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1 Abstract 
 

Epithelial ovarian cancer is a rapidly progressive, highly lethal disease with 

low prevalence. It  is responsible for 20% of all cancer-related deaths in the 

United States, since few patients are diagnosed early and subsequently 

cured. Over the last decades, there has been poor therapeutic 

improvement besides cytotoxic chemotherapy and oophorectomy, but 

recent clinical t rials with inhibitors of receptor tyrosine kinases have been 

very promising. Fibroblast growth factor receptors (FGFR) are involved in 

malignant transformation, angiogenesis and chemoresistance. They have 

been identified as valuable targets for cancer therapy and inhibit ion of 

FGFR-dependent signaling was able to overcome resistance to standard 

therapies, but the underlying molecular fundamentals have not  been 

evaluated yet. The aim of this study was to characterize the FGF signaling 

system and its influence on malignancy-related cell propert ies in epithelial 

ovarian cancer cells. 

RT-PCR analysis of FGF receptors and ligands revealed, that de novo 

expression of fibroblast growth factors and their receptors leading to 

autocrine signaling loops with a strong mitogenic potential is a very 

common event in epithelial ovarian cancers (70%). As evaluated by 

immunoblott ing, the FGF signaling system in these cells is functional and 

condit ioned growth medium was able to induce phosphorylat ion of 

ERK1/2 by different degrees. Proliferat ion assays showed a significant 

increase in 50% of evaluated ovarian cancer cells when treated with 

recombinant FGF-2. FGF-1 induced migrat ion in 66% of the cells in a non-

significant manner. The dependency of ovarian cancer cells on FGF 

receptor signaling was evaluated by growth inhibit ion assays using two 

different small molecule inhibitors – PD173074, a specific inhibitor of FGF 

receptors and Dovit inib (CHIR-258), a more promiscuous inhibitor of 

receptor tyrosine kinases. A-2780 cells were found to be extremely sensit ive 

to FGF inhibit ion, while HEY and SKOV-3 cells showed moderate sensit ivity. 
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OVCAR-3 cells were figured out as resistant to inhibit ion of class I I I, IV and V 

receptor tyrosine kinases. 

Together, these data suggest that FGF receptor inhibitors have a good 

potential in t reatment of ovarian cancers alone and possibly even more in 

combination with cytotoxic agents. However, the variance in response to 

the evaluated inhibitors underlines the necessity for reliable serum markers 

for the improvement of therapeutic strategies against  epithelial ovarian 

cancer. 
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2 Zusammenfassung 
 

Das Ovarialkarzinom ist  eine sich rasch entwickelnde, tödliche, aber 

seltene Erkrankung. Trotzdem ist  sie für 20% aller mit Krebs im 

Zusammenhang stehenden Todesfälle in den Vereinigten Staaten 

verantwort lich, da die Krankheit  in den meisten Fällen spät diagnost iziert  

wird. In den letzten Jahrzehnten gab es nur wenig Verbesserung in den 

therapeutischen Strategien neben der zytotoxischen Therapie und 

Ovariektomie, aber neue Ergebnisse aus klinischen Studien mit 

niedermolekularen Inhibitoren der Familie der Rezeptortyrosinkinasen sind 

sehr vielversprechend. Die Fibroblastenwachstumsfaktoren (FGFs) und ihre 

Rezeptoren sind involviert  in maligne Transformation, Angiogenese und 

Chemoresistenz und stellen vielversprechende Zielstrukturen in der 

Krebstherapie dar, insbesondere für die Überwindung von Chemoresistenz 

gegen Zytostat ika. Die zugrunde liegenden molekularen Mechanismen 

wurden allerdings noch nicht erforscht. Das Ziel dieser Arbeit  war die 

Charakterisierung des Signalsystems der Fibroblastenwachstumsfaktoren 

und sein Einfluss auf Zelleigenschaften im Ovarialkarzinom die mit 

Malignität im Zusammenhang stehen. 

Die Analyse des FGF Rezeptors und seiner Liganden mit RT-PCR ergab, 

dass die de novo-Expression von FGFs sowie von FGF Rezeptoren im 

Ovarialkarzinom häufig zu finden ist  (70%) und zu autokrinen 

Signalschleifen mit hohem mitogenen Potential führt. Wie durch 

Immunoblott ing gezeigt wurde, ist  das Signalsystem in diesen Zellen 

funkt ionell, und kondit ioniertes Wachstumsmedium war unterschiedlich 

stark in der Lage, die Phosphorylierung von ERK1/2 zu induzieren. 

Wachstumsassays zeigten eine signifikante Steigerung der Proliferat ion bei 

der Behandlung mit FGF-2 in 50% der untersuchten Zelllinien. FGF-1 zeigte 

eine nicht-signifikante Steigerung der Motilität in 66% dieser Zellen. Die 

Abhängigkeit  von Ovarialkarzinomzellen von Signalen der FGF Rezeptoren 

wurde durch Wachstumsinhibierungsassays untersucht. Dabei wurden zwei 
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unterschiedliche, niedermolekulare Inhibitoren verwendet – PD173074, ein 

spezifischer Inhibitor der FGF Rezeptorfamilie und Dovit inib (CHIR-258), ein 

Inhibitor mit geringerer Spezifität für einzelne Rezeptoren aber mit höherer 

Bandbreite. A-2780 Zellen zeigten eine extrem hohe Sensit ivität gegen 

FGFR-Inhibierung, während HEY und SKOV-3 Zellen eine moderate 

Sensit ivität aufwiesen. OVCAR-3 Zellen zeigten eine hohe Resistenz 

gegenüber der Inhibierung von Rezeptortyrosinkinasen der Klassen I I I , IV 

und V.  

Zusammen zeigen diese Daten, dass Inhibitoren der FGF Rezeptoren ein 

gutes Potential in der Behandlung des Ovarialkarzinoms haben, 

möglicherweise aber noch mehr in Kombination mit Zytostat ika. Allerdings 

unterstreicht die starke Varianz in der Reaktion der unterschiedlichen 

Zellen auf die FGFR-Inhibierung die Notwendigkeit  zuverlässiger 

Serummarker um die therapeutischen Strategien für die Behandlung des 

Ovarialkarzinoms zu verbessern. 
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3 Introduction 
 

3.1 Ovarian cancer 
 

Ovarian cancer is a heterogeneous, rapidly progressive and highly lethal 

disease of low prevalence (Schorge et al 2010). 

