = Z3. Hence by Theorem 4.2.2, G has a nowhere-zero 3-flow.

Corollary 5.2.3 A mosaic X can be extended to an even triangulation, by
adding one diagonal-edge into every quadrangle, if and only if the correspond-
ing cubic graph G has a nowhere-zero 3-flow.

Proof: Let X be given, and extendable to an even triangulation T as stated
above, then χ(T ) = 3, see [15]. Let f be a 3-coloring of T . Then f induces a
q3-coloring of X. Thus, by Theorem 5.2.2 the corresponding cubic graph G
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Figure 5.1: See Theorem 5.1.7 and the description above.
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has a nowhere zero 3-flow.
Let G have a nowhere zero 3-flow, then X has a q3-coloring by Theorem 5.2.2.
Hence, by connecting in every quadrangle of X the two differently colored,
non adjacent vertices by an edge, one obtains a 3-colorable and thus even
triangulation, which finishes the proof.

Thus we obtain for G = ∅ the following known result, see [16, 30].

Corollary 5.2.4 Every quadrangulation can be extended to an even trian-
gulation by adding one diagonal-edge into every quadrangle.



Chapter 6

Quadrangulations

Since we showed that every quadrangulation has a q3-coloring (Theorem 5.2.2
for the case G = ∅), and thus a 3-coloring such that every quadrangle is
colored with all three colors, one might ask whether the same is true for four
colors. We call a colored quadrangle where all vertices have distinct colors
”multicolored” and a vertex 4-coloring where all quadrangles are multicolored
a ”multicoloring”. We will apply the following definition.

Let us associate with H34 ∈ H34 (see Definition 4.1.1) an intersection graph
which we denote by I(H34) where the mt-trails of H34 are the vertices and
two vertices are joined by an edge if and only if the corresponding mt-trails
in H34 have a cross-vertex in common. We apply the following dual version
of a theorem by Berman and Shank, see [1].

Theorem 6.0.5 Let X be a quadrangulation of the sphere, then X has a
multicoloring if and only if the dual graph of X, denoted by X∗ satisfies:
1. Every mt-trail of X∗ is a circuit.
2. χ(I(X∗)) < 4.

Consider a multicolored quadrangle Q (with colors from {1, 2, 3, 4}). Passing
through clockwisely (anticlockwisely) the facial cycle of Q one encounters the
colors in a certain order which we call clockwise (anticlockwise) color order.
Note that Q has one of the following six clockwise color orders where every
two of them with reverse clockwise color order are presented in a column:

(1, 2, 3, 4) (1, 2, 4, 3) (1, 3, 2, 4)

(1, 4, 3, 2) (1, 3, 4, 2) (1, 4, 2, 3).

59



60 CHAPTER 6. QUADRANGULATIONS

See also Figure 6.2.

Definition 6.0.6 Define {a, b, c, d} := {1, 2, 3, 4}. Let X be a quadrangu-
lation of the sphere and f : V (X) 7→ {1, 2, 3, 4} a coloring of X. Then
T+(a, b, c, d) (T−(a, b, c, d)) denotes the set of multicolored quadrangles of X
with clockwise (anticlockwise) color order (a, b, c, d).

Then T+(a, b, c, d) = T+(b, c, d, a) = T+(c, d, a, b) = T+(d, a, b, c) and
T+(a, b, c, d) = T−(d, c, b, a).

Mohar proved in [25] that |T+(a, b, c, d)| and |T−(a, b, c, d)| have the same
parity.

Theorem 6.0.7 For every quadrangulation X of the sphere and for every
vertex 4-coloring f of X, |T+(a, b, c, d)| equals |T−(a, b, c, d)|.

For an illustration of the theorem see Figure 6.2. For the proof of the above
theorem, we will apply the following lemma.

Lemma 6.0.8 Let H be the plane graph constructed from two circuits C1, C2

of even length k, where C1 is inside C2 and every vertex vi ∈ C1 is adjacent
to wi ∈ C2 where v1, v2, ..., vk (w1, w2, ..., wk) denote the vertices of C1(C2)
in clockwise order, i = 1, 2..., k. Let g : V (H) 7→ {1, 2, 3, 4} be a vertex
4-coloring such that every quadrangle Qi with vertices wi, wi+1, vi, vi+1 (tak-
ing indices mod k) is multicolored. Then the number of Qi with clockwise
color order (a, b, c, d) equals the number of Qi with anticlockwise color order
(a, b, c, d).

