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Introduction 

INTRODUCTION 

THE CYTOSKELETON 

A single living cell is the very foundation of every organism and enables with its 

function life itself. Every cell has a tightly regulated internal skeleton, referred to 

as the cytoskeleton, in order to provide strength to withstand mechanical forces, 

change shape, to be able to move and to rearrange internal structures for cell divi-

sion. All of these processes require a network of three distinct cytoskeletal fila-

ment systems: the actin filament network, the microtubule (MT) network and the 

intermediate filament (IF) network. These filament systems are characterized by 

distinct mechanical properties, dynamics and biological functions. The focus of 

this work is set on the IF network and its associated cytolinker protein plectin.  

 

Intermediate filaments 

Intermediate filaments (IFs) represent the most heterogeneous type of cytoskeletal 

filaments. They are assembled into ropelike structures with a diameter of 10-12 

nm and share a common domain organisation. (Strelkov et al., 2003). IFs are sub-

grouped into five types according to their amino acid sequence homology (Table 

1) (Fuchs and Weber, 1994; Herrmann et al., 2007). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type I/ II1 Type III2 Type IV3 Type V4 Type VI5 

Keratins Desmin Neurofilaments Lamins Bfsp1 
  Vimentin α-Internexin   Bfsp2 
  GFAP Nestin     
  Synemin   Syncoilin     
  Peripherin       
  Paranemin       

1 Type I/II: Acidic (type I) and basic (type II) keratins form the IF network of simple and strati-
fied epithelia.  
2 Type III: Desmin and synemin are abundantly expressed in skeletal muscle. Vimentin is the 
principal IF component of cells of mesenchymal origin, and GFAP of neuroglial cells. Periphe-
rin is expressed in the peripheral nervous system and is thought to play a role in neurite elonga-
tion during development and axonal regeneration after injury.  Paranemin supports the forma-
tion of an extended desmin network.  
3 Type IV: Neurofilaments, alpha-internexin and nestin fulfill numerous functions in neurons. 
Syncoilin links desmin IFs to the dystrophin-associated protein complex.  
4 Type V: Lamins are the major component of the nuclear lamina.  
5 Type VI: Bfsp1 and Bfsp2 are lens specific components of beaded filaments, a unique cy-
toskeletal element of the vertebrate lens. Modified from Herrmann et al., JCI, 2009; Eriksson et 
al., 2009. 

Table 1: Types of mammalian intermediate filaments 
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A large family of genes encodes IF-proteins. Three lamin genes contribute to the 

nuclear family of IF proteins and 67 genes encode the cytoplasmatic IF-proteins 

(Coulombe and Wong, 2004; Herrmann et al., 2007). All IFs display a tripartite 

structure (Fig. 1) consisting of a central alpha-helical rod domain that is required 

for dimerisation of IF proteins and non helical head and tail domains that vary in 

length, biochemical properties and aminoacid sequence. The head and tail do-

mains are essential for interaction with cytoskeletal components (Herrmann et al., 

2007; Herrmann et al., 2009). In contrast to tubulin and actin, the cytoplasmic IF 

system is not required for survival at the single-cell stage, as it is absent from 

most bacteria, yeast, and drosophila (Herrmann and Strelkov, 2011).  

 

 

 

Another striking difference to actin filaments and MTs is that IFs do not bind and 

metabolize nucleotides for their assembly and disassembly. No defined nucleator 

has so far been found for IF assembly. Type I/II IFs (keratins) tend to assemble 

near actin rich focal contacts, whereas some other IF- proteins such as the type III 

IF protein peripherin are transcribed and assembled along MTs in a process called 

dynamic co-translation (Chang et al., 2006; Windoffer et al., 2006). Cytoplasmic 

IF-proteins dimerize in a parallel fashion via their α-helical rod domains; these 

very stable dimers then associate laterally in an anti-parallel half-staggered fash-

ion to tetramers. Eight tetramers form a structure called unit length filament 

(ULF) (Fig. 2) (Herrmann et al., 2009). ULFs anneal longitudinally to form short 

Figure 1: Tripartite structure of the IF monomer. The conserved central alpha-helical rod 
domain contains heptad repeats, such that every first and fourth amino acid side chain is hydro-
phobic, generating a hydrophobic seam which  is required for coiled-coil formation and thus 
subunit dimerisation. The head and tail domains of IF monomers have no defined structure and 
vary in length and sequence. Head and tail domains are crucial for interaction with a variety of 
cytoskeletal proteins.   
Source: http://www.cytochemistry.net/Cell-biology/intermediate_filaments.htm 
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filaments, and filament growth proceeds further by end-to-end association of 

filaments. Finally, nascent filaments (diameter: ~16 nm) are radially compacted 

into mature, ~11 nm thick IFs (Goldman et al., 2008; Herrmann et al., 2009). The 

regulation of IF-assembly still remains largely unclear. For neurofilaments it has 

been demonstrated that their assembly is regulated temporally. Neurofilament 

subunit proteins are synthesized in the cell body and are transported down the 

axon either as assembled IF subunits, what accounts for a fast assembly, or as 

filament polymers that are transported slowly (Yan and Brown, 2005).  

 

 
 
 
 
 
 
 

 

 

IFs are generally believed to form stable structures but the filaments display dy-

namic properties depending on the subcellular context. For some types of IFs a 

dynamic mechanism similar to actin treadmilling has been reported (Stewart and 

Roberts, 2005), but the mechanism of their steady state dynamics remains unclear. 

Furthermore it has been demonstrated that IF proteins can be turned over rapidly 

in a proteasome-dependent way through phosphorylation or ubiquitination (Ku 

and Omary, 2000). Moreover, phosphorylation of ULFs can prevent the lateral 

Figure 2: Assembly of intermediate filaments. Phase 1: IF-monomers dimerize in a parallel 
fashion into dimers via their α-helical rod domains. Dimers form a staggered tetramer which 
associates into a protofilament consisting of eight tetramers. Protofilaments associate laterally to 
a ropelike structure called unit length filament (ULF). Phase 2: ULFs anneal longitudinally to 
other ULFs and short filaments. Phase 3: In addition the filaments compact radially until a di-
ameter of 11nm is reached. Modified from Herrmann et al, JCI, 2009. 
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assembly of the filaments. But it remains unclear whether the subunits disassem-

ble at the end or from within the rod domain (Sihag et al., 2007). 

IFs are cross-linked to MTs and actin filament networks, but also to adhe-

sive complexes including desmosomes and hemidesmosomes (HDs) (see below). 

The subcellular distribution and cytoarchitecture of IFs varies according to cell 

type and tissue. In keratinocytes of the epidermis, IFs are organised as a dense 

network spanning the cytoplasm and are anchored at cell-matrix and cell-cell ad-

hesions (Svitkina et al., 1996; Fuchs and Cleveland, 1998; Jefferson et al., 2004). 

In polarized simple epithelial linings, the IF-network is more sparse and located 

predominantly at the apical pole of the cell (Coulombe and Omary, 2002). In the 

myofibers of skeletal muscle, the IF-network is concentrated at the Z-lines and 

thus interlinks adjacent sarcomers (Lazarides, 1980; Ball and Singer, 1981; Clark 

et al., 2002). In fibroblasts, the filaments span the whole cytoplasm in close prox-

imity to MTs (Ball and Singer, 1981). Finally, in myelinated CNS neurons, IFs 

form parallel arrays in the axioplasm outnumbering MTs.  In this case IFs are re-

quired for radial growth of axons (Cleveland and Hoffman, 1991). 

All types of IFs contribute to the structural support of the tissue. Recent 

works however, demonstrate more versatile functions of IFs. For instance, in epi-

dermal keratinocytes the IF network is required for the mechanical stability of the 

tissue, as demonstrated by the fact that mutations in the genes encoding keratin 5 

(K5) or keratin 14 (K14) cause the skin blistering disease Epidermolysis Bullosa 

Simplex (EBS) (Bonifas et al., 1991; Coulombe et al., 1991; Lane et al., 1992). 

However, the epidermal keratins K6, K16 and K17 are induced in the epidermis 

of the ectoderm and adult skin upon wounding and other stressors and play a ma-

jor role in epidermal wound healing (Takahashi and Coulombe, 1997; Mazzalupo 

et al., 2003; Lessard and Coulombe, 2012). Moreover, keratins are involved in 

regulation of protein synthesis and cell growth as they associate with a number of 

regulatory factors. K17 interacts with 14-3-3 proteins thereby regulating mTOR 

signalling and consequently protein synthesis (Bertram et al., 1998; Kim et al., 

2006). Other binding partners of type I and II IF proteins involved in translational 

control are the eukaryotic elongation factor 1Bγ (eEF1Bγ), eukaryotic initiation 

factor 3 (eIF3), and the tumour suppressor protein tuberous sclerosis complex 1 

(Tsc1) (Bousquet et al., 2001; Lin et al., 2001; Haddad et al., 2002). Furthermore, 
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the type III IF protein vimentin is required for regulation of the ERK pathway 

(Kumar et al., 2007). Finally, IFs have been reported to be involved in death re-

ceptor-mediated apoptosis (Inada et al., 2001; Oshima, 2002; Yoneda et al., 2004; 

Tong and Coulombe, 2006), protein targeting (Ameen et al., 2001), vesicle trans-

port (Styers et al., 2004), cell adhesion (Kowalczyk et al., 1999), and formation of 

the nuclear lamina (Shimi et al., 2010; Worman, 2012).  

 

The Plakin Protein Family  

The plakin protein family (Janda et al., 2001) consists of large modular proteins 

which are also referred to as cytolinkers (Leung et al., 2002; Sonnenberg and 

Liem, 2007). They crosslink the various cytoskeletal networks to each other and 

to membrane-associated adhesion junctions (desmosomes and HDs) (Leung et al., 

2001). A set of several domains is variably arranged to form these large cytoskele-

tal linker proteins (Fig. 3) (Sonnenberg and Liem, 2007). The plakin domain con-

tains α-helical bundles, so called spectrin repeats, and is common to all protein 

members except for epiplakin (Sonnenberg and Liem, 2007). This domain medi-

ates direct or indirect binding to adhesion receptors (Rezniczek et al., 1998; 

Koster et al., 2003; Koster et al., 2004; Al-Jassar et al., 2011). The actin-binding 

domain (ABD), located in the N terminus displays differences in amino acid se-

quence among the members of the plakin family (Leung et al., 2001). The coiled-

coil domain contains heptad repeats (first and fourth amino acid side chains are 

hydrophobic) and mediates dimerization of plakin molecules (Sonnenberg and 

Liem, 2007). The plakin repeat domain (PRD) consists of a varying number of 

repeating subdomains termed A, B and C and enables interaction with IFs (Leung 

et al., 2002). The spectrin repeat (SR) domain found in the plakin protein family 

(Roper et al., 2002; Sonnenberg et al., 2007) is believed to form a flexible rod-like 

structure that separates the distinct functional domains within the plakin molecule 

(Roper et al., 2002; Sonnenberg and Liem, 2007). Furthermore, in some plakins, 

two speclialized domains, the Gas2 homology domain (GAR) and the Gly-Ser-

Arg repeat domain (GSR), can directly bind to MTs (Leung et al., 2001). Several 

isoforms are generated through alternative splicing of all members of the plakin 

family except of envoplakin, periplakin and epiplakin.  
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MACF1 is the vertebrate homologue of the ancestral gene for plakin, the short-

stop/kakapo gene, in D. Melanogaster and C. Elegans (Leung et al., 2001). It con-

tains a MT-binding GAR domain and an ABD and thus facilitates interaction of 

the actin and MT network at the periphery. Furthermore it anchors MTs to cell-

cell junctions (Karakesisoglou et al., 2000). 

BPAG1 is expressed in various isoforms (Roper et al., 2002). The major 

isoform BPAG-1a is expressed in the neurons and interlinks the NFs to the actin 

network (Leung et al., 2001). BPAG1-e is an epithelial isoform that anchors kera-

tin IFs to HDs and is required for epidermal integrity (Yang et al., 1996; Liu et al., 

2012). BPAG-1b is expressed in muscle and has the potential to interact with all 

cytoskeletal structures (Steiner-Champliaud et al., 2010).  

Desmoplakin is expressed as two isoforms (Green et al., 1990). The larger iso-

form is located at desmosomes (which are formed in epithelial and cardiac muscle 

cells) where it anchors IFs (Norgett et al., 2000; Getsios et al., 2004; Yin and 

Green, 2004). The smaller isoform contains a shortened rod domain and shows a 

more restricted tissue distribution (Angst et al., 1990; Green et al., 1990). 

        

 

 

 
 
 
 
 
 
 
 

Plectin (>15 isoforms)

BPAG1e

BPAG1n/Dystonin

BPAG1b

BPAG1a

Envoplakin
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Plectin (>15 isoforms)

BPAG1e

BPAG1n/Dystonin

BPAG1b

BPAG1a

Envoplakin

Periplakin

Epiplakin

ACF7/MACF

Desmoplakin

Figure 3: The plakin family. Common to all members of the plakin protein family except for 
epiplakin is the plakin domain. The plakin domain consists of up to nine pairs of spectrin re-
peats interrupted by a Src homology 3 domain (SH3). The highly conserved actin-binding do-
main (ABD) is shared by plectin, BPAG-1a, BPAG-1b and both MACF isoforms. It consists of 
two calponin homology domains (CH1 and CH2).  All members except of BPAG and MACF 
isoforms contain a coiled-coil rod domain, which is required for dimerization of plakin mole-
cules. The Gas 2 homology domain and the Gly-Ser-Arg repeats domain (GSR) mediate inter-
action with MTs in both MACF isoforms and BPAG1a and BPAG1b. The spectrin repeat do-
main (SR) forms a long rod-like structure which structurally separates the functional domains of 
the plakin molecule. The plakin repeat domain PRD is built up of varying numbers of repeating 
unit subdomains, which are termed A, B or C, depending on their degree of similarity to each 
other. This domain is expressed in both desmoplakins, plectin, BPAG1e, envoplakin and epip-
lakin. Modified from Rezniczek, unpublished data. 

CH domains

rod domain

PRD

SR
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Envoplakin and Periplakin are highly homologuous to each other and function as 

a complex, which is associated with desmosomes and keratinocyte cornified enve-

lopes (Ruhrberg et al., 1996; Ruhrberg et al., 1997; DiColandrea et al., 2000). 

Periplakin has been shown to interact with vimentin and K18 (Choi et al., 2002; 

Karashima and Watt, 2002).  

Epiplakin, which is widely expressed in epidermal keratinocytes, liver, and 

pancreas, interacts predominantly with keratin IFs (Fujiwara et al., 2001; 

Spazierer et al., 2003; Jang et al., 2005; Spazierer et al., 2006). Epiplakin has been 

proposed to act as a platform in signalling pathways, similar to plectin, but this 

has yet to be determined (Spazierer et al., 2006; Yoshida et al., 2008; Matsuo et 

al., 2011).  

 
Plectin 
 
 
Plectin is the best studied and most versatile member of the plakin family. De-

pending on the isoform, plectin has a molecular mass between 499-533 kDa 

(Foisner and Wiche, 1987; Rezniczek et al., 2003). Plectin isoforms are expressed 

in all mammalian cell types except for certain neurons (Wiche, 1998). Plectin dis-

plays a tripartite structure consisting of a central ~200 nm long rod domain 

flanked by two large globular domains (Fig. 4) (Wiche, 1998).  

 

 

 

 

 

 

 

Figure 4: Schematic structure of plectin. Plectin displays a tripartite structure that consists of 
a central rod flanked by N-terminal and C-terminal globular domains. Differences in the N 
terminus, generated through alternative splicing, determine subcellular localization of plectin. 
The N-terminal part harbors an actin-binding domain (ABD, red) comprised of two calponin 
homology domains and a plakin domain (brown). The ABD mediates binding to ITGβ4, 
vimentin and the EF-ZZ domain of dystrophin and utrophin. Plectin isoforms with non coding 
first exons lack the first CH domain and thus binding to ITGβ4. The plakin domain contains 
nine plakin repeats (PRD) and a central SH3 domain. The C-terminal domain consists of six 
highly homologous plakin repeat domains that comprise plectin modules (blue ellipses) and a 
linker domain. The linker domain between plectin repeats 5 and 6 harbors an IF-binding site 
(small blue circle). In the sixth domain a unique protein kinase p34cdc2 phosphorylation site is 
indicated. Modified from Rezniczek et al, Dermatol Clin, 2010.   
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The C-terminal globular (CG) domain comprises six highly homologous repeat 

regions (Janda et al., 2001). An IF-binding domain is located between repeat 5 

and 6, and repeat 6 harbors a binding site for protein kinase p34cdc2 (Foisner et al., 

1996; Nikolic et al., 1996; Wiche, 1998). Additionally, the β4 subunit of integrins 

binds between repeat 2 and 6 of the CG domain (Rezniczek et al., 1998). The N-

terminal domain harbours a plakin domain (Sonnenberg et al., 2007; Ortega et al., 

2011) and an actin-binding domain (ABD) (Andrä et al., 1998), which is built up 

of two calponin homology domains (CH1 and CH2) (Sevcik et al., 2004). The N-

terminal part of the molecule is required for its targeting to adhesion complexes at 

the membrane, such as desmosomes and HDs (Rezniczek et al., 1998).  

Plectin is encoded by the PLEC gene that is located in humans on chromo-

some 8 (q24) (Liu et al., 1996) and on chromosome 15 in mouse (Fuchs et al., 

1999). Several isoforms of plectin are generated through alternative splicing. 

Eleven exons (1-1j) are spliced into a common exon 2, three exons are spliced 

upstream of exon 1c (-1, 0a, 0) and two exons are optionally spliced within the 

ABD-enconding exons (2α, 3α) (Fuchs et al., 1999; Rezniczek et al., 2003). The 

resulting isoforms display characteristic expression patterns in different cells and 

tissues (Fuchs et al., 1999; Andra et al., 2003; Rezniczek et al., 2003; Rezniczek 

et al., 2007; Hijikata et al., 2008; Kostan et al., 2009; Burgstaller et al., 2010). P1a 

is expressed in epithelial tissues, such as skin, lung and small intestine (Fuchs et 

al., 1999; Andra et al., 2003). P1d is expressed in skeletal and heart muscle (Fuchs 

et al., 1999; Rezniczek et al., 2007; Konieczny and Wiche, 2008). P2α-containing 

isoforms were reported in skeletal and heart muscle as well as in brain, whereas 

P3α-containing isoforms were exclusively found in brain (Fuchs et al., 1999; 

Fuchs et al., 2005). Moreover, the different isoforms display specific subcellular 

localizations. P1a for example is targeted to HD-like structures in keratinocytes, 

P1b to mitochondria and P1f to mature focal adhesions (Andra et al., 2003; 

Rezniczek et al., 2003; Rezniczek et al., 2007; Winter et al., 2008; Burgstaller et 

al., 2010; Wiche and Winter, 2011).  

Plectin contains multiple interaction domains for various cytoskeletal pro-

teins enabling it to bind to and interlink all of the cytoskeletal filament networks. 

