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Abstract

Disks around young low/intermediate mass stars are often called protoplanetary disks
as they are considered to be the birthplaces of planets. To understand their complex
structure and composition accurate radiative transfer modelling is necessary.

This thesis is part of a larger project for modelling of passive, irradiated protoplanetary
disks with the stellar atmosphere code PHOENIX/3D. The PHOENIX/3D disk models
will include accurate 3D radiative transfer (continuum, lines, non-LTE), gas chemistry,
heating and cooling balance of the gas and the hydrostatic disk structure.

This work is limited to the 3D dust continuum radiative transfer. The aims are to test the
capability of PHOENIX/3D for dust radiative transfer in protoplanetary disks, identify
problems and try to solve them (if possible). For this we use the benchmark problem for
calculating the temperature structure in a protoplanetary disk as defined in Pinte et al.
(2009). The implementation of a method for determining the temperature structure under
the assumption of radiative equilibrium is therefore also part of this work.

To apply PHOENIX/3D to the configuration of a protoplanetary disk several adaptations
were necessary. PHOENIX/3D is a so called “discrete ordinate” code. The radiative
transfer equation is solved along a finite number of rays with distinct directions. The
drawback of this method is that small scale structure may not be resolved correctly. This
is especially true for protoplanetary disks as the star (≈ 10−2 AU) but also the inner rim
of the disk (≈ 10−1 AU) are small compared to the typical dimension of the disks (several
100 AU). To secure that the radiation of the star reaches all areas of the disk it was
necessary to change the distribution of the rays. Because of the limited number of rays it
was necessary to correct the weights for the integration of the mean intensity depending
on the size of the star and the distance to the star. For the inner rim this is not possible
because the spatial dimensions of the inner rim are not as well defined as for the star.
To correctly resolve the inner rim it was necessary to align the grid for the rays and the
spatial grid so that the distribution of the grid points is equal for both grids.

To estimate the temperature structure of a protoplanetary disk a new method for solving
the radiative equilibrium equation in combination with the radiative transfer equation was
implemented. This method is based on the approximate Λ-operator technique already
used in PHOENIX/3D. The approximate Λ-operator is used for solving the radiative
equilibrium equation via a Newton-Raphson iteration.

The correctness of the new method was verified by the results presented in the benchmark–
paper. The benchmark includes four test cases with different optical depths in the mid-
plane of the disk, ranging from ≈ 103 to ≈ 106 for the 0.81 µm wavelength. The new
temperature correction scheme shows good convergence properties and converges for all
four test cases. For large areas of the disk the results of the new scheme are satisfac-
tory. However, in the deep inner region of the disk, where the stellar radiation does not
penetrate, the determined temperatures are always too high. The deviations depend on



the optical depth, ranging from +20%, for the lowest optical depth test case to +65%
for the highest optical depth test case. The reason for this is probably numerical dif-
fusion, caused by the too inaccurate interpolation methods used in PHOENIX/3D for
the radiative transfer. To overcome this problem large spatial grids are necessary, which
increases the computational needs, and therefore becomes unreasonable at least for the
highest optical depth test cases. So, further improvements concerning the accuracy (e.g.
different kind of interpolation method) and the performance are required.



Zusammenfassung

Scheiben um junge Sterne im niedrigen und mittleren Massenbereich werden oft proto-
planetare Scheiben genannt, da sie als die Geburtsstätte von Planeten gelten. Für das
Verständnis der komplexen Struktur dieser Scheiben und deren Zusammensetzung sind
aufwendige und genaue Strahlungstransportmodelle notwendig.

Diese Arbeit ist Teil eines größeren Projektes, das sich eine möglichst umfassende Model-
lierung von

”
statischen“, bestrahlten protoplanetaren Scheiben mit Hilfe des 3D Strah-

lungstransportcodes PHOENIX/3D zum Ziel gesetzt hat. Diese Modelle sollen die Model-
lierung der 3D Scheibenstruktur, relevanter Heiz- und Kühlprozesse des Gases, exakten
3D Strahlungstransport (non-LTE, Linien und Kontinuum) und chemische Netzwerke
beinhalten.

Diese Arbeit beschränkt sich auf den 3D Strahlungstransport für die Staubkomponente
der protoplanetaren Scheibe. Ziel ist die Anwendung von PHOENIX/3D auf ein typisches

”
statisches“ Staubscheibenmodell, um eventuelle Probleme für den Scheiben - Strahlungs-

transport zu identifizieren und soweit als möglich auch zu lösen. Für die Tests wurde
der Benchmark von Pinte et al. (2009) ausgewählt. Dieser Benchmark wurde speziell
für protoplanetare Staubscheiben konzipiert und beinhaltet die Ermittlung der Tempera-
turstruktur und die Modellierung der resultierenden spektralen Energieverteilung. Diese
Arbeit konzentriert sich auf die Ermittlung der Temperaturstruktur. Dafür war es not-
wendig eine neue Methode zur Bestimmung der Staubtemperatur unter der Annahme von
Strahlungsgleichgewicht in PHOENIX/3D zu implementieren.

Tests mit dem neu aufgesetzten Scheibenmodell zeigten, dass für korrekten Scheibenstrah-
lungstransport Anpassungen in PHOENIX/3D notwendig waren. PHOENIX/3D verwen-
det zur Lösung der Strahlungstransportgleichung die sogenannte

”
Methode der diskre-

ten Ordinaten“. Die Strahlungstransportgleichung wird entlang einer endlichen Anzahl
von Strahlen mit bestimmten Richtungen gelöst. Der Nachteil dieser Methode ist, das
kleinskalige Objekte eventuell nicht richtig aufgelöst werden. Im Fall der protoplanetaren
Scheiben mit einer typischen Ausdehnung von mehreren 100 AU trifft dies auf den Stern
(≈ 10−2 AU) und den inneren Rand der Scheibe (≈ 10−1 AU) zu. Um den Stern richtig
aufzulösen, war es notwendig, die Strahlen so zu verteilen, dass garantiert ist, dass das
Licht des Sterns alle Bereiche des Scheibenmodells erreichen kann. Ein weiteres Problem
ist die zu starke Gewichtung der Strahlung des Sterns für die Integration der durchschnitt-
lichen Intensität aufgrund der begrenzten Anzahl der Strahlen. Für diese Problem wurde
ein Algorithmus implementiert, der die Gewichtung abhängig von der Sterngröße und der
Entfernung zum Stern korrigiert. Um den inneren Bereich der Scheibe korrekt aufzulösen,
war es notwendig, das Gitter für die Strahlen und das räumliche Gitter für die Scheibe
aufeinander abzustimmen (gleiche Verteilung der Gitterpunkte).

Zur Bestimmung der Temperaturstruktur ist zusätzlich zur Lösung der Strahlungstrans-
portgleichung die Lösung der Strahlungsgleichgewichtsgleichung erforderlich. Dafür wurde



ein Newton-Raphson Verfahren verwendet. Die Implementierung des Verfahrens basiert
auf der Benutzung des

”
Approximate Lambda“-Operators, der in PHOENIX/3D für das

Lösen der Strahlungstransportgleichung verwendet wird. Das garantiert eine gute Konver-
genzrate und erlaubt eine nahtlose Integration des Verfahrens in die bestehende Methode
zur Lösung der Strahlungstransportgleichung.

Die Korrektheit der Methode wurde anhand der Resultate aus dem Benchmarkpaper ve-
rifiziert. Das Benchmarkpaper beinhaltet vier verschiedene Testfälle mit optischen Tiefen
in der Mittelebene der Scheibe von ≈ 103 bis ≈ 106 für eine Wellenlänge von 0.81 µm.
Das neue Temperaturkorrekturverfahren zeigt gute Konvergenzeigenschaften und konver-
giert für alle vier Testfälle. Für den Großteil der Scheibe wurde einen zufriedenstellende
Übereinstimmung der Resultate festgestellt. In den tiefen inneren Regionen der Scheibe,
in die die Strahlung des Sternes nicht vordringen kann, sind die von PHOENIX/3D er-
mittelten Temperaturen aber zu hoch. Für den Testfall mit der geringsten optischen Tiefe
liegt die Abweichung im Bereich von +20%, für den Fall mit der höchsten optischen Tiefe
beträgt die Abweichung +65%. Der Grund dafür liegt wahrscheinlich in der zu geringen
Genauigkeit der Interpolationsmethoden, die in PHOENIX/3D für den Strahlungstrans-
port verwendet werden. Momentan kann die Abweichung nur mit einer größeren Anzahl
von räumlichen Gitterpunkten verringert werden. Das erfordert aber eine großen Rechen-
aufwand. Für die praktische Anwendung des Verfahrens ist deshalb eine Verbesserung
der Genauigkeit (z.B.: durch eine andere Art der Interpolation) und der Performance
notwendig.
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Chapter 1

Introduction

Circumstellar disks nowadays are commonly observed around young low mass (T Tauri)
and intermediate mass (Herbig Ae/Be) stars (Watson et al. 2007). Disks are a natu-
ral outcome of the low/intermediate mass star formation process. Following Shu et al.
(1987) and Hogerheijde (1998) this process may be separated into the following stages
(see Fig. 1.1, panels a to f ):

a) Fragmentation of the initial molecular cloud into dark, dense and cold cloud cores.

b) Gravitational collapse of these cores lead to the formation of a central hydrostatic
structure surrounded by a large envelope from which material continues to fall onto
the central structure. Caused by angular momentum conservation a disk is forming
in the envelope.

c) With enough mass accreted, deuterium will eventually ignite in the central region
- the protostar. Most of these protostars will produce a stellar wind. This stellar
wind in combination with the interaction of the protostar with the accretion disk
and magnetic fields leads to collimated bipolar outflows and jets in the direction of
the rotational pole (the direction of weakest resistance). At the end of this stage,
most of the still infalling material from the envelope is now accreted by the disk.

d) After losing nearly all its surrounding material the so-called T Tauri star becomes
visible in the optical and the accretion on the disk slows down.

e) After the mass reservoir of the envelope is exhausted accretion on the disk stops, the
star continues to contract and evolves towards the main sequence. During this stage
the disk disperses caused by accretion of disk material by the star, stellar winds,
photo-evaporation and possible planet formation.

f) The star has reached the main sequence and may be orbited by planets.

This evolutionary process is also visible to observations, although for stages b and c
the forming protostar is not directly observable, only its envelope becomes visible in the
longer wavelength range. Common to the spectral energy distribution (SED) of these
young stellar objects (YSOs) is a strong infrared component (infrared excess) additional
to radiation of the pre-stellar object. This is caused by the thermal emission of the heated
envelope and/or disk (see Fig. 1.2).
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Figure 1.1 – Overview of the differ-
ent stages of low mass star forma-
tion. Also the typical spatial and
time scales for each stage of the star
formation process are given. Adapted
from Hogerheijde (1998).

Lada (1987) established a classification scheme according to the slope of the spectral
energy distribution (SED) for these YSOs. Three classes (I-II-III) where defined based
on the spectral index αIR which is defined as

αIR :=
d log(λFλ)

d logλ
(1.1)

where λ is the wavelength and Fλ is the flux in the wavelength range 2 to 25µm.

Owing to ongoing improvements in observational techniques this scheme was refined by
various intermediate classes (e.g. Greene et al. 1994; Whitney et al. 2003) and André
et al. (1993) introduced an additional Class 0 derived from observations in the millimetre
wavelength regime.
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Figure 1.2 – Model calculations of
YSOs. Models are shown for the
corresponding observational classes
0,I,II,III. The left panels show the
SED of the YSO. The black dotted
lines show the spectra of the star.
The solid lines show the composite
SED of the star and the envelope/disk
for different inclinations i from i = 0
(magenta) to i = 90 (green). In the
right panels the corresponding den-
sity distribution is given. For the den-
sity a log scale is used (white: low
density to black : high density). The
black solid lines are isodensity con-
tours. The axis shows the dimension
in AU. Adapted from Whitney et al.
(2003).

Although a one–to–one mapping is not possible these classes can be assigned to the stages
shown in Fig. 1.1 (Hogerheijde 1998). Class 0 and I (αIR > 0.3) are representing stage
c, where for Class 0 the star is still completely hidden in the envelope (no optical or
infrared emission). Stage d corresponds to Class II (−1.6 < αIR < −0.3) where the SED
for longer wavelengths is still dominated by the thermal emission from the disk. Class III
(αIR < −1.6) can be attributed to stage e where the disk becomes optically thin and the
SED is already dominated by the stellar radiation. The numerical values for αIR are from
Williams and Cieza (2011) and Greene et al. (1994).

In Fig. 1.2 model calculations of YSO and their resulting SEDs for the various obser-
vational classes are shown. This figure also shows the dependency of the SED on the
inclination of the object, consequently a observational classification scheme cannot be
applied directly to the real evolutionary process (see Williams and Cieza 2011; Whitney
et al. 2003).
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Figure 1.3 – Sketch of a typical protoplanetary disk. The blue horizontal arrows indicate by which
observational method the different regions of the disk can be spatially resolved (top of the image). On
the bottom side the kind of emission arising in different regions are shown, where red refers to the dust
(continuum emission) and blue to the gas component (line emission). The radial dimension is not to
scale. Adapted from Dullemond and Monnier (2010).

For disks around YSOs often the term protoplanetary disks is used, as they can be seen as
the “cradle of future planetary systems” (Dullemond and Monnier 2010). Fig 1.3 shows
a sketch of “typical” protoplanetary disk. Although the word typical does not really fit
for protoplanetary disk as they show large variances in their properties (e.g. size, mass,
structure, chemistry). Here we want to give just a very short overview of some of their
properties, for a more complete overview see the reviews of Williams and Cieza (2011)
and Dullemond and Monnier (2010).

Outer radii of disks derived from scattered light images can be anywhere between 10
and several 1000 AU (Watson et al. 2007). Mass estimates from millimetre observations
for disks around Class II YSOs yield masses between 10−4 and 10−1M� (Williams and
Cieza 2011). Disks are composed of dust and gas, and although the dust dominates the
opacity, ≈ 99% of the mass is in the gaseous component and only 1% in dust (this ratio
may change with the evolution of the disk). Spectroscopic observations of the gaseous
component reveal various atomic and molecular species implying processes like photo-
ionization, photo-evaporation and a rich chemistry (Williams and Cieza 2011). They can
have a flared or a flatter structure (self-shadowed) influenced by a “puffed up” inner rim
(see Fig. 1.4), dust settling and growing (Dullemond and Dominik 2004).