Q1 Q2 Q3 Q4

a

a

bc

d

d

c

a

b

c

d

b

a

d

cb

C2

C1

Figure 6.1: A unique multicoloring of H for k = 8.

Proof: For k = 2 the statement is true. Suppose by contradiction that there
is a minimal counterexample Z. Since the Qi’s are multicolored

{g(vi), g(wi)} = {g(vi+2), g(wi+2)} (6.0.1)

for i = 1, ..., k (taking indices mod k). Suppose g(vi) = g(vi+2) (and thus
g(wi) = g(wi+2) by (6.0.1)). Delete vi+1 and wi+1 in H and identify vi with
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vi+2 and wi with wi+2. Then this graph would be a smaller counterexample
than Z. Hence

g(vi) ̸= g(vi+2), g(wi) ̸= g(wi+2) (6.0.2)

must be fulfilled for Z. Then by (6.0.1) and (6.0.2) we obtain a unique col-
oring of Z (ignoring permutations), see Figure 6.1 where k must be divisible
by 4 and g(vi) = g(vi+4) and g(wi) = g(wi+4).

Moreover, by the unique coloring of Z, Qi and Qi+2, as well as Qi+1 and Qi+3

have reverse clockwise color orders. Therefore and since k ≡ 0 (mod 4) the
proof is finished.

Proof of Theorem 6.0.7:
Suppose there is a counterexample Y . We construct a multicolored coun-
terexample by applying the following two operations which either increase
|T+(a, b, c, d)| and |T−(a, b, c, d)| to the same amount or leave both numbers
unchanged:

1. Introduce into every quadrangle Q, colored with exactly 3 distinct colors
a diagonal-edge e connecting the two differently colored vertices. Insert a
2-valent vertex into e colored with the non-used color in Q.

2. Introduce in every quadrangle Q colored with only 2 distinct colors a
diagonal-edge h. Insert a 2-valent vertex into h with one in Q non-used
color, and reapply the first operation.

Let X, f be such a counterexample, where X is the quadrangulation and f its
multicoloring. Then the dual graph of X, denoted by X∗ is a plane 4-regular
graph. By Theorem 6.0.5 every mt-trail in X∗ is a circuit. Denote the set of
mt-trails in X∗ by C. Note that every circuit Cj ∈ C, has even length since
all consecutive edges in Cj are opposite for j = 1, 2, ..., |C|. Let us consider
the face coloring of X∗ induced by f .

Analogously to T+(a, b, c, d) we define U+
B (a, b, c, d) with B ⊆ V (X∗). Then

U+
B (a, b, c, d) (U−

B (a, b, c, d)) denotes the subset of vertices of B such that
for every vertex v in it the four faces around v are colored in clockwise
(anticlockwise) order (a, b, c, d). We obtain the following statement:

By duality every quadrangle of T+(a, b, c, d) in X corresponds to a vertex in
U+
V (X∗)(a, b, c, d) and vice versa. Moreover |T+(a, b, c, d)| = |U+

V (X∗)(a, b, c, d)|.
The analog holds for T−(a, b, c, d) and U−

V (X∗)(a, b, c, d).
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Let us consider an mt-trail Cj ∈ C. Denote the even length of Cj by k.
Every vertex of Cj is incident with four differently colored faces since f is
a multicoloring. Every edge of Cj is incident with 2 distinct colored faces.
Passing through clockwisely all edges of Cj we thus obtain two color sequences
along Cj of same length k. We can regard the two color sequences as vertex
colorings of C1 and C2 in Lemma 6.0.8. We obtain by Lemma 6.0.8 for
j = 1, 2, ...., |C| that

|U+
V (Cj)

(a, b, c, d)| = |U−
V (Cj)

(a, b, c, d)| .

Since C decomposes E(X∗) and since every vertex of X∗ is contained in
exactly two circuits of C we obtain that

∑
Cj∈C

|U+
V (Cj)

(a, b, c, d)| = 2 |U+
V (X∗)(a, b, c, d)|

and that

∑
Cj∈C

|U−
V (Cj)

(a, b, c, d)| = 2 |U−
V (X∗)(a, b, c, d)| .
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Figure 6.2: Multicolored quadrangles of the same clockwise color order are
illustrated with the same type of gray, see Theorem 6.0.7.



6.1. THE CYCLIC CHROMATIC NUMBER 63

By the three above equations it follows that

|U+
V (X∗)(a, b, c, d)| = |U−

V (X∗)(a, b, c, d)| .

By duality we obtain that |T+(a, b, c, d)| = |T−(a, b, c, d)| which finishes the
proof.