With its IF-binding domain at the C terminus, plectin interacts with vimentin, 

GFAP, cytokeratins, the neurofilament triplet proteins, desmin and lamin B 
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(Pytela and Wiche, 1980; Foisner et al., 1988; Foisner et al., 1991; Tian et al., 

2006). Binding to IF is tightly regulated by phosphorylation of plectin involving 

protein kinases such as cAMP-dependent protein kinase A (PKA), 

Ca2+/phosphatidyl-dependent kinase C (PKC) (Foisner et al., 1991) and M-phase 

activated protein kinase p34cdc2 (Foisner et al., 1996). Furthermore, plectin can 

interact with MAPs and was postulated to interlink the MT system with the IF 

network (Herrmann and Wiche, 1987; Foisner et al., 1995). The highly conserved 

ABD at the N- terminus allows binding to actin filaments (Andrä et al., 1998; 

Fontao et al., 2001). In this context, plectin has been shown to interact preferen-

tially with fibronectin fibril-aligned fibrillar adhesions and with actin stress- fibers 

in focal contacts (Burgstaller et al., 2010). Moreover, plectin associates with 

fodrin and α-spectrin (Herrmann and Wiche, 1987), proteins of the cortical cy-

toskeleton that may play a major role in maintaining cell polarity as shown for 

fibroblasts (Burgstaller et al., 2010). Finally, plectin was shown to interact with 

the desmosomal protein desmoplakin (Eger et al., 1997). Likewise, it connects 

HDs to the keratin-IF network as it directly binds to ITGβ4 via the ABD and the 

plakin domain of P1a (Rezniczek et al., 1998; Kostan et al., 2009). As a major 

structural component of HDs, plectin mechanically stabilizes basal epidermal 

keratinocytes (Andrä et al., 1997; Ackerl et al., 2007). Furthermore plectin is cru-

cial for the regulation of actin stress fiber dynamics (Andra et al., 1998), and also 

acts as docking platform for signalling complexes in several cell types (Lunter and 

Wiche, 2002; Osmanagic-Myers and Wiche, 2004; Gregor et al., 2006; Takawira 

et al., 2011). In muscle several isoforms of plectin are required to maintain the 

integrity of myofibrils (Andrä et al., 1997). P1f anchors desmin-IFs to the dystro-

glycan complex (DGC) of the membrane and P1d attaches desmin-IFs to the Z-

disks of the sarcomere (Rezniczek et al., 2007; Konieczny et al., 2008, Winter et 

al., 2008). In addition, P1 links desmin-IFs with the nuclear membrane and the ER 

and P1b connects the sarcomere with mitochondria (Konieczny et al., 2008, Win-

ter et al., 2008). 

This work is focused on P1a, the plectin isoform predominantly expressed 

in skin. Therefore, what follows is an introduction into the biology of the skin and 

its substructures.  
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Figure 5: Tissues of the skin. The skin is 
composed of three tissue layers. The 
subcutis consists of collagens and fat 
cells. It harbors blood vessels and neurons 
and regulates body temperature. The 
major components of the dermis are fi-
broblasts and collagen bundles. In addi-
tion, blood and lymph vessels transport 
nutrients to the  epidermis.  Hair  follicles, 
 lymph vessels, sensory axons and sweat glands are also found in the dermis. The epidermis is 

the outermost layer of the skin and consists of keratinocytes, melanocytes, Langerhans cells and 
Merkel cells. Source: 
http://www.mayoclinic.com/health/medical/IM00941 

Biology of the Skin 

 

The skin functions as a barrier between the organism and the environment. It pro-

tects the organism from external factors such as microbes, harmful chemical sub-

stances and UV-radiation, regulates temperature of the body and controls loss of 

water to the environment. Three major tissue layers, the subcutis, the dermis and 

the epidermis, built up the skin and enable its vital function (Fig. 5) (Schiebler and 

Korf, 2007).  

 

The deepest layer of the skin, the subcutis, consists of a dense network of colla-

gens and fat cells. It conserves body heat and contributes to wound healing of the 

skin (Schiebler and Korf, 2007). The dermis lies in between the subcutis and the 

epidermis and contains blood and lymph vessels, hair follicles, sweat glands, col-

lagen bundles, fibroblasts and nerve endings (mechano- und thermoreceptors) 

(Schiebler and Korf, 2007). Through the dermis nutrients are supplied to the epi-

dermis and elasticity is provided to the skin. Nerve cell endings in the stratum 

papillare of the dermis mediate sensory functions.  

The outermost skin layer, the epidermis, is subdivided into distinct zones depend-

ing on the differentiation state of the keratinocytes (Fig. 6), the major cell type of 

the epidermis (Schiebler and Korf, 2007). The outermost zone, the stratum 

corneum is characterized by flat anucleated keratinocytes adjacent to a nucleated 

epidermis consisting of stratum granulosum, stratum spinosum and stratum ba-

sale. The stratum basale is the basal keratinocyte cell layer of the epidermis that is 
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found in thick skin and is composed of several layers of flattened dead cells. The outermost 
layer of the epidermis is the stratum corneum. The cells of the stratum corneum are completely 
filled with keratin filaments which are embedded in a dense intercellular matrix of lipids.  
Source: http://www.lab.anhb.uwa.edu.au/mb140/corepages/integumentary/integum.htm 

Figure 6: Structure of the epidermis. The epidermis is 
build up from keratinocytes. The stratum basale is a 
single keratinocyte cell layer that is in contact with the 
basal lamina and contains a population of stem cells. The 
basal lamina separates the epidermis from the underlying 
dermis. Differentiating keratinocytes migrate up towards 
the epidermal surface, thereby forming the stratum 
spinosum. In the stratum spinosum the cells are attached 
to each other via desmosomes. The stratum granulosum 
consists of several layers of flattened keratinocytes, 
which contain lamellar granules. These granules consist 
of proteins and lipids that are crucial for the barrier func-
tion of the skin. The   stratum   lucidum   is    exclusively 

in contact with the basal lamina. It contains a population of epidermal stem cells. 

Other types of cells found within the stratum basale are melanocytes, Langerhans 

cells, and Merkel cells (Habif, 2010). The stratum corneum is the principal barrier 

against percutaneous penetration of chemicals and microbes and withstands me-

chanical forces. Furthermore, it regulates the trans-epidermal water loss (TEWL) 

(Madison, 2003). The stratum corneum is composed of corneocytes and a hydro-

phobic intercellular matrix consisting of lamellar lipid layers (Candi et al., 2005). 

Corneocytes represent terminally differentiated keratinocytes which are organised 

in condensed layers of flattened cells through keratin- filament- bundling proteins 

such as filaggrin (Candi et al., 2005). Dysfuction of filaggrin leads to impaired 

epidermal barrier homeostasis (Presland et al., 2000; Presland et al., 2004; Palmer 

et al., 2006; Smith et al., 2006). Corneocytes are characterized by the presence of 

the cornified envelope, which replaces the plasma membrane of differentiated 

keratinocytes. It consists of keratins that are enclosed within an insoluble amal-

gam of proteins, which are cross-linked by transglutaminases and surrounded by a 

lipid envelope (Candi et al., 2005). Together, keratins and filaggrin constitute 80-

90% of the protein mass of the epidermis (Candi et al., 2005). The cornified enve-

lope proteins, including involucrin, loricrin and trichohyalin, are crucial for 

TEWL and barrier repair (Nemes and Steinert, 1999; Egberts et al., 2004; Candi et 

al., 2005; Elias et al., 2010).  
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The nucleated epidermis is also significant for barrier function as it assists in pre-

venting extensive water loss by forming a second barrier against harmful sub-

stances. Several substructures that stabilize or interconnect keratinocytes are cru-

cial for the barrier function.  

Keratins form the IF network of the epidermis and thus are the major 

structural proteins expressed in keratinocytes (Alonso and Fuchs, 2003; Gu and 

Coulombe, 2007; Uitto et al., 2007). They span the whole cytoplasm and termi-

nate at desmosomes and HDs (Gu and Coulombe, 2007; Uitto et al., 2007; 

Coulombe et al., 2009). Keratins play a major role for mechanical stability of 

keratinocytes (Gu and Coulombe, 2007; Coulombe et al., 2009). A unique set of 

keratins is expressed in keratinocytes depending on the skin- type and differentia-

tion state of the skin (Fig. 7).  

 

 

 

 

 

 

 

K5 and K14 are expressed in basal keratinocytes attached to the basal membrane, 

whereas K1 and K10 are exclusively expressed in differentiating cells (Coulombe 

et al., 2009; Alonso and Fuchs, 2003). K6, K16 and K17 mark hyper-proliferating 

keratinocytes upon inflammation or wound healing (Uitto et al., 2007; Gu and 

Coulombe, 2008). Additionally, K9 is exclusively expressed in the palmoplantar 

suprabasal keratinocyte layers and K2e is expressed in the upper spinous and 

Figure 7: Tissue-specific expression of keratins. In proliferating basal keratinocytes K5 and 
K14 are the major IF components. Upon terminal differentiation expression of K 5 and K14 is 
downregulated and K1 and K10 are upregulated. K2e expression is restricted to the spinous and 
granular layer of the epidermis. K9 is found exclusively in the granular layer of thick skin 
(palm or soles), whereas K4 and K13 are restricted to the spinous layer of oral mucosa. K6, 
K16 and K17 are wound inducible genes that are expressed during inflammation or wound 
healing.  
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granular cells of adult epidermis (Candi et al., 2005; Gu and Coulombe, 2009). 

Defects in the keratin network give rise to trauma-induced skin blistering diseases, 

and in some cases also result in impaired barrier repair, and extensive water loss 

(Gu and Coulombe, 2007; Schweizer et al., 2007; Coulombe et al., 2009; McLean 

and Moore, 2011). 

Tight junctions are cell-cell connections that control paracellular transport 

of molecules and separate the apical and basolateral domains of epithelial cells 

(Brandner et al., 2006; Kirschner et al., 2010). Occludin, claudin, JAM-1, zonula 

occludens protein 1 and MUPP-1 represent tight junction proteins in the nucleated 

epidermis (Kirschner et al., 2010; Brandner, 2006). The synthesis of these pro-

teins precedes formation of the stratum corneum and knockout of tight junction 

proteins is lethal due to extensive water loss. Consequently, these proteins were 

proposed to function as a rescue system in case of an impaired stratum corneum 

and assist in basic barrier function (Ohnemus et al., 2008; Kirschner et al., 2010). 

Adherens junctions and desmosomes play an important role in barrier 

function as they provide stable intercellular adhesion (Lai-Cheong et al., 2007; 

Niessen, 2007; Jonca et al., 2011). Consequently, their dysfunction compromises 

epidermal barrier function and tissue integrity (Ishii and Green, 2001; Lai-Cheong 

et al., 2007). 

Gap junctions control the communication between cells and are expressed 

under hyper-proliferative conditions such as occurring during wound healing 

(Coutinho et al., 2003). Mutations in gap junction proteins have also been impli-

cated in epidermal barrier diseases (Lai-Cheong et al., 2007).  

Additional, very important junctional complexes of skin cells are the HDs. 

As they play a major role in this thesis their structure and function will be dis-

cussed in more detail below.  

 
Hemidesmosomes (HDs) and hemidesmosome-enriched protein complexes 

(HPCs) 

 

HDs are trans- membrane adhesion complexes that mediate stable attachment of 

basal keratinocytes to the underlying basal lamina through connecting keratin IFs 

to the extracellular matrix (Nievers et al., 1999; Pulkkinen et al., 1999; Litjens et 
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al., 2006; Margadant et al., 2008). They are mainly expressed in epithelial tissues 

exposed to mechanical stress such as the epidermis. Furthermore, HDs are in-

volved in wound healing, carcinoma invasion and were recently proposed to func-

tion as signalling platform (Mercurio et al., 2001; Lipscomb and Mercurio, 2005). 

The hemidesmosomal attachment apparatus (Fig. 8) consists of a set of unique 

proteins. The transmembrane laminin receptor ITGα6β4 connects the basal mem-

brane to the ECM through direct interaction with laminin322. The cytolinker pro-

teins plectin and BPAG1e interlink the basal membrane with the keratin IF net-

work of basal keratinocytes (K5 and K14) through direct binding to ITGβ4 

(Rezniczek et al., 1998; de Pereda et al., 2009). The association of lamin-322 with 

ITGα6β4 is crucial for the formation of HDs (Koster et al., 2004), whereas the 

mechanical stability is contributed through the elastic properties of the rod like 

structure of the plakin domains within plectin and BPAG1e (de Pereda et al., 

2009).  

 

 

 

 

 

 

 

Although HDs provide mechanical stability they appear also as dynamic struc-

tures at least when visualized in cultured keratinocytes. Most cultured cells fail to 

assemble tissue-like HDs ex vivo but cultured keratinocytes possess hemidesmo-

some-enriched protein complexes (HPCs) (Carter et al., 1990; Ozawa et al., 

2010). HPCs show dynamic properties during cell migration and cell division 

(Geuijen and Sonnenberg, 2002; Tsuruta et al., 2003; Ozawa et al., 2010). HPCs, 

Figure 8: Tissue localization and protein composition of HDs. (A) HDs link the basal 
epithelial cell layer to the basal membrane. (B) A HD is a multiprotein complex, which core 
proteins are α6β4 integrin receptor and the cytolinker protein plectin. The K5/K14 filaments 
are linked to laminin-322, a component of the extracellular matrix. The integrity of HDs de-
pends on a vertical force component which is comprised of P1a dimer interaction with ITGb4 
and K5/K14. In addition, the lateral association of multiple P1a dimers is likely to generate a 
horizontal force component (arrows), parallel to the membrane (violet sheet), which supports 
the stability of HDs.  
Modified from: Alberts, Molecular Biology of the cell, 5th edition and Walko et al., 2011. 
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enriched in ITGβ4 and BP180, have been shown to be assembled and disassem-

bled in a relatively short time frame, and to move in the plane of the membrane 

(Geuijen and Sonnenberg, 2002).  

The turnover of HPCs is tightly regulated through posttranslational modi-

fications of HD proteins (Santoro et al., 2003; Rabinovitz et al., 2004; Wilhelmsen 

et al., 2007; Kariya and Gu, 2011; Mizutani et al., 2011; Yu et al., 2012). A key 

step in HD assembly and disassembly is the regulation of the plectin-ITGα6β4 

association (Santoro et al, 2003; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). 

Plectin targeting to developing HDs requires binding to ITGα6β4 (Fig. 8B). This 

binding is mediated through the ABD and plakin domain of P1a with the FnIII-

1/2-domain of the ITGβ4 subunit. It is weakened through phosphorylation of the 

cytoplasmic CS domain of the ITGβ4 subunit (Rezniczek et al., 1998; de Pereda 

et al., 2009; Kostan et al., 2009; Koster et al., 2004). The Ca2+-binding protein 

calmodulin can compete with the ITGβ4 subunit for association with the ABD of 

P1a. This process has been implicated in the initial stages of HPC disassembly 

during Ca2+-induced keratinocyte differentiation (Kostan et al., 2009). Further-

more, it has been shown in C.elegans that minor fluctuations in the quantity of 

HD proteins greatly affect the stability of HDs (Zahreddine et al., 2010). Taken 

together regulatory processes such as posttranslational modifications and regula-

tion of HD components, but also competition events and cellular trafficking are 

required to fine tune the turnover of HDs and HPCs (Zhang and Labouesse, 

2010).   

 

Keratinocyte stem cells and epidermal homeostasis 

 

Mammalian epidermis consists of a multilayered sheet of keratinocytes, inter-

spersed with hair follicles, sebaceous glands, and sweat glands (Fuchs, 2007; 

Jones et al., 2007; Blanpain and Fuchs, 2009; Fuchs, 2009). All compartments of 

the skin are turned over throughout adult life. In the interfollicular epidermis 

(IFE), proliferation is confined to keratinocyte cells in the basal cell layer that 

adhere to the underlying basement membrane. On commitment to terminal differ-

entiation, basal keratinocytes lose their attachment to the basement membrane and 

move into the suprabasal cell layers, where they reach their final stage of differen-
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tiation as anucleated corneocytes, which are ultimately shed from the cell surface 

(Jones et al., 2007). This requires the migration of differentiating keratinocytes 

from the basal layers to the stratum corneum. As a consequence of the constant 

renewal of the epidermis, there is a continual requirement for proliferating cells to 

replace cells lost by terminal differentiation (Jones et al., 2007).  

Stem cells are defined as individual cells that retain a high capacity of self 

renewal throughout adult life and are able to produce daughter cells committed to 

terminal differentiation (Lajtha, 1979). In the epidermis, stem cells have been lo-

cated in the sebaceous glands, the hair follicle bulge and the inter-follicular epi-

dermis (IFE) (Watt et al., 2006; Jones et al., 2007; Fuchs, 2008; Blanpain and 

Fuchs, 2009; Fuchs, 2009). In undamaged epidermis hair follicles, IFE, and seba-

ceous glands are each thought to be maintained by their own discrete stem cell 

population (Jones et al., 2007; Blanpain and Fuchs, 2009). However, under some 

circumstances, such as wound healing, any of the three stem cell populations is 

capable of producing any of the differentiated lineages of the epidermis (Owens 

and Watt, 2003; Jones et al., 2007). Therefore, it seems likely that lineage selec-

tion of the different stem cell progeny is determined by local environmental cues 

and that lineage plasticity is a response to alterations in environmental signalling 

after injury, transplantation, or genetic manipulation (Owens and Watt, 2003; 

Jones et al., 2007).  

Several models for epidermal homeostasis have been developed through-

out the last decade. The earliest model, the “epidermal proliferative unit” (EPU) 

model, was based on the existence of transit amplifying (TA) cells. TA cells are a 

stem cell progeny that are destined to undergo terminal differentiation; however, 

after leaving the basal lamina the cells undergo a limited number of rounds of 

divisions before differentiation is initiated (Potten, 1981). The EPU model was 

based on the observation that in some areas of mouse IFE the cells are arranged in 

columns with a single cornified cell on top (Mackenzie, 1970; Jones et al., 2007). 

These columns are attached to each other in a regular array and are based on one 

single slowly cycling stem cell at the centre of the basal layer that maintains the 

surrounding TA and differentiating cells (Fig. 9) (Potten and Allen, 1975).  

 



17 
 
Introduction 

 

 

 

A more recent model of epidermal homeostasis now proposes a single population 

of dividing cells in the basal cell layer that maintains IFE (Clayton et al., 2007; 

Jones et al., 2007). In this model, the two daughter cell clones produced by these 

dividing cells can adopt three different types of fate: i) both cells can remain 

highly proliferative, ii) both can terminally differentiate, iii) one cell remains pro-

liferative while the other is committed to terminal differentiation (Fig. 10) (Clay-

ton et al., 2007; Jones et al., 2007).  

 

  

 

 

 

 

The clone fate simply depends upon the average cell division rate and the propor-

tion of divisions that result in asymmetric fate (Clayton et al., 2007). To guarantee 

that the steady-state population of proliferating basal cells is maintained at a con-

Figure 9: The epidermal proliferative unit (EPU) 
model as described by Potten (Potten, 1983).  The 
epidermis is organized in stacks (inset) of cornified 
keratinocytes which are maintained by the basal cells 
underlying it. A single stem cell (green) produces com-
mitted transit amplyfing cells (blue) that undergo several 
rounds of cell division before entering terminal differen-
tiation (red). The differentiating cells leave the basal cell 
layer and migrate vertically towards the cell surface 
through the suprabasl cell layers. Adopted from Jones et 
al., 2007. 