Worldwide each year, 200.000 women are diagnosed with ovarian cancer 

and 125.000 die from this disease (Parkin et al 2005, Sankaranarayanan 

and Ferlay 2006). In the United States, it  is the fifth leading cause of all 

cancer-related deaths, but only the eighth leading cause of cancer in 

women (Jemal et al 2010) since few patients are diagnosed early and 

subsequently cured (Schorge et al 2010). 

The et iology of ovarian cancer is poorly understood and the exact t issue 

origin is not clear. It  has been thought that the majority of ovarian cancers 

derive from inclusion cysts from a single cell-layer of epithelium surrounding 

the ovary (Auersperg et al 2001). In fact ovarian, fallopian tube and 

primary peritoneal carcinomas have identical histological and 

morphological features and it  is believed that a high percentage of 

“ovarian cancers” actually arise in the fimbrinated end of fallopian tube or 

from components of the secondary Müllerian system with metastasis to the 

ovary (Dubeau 2008, Kindelberger et al 2007). Primary peritoneal cancers 

might also derive from these t issues (Muto et al 1995, Schorge et al 1998). 

Ovarian cancers can roughly be separated into two categories. Low-

grade tumors grow slowly, are less responsive to chemotherapy and have 

a low malignant potential. High-grade carcinomas exhibit  great genetic 

instability, are rapidly metastat ic and more chemosensit ive (Landen et al 

2008). 

Risk fact ors. Up to 10% of all ovarian cancer patients have inherited germ-

line mutations in BRCA1, BRCA2, MLH1 or MSH2 (Smith et al 2001). These 
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genes encode tumor suppressors involved in DNA strand-break repair. The 

other 90% of women exhibit  increased proliferat ion-associated DNA-

damage during their reproductive years (Purdie et al 2003, Schildkraut et 

al 1997). Women, who never gave birth, have double risk of developing 

ovarian cancer (Titus-Ernstoff et al 2001) and the probability decreases 

with each birth plateauing at about 5 delivers (Hinkula et al 2006). It  is 

generally believed that the risk increases with every menarche during a 

woman’s lifet ime and this number decreases with every pregnancy while 

breast feeding addit ionally delays resumption of menarche and therefore 

has a protective effect (Yen et al 2003). 

The opposite applies to early menarche, late menopause and nulliparity, 

which is often associated with infert ility (Tworoger et al 2007). Long-term 

use of contraceptives reduces the risk by 50% and it  is believed that 

100.000 deaths have already been prevented by those drugs  (Beral et al 

2008). White women have an elevated risk of 30-40% compared to black 

or Hispanic women for developing ovarian carcinomas. The striking 

influence of ethnic background is illustrated by European Jewish women, 

where 35-40% diagnosed with ovarian cancer possess a mutation in 

BRCA1 or BRCA2 (Smith et al 2001). Prophylactic oophorectomy can be 

considered after the age of 40 and is associated with a more than 90% 

decreased risk for the development of ovarian cancer. 

Over the last decades there was minimal progress in detecting ovarian 

cancer at a more curable early stage. The screening for serum markers, 

sonograms and pelvic examinations did not decrease mortality (Hogg and 

Friedlander 2004). CA125 tumor antigen is the most widely studied 

biomarker as it  was init ially found to be elevated in 83% of ovarian cancer 

patients (Bast et al 1983), but further studies demonstrated high false-

posit ive and false-negative rates due to several other factors modulat ing 

CA125-serum-levels (Schorge et al 2010). A large prospective study 

demonstrated that the combination of CA125 serum-levels with 
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t ransvaginal ult rasonography would lead to many unnecessary surgical 

interventions with a surgery-to-cancer-rat io of 19.5 to 1 (St irling et al 2005). 

More than 30 serum markers have been identified during the last years 

and some of them were able to provide evidence of ovarian cancer up 

to 3 years before clinical diagnosis (Anderson et al 2010) but rigorous 

validation studies are st ill pending. 

 

St aging and t reat ment  of ovarian cancer  

Stage I Growth limited to the ovaries 
  

Ia Growth limited to one ovary; no ascites present containing malignant cells. 

No tumor on external surface; capsule intact 

Ib Growth limited to both ovaries; no ascites present containing malignant 

cells. No tumor on the external surfaces; capsules intact 

Ic Tumor either stage Ia or Ib, but with tumor on surface of one or both 

ovaries, or with capsule(s) ruptured, or with ascites present containing 

malignant cells, or with positive peritoneal washings 

  

Stage II Growth involv ing one or both ovaries with pelv ic extension 
  

IIa Extension and/or metastases to the uterus and/or tubes 

IIb Extension to other pelv ic tissues 

IIc Tumor either Stage I Ia or I Ib, but with tumor on surface of one or both 

ovaries, or with capsule(s) ruptured, or with ascites present containing 

malignant cells, or with positive peritoneal washings 

  

Stage III  Tumor involv ing one or both ovaries with peritoneal implants outside 

the pelv is and/or positive regional lymph nodes. Superficial liver 

metastasis equals Stage I I I . Tumor is limited to the true pelv is, but with 

malignant extension to small bowel or omentum 
  

IIIa Tumor grossly limited to the true pelv is, with negative lymph nodes, but with 

microscopic seeding of abdominal peritoneal surfaces, or extension to 

small bowel or mesentery 

IIIb Tumor of one or both ovaries with implants, peritoneal metastasis of 

abdominal peritoneal surfaces, none exceeding 2 cm in diameter; 

regional lymph nodes are negative 

IIIc Peritoneal metastasis beyond the pelv is >2 cm in diameter and/or positive 

regional lymph nodes  
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Stage IV Growth involv ing one or both ovaries with distant metastases. I f 

pleural effusion is present, there must be positive cytology to allot a 

case to Stage IV. Parenchymal liver metastasis equals Stage IV 
  

Table 1 | Carcinoma of the ovary: FIGO nomenclature. Adapted from FIGO 

2009  
 

Borderline and low-grade ovarian cancers (Stage Ia, table 1): Cyto-

reductive surgery is generally recommended, but can be restricted to the 

affected ovary and corresponding fallopian tube to maintain fert ility in 

young women. Early and late stage ovarian cancers are managed by 

cytoreductive surgery and chemotherapy. Neoadjuvant chemotherapy is 

used regularly to reduce tumor volumes before surgery in advanced 

stages. Typical chemotherapy for ovarian cancers is carboplat in alone or 

carboplat in and paclitaxel and achieves clinical complete remission in the 

majority of patients. The poor 5-year survival rate of patients with 

advanced ovarian cancers of 68,1% (Stage I I I) and 29,1% (Stage IV) 

(American Cancer Society 2007) is due to high recurrent rates with 

progressive chemotherapy resistance, underlining the necessity for further 

research in biological t reatment strategies (Bookman 2010).  