6.1 The cyclic chromatic number

By Theorem 6.0.5, not every quadrangulation has a vertex 4-coloring in which
all vertices in every quadrangle obtain different colors. Hence we ask how
many colors do we need to assure such a coloring. We apply the following
well-known definition.

Definition 6.1.1 Let G be a plane graph. The cyclic-chromatic number of
G, denoted by χc(G), is defined as the minimum number of colors which is
needed to color the vertices of G in such a way that vertices which are incident
with the same face are colored differently.

We cite from [4]: ”A graph is said to be 1-embeddable in a surface S if it can
be embedded in S so that each of its edges is crossed by at most one other
edge [26].” A graph 1-embeddable in the plane is called 1-planar. We apply
the following theorem, see [3, 4].

Theorem 6.1.2 Every 1-planar graph has a vertex 6-coloring.

Figure 6.3: The quadrangulation X0.

Denote by Q the set of all quadrangulations.
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Theorem 6.1.3 Let X ∈ Q. Then 4 ≤ χc(X) ≤ 6 and both bounds are
sharp.

Proof: Let X ∈ Q. Denote by X+ the graph which results from X by
adding into every quadrangle of X both chords. Then X+ is 1-planar and
χc(X) = χ(X+). Since X+ contains several subgraphs isomorphic to K4,
χc(X) ≥ 4 follows. By the previous theorem χc(X) ≤ 6. It can be verified
straightforwardly that X0 which is illustrated in Figure 6.3 satisfies χc(X0) =
6. Hence the proof is finished.



Chapter 7

Open Problems and
Conjectures

1. Solving Cubic Graphs.

For the understanding of this part, the reader needs Definition 2.1.2, 3.1.4,
3.1.5, 3.2.13. The following conjecture is an approach to the dominating
cycle conjecture (DCC).

Conjecture 7.0.4 Every cyclically 4-edge connected cubic graph has a hamil-
tonian bipartite cubic graph as a frame.

Note that if Conjecture 7.0.4 is false, then also the DCC is false. This follows
from the fact that every (G,D) has a BM.

The knowledge that a certain structure occurs in every 2-connected cubic
graph could lead to several new results in graph theory. We need the following
definitions.

Definition 7.0.5 A graph is called a cubic parallel series graph if it can be
constructed from a C2 by an alternate sequence of the following two opera-
tions.
1. Connect the two adjacent 2-valent vertices by an edge (i.e. double an
edge).
2. Introduce two subdivision vertices into an arbitrary edge.

Denote the set of all cubic parallel series graphs by S ′.

We conjecture the following.
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Conjecture 7.0.6 Every 2-connected cubic graph is solvable by S := {C2}∪
S ′.

Conjecture 7.0.7 Every 3-connected cubic graph has a cubic parallel series
graph as a frame.

Note that the truth of one of the above two conjectures would imply a new
proof of the 6-flow theorem, see Theorem 3.1.9 and Proposition 3.1.6.

Problem 7.0.1 Denote by MG the set of all 2-connected cubic graphs which
can be embedded on a given surface M. For instance, let M be the torus.
Construct a B-set S which solves every graph of MG and which is minimal
with respect to |S| or l(S). Note that if M is the sphere, every graph of MG

is solved by S = {C2}.

2. Spanning Trees in Cubic Graphs.

The truth of the following conjecture would provide more information about
the structure of cubic graphs.

Conjecture 7.0.8 Every connected cubic graph can be edge-decomposed into
a spanning tree, a set of disjoint circuits and a matching.

3. Bipartizing Matchings and Generalized Circle Graphs.

The investigation of the BMC led to several new questions. For the under-
standing of this part, the reader needs several definitions from the last two
pages of the second chapter.

We know that if a cubic graph has a chordless dominating circuit, then its
circle graph has a BM-coloring. Note that W contains all these circle graphs.
We suspect the following.

Conjecture 2.7.7 Let W ∈ W . Then W has a BM-coloring with respect to
TW .

The truth of the next conjecture would imply the truth of the CDCC for
cubic graphs with dominating circuits.

Conjecture 2.7.9 Let W ∈ W . Then TW can be decomposed into the
subgraph Tr consisting of red triangles and the subgraph Tb consisting of
blue triangles such that < V (Tr) > (< V (Tb) >) has a △-coloring w.r.to Tr

(Tb).
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4. Cycle Double Covers of Cubic Graphs.