Modelling Protoplanetary Disks

As we have seen protoplanetary disks are quite complex structures. There exist mainly two
theoretical approaches for modelling them. The first one deals with the dynamic evolution
of the disk including the formation of planets. For this the disk is often treated as a flat two
dimensional structure: a geometrically thin accretion disk (Pringle 1981). This approach
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hot dust surface layer
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dust condensation
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intermediate warm layer: rich molecular chemistry
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HII
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dust condensation rcr gr
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Figure 1.4 – Dust and gas structure of protoplanetary disks. The left panel shows the dust structure
with the puffed up inner rim and the hot surface layer of the disk (caused by direct irradiation). The
right panel shows the gas structure with the various molecular and atomic layers and the pure gas disk
inside the dust sublimation radius. rc and rg indicate typical radii for photoevaporation. Adapted
from Dullemond et al. (2007).

is mainly used to study the formation and early evolution of disks where accretion is still
dominant (Class I to II YSOs). To understand the evolution of a disk the main question
that has to be answered is: “How does the disk lose its angular momentum”? Several
mechanism like gravitational instabilities, magnetic fields, mixing and photoevaportion
are identified although it is still unclear which process is the most efficient one in which
state of disk evolution. For a recent review on the dynamics of protoplanetary disks see
Armitage (2011).

The second approach neglects the dynamical processes responsible for the evolution of the
disk but considers the vertical structure and the detailed composition of the disk. This
kind of models are mainly used for the late evolutionary stages of protoplanetary disks
(Class II to III YSOs) where accretion is not any longer the dominant process. The disk is
treated as a passive structure in hydrostatic, thermal and chemical equilibrium where the
material moves around the star on Keplerian orbits. The main questions addressed are on
the detailed vertical structure and the chemical composition (dust, gas) of the disk. The
main physical driver at this stage of the disk is radiation. The most important radiation
source is the star but also high–energy radiation from external sources like cosmic rays or
jets are important. Therefore accurate radiative transfer models are crucial for this kind
modelling. Fig. 1.4 shows the typical structure and composition of a protoplanetary disk
derived from these kind of models.

Mainly two kinds of numerical codes exist for this “static” modelling. The first group
concentrates on the dust component of the disk as the dust emission mainly defines the
shape of the SED of YSOs. This field is dominated by the so called Monte Carlo radiative
transfer codes (e.g. Pinte et al. 2006; Wolf 2003; Min et al. 2009; Dullemond 2000). Monte
Carlo codes use a stochastic approach to solve the radiative transfer problem. This method
starts photons at the sources of the radiation field (e.g. star or dust grain) and follows
them through the model space by a random walk. It is common for Monte Carlo codes to
use the Stokes formalism, where the radiation field is not only described by a scalar value
of the intensity, but by a Stokes vector also including information about the polarisation
of the radiation. Maybe the biggest advantage of this method is that it perfectly deals
with inhomogeneity (Auer 2003b). Both in the distribution of the sources (it does not
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matter where the photon is emitted and how large the source is) and also in the radiation
field itself (anisotropic scattering). These codes are widely used for fitting observational
data like SED, scattering images and polarisation maps. This allows a detailed study of
the composition of the dust (size distribution, chemical composition) and the influence of
the vertical structure on the SED.

The second group of codes extend this approach to the gaseous component (e.g. Glassgold
et al. 2004; Gorti and Hollenbach 2008; Woitke et al. 2009; Bruderer et al. 2012). The gas
component plays an important role as it is the dominant mass component of the disk and
also influences the dust dynamics (e.g. settling of the dust) and the structure of the disk
(e.g. decoupling of gas and dust temperature influences the hydrostatic structure; Glass-
gold et al. 2004; Woitke et al. 2009). Modern infrared space telescopes like Spitzer and
Herschel allow now also the direct observation of line emission of the gas. With ALMA
(Atacama Large Millimeter Array), which makes the observation of (sub)millimeter lines
possible, and in the future the JWST (James Webb Space Telescope), this kind of codes
becomes more and more important. Although the codes differ in many details, most of
them include the modelling of dust continuum radiative transfer, gas chemistry, heating
and cooling balance of the gas, the hydrostatic disk structure and (approximate) non-LTE
(local thermodynamical equilibrium) line transfer. This allows to study the distribution
and abundance of atomic and molecular species throughout the disk and producing syn-
thetic spectra for comparison with observational data.

This thesis is part of a larger project for modelling of protoplanetary disks in the spirit of
the codes described above. The main idea is to use the existing stellar atmosphere code
PHOENIX/3D (Hauschildt and Baron 2006) and especially its ability for detailed non-
LTE line transfer. The overall goal of this PHOENIX/3D-based program is to develop a
3D disk model code that includes the modelling of a self-consistent 3D disk structure, all
relevant heating and cooling processes, accurate 3D radiative transfer (lines, continuum)
and chemical networks.

Aims and Motivation for this Thesis

This master thesis is limited to the 3D dust continuum radiative transfer. The aims are
to test the capability of PHOENIX/3D for disk radiative transfer, identify problems and
try to solve them (if possible). For this we use the benchmark problem defined in Pinte
et al. (2009) for calculating the temperature structure in a protoplanetary disk.

This thesis is structured as follows. We start with an introduction to radiative transfer
and define the theoretical problem (chapter 2). In chapter 3 we give a brief overview of
the method used in PHOENIX/3D for solving the radiative transfer equation. Chapter
4 describes the necessary adaptations to PHOENIX/3D for disk radiative transfer. In
chapter 5 a new method for calculating the equilibrium dust temperature and its imple-
mentation in PHOENIX/3D is presented. Our tests and results are presented in chapter
6. Finally we present our conclusions and discuss possible improvements and future work
(chapter 7).



Chapter 2

Radiative Transfer

In this chapter we will give a short introduction to radiative transfer and define the
theoretical problem we have to deal with. In section 2.1 we discuss the radiative transfer
equation and define important quantities used throughout this thesis, further we describe
the conditions for radiative equilibrium and formulate the radiative equilibrium equation
(section 2.2). In the last section of this chapter (section 2.3) we combine these two
equations to define our overall problem.

This chapter mainly follows the books of Shu (1991, chap. 1,3) and Mihalas (1978, chap.
1,2,6).

2.1 Radiative Transfer Equation

Radiative transfer is about the interaction of radiation with matter. During this interac-
tion energy can be removed from (e.g. by absorption) or added to (e.g. thermal emission)
the radiation field.

The so called radiative transfer equation (RTE) describes these processes. To formulate
the radiative transfer equation the following definitions are needed:

Specific Intensity

Figure 2.1 – Definition of the specific intensity Iλ(~r , k̂ , t).

The specific intensity Iλ(~r , k̂ , t) describes the radiation field at a distinct wavelength λ
and is defined as

dE = Iλ(~r , k̂ , t) dA k̂ · n̂ dΩ dλ dt . (2.1)
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Here dE is the amount of energy in the wavelength interval [λ, λ+ dλ] which crosses the
area dA, with unit normal n̂, in the direction k̂ into the solid angle dΩ in time dt . I
has the units erg cm−3 s−1 sr−1. Instead of k̂ · n̂ often cos θ is used where θ is the angle
between k̂ and n̂ (see Fig. 2.1).

This definition has the advantage that I is a conserved quantity as long as there is no
interaction with matter (for a proof see Shu 1991, chap. 1). For this case the radiative
transfer equation has the simple form of

1

c

∂Iλ(~r , k̂ , t)

∂t
+ k̂ · ∇Iλ(~r , k̂ , t) = 0 . (2.2)

But usually radiation is absorbed and emitted by matter. One way to describe this
processes are the macroscopic quantities called the extinction and emission coefficient.

Extinction Coefficient

The extinction coefficient (or total absorption coefficient) describes the removal of energy
from the radiation field by matter and is defined as

dE = χλ(~r , t) Iλ(~r , k̂ , t) dS ds dΩ dλ dt . (2.3)

dE is the amount of energy which is removed by a matter element with cross section dS
and length ds , from the beam normal to dS , with intensity Iλ(~r , k̂ , t) and wavelength
range dλ propagating into dΩ in time dt . This definition is only valid for static media.
For moving media χλ has an angular dependence caused by the Doppler shift, but here
we only deal with static media and therefore the extinction coefficient is isotropic. The
quantity 1/χλ is also called the photon mean-free-path. It is a measure for the distance a
photon can travel before it is removed from the beam by interaction with matter.

The extinction coefficient is a product either of the number density n(~r , t) or the mass
density ρ(~r , t) of the matter with a cross section or cross section per unit mass. We define
here χλ as

χ(~r , t)λ := ρ(~r , t) κext
λ (~r , t) . (2.4)

With this definition κext
λ has the unit of a cross-section per unit mass [cm2 g−1]. From

now on we call this quantity the opacity.

The extinction (the removal of the photon) can happen in two different ways. The photon
can be absorbed (true absorption) or scattered. Scattering is the changing of the direction
of the photon. The photon is removed from the beam with direction k̂ and propagates
into the new direction k̂ ′. Extinction is the sum of these two processes (assuming that
the processes occur independently).

κext
λ (~r , t) = κabs

λ (~r , t) + κsca
λ (~r , t) . (2.5)

The opacity depends on the properties of the matter (e.g. gas, dust), but here we do
not go into detail concerning the determination of the opacity. We just assume that the
quantity is known and that the coefficient is also corrected for stimulated emission (for
more details see Mihalas 1978, chap. 2).
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Emission Coefficient

The macroscopic emission coefficient describes the radiation emitted by the media and is
defined as

dE = ηλ(~r , k̂ , t) dS ds dΩ dλ dt . (2.6)

dE is the energy released from the material with cross-section dS and length ds , into a
solid angle dΩ in the wavelength range λ in direction k̂ in time dt . It has the dimension
erg cm−4 s−1 sr−1. The emission coefficient normally has an angular dependence (direc-
tion of the ray) caused by scattering and moving media. Here we only consider isotropic
scattering and static media, and therefore the angular dependency drops.

In the case of thermodynamic equilibrium a relation between the absorption coefficient
κabs and the emission coefficient applies (Kirchhoff’s law). This means that the amount
of energy absorbed by the material has to be equal to the amount of energy emitted:

ηt
λ = ρκabs

λ Iλ(k̂) . (2.7)

The intensity of a matter element in thermodynamic equilibrium with temperature T is
given by the Planck function Bλ(T ) and one can write

ηt
λ = ρκabs

λ Bλ(T ) . (2.8)

This relation is only valid for a whole system in thermodynamic equilibrium. For a
protoplanetary disk this is normally not the case (for disks the temperature depends on
the location). But the concept of the so called local thermodynamic equilibrium (LTE)
can be applied. This concept assumes that the thermodynamic properties of the material
(e.g. opacity, emissivity) are the same as their thermodynamic equilibrium properties at
the local values of T and ρ at each point throughout the whole model space (e.g. the
disk). This approximation implies that the properties of the matter are only subject to
small changes over the mean free path of a photon. If the photon can only travel short
distances (e.g. high density/absorption) then the concept of LTE is a good approximation,
as collisional processes are dominant in comparison to radiative processes. For a thin
medium where collisional interactions are rare and the photon is allowed to travel large
distances until an absorption or scattering event occurs, the approximation of LTE is
normally not valid. However, here we only consider cases where LTE can be applied. In
that case equation 2.8 is also valid locally and one can write

ηt
λ(~r , t) = ρ(~r , t)κabs

λ (~r , t)Bλ(T (~r , t)) . (2.9)

With the definition of the opacity and the emissivity we now can add source and sink
terms to equation 2.2. Under the assumption of static media, LTE, isotropic scattering
and the definitions Iλ := Iλ(~r , k̂ , t), ρ := ρ(~r , t), κx

λ := κx
λ(~r , t) and Bλ := Bλ(T (~r , t)) the

radiative transfer equation (RTE) can be written as

1

c

∂Iλ
∂t

+ k̂ · ∇Iλ = −ρκext
λ Iλ︸ ︷︷ ︸

extinction

+ ρκabs
λ Bλ + ρκsca

λ

1

4π

∮
4π

Iλ(~r , k̂
′, t)dΩ′︸ ︷︷ ︸

emission

(2.10)
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The first term (extinction) at the right-hand side of the equation represents the amount
of light removed from the considered beam. The emission term represents the amount
of light added to the beam. The first term corresponds to the thermal emission of the
matter (equation 2.9). The integral term represents the amount of light scattered into
the beam with direction k̂ from all directions k̂ ′.

2.1.1 Formal Solution

From now on we only deal with the time independent form of equation 2.10. To make
equation 2.10 more readable some more definitions are needed.

Mean Intensity

One common and useful quantity in radiative transfer is the so called mean intensity

Jλ(~r) :=
1

4π

∮
Iλ(~r , k̂)dΩ =

1

4π

∮
Iλ(~r , θ, φ) sin θdθdφ . (2.11)

This is the average of the specific intensity over all solid angles. For the directions of the
radiation often polar and azimuthal coordinates (θ, φ) are used.

Source Function

Further we define the source function for the isotropic case. The source function is the
ratio of the total emissivity to total extinction

Sλ(~r) :=
ηλ(~r)

χλ(~r)
. (2.12)

In the case for isotropic scattering the source function does not depend on the beam direc-
tion. The detailed form of the source function depends on the problem (e.g. assumption
of LTE, scattering). For our case the source function has the following form

Sλ =
κabs
λ Bλ + κsca

λ Jλ
κext
λ

. (2.13)

Where just the corresponding emission and extinction terms of equation 2.10, and the
definition for Jλ (equation 2.11) are used. To bring the source function into the form as it
is used in PHOENIX/3D we define the thermal coupling parameter (Mihalas 1978, chap.
6)

ελ :=
κabs
λ

κabs
λ + κsca

λ

. (2.14)

In the absence of scattering ε = 1, for stronger scattering ε → 0. In the context of dust
radiative transfer, instead of epsilon often the so called albedo is used, which is just given
by 1− ε. If we now put this into equation 2.13 (hint: multiply with ε/ε) we get

Sλ = ελBλ + (1− ελ)Jλ . (2.15)
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By replacing the ray-path derivative k̂∇ in equation 2.10 with d/ds , which is the derivative
along the propagation path of the ray (we assume an orthogonal coordinate system and
that the path has always a linear slope) and by using the definition of the source function
(equation 2.12) for the time independent form of equation 2.10 we get

dIλ
ds

1

ρκext
λ

= Sλ − Iλ . (2.16)

In the next step we define the optical depth

τλ(s) :=

∫ s

s0

−ρκext
λ ds =

∫ s

s0

−χλds . (2.17)

With the minus sign in the definition, the optical depth provides a measure of how deep an
outside observer can look into an observed object (e.g. from the border of an atmosphere
to the center of the star).