Figure 10: A novel model for epidermal homeostasis. (A) Determined cell fate as proposed in 
the EPU model. (B) A new empirical quantitative model based on clonal labeling data (Clayton, 
2007). Proliferative basal keratinocytes (purple) may produce daughter cells with three different 
fates: both cells may remain proliferative, both may terminally differentiate (red), or one may 
remain proliferative and one may become postmitotic. The possibilities of the three types of fates 
are given in percentages. The choice of fate is a stochastic process and not determined by the num-
ber of proliferation rounds. 
Adopted from: (Jones and Watt, Cell Stem Cell, 2007) 
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stant level, the proportion of cells that create daughter cells with each type of 

symmetric fate must be equal (Clayton et al., 2007; Jones et al., 2007). This model 

is however incompatible with the existence of TA cells (Clayton et al., 2007). 

Asymetric division is a proposed mechanism of keeping the balance be-

tween proliferating and differentiating cells (Fig. 11) (Hall and Watt, 1989; Watt 

and Hogan, 2000; Blanpain and Fuchs, 2009). The orientation of the mitotic spin-

dle at a right angle to the basal membrane leads to the formation of one proliferat-

ing and one differentiating daughter cell. This model was observed in adult human 

oesophageal epithelium and in the developing mouse epidermis but not in adult 

epidermis (Koster and Roop, 2005; Clayton et al., 2007; Blanpain and Fuchs, 

2009). Another proposed mechanism is populational asymmetry, where the rates 

of two daughter cells which remain highly proliferative and two daughter cells 

which differentiate are equal (Hall and Watt, 1989; Watt and Hogan, 2000; Jones 

et al., 2007).  

 

 

 

 

 

Under certain conditions the balance between proliferating and differentiating is 

required to shift. During wound healing the balance has to shift towards proliferat-

ing cells. Three different mechanisms have been described for this process: First, 

stem cells that are quiescent are mobilized to move into the suprabasal layers 

(Ghazizadeh and Taichman, 2001; Claudinot et al., 2005; Ito et al., 2005; Levy et 

Figure 11: Three models of epidermal homeostasis based on asymetric stem cell division. 
Organization of the mitotic spindle perpendicular to the basal membrane (BM) leads to a daughter 
cell that is committed to become a terminally differentiating spinous cell (SP) and a stem cell 
(SC) that retains the ability of self renewal. Mitotic spindles that are oriented laterally to the BM 
result in a daughter cell that delaminates and migrates into the suprabasal layer. Another possibil-
ity is the generation of transit amplifying (TA) cells that undergo some cell divisions before they 
differentiate and thus leave the proliferative niche. Adopted from (Fuchs and Novak, 2008).  
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al., 2005), second, the proportion of daughter cells that become two proliferating 

cells is increased, and third the differentiation of committed cells is reversed to 

generate proliferative cells (Fuller and Spradling, 2007).  

The next section is focused on the skin blistering disease Epidermolysis 

bullosa simplex (EBS) and its subtype EBS-Ogna which is caused by a mutation 

in the gene coding for P1a. 

 
 

Epidermolysis Bullosa Simplex 

 

Epidermolysis bullosa (EB) defines a group of rare genetic diseases in which bul-

lous lesions (fluid filled cavities and large blisters) occur in the skin after expo-

sure to mechanical stress (reviewed in Coulombe et al., 2009). Three major forms 

of EB have been defined using clinical and histological criteria. The dystrophic, 

junctional and simplex forms of EB are characterized by loss of tissue integrity in 

the upper dermis, the dermo-epidermal interface, and within the epidermis, re-

spectively (Fine et al., 2000; Sawamura et al., 2010).  

This work focuses on the epidermally manifested type of epidermolysis 

bullosa simplex (EBS). EBS is a clinically and genetically heterogeneous skin 

disease that affects the basal keratinocyte layer of the epidermis and is character-

ized by rupture of basal keratinocytes upon exposure to mechanical stress 

(Coulombe et al., 2009; Sprecher, 2010). With rare exceptions, EBS is inherited in 

an autosomal dominant fashion (Coulombe et al., 2009; Sprecher, 2010). Several 

forms of EBS can be distinguished depending on the localization of the blisters as 

well as on the presence of additional phenotypes. In EBS-generalized (also called 

Koebner) the whole body is affected by blistering, in the mildest EBS-localized 

(also called Weber-Cockayne) the blistering occurs in peripheral parts of the body 

such as hands or feet, and in the severe EBS Dowling-Meara blisters occur on the 

whole body but in a characteristically clustered pattern (Coulombe et al., 2009). 

Other forms of EBS are less frequent. EBS-mottled pigmentation (EBS-MP) is 

characterized by abnormal skin pigmentation, EBS-muscular dystrophy (MD) 

displays a progressive limb-girdle type of muscular dystrophy, EBS-pyloric 

atresia (PA) shows gastric abnormalities, and EBS-Ogna exclusively manifests as 
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skin blistering (Koss-Harnes et al., 2002; Fine et al., 2008; Coulombe et al., 2009; 

Chiaverini et al., 2010; Sprecher, 2010).  

Most forms of EBS result from mutations in the genes encoding K5 or 

K14 (Coulombe et al., 2009; Sprecher, 2010). These proteins form the het-

erodimeric substructure of the IF network in keratinocytes (Fuchs et al., 1981; 

Fuchs, 1995). Thirty six percent of all keratin disease-associated mutations are 

located within the genes of K5 and K14 (Szeverenyi et al., 2008). Furthermore, 

some types of EBS are caused by mutations in the genes coding for plectin (EBS-

MD, EBS-PA, EBS-Ogna, EBS-limb girdle) and ITGα6β4 (Fine et al., 2008). 

With the help of transgenic mouse models it was shown that mutations in the K14 

rod domain lead to the formation of keratin-positive aggregates of amorphous 

proteins in the cytoplasm, similar aggregates have been observed in the most se-

vere forms of EBS (Coulombe et al., 1991; Ishida-Yamamoto et al., 1991; Vassar 

et al., 1991). The symptoms of EBS diseases became apparent shortly after birth 

due to the embryonic onset of K5/ K14 gene expression (Kopan and Fuchs, 1989; 

Byrne et al., 1994).  

In vitro, EBS-causing mutations in K5 and K14 render individual IFs in 

solutions less elastic and more prone to breakage upon exposure to shear stress as 

tested with rheological methods (Ma et al., 2001). These alterations became even 

more pronounced when the filaments are incorporated into filament networks un-

der in vitro conditions promoting cross bridging (Ma et al., 2001). In addition, the 

amorphous keratin-positive protein aggregates add to the severity of EBS. The 

misfolded protein response is activated upon aggregation of mutated keratin but if 

it fails to eliminate the aggregates the protein homeostasis of the cell is imbal-

anced leading to elevated cellular stress (Ku and Omary, 2000; Janig et al., 2005). 

Finally, also inflammation processes were proposed to play a role in EBS patho-

physiology (Lugassy et al., 2008; Coulombe et al., 2009). 

 

Epidermolysis Bullosa Simplex Ogna 

 

This rare type of EBS (OMIM:131950) manifests as generalized skin fragility and 

was first identified in 1973 in a Norwegian family living near the small town of 

Ogna (Gedde-Dahl, 1971; Koss-Harnes et al., 2002). Since then the disease has 
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also been described in a German familiy as a result of a de novo mutation (Koss-

Harnes et al., 2002). The underlying mutation was mapped to the human PLEC 

gene on chromosome 8q24 (Liu et al., 1996; Koss-Harnes et al., 2002). Most mu-

tations in the plectin gene are inherited in an autosomal-recessive fashion result-

ing in EBS-MD (OMIM:226670), EBS-PA (OMIM:612138), and EBS-CMS 

(EBS with congenital myasthenia (Maselli et al., 2010). In contrast, EBS-Ogna 

(OMIM:131950) is caused by an autosomal dominant mutation. This heterozy-

gous mutation is located in the amino acid sequence encoding for plectin's rod 

domain.  A C to T transition within exon 31 leads to the substitution of an arginin 

by a tryptophan (p.Arg2000Trp) (Koss-Harnes et al., 2002).  

The EBS-Ogna phenotype manifests with a generalized bruising tendency and 

blistering of the skin, predominantly on hands and feet. In contrast to keratin mu-

tation-associated forms of EBS the blisters originate in the deepest areas of the 

basal cell cytoplasm immediately above the HDs (Koss-Harnes et al., 2002; 

Walko et al., 2011). The keratin network appears unaffected but their insertion 

into the HD attachment plates is mostly impaired (Koss-Harnes et al., 2002; 

Walko et al., 2011). In a recently generated mouse model of EBS-Ogna, HD 

numbers were found to be greatly reduced (Walko et al., 2011). The HD structure 

appears unaltered in EBS-Ogna skin with the exception of the intracellular IF at-

tachment plate which is generally thinner in EBS-Ogna skin (Koss-Harnes et al., 

2002). An important diagnostic feature of EBS-Ogna is that the basal keratinocyte 

cell layer is lacking anti-plectin immunoreactivity (Koss-Harnes et al., 1997; 

Walko et al., 2011). As recently shown the HD-associated P1a is dramatically 

diminished in the epidermis of mice carrying the EBS-Ogna mutation. In these 

mice, P1a but not isoform P1c was found to be downregulated (Fig. 12), although 

the expression of mRNA transcripts remained unaltered (Walko et al., 2011). Fur-

thermore, it was shown that the EBS-Ogna mutation sensitized plectin to degrada-

tion by epidermis-specific proteases. As EBS-Ogna manifests exclusively in skin 

without muscular phenotype, in contrast to EBS-MD and EBS-PA, it can be con-

sidered as a HD-specific disease (Koss-Harnes et al., 2002; Chiaverini et al., 

2010; Natsuga et al., 2010; Walko et al., 2011).  
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Calpains and their potential role in skin biology 

 

Calpains are neutral cysteine proteases that are activated through calcium and 

membrane phospholipids (Croall and DeMartino, 1991; Saido et al., 1991; 

Sorimachi et al., 2010; Storr et al., 2011). These proteases are heterodimers com-

prising a large catalytic and a small regulatory subunit and they display homology 

to calmodulin (Saido et al., 1994; Sorimachi et al., 1997; Sorimachi et al., 2010). 

Calpain I (µ-calpain) and II (m-calpain), which are activated by micro- and milli-

molar levels of calcium, respectively, are ubiquitously expressed (Ohno et al., 

1984; Aoki et al., 1986; Croall and Ersfeld, 2007; Sorimachi et al., 2010). Struc-

turally calpain I and calpain II differ in their large∼80 kDa catalytic subunits 

(which consist of the four subdomains, DI-IV) but share a common ∼30 kDa 

regulatory subunits (containing two subdomains, DV and VI). DIV of the large 

subunit harbours an EF-hand structure which interacts with the EF-hand structure 

of DVI within the small subunit (CPSN). This interaction results in the formation 

Figure 12: Immunofluorescence microscopy of P1a and P1c of frozen leg skin sections 
from 1-day-old wild-type and mutant mice. Note that expression and localization of P1c is 
not altered between any of the three genotypes (D–F). P1a is predominantly expressed at the 
basal cell membrane of basal keratinocytes in Plecwt/wt skin (D, arrowheads), but is diminished 
in a dose dependent manner in mutant epidermis, except for a few P1a-positive patches (E, 
brackets) remaining in PlecOgna/+ skin. Dashed lines represent the dermo-epidermal border. 
Scalebar is 50 µm (modified from Walko et al., 2011). 

Plecwt/wt  Plecwt/Ogna

  
PlecOgna/Ogna  
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of the heterodimeric calpains I and II (Croall and DeMartino, 1991; Hosfield et 

al., 1999; Sorimachi et al., 2010). In contrast, the expression of other calpain iso-

forms, e.g. calpain 3 (Cpn3) and calpain 8/nCL-2, is restricted to specific tissues, 

such as skeletal muscle and stomach (Sorimachi et al., 1993a; Sorimachi et al., 

1993b). During the past years new insights have been gained into the multi-step 

activation mechansism of calpains (Croall and DeMartino, 1991; Elce et al., 1997; 

Cottin et al., 2001; Croall and Ersfeld, 2007). In the cell, calpains are mainly 

located in the cytosol where they exist as inactive enzymes. They translocate to 

the membrane in response to increases in extracellular Ca2+ levels. Thus, the small 

amount of calpains cofractionating with membranes might represent the 

physiologically active enzyme fraction. Biochemical studies have revealed that in 

a first step of activation, constraints imposed by domain interactions on the 

conserved DII domain are released by Ca2+-binding leading to the dissociation of 

the 30 kDa regulatory subunit from the catalytic 80 kDa subunit. In a second step, 

two Ca2+ ions bind to the core protease domain and cause a rearrangement of the 

active site cleft of DII (Nakagawa et al., 2001; Reverter et al., 2001; Moldoveanu 

et al., 2002). Furthermore, several mechanisms can promote calpain activation by 

reducing Ca2+ requirements, including phospholipids present at the plasma 

membrane, and protein kinase C (PKC) or Erk-mediated phosphorylation 

(Coolican and Hathaway, 1984; Imajoh et al., 1986; Saido et al., 1991; Saido et 

al., 1992; Melloni et al., 1996; Glading et al., 2001; Shiraha et al., 2002; Xu and 

Deng, 2004; Xu and Deng, 2006; Leloup et al., 2010). As a consequence of 

calpain activation by Ca2+ the amino-terminal DI domain of the catalytic subunit 

becomes autoproteolytically cleaved (Suzuki et al., 1981; Cong et al., 1989; Baki 

et al., 1996; Lametsch et al., 2008). However, calpains can also be activated 

without undergoing autoproteolytic cleavage (Cong et al., 1989; Molinari et al., 

1994; Guttmann et al., 1997). It seems therefore that autoproteolytic cleavage of 

calpains is indicative of sustained strong activation of calpains (Cong et al., 1989; 

Baki et al., 1996; Chou et al., 2011). Calpains-I and II are associated with their 

endogenous inhibitor calpastatin and are released upon phosphorylation of calpas-

tatin and calpains (Melloni et al., 2006). However, the precise mechanism of how 

calpastatin regulates calpains remains unclear. Calpains are involved in a number 

of processes, such as integrin-mediated signal transduction (Inomata et al., 1996), 
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actin-remodelling during cell spreading (Potter et al., 1998), embryonic develop-

ment (Emori and Saigo, 1994) and apoptosis (Squier et al., 1994).  

In skin, calcium regulates the terminal differentiation of keratinocytes and 

thus homeostasis of the epidermis (Bikle et al., 2004; Tu et al., 2004). Consistent 

with this, calpains are expressed in the epidermis. Calpain I is expressed in its 80 

kDa form, but also in its activated 78 and/or 76 kDa form in all epidermal layers 

of neonatal and adult human skin (Michel et al., 1999). Calpain I is expressed 

very early during human development (54 days of estimated gestational age) in 

the basal layer and the periderm of the embryo (Michel et al., 1999). Cultured 

keratinocytes from neonatal human foreskin epidermis also display calpain I acti-

vation upon transition from subconfluent to postconfluent culture (Michel et al., 

1999). In the granular cell layer of the epidermis calpain I is required for the proc-

essing of profilaggrin to filaggrin (Resing et al., 1993; Hsu et al., 2011). Interest-

ingly, all components of the calpain system (calpains I and II, and calpastatin) are 

upregulated during differentiation of keratinocytes ex vivo (Garach-Jehoshua et 

al., 1998). Moreover, calpain II was shown to be involved in EGF-induced migra-

tion of human keratinocytes downstream of Mek1/2 (Satish et al., 2004). 

The role of calpains in keratinocyte differentiation has not been defined to 

date. Calpains could be involved in keratinocyte differentiation through integrin 

proteolysis (Potts et al., 1994; Tennenbaum et al., 1996), cleavage of cell-cell ad-

hesion molecules such as cadherins (Sato et al., 1995), degradation of the EGF 

receptor (King and Gates, 1985), downregulation of protein kinase C (Croall and 

DeMartino, 1991) and filaggrin processing (Resing et al., 1993). 
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Aims of the thesis 

 
The goal of this thesis was to investigate whether calpains are involved in the 

turnover of hemidesmosome-enriched protein complexes (HPC). To address this 

issue, first it had to be assessed whether calpains are active in cultured basal 

keratinocytes and where they are located. Once these questions were solved, the 

next goal was to interlink the activation of calpains with HPC turnover at the on-

set of keratinocyte differentiation. An additional focus was set on the role of cal-

pains in the pathology of the skin blistering disease EBS-Ogna which is character-

ized by impaired HD formation. Finally, an immortalized keratinocyte cell line 

carrying the EBS-Ogna mutation should be established in order to study the ef-

fects of impaired HPC formation on cell proliferation and signalling. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



26 
 
Results 

P
C

 
F

L
 

RESULTS 

1 Involvement of Calpains in HD homeostasis assessed in cultured  

keratinocytes 

1.1 Analysis of calpains activity in mouse keratinocytes under normal growth 

conditions 

Calpains were demonstrated to be expressed in normal human foetal as well as 

adult epidermis, and to be activated during differentiation of human primary 

keratinocyte cell cultures and HaCaT cell lines (Michel et al., 1999; Garach-

Jehoshua et al., 1998). However,  in mouse keratinocytes calpains have not been 

studied so far. To investigate calpain activity in mouse keratinocytes, im-

munoblotting analysis of keratinocyte cell lysates was performed. Since no auto-

proteolytic cleavage products of calpains, indicative of strong autoactivation (Baki 

et al., 1996; Shea, 1997), could be detected in cultured mouse keratinocytes (see 

below), cellular calpain activity was investigated in live cells using an enzymatic 

assay (Fig. 13).  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Phase contrast (PC) and fluorescence (FL) microscopy of immortalized wild-
type keratinocytes treated with the calpain substrate CMAC. (A,B) Immortalized wild-type 
keratinocytes were cultured in KGM/0.05 to a confluency of 70% and then incubated with 50 
µM CMAC for 20 minutes. Cell morphology and calpain-induced CMAC fluorescence were 
monitored using phase contrast and fluorescence microscopy. Cells that were not incubated 
with CMAC were used as negative control. Note strong fluorescence observed when cells were 
treated with CMAC. For calpain inhibition, the cells were treated with 50 µM MDL-28170 or 
10 µM ALLN for 1 hour prior to application of CMAC. Note, upon treatment with MDL-
28127, CMAC fluorescence intensity was greatly diminished, and was almost completely abol-
ished when ALLN was used. Scale bar, 100 µm.  
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This assay was performed with an immortalized (p53-deficient) mouse keratino-

cyte cell line (immortalized keratinocytes), which displays normal growth and 

differentiation properties and shows no signs of transformation (Osmanagic-

Myers et al., 2006). Immortalized wild-type keratinocytes were cultured to a den-

sity of ~70% in regular keratinocyte growth medium containing 0.05 mM Ca2+ 

(KGM/0.05); they were then incubated (20 min.) with the calpain-specific sub-

strate t-BOC-Leu-Met (CMAC), which after cleavage by calpains, produces a 

blue fluorescence signal (emission maxima of 430 nm). Its fluorescence intensity 

is therefore indicative of cellular calpain activity (Marzia et al., 2006; Xu and 

Deng, 2006; Su et al., 2010). Using this assay, I found calpains to be active in 

keratinocytes grown in KGM/0.05 (Fig. 13). 