Current  clinical research of t arget ed t herapies 

Angiogenesis is crucial for all solid tumors exceeding 1-2mm and vascular 

endothelial growth factor (VEGF) signaling is the most dominant pathway 

in new vessel formation promoting migrat ion, proliferat ion and survival of 

endothelial cells (Folkman 1971). High levels of VEGF are found in many 

ovarian tumors, sera and ascites (Boss et al 2001, Kraft et al 1999, Zebrowski 

et al 1999) and inhibit ion of VEGF signaling in animal models demonstrated 

reduction in ascit ic fluid accumulat ion, vessel formation and tumor growth 

(Byrne et al 2003). Bevacizumab binds human VEGF-A and is approved for 

t reatment of colorectal, renal, breast and non-small cell lung cancer and 

glioblastoma and showed high response rates in ovarian carcinomas in 

clinical t rials (Burger et al 2007, Cannistra et al 2007). Several small 
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molecule VEGF receptor inhibitors (Cediranib, Sorafenib, Vargatef, 

Pazopanib) are current ly invest igated in ovarian cancers (Matulonis et al 

2009, Rauh-Hain and Penson 2008). Some of these inhibitors target related 

classes of receptors. Vandetanib, a VEGFR/EGFR inhibitor is current ly 

tested in recurrent ovarian cancer besides several other ongoing or 

planned clinical t rials (Ledermann and Raja 2010). 

Epidermal growth factor (EGF) receptor overexpression is frequently found 

in ovarian cancers and nuclear expression is associated with a poor 

prognosis, but the relat ionship between overexpression and prognosis 

remains unclear (de Graeff et al 2009, Xia et al 2009). Many monoclonal 

ant ibodies (Trastuzumab, Cetuximab, Pertuzumab, Panitumumab) and 

small molecule inhibitors (Erlot inib, Gefit inib) have been invest igated in 

ovarian cancers. Overall, they show only modest activity as monotherapy 

and achieve only non-significant improvement of progression-free-survival 

in combination with chemotherapy. The response of a part icular patient to 

Gefit inib due to an EGFR mutation underlines the necessity for predict ive 

markers (Ledermann and Raja 2010). 

Src kinases are non-receptor tyrosine kinases involved in intracellular 

signaling. Overexpression is linked to a poor prognosis (Wiener et al 2003), 

inhibit ion of Src reverses chemoresistance in ovarian cancer cell lines 

(Chen et al 2005) and exhibits ant iangiogenic propert ies (Han et al 2006) 

suggest ing an attractive therapeutic target strategy for ovarian cancers. 

Poly-ADP-ribose polymerase (PARP) proteins fulfill diverse functions and are 

involved in DNA repair leading to accumulat ion of single-strand breaks at 

PARP inhibit ion (Hoeijmakers 2001) further result ing in double-strand breaks, 

which are normally corrected by BRCA-dependent homologous 

recombination. Cells carrying homozygous mutations in BRCA1 and BRCA2 

rely to the more error-prone and PARP-dependent non-homologous end 

joining pathway leading to chromosomal instability and malignancy 

(Farmer et al 2005) and are highly sensit ive to PARP inhibit ion (Ledermann 
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and Raja 2010). The PARP inhibitor Olaparib demonstrated dose-

dependent high response rates in BRCA1/BRCA2 mutation carriers (Fong 

et al 2009), but hypermethylat ion of BRCA1 is also found in 31% of 

sporadic, non-BRCA-mutant ovarian cancers indicating the general ut ility 

of PARP inhibitors in cancer cells with aberrat ions in the homologous 

recombination repair pathway (Ledermann and Raja 2010, McCabe et al 

2006). PARP inhibitors MK4827, AGO14699 and ABT888 are current ly being 

studied in early phases of clinical t rials (Ledermann and Raja 2010). 

α-folate receptor was found to be overexpressed in a range of tumor 

types and in 70% of primary and 82% of recurrent ovarian carcinomas 

while levels correlated with the stage of the tumor (Kalli et al 2008). 

Inhibit ion with monoclonal ant ibodies (Farletuzumab) demonstrated 

reduction in growth rates and cellular and complement -mediated toxicity 

and is current ly invest igated in a phase I I  clinical t rial (Ledermann and 

Raja 2010). 

Many novel molecular targets are being evaluated in the treatment of 

ovarian cancer and most of them demonstrate promising clinical activity. 

The wide range of newly available drugs underlines the necessity for 

reliably predict ive serum markers for the improvement of ovarian cancer 

therapy. 
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3.2 Fibroblast growth factor signaling 

 

3.2.1 Fibroblast growth factor receptors 
 

The fibroblast growth factor receptor family consists of four highly related 

members, FGFR-1, FGFR-2, FGFR-3 and FGFR-4 (Johnson and Williams 1993). 

In 2000, a fifth member (FGFR-5, FGFR-L1) was identified, which lacks the 

tyrosine kinase domain and is believed to be involved in negative 

regulat ion (Wiedemann and Trueb 2000). The amino acid sequences are 

highly conserved, but the receptors differ in ligand specifity and t issue 

distribut ion. FGF signaling is crucial for the development of almost all t issues 

and organs (Powers et al 2000) as well as homeostasis in adult  body t issues, 

leading to pathological condit ions, cell t ransformation and cancer when 

normal FGFR functions or expression levels are altered. FGF receptor 1-3 

gene knockouts are embryo-lethal due to failure in formation of the 

primit ive streak (Jaskoll et al 2002). The phenotype of activat ing FGF 

receptor mutations, which result  in abnormal activat ion or ligand 

independency are therefore the primary source of knowledge for their role 

in embryonic development. 

Fibroblast  growt h fact or recept or 1 

In the evolving embryo, FGFR-1 has a central role in the development of 

the nervous system and is involved in growth regulat ion of long bones.  

Loss-of-function mutations in FGFR-1 lead to a dysfunction of nerve cell 

migrat ion causing the “Kallmann syndrome”, which is characterized by 

anosmia and hypogonadotrophic hypogonadism. It  is st ill uncertain how 

FGFR-1 mutation leads to other varying symptoms of the “Kallmann 

syndrome”, like cleft palate or abnormal tooth development. Pfeiffer 

syndrome is associated with gain-of-function mutations in FGFR-1. 