With the definition of τλ we obtain the so–called standard form of the radiative transfer
equation

dIλ(k̂ , τλ)

dτλ
= Iλ(k̂ , τλ)− Sλ(τλ) . (2.18)

In this form the radiative transfer equation is a linear differential equation with constant
coefficients, and therefore an integrating factor exists. With the integrating factor e−τλ

we get

d

dτ
(Iλ(k̂ , τλ) e−τλ) = Sλ(τλ) e−τλ , (2.19)

and by integrating, using the boundary condition I (τ = 0), we get the formal solution

Iλ(k̂ , τλ) = Iλ(k̂ , 0)e−τλ +

∫ τλ

0

Sλ(τ
′
λ) e−τ

′
λ dτ ′λ . (2.20)

This formal solution gives us now the possibility to get the value of Iλ on each position τλ
along a ray with direction k̂ as long as the value of Sλ is known. However, this is normally
not the case. In our case the source function depends on Jλ. Which itself depends on the
intensity Iλ. So, already for a quite simple source function this equation cannot be solved
analytically. Nevertheless the formal solution is very important for numerical radiative
transfer especially for iterative methods (see section 3.2.1).

For numerical methods it is more convenient not to use τλ as the integration variable
for the formal solution but rather use the the spatial position ~r for integration. This is
especially true if we are interested in more than one wavelength λ and more than one
direction k̂ . As τλ depends on λ and k̂ it would give us a different position in the model
space for each wavelength and direction, which is cumbersome for a discretised model
space. By using the spatial position ~r as the integration variable we can write the formal
solution in the following way (Shu 1991, chap. 3):

Iλ(k̂ ,~r) = Iλ(k̂ ,~r0) exp[−τλ(k̂ ,~r ,~r0)] +

∫ s

s0

Sλ(~r) exp[−τλ(k̂ ,~r ,~r ′)] χλ(~r
′) ds ′ , (2.21)
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where τλ(k̂ ,~r ,~r ′) is the optical depth along a ray with direction k̂ from position ~r ′ to ~r .
~r0 represents the starting point of the ray.

2.1.2 Schwarzschild-Milne Equation

The last part of the radiative transfer introduction is about the Schwarzschild-Milne
equation. This equation is quite important, as it shows us how to get J by using the
formal solution, and is very helpful to better understand the complexity of numerical
radiative transfer. This section follows mainly the description of Rutten (2003, chap. 4).

For simplicity we consider the one–dimensional case (e.g. one–dimensional atmosphere).
We than can write the RTE in a slightly different notation. In the one–dimensional case
the path derivative in the direction of z has the form

(k̂ · ∇)Iλ =
dz

ds

dIλ
dz

= µ
dIλ
dz

(2.22)

where µ = cos θ = (dz/ds) = kz . The RTE then has the form

µ
dIλ
dτλ

= Iλ − Sλ . (2.23)

We now split the formal solution into two parts, one for the outgoing radiation I +
λ (µ ≥ 0)

and one for the incoming radiation I−λ (µ ≤ 0):

I +
λ (τλ, µ) =

∫ ∞
τλ

S (τ ′λ)e−(τ ′λ−τλ)/µ dτ ′λ/µ

I−λ (τλ, µ) =

∫ τλ

0

S (τ ′λ)e−(τ ′λ−τλ)/µ dτ ′λ/|µ| . (2.24)

These expressions can now be integrated over solid angle (µ) to get the Schwarzschild-
Milne equation for J :

Jλ(τλ) =
1

2

∫ 1

−1

Iλ(τλ, µ) dµ

=
1

2

∫ ∞
τλ

Sλ(τ
′
λ)E1(τ ′λ − τλ) dτ ′λ +

1

2

∫ τλ

0

Sλ(τ
′
λ)E1(τλ − τ ′λ) dτ ′λ

=
1

2

∫ ∞
0

Sλ(τ
′
λ)E1(|τ ′λ − τλ|) dτ ′λ (2.25)

where E1 is the so called exponential integral

E1 :=

∫ 1

0

e−x/µdµ

µ
. (2.26)

This integral is the result of the integration of I over µ by using equation 2.24. For x � 1
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the integral can be approximated by

E1(x ) ≈ e−x

x
for x � 1 . (2.27)

The Schwarzschild-Milne equation can also be written in a more formal way by using the
so called Λ operator

Jλ(τλ) = Λ[Sλ(τ
′
λ)] :=

1

2

∫ ∞
0

Sλ(τ
′
λ)E1(|τ ′λ − τλ|) dτλ . (2.28)

The Λ-operator produces Jλ from Sλ through the given integral expression. In a more
general way the Λ-operator just stands for any “procedure” that gives us Jλ from Sλ. We
will see this in chapter 3.

2.2 Radiative Equilibrium

Until now we have assumed that we know the thermal part Bλ of the source function.
Bλ depends on the temperature of the matter and as one can imagine the temperature
depends on the radiation field, because the medium is heated by absorbed radiation (e.g.
radiation from a star). This makes solving the RTE even more complicated. It can
even become worse if the opacity also depends on the temperature. But for the dust in
protoplanetary disks this dependency can normally be neglected.

However, for radiation dominated protoplanetary disks (irradiated disks) the temperature
in the disk is determined by the radiation field. If we assume LTE we know that all
absorbed energy has to be re-emitted and therefore the material in the disk has to reach an
equilibrium condition for a distinct local temperature - the so called radiative equilibrium.

Under the assumptions of LTE for the material and that radiation is the only source of
energy, the condition of radiative equilibrium can be formulated the following way:∫ ∞

0

κabs
λ (~r)Bλ(T (~r))dλ =

∫ ∞
0

κabs
λ (~r)Jλ(~r)dλ . (2.29)

This radiative equilibrium equation (REE) just tells us that all energy absorbed from
the radiation field (the right hand side) has to be re-emitted by the dust via thermal
emission (the left hand side). For the gas in the disk this equation is only valid in the
dense regions where the gas and dust temperature remain coupled caused by high collision
rates. But for the upper layers of the disk this is not true anymore, there the dust and
gas temperature decouple and various heating and cooling processes (e.g. line cooling)
have to be considered for the gaseous component (e.g. Woitke et al. 2009). However, for
this work we only deal with dust.
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2.3 The Overall Problem

To solve the REE (2.29) for the temperature T we have to know the value of Jλ. If we
use the formal solution 2.21 and insert it in the definition for Jλ (equation 2.11) we get

Jλ(~r) =
1

4π

∮
Iλ(~k ,~r0) exp[−τλ(k̂ ,~r ,~r0)]dΩ+

1

4π

∮
dΩ

∫ s

s0

Sλ(~r) exp[−τλ(k̂ ,~r ,~r ′)]χλ(~r
′)ds ′ .

(2.30)
By considering the following assumptions

• LTE,
• radiation is the only source of energy, and
• the density distribution and the opacities do not depend on T

the problem of determining the temperature structure of a protoplanetary dust disk is
completely defined by the RTE (2.30) and the REE (2.29).

These are quite strict assumptions. To make a more realistic model of a dust disk also
the density distribution of the disk has to be taken into account, because the temperature
of the dust will influence the hydrostatic structure of the disk. To solve this, an iterative
process for determining the density would be needed. Further, these assumptions also
imply that the properties of the dust (e.g. opacity), except the temperature, are not
changing in time and no dust is destroyed or created (this is important to determine the
location of the inner dust rim).

However, with initial conditions for the star (its radiation field), the density distribution
and the opacities for the dust, the temperature structure of the disk can be self-consistently
calculated by solving the radiative transfer and the radiative equilibrium equation. How
this can be done by using PHOENIX/3D is the content of the next chapters.



Chapter 3

3D Radiative Transfer in
PHOENIX/3D

PHOENIX/3D belongs to the group of the so–called discrete ordinate codes. These codes
solve the radiative transfer equation along distinct rays (characteristics) with different
directions by using the formal solution (ray tracing). These methods were especially
successful for one dimensional problems like stellar atmospheres and are also mainly used
for line transfer. With PHOENIX/3D this method was extended to 3D and can therefore
also be used for protoplanetary disks.

The biggest disadvantage, in comparison to Mote Carlo codes, of this method is probably
the resolution problem (see Auer 2003b). In an extended model space like a protoplanetary
disk with a typical dimension of several 100 AU, the star in the center is very small (≈ 10−2

AU) and therefore it is quite hard to resolve the star. It must be secured that the radiation
from the star reaches every point (or cell) in the disk model, therefore a very large number
of rays is necessary. In Auer (2003b) this problem is called the “on/off”–problem. But
we will discuss this in more detail later (see chapter 4).

An overview of the PHOENIX/3D framework including line transfer, velocity fields, ho-
mologous flows, periodic boundary conditions and example applications can be found in
a paper series starting with the paper of Hauschildt and Baron (2006).

This chapter is mainly based on the paper of Hauschildt and Baron (2006) and gives an
overview of the current method implemented in PHOENIX/3D for continuum radiative
transfer in static media.

3.1 Solving the Radiative Transfer Equation

As we see from the REE (equation 2.29) we are mainly interested in the mean intensity
J . To get the mean intensity we have to integrate the formal solution (see equation 2.20)
over all solid angles (corresponding directions).

As we have seen in section 2.1.2 this kind of integral can be written in operator notation

Jλ = Λλ[Sλ] = ελΛλ[Bλ] + (1− ελ)Λλ[Jλ] (3.1)
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This notation is motivated by the linearity of the equation. The Λ-operator can be seen
as a method or procedure which gives us Jλ if it is used on Sλ. But if we want to know Jλ
at some distinct position in the model space we have to know Sλ at all positions. For the
one dimensional case the values of Sλ can be represented by a vector and the Λ-operator
by a matrix. The values of Jλ are then obtained by a simple matrix multiplication. The
values of the matrix can be calculated with the help of the formal solution (see section
3.2.2).

Now everything looks quite simple but as we know from section 2.1.1 the source function
itself depends on Jλ (at least if scattering is considered). To get a self-consistent solution
an iterative scheme is needed.

3.1.1 Lambda–Iteration

The simplest possible iteration scheme is the so called Λ–iteration:

Jnew = Λ[Sold ]

Snew = (1− ε)Jnew + εB . (3.2)

By starting with a more or less arbitrary value for Sold we get a value for Jnew , which is
then used to get an improved value for S (Snew) for the next iteration. But as it is often
the case with iterative schemes, they do not always converge. The Λ-Iteration especially
fails in the case of high optical depths and strong scattering. Even worse, there is a
physical reason for this. Here I will give a short description for the physical reason, the
complete description can be found in Mihalas (1978, chap. 6).

We assume as a starting value for the iteration S = B . In the case of high optical depths
(high densities) the medium is thermalized, which means J ≈ B . Imagine now some
kind of atmosphere with lower density at the border and higher density in the center.
What we want to calculate is the deviation of J from B , as not the whole atmosphere
will be thermalized. For strong scattering the thermal coupling parameter ε � 1. ε
can be seen as the probability that a photon is destroyed per scattering event (converted
into thermal energy). In the worst case the photon is only destroyed (thermalized) after
n = 1/ε iterations. But the photon can only travel a mean free path 1/χ until the next
interaction (scattering). The mean free path is typically ∆τ ≈ 1. This implies that
information during one iteration can only be transported over ∆τ ≈ 1. This is because
the exponential integral (equation 2.26) falls off as e−∆τ/∆τ for ∆τ � 1.

The optical depth at which a photon from the border is thermalized is at τ & ε−0.5. So the
optical thickness a photon will pass until destruction is given by n0.5∆τ = ∆τε−0.5 ≈ ε−0.5

for ∆τ ≈ 1. So, the number of iterations needed until information of a photon reaches
the termalization depth (which can be very high) is ε−0.5. For ε� 1 this is unreasonable.
Therefore ordinary Λ-iteration methods do not converge very well, they tend to stabilize
at a probably wrong solution.

The convergence of an iteration scheme can also be tested by looking at the eigenvalues
of the amplification matrix, in our case the Λ-operator. The largest eigenvalues of this
kind of matrix are λmax = (1− ε)/(1− T−1) (Hauschildt and Baron 2006; Mihalas et al.
1975), where T is the optical thickness of the medium. For large T and small ε, λmax is
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nearly unity, and therefore the changes from one iteration to the next are very small. So
the goal is to minimize the eigenvalues of the Λ-Operator. One possibility for this is the
so-called operator splitting method.

3.1.2 Operator Splitting/Accelerated Lambda–Iteration

In this section I will describe the operator splitting (OS) technique which is used in
PHOENIX/3D. Broadly speaking, operator splitting means to replace the Λ-operator
with a different or approximate operator which accelerates the convergence by reducing
the maximum eigenvalues of the operator. Therefore this method is also called Accelerated
Λ-Iteration (ALI). The OS method used in PHOENIX/3D follows the method of Hamann
(1987). In Hamann (1987) the approximate Λ-operator, Λ∗ is defined as

J = Λ[S ] = Λ∗[S ] + (Λ− Λ∗)[S ] . (3.3)

The Λ-iteration scheme 3.2 can now be changed to

Jnew − Λ∗[Snew ] = (Λ− Λ∗)[Sold ] . (3.4)

The equality in equation 3.4 only holds if Sold = Snew which is the case if the iteration
scheme converges. The advantage of this approach is that we now have also information
about Snew included in the calculation of Jnew , although neither Sold or Snew are known
at the beginning. To eliminate Snew we use equation 2.15

Jnew − Λ∗[(1− ε)Jnew + εB ] = Λ[Sold ]− Λ∗[(1− ε)Jold + εB ] . (3.5)

Λ[Sold ] is replaced by JFS because if we know Sold , JFS can by calculated via a formal
solution. Further, εB cancels out and Jnew factors out in the left–hand side of the equation,
yielding

Jnew = {1− Λ∗(1− ε)}−1 {JFS − Λ∗[(1− ε)Jold} . (3.6)

With initial values for Sold and Jold (both can have the same value) this equation can
be solved to get Jnew . We still do not know how this Λ∗ looks like, but we already can
define some constraints for it. As already mentioned it should minimize the eigenvalues
for the Λ–iteration. Further it should be easy to invert the Λ∗–operator. One possibility
is to use only the diagonal values of the Λ–operator so the inversion is just a division.
On the other hand the best convergence rate is reached by using the full Λ-operator for
Λ∗. However, for this inversion of the full Λ–matrix is needed and this is normally not
possible, especially for multidimensional problems (see also section 3.2.3).

Therefore a compromise is probably the best solution. In PHOENIX/3D the equivalent
of a tridiagonal Λ–matrix is used. This has the advantage that not only local information
(diagonal matrix) but also information about neighbouring points is used.
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Initial value for Sold and Jold

Calculate formal solution for JFS (sec. 3.2.1)

Construction of Λ∗ (sec. 3.2.2)

Solve the OS-equation 3.6 for Jnew (sec. 3.2.3)

optional Ng-step

Update Sold and Jold with Jnew

iteration until convergence

Figure 3.1 – Nassi–Shneiderman diagram for the main steps of the ALI in PHOENIX/3D.

3.2 ALI in PHOENIX/3D

In PHOENIX/3D the model space is represented by a grid of volume cells (voxels). Each
voxel holds the information of the relevant physical quantities (e.g. density, opacity, J ,
S ) where the quantities are constant over the volume of a voxel. It is possible to use a
Cartesian, cylindrical or spherical coordinate system for the voxel grid (Hauschildt and
Baron 2009). But the main steps of the ALI are not affected by the coordinate system.