To demonstrate that the fluorescence signal observed was specific for cal-

pain activity, immortalized keratinocytes were treated with the calpain inhibitors 

ALLN and MDL-28170 for one hour prior to applying CMAC to the cells. Moni-

toring fluorescence by microscopy, it was noticed that both calpain inhibitors 

dramatically diminished fluorescence intensity, with ALLN being more potent 

than MDL-28170. These results confirmed that calpains in cultured keratinocytes 

grown under normal conditions (KGM/0.05) were in an active state, and prompted 

me to investigate the involvement of calpains during terminal differentiation of 

keratinocytes.  

 

1.2 Analysis of calpain activity in the course of terminal differentiation  

The controlled disassembly of HDs  is a prerequisite for the detachment of basal 

epidermal keratinocytes from the basal membrane and subsequent terminal differ-

entiation (Tennenbaum et al., 1996; Frye et al., 2003; Alt et al., 2004; Litjens et 

al., 2006). The core structure of HDs as well as of their ex vivo equivalents, the 

HPCs, is formed by the transmembrane laminin receptor protein integrin (ITG) 

α6β4, which is anchored to the keratin 5/14 (K5/K14) IF network via direct bind-

ing of its β4 subunit to plectin isoform 1a (P1a) (Rezniczek et al.,1998; Litjens et 

al., 2006; Kostan et al., 2009; de Pereda et al., 2009; Walko et al., 2011). At an 

early stage of Ca2+-induced differentiation of keratinocytes in culture, ITGα6β4 

and P1a are relocated from HPCs to the cytosol in a Ca2+-dependent manner re-

sulting in the disassembly of HPCs (Kostan et al., 2009). Activation of calpain-1, 
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as assessed by its autoproteolytic cleavage, has been shown to increase in cultured 

human keratinocytes upon reaching confluency, and during terminal differentia-

tion (Michel et al., 1999). Calpains were also found to be involved in the intracel-

lular processing of ITGβ4 in keratinocytes and in the degradation of plectin in 

liver (Giancotti et al., 1992; Muenchbach et al., 1998), thus opening the possibil-

ity that this class of proteases could be involved in regulating HD turnover in 

keratinocytes.  

To investigate whether there are alterations in the protein levels of calpains 

and HPC proteins during terminal differentiation, primary mouse keratinocytes 

were grown in KGM/0.05 until they reached confluency. At confluency, terminal 

differentiation was induced with 1.3 mM Ca2+ (KGM/1.3). The cells were then 

further cultivated for five days and differentiation was monitored by phase con-

trast microscopy (Fig. 14).  

 

 

 

 

 

 

 

Already after two days in KGM/1.3, single cells lost their typical brick like mor-

phology and formed a continuous layer of enlarged, stretched cells that displayed 

granules in their cytosol, typical signs of keratinocytes undergoing terminal dif-

ferentiation (Fig. 14) (Watt et al., 1984; Sevilla et al., 2008). After four days, 

basal keratinocyte had begun to detach from the culture dish and to move over 

other cells to form a second cell layer (Fig. 14). After six days, a stratified epithe-

lium had formed, consisting of two to three upper cell layers and several com-

pacted cells on top, indicative of cornification and thus marking the final stage of 

Figure 14: Phase contrast microscopy of differentiating primary wild-type keratinocytes. 
Primary wild-type mouse keratinocytes were cultivated in KGM/0.05 until they reached 100% 
confluency. At confluency the medium was changed to KGM/1.3 to induce terminal differentia-
tion. The progress of terminal differentiation was monitored using phase contrast microscopy. 
Note upon growth in KGM/1.3, primary mouse keratinocytes lost their typical brick like mor-
phology and began to stratify eventually forming a multi-layered cornified epithelium. Scale 
bar, 100 µm. 
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indicate protein ratios relative to an arbitrary level of 1.0 determined by the undifferentiated and 
untreated control sample (lane C). Note that the protein levels of plectin and ITGβ4 decreased 
with progression of terminal differentiation. Expression of both hemidesmosomal proteins was 
stabilized during the first day of differentiation by treatment with E64d. The asterisk indicates a 
cleavage fragment of ITGβ4, not detected in differentiating cells upon E64d treatment. Protein 
levels of uncleaved calpain-1 (~80 kDa) increased after onset of differentiation until day two but 
then decreased slightly during later differentiation stages. In contrast, protein levels of uncleaved 
calpain-2 (~80 kDa) constantly increased with progressing differentiation. The protein levels of 
the uncleaved calpain isoforms were increased upon E64d-treatment, indicative of inhibition of 
calpain activation. The protein levels of the differentiation markers involucrin and p27 increased 
at the onset of terminal differentiation, but the kinetics of their upregulation differed. Involucrin 
and p27 expression was increased upon E64d treatment. Tubulin and K5 were used as loading 
controls. 

Figure 15: Immunoblotting analysis 
of differentiating immortalized wild-
type keratinocytes. Immortalized wild-
type keratinocytes were treated as de-
scribed in Fig. 16. Cell lysates were 
prepared from cells grown to 100% 
confluency in KGM/0.05 (lanes C) and 
from cells at different time points dur-
ing Ca2+-induced terminal differentia-
tion (lanes 1d-5d). Proteins were sepa-
rated by SDS-PAGE on 6% (plectin), 
8% (ITGβ4; calpain-1, calpain-2), or 
10% (p27, K5, tubulin, involucrin) gels 
and analyzed by immunoblotting. 
Bands were scanned and evaluated 
densitometrically. Numbers below lanes  

differentiation (Rice and Green, 1978; Hennings et al., 1980; Hennings et al., 

1982) (Fig. 14).  

Cell lysates were prepared at each time point and subjected to im-

munoblotting analysis (Fig. 15), using involucrin as an early differentiation 

marker (Watt, 1983; Watt et al., 1984; Li et al., 2000). It was found that the ex-

pression of involucrin was already upregulated at day one. Involucrin expression 

subsequently remained constant until day four and slightly decreased again on day 

five, possibly because involucrin became incorporated into insoluble cornified 

envelope structures (Groot et al., 2004; Sevilla et al., 2008).  
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p27, a cyclin-dependent kinase inhibitor involved in the regulation of terminal 

keratinocyte differentiation onset (Missero et al., 1996; Hauser et al., 1997; Kolly 

et al., 2005), was also found to be upregulated, but with slower kinetics than in-

volucrin (Fig. 15). The levels of ITGβ4 and plectin were found to be dramatically 

diminished after day three of terminal differentiation (Fig. 15) as has previously 

been reported (Kostan et al., 2009). Expression of the uncleaved (80 kDa) form of 

calpain-1 was found to slightly increase during the first two days of differentiation 

and to decrease slightly thereafter (Fig. 15). The decrease of the uncleaved form 

of calpain-1 during the final stages of ex vivo differentiation could be the conse-

quence of increased autoproteolytic cleavage as a consequence of hyperactivation 

of the protease (Shea, 1997; Michel et al., 1999) (compare to Fig. 16A). Calpain-2 

expression increased over the differentiation period, similar to previous reports 

from human keratinocytes (Garach-Jehoshua et al., 1998).  

To assess whether calpain-1 was involved in the downregulation of ITGβ4 

and plectin protein levels and consequently in the destruction of HDs, we moni-

tored the expression of these proteins during Ca2+-induced terminal differentiation 

in the presence of E64d, a potent, irreversible inhibitor of cysteine proteases in-

cluding calpains (see Materials and Methods, Table 4). This treatment indeed in-

hibited proteolytic degradation of ITGβ4 and led to increased levels of intact 

ITGβ4 protein at day one of differentiation (Fig. 15). However, in the presence of 

E64d, protein expression of ITGβ4 had almost completely ceased on day three 

contrary to untreated samples (Fig. 15). Plectin showed a similar tendency (Fig. 

15). In confluent keratinocytes grown in KGM/0.05 (Fig. 15) ITGβ4 protein levels 

were found to be increased contrary to those of plectin. The protein levels of the 

uncleaved (80 kDa) forms of calpains-1 and 2 were increased upon E64d-

treatment, indicative of inhibition of calpain activation (Fig. 15). Surprisingly, 

E64d treatment appeared to promote the entrance of proliferating keratinocytes 

into terminal differentiation, since expression levels of p27 and involucrin were 

upregulated in confluent keratinocytes grown in KGM/0.05 as well as on day one 

of differentiation (Fig. 15). The above findings provided evidence that calpains 

were involved in the degradation of HPC proteins at least at the onset of terminal 

differentiation. These results raised the question whether activated calpains are 

localized at HPCs and thus can directly regulate HPC disassembly via cleavage of 

P1a and ITGβ4.  
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1.3 Hyperactivation and inhibition of calpains in cultured keratinocytes 

 

To investigate the effect of calpain hyperactivation on HPC stability, immortal-

ized keratinocytes were cultured in KGM/0.05 to ~70% confluency, before the 

medium was switched to KGM/1.8 supplemented with 5 µM ionomycin, a Ca2+ 

ionophore promoting rapid influx of  Ca2+ into the cytosol. The cells were ex-

posed to Ca2+ influx for one, two, or five hours, which leads to autoproteolysis 

and strong activation of calpains (Croall et al.; Shea et al., 1997;, Sorimachi et al., 

2010; Saido et al., 1991). Cell lysates were prepared and subjected to im-

munoblotting analysis using antibodies specific for the HD proteins P1a and 

ITGβ4, and calpain-1. As shown in Fig. 16A, the protein levels of P1a and ITGβ4 

gradually decreased upon Ca2+ influx. This was paralleled by strong activation of 

calpain-1, manifesting in the appearance of its cleaved (76 kD) form after 1 hour 

and almost complete loss of the intact (80 kDa) protein after 2 hours (Fig. 16A). 

By quantifying protein expression levels of P1a and ITGβ4 relative to an un-

treated control sample it was revealed that the kinetics of P1a degradation were 

slower compared to that of ITGβ4. This suggested that P1a was more resistant to 

calpain-mediated degradation than ITGβ4 (Fig. 16A-C). In parallel, immortalized 

keratinocytes were treated with the potent cell-permeable calpain inhibitor MDL-

28170 (see Table 4) for one hour before incubation with ionomycin in KGM/1.8. 

When cell lysates were subjected to immunoblotting analysis, MDL-28170 was 

found to efficiently inhibit calpain-1 activity, as the intact (80 kDa) form reap-

peared as a consequence of the treatment. Inhibition of calpains prevented the 

ITGβ4 protein from proteolysis (Fig. 16A,C), whereas P1a degradation was only 

partially inhibited by MDL-28170 after five hours of Ca2+ influx (Fig. 16A,B).   

As sustained high Ca2+ levels eventually induce apoptosis, the failure of MDL-

28170 to prevent P1a degradation at the latest time point (5 hours) of Ca2+ influx, 

could be explained by the well known degradation of plectin by apoptotic cas-

pases (Stegh et al., 2000; Aho, 2004; Werner et al., 2007) 
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To immunolocalize P1a and ITGα6, cells were methanol-fixed and processed for 

confocal immunofluorescence microscopy using antibodies to plectin and ITGα6 

(Fig. 17). Under standard growth conditions (KGM/0.05, without ionomycin) 

small keratinocyte cell colonies formed arc-shaped HPCs, typically for keratino-

cytes in culture (Ozawa et al., 2010; Wilhelmsen et al., 2007; Koster et al., 2004) 

(Fig. 17). Upon Ca2+ influx introduced by ionomycin, HPC stability was affected 

Figure 16: Immunoblotting of wild-type mouse keratinocytes in KGM/1.8 supplemented 
with ionomycin with and without calpain inhibition. Immortalized keratinocytes were cul-
tured in KGM/0.05 until they reached a confluency of ~70%. Cells were then either left un-
treated or challenged (for the indicated times) with the Ca2+ ionophore ionomycin (5 µM) with 
or without the addition of the calpain inhibitor MDL-28170 (50 µM). In addition, some cells 
were pretreated with the calpain inhibitor MDL-28170 (50 µM) for one hour prior to induction 
of Ca2+ influx. (A) Immunoblotting analysis of total cell lysates prepared after one, two, and 
five hours of Ca2+ influx using antibodies specific to P1a, ITGβ4, and calpain-1. (B,C) Densi-
tometric quantifications of P1a (B) and ITGβ4 (C) protein levels relative to that in control sam-
ples (100%) using K5 as loading control. Protein expression levels were calculated from quan-
tified immunoblotting signals relative to that of the untreated control. Mean values ±SEM (n = 
4) are shown. Statistical significance was demonstrated by one-way ANOVA with Tukey post-
test for multiple comparisons (* P<0.05, ** P<0.01, *** P<0.001). Note expression of full 
length calpain-1 (80 kDa) was lost upon Ca2+ influx indicating that the protease was highly 
activated. Upon treatment with MDL-28170 the full length calpain-1 protein reappeared as a 
consequence of efficient calpain-1 inhibition. Also note that the amounts of P1a and ITGβ4 
decreased gradually during high Ca2+ influx, which could be reversed by MDL-28170 treat-
ment. ITGβ4 showed faster degradation kinetics than P1a. 
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already after one hour of treatment (Fig. 17). Disassembly of HPCs was progres-

sive, with HPCs disappearing completely after five hours of Ca2+ influx (Fig. 17). 

 
 
 
 
 

 

 

The disassembly of HPCs upon Ca2+ influx mediated calpain activation and their 

reassembly after calpain inhibition confirmed the direct involvement of these pro-

teases in the turnover of HPCs and proposed their direct association with HPCs 

upon activation.  

 

1.4 Subcellular localisation of calpains 
 
 
In order to study the subcellular distribution of calpain-1, immortalized keratino-

cytes cultured in KGM/0.05 to a density of ~70% were lysed and subjected to 

subcellular fractionation, yielding cytosolic, cytoplasmic membrane, and cy-

toskeleton fractions. In addition, immortalized keratinocytes were treated in 

KGM/1.8 supplemented with 5 µM ionomycin for one, two, and five hours prior 

to subcellular fractionation. The fractions were then subjected to immunoblotting 

analysis using antibodies to ITGβ4 and calpain-1 (Fig. 18). 

Calpain-1 was not only found in the cytosolic but also in the cytoplasmic 

membrane and cytoskeleton fractions (Fig. 18A). Again, the autoproteolytically 

cleaved active form of calpain-1 (76 kDa) could not be detected (compare to Fig. 

15). One explanation for this observation could be that protein levels contained in 

the different subcellular fractions were too low to be detectable. As a transmem-

Figure 17: Immunolocalisation (double labeling) of ITGα6 (green) and plectin (red) in 
immortalized keratinocytes with or without ionomycin treatment for the times indicated. 
Immortalized keratinocytes were treated as described in Fig. 18. Nuclei were stained with DAPI 
(blue). Composite images were generated from confocal stacks by maximum intensity projec-
tions of the three optical sections closest to the substrate level. Note in untreated keratinocytes 
(control, 5h), ITGα6 and plectin showed codistribution in densely clustered arch-like HPCs 
(arrowheads). After 1 hour of ionomycin challenge, HPCs started to become less densely clus-
tered (arrowheads) and ultimately disappeared after 5 hours. Bar 20 µm.  
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brane protein associated with the cytoskeleton, ITGβ4 was found in both fractions 

(Fig. 18B), where its levels were dramatically diminished after Ca2+ influx into 

the cell (Fig. 18B). 

 

 

 

 

 

 

 

After five hours ITGβ4 was completely gone from the membrane fraction, 

whereas residual amounts could still be detected in the cytoskeleton fraction. In 

conclusion, these results showed that calpain-1 is ubiquitously located at the 

membrane. For the first time it was demonstrated that a fraction of calpain-1 is 

also associated with the cytoskeleton in its active form. This observation is sur-

prising as calpain-1 is kept in its inactive form in most tissues. However, the asso-

ciation of calpain-1 in an active form with the cytoskeleton and in an inactive 

form with the membrane could explain the rapid turnover of ITGβ4 after Ca2+ 

influx. 

The results described so far indicated that calpains were involved in HPC 

disassembly. This raised the question whether active calpains were responsible for 

the decreased number of HDs observed in the epidermis of EBS Ogna mice.  

 
2 The role of calpains in EBS-Ogna pathology 

 

During differentiation of keratinocytes the tightly controlled degradation of HDs 

is a necessity for the cells to leave the proliferative niche at the basal membrane. 

Figure 18: Immunoblotting of calpain-1 in different subcellular fractions and of ITGβ4 after 
ionomycin treatment. Immortalized wild-type keratinocytes were cultured under standard growth 
conditions (KGM/0.05) to a confluency of ~70%, and then fractionated into cytosolic, plasma 
membrane and cytoskeletal fractions. (A) Immunoblotting of fractions using antibodies to calpain-
1. Note, intact calpain-1 (80 kDa) was found in all fractions. (B) Keratinocytes cultured in 
KGM/1.8 were exposed to 5 µM ionomycin (for the times indicated) prior to fractionation and 
immunoblotting using antibodies to ITGβ4. Note, ITGβ4 was found in membrane and cytoskele-
ton fractions; ITGβ4 protein levels in membrane fractions were dramatically diminished already 
after one hour of Ca2+ influx and practically nonexistent after five hours.  
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However, since HDs anchor the epidermis to the basal lamina, loss of HDs has a 

fatal effect on the mechanostability of the skin (Darling et al., 1997; Chung and 

Uitto, 2010; Laimer et al., 2010; Sawamura et al., 2010; Shinkuma et al., 2011). In 

the skin blistering disease EBS-Ogna, an autosomal dominant missense mutation 

in the plectin gene leads to impaired HD formation (Koss-Harnes et al., 2002). 

Likewise, in the epidermis of mice harbouring the EBS-Ogna mutation the num-

ber of HDs was reported to be dramatically diminished (Walko et al., 2011). This 

could be attributed to proteolytic degradation of P1a, but not of P1c, the other 

major isoform expressed in epidermal keratinocytes (Walko et al., 2011). Using 

recombinant proteins as substrate and enzymatic activities contained in tissue pro-

tein extracts, the EBS-Ogna mutation could be shown to render plectin's 190-nm-

long coiled-coil rod domain more vulnerable to cleavage by calpains and other 

proteases activated in the epidermis but not in skeletal muscle (Walko et al., 

2011). Since two major calpain isofoms (calpain-1 and calpain-2) are expressed in 

basal epidermal keratinocytes (Michel et al., 1999; Walko et al., 2011; Kamata et 

al., 2012) calpains could indeed be involved in the pathogenesis of EBS-Ogna.  

 

2.1 Calpain inhibition in EBS-Ogna keratinocytes  

 
In cell lysates of EBS-Ogna keratinocytes (PlecOgna/Ogna) P1a protein levels were 

found to be reduced to ~35%, compared to wild-type primary keratinocytes 

(Plecwt/wt), while in contrast, the protein levels of P1c remained unaffected under 

these conditions (Walko et al., 2011). Thus to investigate the direct involvement 

of calpains in the degradation of mutant P1a carrying the EBS-Ogna mutation, I 

used primary keratinocytes isolated from adult homozygous EBS-Ogna knockin 

mice (PlecOgna/Ogna) as study objects. 