A cycle in a cubic graph G is a 2-regular subgraph of G. A 5-cycle double
cover of G is a set of five cycles of G such that every edge of G is contained
in exactly two of these cycles. For a survey on cycle double covers, see [29].
The BMC and frames have been approaches to the CDCC. The conjecture
below is motivated by the following theorem, see [18].

Theorem 7.0.9 Let G be 2-connected cubic graph and C a cycle in G. Then
G has a 5-cycle double cover R := {C1, C2, ..., C5} such that C ⊆ Ci, i ∈
{1, 2, ..., 5} if and only if there is a matching M of G with the following two
properties.

1. G−M has a nowhere-zero 4-flow.
2. G contains two cycles C1 and C2 with C ⊆ C1 such that
E(C1) ∩ E(C2) = M .

We conjecture that the following stronger version of the CDCC is true, see
[18].

Conjecture 7.0.10 Let C be a circuit in a 2-connected cubic graph G. Then
there is a 5-cycle double cover of G such that C is a subgraph of one of these
five cycles.

Note that this conjecture is a combination of the 5-cycle double cover con-
jecture and the strong cycle double cover conjecture, see [29].





Chapter 8

Appendix

8.1 Deutsche Zusammenfassung

Im ersten Teil der Dissertation widerlegen wir die Bipartizing Matching Con-
jecture (BMC). Die BMC steht im Zusammenhang mit zentralen Vermu-
tungen in der Graphentheorie wie zum Beispiel der Cycle Double Cover
Conjecture (CDCC) und der Nowhere-Zero 5-Flow Conjecture. Die BMC
besagt, dass zu jedem zyklisch 4-fach zusammenhängenden und nicht 3-
kantenfärbbaren kubischen Graphen G mit dominierendem Kreis C zwei
kanten-disjunkte Matchings M1 und M2 existieren (welche jeweils bipartizing
matchings heissen), sodass für i = 1, 2 gilt:

1. V (G)− V (C) ⊆ V (Mi).
2. Mi ∩ E(C) = ∅.
3. G−Mi hat einen nowhere-zero 3-flow.

Wir konstruieren unendlich viele Gegenbeispiele zu dieser Vermutung.

Wir verallgemeinern das Konzept eines bipartizing matchings und das Konzept
eines frames. Wir führen den Begriff des Lösens eines kubischen Graphen ein:
Sei [F ] die Vereinigung der Menge der 2-fach zusammenhängenden kubischen
Graphen mit dem Kreis der Länge 2. Wir sagen eine Teilmenge S von [F ]
löst einen kubischen Graphen G genau dann, wenn es ein Matching M gibt,
sodass folgendes gilt:

1. Jede Komponente von G−M ist ein Unterteilung eines Elementes aus S.
2. Jede Komponente von G − M hat eine gerade Anzahl von 2-valenten
Knoten.
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Wir stellen die folgende Frage: Welche Eigenschaften muss eine Teilmenge
S0 von [F ] haben, sodass sie jeden 3-fach zusammenhängenden kubischen
Graphen löst?

Wir benötigen die folgende Definition: Sei G ein Graph, dann bezeichnet
l(G) die kleinste natürliche Zahl, sodass folgendes gilt: G enthält einen Kreis
C sodass die Distanz jedes Knotens aus G zu C kleiner oder gleich l(G) ist.
Sei H eine Menge von Graphen, dann bezeichnet l(H) das Supremum über
alle l-Werte der Elemente von H.

Wir erhalten folgende Antwort zur vorigen Frage: l(S0) = ∞. Das heißt
insbesondere, dass S0 unendlich viele Elemente besitzen muss und nicht
alle davon einen hamiltonschen oder dominierenden Kreis besitzen können.
Dieses Resultat widerlegt einige Vermutungen zum Thema frames. Jene
hätten die Lösbarkeit jedes 3-fach zusammenhängenden
kubischen Graphen durch spezielle hamiltonsche Graphen aus [F ] impliziert.

Weiters zeigen wir, dass die Menge aller bipartiten Graphen aus [F ] jeden
2-fach zusammenhängenden kubischen Graphen löst. Dieses Resultat steht
in engem Zusammenhang mit 6-flows.

Im zweiten Teil der Dissertation untersuchen wir spezielle planare Graphen,
sogenannte Mosaiks. Sie zeichnen sich dadurch aus, nur Länder mit
Kreislänge 3 oder 4 zu besitzen. Jedem Mosaik kann genau ein
kubischer Graph zugeordnet werden, der nicht notwendigerweise planar ist.
Wir transformieren Fragestellungen zu flows in kubischen Graphen in
Knotenfärbungsprobleme von Mosaiks. Wir erhalten dadurch die folgenden
Resultate.