Dysregulat ion of bone development leads to premature fusion of skull 
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bones (craniosynostosis) and cutaneous syndactyly (Chen and Deng 2005, 

Dode et al 2007, Pitteloud et al 2006). 

FGFR-1 expression is widespread over the human adult  organs. High levels 

were found in the skin, cornea, lung, heart and placenta, moderate levels 

in test is and ovary (Hughes 1997). 

Fibroblast  growt h fact or recept or 2 

FGFR-2 is involved in the regulat ion of bone growth and bone cell 

determination. Loss-of-function mutations in FGFR-2 lead to the lacrimo-

auriculo-dento-digital (LADD) syndrome which is characterized by 

abnormal development of lacrimul ducts and salivary glands, abnormally 

shaped ears, hearing loss, tooth abnormalit ies and malformations of hands 

and feet. Many syndromes for gain-of-function mutations of FGFR-2 have 

been described, including Apert, Beare-Stevenson, Crouzon, Jackson-

Weiss and Pfeiffer (table 2). They are characterized by premature fusion of 

skull bones (craniosynostosis) and limb abnormalit ies (Carinci et al 2005, 

Shams et al 2007, Wilkie 2005). 

Syndrome Craniosynostosis other characteristics 

Apert + bony syndactyly 

Beare-Stevenson + cutis gyrata 

Crouzon + 
graded severity of limb abnormalities 

(nil, broad first digits, elbow fusion) 
Jackson-Weiss + 

Pfeiffer + 
   

Table 2 | Syndromes caused by FGFR-2 gain-of-function mutations. (Wilkie 

2005) 
 

FGFR-2, similar to FGFR-1, is widely expressed in human adult  organs. 

Abundant expression was found in the prostate and stomach but not in 

pancreas, ovary, cornea and placent a (Hughes 1997).  
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Fibroblast  growt h fact or recept or 3 

FGFR-3 is involved in the regulat ion of ossificat ion by limit ing the 

transformation of cart ilage to bone cells. Abnormal receptor activity is 

often associated with skin disorders, indicating an important role in 

kerat inocyte development. Gain-of-function mutations show different 

phenotypes depending on the degree of FGFR-3 activat ion, but 

achondroplasia, premature skull bone fusion (“Muenke syndrome”) and 

thickened and/or dark skin are most common (Chen and Deng 2005, 

Coumoul and Deng 2003, Horton and Lunstrum 2002). 

FGFR-3 has a more restricted pattern of t issue-distribut ion. It  was found in 

the appendix, colon, liver, sublingual gland, placenta and cervix but not in 

the stomach, duodenum, ileum, kidney and ureter. It  is worth noting, that 

the overall immunoreactivity for FGFR-3 was much lower than for FGFR-1 

and FGFR-2 (Hughes 1997). 

Fibroblast  growt h fact or recept or 4 

FGFR-4 is involved in the maturat ion of limb muscles and skull bones. 

Foveal cones show high levels of FGFR-4 indicating an important role of 

FGFR-4 in development and maintenance of the ret ina. Knock-out mice 

are viable but show reduced limb muscles (Marics et al 2002) and 

elevated cholesterol metabolism (Yu et al 2000). 

FGFR-4 has a restricted pattern of expression in the human adult  body and 

is highly expressed in the liver, sublingual gland ducts, kidney, ureter and 

media of arterioles and veins of different organs including the ovaries 

(Hughes 1997). 
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3.2.2 Structure of fibroblast growth factor receptors 
 

 

 

Figure 1 | Domain structure of FGFR-1. Adapted from Groth and Lardelli 2002, 

sizes are not to scale. 
 

The general st ructure of FGF receptors is highly conserved (Johnson and 

Williams 1993). Figure 1 (Groth and Lardelli 2002) shows a schematic 

diagram of the domain structure of FGFR-1 as an example of the general 

FGF receptor structure. More detailed schematics of exon arrangements 

of FGF receptors 1-4 can be found in figures 9-12. 

Extracellular, there is a signal peptide followed by three immunglobuline- 

(Ig-) like domains. The acidic box, a heparin-binding and a cell adhesion 

molecule (CAM) homology domain (CHD) are located between IgI and 

IgII  (Green et al 1996). The transmembrane region is followed by a 
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juxtamembrane domain, a split  tyrosine-kinase domain and a short c-

terminal tail (Johnson and Williams 1993). 

Alt ernat ive splicing generates a great diversity of FGF receptor isoforms. 

The signal peptide is important for the transport of the receptor to the cell 

surface, indicating that isoforms lacking the signal peptide will stay in the 

cytosol or modulate transcript ion factor activity in the nucleus. The acidic 

box forms an autoinhibitory loop with the immunglobuline-like domain I 

and excision of one or the other during the alternative splicing process 

potentially leads to faster and/or prolonged response to ligand binding 

(Groth and Lardelli 2002, Olsen et al 2004). 
 

a 

 

 

 

 

Figure 2 | Alternative 

splicing of FGF receptors 

leads to different ligand- 

binding specifities. (Turner 

and Grose 2010) 

b 

 
 

Alternative splicing of the immunglobuline-like domain I I I  leads to the 

extensively studied isoforms “II Ia”, “I I Ib” and “II Ic” which do only exist  for 

the FGF receptors 1-3. I I Ia is composed of Ig-domain I I  and the first  half of 

Ig-domain I I I  (I I Ia, figure 2a). It  is therefore soluble and incapable to 
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activate downstream signaling, but has a high affinity for fibroblast growth 

factors indicating a regulatory mechanism. Isoforms I I Ib and I I Ic are 

generated by exon skipping result ing in different amino acid sequences in 

the second half of the immunglobuline-like domain I I I  (figure 2a) which 

leads to different ligand binding specifit ies (figure 2b). Isoforms lacking the 

transmembrane domain are soluble and may act in the cytoplasm as well 

as in the nucleus. FGF receptor variants without the split  tyrosine kinase 

domain are believed to act as negative regulators due to their capability 

to form dimers with active receptors (Johnson and Williams 1993, Turner 

and Grose 2010). 