PlecOgna/Ogna primary keratinocytes were exposed for various time periods 

to different pharmacological inhibitors of calpains (Materials and Methods, Table 

4). Afterwards cell lysates were subjected to immunoblotting analysis (Fig. 19A, 

B).  
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Quantification of P1a immunoblot signals revealed that inhibition of calpains us-

ing calpain inhibitor ALLN led to a significant increase of P1a protein levels (Fig. 

19A). Already after six hours of drug treatment P1a protein levels were found to 

be ~3-fold upregulated compared to untreated control cells, while treatment for 24 

hours led to even a ~5-fold increase (Fig. 19A).Treatment of primary PlecOgna/Ogna 

keratinocytes with the irreversible cysteine protease inhibitor E64 for 48 hours 

showed a lesser effect, leading to a ~3-fold increase in the amount of P1a protein 

after 48 hours (Fig. 19B). On the other hand, applying the potent, cell permeable 

and reversible calpain inhibitor MDL-28170 led to a strong response, i. h. a. ~5-

fold increase in plectin protein levels (Fig. 19B). The differences in P1a re-

expression levels observed with different calpain inhibitors tested can most likely 

be explained by their different specific IC-50 values, which account for the half 

minimal (50%) inhibitory concentration (IC) of a substance, and distinct cell per-

meabilities (see Materials and Methods, Table 4). E.g., E64 is only weakly cell 

permeable and has a lower inhibitory activity towards calpains than the other in-

hibitors.    

Figure 19: Immunoblotting of P1a expression levels in primary PlecOgna/Ogna keratinocytes 
treated with calpain inhibitors. (A,B) Primary PlecOgna/Ogna keratinocytes were cultured in 
KGM/0.05 until they reached a confluency of ~90%, then the Ca2+ concentration in the medium 
was raised to 0.5 mM (KGM/0.5). (A) Cells were then exposed to solvent (DMSO) alone, or 10 
µM ALLN for 6 hours and 24 hours, and cell lysates were subjected to immunoblotting analysis. 
Note samples analyzed contained equal amounts of calpain-1 and K5. Numbers below lanes 
represent protein ratios relative to an arbitrary level of 1.0 assigned to the control (solvent) sam-
ple. Note application of ALLN efficiently increased the protein levels of mutant P1a. After 6 
hours of ALLN treatment the mutant P1a protein levels increased to ~3-fold and after 24 hours to 
~5-fold compared to untreated cells. (B) Cells were exposed to E64 (20 µM) and MDL-28170 
(50 µM) for 48 hours prior to immunoblotting analysis. Note that inhibition of cysteine proteases 
with E64 for 48 hours increased the P1a protein levels ~3-fold when compared to the protein 
levels of untreated control cells, while treatment with MDL-28170 led to an ~5-fold increase of  
the P1a protein levels. 
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To investigate whether drug induced increases in P1a levels were sufficient to 

rescue the deficits in HPC formation characteristic of EBS-Ogna keratinocytes 

(Walko et al., 2011), cultured primary PlecOgna/Ogna keratinocytes were incubated 

with MDL-28170 for 24 hours, fixed with methanol and processed for im-

munofluorescence microscopy. In accordance with P1a’s upregulation upon inhi-

bition of calpains, I found the number of cells with HPCs to be increased in MDL-

28170-treated cultures (Fig. 20A,B). In fact, the number of cells with HPCs in-

creased from ~18% to ~40% upon treatment with MDL-28170 (Fig. 20B).  

 

 

 

 

 

 

Primary cultures of PlecOgna/Ogna keratinocytes were also treated with the serine 

protease inhibitor AEBSF to assess whether serine proteases were involved in 

degradation of P1a carrying the EBS-Ogna mutation. Quantitative immunoblot-

ting analysis performed with total cell lysates of PlecOgna/Ogna keratinocytes that 

had been treated with the inhibitor for 24 hours showed no significant increase 

upon inhibition of serine proteases (Fig. 21). Taken together, these results 

demonstrated a major role of calpains in the pathology of EBS-Ogna by 

degradation of mutant P1a. 

 

 

Figure 20: Immunolocalization of HPCs in primary PlecOgna/Ogna keratinocytes treated with 
calpain inhibitors. (A) Solvent- and MDL-28170-treated primary PlecOgna/Ogna keratinocytes were 
fixed with methanol and immunolabeled for ITGα6 (red) and plectin (green). Nuclei were stained 
with Hoechst (blue). Note calpain inhibition with MDL-28170 increased the number of cells with 
HPCs (arrowheads). Scale bar, 50 µm. (B) The bar diagram shows proportions (%) of cells having 
formed HPCs. Data shown represent mean values of cell counts (>500/genotype) in randomly 
chosen optical fields from three independent experiments ±95% CI. *** P<0.001, unpaired Stu-
dent's t-test. 

Figure 21: Immunoblotting of P1a expression levels in primary PlecOgna/Ogna keratinocytes 
treated with inhibitors of serine proteases. Primary PlecOgna/Ogna keratinocytes were grown as 
described in Fig. 21, and exposed to solvent (dH2O) alone, or to 100 µM AEBSF for 24 hours. 
Note in contrast to calpain inhibition, the inhibition of serine proteases using the specific inhibitor 
AEBSF did not dramatically alter the protein levels of P1a. 
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To lay the groundwork for further studies on the role of calpains in the 

pathogenesis of EBS-Ogna, a third part of the thesis was devoted to establish 

immortalized keratinocyte cell lines.  

 
3 Establishment and characterization of immortalized clonal 

mouse keratinocyte cell lines from mice carrying the EBS-Ogna 

mutation 

 

More in-depth studies on the functions of calpains in keratinocytes and in particu-

lar in the pathogenesis of EBS-Ogna could benefit from the establishment of im-

mortalized keratinocyte cell lines. Establishment of cell lines from clonal origin 

comprises two steps. First, the immortalization and isolation of primary keratino-

cytes derived from mice and second, the characterization of immortalized mouse 

keratinocytes in order to assess the cell-type-specific requirements for growth in 

vitro. For this purpose, markers specific for keratinocytes and markers to define 

the differentiation and proliferative state of the cells were used.  

 

3.1 Establishment of immortalized cell lines of clonal origin  

 

Inactivation or loss of p53 facilitates keratinocyte immortalization (Boukamp et 

al., 1988; Raymond et al., 2005; Raymond et al., 2007), but does usually not cause 

cell transformation (Sedman et al., 1992), in contrast to, e.g., expression of human 

papilloma virus E6 and E7 proteins (Sedman et al., 1992), or infection with SV40 

virus (Steinberg and Defendi, 1983).  

For this purpose, p53 knockout (p53-/-) mice were crossed with Plecwt/wt, 

Plecwt/Ogna and PlecOgna/Ogna mice.  Primary mouse keratinocytes were then isolated 

from offspring and genotyped to confirm each type of plectin allele combination 

(Plecwt/wt, Plecwt/Ogna and PlecOgna/Ogna) in the p53-/- background.  Afterwards, pri-

mary mouse keratinocytes were cultured under standard growth conditions 

(KGM/0.05) until they reached ~70% confluency. Plecwt/wt keratinocytes did not 

enter senescence and were split 1:10 to obtain single cells for subcloning. The 

keratinocyte clonal cell lines were then subsequently expanded by subculturing 

them onto dishes of increasing size. Surprisingly, Plecwt/Ogna and PlecOgna/Ogna cell 
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cultures became senescent after isolation and entered apoptosis albeit lacking p53. 

Consequently, clones originating from single surviving keratinocytes were picked, 

seeded onto 24-well plates and cultured under standard growth condition

keratinocyte clones were then seeded onto 6

reached ~70% confluency. 

seeded (passaged) onto dishes of increasing size. In contrast,

keratinocytes did not re

trypsinisation and consequently died. For this reason it was not possible to esta

lish clonal cell lines of this type. The immortalized 

cell lines were purified from contaminating melanocytes and fibroblasts by sele

tive trypsinisation. Both types of clones could

their properties. A summary of all steps involved in 

cyte cell lines is shown in Fig. 22.
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Figure 22: Flow chart of steps involved in the establis
ment of keratinocyte cell lines and growth characteristics 
of different genotypes. Depicted are all steps involved in the 
establishment of keratinocyte cell lines starting with the 
tion of primary keratinocytes from Plecwt/wt, Plecwt/Ogna

PlecOgna/Ogna mice, all deficient in p53. The primary cells were 
cultured under standard growth conditions (passage 1). The 
chart shows how long the cells remained in the culture dish 
until they reached a confluency of ~70%, before subsequent 
passaging. 
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Of note, cell cultures of distinct phenotypes displayed different proliferation be-

haviour after isolation (Fig. 22) though they appeared indifferent in cell shape or 

size as assessed by light microscopy (Fig. 23). First, Plecwt/Ogna and PlecOgna/Ogna 

keratinocytes needed longer until they reached ~70% confluency and even entered 

senescence after ~10 days in culture, contrary to primary Plecwt/wt cells. Further-

more, after subcloning of single surviving cells, PlecOgna/Ogna keratinocytes died 

after passaging. Plecwt/Ogna keratinocytes appeared to grow slower than Plecwt/wt 

clones when monitored over many passages. In particular after subcloning, the 

cells carrying the EBS-Ogna allele(s) needed ~7-times longer to reach a density of 

~70% when compared to the Plecwt/wt cells. Consequently, it was crucial to charac-

terise the immortalized clones in the next step to assess whether cell transforma-

tion caused the differences in proliferation behaviour.   

 

 

 

 

 

 
 

 

3.2 Characterization of immortalized Plecwt/wt and PlecOgna/Ogna cell lines 

 

For initial characterisation, cell lysates were prepared from six independent clones 

of both genotypes (Plecwt/wt clones at passage 17, and Plecwt/Ogna clones at passage 

Figure 23: Phase contrast microscopy of mouse keratinocytes at different stages of isola-
tion. Primary Plecwt/wt and Plecwt/Ogna mouse keratinocytes were isolated, subcloned and purified 
as schematized in Fig. 22. After initial isolation, primary Plecwt/Ogna keratinocyte cultures became 
senescent as indicated by the appearance of large flattened and often multi-nucleated cells (ar-
rowheads), whereas Plecwt/wt cells showed no signs of senescence. After subcloning, immortal-
ized clonal keratinocyte cell cultures were still contaminated with other cell types such as 
melanocytes and fibroblasts (asterisks). After several rounds of selective trypsinisation, immor-
talized clonal keratinocytes displayed the small triangular or fan shaped morphology typical of 
this type of cells, and no other contaminating cell types were anymore observed. Scale bar, 100 
µm. 
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14) and subjected to immunoblotting analysis along with lysates of primary 

mouse keratinocytes (pmk), immortalized mouse keratinocytes (imk), a murine 

fibroblast cell line (3T3), and a protein extract of mouse liver (LE) using a set of 

antibodies to keratinocyte-, fibroblast-, and simple epithelia-specific marker pro-

teins. As a typical marker of keratinocytes K5 was expressed in all clonal lines 

from both genotypes and also in the control lysates (imk and pmk) (Boukamp et 

al., 1988; Paladini and Coulombe, 1999; Troy and Turksen, 1999). Different 

clones differed however in K5 expression levels (Fig. 24A,B). When, the samples 

were tested for expression of the type 3 IF protein vimentin, which is commonly 

expressed in mesenchymal cells such as fibroblasts (Pei et al., 1992; Cano et al., 

1996; Taki et al., 2003; Davies et al., 2005), no expression of the protein could be 

detected in any of the clonal cell lines (Fig. 24A,B); Vimentin was expressed to 

some extent in primary mouse keratinocyte cultures, which usually contain vary-

ing amounts of vimentin-positive melanocytes and also in the fibroblast lysate 

which served as positive control for this marker.  

 

 

 

 

 

 

 

 

 

 

Figure 24: Immunoblotting analysis of immortalized clonal Plecwt/wt and Plecwt/Ogna keratino-
cyte cell lines. Cell lysates were prepared from Plecwt/wt cells (passage 14) (A) and from 

Plecwt/Ogna/p53 cells (passage 17) (B) at a cell confluency of ~70%. Proteins were separated by elec-
trophoresis on SDS 6% (plectin), 8% (ITGβ4, E-cadherin), or 10% (K5, K10, K18, vimentin) poly-
acrylamide gels. Different clonal cell lines are indicated with letters A-F. Cell lysates of primary 
mouse keratinocytes (pmk) and immortalized p53-deficient wild-type mouse keratinocytes (imk) 
were used as positive controls for expression of keratinocyte-specific proteins. A cell lysate from a 
mouse fibroblast cell line (3T3) was used as positive control for vimentin expression, and a protein 
extract of liver (LE) for expression of K18. Immunoblotting was performed using antibodies indi-
cated. Note all wild-type clones displayed comparable expression of the keratinocyte-specific pro-
teins K5 and E-cadherin. K18, vimentin and K10 were not expressed in wild-type clonal cell lines. 
All wild-type clonal cell lines expressed comparable amounts of the hemidesmosomal protein 
ITGβ4. Also note, the Plecwt/Ogna clones displayed expression of the keratinocyte-specific proteins K5 
and E-cadherin. K18 and vimentin were not found to be expressed in any of the Plecwt/Ogna clones, but 
clones A, C, and E expressed the early differentiation marker K10. In contrast to the wild-type 
clones, all Plecwt/Ogna clones (except for clone F) expressed reduced amounts of ITGβ4.  

Plecwt/Ogna Plecwt/wt 
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In order to exclude malignant transformation of the clones, expression of K18, a 

keratin typically expressed in simple epithelia and in keratinocytes undergoing 

malignant transformation was tested (Pei et al., 1992). As K18 is a key protein of 

the hepatocyte cytoskeleton, it was found to be expressed in murine liver extract 

but showed no expression in any of the clonal cell lines. Another hallmark of ma-

lignant transformation of keratinocytes is the downregulation of cell-cell junction-

associated proteins such as E-cadherin (Wilding et al., 1996; Faraldo et al., 1997; 

Taki et al., 2003), concomitant with the disassembly of cell-cell contacts (Cano et 

al., 1996) and resistance against calcium-induced differentiation (Kulesz-Martin et 

al., 1983; Wilding et al., 1996; Raymond et al., 2007). E-cadherin was expressed 

at similar levels in all cell lines and, most importantly, the expression levels were 

also similar when compared to the control lysates of primary mouse keratinocytes 

(pmk) and immortalized mouse keratinocytes (imk) (Fig. 24A,B). Considering 

unaltered expression of E-cadherin and lack of K18, none of the clones displayed 

characteristics of malignant transformation. 

Another important feature of immortalized cell cultures is to maintain pro-

liferation properties of primary cells. K10 is a keratinocyte-specific protein ex-

pressed upon the onset of terminal differentiation (Leigh et al., 1993; Alani et al., 

1998; King et al., 2003). To assess whether the immortalized clonal cell lines had 

not lost the ability to proliferate, I tested K10 expression. In case of the wild-type 

clonal cell lines, none of the clones expressed K10 (Fig. 24A). Expression of K10 

was detectable in primary mouse keratinocyte cultures as a result of different sub-

populations of proliferating and differentiating cells being present in such cultures 

(Fig. 24A,B). However, three of the six Plecwt/Ogna clonal cell lines (clones A, C, 

and E; Fig. 24B) expressed varying amounts of K10, indicating that these cell 

lines contained an increased proportion of terminally differentiated cells that had 

lost properties typical of primary cells.  

ITGβ4 was used to monitor expression of HPC proteins. All wild-type 

clones showed similar ITGβ4 expression levels when compared to the cultures of 

primary mouse keratinocytes and immortalized keratinocytes (Fig. 24A). In con-

trast, all of the Plecwt/Ogna clones displayed significantly reduced ITGβ4 expres-

sion levels except for one clone (clone F, Fig. 24B). As ITGβ4 is a component of 

HDs, the general reduction in ITGβ4 can be explained by the phenotype of EBS-

Ogna which manifests with greatly reduced numbers of HDs. 
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Based on these data three clones of each genotype were cultured in a special 

growth medium, KGM-Gold (Lonza), promoting both clonal, non malignant 

growth and high density keratinocyte proliferation for further characterization. As 

the marker profile among all wild-type clones was equal in this case, the clones 

with the highest expression of P1a (clones A, B, and E; data not shown) were se-

lected for further characterization. In the case of the Plecwt/Ogna cell lines, clones F, 

A and E, displaying no, low and high K10 expression, respectively, were selected.  

To assess the potential of the individual clonal cell lines to form HPCs, all clones 

were cultured to a density of ~70% confluency in KGM-Gold/0.05. The cells were 

then either fixed with cold methanol and further processed for immunofluores-

cence microscopy using antibodies to ITGβ4, or cell lysates were prepared for 

immunoblotting. Alternatively, the cell lines were exposed to 0.5 mM Ca2+ 

(KGM-Gold/0.5) to induce terminal differentiation. After 24 hours, part of the 

cells were fixed with methanol and processed for immunofluorescence micros-

copy using antibodies to desmoplakin I and II. The remaining cells were cultured 

for another two days after reaching confluency and their cell lysates thereafter 

subjected to immunoblotting analysis. All clones that had been grown in KGM-

Gold/0.05 were found to express plectin and ITGβ4 (Fig. 25A), the Plecwt/Ogna 

clones displayed decreased amounts of plectin compared to the Plecwt/wt clones.  

 

 

 

 

 

 

Figure 25: Immunoblotting analysis of selected immortalized clonal cell lines. (A) Clonal 
cell line A, B and E (Plecwt/wt) and clonal cell line A, E and F (Plecwt/Ogna) were grown to a 
density of ~70% confluency. Cell lysates were then subjected to immunoblotting analysis 
along with cell lysates of primary mouse keratinocytes (pmk), immortalized wild-type mouse 
keratinocytes (imk), a lysate of 3T3 mouse fibroblast cells, and a protein extract from liver, 
using the antibodies indicated. Note that all clonal cell lines expressed the hemidesmosomal 
proteins plectin and ITGα6, but plectin levels were lower in Plecwt/Ogna compared to Plecwt/wt 
clones.  Also note that all clonal cell lines except Plecwt/Ogna clone F expressed involucrin. 
Only Plecwt/Ogna clone F expressed trace amounts of vimentin. (B) Clonal cell lines were 
grown until they reached confluency and the medium was then switched to KGM-Gold/0.5. 
Two days later the cells were lysed and aliquots of lysates were subjected to immunoblotting 
analysis using the antibodies indicated. Note lesser expression of desmoplakin in clonal cell 
lines and immortalized keratinocytes cells and almost complete loss of desmoplakin in 
Plecwt/Ogna clone F cells (compared to primary keratinocyte cultures). Also note that the ex-
pression of involucrin increased upon terminal differentiation in all clonal cell lines except 
for Plecwt/Ogna clone F. 

Plecwt/wt Plecwt/wt Plecwt/Ogna Plecwt/Ogna 
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Thus, in terms of reduced plectin expression, the Plecwt/Ogna cells showed lower 

ITGβ4 expression levels compared to the corresponding primary keratinocytes 

(Walko et al., 2011). Immunofluorescence microscopy using antibodies to ITGβ4 

revealed that only one of all Plecwt/wt clonal cell lines, namely clone A, was able to 

form HPCs at significant numbers (arrowheads), whereas only few HPCs could be 

detected in cells from the other wild-type cell lines (Fig. 26). In the case of the 

Plecwt/Ogna clonal cell lines, few HPCs could be detected in clone A (arrowheads), 

whereas almost no HPCs were formed by clone E. In cultures of clone F 

(Plecwt/Ogna), ITGβ4 was found to be expressed only in rounded and spindle-

shaped cells, some of them displaying long protrusions (asterisks). 