Fig. 3.1 shows an overview of the main steps for the Accelerated Lambda iteration in
PHOENIX/3D.

3.2.1 Formal Solution

J is the average of the specific intensities integrated over all solid angles (see equa-
tion 2.11). One possible way to solve this integral is to use the so-called discrete ordinate
method. For this method the solid angle space of 4π is split into solid angle elements Ωi

with a finite area. For further discussions we often use the term ray for one of these solid
angle elements of the solid angle grid with a distinct direction given by (θi , φi), where
0 ≤ θi ≤ π and 0 ≤ φi < 2π. The discretisation of the solid angle space just means that
the integral for J is approximated by some quadrature formula (Mihalas 1978, chap. 3):

Jλ =
1

4π

∮
Iλ(Ω) dΩ ≈ 1

4π

∑
Ωi

aiIλ(Ωi) , (3.7)

where {Ωi} are called quadrature points, {ai} the quadrature weights and I (Ωi) the discrete
ordinates.

To estimate J at a distinct point or voxel in the model space we need to know the values
of Iλ(Ωi). Iλ(Ωi) can be evaluated by solving the RTE along the propagation path of
the light. For this we follow the way of the light for one direction (θray , φray) from the
boundary of the model space to the actually considered point (voxel). For fixed values of
the source function the RTE can be solved along these propagation paths, which are also
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called characteristics, by the formal solution (equation 2.20). After the values of I for all
solid angles are known the integral for J can be evaluated by some quadrature formula.

In PHOENIX/3D the quadrature formula is replaced by a simple “Monte Carlo – Sum”
(Hauschildt and Baron 2006). The MC–sum looks the same way as equation 3.7 but the
quadrature weights are set to unity. This method is used because for moving media or in
Lagrangian frame radiation transport the angles (θ, φ) can vary along a characteristic, and
therefore the weights are different for each voxel. By using the “MC–sum” the calculation
and storing of these weights for each voxel and direction can be avoided. Although their
also exist different methods in PHOENIX/3D for the integration of J , the MC–sum is
usually also used for static media, because the accuracy of the MC-sum is sufficient as
long as a high enough number of rays is used. For our case (static media) the “MC-sum”
is calculated in two steps: first, the contribution of each ray is added to the sum, then
the sum is normalized (divided by the number of rays/quadrature points for the current
voxel). The distribution of of the rays in the solid angle space is also important. In φ the
points φi are distributed equidistantly, in θ the points are distributed equidistantly in µ
from [−1, 1] where θi = arccos(µi).

The next thing we want to discuss is how the formula solution for one solid angle point
(ray) is actually done in PHOENIX/3D. With definition (2.20) the formal solution along a
characteristic can be written in the following way (Hauschildt and Baron 2006, see Olson
and Kunasz 1987 for a derivation):

Iλ(τi) = Iλ(τi−1)eτi−1−τi +

∫ τi

τi−1

Sλ(τ)eτ−τi dτ, (3.8)

where i labels the points along the characteristic. τi is the optical depth at that point,
where τ1 = 0 and τi−1 ≤ τi . For better readability the wavelength index λ is suppressed
for the wavelength dependent quantities τ, S , I , χ. τ is calculated via piecewise linear
interpolation of χ along the characteristic:

∆τi−1 =
1

2
(χi−1 + χi)|si−1 − si | (3.9)

where ∆s = |si−1 − si | is the geometric distance between point i and i − 1 along the
characteristic (see Fig. 3.2). The integral in equation 3.8 can be solved analytically by
replacing S (τ) by a linear or parabolic polynomial of the form:∫ τi

τi−1

S (τ)eτ−τi dτ = αiSi−1 + βiSi + γiSi+1 . (3.10)

The coefficients for the interpolation can be found in Olson and Kunasz (1987) or Hauschildt
and Baron (2006). For the linear interpolation only the values of Si−1 and Si are consid-
ered. Both interpolation methods can be used in PHOENIX/3D. The parabolic interpo-
lation is in general better in terms of convergence and accuracy.

The linear interpolation has to be used at least for the last integration point (the bound-
ary). It can also be advantageous to use linear interpolation for non–boundary points,
especially for regions with low optical depths as this can improve the convergence and
stability (Hauschildt and Baron 2006; Auer 2003a). PHOENIX/3D uses automatically
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Figure 3.2 – Sketch for the long char-
acteristics method for a regular 2D grid.
The borders of the voxels are given by
the black lines. The dots mark their
centres. The blue lines show the char-
acteristics for one direction (θ, φ). The
characteristic is started at one border of
the grid and followed through the grid
until it leaves the grid. The points be-
tween which the geometric distance ∆s
is calculated are marked with “+”. This
distance is than used for the calculation
of the optical depth ∆τi−1.

linear interpolation if the optical depth along the characteristic (∆τi−1) drops below a
certain value (typically 10−3). This can be controlled via the parameter taulin. Further
also drastic changes in the source function along the 3 points for the interpolation step
can cause troubles for the piece-wise parabolic interpolation. If the change of the source
function along the characteristic is higher than a certain value (typically 100) also linear
interpolation is used. This is controlled by the parameter PPM max step.

In PHOENIX/3D the calculation of Iλ(Ωi) is not done separately for each voxel, but rather
the following way. The starting point for a characteristic at the border of the model space
is determined by “shooting” a ray from the center of the voxel in the opposite direction.
By this it is ensured that the voxel is hit by the characteristic. Now equation 2.20 is solved
by following the characteristic from the starting point through the grid and the target
voxel until the characteristic leaves the grid. This method is also called the long or full
characteristic method as the characteristic is tracked through the whole model space. The
tracking along the characteristic is done by determining the distance to the next voxel
along the current direction (the implementation for finding the next voxel depends on the
coordinate system). With this distance, ∆τi−1 (equation 3.9) can be calculated. During
this tracking the contribution of the current characteristic to I (Ωi) is added to each voxel
which is hit by the characteristic. This is repeated until each voxel is hit at least once by
a characteristic with direction Ωi . Because of this algorithm it can happen that one voxel
is hit more than once by a characteristic with the same direction (but not necessarily at
the same position inside the voxel, see also Fig. 4.3). So the value of I for one direction is
not given by a single characteristic but rather by bunch of parallel characteristics. In that
case an average of all contributions from the different parallel characteristics is taken. So
for one ray with a distinct direction the value of the intensity is given by a certain number
of parallel characteristics.

To get Jλ for each voxel this has to be done for all rays (solid angle points) Ωi . For one
voxel the sum of the contributions of all rays Ωi is taken. Finally Jλ is evaluated by
normalizing this sum as already described above. A schematic overview of this algorithm
is shown in Fig. 3.3.
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iteration over all solid angles/directions Ωi

iteration over all voxels

start point for the characteristic through the current voxel
(if not hit already)

calculate Iλ (formal solution)

calculate Λ∗λ contribution

step through the grid until other border is hit

average of all characteristics and add weighted contribution to Jλ

add weighted contribution to Λ∗λ

Integration/Normalization of Jλ

Integration/Normalization of Λ∗λ

Figure 3.3 – Nassi–Shneiderman diagram for the long characteristic solver for the formal solution.
The solver covers the part for the formal solution and the construction of the Λ∗ in the ALI. The
construction of the Λ∗-operator is only done in the first iteration of the ALI. The solid angle loop is
parallelized (MPI).

3.2.2 Construction of Λ∗

In Olson et al. (1986) and Olson and Kunasz (1987) it is shown that the Λ-operator can be
constructed by a formal solution and that the same method used for JFS can be applied
(the same coefficients α, β and γ can be used). As an example let us consider the 1D
case. In 1D the Λ-operator is represented by a 2D matrix. To calculate the values of
the j -column of this matrix a test-source function, where the j -entry equals unity and all
other entries are zero, is used (Knop 2007):

Λ1j

...

Λjj

...

Λij

 = Λ ·


0
...

1
...

0

 (3.11)

By using the method described in section 3.2.1 the elements of the Λ-operator can be
constructed in only one iteration step.

As already mentioned in section 3.1.2 the use of the full Λ-operator is normally not
practicable (e.g. matrix inversion). For the 3D-case, where the Λ-operator becomes a six
dimensional matrix, memory consumption is also a severe problem. Therefore a diagonal
or tridiagonal matrix is used for the Λ∗-operator. But a diagonal matrix considers only
the influence of the local source function to the voxel itself.
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Figure 3.4 – Convergence properties
for a test case in Cartesian coordi-
nates (a sphere with a grey tempera-
ture structure, τmax = 104, ε = 10−4).
The 3D test runs use 653 voxels and 162

solid angle points. The labels indicate
the different methods used. Adapted
from Hauschildt and Baron (2006).

A non-local operator considers also the interaction of voxel with its neighbours. If only
the two nearest neighbours are considered this is equivalent to a tri-diagonal Λ∗-operator
(for the 1D case). This approximation especially makes sense for regions with high optical
depths where the mean free path of a photon is small. In that case a voxel in the grid is
mainly influenced by its direct neighbours and the contribution from distant voxels can
be neglected.

In three dimensions the situation is similar except that a voxel has 33−1 = 26 neighbours.
This means that for a non-local Λ∗ operator 27 (26 neighbours +local voxel) times the
total number of voxels have to be stored. For this a data structure containing the effects to
its neighbours is attached to each voxel. However, the same method for the construction
of Λ∗ in 3D as in the 1D case can be used (Hauschildt and Baron 2006). The whole
process for the construction of Λ∗ in PHOENIX/3D is included in the algorithm for the
formal solution. The same interpolation coefficients for the source functions and the same
angle integration as for JFS are used (see also Fig. 3.3). As the Λ∗-operator only contains
information about the optical depths the construction has to be done only in the first
iteration of the ALI-scheme.

For more details concerning the construction of the Λ∗-operator in PHOENIX/3D see
Hauschildt and Baron (2006) and references therein.

3.2.3 Solving the Operator Splitting Equation

After the construction of Λ∗ and the calculation of JFS the only thing left is the OS-
equation 3.6.

For the non-local operator in 3D the Λ∗ matrix is still quite large, which makes a direct
inversion of the Λ∗-operator impossible. Therefore iterative solvers for the OS-equation
were implemented in PHOENIX/3D. Best results were obtained with the Gauss-Seidel and
Jordan methods. For more information concerning the iterative solvers see Hauschildt and
Baron (2006) and Knop (2007).
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3.2.4 Convergence Properties and Performance

The most time consuming part of the ALI in PHOENIX/3D is the calculation of JFS and
the construction of Λ∗ (the part which is done in the long characteristic solver, see Fig. 3.3).

The time needed for the construction of the Λ∗ is similar to the time needed for one
formal solution JFS (this may change depending on the actual problem to solve). But
the memory consumption for storing of the Λ∗ can be a problem for large grids (it scales
with the (number of voxels)3). However, as the construction is only done once and the
convergence is significantly improved, it is worth the effort.

Nevertheless the limits of a single computer are rapidly exceeded and therefore the code
was parallelized. As the formal solution for one solid angle does not depend on the
formal solution of the other solid angles the solid angle loop can easily be parallelized
(MPI) (see Fig. 3.3). The speedup for the MPI version is nearly optimal (e.g. a factor
of 28 for 32 MPI processes). Further the convergence rate can be improved by using
Ng-acceleration (Ng 1974).

In Fig. 3.4 the general convergence properties of PHOENIX/3D for different Λ∗ operators
in comparison to the ordinary Λ-iteration and 1D problems are given. For further tests
and examples for performance and convergence see Hauschildt and Baron (2006).





Chapter 4

Disk Radiative Transfer with
PHOENIX/3D

3D disk radiative transfer with PHOENIX/3D was already done by Hügelmeyer (2009).
The disk models therein are limited to the dense inner region of the disk (up to 0.2 AU).
Typical protoplanetary disks have a radial extension of several 100 AU. Modelling of such
disks causes additional problems for the radiative transfer, especially for discrete ordinate
codes like PHOENIX/3D. One main problem is the angular resolution. Small sources like
the star or also the inner rim of the disk must be resolved by the given angular resolution
which depends on the number of solid angle points used for the integration of J .

Another problem is the large range in the physical properties. The density at the inner
border of the disk is normally several orders of magnitudes larger than in the outer part
of the disk. It has to be secured that the resolution of the spatial grid is sufficient to
sample the gradients of the physical properties (e.g. opacity). A general discussion of
these problems can be found in Auer (2003b).

In this chapter the necessary adaptations to PHOENIX/3D for disk radiative transfer are
presented. Section 4.1 describes the disk model and the spatial grid used for this work
and section 4.2 shows how we tackle the angular resolution problem.

4.1 Modelling of the Disk

4.1.1 The Spatial Grid

For disks a cylindrical coordinate system seems to be the more natural choice. In
PHOENIX/3D the cylindrical grid does not allow a different spacing or a different number
of points for the z–coordinate depending on the radial position. However, this is needed
to cover also large and flaring disks, where the outer regions are much more extended
than the inner regions. Therefore the spherical coordinate system (r , θ, φ) was chosen.

In PHOENIX/3D the spherical coordinates are defined as follows:
(r , θ = 0, φ = degenerate) corresponds to the positive z-axis of a Cartesian coordinate
system (x , y , z ), (r , θ = π, φ = degenerate) to the negative z-axis, (r , θ = π/2, φ = 0) to
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Figure 4.1 – Example grid for nr=30, nt=30, np=5. The circle in the center represents the border of
the star. The inner border of the disk is at 0.1 AU. The center of the voxels are marked by the small
dots. The gray lines indicate the border of the voxels. Left panel: the grid in the x/z -plane (φ = 0)
with the “big” voxel at the poles. Right panel: The grid in the azimuthal plane (x/y-plane, θ = π/2).

the positive x-axis and (r , θ = π/2, φ = π/2) to the positive y-axis (see also Fig. 4.1). The
voxel grid is specified by voxel coordinates ranging from (−nr ,−nt ,−np) to (nr , nt , np).
Where −nr corresponds to r = 0 and nr to the border of the model space, −nt (θ = 0)
and nt (θ = π) are the poles, and −np represents φ = 0.

Radial Grid

The configuration for the radial grid is mainly driven by the density distribution of the
disk in radial direction (see section 4.1.3).

For the disk, ranging from rin to rout , a logarithmic scaling similar to that of Hügelmeyer
(2009) of the form

ri = rin exp(iα∆d) , (4.1)

is used, with

∆d =
log(rout)− log(rin)

Nr
α . (4.2)

Where rin , rout are the inner and outer border of the disk, Nr is the total numbers of
voxels used for the radial dimension of the disk and i is the voxel index ranging from 1 to
Nr . α is a parameter to control the coarseness of the grid. α = 1 means a logarithmically
equidistant grid, α > 1 means a finer grid near rin and a coarser grid near rout .