Expression of fibroblast  growt h fact or recept or splice variant s 

Rubin et al 1989 were the first  to notice that kerat inocytes express 

receptors for FGF-7, but fibroblasts and endothelial cells do not. On the 

other hand, endothelial cells and fibroblasts do express receptors for 

FGF-2, which cannot be found on epithelial cells. Johnson et al 1991 

examined the expression of fibroblast growth factor receptor 1 splice 

variants in more detail and showed that variants I I Ia, I I Ib and I I Ic are 

expressed exclusively as well as simultaneously by different cell lines, but 

expression levels of variant I IIc always exceeded those of variant IIIb by far.  

Extensive in situ hybridizat ion analysis on t issue-specific expression of FGFR 

splice variants have been performed in rat (Wanaka et al 1991), chicken 

(Patstone et al 1993) and mouse embryos (Kornbluth et al 1988) and 

showed dist inct cell-type-specific spatial and temporal patterns of 

receptor expression during development. Unfortunately, there is very 

limited data of t issue-specific cell-distribut ion of part icular FGFR splice 

variants in normal human adult  t issues at protein level as it  was only 

evaluated in a small number of t issues without any cellular localizat ion and 

in most cases for FGF receptors 1 and 2 only (Hughes 1997). 
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Different splicing variants of FGF receptors 1-4 will be abbreviated as 

follows (table 3). 

 Receptor Abbreviation  

 FGFR-1 I I Ib 1b  

 FGFR-1 I I Ic 1c  

 FGFR-2 I I Ib 2b  

 FGFR-2 I I Ic 2c  

 FGFR-3 I I Ib 3b  

 FGFR-3 I I Ic 3c  

 FGFR-4 4Δ  

    

Table 3 | Abbreviations for FGF receptors 1-4 

 

3.2.3 Fibroblast growth factors 
 

22 fibroblast growth factors have been identified and are clustered into 7 

subfamilies due to their sequence similarit ies and functional propert ies. 

Their evolut ionary relat ionship is illustrated as a phylogenetic tree shown in 

figure 3 (Itoh and Ornitz 2004). 

 

 

Figure 3 | Evolutionary 

relationship of human 

fibroblast growth factors. 

FGFs are div ided into 7 

subfamilies, each with 2-4 

members due to sequence 

similarities and functional 

properties. Branch lengths 

represent evolutionary 

distances between the 

genes. Adapted from I toh 

and Ornitz 2004. 



28 

 

 

Although they share a high sequence similarity, the members of the FGF-11 

subfamily are not able to activate FGF receptors. They were renamed to 

fibroblast homologous factors (FHF) and are not generally considered 

members of the FGF family (Olsen et al 2003). FGF-15 is the murine 

paralogue of human FGF-19 and therefore not shown in figure 3. 

3.2.4 FGF-FGFR signaling system 
 

All FGFs except FGF-1, FGF-2 and the FGF-9 subfamily have a signal 

peptide determining their secret ion. FGF-1 and FGF-2 are secreted via a 

direct protein export mechanism (Nickel 2005), while the FGF-9 subfamily is 

sequestered through the endoplasmatic ret iculum and the subsequent 

Golgi pathway (Revest et al 2000). 

In order to bind to FGF receptors, FGFs need heparin sulphate 

proteoglycans (HPSG). A functional FGF-FGFR unit  consists of 2:1:2 

FGF:HPSG:FGFR subunits as shown in figure 4. 

 

 

Figure 4 | Basic structure of the 

FGF:HPSG:FGFR complex. A functional 

FGF-FGFR unit consists of 2:1:2 

FGF:HPSG:FGFR subunits. Adapted 

from Turner and Grose 2010. 

 

Beside HPSG availability, FGF signaling is regulated through various 

mechanisms. As described before and shown in table 4, FGF receptors 

have different  ligand-binding propert ies. This is among others due to 
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alternative splicing in the IgII I -domain. Autocrine signaling is prevented by 

t issue-specific expression patterns of FGFs and FGF receptors. Generally, 

epithelial-like cells tend to express I I Ib-variants, while mesenchymal-

associated cells do express I I Ic-variants (Johnson and Williams 1993).  

 

 

Table 4 | Relative activity of fibroblast growth factors. FGFs are arranged by 

subfamily identity. FGF-11 subfamily corresponds to fibroblast homologous 

factors. FGF-19 subfamily’s activ ity is weak due to its dependence on Klotho-

proteins. Abbreviations are explained in table 3. Adapted from Zhang et al 2006. 

 

Zhang et al 2006 were not able to find any significant activat ion of FGF 

receptors by the FGF-19 subfamily. This is due to their dependence on 

Klotho-proteins which enhance FGF receptor binding and are expressed in 

a t issue-dependent manner (Kurosu et al 2006). It  turned out that FGF-19, 

FGF-21 and FGF-23 act in an endocrine instead of a paracrine manner 

(Beenken and Mohammadi 2009). 
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3.2.5 FGF receptor downstream signaling 
 

Fibroblast growth factor receptors act as dimers in a ligand dependent 

manner. Activat ion and subsequent dimerizat ion of the receptors leads to 

transphosphorylat ion of tyrosine-kinase domains and the c-terminus, which 

act as docking sites for adaptor proteins and results in activat ion of 

mult iple signaling pathways as shown in figure 5 (Turner and Grose 2010). 

 

Figure 5 | FGFR signaling network. Signaling pathways are described in the text. 

Abbreviations: FGF, fibroblast growth factor, FGFR, fibroblast growth factor 

receptor, SEF, similar expression to fgf genes, FGFRL1, FGFR-like 1, FRS2α, FGFR 

substrate 2α, GRB2, growth factor receptor bound protein 2, SOS, son of 

sevenless, SPRY, Sprouty, GAB1, GRB-associated-binding protein 1, PI3K, 

phosphoinositide 3-kinase, MEK, MAP/ERK kinase, MAPK, mitogen activated 

protein kinase, MKP3, MAPK phosphatase 3, MKP1, MAPK phosphatase 1, AKT, 
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protein kinase B, STATs, signal transducers and activators of transcription, PIP2, 

phosphatidylinositol 4,5-bisphosphate, PLCγ, phosphoinositide phospholipase C, 

DAG, diacylglycerol, PKC, protein kinase C, IP3, inositol triphosphate, FOS, FBJ 

murine osteosarcoma v iral oncogene homolog, JUN, jun proto-oncogene, PEA3, 

polyoma enhancer activator 3. Turner and Grose 2010. 
 