 

 

 

 

 

 

All clonal cell lines, except for Plecwt/Ogna clone F, expressed different levels of 

the differentiation marker involucrin (Fig. 26A) and formed desmoplakin-positive 

cell-cell junctions upon confluency in KGM-Gold/0.5 (data not shown) indicating 

onset of terminal differentiation. Upon prolonged incubation with 0.5 mM Ca2+ 

the expression of involucrin increased in all clonal cell lines except for Plecwt/Ogna 

clone F (Fig. 25B). The same line also expressed greatly reduced amounts of the 

Figure 26: Immunolocalization of ITGα6 in selected immortalized clonal cell lines. Clonal 
cell line A, B and E (Plecwt/wt) and clonal cell line A, E and F (Plecwt/Ogna) were cultured to a den-
sity of ~70% confluency and fixed with methanol for immunofluorescence microscopy using anti-
ITGα6 antibodies. Note clones B and E (Plecwt/wt) displayed decreased formation of HPCs (arrow-
heads). Note also that among all Plecwt/Ogna clonal cell lines only clones A and F displayed HPCs, 
but in case of clone F they were predominantly located in the cytosol and at the plasma mem-
brane. Moreover, cells of clone F showed an unusual long and stretched shape with long protru-
sions (asterisks). The scale bar indicates 50 µm. 
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desmosomal protein desmoplakin (Fig. 25B). Vimentin was absent in all clones 

except for Plecwt/Ogna clone F, were a faint band could be detected on immunoblots 

(Fig. 25A). The failure of this clone to induce involucrin expression at the onset of 

terminal differentiation, along with its expression of vimentin, indicated ongoing 

malignant transformation.  

 

DISCUSSION 

 

In this diploma thesis I provide evidence that disasssembly of HPCs in cultured 

mouse keratinocytes upon induction of terminal differentiation is conducted by 

calpains. Disassembly of HPCs can be triggered by enhancing the activation of 

calpains through Ca2+ influx, and can be blocked by inhibiting the hyperactivation 

of calpains through peptide inhibitors of calpains. Disassembly of HDs is crucial 

for many vital processes such as keratinocyte migration during wound healing 

(Raja et al., 2007; Margadant et al., 2008; Ozawa et al., 2010; Tsuruta et al., 2011) 

and for promoting terminal differentiation of keratinocytes (Frye et al., 2003; 

Blanpain and Fuchs, 2006; Blanpain et al., 2006; Gebhardt et al., 2006). This di-

ploma thesis correlates keratinocyte differentiation with the expression of calpain-

1 and gives insights into the roles of calpains in the stepwise disassembly of HPCs 

at the onset of keratinocyte differentiation ex vivo. Furthermore, we found evi-

dence that the EBS-Ogna mutation affects proliferation of keratinocytes lacking 

the tumour suppressor protein p53.  

 

Calpains as key regulators of HPC turnover?  

Several previous observations pointed towards a role of calpains as potential key 

regulators of HPC/HD turnover. First, calpain-1 was reported to be expressed in 

normal foetal and neonatal human skin and to undergo activation-associated auto-

proteolytic cleavage during ex vivo differentiation of primary human keratino-

cytes and HaCaT cells (Michel et al., 1999; Garach-Jehoshua et al., 1998). 

Calpains were also reported to be active in proliferating primary cultures of 

human keratinocytes and in HaCaT cells under normal growth conditions (Satish 

et al., 2004), as well as in epidermal protein extracts (G. Walko, unpublished 

data). Second, calpains were demonstrated to be involved in proteolytic 
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processing of ITGβ4 during the onset of keratinocyte differentiation (Giancotti et 

al., 1992; Tennenbaum et al., 1996). Moreover, in vitro experiments from our 

laboratory demonstrated that calpain-1 can degrade plectin (Walko et al., 2011), 

which together with ITGβ4 builts up the stability axis of HPCs/HDs.  

This diplomathesis reports for the first time that, similar to human keratinocytes 

(Satish et al., 2004), calpains in cultured mouse keratinocytes are active under 

normal, proliferation-promoting growth conditions (0.05 mM CaCl2). 

Interestingly, despite clearly detectable calpain-specific proteolytic actvity, no 

autoproteolytical cleavage of calpains was observed in mouse keratinocytes 

cultured under normal proliferative growth conditions. This could indicate that 

either only a small fraction of calpains is active in proliferating keratinocytes, or 

that calpains display only a low basal enzymatic activity with verly limited 

amounts of autoproteolytically cleaved calpain beeing generated (Baki et al., 

1996; Cong et al., 1989). 

In mouse tail skin, calpain-1 was found to partially colocalize with ITGβ4 

at the basal cell membrane of basal keratinocytes, thus fulfilling the spatial re-

quirements for a potential HD regulator (Walko et al., 2011). In fact, we could 

demonstrate that activated calpains can directly regulate the disassembly of HPCs 

in cultured keratinocytes. Ionophore-mediated influx of Ca2+ into keratinocyte 

cells induced rapid HPC disassembly by calpain-mediated degradation of ITGβ4 

and P1a, which could be blocked by treatment with a potent cell permeable 

peptide inhibitor of calpains. Interestingly, similar Ca2+ ionophore treatments have 

previously been shown to induce differentiation and cornified envelope formation 

(Ruhrberg et al., 1996; Sarafian et al., 2006). Accordingly, pharmacological 

inhibiton of calpain activity was able to rescue HPC protein degradation at the 

onset of terminal differentiation of keratinocytes ex vivo. However, the role of 

calpains  in HPC turnover under normal growth conditions remains elusive, since 

in proliferating keratinocytes only the protein levels of plectin but not of ITGβ4 

were not increased upon treatment with calpain inhibitors. One needs to mention 

that the specifity of the calpain inhibitors used is limited. The vast majority of 

available calpain inhibitors also inhibit the enzymatic activity of cysteine 

proteases and/or the proteasome (see Table 4), thus complicating the 

interpretation of inhibitor studies.  
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Another interesting observation from our experiments was that in proliferating 

keratinocytes, fractions of calpain-1 were found to be located at the plasma 

membrane and to be also associated with the cytoskeleton. The binding of 

calpains to the membrane seems to be important for calpain activation (Shao et 

al., 2006; Leloup et al., 2010). Active calpain attached to the plasma membrane 

was also reported to be required for the self-sealing repair mechanism of 

membranes in proliferating fibroblasts (Mellgren et al., 2007). The membrane-

associated pool of calpain-1 in keratinocytes could be maintained by EGF and/or 

the membrane phospholipid PIP2 (Shaoh et al., 2006; Leloup et al., 2010, Satish et 

al., 2004). The existence of a membrane-associated fraction of calpain-1 in 

proliferating keratinocyte cells would also be a prerequisite for the fast and strong 

calpain-1 activation upon Ca2+ influx. When HPC disassembly is required, 

elevated Ca2+ levels could enhance the activation of membrane-associated 

calpains and in addition promote targeting of cytosolic calpains to the plasma 

membrane. Consequently, HPC-dependent processes such as keratinocyte 

differentiation could be triggered through temporal and spatial regulation of 

calpains. This stepwise mode of regulation may enable a fast and very effective 

degradation of HPCs.   

 

Insights into the multi-step mechanism of HPC disassembly at the onset of 

keratinocyte differentiation 

Kostan et al. (2009) demonstrated that incubation with elevated extracellular Ca2+ 

levels to induce terminal differentiation of keratinocytes resulted in the rapid 

dissociation of P1a and ITGβ4. This fundamental process is executed through 

calmodulin and PKCα. While calmodulin binds to the ABD of P1a, PKCα 

phosphorylates serine residues in the connecting segment of the cytosolic domain 

of ITGβ4. Both events lead to the dissociation of P1a from ITGβ4. However, 

these processes could not explain the subsequent downregulation of both 

hemidesmosomal proteins during keratinocyte terminal differentiation. The data 

obtained in this diploma thesis provide evidence that calpains are involved in this 

process. Interestingly, the expression of calpain-2 during Ca2+-induced terminal 

differentiation inversely correlated with that of P1a and ITGβ4, whereas that of 

calpain-1 did not. Albeit calpain enzymatic activity was not assessed in 

keratinocytes undergoing terminal differentiation, the protein levels of both 



48 
 
Discussion 

calpain isoforms were found to be increased upon treatment of cells with a 

pharmacological inhibitor of calpains, indicating that a fraction of calpains must 

have been highly activated during terminal differentiation, resulting in 

autoproteolytic cleavage and reduced amounts of calpain proteins (Shea, 1997; 

Neumar et al., 1998; Chou et al., 2011). However, as the activation process of 

calpains is complex, only the direct assessment of calpain’s enzymatic activity 

could tell us to what extent calpains are active/activated during keratinocyte 

terminal differentiation.  

Expanding a previous model of HPC disassembly in keratinocytes 

undergoing terminal differentiation (Kostan et al., 2009), our data suggest a 

stepwise mechanism of HPC disassembly constituting of three distinct phases 

(Fig. 27).  

 

 

 

 

 

 

 

 

 

 

 

In phase one, the influx of Ca2+ upon raising the extracellular Ca2+ levels leads to 

activation of calmodulin and PKCα, which promotes the dissociation of ITGβ4 

and P1a and exposes both proteins to subsequent proteolysis. Ca2+ activates 

Figure 27: Hypothetical model of HPC disassembly at the onset of Ca2+-induced keratino-
cyte differentiation. Under low Ca2+ concentrations a fraction of calpain (red) is already at-
tached to the membrane but its enzymatic activity is low. The stability of HPCs is mediated by 
the association of ITGβ4 with P1a via binding of plectin's actin binding domain (ABD) to the 
first pair of the fibronectin type III (Fn1 and Fn2) domains of ITGβ4 and via interaction be-
tween plectin's plakin domain (PD) and the ITGβ4 connecting segment (CS). The HPC is con-
nected to the keratin IF network via plectin's C-terminal plakin repat domain (PRD).  Phase 1: 
At the onset of keratinocyte differentiation elevated Ca2+ levels activate PKCα (phosphorylating 
serines at the CS domain of ITGβ4), and calmodulin (CaM), which binds to the ABD of plectin. 
Both events cause the dissociation of ITGβ4 and P1a. As another consequence of Ca2+  influx, 
heterodimeric calpains consisting of large (domains I-IV) and small subunits (domains V and 
VI) are strongly activated resulting in autoproteolyis and relase of the small subunit. Phase 2: 
P1a and ITGβ4 are now exposed to proteolysis and are initially cleaved by active calpains. 
Phase 3: Once cleaved both proteins are degraded within hours via other proteases (e.g caspases 
and/or the proteasome). Additionally, ITGβ4 is downregulated at the transcriptional level.   
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membrane-associated calpains and promotes activation of additional calpain 

molecules from the cytosolic and/or the cytoskeletal pools. In phase two, the now 

exposed hemidesmosomal proteins ITGβ4 and P1a are initially cleaved by 

calpains, triggering rapid degradation of both proteins by other proteases. We 

observed that upon hyperactivation of calpains by ionophore-mediated Ca2+ 

influx, proteolysis of ITGβ4 proceeded faster than proteolysis of P1a, suggesting 

that P1a was more resistant to calpain-mediated degradation than ITGβ4. This 

could be explained by ITGβ4-promoted oligomerization of P1a molecules into 

sheet-like structures of higher molecular order, which would render HD-

associated P1a very resistant to calpain-mediated cleavage (Walko et al., 2011). In 

phase three, as keratinocytes begin to terminally differentiate and leave the basal 

cell layer, complete downregulation of ITGβ4 would be assured by reduction of 

mRNA transcripts (Tennenbaum et al., 1996), whereas such a mechanism could 

not be shown to exist in the case of P1a (Kostan et al., 2009). It is thus more likely 

that, after initial cleavage by calpains, complete degradation of P1a is mediated by 

other proteases, e.g. caspases or the proteasome. This would be consistent with the 

incomplete inhibition of P1a degradation by MDL-28170 upon ionophore-

mediated Ca2+-influx and the failure of E64 to prevent downregulation of P1a 

after day one of Ca2+-induced keratinocyte terminal differentiation.  

However, some aspects of the stepwise HPC disassembly mechanism 

remain elusive. If calpains initially cleave the HD proteins and thus are involved 

in triggering keratinocyte terminal differentiation why has it then not been 

possible to block differentiation by inhibition of calpains? Why did the inhibition 

of calpains even increase the expression of the differentiation markers p27 and 

involucrin? First of all, the peptide inhibitor used, E64, is not calpain-specific, but 

inhibits also cysteine proteases, among them several isoforms of cathepsins (see 

Table 4), a family of lysosomal proteases. Cathepsins B, D, E, H, and L were 

shown to be upregulated during terminal differention of keratinocytes and 

cathepsins D, E and L were found to be important positive regulators of 

keratinocyte terminal differentiation and the formation of the cornified enevelope 

(Tanabe et al., 1991; Egberts et al., 2004; Reinheckel et al., 2005; Benavides et 

al., 2011; Kawakubo et al., 2011). Accordingly, inhibition of cathepsins by E64 

should have impaired terminal differentiation, rather than promoted it. 

Interestingly, p27 has been reported as a direct substrate of calpain (Patel and 
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Lane, 2000). Thus the upregulation of p27 upon E64 treatment could be the direct 

consequence of calpain inhibition. Since p27 was reported to be involved in 

regulating the onset of keratinocyte terminal differentiation (Missero et al., 1996; 

Hauser et al., 1997; Harvat et al., 1998), inhibition of calpains in keratinocytes 

could have led to its stabilisation, and thus enhancement of terminal 

differentiation. Calpains were also implicated in the prosurvival activities of both 

the tumoursuppressor protein p53 and nuclear factor-κB (NF-кB) (reviewed in 

Storr et al., 2011). Accumulating evidence indicates that calpain is able to 

cleave wild-type p53, regulating protein stability to prevent p53-dependent apop-

tosis (Gonen et al., 1997; Kubbutat and Vousden, 1997; Atencio et al., 2000). In 

addition, calpain can promote survival through activation of NF-кB by cleavage 

of its inhibitor IкBα. Calpain-mediated IкBα cleavage can occur in response to 

tumour necrosis factor (TNF) (Han et al., 1999).  Thus, inhibition of calpains in 

keratinocytes could also have triggered apoptosis and thereby have supported 

terminal differentiation, since this involves some components of the apoptotic 

machinery (Weil et al., 1999; Janes et al., 2003). It is worth mentioning that light 

microscopic monitoring of keratinocytes that were treated for prolonged periods 

with calpain inhibitors revealed signs of cells undergoing apoptosis (unpublished 

data). Irrespective of the precise mechansim that led to enhanced terminal 

differentiation of keratinocytes upon E64 treatment, it appears that this 

mechanism overpowered inhibition of calpain-mediated degradation of HPC 

proteins and even further accelerated downregulation of P1a and ITGβ4. 

As calpains fulfil such a large number of diverse functions the tight 

regulation of these proteases must be crucial for cell survival. Summarized, the 

detailed mechanisms contributing to the tight regulation of calpains in the 

epidermis remain elusive but may help in solving these questions. Thus, further 

studies on the function and regulation of calpains in keratinocytes are necessary to 

solve the open questions. First of all, siRNA depletion of either calpain-1 or 

calpain-2, or both calpains together could help to reveal the specific roles of the 

two isoforms  in HPC disassembly and keratinocyte differentiation without 

interference with other protease families. Second, studies using conditional skin-

specific calpain knock out mice would help to elucidate the hypothized models in 

vivo. 
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As in all experiments performed during this diploma thesis cultured keratinocyte 

cell lines or primary mouse keratinocyte cultures were used it is important to aks 

the question whether the proposed model of HPC disassembly has true relevance 

in vivo. Support for a role of calpains for HD turnover in vivo comes from a 

recent study of a mouse model of the human skin blistering disease EBS-Ogna 

(Walko et al., 2011). As shown in this diploma thesis, degradation of mutant P1a 

in basal keratinocytes isolated from EBS-Ogna mice can be blocked by inhibition 

of calpains, which leads to increased formation of HPCs. Moreover, topical 

application of the calpain inhibitor MDL-28170 to the tails of EBS-Ogna mice for 

five days inhibited calpain autoproteolysis and increased P1a levels at the basal 

cell surface of basal keratinocytes (Walko et al., 2011). Thus, one can conclude 

that activated calpains must be associated with HDs in basal keratinocytes in vivo, 

where they are involved the degradation of EBS-Ogna mutant P1a proteins. In 

fact, zymography and immunoblotting analysis revealed that in epidermal protein 

extracts calpains exist mostly in the autoproteolytically cleaved form (Walko et 

al., 2011), indicating that calpains are very active in the epidermis.  

 

Calpains: key proteases in EBS-Ogna pathology 

In the pathology of the skin blistering disease EBS-Ogna, reduced numbers of 

HDs are a consequence of a mutation in the rod domain of P1a, sensitizing it to 

proteolysis (Walko et al., 2011).  A number of proteases capable of plectin 

cleavage have been described, including caspases 2, 3, 6, 7, and 8 (Stegh et al., 

2000; Aho, 2004) , and calpain-1 (Muenchbach et al., 1998). Walko et al. (2011) 

demonstrated using an in vitro system to detect epidermis-specific protease 

activities that the plectin rod was degraded via the action of calpains and serine 

protease activities present in the epidermis. In this diploma thesis this approach 

was extended to primary mouse keratinocytes carrying the EBS-Ogna mutation. 

Using pharmalogical inhibitors of calpains, the numbers of cells with HPCs were 

significantly increased pointing towards calpains as key proteases in the 

degradation of mutated P1a. Moreover, in vivo inhibitor studies via topical 

application of the calpain inhibitor MDL-28170 to the tails of mice mimicking 

EBS-Ogna for five days resulted in increased numbers of HDs in the epidermis of 

the EBS-Ogna mice (Walko et al., 2011). These studies not only give insights into 
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the EBS-Ogna pathology but may also highlight a new direction towards 

prospective future therapies. 

 

HPCs as regulators of cell proliferation? 

Throughout the initial establishment of immortalized cell lines, keratinocytes de-

pleted of the tumor suppressor gene p53 and carrying the homozygous EBS-Ogna 

mutation (PlecOgna/Ogna ) displayed defects in cell growth and adhesion. Heterozy-

gous EBS-Ogna keratinocytes appeared also to grow slower when compared to 

wild-type cells but displayed no impaired adhesion. In contrast, immortalized 

clones of homozygous EBS-Ogna keratinocytes did not attach after passage two 

and consequently died. Interestingly, reduced cell adhesion and proliferation has 

also been described for plectin-deficient immortalized keratinocytes (A. Jörgl, 

Diplomathesis, 2001). Thus, the P1a dosage-dependent defects observed in EBS-

Ogna keratinocytes propose an important role of HPCs in proliferation and adhe-

sion signaling, particularly in a p53-null background. 