The innermost radial point is just given by the dimension of the star. The space between
the star and the disk is empty and therefore only one radial point is used for this region.
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θ–Grid

In PHOENIX/3D there is only the possibility for an equidistant θ–grid, but for disks
it is also beneficial to have a non-equidistant grid in the θ–coordinate because of the
exponential density distribution in the vertical direction. So a non–equidistant θ-grid
was implemented in PHOENIX/3D (the implementation is similar to the already existing
implementation for the r–coordinate). With this implementation is it now possible to use
for example a logarithmic grid for the θ-coordinate. Further it is possible to reduce the
number of θ–points as the empty space around the poles can now be covered by only one
θ–point (see Fig. 4.1).

As we will see in section 4.2 it is beneficial to use the same distribution for the spatial
θ–points as it is used for the solid angel grid (see section 3.2.1). In that case the θ–points
are given by

∆µ =
2

Nθ − 1
θi = arccos(i ·∆µ) , (4.3)

where Nθ is the total number of points used for the θ–grid.

φ–Grid

Because of the symmetry of the disk in the φ–direction a normal equidistant scaling with
a small number of points is used.

An example grid is given in Fig. 4.1.

4.1.2 The Star

The star is modelled as a sphere with a given radius R∗ in the center of the coordinate
system. For the moment the star is just a uniformly radiating blackbody with a distinct
temperature Teff . For the radiative transfer the surface of the star is treated as a boundary
condition. For a ray starting at the surface of the star Iλ(τλ = 0) = Bλ(Teff ). The
possibility of using a spectrum for the star is not implemented yet. But in principle it is
possible without changing the radiative transfer, only the initializing routines have to be
adapted.

4.1.3 The Disk

The density structure for an azimuthally symmetric disk in hydrostatic equilibrium is
given by

ρ(r , z ) =
Σ(r)√

2π · h(r)
exp

(
− z 2

2h(r)2

)
, (4.4)

where Σ(r) is the surface density and h(r) the scale height (r , z are cylindrical coor-
dinates). Although the radial profile of the surface density can be quite complex and
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Figure 4.2 – The density structure of the disk in the x/z - plane as calculated in PHOENIX/3D. The
left panel shows the density distribution for the whole disk (the ordinate shows z/r). The right panel
shows the inner border of the disk and the star with a radius of 2R�. The white area is empty (ρ = 0).
Here r and z are cylindrical coordinates.

the scale height depends on the equilibrium between thermal pressure and stellar gravity
(Williams and Cieza 2011), it is common to approximate both by simple power laws.

Therefore, we use the same approach as presented in Pinte et al. (2009). The parameters
for the density distribution are: the mass of the disk Mdisk , the inner border of the disk
rin and the outer border of the disk rout . The mass of the disk is distributed between
these two borders via equation 4.4.

For the surface density Σ(r) and the scale height h(r) a power-law distribution of the
form

Σ(r) = Σ0 ·
(

r

r0

)pΣ

(4.5)

h(r) = h0 ·
(

r

r0

)ph

(4.6)

is used, where h0 is the scale height at radius r0.
With given values for Mdisk , rin , rout , r0, h0, ph , and pΣ, Σ0 can be evaluated via the
integral

Mdisk = 2π

∫ rout

rin

Σ(r)r dr (4.7)

and is therefore given by

Σ0(r) =
Mdisk

2π · r
pΣ
0

pΣ+2
·
(

r
(pΣ+2)
out − r

(pΣ+2)
in

) . (4.8)

For the spatial grid a spherical coordinate system is used (see section 4.1.1). To calculate
ρ(r , θ, φ) for each voxel in the grid, the spherical coordinates are converted to cylindrical
coordinates and the density is calculated via equation 4.4. As the disk is symmetric in φ,
the values are just copied.
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One problem that arises is the sharp inner wall of the disk. In spherical coordinates it
happens that at the sharp inner wall only a fraction of a voxel is inside the disk but not
its center. Therefore we get a jagged wall. To weaken this effect the density for one voxel
is not only calculated for its center, but also for a large number of uniformly distributed
points inside the voxel. The according density for the voxel is than given by the average
of all points. By this it is secured that the density is greater then zero, also for voxels
which are only partly inside the disk. Although this method reduces the jags, still a fine
radial and θ-grid is needed for a good sampling of the inner wall. However, the typically
high optical depths in this region require a fine grid anyway.

A similar mechanism would be necessary if also the outer wall of the disk were sharp.
This is not done as additional radial points would be required. It is just secured that
the highest point of the disk in z-direction at the given outer radius rout is still inside the
model sphere. Therefore the extension of the disk in radial direction is larger than the
given outer radius rout .

It is also possible to define a cut–off for the density structure in z direction. The grid is
only filled up to a given multiple of the scale-height h(r) (typically 10h(r)). To test the
density structure, the total mass of the disk is calculated by a integration of the density
ρ(r , θ, φ) in spherical coordinates and compared to the given mass Mdisk . The deviation
is usually below 1%. Further an IDL-script for testing the optical depths, especially the
expected ∆τ value between the voxels (radial, and vertical), was implemented. This is
helpful for finding the best grid configuration (e.g. the best α parameter in equation 4.1)
for the actual problem.

An example for the density structure is given in Fig. 4.2.

Dust Properties

For the radiative transfer the absorption and scattering coefficients κabs
λ and κsca

λ for
the dust are needed. Although the absorption and scattering coefficients could by pre-
calculated in PHOENIX/3D, this was not done for this work. For the tests in chapter 6
pre-tabulated values from Pinte et al. (2009) were used.

4.2 The Resolution Problem

As already mentioned discrete ordinate codes may have problems with resolving small
objects in the model space. As one can imagine this is definitely true for a star surrounded
by a rather huge disk. Also the inner region of the disk (the inner rim) is quite small
compared to the rest of the disk (see Fig. 4.2 for an example). Let’s discuss this problem
first on the basis of the star.

4.2.1 Resolving the Star

For the radiative transfer it is crucial to correctly treat the light from the star. It has
to be secured that radiation from the star reaches each voxel in the grid. For this at
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Figure 4.3 – This plot shows the characteristics for one ray with direction (θ = π/2, φ = 0) penetrating
through the x-z plane of the spherical model space. The yellow solid lines indicate the characteristics
starting at the inner boundary condition - the star, the blue solid lines the characteristics which start
at the outer border of the model grid. The blue “+” symbols indicate the points between which the
geometric distance ∆s is calculated (at which point the voxel is hit). The solid black lines are the
border of the voxels and the black “+” symbols their center. Although this example is the result of
a 3D-calculation, for more clarity, only the characteristics in the x-z plane are plotted. We can see in
this plot how the characteristics for one ray are placed in a spherical grid. The denser distribution at
z = 0 is caused by the smaller voxels at the inner region of the model space as this smaller voxels also
have to be hit by at least one characteristic.

least one of the rays tracked through a voxel must hit the star. As the size of the star is
very small compared to the typical dimension of the disk this is usually not the case for
discrete ordinate methods (the “on/off” problem; Auer 2003b).

There exist two possibilities to solve this problem. In spherical coordinates it is possible
to use the same spatial grid in (θvox , φvox ) as is used for the solid angle grid (θray , φray)
(the coordinates (θray , φray) are defined the same way as the spherical spatial coordinates,
see section 4.1.1). By this it is secured that for all voxels at least one ray (the ray where
θvox = θray and φvox = φray) goes through the center of the spherical grid and therefore
also hits the star. This method has the drawback that we lose flexibility for the choice of
the spatial grid distribution.

Therefore also another method was implemented. For this, additional rays with directions
given by the spatial coordinates θvox ,φvox are added to the normal angular grid. To secure
that each voxel is hit by the star, each one of these rays has to be tracked only through
the voxels where the spatial coordinates are equal to the angular coordinates of the actual
ray (θvox = θray and φvox = φray). So, only one additional ray is added to the angular grid
for each voxel. Although now the angular grid points are not the same for each voxel,
this is not a problem because the integration of J is done by the MC-sum (see section
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3.2.1). It is also possible to track this artificially added rays through all voxels, but this
costs additional computational time and the result is the same (at least for the correct
treatment of the star).

Now we have secured that each voxel gets light from the star, but there is still another
problem. It is caused by the limited number of rays (solid angle points) which can be
calculated (limited by computational time), therefore the star is not completely resolved.
For example, with 102 solid angle points, one solid angle element for the integration of J
is roughly 10−1 (4π/100). A star with a size of 2 R� at a distance of 1 AU would have
a solid angle of ≈ 3 · 10−4 (see equation 4.9). If we now assume that the star sits in a
vacuum sphere all rays except the rays which hit the star have intensity zero. For the
integration of J all solid angle elements have the same size of 10−1. This means that for
the integration of J the star seems to have the solid angle of 10−1 and not ≈ 3 · 10−4,
and so the contribution from the ray, hitting the star to J is much to large. This effect
becomes larger with distance from the star. To completely resolve the star at a distance
of 400 AU more than 109 solid angle points would be necessary, which is not practical.

To overcome this, the weights for the rays which hit the star have to be corrected. For
this we first need the real solid angle of the star at a given distance r . From geometrical
considerations the following equation for the solid angle of the star SA∗ can be derived

SA∗(r) = 2π
(

1−
√

1− (R∗/r)2
)
, (4.9)

where R∗ is the radius of the star.

By knowing the real solid angle of the star we can correct the weight for the J integration.
In PHOENIX/3D all solid angle points have the same weight (for our case unity). The
solid angle element for one ray is given by SAray = 4π/Nrays , where Nrays is the total
number of solid angle points (rays). Further we have to consider that for one direction a
bunch of parallel characteristics can hit the voxel, where some of them hit the star and
some not (see also Fig. 4.3). The corrected weight W∗ for a star ray is then given by

W∗ =
SA∗

Nc∗
Nc

SAray

, (4.10)

where Nc∗ is the number of parallel characteristics starting at the star and Nc is the
total number of characteristics going through the voxel. W∗ would be unity if the star is
correctly resolved. We have also to consider that it is possible that there is more than one
ray for a voxel which hits the star. This is important for the adjustment of the weights
for the non–star rays. To do the integration for J correctly the difference of W∗ to unity
is added in equal parts to all the non–star rays. The weight for the non–star rays is then
> 1, but the sum of all weights, needed for the normalization of J remains the same as
for the case without the correction. For this we have to know in advance how many star
rays and non–star rays we have for each voxel. Therefore a pre-RT step is needed, for
which also the long characteristics solver is used but only the tracking is done, while no
intensities are calculated. We end up with two different weights, one for the star rays and
one for the non–star rays, although the values are different for each voxel (as the weights
depend on the distance to the star and the value of Nc∗

Nc
). To test this method a simple

test case was created. In this test case the star is the only source of radiation and is
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Figure 4.4 – Results for the test problem used to test the correct treatment of the star. The red
dashed line shows the analytical solution for J (r) (equation 4.11, the blue solid line the solution of
PHOENIX/3D. The left panel shows the results without correction for the star (with 802 solid angle
points), the right panel with correction. With the correction, the results of PHOENIX/3D are identical
with the analytical solution.

surrounded by vacuum. For such a configuration an analytical solution for the radiative
transfer exists. J (r) is than given by

J (r) = I∗
SA∗(r)

4π
, (4.11)

where I∗ is the intensity of the star (the boundary condition) and SA∗ is given by equa-
tion 4.9. The PHOENIX/3D results for this test case, with and without correction, in
comparison to the analytical solution are shown in Fig. 4.4.

The only thing which cannot be tested with this test case is the weighting for the non–star
rays as for all non–star rays the intensity is zero, which is not the case for real models. But
for a large number of rays the weights for the non–star rays only deviates slightly from
unity. Typically the deviation is smaller than 10−2 and therefore no significant inaccuracy
is expected.

4.2.2 Resolving the Inner Rim

Unfortunately the star is not the only small radiation source in our model space. Also the
inner rim of the disk is rather small in comparison to the rest of the disk and it is also a
more complex structure (nonspherical). So it is quite hard to estimate a typical size for
the rim structure. If we look at the example for the density structure in Fig. 4.2 we can
say that a typical size for the rim is ≈ 10−1 AU (in comparison a star with 2R� has a
size of ≈ 10−2 AU). Therefore the problem is similar to the problems already discussed
for the star. The resolution problem for the inner rim is mainly influenced by two things:

• The distribution of the solid angle points (rays) (see section 3.2.1). Around θray =
π/2 the solid angle grid is finer due to the shape of the arccos-function. So for voxels
near the midplane of the disk more angular points are placed toward the center (the
star and the rim), but for voxels in the upper regions this is not the case as the solid
angle grid is the same for all voxels.
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Figure 4.5 – Comparison of the results for J for a
logarithmic spatial grid in θ (black solid line) with
the results where the spatial grid and angular grid
are aligned (red dashed line). J is plotted along
the θ coordinate at some distance r. For both
the same number of rays and the same number of
voxels is used. It is clearly seen that J can deviate
up to two orders of magnitude from the expected
results, if the grids are not aligned.

• Voxels are not only hit by one characteristic but rather by a bunch of parallel
characteristics and the intensity is given by the average of the intensities of all char-
acteristics. Although this should improve the accuracy it may also be a problem.
A voxel in the outer part of the disk is rather large, & 10 AU in each direction.
Therefore it is hit by many parallel characteristics. The distribution of these char-
acteristics is mainly driven by the spatial grid. For a ray which hits the inner region
of the disk more characteristics are coming directly from the inner rim than from
the area around the rim (see also Fig. 4.3) and therefore the average value for the
intensity is rather inaccurate, as the characteristics coming directly from the inner
rim are overweighted.

However, even with a large number of rays (e.g. 2562) there still remain effects caused by
bad resolution. The consequences of the too low resolution for the inner rim manifests in
a jagged pattern for J in the vertical direction of the disk (see Fig. 4.5).

Therefore the same method as used for the star was applied. In general this is working
well, but it was not possible to remove all effects because it is hard to define the size
of the region for which the correction has to be done (it is not known how many rays
hit the inner rim). Further it was tried to add additional equally distributed parallel
characteristics to the outer voxels to get a more accurate intensity for one ray. But it
turned out that again a very large number of additional characteristics in needed, and
that it is more efficient to add more angular points.

The inner rim problem could only by solved by using the same distribution for the spatial
coordinate θvox as it is used for the solid angle grid (see equation 4.3).