FGFR substrate 2 (FRS2) is a key adaptor protein of FGF signaling and 

most ly specific to FGF receptors (Gotoh 2008). It  binds to the 

juxtamembrane domain of the FGF receptor and is phosphorylated at 

mult iple sites upon activat ion. The following recruitment of SOS and GRB2 

activates Ras, Raf and the MAPK signaling pathway (Eswarakumar et al 

2005), which is activated primarily in response to FGF treatment and leads 

to cell proliferat ion in the majority of t issues. PI3K pathway and AKT 

signaling is activated independent ly of SOS through GAB1 (Altomare and 

Testa 2005) and generally promotes anti-apoptotic mechanisms. 

PLCγ is t riggered independent ly of FRS2 and activates PKC, which can 

directly interact with Raf, activat ing MAPK pathway (Klint and Claesson-

Welsh 1999). Other activated pathways are p38 MAPK, Jun kinase, STATs 

and RSK2 depending on the cellular context (Kang et al 2009). 

Negative regulat ion of FGF signaling is insufficient ly studied yet. Activated 

receptors are internalized and degraded or recycled. FRS2 is 

phosphorylated at Threonine and Serine residues leading to inhibit ion of 

GRB2-binding (Gotoh 2008). SPRY, SEF, MAPKP3 and MKP1 modulate 

downstream signaling at different points of the signaling cascade. 

 

3.2.6 Aberrant FGF signaling and cancer 
 

Act ivating mutat ions. Somatic mutations of FGFR-3 can be found in about  

half of all bladder cancers (Cappellen et al 1999). A single mutation in the 

extracellular domain of FGFR-3 (S249C) leads to const itut ive 

homodimerizat ion and subsequent activat ion of the receptor and 

corresponds to 50% of all mutations in FGFR-3 (di Mart ino et al 2009, Naski 
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et al 1996). Activat ing mutations identified in cancer cells frequently 

exhibit  the same nucleotide aberrat ions as seen in skeletal dysplasias 

(Ornitz and Marie 2002). 

Gene amplificat ions are common in FGFR-1 and FGFR-2 but not in FGFR-3 

(Nord et al 2010). 10% of gastric cancers show an amplification of FGFR-2 

and are highly sensit ive to FGFR inhibit ion (Kunii et al 2008, Takeda et al 

2007). 10% of all breast cancers show amplification of FGFR-1. 

Chromosomal t ranslocat ions are found in 15% of mult iple myelomas and 

these cells are highly sensit ive to FGFR inhibit ion (Qing et al 2009, Trudel et 

al 2006). Many translocations in FGF receptors have been identified and 

normally show a fusion of a transcript ion factor with the tyrosine-kinase 

domain of the receptor leading to const itutive dimerizat ion and activation 

of FGF downstream effectors (Roumiantsev et al 2004, Xiao et al 1998, 

Yagasaki et al 2001). 

Aut ocrine/Paracrine signaling. Melanomas express high levels of FGFR-1 

and FGF-2 and inhibit ion leads to growth regression in human melanoma 

xenografts, suggest ing an autocrine signaling loop (Wang and Becker 

1997). FGF-1 is frequently amplified in ovarian cancers which could 

promote angiogenesis (Birrer et al 2007). Addit ionally, an autocrine FGF-

2/FGFR-1II Ic signaling loop was identified in non-small cell lung cancer 

(Marek et al 2009). Paracrine signaling is difficult  to model, but several FGFs 

have been found to be overexpressed in various cancer types (Poon et al 

2001). 

Increased signaling in prostate cancer cells was found due to loss of 

expression of negat ive regulat ors (SPRTY (Fritzsche et al 2006), SEF (Darby 

et al 2006)) and is believed to promote androgen-independency (Kwabi-

Addo et al 2004). 
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3.2.7 Carcinogenic mechanisms of aberrant FGF signaling 
 

Proliferat ion. Enhanced proliferat ion is one important characterist ic of 

cancer cells. Mouse models have shown that overexpression of FGF-10 

and FGF-8 in the murine prostate promotes epithelial hyperproliferat ion, 

but a second mutation (AKT and PTEN, respectively) was necessary to 

induce tumorigenesis (Abate-Shen and Shen 2007, Memarzadeh et al 

2007). 

Survival. Depending on the cellular context, FGFs can trigger activat ion of 

ant i-apoptotic pathways (PI3K, STAT). High FGF-2 serum-levels are 

associated with poor prognosis in small cell lung cancer (SCLC), which is 

due to upregulat ion of ant i-apoptotic proteins (Pardo et al 2002, Pardo et 

al 2006). 

Migrat ion, Invasion. A const itut ively active FGFR-1 was shown to induce 

invasive mammary lesions (Welm et al 2002) and prostat ic intraepithelial 

neoplasia (Freeman et al 2003). FGFR-2II Ib – FGF-10 dependent invasion 

was found in pancreatic cancer cells (Nomura et al 2008). 

Angiogenesis. FGF signaling comprises a key function in epithelial repair 

and FGF-2 possesses an essential role in blood vessel formation at the 

wound site (Werner and Grose 2003). Various FGFs were shown to be 

involved in tumor angiogenesis (Kandel et al 1991, Presta et al 2005). They 

st imulate vessel formation and maturat ion, facilitate degradation of 

extracellular matrix (ECM) and alter intercellular adhesion and 

communication (Presta et al 2005). FGF-1 is regularly upregulated in 

ovarian cancer cells (Birrer et al 2007) and release of FGF-2 from tumor 

cells acting on endothelial cells has been described previously 

(Schweigerer et al 1987). 
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3.2.8 Inhibition of FGF signaling 
 

 

Table 5 | FGF receptor inhibitors. Adapted from Turner and Grose 2010 

All FGF receptor tyrosine kinase inhibitors are ATP-competit ive and also 

target VEGFR-2 due to their st ructural similarity. Targeting FGFR as well as 

VEGFR has striking advantages, inhibit ing proliferat ion and angiogenesis 

simultaneously. In contrast , mult i-kinase inhibitors are not very potent 

against FGF receptors and achieving sufficient inhibit ion might be 

challenging (Turner and Grose 2010). Table 5 gives an overview on FGF 

receptor inhibitors. One major side-effect of FGF receptor inhibit ion is 

hyperphosphatemia by blocking FGF-23 signaling, which is the key 

regulator of phosphate homeostasis (Shimada et al 2004). Antibodies 

exhibit  ant iproliferat ive effects in bladder cancer cells and t(4;14) 

myeloma (Qing et al 2009). FGF-7 is licensed for t reatment of mucosit is 

induced by myelotoxic therapy (Turner and Grose 2010). 
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PD173074, a small molecule inhibitor, originally published as an FGFR-1 and 

VEGFR-2 inhibitor (Mohammadi et al 1998) was later shown to inhibit  FGF 

receptors 1-3 vigorously and FGFR-4 at high doses (Ezzat et al 2005). It  

reversibly binds to the receptor tyrosine kinase (RTK) ATP cleft and inhibits 

autophosphorylat ion of the dimerized receptors. Although it  was shown, 

that PD173074 inhibits survival and growth in FGFR-dependent cancer cells 

(Byron et al 2008, Kunii et al 2008, Trudel et al 2004), it  was dropped from 

clinical t rials due to toxicity issues and is now being used as a research 

tool. 