Reduced adhesion and cell survival have been previously reported for primary and 

immortalized keratinocytes lacking the laminin α3 or laminin γ2 genes (Ryan et 

al., 1999; Meng et al., 2003). However, whereas these cells displayed reduced 

adhesion and survival on plastic dishes, correlating with their inability to deposit 

laminin-322, these defects could be rescued by growth on exogenous collagen or 

laminin, indicating that ligation of the collagen receptor ITGα2β1 or the laminin 

receptors ITGα3β1 and ITGα6β4 was sufficient to rescue cell survival (Meng et 

al., 2002; Ryan et al., 1999). In cultured keratinocytes, ITGα3β1 is a component 

of focal adhesions (Raghavan et al., 2003; Ozawa et al., 2010), whereas ITGα6β4 

is a component of HPCs. ITGα3β1 was reported to be important for keratinocyte 

cell adhesion and migration, and for stimulating cell proliferation (Brakebusch et 

al., 2000; Raghavan et al., 2000; Grose et al., 2002; Manohar et al., 2004), 

whereas ITGα6β4 appears to play no role in keratinocyte proliferation (Raymond 

et al., 2005). Moreover, keratinocytes deficient in ITGβ4 can still attach to 

laminin-322 via ITGα3β1 (Niessen et al., 1996). Thus, the compromised forma-

tion of HPCs in EBS-Ogna keratinocytes likely does not account for the observed 

adhesion and proliferation defects. ITGα6β4 is thought to have distinct functions 

depending on whether it is incorporated into HDs or associated with the leading 

edge of the cell during keratinocyte migration. Whereas in HDs/HPCs ITGβ4 
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promotes cell anchorage to the extracellular matrix, upon release from HDs/HPCs 

by EGF and PKC signalling or Ron-mediated displacement, it can associate with 

F-actin at the cellular periphery and with lipid rafts, where it is believed to 

function as a singnalling transducer protein (Rabinovitz et al., 1999; Gagnoux-

Palacios et al., 2003; Santoro et al., 2003; Rabinovitz et al., 2004; Frijns et al., 

2010; Yu et al., 2012). Interestingly, ITGα6β4 was shown to inhibit haptotactic 

migration-related functions of ITGα3β1 via Erb2 and PI3K in a cell-cell contact-

dependent fashion (Hintermann et al., 2001). Possibly, ITGα6β4 released from 

HPCs could act in a similar fashion also on the adhesion and proliferation-related 

functions of ITGα3β1.  

Surprisingly, the adhesion and proliferation defects of immortalized 

keratinocytes homozygous for the EBS-Ogna mutation are very similar to that 

observed for keratinocytes lacking or expressing reduced amounts of K14 (Troy 

and Turksen, 1999; Alam et al., 2011). K14-deficient keratinocytes displayed re-

duced adhesion, spreading, slow growth and considerable cell lysis when seeded 

onto collagen upon initial cell isolation, and considerable cell loss was observed 

during the first few days after replating (Troy and Turksen, 1999). Moreover, im-

mortalized cell lines established from these primary cultures continued to display 

reduced spreading, proliferation and colony forming efficiencies (Troy and Turk-

sen, 1999). In a more recent study, knockdown of K14 in HaCaT cells was shown 

to cause similar effects, including reduced adhesion on collagen, reduced cell pro-

liferation and delay in cell cycle progression (Alam et al., 2011). These defects 

were traced to decreased activation of Akt and increased Notch pathway activa-

tion (Alam et al., 2011). Interstingly, K14 knockdown HaCaT cells also expressed 

increased levels of terminal differentiation-associated proteins including involu-

crin, which we found to be upregulated also in three out of five PlecOgna/Ogna/p53-/- 

clonal cell lines. Intriguingly, plectin's IF-binding domain was shown to bind to 

K14, but not K5 (Geerts et al., 1999). However, primary PlecOgna/Ogna keratino-

cytes display a normal K5/K14 network under unstressed conditions (Walko et al., 

2011), challenging the hypothesis that alterations in the cytoarchitecture of 

K5/K14 networks in EBS-Ogna keratinocytes could be responsible for the ob-

served defects in cell adhesion and growth. However, a re-evaluation of keratin 

IF network cyotarchitecture and particularly filament dynamics and stability 

could help to detect yet unnoticed defects of the keratin IF network in EBS-Ogna 
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keratinocytes and maybe reveal functions of P1a that go beyond keratin IF-HPC 

attachment. In keratinocytes, keratin IFs are not only anchored to HDs/HPCs via 

P1a and BPAG1e, but also to the nucleus via nesprin 3 (Wilhelmsen et al., 2005; 

Ketema and Sonnenberg, 2011), whereby the keratin IF network could act as a 

mechanosensory element ultimately leading to altered gene expression (Wang et 

al., 2009). In fact, several junctional proteins including BPAG2 and ITGα6 were 

found to be downregulated on the mRNA level in EBS cell lines carrying 

Dowling Meara-type mutations in K14 (Liovic et al., 2009). Of note, in EBS-

Ogna keratinocytes, K5/K14 filaments retract from residual HPCs at the cell pe-

riphery and collapse onto the nucleus upon mechanical stress (Walko et al., 2011). 

Thus, the hypothetical mechanosensing axis from HPCs to the nucleus would be 

easily disrupted by the mechanical stress occurring during cell isolation and pas-

saging. It remains to be established whether compromised anchorage of keratin 

IFs to HDs/HPCs and potential defects in keratin IF network dynamics in EBS-

Ogna keratinocytes could indeed impact on mechanosensing and cause gene ex-

pression alterations leading to cell proliferation defects. The immortalized clonal 

keratinocyte cell lines would be a good tool to test this hypothesis. However, 

more detailed studies (including statistical analyse on the proliferation behaviour 

of primary wild-type and EBS-Ogna mouse keratinocytes, as well as of the corre-

sponding immortalized clonal cell lines must be performed initially. 

 

In conclusion, this diploma-thesis adds new aspects to the current model of HPC 

disassembly at the onset of keratinocyte terminal differentiation presented by 

Kostan et al. in 2009. Calpains were shown to be potential candidates for filling 

the gap between the calmodulin/phosphorylation-mediated dissociation of ITGβ4 

and P1a and the consequent degradation of the two proteins during terminal 

differentiation of keratinocytes. In vivo studies of  epidermal homeostasis in 

epidermis depleted of calpains would bring more light on the role of calpain 

isoforms during keratinocyte differentiation. Furthermore, this diploma thesis 

highlights the role of calpains in the pathology of EBS-Ogna proposing a new 

target for prospect future therapies. Additionally, this work provides evidence that 

hemidesmosomal plectin could be involved in cell survival and proliferation of 

keratinocytes
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MATERIALS AND METHODS 

 

Homogenisation of mouse keratinocytes 

All steps were performed on ice. 

Mouse keratinocytes from 2 x 10 cm culture dishes were washed two times with 5 

ml of cold PBS, scraped into 5 ml of cold PBS and transferred to a fresh tube. The 

cells were pelleted using Haereus Megafuge 1.0R centrifuge with 335.40 g for 3 

minutes. The supernatant was discarded and the pellet resuspended with 5 ml of 

swelling buffer with subsequent incubation for 2 minutes. The cell suspension was 

pelleted again and resuspended with 800 µl of sample preparation buffer (that was 

always prepared fresh). 

The Dounce Ball Homogenisator was washed with sample preparation buffer 

prior to homogenisation. The cell suspension was homogenised with 8 strokes and 

using a ball with 8 µm clearance. The homogenate was centrifuged for 30 minutes 

with 167.70 g in an eppendorf 5415C centrifuge. The supernatant was aliquoted 

into fresh tubes, shock frozen with fluid nitrogen and subsequently stored at -80 

°C. The supernatant was mixed 1:3 with 5 x SDS sample buffer for staining with 

Coomassie brilliant blue and immunoblotting analysis.  

Swelling Buffer:  

- 10mM Tris/HCl 

- 2mM MgCl2 

- 10mM NaCl 

- pH=7,5 

 

Sample Preparation Buffer:. 

- 20mM Tris/HCl 

- 5mM EDTA 

- 5mM EGTA 

- 1mM DTT 

- pH=7,5 
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Subcellular fractionation  

 

The subcellular fractionation was performed with Fermentas ProteoJET Mem-

brane Protein Extraction Kit (#K0321). 

Mouse keratinocyte cell monolayers at a density of ~ 90% were washed with cold 

cell washing solution and subsequently incubated in cell permeabilisation solution 

for 10 minutes at 4°C gently rocking. The supernatant (cytosolic fraction) was 

transferred into fresh tubes and stored at -80°C. Membrane protein extraction 

buffer was then added to the permeabilised cells and they were then incubated 

gently rocking for 30 minutes at 4°C. Subsequently, the remaining fractions were 

scraped off from the dish, transferred to a fresh tube and centrifuged at 28341 g 

for 20 minutes at 4 °C. The supernatant (membrane fraction) was transferred into 

fresh tubes and aliquots were stored at -80°C. The pellet (cytoskeletal fraction) 

was resuspended in 5 x SDS sample buffer and incubated at 95 °C for 5 minutes 

with vigorous shaking. Immediately after heating, the suspension was passaged 

ten times through a 27G syringe, aliquoted and stored at -80 °C.  Cytosolic and 

membrane fractions were mixed 1:10 with 5 x SDS sample buffer for staining 

with Coomassie brilliant blue and immunoblotting analysis.  

 

Preparation of cell lysates 

Keratinocytes were washed twice with 5 ml PBS. The cells were lysed in an ap-

propriate volume of hot 5 x SDS sample buffer and passaged ten times through a 

27G needle. The lysate was then incubated for 5 minutes at 95°C with gentle 

shaking. Finally, the total cell lysate was aliquoted and stored at -80°C.  

  

5 x SDS sample buffer: 

- 60 mM Tris-Cl pH6.8 

- 2% (w/v) SDS 

- 10% (v/v) glycerol 

- 5% (v/v) β-mercaptoethanol 

- 0.01% (w/v) bromophenol blue 
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SDS-polyacrylamide gel electrophoresis 

 

The SDS-polyacrylamide gels were casted using the volumes listed in table 2 ac-

cording to the desired acrylamid concentration. Separation gels were overlaid with 

isopropanol during polymerization for at least 30 minutes. The isopropanol was 

then removed, the stacking gel was poured onto the separation gel and the comb 

(10 or 15 slots) was inserted. After 30 minutes of polymerization samples pre-

mixed with 5 x SDS sample buffer were incubated for 5 minutes at 95°C and pi-

petted into the slots of the stacking gel. The gel was covered with electrophoresis 

buffer and gel-electrophoresis was performed using BioRAD Protean Mini II ap-

paratures with 20 mA per gel for about 2 hours.  

 

 

6% 8% 10% 12% 

stacking gel 

4% 

ddH2O 2.6 ml 2.3 ml 1.9 ml 1.6 ml 0.68 ml 

30% acrylamid 1.0 ml 1.3 ml 1.7 ml 2.0 ml 170 µl 

1.5 mM Tris/ HCl (pH 8.8) 1.3 ml 1.3 ml 1.3 ml 1.3 ml 130 µl 

10% SDS 50 µl 50 µl 50 µl 50 µl 10 µl 

10% ammonium persulfate 50 µl 50 µl 50 µl 50 µl 10 µl 

TEMED 10 µl 8 µl 6 µl 6 µl 2 µl 

 

Electrophoresis buffer: 

- 25 mM Tris 

- 250 mM Glycine 

- 0.1% SDS 

 

Coomassie staining 

The SDS polyacrylamid separation gel was briefly washed with ddH2O and incu-

bated in Coomassie staining solution for 30 minutes at RT. After incubation, the 

gel was de-stained using de-staining solution until an appropriate contrast was 

achieved. Subsequently, the gel was washed 5 minutes with ddH2O for 5 minutes.  

 

 

Table 2: Solutions for preparing SDS polyacrylamide gels. Quantities given are for 5 ml separa-
tion and 1 ml stacking gels respectively. 
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Coomassie staining solution:  

- 0.5 g Coomassie blue R250 

- 400 ml methanol 

- 70 ml acetic acid 

- ddH2O at 1L 

Coomassie de-staining solution: 

- 10% (v/v) acetic acid 

- 30% (v/v) methanol 

- 60% (v/v) ddH2O 

 

Electrotransfer of proteins onto nitrocellulose membranes 

The blot sandwich for electro transfer was prepared as depicted in Fig. 28: 

 

 

All components were pre-incubated in transfer buffer before the sandwich was 

assembled. Electrotransfer of proteins with a molecular mass higher than 300 kDa 

was performed in a wet-blotting tank filled with transfer buffer at 4°C o/n at 25 V. 

For proteins with a molecular mass lower than 300 kDa semidry electro transfer 

was performed using BioRAD Trans-Blot Turbo Transfer System. For turbo blot-

ting, the filter papers prepared for the anode and the membrane were pre incu-

bated in 2 x transfer buffer containing methanol for at least one hour. The filter 

paper prepared for the cathode was pre-wetted in 2 x transfer buffer for at least 

one hour. The blot sandwich was assembled and covered with 2 x transfer buffer. 

Transfer was performed by setting currents as listed in table 3 according to the 

molecular mass of the desired proteins to be transferred.  

 

 

Figure 28: Preparation of blot sandwich for immunoblot-
ting. 
Source: 
http://www.fermentas.com/templates/files/tiny_mce/support_
images/wblotting.gif 
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molecular mass settings 

  20 kDa - 70 kDa 1.0 mA, 10 minutes 

  70 kDa - 200 kDa 1.5 mA, 15 minutes 

200 kDa - 300 kDa 2.0 mA, 20 minutes 

 

The protein transfer was verified by staining with 1 x Ponceau red solution for 

approx. 5 minutes and subsequent washing with ddH2O. The size marker bands 

were marked with a soft pencil and the membrane was cropped.  Finally, the 

membrane was de-stained with PBS-T.  

Transfer buffer: 

- 25 mM Tris 

- 250 mM Glycine 

- For semidry blotting: 20% (v/v) methanol 

10 x Ponceau red solution: 

- 0.1% (w/v) Ponceau S 

- 5% (v/v) acetic acid 

- ddH2O to 100% 

 

Immunoblotting 
 

All steps were carried out on a shaker. 

The nitrocellulose membrane was first incubated in blocking solution (5% (w/v) 

skimmed milk in PBS-T or 10% (v/v) horse serum in PBS-T) for one hour at RT 

to block unspecific binding of the primary antibody. After blocking, the mem-

brane was briefly washed with PBS and subsequently the primary antibody di-

luted in 4% BSA/ PBS-T was added to the membrane, followed by incubation o/n 

at 4°C.  On the next day, the membrane was washed 3 x 10 minutes with PBS-T 

and incubated with the secondary antibody, which was diluted in PBS-T, for two 

hours at RT. The secondary antibodies used were either coupled to HRPO (horse-

radish peroxidase) or AP (alkaline phosphatase) to allow for chemi-luminescence 

or AP reacting detection. Afterwards, the membrane was washed 3 x 10 minutes 

with PBS-T. 

Table 3: Settings for semidry blotting using BioRAD Turbo Blotter 
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Chemiluminescent detection of HRPO-coupled secondary antibodies was per-

formed using the Chemiluminescence substrate (SuperSignal West Pico of 

Thermo Scientific or BioRAD) and X-Ray films. 

For detection of AP-coupled secondary antibodies the membrane was washed 1 x 

10 minutes with AP buffer and subsequently incubated in AP substrate solution 

until optimal intensities of blotting bands had been achieved. The reaction was 

stopped with PBS-T. 

 

AP buffer:  

- 100 mM Tris  

- 100 mM NaCl 

- 5 mM MgCl2  

- pH 9.5 

AP substrate solution: 

- 66 µl BCIP stock solution 

- 33 µl NBT stock solution 

- 10 ml AP buffer 

BCIP stock solution:  

- 50 mg/ml BCIP in 100% (v/v) DMF 

NBT stock solution: 

- 50 mg/ml NBT in 70% (v/v) DMF 

 

Cell culture: 

All cell culture methods were carried out under aseptic conditions in a laminar 

flow hood. Unless otherwise mentioned all media and solutions used were pre-

heated to 37 °C in a water bath. 

 

Thawing of frozen cells 

Cells stored in liquid nitrogen were rapidly thawed via gently shaking in a 37 °C 

water bath. The cell solutions were immediately added to 6 ml culture medium 

and centrifuged using a Haereus Megafuge 1.0R at 184 g for 3 minutes. The su-
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pernatant was aspirated and the cell pellet re-suspended in 5 ml culture medium. 

The cell suspension was subsequently seeded into a 10 cm uncoated culture dish 

that was filled with 5 ml of culture medium. The cells were incubated at 37 °C 

and 5% CO2. 

 

Passaging of cells 

The cells of a 10 cm culture dish were briefly washed with trypsin-EDTA and 

incubated with 2ml trypsin-EDTA for 8-12 minutes at 37 °C so that the cells 

clearly detached from the dish. The reaction was stopped by addition of 5 ml 

growth medium. The cells were resuspended by pipetting to obtain a single cell 

suspension and subsequently transferred into a fresh tube containing 5 ml growth 

medium.  The cell suspension was centrifuged for 3 minutes at 184 g. The super-

natant was aspirated and then the cell pellet was thoroughly resuspended in an 

appropriate volume of fresh growth medium and the cell suspension was seeded 

into fresh culture dishes. The cells were incubated at 37 °C and 5% CO2. 

 

Freezing of cells 

After trypsination the cell pellet was resuspended carefully in 500 µl warm chelex 

treated FCS. 500 µl of the freezing medium was added drop wise and the mixture 

was then transferred to a cryo-tube that was placed in a cell freezing device (Nal-

gene). The cell suspension was frozen slowly at -80 °C and 48 hours later the 

cryo-tubes were transferred to liquid nitrogen. 

Freezing medium: 

- 20% DMSO 

- 80% chelex treated FCS  

 

Chelex treatment of FCS 

200 ml of ddH2O were added to 20 mg of chelex-100 resin. The pH was adjusted 

to 7.2 with 10 N HCl and the suspension was incubated o/n at 4°C. On the next 

day, the supernatant was discarded and fresh 200 ml ddH2O were added. The pH 

was re-adjusted to 7.2 and the suspension was incubated for 1 hour at 4°C. Subse-

quently, the water was decantated and 50 ml of FCS (Sigma) were added. The 

mixture was incubated for one hour at 4°C while stirring slowly. The suspension 
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was incubated for another hour at 4°C without stirring to allow the chelex to set-

tle. The mixture was sterile filtrated, aliquoted into fresh tubes and stored at -20 

°C. 

 

Isolation of primary keratinocytes from adult and newborn mice 

Adult mice were anesthetized with 200 µl isofluran (Abbott) and killed by cervi-

cal dislocation. The tail was cut off and washed in PBS containing 2 x Penicil-

lin/Streptomycin. In case of newborn mice the pubs were killed by decapitation. 

The trunk skin was isolated from new mice under aseptic conditions in a laminar 

flow hood. 