1. Jedes Mosaik, das keine gültige 4-Knotenfärbung derart besitzt, sodass
jedes Land mit Kreislänge 4 eine gerade Anzahl von verschiedenen Farben
hat, entspricht einem nicht 3-kantenfärbbaren kubischen Graphen. Wir er-
halten dadurch neue Konstruktionsmöglichkeiten von snarks.

2. Wir erweitern ein Resultat über Quadrangulierungen der Ebene und
charakterisieren jene Mosaics, die durch Hinzufügen einer Diagonalkante in
jedes Quadrates, d.h. eines Landes mit Kreislänge 4, in eine eulersche Tri-
angulierung der Ebene transformiert werden können.

3. Wir verschärfen ein Resultat über 4-Knotenfärbungen von planaren Quad-
rangulierungen. Wir zeigen, dass für jede gültige 4-Knotenfärbung (mit den
Farben 1, 2, 3, 4) einer planaren Quadrangulierung das folgende gilt: Die
Anzahl der Länder, deren Kreise im Uhrzeigersinn 1,2,3,4 gefärbt sind, ist
gleich der Anzahl der Länder deren Kreise gegen den Uhrzeigersinn 1,2,3,4
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gefärbt sind.

Abschließend stellen wir neue Vermutungen auf.

8.2 Abstract

In the fist part of the thesis we disprove the Bipartizing Matching Conjecture
(BMC). The BMC is related to central conjectures in graph theory such as the
Nowhere-Zero 5-Flow Conjecture and the Cycle Double Cover Conjecture.

BMC: Every cyclically 4-edge connected non-3-edge-colorable cubic graph G
with dominating circuit C contains two edge disjoint matchings (which are
called bipartizing matchings) Mi, i = 1, 2 such that for i = 1, 2,

1. V (G)− V (C) ⊆ V (Mi).
2. Mi ∩ E(C) = ∅.
3. G−Mi has a nowhere-zero 3-flow.

We construct infinitely many counterexamples to this conjecture. We gen-
eralize the concept of a bipartizing matching and a frame and introduce the
notion of solving a cubic graph.

Denote by [F ] the set of graphs which is the union of the set of 2-connected
cubic graphs and the circuit of length 2. We say that a set S ⊆ [F ] solves a
cubic graph G if there exists a matchingM of G with the following properties.

1. Every component of G−M is a subdivision of a graph of S.
2. Every component of G−M has an even number of 2-valent vertices.

We pose the following question: Which properties must a set S0 ⊆ [F ] have
such that every 3-connected cubic graph G is solved by S0?

We apply the following definition. Let H be a graph. Denote by l(H) the
smallest natural number such that the following is true: H contains a circuit
C such that for every vertex v ∈ V (H) there is a path of length at most
l(H) connecting v with (a vertex of) C. Let S be a set of graphs, then l(S)
denotes the supremum over all l-values of the elements of S.

We obtain the following answer to the above question: l(S0) = ∞. This im-
plies that S0 cannot be of finite order and cannot contain hamiltonian graphs
only. We disprove several conjectures on the topic of frames by applying this
result.
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In the second part of the thesis we consider certain plane graphs. We call
a plane graph a mosaic if it has only quadrangular and triangular faces.
Hence mosaics form a generalization of triangulations and quadrangulations.
We show that every mosaic corresponds to a unique cubic (not necessarily
planar) graph. We transform nowhere-zero flow problems of arbitrary cubic
graphs into vertex coloring problems of mosaics. We obtain the following
results:

1. Every mosaic which has no proper vertex 4-coloring such that every quad-
rangular faceQ is incident with an even number of differently colored vertices,
corresponds to a snark. This result leads to new constructions of snarks.

2. We characterize those mosaics which can be extended to an even trian-
gulation, i.e. a triangulation where every vertex has even degree, by adding
a diagonal-edge into every quadrangular face. This result is a generalization
of a theorem about quadrangulations.

3. Let Q be a quadrangulation of the sphere with an arbitrary proper vertex
4-coloring f : V (Q) 7→ {1, 2, 3, 4}. We prove that the number of quadrangu-
lar faces of Q whose vertices are colored 1, 2, 3, 4 in clockwise order equals
the number of quadrangular faces whose vertices are colored in counterclock-
wise order 1, 2, 3, 4. Note that Q may contain quadrangular faces which
don’t have 4 different colors. This result is a sharpening of a theorem about
quadrangulations.

Finally, we pose open problems and state several new conjectures.
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