CHIR-258 (TKI258, Dovit inib) is a mult i-kinase inhibitor targeting RTK-classes III 

(platelet derived growth factor receptor, PDGFR), IV (FGFR) and V 

(vascular endothelial growth factor receptor, VEGFR). It  is current ly in 

phase I I  of clinical development. Recent analyses with Kinomescan, a 

competit ion binding assay, indicate that CHIR-258 is much more 

promiscuous and that FGFR-2 is inhibited too. Nonetheless, FGFR-4 is poorly 

affected by CHIR-258 (Karaman et al 2008). 

 

Receptor IC50, µM  Receptor IC50, µM 

FLT3 0,001  PDGFR-ß 0,027 

c-KIT 0,002  PDGFR-α 0,21 

CSF-1R/c-fms 0,036  InsR 2 

FGFR-1 0,008  EGFR-1 2 

FGFR-3 0,009  c-Met >3 

VEGFR-1 0,01  EphA2 4 

VEGFR-2 0,013  Tie2 4 

VEGFR-3 0,008    

Table 6 | CHIR-258 in-vitro kinase assay (Trudel et al 2005) 
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4 Materials and Methods 
 

Human cell lines 

Human ovarian cancer cell lines, SV-40 immortalized ovarian surface 

epithelium and primary ovarian surface epithelium. Citat ions refer to the 

first  announcement in literature if the isolat ion of the cells was not 

published independently. 

 

Cell line Description isolation site Reference 

  
  

A-2774 

adenocarcinoma 

unknown (Vigani et al 1990) 

A-2780 ascites (Eva et al 1982) 

CAOV-3 unknown (DiSaia et al 1975) 

H-134 ascites (Broxterman et al 1987) 

HEY primary (Buick et al 1985) 

HOC-7 ascites (Buick et al 1985) 

OVCAR-3 ascites (Hamilton et al 1983) 

SKOV-3 ascites (DiSaia et al 1975) 

TR-170 ascites (Hill et al 1987) 

PA-1 teratocarcinoma primary (Giovanella et al 1974) 

IOSE-80 SV-40 immortalized 

ovarian 
surface epithelium 

primary (Maines-Bandiera et al 1992) 

IOSE-364 primary (Maines-Bandiera et al 1992) 

IOSE-386 primary (Maines-Bandiera et al 1992) 

OSE 
primary ovarian 

surface epithelium 
primary Innoprot, Derio, Spain 

 

Growt h media of cell lines 

Cell line growth medium (GM) freezing medium 

  
 

A-2774 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

A-2780 RPMI +10% FCS +1% PSG GM +5% FCS +10% DMSO 

CAOV-3 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

H-134 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

HEY DMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

HOC-7 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

OVCAR-3 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

SKOV-3 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

TR-170 DMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

PA-1 αMEM +10% FCS +1% PSG GM +5% FCS +10% DMSO 

IOSE-80 
Medium 199/MCDB 105 (1:1) +5% FCS 

+1%PSG 
GM +35% FCS +6% DMSO 
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IOSE-364 
Medium 199/MCDB 105 (1:1) +5% FCS 

+1%PSG 
GM +35% FCS +6% DMSO 

IOSE-386 
Medium 199/MCDB 105 (1:1) +5% FCS 

+1%PSG 
GM +35% FCS +6% DMSO 

OSE 
Basal medium +5ml OEpiCGS +5ml PS-

solution 
GM +15% FCS + 10% DMSO 

 

Thawing of cells 

The cryotube containing cells of interest was thawed in aqua bidest at 

room temperature and transferred to 20ml precooled growth medium. 

After centrifugation for 5 min at 4°C, 1000rpm, the supernatant  was 

decanted and the cell pellet reconst ituted in 14ml growth medium at 

room temperature. The obtained cell suspension was split  up into two T25 

t issue culture flasks and incubated as described below. 

 

Maint enance of cell cult ure 

All cell lines were cultured in T25 t issue culture flasks in 7ml of the respective 

growth medium (see table above), incubated at 37°C, 5% CO2, 95% 

humidity and passaged when confluence reached 80-90% (preferably 

once a week). Cells were carefully washed with Dulbecco’s PBS (D-PBS), 

800µl Trypsin/EDTA was added and the flask was incubated at 37°C until 

cells detached. After tapping the flask gently, the cells were diluted in 

accordance to their growth rate in two T25 t issue culture flasks containing 

growth medium and were incubated as described. 

Cryopreservat ion of cells 

Cells were grown in growth medium containing 10% FCS unt il they 

reached 70-80% confluence and were harvested by trypsinizat ion and 

centrifugation (5min at 1000rpm). After resuspending in freezing medium, 

cells were counted (Neubauer chamber, cells diluted 1:10 in t rypan blue) 

and a suspension containing twice as much the final cell concentrat ion 

was prepared. Cryogenic tubes were placed on ice, 500µl of the 
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prepared cell suspension was added to every vial and left on ice for 

15min. After 500µl of precooled freeze medium containing 12% or 20% 

DMSO, respectively, were added and mixed gently, the suspension was 

left on ice for 30min. Vials were put into “Mr. Frosty” freezing container 

(Fisher Scient ific, Rochester NY) overnight at -80°C and transferred to liquid 

nit rogen the next day. 

 

Cell proliferation and cytotoxicity assay 

Solut ions 

Paraformaldehyde solut ion. 0,4g Paraformaldehyde was added to 10ml 

DPBS. Solut ion was heated in a fume hood while taking care that it  did not 

exceed 60°C. After all solid part icles were dissolved, 5N NaOH was added 

until the solut ion cleared ( 2µl). Finally, the solut ion was filter sterilized, 

aliquoted and stored at -20°C. 