As already mentioned a voxel can be hit by more than one characteristic for a ray. This
is especially true for the outermost voxels as they are quite large. If we now consider one
outermost voxel and the ray where θray = θvox and φray = φvox , the important dimension of
the voxel is the area normal to the ray direction. For the 2D example in Fig. 4.3 this would
be the vertical dimension of the voxel. This area of the voxel also defines the region from
where the characteristics are coming. Typically the dimension of the outermost voxels
are much larger than the typical dimension of the structure in the central region of the
model space (the star and the inner rim). For this voxel the central region is covered by
many parallel characteristics of the considered ray. For a neighbouring ray that does not
go directly through the center of the model space the size of the region from where the
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characteristics are coming is the same as for the central ray, because the size is defined
by the size of the voxel surface. If we now have, for example, more solid angle points
in θray than for the spatial θvox -coordinate, the areas for the two neighbouring rays are
overlapping (imagine a direction which is just slightly off center for the voxel). The
intensities for each of these two rays is given by the average of all these characteristics.
As some characteristics of these two rays are coming from the same area, information
about the same region (e.g. the inner rim) is included for both intensities. This would
not happen if we only had one characteristic for one ray. If we now use the same number
of θ–points for the solid angle and the spatial grid and also the same distribution this
overlapping is weakened, especially for the central region. This is probably the reason why
the jags vanish if the two grids are aligned. Actually the aligned grids are only necessary
in θ but not in φ, probably because the disk is azimuthally symmetric.

Although the aligning of the angular and spatial grid solves the resolution problem for
the inner region, it also has its disadvantages. If more spatial points are needed to better
sample the physical structure of the disk we automatically need more solid angle points,
which increases computational time. Further the spatial grid in θ-direction has to follow
the distribution of the solid angle points which is given by the integration method used
for J , therefore it is not possible to adapt the spatial grid to the given physical structure.

Besides these drawbacks the method of aligning the grids works quite well and is therefore
used for the tests presented in chapter 6. However, it is still possible to use non-aligned
grids in combination with the star correction algorithm. This is especially useful for code
development as then for the testing a small number of rays can be used. Further, the
resolution problem does not occur in the inner regions of the disk as there the angular
resolution is good enough, so if one is only interested in the inner region of the disk,
resolving the inner rim is not a problem at all.



Chapter 5

Temperature Correction

Until now there was no method in PHOENIX/3D for solving the radiative equilibrium
equation (REE) implemented. In this section a new temperature correction scheme for
PHOENIX/3D based on the Λ∗–operator is presented. The main idea for this scheme is
from Woitke (2011, priv. comm.).

5.1 Solving the Radiative Equilibrium Equation

To get the temperature distribution for the disk we have to solve the implicit radiative
equilibrium equation (REE) 2.29 for the temperature.

For the wavelength space we assume for now some discrete wavelength grid and replace
the integrals of the REE by a simple sum:∑

l

κl
ijk B l(Tijk)∆λl =

∑
l

κl
ijk J l

ijk∆λl . (5.1)

Where ijk are the spatial indices for the 3D grid and l is the index for the wavelength
grid. ∆λl represents the integration weight for the wavelength point l . B l(Tijk) is the
value of the Planck function for wavelength l and temperature T at position ijk in the
grid.

Following the idea of Woitke (2011) we try to solve the REE by a Newton-Raphson
iteration of the form

xnew = xold −
f (xold)

f ′(xold)
. (5.2)

For this we nullify equation 5.1

Fijk :=
∑

l

(
J l

ijk − B l(Tijk)
)
κl

ijk∆λl = 0 . (5.3)

Fijk is now our function f (x ) for the Newton-Raphson scheme 5.2. As we want to solve

Fijk for T we further need the partial derivative of
∂Fijk

∂Tmno
. Under the assumption of
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temperature independent opacities the derivative is given by

F
′mno
ijk :=

∂Fijk

∂Tmno

=
∑

l

(
∂J l

ijk

∂Tmno

−
∂B l

ijk

∂Tmno

)
κl

ijk∆λl (5.4)

where mno are again the spatial indices and the abbreviation B l
ijk := B l(Tijk) is used.

Although we now have our two main ingredients Fijk and the derivative F ′ijk , we do not

know how to evaluate the derivative
∂J l

ijk

∂Tmno
. As we have seen in section (3.1), J can be

calculated by using the Λ–operator on S . By using Einstein’s summation convention this
can be formally written in index notation as

Jijk = Λmno
ijk Smno . (5.5)

Further we know that the source function depends on the temperature via the Planck

function B (equation 2.15). Therefore we can write the derivative
∂J l

ijk

∂Tmno
as

∂J l
ijk

∂Tmno

=
∂J l

ijk

∂Smno

∂S l
mno

∂Tmno

= Λmno
ijk

∂S l
mno

∂Tmno

(5.6)

where we have used
∂Jijk

∂Smno

= Λmno
ijk . (5.7)

As we know from section (3.2) usually the full Λ–operator is replaced by the approximate
operator Λ∗, therefore we do this also for our derivative

∂J l
ijk

∂Tmno

≈ Λ∗lmno
ijk

∂S l
mno

∂Tmno

. (5.8)

For the Λ∗–operator used in PHOENIX/3D this means that we only consider the deriva-
tives of the neighbouring voxels and the indices mno can only have values ijk = mno or
m = i ± 1, n = j ± 1, o = k ± 1.

With equation 5.8 we can rewrite equation 5.4 and get

F
′mno
ijk =

∑
l

(
Λ∗lmno

ijk

∂S l
mno

∂Tmno

− δmno
ijk

∂B l
mno

∂Tmno

)
κl

ijk∆λl , (5.9)

where δmno
ijk is the Kronecker delta (all elements are zero except for ijk = mno where they

are equal to unity). The Kronecker delta is used because all the derivatives
∂B l

ijk

∂Tmno
are zero

anyway except for ijk = mno.

The next thing we want to do is to eliminate the derivative of S l
mno to avoid an otherwise

required numerical evaluation. We use equation 2.15 and do the derivative with respect
to T explicitly

∂S l
mno

∂Tmno

= εl ∂B l
mno

∂Tmno

+ (1− εl)
∂J l

mno

∂Tmno

. (5.10)
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By using equation 5.8 and by bringing the derivative of S to the left–hand side we find

∂S l
mno

∂Tmno

= εl ∂B l
mno

∂Tmno

+ (1− εl)Λ∗lmno
mno

∂S l
mno

∂Tmno

=
εl

1− ((1− εl)Λ∗lmno
mno )

∂B l
mno

∂Tmno

. (5.11)

and using equation 5.11 in equation 5.9 gives

F
′mno
ijk =

∑
l

(
Λ∗lmno

ijk εl

1− ((1− εl)Λ∗lmno
mno )

∂B l
mno

∂Tmno

− δmno
ijk

∂B l
mno

∂Tmno

)
κl

ijk∆λl

=
∑

l

(
Λ∗lmno

ijk εl

1− ((1− εl)Λ∗lmno
mno )

− δmno
ijk

)
∂B l

mno

∂Tmno

κl
ijk∆λl . (5.12)

Equations 5.3 and 5.12 now can be used for a Newton-Raphson step

T new
ijk = T old

ijk −
Fijk

F
′mno
ijk

. (5.13)

To avoid matrix inversion the following form of the equation 5.13 is more convenient

F
′mno
ijk δT = −Fijk . (5.14)

This equation has to be solved for δT , and then we get our new temperature for the
next step. But we can also use δT to update the mean intensity J , by using once again
equation 5.8, but now only for the change δJ

δJ l
ijk = Λ∗lmno

ijk

∂S l
mno

∂Tmno

δTmno , (5.15)

and with equation 5.11 we find

δJ l
ijk =

Λ∗lmno
ijk εl

1− ((1− εl)Λ∗lmno
mno )

∂B l
mno

∂Tmno

δTmno . (5.16)

δJ l
ijk can now be used to update the source function prior to the next radiative transfer

step. With equation 5.14 we can now solve the REE equation and with equation 5.16 we
get the impact of the temperature change on the mean intensity and the source function.

5.2 Implementation

We have already seen in section (3.2) how the RTE can be solved with the help of the
Λ∗–operator. How this Λ∗–operator can be used to solve the REE was described in section
(5.1). Fig. 5.1 shows a graphical overview of the implementation for the new temperature
correction scheme by combining this two methods.

Let us start from inside out. The main things happen in the wavelength loop. At first
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Initialization of the wavelength grid and integration weights

Initial RT-step for the star correction

Initial value for T

wavelength loop

First iteration?

Yes No

Initial value for Sλ
Calculate δJλ

Update Sλ with new Bλ(T ), Jλ

One RT-step (including construction of Λ∗λ) (Fig. 3.3)

save Jλ and Λ∗λ (optional) for the next iteration

add weighted contribution to F and F
′

Solve the Newton-Raphson equation for δT

Update T and optional Ng-step for T

Newton-Raphson iteration until convergence

Figure 5.1 – Nassi–Shneiderman diagram for the temperature correction scheme.

one radiative transfer step (see Fig. 3.3) for the actual wavelength is one. It is really
only one iteration step of the iteration scheme described in section 3.2. In this step the
Λ∗λ–operator is constructed (if required) and we also get our first value for Jλ. Both values
are saved for the next Newton-Raphson iteration. By storing the Λ∗λ–operator for each
wavelength the construction of the operator is only required in the first Newton-Raphson
iteration. However, in the case of large grids or a large number of wavelength points
memory requirements may be a problem. Therefore the storing of the Λ∗–operator is
optional, and it is also possible to newly create the Λ∗–operator for each iteration step.

The next step is the construction of Fijk and F
′mno
ijk . The construction of Fijk is more

or less given by equation 5.3. The value for J l
ijk is given by the radiative transfer and

B l
ijk(Tijk) is given by the actual or initial temperature. The integration over wavelength is

simply done with a sum over all wavelength points l with the corresponding weights ∆λl .
The wavelength grid and weights are initialised at the beginning of the Newton-Raphson-
iteration.

As we can see from equation 5.9, F
′mno
ijk has the same form as the Λ∗-operator. Therefore

the same data structure as for the Λ∗ operator is used. In the case of the nearest neighbour
method the indices (m, n, o) have the range [−1, 1]. Similar to Λ∗, F

′lmno
ijk holds the data

of all surrounding neighbouring voxels mno of voxel ijk . For the construction of F
′mno
ijk

the Λ∗-operator and the derivative of the Planck function (which is done analytically) are
needed.
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After the wavelength loop and the integration of Fijk , F
′mno
ijk we have to solve the Newton-

Raphson equation 5.14. It has a similar form as the OS–equation 3.6. For the same
reasons as described in section 3.2.3 an iterative method for solving equation 5.14 is used.
For the implementation the Gauss-Seidel method was chosen. As for the OS–equation
the iterative method is very fast and the time needed for solving the Newton-Raphson
equation is negligible in comparison to the RT-step.

In the next iteration step we now can use δT to improve Jλ (equation 5.16) and calculate
Bλ with the new temperature. These values are used to update the source function Sλ
prior to the next RT–step. This is done until some convergence criterion for T is reached.

To avoid negative temperature caused by too large values of δT during the first iterations
a simple damping mechanism was implemented. If the absolute value of δT is larger than
the current value of T the change is limited to a fraction of δT . The value for the fraction
can be set via a parameter (typically a value of 0.8 is used). To improve the convergence
of the Newton-Raphson iteration an optional Ng-acceleration for the temperature was
implemented. For this the already available routine for the Ng-step from the radiative
transfer iteration is used (see chapter 6 for convergence properties).

At the moment only the RT-step is parallelized (see Fig. 3.3) for the temperature correc-
tion, although the current implementation would fit into the hierarchical parallelization
scheme used for the line transfer in PHOENIX/3D (Baron and Hauschildt 2007). In
this scheme also the wavelength loop can be parallelized, only a collective MPI operation
(sum) for F and F ′ after the wavelength loop is necessary.

The temperature correction scheme presented here is designed for protoplanetary disks,
but it may also be applied to other suitable physical problems. However, the scheme is
based on the assumptions of LTE and temperature independent opacities which may be
inappropriate for some physical problems.

Until now the scheme was only tested for protoplanetary dust disks. The tests and results
are described in chapter 6.





Chapter 6

Tests and Results

To test the disk radiative transfer and our new temperature correction scheme we have
chosen the benchmark test of Pinte et al. (2009). This benchmark test is especially de-
signed for dust radiative transfer in protoplanetary disks. The different test cases include
very high optical depths and anisotropic scattering. The results for several Monte Carlo
and discrete ordinate codes are freely available and include the temperature structure in
the disk, SEDs, scattered light images and polarisation maps.

Here we only use the results for the temperature structure and limit ourselves to the case
of isotropic scattering as anisotropic scattering is not yet implemented in PHOENIX/3D.
For comparison of our results only the results of one Monte Carlo code, MCFOST (Pinte
et al. 2006), are used as the differences between the various MC-codes are quite small.

6.1 Benchmark Problem

The density structure of the disk is given by the power laws already presented in section
4.1.3. The inner border of the disk is at r = 0.1 AU and the outer border at r = 400 AU.
The borders are sharp and the space between the disk and the star and outside of the
disk is empty. The exponents for the power laws are pΣ = −1.5 for the surface density
(r0 = 100 AU) and ph = 1.125 for the scale height (h0 = 10 AU).

The benchmark test includes four different disk masses, 3 · 10−8, 3 · 10−7, 3 · 10−6 and
3 · 10−5 M�. Theses masses result in an optical depth in the midplane of the disk (radial
from the star to the outer border of the disk) of 1.22 ·103, 1.22 ·104, 1.22 ·105 and 1.22 ·106

for the 0.81 µm wavelength.

The star is a spherical black body with a temperature of 4000 K and a radius of 2 R�.

For the moment the opacities are not calculated in PHOENIX/3D; instead, the available
tabulated values from the benchmark test are used. The given opacities are for homoge-
neous, spherical dust grains composed of astronomical silicates (Weingartner and Draine
2001) with a single size of 1 µm and a fixed mass density of 3.5 g/cm3.

The given wavelength grid ranges from 0.1 µm to 3000 µm and the values for κext and
κsca are given for 100 logarithmically spaced wavelength points in this range. The optical
properties of the dust are presented in Fig. 6.1.



6.2. RESULTS 42

Figure 6.1 – The optical properties of the dust for the Pinte et al. (2009) benchmark. Left panel: The
opacity of the dust. Black is the total opacity (κext = κabs + κsca), green is the absorption coefficient
(κabs) and red is the scattering coefficient (κsca). Right panel: The thermal coupling parameter ε. The
“+” symbols indicate the points for the wavelength grid.

6.2 Results

6.2.1 Test Configuration

For the test runs a spatial grid with nr = 50, nt = 60 and np = 4 and a solid angle grid
with ntheta = 121 and nphi = 90 (in total 10,980 rays) is used. The grids are aligned
as described in section 4.2. For the spatial θ-coordinate the voxels around the poles are
replaced by one big voxel resulting in an actual number of nt = 50. The voxel grid then
has a total number of 101 ∗ 101 ∗ 9 = 91, 809 voxels. Different from the given benchmark
problem the outer border of the disk (radial) is not sharp (see section 4.1). The limit for
the vertical extension of the disk is set to 12h(r) (scale height), everything else has density
zero. For the temperature correction 50 wavelength points are used (every second from
the predefined wavelength grid). Tests with 100 wavelength points have shown that the
usage of more wavelength points does not significantly affect the results (the deviations
are < 1%).