Skin pieces isolated from adult mouse tails or trunk skin from newborn mice were 

incubated over night floating on 5 ml of Dispase solution (10 mg/ml in KGM/GA-

1000). On the next day, the epidermis was peeled of the dermis and the epidermis 

pieces were minced with scalpels on a sterile glass object carrier and suspended in 

3 ml trypsin-EDTA solution. Then the suspensions were incubated for 8 minutes 

in a 37°C water-bath and the tubes were shaken every minute. Epidermal cells 

were finally released from minced and trypsin-EDTA treated epidermis by pipet-

ting 60 times up and down with a plastic pipette. Then the cell suspensions were 

filtered through a 40 µm cell strainer into a fresh tube filled with cold KGM sup-

plemented with 8% (adult stem cells) or 2% (neonatal stem cells). The cell sus-

pensions were then centrifuged for 7 minutes at 800 rpm, the medium discarded 

and the pellets dissolved in warm adhesion medium. Finally, the epidermal cells 

were plated onto Collagen 1 (neonatal keratinocytes) or Collagen 4 (adult kerati-

nocytes) -coated dishes (filled with adhesion medium) and incubated o/n at 5% 

CO2 and 37°C. After 24 hours the medium was changed to the appropriate growth 

medium. 

 
Adhesion medium: 
 

- KGM- Gold BulletKit (Lonza, 00192060) 

- 8% for adult stem cells, 2% for neonatal stem cells of chelex treated FCS 

- 1% ITS 

- 100 µM CaCl2 
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Growth medium: 

- KGM- Gold BulletKit (Lonza, 00192060) 

- 8% for adult stem cells, 2% for neonatal stem cells of chelex treated FCS 

- 1% ITS 

- 50 µM CaCl2 

Establishment of immortalized mouse keratinocyte cell lines  

Wild-type and wt/Ogna primary mouse keratinocytes in a p53-null background 

were isolated from neonatal mice and cultured on 6 cm culture dishes (Lonza) 

under standard conditions until they reached senescence. Surviving colonies were 

trypsinised with 50 µl of trypsin-EDTA using clonal cylinders (Hilgenberg, 

1980004). After successful detachment of the colonies, the reaction was stopped 

with 100 µl of growth medium and the suspension was transferred to a fresh ep-

pendorf tube. The remaining cells were detached from the plate by washing twice 

with 1 x PBS and transferred to the tube. The suspension was centrifuged for 5 

minutes with 186 g and the cell pellet was re-suspended in 100 µl of growth me-

dium. The cell suspension was consequently seeded into a 24-well culture dish. 

The cells were cultured until they reached ~70% of confluency and subsequently 

trypsinised and seeded into 6-well culture dishes. Before reaching confluency, the 

cells were trypsinised again and seeded into 6 cm culture dishes and finally into 

10 cm culture dishes. The cells were purified from contaminating fibroblasts and 

melanocytes by several rounds of selective trypsinisation for 4 minutes at 37 °C.  

 

Growth medium: 

- KGM BulletKit (Lonza, CC-3111) 

- 2% chelexed FCS 

- 1% ITS 

- 50 µM CaCl2 

 

Calpain activity assay 

1x105 cells were seeded into each well of a 6-well plate and the cells were cul-

tured in 0.05 mM Ca2+ growth medium to a density of ~70%. The cells in two 

wells were then incubated with either 50 µM MDL-28170 or 10 µM ALLN for 
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one hour. In a next step 50 µM t-BOC-Leu-Met (CMAC) was applied to all wells 

and incubated for 20 minutes.  

 

Immunostaining of cells for immunofluorescence microscopy 

Cultured cells were methanol–fixed (2 min, −20°C) for immunostaining and then 

incubated with 4% (w/v) BSA/PBS o/n at 4°C to block unspecific bindings. On 

the next day, cells were incubated with the first antibody solution (antibody di-

luted in 4% BSA/PBS) for 1 hour and subsequently washed three times for 10 

minutes with PBS. The cells were then incubated with the secondary antibody 

(diluted in PBS) for another hour and again washed with PBS as previously de-

scribed. In a next step, the cells were incubated with Hoechst dilution (1:3000 in 

PBS) for 10 minutes and then washed with PBS for 10 minutes and washed twice 

with ddH2O for 5 minutes. Finally, the cells were mounted in Mowiol and cov-

ered with cover slips. 

 

Fluorescence and phase contrast microscopy image acquisition 

A Zeiss laser scanning microscope (LSM) 510 equipped with Plan-Apochromat 

40x/1.3NA, Plan-Apochromat 63x/1.4NA and Plan-Apochromat 100x/1.4NA 

objective lenses was used confocal immunofluorescence microscopy. Digital im-

ages were processed using LSM 5 image browser and Adobe software package.  

Phase contrast images of immortalized keratinocytess were obtained with an Ax-

ioObserver Z1 microscope coupled to AxioCam MRm (Carl Zeiss MicroImaging, 

Inc.) and equipped with phase contrast optics. Images were processed with Zeiss 

AxioVision 4.8.1 image analysis software (Carl Zeiss Microimaging, Inc.). 

 

Quantification of HPC formation in cultured keratinocytes 

 Cultured keratinocytes were fixed with methanol and immunolabeled using anti-

ITGα6 and anti-pan-plectin antibodies. Images were obtained using a LSM 510 

microscope equipped with a Plan-Apochromat 63x/1.4NA objective lens. Cells 

displaying co distribution of ITGα6 and plectin in dense clusters at the basal cell 

surface were scored as HPC-positive. Cells that did not display this criterion were 

scored as HPC-negative. 
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Common buffers and solutions 

10 x PBS: 

- 81.8 g NaCl 

- 2.01 g KCl 

- 2.04 g KH2PO4 

- 11.3 g K2HPO4 

- pH 7.4; ddH2O to 1000 ml 

PBS-T: 

- PBS containing 0.05% Tween-20 

 
List of antibodies used for immunoblotting 
 
 

Antigen/Epitope  Antibody  Vendor/Catalog#  
Reference/Name or 

Clone#  

Dilution  

Plectin (N-terminal do-
main of rat plectin, pro-
tein fragment encoded 

by exons 9-12)  

rabbit antise-
rum  

Andrä et al., 2003 /  
antiserum #9  

1:3000  

Plectin 1a (N-terminal 
domain of plectin iso-
form 1a, protein frag-
ment encoded by exon 

1a)  

rabbit antise-
rum,  

purified  

Rezniczek et al., 1998; 
Andrä et al., 2003  

1:150  

Plectin 1c (N-terminal 
domain of plectin iso-
form 1c, protein frag-
ment encoded by exon 

1c)  

rabbit antise-
rum,  

purified  

Andrä et al., 2003; 
Fuchs et al., 2009  

1:400  

Integrin β4 (N-terminal 
domain of human 

ITGb4)  

rabbit antise-
rum,  

purified  

Santa Cruz Biotechnol-
ogy, Santa Cruz, CA /  

H-101  

1:200  

Keratin 5 (C-terminal 
end of mouse keratin 5)  

rabbit antise-
rum,  

purified  

Covance, Princeton, NJ 
/  

PR-B160-P  

1:1000  

E-Cadherin (C-terminal 
end of human E-

Cadherin)  

mouse mAb  BD Transduction Labo-
ratories, Lexington, KY 

/  
clone LP 36  

1:2000  

Calpain-1 large Subunit 
(synthetic peptide corre-

rabbit antise-
rum,  

Cell Signaling Tech-
nology / #2556  

1:700  
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sponding to human se-
quence of calpain-1)  

purified  

Calpain-2 large Subunit 
(synthetic peptide corre-
sponding to human se-
quence of calpain-1)  

rabbit, antise-
rum,  

purified  

Cell Signalling Tech-
nology/  
#2539  

1:700  

Desmoplakin 1+2 (bo-
vine desmoplakin 1+2)  

mouse mAb  Progen,  
Heidelberg, Germany  

DP-2.15, DP-2.17, DP-
2.20  

1:100  

Keratin 10  
(human squamous 

keratinizing epithelium)  

mouse mAb  Millipore/  
MAB3230  

1:100  

Vimentin  goat antiserum P. Traub  1:30.000  
Involucrin  

(peptide of mouse in-
volucrin)  

rabbit antise-
rum,  

purified  

Covance,  
Princeton, NJ, USA  

PRB-140C  

1:1000  

Keratin 18  
(human stratum corneum 

keratin preparation)  

mouse mAb  Progen,  
Heidelberg, Germany  

Ks 18.04  

1:250  

p27 Kip1  
(peptide of rabbit p27 

Kip1)  

rabbit antise-
rum, purified  

Cell Signalling Tech-
nology,  

Boston, USA  
#2552  

1:1000  

α-Tubulin  
(Strongylocentrus purpu-

ratus sperm axoneme 
filaments  

mouse mAb  Sigma-Aldrich,  
Austria  
B-5-1-2  

1:500  

 
 
List of antibodies used for immunofluorescence microscopy 

 

Antigen  Antibody  Vendor/Catalog#  
Reference/Name or 

Clone#  

Dilution 
(tissue/cells)  

Plectin (purified 
plectin from rat 

glioma C6 
cells)  

rabbit antise-
rum  

Wiche and Baker, 1982 /  
serum #46  

1:400 (c)  

Integrin α6  rat mAb  BD Biosciences /  
clone GoH3  

1:100 (c)  
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List of secondary antibodies 

Immuno-fluorescence 
microscopy  Species   Dilution   Vendor   

RRX anti-rabbit IgG  goat  1:200  Jackson Lab.  

Alexa 488 anti-goat  donkey  1:800  
Molecular 

Probes  

Immunoblotting           
AP anti-rabbit IgG  goat  1:5.000  Jackson Lab.  

AP anti-mouse IgG  goat  1:5.000  Jackson Lab.  
HRPO anti-mouse IgG  goat  1:10.000  Jackson Lab.  

HRPO anti-rabbit IgG  goat  1:20.000  Vector Labs  

HRPO anti-goat IgG  donkey  1:20.000  Jackson Lab.  

 

 
IC50 values (nM) for the calpain inhibitors used in this study 

 
 
Inhibitor  Calpain-

1  
Calpain-
2  

CTS-
B  

CTS-
K  

CTS-
L  

CTS-
S  

Proteasome  

        
ALLN  1901  2201  1501    0.51  60001  
E64  5702    1.43  2.53  4.13   
MDL-
28170  

234  234  1004   574   >10004  

 
 
 
 
 
List of chemicals 
 

Reagent Vendor Article number 
30% Acrylamid mix (29:1) Gerbu 1108 

Acetic acid Merck 100063 

Ammoniumpersulfat Serva 13375 

AEBSF Fluka 76307 

ALLN Calbiochem 208719 

BCIP (X-Phos) Gerbu 71290 

Beta-Mercaptoethanol Sigma M625 

Bovine Serum Albumin Gerbu 1063 

Bromphenol-blue solution Sigma-Aldrich B7021 

1 (Sasaki et al., 1990) 
2 (Trinchese et al., 2008) 
3 (Susa et al., 2004) 
4 (Briguet et al., 2008) 
 

Table 4: IC50 values (nM) of calpain inhibitors used in this study from different proteases 
 



68 
 
Materials and Methods 

CaCl2, dihydrat Fluka 21097 

Chelex-100 mesh, sodium BioRAD 142 2842 

CMAC invitrogen A6520 

Collagen I solution Sigma C-8919 

Coomassie blue R250 Gerbu 1097 

Dispase Typ I Gibco 17105-041 

Dithiothreiol (DTT) Gerbu 1008 

Dimethylformamid (DMF) Loba 402480 

Dimethylsulfoxid (DMSO) Fluka 41640 

EDTA Gerbu 1034 

EGTA Sigma-Aldrich E-4378 

E64d Sigma E-3132 

Ethanol Merck 100983 RdH 32221 

fetal calve serum (FCS) Sigma-Aldrich F-7524 

Glycerol Gerbu 2006 

Glycine Gerbu 1023 

Hoechst-dye (#33258) Hoechst 382061 

Horse serum Gibco 26050-088 

Hydrochlorid acid (HCl) Merck 100317 

Insulin transferase solution (IST) Gibco 41400-045 

Isofluron (Isoflo) Abbott 34480VA 

Isopropanol Merck 109634 

K2HPO4 Fluka 56750 

KCl Loba 58648 

KH2PO4 Fluka 60230 

KGM BulletKit Lonza CC-3111 

KGM-Gold BulletKit Lonza 00192060 

MDL-28270 Enzo BML-PI130 

Methanol Merck 10600-RdH 32213 

MgCl2 Fluka 63072 

Na2HPO4 Fluka 71645 

NaH2PO4 Fluka 71506 

NaCl Gerbu 1112 

NaN3 Fluka 71290 

NBT Sigma-Aldrich N-6876 

Phosphate buffered saline (PBS) Gibco 21300-074 

Phenylmethanesulfonylflouride (PMSF) Sigma-Aldrich P-7626 

Ponceau S Sigma-Aldrich P-3504 

Skim milk powder Gerbu 1602 

Sodiumbicarbonate Gibco 043-5080 

Sodiumdodecylsulfate Sigma-Aldrich L-4509 

Sodium hydroxide solution (NaOH) Gerbu 2020 

TEMED Serva 35925 

Tris-X Gerbu 1018 
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Trypsin Gibco 15090-046 

Tween-20 Gerbu 2001 
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Abstract 

 

Plectin is a large (~500 kDa) and versatile member of a family of proteins called 

plakins or cytolinkers. It is able to interact with a multitude of cytoskeletal pro-

teins including components of all major cytoskeletal filament systems of the cy-

toskeleton, and is spliced into various isoforms. Plectin isoform 1a (P1a), which is 

predominantly expressed in skin, is an essential component of hemidesmosomes 

(HDs) where it binds to integrin β4 (ITGβ4). HDs are transmembrane adhesion 

complexes, which anchor basal keratinocytes of the epidermis to the underlying 

basal lamina, thus conferring mechanical stability to the skin. A single autosomal 

dominant missense mutation in the plectin gene causes the skin blistering disease 

Epidermolysis Bullosa Simplex-Ogna (EBS-Ogna), which manifests with dra-

matically diminished P1a protein levels and reduced numbers of HDs. Calpains, 

cysteine proteases expressed in several tissues including the epidermis, have been 

demonstrated to degrade ITGβ4. Proteolytic degradation of HD components could 

be an important prerequisite for terminal differentiation of keratinocytes and could 

also be involved in the pathomechanism underlying EBS-Ogna. For these reasons, 

I assessed the role of calpains as possible candidates for P1a proteolysis at the 

onset of terminal differentiation and in the pathogenesis of EBS-Ogna.  

Performing an enzymatic activity assay, I could demonstrate that calpains are ac-

tive in immortalized mouse keratinocytes. I also found that in immortalized mouse 

keratinocytes a fraction of calpains is localized at the plasma membrane and asso-

ciated with the cytoskeleton. Furthermore, hyperactivation of calpains in immorta-

lized mouse keratinocytes led to P1a and ITGβ4 degradation, which could be 

blocked by treatment with a cell permeable peptide inhibitor of calpains. Results 

with the analysis of primary mouse keratinocytes undergoing differentiation sug-

gested that a fraction of calpains must be active during terminal differentiation 

since treatment of the cells with a pharmacological inhibitor of cysteine proteases 

increased the protein levels of the inactive full length form of calpains. Further-

more, using a mouse model mimicking EBS-Ogna I found that calpains are in-

volved in the proteolysis of P1a in primary keratinocytes derived from mutant 

animals. Upon inhibition of calpains in primary EBS-Ogna keratinocytes, elevated 

P1a protein levels could be detected along with increased numbers of HD-like 
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protein complexes (HPCs). Finally, I established clonal keratinocyte cell lines 

carrying the heterozygous EBS-Ogna mutation (Plecwt/Ogna). Compared to wild-

type clones, Plecwt/Ogna keratinocytes showed signs of proliferation defects point-

ing towards a hitherto undetected role of HDs as regulators of cell proliferation. 

 

Zusammenfassung 
 

Plectin ist ein ungewöhnlich großes (500 kDa) und vielseitiges cytoskelettäres 

Vernetzungsprotein. Es interagiert mit einer Vielzahl von Zytoskelettkomponen-

ten, unter anderem Aktin Filamenten, Mikrotubuli und Intermediärfilamenten. 

Plectin kommt in unterschiedlichen Isoformen vor. Die in der Epidermis expre-

mierte Isoform 1a (P1a) bildet gemeinsam mit Integrin β4 (ITGβ4) Hemidesmo-

somen (HD) aus. HD sind trans-membranöse Adhesionskomplexe, welche die 

basalen Keratinozyten der Epidermis an der darunterliegenden Basallamina ver-

ankern und so der Haut Stabilität verleihen. Eine autosomal-dominante Mutation 

einer einzelnen Base im Plectin Gen verursacht die Hautkrankheit Epidermolysis 

Bullosa Simplex-Ogna (EBS-Ogna). In der Epidermis von EBS-Ogna Modell-

mäusen sind die Proteinniveaus von P1a, sowie die entsprechende Anzahl von 

HDen stark reduziert. Calpaine sind weit verbreitete Cystein Proteasen welche 

unter anderm ITGβ4 proteolytisch abbauen können. Der proteolytische Abbau von 

HD-Proteinen könnte einen essenziellen Schritt im Zuge der terminalen Differen-

zierung von Keratinozyten darstellen. Weiters besteht die Möglichkeit, dass die 

gezielte Proteolyse von HD-Proteinen zum Pathomechanimsus von EBS-Ogna 

beiträgt. Im Zuge dieser Diplomarbeit wurde daher die Rolle von Calpainen in der 

Pathogenese von EBS-Ogna, sowie der terminalen Differenzierung von Keratino-

zyten untersucht.  

Mithilfe einer enzymatischen in vitro Messmethode  konnte ich die Aktivität von 

Calpainen in immortalisierten Mauskeratinozyten nachweisen. Weiters konnte ich 

mittels subzellulärer Fraktionierung zeigen, dass Calpaine sowohl an der Plasma-

membran lokalisiert als auch mit dem Cytoskellett assoziiert sind. Aktivierung 

von Calpainen in immortalisierten Keratinozyten zeigte, dass Calpaine P1a und 

ITGβ4 abbauen können, und dass sich dieser Abbau durch Inaktivierung von Cal-

painen mittels spezifischer Peptid-Inhibitoren verhindern ließ. In terminal diffe-
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renzierenden primären Mauskeratinozyten erhöhte die Inhibierung von Calpainen 

die Proportion an inaktiven Calpainen und gab somit Hinweise darauf, dass Cal-

paine auch im Zuge der terminalen Differenzierung aktiv sind. Mithilfe einer 

EBS-Ogna Mauslinie konnte ich des Weiteren die Beteiligung von Calpainen im 

Zuge der Pathogenese von EBS-Ogna zeigen. In primären Keratinozyten von 

EBS-Ogna Mäusen führte die Inhibierung von Calpainen zu einer Erhöhung der 

P1a Proteinspiegel und Anzahl an HD-Proteinen angereicherten Komplexen. Zu-

sätzlich wurde eine klonale Zelllinie von Keratinozyten etabliert, welche die EBS-

Ogna Mutation heterozygot exprimieren (Plecwt/Ogna). Im Zuge der Etablierung 

zeigten die Plecwt/Ogna Klone ein langsameres Wachstum verglichen mit den Zellen 

des Wildtyps. Diese Beobachtung könnte eventuell einen Hinweis auf eine bisher 

nicht beschriebene Funktion von HDen (und HPCs) als Zellproliferationregulato-

ren liefern.   
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