To test the convergence properties a rather strict convergence criterion of a maximum
relative change in T of 10−5 is used.

6.2.2 Discussion

For simplicity the four different test cases are named τ = 103 to τ = 106. We use the term
low optical depth test case for τ = 103 and τ = 104 and high optical depth test cases for
τ = 105 and τ = 106, respectively. As in the benchmark paper the results are presented for
the radial temperature profile in the midplane of the disk, and for the vertical temperature
structure at r = 0.2 AU and r = 200 AU, where r is the distance to the star (see Fig. 6.2,
6.4, 6.5 and 6.6). For the radial temperature structure the temperature is plotted versus
the distance to the inner rim, which makes deviations between the codes better visible.

For the discussion of the results we separate the disk into three different regions: the inner
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Figure 6.2 – Temperature structure for the
τ = 103 test case. The panel on the left-hand
side shows the radial temperature profile in the
midplane of the disk. The temperature is plot-
ted as a function of the distance to the inner wall
of the disk. The blue line shows the results from
PHOENIX/3D the dashed red line the results from
MCFOST. Also the relative differences between the
two codes are given (bottom panel).
The panels below show the vertical temperature
structure, the left panel for r = 0.2 AU the right
panel for r = 200 AU, where r is the distance to
the star.

region ranging from rin to rin + 10−3 AU, the middle region (also the most problematic
region) ranging from rin + 10−3 AU to rin + 10 AU and the rest we call the outer region.

The Inner Region

For the low optical depth test cases PHOENIX/3D and MCFOST agree well. The relative
difference in temperature for the τ = 103 test case are below 1%. However, for increasing
optical depth the models agree less well. For the τ = 106 test case PHOENIX/3D yield
a temperature that is about 20% lower than that found by MCFOST. This problem is
probably caused by the high optical depths in this region for the short wavelength regime.
This was verified by a test where only the radiative transfer for one wavelength (0.81µm)
for a disk with a fixed temperature structure (constant Bλ) is done. Although the radiative
transfer iteration appears to converge, the final values of Jλ are nearly equal to Bλ in the
midplane of the inner region. This should not be the case as the inner rim is directly
heated by stellar radiation. It seems that the stellar radiation cannot penetrate into this
inner region, not even into the first radial voxel (at least for the high optical depth test
cases). The reason for this is a too low spatial resolution.

In Fig. 6.3 the vertical temperature structure at r = 0.1 for the τ = 104 test case with
nr = 50 (left panel) and nr = 60 (right panel) is shown. Although the result is improved
the problem does not completely vanish. So, for the even higher optical depths much
more radial points are needed. Probably also a higher number of θvox -points is required
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Figure 6.3 – The inner wall for the τ = 104 test case. The left panel shows the results for 101, the
right panel for 121 radial points. The MCFOST data used for this plot was provided by Woitke (2011,
priv. comm.).

as stellar radiation is also scattered into the midplane from the upper layers of the disk.

Some negative effects for the inner region may also be caused by the not completely sharp
inner wall (see section 4.1.1). But these effects do not depend on optical depth and can
also occur at larger heights above the midplane. The jag in the temperature structure
at z = ±0.02 AU, visible in Fig. 6.3, also occurs for the τ = 103 test case. Although
these jags also depend on the number of radial points, it is more the combination of the
radial and θvox -points witch causes this problem. As a rule of thumb a higher number of
θvox -points also requires a finer radial grid near the inner rim.

So, the important thing for the inner region is the spatial resolution as the resulting
temperature is dominated by the direct irradiation of the inner wall by the star. Especially
important is the fineness of the radial grid which can also be controlled via the α-parameter
in equation 4.1. This parameter has to be used with care, as a too high α-value has a
negative impact on the temperature structure of the middle region, as the grid there
becomes coarser. For the test cases presented here values of α = 3.5 for τ = 103 and
τ = 104 and α = 4 for the higher optical depths are used.

The Middle Region

In this region the temperature in the midplane drops rapidly as the dust is not heated
anymore by the direct radiation of the star. The optical depths in radial direction (from
the star to the middle region) but also in vertical direction (from the border of the disk to
the midplane) are so high that radiation from the star, even scattered radiation, cannot
reach the midplane. The only heating mechanism left for this deep inner region are the
dust re-emission from the upper layers of the disk (Pinte et al. 2009).

Monte Carlo RT-codes usually use the diffusion approximation method for this deep region
as the temperature structure is defined by the local emission only (e.g. Pinte et al. 2009;
Min et al. 2009). This is done mainly for performance reasons, as a full Monte Carlo
treatment of this deep region would require a very high number of photon packages.
All MC-codes presented in the benchmark paper are using this diffusion approximation.
According to Min et al. (2009) the diffusion approximation tends to overestimate the
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Figure 6.4 – The same as Fig. 6.2 but for the
τ = 104 testcase. For the radial profile also the
results of a test run where only linear interpola-
tion was used (blue dashed line) and a test run
with a larger grid (blue dash-dotted line) are in-
cluded. The blue solid line represents the results
with parabolic interpolation (the default configu-
ration).

temperature as it prevents cooling by long wavelength radiation which still would be able
to exit the deep region.

However, to calculate the correct temperature for this region is not so important at all,
at least if one wants to produce observables (e.g. SED) (Woitke 2011, priv. comm.).
Emission from this region cannot escape because of the high optical depths. Therefore it
does not influence the radiation field which actually is observed. The correct temperature
structure becomes important if one wants to calculate the hydrostatic structure of the
disk as it influences the scale height of the disk (Min et al. 2009).

As seen from the radial temperature profiles, PHOENIX/3D always overestimates the
temperature in the midplane. Compared to MCFOST (with diffusion approximation) the
maximum differences are ranging from +20% for τ = 103 up to +65% for τ = 106. For
the lower optical depth test cases of τ = 103 and τ = 104 the maximum error is located
between r − rin = 10−2 and r − rin = 10−1 AU. The maximum error for the higher optical
depths is located further out at r − rin ≈ 100 AU. Further out the error drops quite fast
as the disk becomes optically thin in the vertical direction, and the dust in the midplane
is again heated by scattered light of the star (Pinte et al. 2009). From the vertical
profiles for r = 0.2 AU (r − rin = 10−1 AU) it is visible that the error remains in the
deep midplane of the disk. In the upper layers where the disk becomes optically thin the
results of both codes are nearly identical for all test cases. This indicates that the too
high temperature in the midplane is not caused by a too high temperature in the upper
layers which are the only remaining heating source for this deep region.
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Figure 6.5 – The same as Fig. 6.2 but for the
τ = 105 testcase.

We found that for this region, the result depends on the interpolation method used for
the source function during the evaluation of the formal solution (see equation 3.10). The
radial profile in Fig. 6.4 shows the results for a test run where only linear interpolation is
used in comparison to the test run where both parabolic and linear interpolation is used.
This figure shows that parabolic interpolation significantly improves the accuracy of the
results, especially in the deep inner regions of the disk. However, it is not possible to
use the parabolic interpolation everywhere in the model grid. The parabolic interpolation
can cause convergence problems especially in regions with drastic changes of the source
function along a characteristic. In radial direction the most problematic region is the tran-
sition from the middle region to the outer region. There the disk becomes optically thin in
vertical direction and scattered light can reach the midplane again. Another problematic
area is the jump of the source function in vertical direction caused by the exponential
density profile. This jump becomes also visible in the vertical temperature profiles. In
these regions the parabolic interpolation results in negative Iλ and consequently negative
values for Jλ and Sλ which is cumbersome for the convergence ratio but may also prevent
convergence at all. The negative values for Iλ are a side effect of parabolic interpolation,
as the parabolic interpolation can cause local extrema where no extrema should be, and
these extrema can even result in negative Iλ (see Auer 2003a). This convergence problem
especially applies to the short wavelength range and becomes more severe for the high
optical depth test cases (τ = 105, 106).

As described in section 3.2.1 the interpolation method is automatically chosen depending
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Figure 6.6 – The same as Fig. 6.2 but for the
τ = 106 testcase.

on the optical depth for one step (∆τ) and the change of the source function along the
characteristic via the parameters taulin and PPM max step, respectively.

It turned out that the usage of the parameter PPM max step is problematic. As the source
function changes between two iterations it can happen that the interpolation method for
the same characteristic and same voxel also changes. This just screws up the convergence
of the temperature correction scheme. This is caused by the fact that the Λ∗-operator
is only calculated in the first iteration and therefore in subsequent iterations it may be
the case that for the same voxel and characteristic a different interpolation method for
the formal solution (JFS ) is uses as it was used for the Λ∗-operator in the first iteration.
However, deactivating PPM max step does not resolve all convergence problems.

As the PPM max step parameter cannot be used, the only selection criterion for the inter-
polation method is the optical depth between two voxels (∆τ). For the high optical depths
test cases, still linear interpolation has to be used (which is achieved by a very high value
for taulin). Also for lower optical depth test cases (τ = 103, 104) a quite high threshold
of ≈ 10−1 for the taulin parameter is necessary to secure convergence. The convergence
problems are mainly caused by the short wavelength range, but in PHOENIX/3D it is
not possible to set the taulin parameter depending on the wavelength. To make this
selection criterion for the interpolation method more flexible, the following adaptations
were implemented:
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• The wavelength range can be separated into a short and a long wavelength range.
The boundary between these two ranges can be set via an additional parameter
(typical values are between 1 µm and 2 µm for the benchmark test). By this the
taulin-parameter for the long wavelength range can be set to a lower value and
therefore the parabolic interpolation can be used more often.

• An additional taulin parameter can be set for steps where only the radial voxel
index changes. For these radial steps a lower taulin-value can typically be used
which increases the number of parabolic interpolations for the radial direction. This
is possible as usually a relatively fine radial grid is used. This parameter does not
depend on wavelength.

• Further it turned out that for the high optical depth test cases the parabolic inter-
polation causes problems (negative Jλ) if the interpolation is done between voxels
with different φ-coordinate indices. This especially happens in the inner region of
the disk near the midplane. This may be caused by the large dimensions of the
voxels in φ-direction. To avoid this, linear interpolation is always used if voxels
with different φ-coordinate indices are involved in the interpolation.

With these adaptations it is now possible to use parabolic interpolation also for the
higher optical depth test cases. The best values for the various taulin-parameters vary
between test cases and were just found by playing around with different parameter values.
Usually the higher optical depth test cases require higher values for the taulin parameters.
However, these adaptations secure that for the inner and middle region near the midplane
mostly parabolic interpolation is used (for the longest wavelengths this may not be always
the case as the opacities for them are very low). For the results presented here, the
adaptations described above were already used, and it seems that even the parabolic
interpolation method is too inaccurate for this deep inner region of the disk.

The still too high temperatures are probably a result of numerical diffusion. In radial
direction the values for ∆τ (equation 3.9) become very large in the midplane of the
middle region (e.g. up to ∆τ0.81µm ≈ 104 for the τ = 106). For these large values of ∆τ
the interpolation for the source function integral (equation 3.10) becomes inaccurate. The
influence of the neighbouring source functions is too high as the sampling of the source
function in “τ -space” is too bad.

In Fig. 6.4 also the radial temperature profile for a test run with a larger grid with 131
radial and 125 θ-points is shown. The result for the deep middle region is improved as the
∆τ values are lower for a larger grid, but it becomes clear that probably an unreasonably
large grid would be necessary to solve this problem completely, at least for the high optical
depth test cases. Also, increasing the number of spatial φ-points does not change the
overall picture. Although the results are slightly improved because more characteristics
are tracked through the grid, it is in general more efficient to use more radial and/or
θ-points in terms of accuracy and the needed computational time.

Another possibility would be to adapt the grid to the given optical depths between voxels.
Brief tests where done for an adaptive radial grid. The radial dimension of the voxels
are adapted to a given maximum value of ∆τ . This secures that the ∆τ value for a step
along the radial coordinate between two voxels cannot exceed this maximum value. By
this the maximum error in the middle region is reduced without the need for more voxels.
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However, this method has its limitations. The given maximum value for ∆τ cannot be
reduced at will as the radial voxel dimension in this region would become extremely low
which results in unreasonably large voxel sizes for the outer region. This is especially true
for the high optical depth test cases. To allow a better comparison between the different
test cases the adaptive radial grid was not used for the results presented here.

In Auer (2003a) a method for avoiding local extrema caused by the parabolic interpolation
is proposed, which would probably allow to use the parabolic interpolation throughout
the disk. Also different interpolation methods like Hermite interpolation are presented.
However, the methods presented in Auer (2003a) are for the short characteristic method
and cannot be directly applied to the long characteristic method used in PHOENIX/3D.
It also has to be considered that a change in the interpolation method influences the
construction of the Λ∗-operator. However, improving the interpolation method seems to
be necessary, but further investigations on this topic are needed.

The Outer Region

In this region the disk becomes optically thin in vertical direction even for the shorter
wavelengths. The temperature near the midplane is mainly determined by the stellar
radiation which is scattered into the midplane. The results for the outer region are best
compared via the vertical temperature profiles at r = 200 AU. Differently to the already
discussed regions the results are now better for the high optical depth test cases. For
τ = 106 (Fig. 6.6) the differences to MCFOST, for the vertical profile at r = 200 AU,
are below 5%, which is comparable to the deviations between the different Monte Carlo
codes presented in the benchmark paper.

For the low optical depth test cases the differences are larger (up to 20%) and also a
somewhat unnaturally looking boxy vertical temperature profile is visible. The reason for
this is probably again the interpolation method. For the high optical depths test cases
the ∆τ -values in radial direction near the midplane are still typically & 1 for the short
wavelength range and therefore parabolic interpolation is used. For the low optical depth
test cases mainly linear interpolation is used as the ∆τ -values are typically below the
threshold for the taulin-parameter. By using lower values for the taulin-parameter the
boxy shape of the vertical temperature profile can be weakened somewhat. But we are
limited in the range for taulin as a too low value causes convergence problems especially
in the regions already discussed above.

Another cause for these problem may be the angular resolution, but as already a quite high
number of rays (10,890) is used this is probably not the case. Testing of the dependency
of the results on the angular resolution is not really possible as the the angular and spatial
grid are aligned, and an increase of the angular points always requires a larger grid at
least for the θ-coordinate. What can be tested is a higher number of solid angle points
for φ, but no significant improvement was found.

Similar to the middle region an improvement of the interpolation seems to be necessary, at
least for the low optical depth test cases. Differently to the middle region the results in the
outer region are not significantly improved by using a somewhat larger grid (see Fig. 6.4).
Another method to increase the accuracy is to use more characteristics. Tests with addi-
tional characteristics which are launched around the center of the model space were quite
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successful concerning the boxy temperature profile. Roughly 100 additional equidistantly
distributed characteristics for each ray (direction) are launched in an area with a radius of
0.1 AU around the center. In principal it is possible with this method to correct the boxy
temperature profile, but its application is quite tricky. The best choice for the number of
additional characteristics and also their distribution depends on the size of the grid. Fur-
ther, this method also causes some artefacts in the temperature profile in the inner region
of the disk, probably caused by the arbitrary choice for the size of the “launching area”
(a much larger area becomes quite computational expensive). Therefore this method was
not used for the test runs presented here. However, it may be worth to further investigate
this approach as it can solve the problems for the optically thin outer region.

6.2.3 Symmetry Test

As for the benchmark test the disk is azimuthally symmetric and axisymmetric in z (in
spherical coordinates in θ), it has to be tested if this is still true for the final temperature
structure.

Actually the resulting asymmetries depends on the algorithm which secures that each
voxel is hit at least once for each angular point (ray). This is done by going through
the three dimensional voxel grid (array), check if the voxel is already hit, and if not,
a new characteristic is launched. The innermost loop for this stepping is for the radial
coordinates, the outermost for the φ-coordinate, and the starting voxel is (-nr,-nt,-np).
But this algorithm can cause some troubles for the symmetry, at least for small grids
or a low number of rays. The symmetry of the results was improved by choosing the
starting voxel in dependence of the actual direction of the ray. For the θvox -coordinate
the starting voxel is −nt (θvox = 0) if θray ≤ π/2 and nt (θvox = π) if θray > π/2. For the
φvox -coordinate the starting index is chosen by searching for the φvox -coordinate which is
the closest to φray . This just improves the distribution of the launched characteristics for
one ray.

For the tests presented here the deviation between symmetric voxels are always below
0.5% for the θvox -coordinate and 0.06% for the φvox -coordinate. The deviations for the
default algorithm are only slightly worse for the θvox –coordinate but roughly two times
higher for the φvox -coordinate. For the convergence rate and the stability no significant
differences between the two algorithms were found.

6.3 Convergence and Performance

6.3.1 Convergence

In Fig. 6.7 the convergence properties of the temperature correction scheme are shown.
The used convergence criterion is: max relative change ∆T

T
< 10−5. The convergence

criterion is reached for all test cases. The τ = 103 test case needed 45 the τ = 106

test case 88 iterations. The Ng-acceleration works properly for all test cases but it is
beneficial to start the Ng-acceleration not too early as this can adversely influence the
stability, resulting in negative values of Jλ and Sλ. The right panel of Fig. 6.7 shows the
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Figure 6.7 – Convergence properties of the temperature correction scheme. The x-axis shows the
number of iterations, the y-axis the maximum relative change in temperature. The left panel shows
the convergence rates for the different test cases presented in section 6.2. For the test cases τ = 105

and τ = 106 the Ng-acceleration was only started after the 15th iteration as this improves the stability.
For the lower optical depth test cases Ng-acceleration was already started after the 8th iteration.
The right panel shows the convergence rate for the τ = 104 test case with (dashed line) and without
(solid line) Ng-acceleration.

convergence rate for the τ = 104 test case with the use of Ng-acceleration and without.
The excellent efficiency of the Ng-acceleration is clearly visible. The test run without
Ng-acceleration was already stopped after the 124 iteration where the maximum relative
change still is > 10−4.

Fig. 6.8 and Fig. 6.9 display the history of the convergence for the midplane and in
vertical direction, respectively. These figures allow to study the convergence rates in
different regions of the disk. The middle region shows clearly the slowest convergence
rate, whereas for the inner and outer region convergence is already achieved after ≈ 15
iterations. After the 30th iteration the maximum relative change is already < 10−3

and the subsequent iterations do not significantly improve the results anymore. So, a
less strict convergence criterion may be used. This reduces the number of iterations
and consequently the computational time by a factor of ≈ 2. This shows also that
the inaccuracy of our results is not caused by bad convergence. However, it must be
considered that the inaccuracy of the results may influence the convergence rate. The
too high temperature in the midplane of the middle region may positively influence the
convergence rate.

Also a dependency between the convergence rate and the resolution of the grid was found.
For a larger grid more iterations are needed. This dependency is similar to that presented
in Hauschildt and Baron (2006) for pure radiative transfer tests. This is caused by the
lower optical depths between voxels (lower ∆τ) for a larger grid. For lower ∆τ -values the
coupling between voxels is stronger which increases the number of iterations (Hauschildt
and Baron 2006). So we have to consider that a finer grid, which improves the results,
slows down the convergence. On the other hand a grid with higher spatial resolution
allows a more extended use of the parabolic interpolation which in general improves the
convergence rate. For the τ = 104 test case (see Fig. 6.4) 10 more iterations are needed
for the larger grid. However, for the larger grid also lower values for the taulin-parameter
were used so the test cases with a smaller and larger grid are not directly comparable.
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Figure 6.8 – Convergence in the midplane of
the disk for the τ = 104 test case. The dashed
dark red line represents the initial temperature
structure. The blue dashed line shows the fi-
nal result of PHOENIX/3D.The black dotted line
represents the result from MCFOST for compar-
ison. The result after the first iteration is shown
by the dark red solid line. The subsequent solid
lines from dark red to green to blue are show-
ing the results for every 5th iteration. This test
case needed 62 iterations for convergence (max
relative change < 10−5). The maximum relative
change after the 30th iteration is already < 10−3

and therefore the subsequent iterations are not
clearly visible in this plot.

Figure 6.9 – The same as Fig 6.8 but for the vertical direction at r = 0.2 AU (left panel) and r = 200
AU (right panel). For r = 0.2 AU no significant changes after the 30th iteration are visible. It is also
visible that the convergence rate in the midplane (z = 0) is the slowest. For r = 200 AU the “final”
result is already reached after ≈ 10 iterations.

Initial Conditions

To test the dependency of the convergence on the initial conditions and to check that the
results do not depend on them, three different initial conditions for the dust temperature
were tested.

The first one (init1 ) is simply a constant temperature T = 1500 K throughout the disk.
The two others are taken from Dullemond and Monnier (2010) and are given by equation
6.1 (init2 ) and equation 6.2 (init3 ). These two equations represent approximations to
accurate radiative transfer results.

Td = T∗
1

ε0.25

√
R∗
2r

(6.1)

Td(τ) = T∗

√
R∗
2r

[
sin(θ)(2 + 3(sin θ)ε) +

(
1

ε
− 3ε sin(θ)2

)
e−

τ
sin(θ)ε

]
(6.2)

where Td is the dust temperature, T∗ the temperature of the star, R∗ the radius of the
star, r the distance to the star, ε is an efficiency parameter for the cooling of the dust, θ
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Figure 6.10 – Convergence for three different ini-
tial conditions. init1 (black dashed line) repre-
sents the convergence for a constant temperature
T = 1500 K, init2 (red dash dotted line) for the
initial conditions according to equation 6.1, init3
(green solid line) for the initial conditions accord-
ing to equation 6.2.

is the angle under which the radiation from the star hits the corresponding voxel and τ is
the radial optical depth from the star to the voxel. ε is a correction factor for the cooling
of the dust and depends on the size of the dust grains. For the test case presented here
with a dust size of 1 µm a value of 0.35 is given in Dullemond and Monnier (2010). The
optical depth is calculated for the 1.8 µm wavelength.This is the wavelength at which the
Planck function peaks for a value of T = 1500 K.

The convergence rate for a test case with τ = 103 are presented in Fig. 6.10. The test case
is converging for all three initial conditions, but surprisingly the fastest convergence is
reached for initial condition init2. One would expect a better convergence rate for initial
condition init3 as there also the vertical structure is considered. However, for the test
runs presented in the previous section initial condition init2 was used. The final results
for the temperature structure are identical for all three initial conditions.

6.3.2 Performance

For the four test runs presented above 64×8 = 512 CPUs (Intel Xeon Gainestown X5570 or
Intel Xeon Harpertown E5472) on the super cluster of the Höchstleistungsrechenzentrum
Nord (HLRN) were used. The τ = 103 test case needed 4.2 h the τ = 106 test case 7.8 h.
One temperature correction iteration took ≈ 5.2 m, where one wavelength point needed
≈ 6 s. The time for the single iteration steps are the same for all test cases.

The most time expensive part for one wavelength point is the RT-step, only at maximum
5% of the computational time is needed for the additional temperature correction code.
The solution for the Newton Raphson-Equation (5.13) only took ≈ 1 s. So ≈95% of
the computational time needed for one temperature correction iteration is caused by the
RT-steps.

The memory consumption for the above test runs is ≈10GB for one node with 8 CPUs.
Most of the memory is needed for storing the Λ∗-operator for each wavelength for sub-
sequent iterations (to gain performance). If memory consumption becomes a problem
it is also possible to newly construct the Λ∗-operator for each iteration and wavelength,
so only one Λ∗-operator is stored at the same time. Although this reduces the memory
consumption the computational time increases by a factor of ≈ 1.5. Further we want to
note that for the disk configuration used here nearly 50% of the voxels in the spherical
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model space are in vacuum and for these voxels no Λ∗-operator is created (this was already
implemented in PHOENIX/3D).

These vacuum voxels can also be ignored for the temperature correction as they have no
temperature at all. So these voxels are not considered in the algorithm which secures
that each voxel is hit at least once for each ray. The performance gain of this method
is roughly 30%. However, this also has an influence on the results as there a fewer
characteristics tracked through the grid. Tests have shown that it is more efficient, in
terms of performance and accuracy of the results, to use a larger grid (e.g. more radial
points) than to track more characteristics through the grid by including the vacuum
voxels.

One another interesting observation was that the additional RT–step for the star correc-
tion (see section 4.2) is only 10% faster than a normal RT–step. This is a bit surprising as
for the star correction RT–step no intensities are calculated at all. This implies that most
of the time need for one RT–step is caused by just tracking the characteristic through
the grid. The reason for this is probably that the step-sizes to reach the next voxels
have to be adapted to the different voxel volumes which are inherent to a spherical grid
(Hauschildt and Baron 2009). It may be that the highly irregular grid in the radial and
θ-coordinate, used for the disk configuration, additionally reduces the performance of the
adaptive step-size control. No further analysis of this phenomenon was done, but an ad-
justment of the step-size control algorithm to the disk configuration may be a possibility
to improve the overall performance. Further it may be worth to think about a method to
speed up the tracking through the vacuum part of the model space. As already mentioned
nearly 50% of the voxels are empty and therefore a lot of unnecessary stepping through
empty space is done. However, to find an efficient method for this further investigations
and discussions with the main developers of PHOENIX/3D are required.



Chapter 7

Conclusions and Outlook

As somewhat expected it was not possible to directly apply PHOENIX/3D to the con-
figuration of a protoplanetary disk. The first problem which had to be solved was the
angular resolution problem. The problem arises from the small–scale structures like the
star and the inner rim (small in comparison to the typical dimension of a protoplanetary
disk). For the star the problem could be solved by correcting the weights for the integra-
tion of J . This is not possible for the inner rim, because the actual spatial dimensions of
the inner rim are not as well defined as for the star. The problem caused by the inner
rim are drastic peaks in both the vertical profile of Jλ and consequently the temperature.
The solution for this is to align the angular and the spatial grid for the θ-coordinate, so
that the discrete points for the angular and the spatial grid have the same distribution.
The drawback of this is that we lose the flexibility to adapt the spatial θ-grid to the
given physical conditions. However, with this two adaptations in the radiative transfer
part of PHOENIX/3D it is now possible to solve the radiative transfer equation for the
configuration of a typical protoplanetary disk.

To estimate the temperature structure of a protoplanetary disk a new method for solv-
ing the radiative equilibrium equation in combination with the radiative transfer equation
was implemented. This method is based on the approximate Λ-operator technique already
used in PHOENIX/3D. The approximate Λ-operator is used for solving the radiative equi-
librium equation via a Newton-Raphson iteration. To test the new temperature correction
scheme the benchmark test of Pinte et al. (2009) was used. The method works well and
shows quite good convergence properties (it converges for all 4 test cases of the bench-
mark). The results are satisfactory for larger areas of the disk, but there are still open
problems concerning the accuracy of the results, especially in the deep inner region of the
disk where no stellar radiation can penetrate. The maximum deviations in this region,
compared to the results of the benchmark paper, are ≈ 20% for the τ = 103 test case
and ≈ 65% for the highest optical depth τ = 106. This is probably caused by the inac-
curacy of the interpolation method used in PHOENIX/3D for the radiative transfer. At
the moment one can only overcome this problem by using large spatial grids. However,
this becomes unreasonable for very massive disks with high optical depths. So, further
investigations concerning this topic are needed.

The computational requirements for the temperature correction scheme are quite high.
For the test cases presented in this work 512 CPUs were used. The typical computational
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time needed for the test runs ranges from 4 to 6h (depending on the optical depth of
the disk). The most expensive part in terms of computational time is the pure radiative
transfer part as usually large spatial grids and also a large number of rays are necessary,
but further performance improvements may be possible. At the moment the symmetry
of a protoplanetary disk is not considered. All calculations are still done in full 3D. For
typical applications a full 3D treatment is not necessary and performance can be gained
by taking advantage of the symmetric structure of the disk (e.g. only consider a “quarter
of a disk”). Further performance improvements may be possible by adapting the tracking
algorithm for the characteristics to the actual requirements of disk radiative transfer (e.g.
the usage of a spherical coordinate system for the disk model results in a lot of empty
space which actually could be ignored completely). However, these possible performance
improvements require further (extensive) programming efforts.

Besides the above–mentioned necessary improvements, further work is needed to use the
new PHOENIX/3D dust disk model for “real world” applications. First of all, the con-
struction of a spectral energy energy distribution (SED) and scattering images still has
to be implemented. The ray tracing capability needed for this is already available in
PHOENIX/3D, but for the actual construction of the SED and scattering images some
further mostly technical work is necessary. Further, at the moment the dust opacities
are not estimated in PHOENIX/3D, the predefined opacities of the benchmark test were
used instead. Some already available routines in PHOENIX/3D for e.g. the Mie-theory
probably can be used for this.

To test the reliability of the PHOENIX/3D dust radiative transfer and the new tempera-
ture correction scheme further tests are necessary. For this other benchmark problems for
dust radiative transfer like presented in Pascucci et al. (2004) and Ivezic et al. (1997) or
examples for disk models from the literature can be used. Further the full 3D capability
of the PHOENIX/3D disk model is till untested. Possible applications for the full 3D disk
model are azimuthally asymmetric disk structures like density waves caused by a forming
planet (Ogilvie and Lubow 2002; Williams and Cieza 2011).
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