Destaining solut ion. 10% acetic acid, 25% methanol in aqua bidest  

Crystal violet solut ion. 0,5% crystal violet, 25% methanol in aqua bidest  

 

Cells were grown in growth medium containing 10% FCS unt il they 

reached 70-80% confluence and harvested by trypsinizat ion and 

centrifugation (5min at 1000rpm). After resuspending in growth medium 

containing 5% FCS, cells were counted (Neubauer chamber, cells diluted 

1:10 in t ryphan blue), the desired concentrat ion was prepared and the 

cells seeded in a 96-well plate using a Dispenser Mult ipette. After 

incubation overnight, growth medium was removed and 100µl growth 

medium containing twice as much the desired final FCS concentrat ion 

was added. A dilut ion series was prepared in growth medium containing 

0% FCS with twice as much the desired final concentrat ion of the 

substance of interest and added to the wells in t riplicates. Note: Care was 

taken to ensure consistent amounts of solvent (e.g. DMSO) when the 
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substance of interest was not solubilized in water.    d     

Cell number was determined after 72 hours using paraformaldehyde-

fixat ion with crystal violet staining as described below. 

Fixat ion / Cryst al violet  st aining 

Medium was removed and cells were washed with cold D-PBS. 50µl of 

paraformaldehyde solut ion were added and cells were incubated for 

30min at room temperature. After washing with cold DPBS, 50µl of crystal 

violet solut ion were added and incubated for 10min at room temperature. 

Subsequently, cells were washed three t imes with aqua bidest and plates 

were allowed to dry for at least two hours or overnight. 

Det ect ion  

100µl of destaining solut ion were added and incubated for 20min at room 

temperature. Optical density was determined using a micro-plate reader 

(absorbance 570nm/reference 405nm). 

 

Scratch-assay (adapted from Liang et al 2007) 

Cells were seeded in 35mm dishes with different cell numbers to create a 

confluent monolayer (A-2780: 4,7∙106, HEY: 1,5∙106, SKOV-3: 7,5∙105. 

OVCAR-3 cells do not adhere when seeded at high densit ies) in 3ml 

medium containing 5% FCS and allowed to adhere overnight. 

Next day, the cell monolayer was evenly scratched 

using a yellow pipette t ip (a). Growth medium was 

removed and cells were washed with 1ml D-PBS 

and 1ml growth medium. Treatment was 

performed in 2ml medium. 

Dishes were marked with 6 scratches in the plast ic 
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bottom (b1-b6) perpendicular to the scratch in the cell monolayer (a) with 

a sharp scalpel. The start ing point for the measurement was marked too 

(c). 

Measurement was done using an eyepiece 

micrometer at 10x optical magnification: For each 

measuring point b1-b6, the scratch in the bottom 

of the plate was focused first  and posit ioned 

coincidentally to the scale of the micrometer. 

Then, without moving the dish, the cell layer was focused and the distance 

between the margins of the monolayer (m1, m2), which is equal to the 

width of the scratch (a) was noted at 0-2-4-6-8-24 hours after scratching 

the cell monolayer. 

Analysis of data: For normalizat ion of cell migrat ion data, the width of 

each scratch at the “0 hour” t ime-point was subtracted from the 

corresponding “2, 4, 6, 8, 24 hours” t ime-points. For each t ime-point, the 

mean value and the standard deviat ion was calculated from the 6 

individual measurements per t ime point. 

 

Western Blot Analysis 

Solut ions 

 
Reagent 

Stock 

conc. 
Quantity 

Final 

conc. 
     

RIPA NaCl 5M 3ml 150mM 

 Tris pH7,4 1M 5ml 50mM 

 DOC (Sodium deoxycholate) 10% 5ml 0,5% 

 EGTA 50mM 4ml 2mM 

 EDTA, pH7,4 50mM 10ml 5mM 

 NaF 500mM 6ml 30mM 

 ß-Glycerophosphate pH7,2 400mM 10ml 40mM 

 Tetrasodium pyrophosphate 100mM 10ml 10mM 

 Benzamidine 30mM 10ml 3mM 
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 Nonidet P-40 pure 1ml 1% 

 
adjust pH to 7,4 and fill up with aqua bidest to 95ml. Store at 

4°C. 
     

RIPA+ 1,9ml RIPA 

 20µl 200mM Na-Orthovanadate (heat-activated) 

 80µl 25x Complete stock solution (Roche, Boston MA) 

 

 Reagent 
Stock 

conc. 
Quantity 

Final 

conc. 
     

4x Sample buffer Glycerol pure 5ml 50% 

 Tris-HCl pH6,8 1M 1,25ml 125mM 

 SDS 20% 2ml 4% 

 Bromophenol blue 1% 1,25ml 0,125% 

 ß-Mercaptoethanol* pure 0,5ml 5% 

 total  10ml  

 *to be added just before use 

     

10x running buffer Tris base pure 30,3g 25mM 

 Glycine pure 144,2g 192mM 

 SDS pure 10g 0,1% 

 fill up with aqua bidest to 1000ml, store at 4°C 

     

1x TB Glycine pure 16,8g 150mM 

 Tris pH8,3 1M 75ml 50mM 

 SDS 10% 7,5ml 0,05% 

 Methanol pure 300ml 20% 

 Aqua bidest  1117,5ml  

 total  1500ml  

     

10x TBS Tris pH7,5 1M 500ml 50mM 

 NaCl 5M 300ml 150mM 

 Aqua bidest  200ml  

 1x TBS: add 900ml aqua bidest to 100ml 10x TBS (final 

concentration for 1xTBS) 

  

1x TBS-T TBS 10x 100ml 1x 

 Tween20 pure 1ml 0,1% 

 Aqua bidest  900ml  

     

10x BS TBST 1x 100ml 1x 

 BSA pure 4g 4% 
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Reagent Quantity Volume 

Final 

conc. 
     

Antibody solution TBS-T 1,053x 14,25ml 1x 

(first antibody) Blocking Solution 4,21% 4,75ml 4% 

 Sodium azide 

solution 

1% 1ml 0,05% 

 total  20ml  

     

Antibody solution TBS-T 1x 30ml 1x 

(second antibody) BS 4% 10ml 1% 

 total  40ml  

     

A/B solution Acrylamide 40% 7,4ml 30% 

 Bis Solution 2% 2ml 0,4% 

 Aqua bidest  0,6ml  

     

4% stacking gel A/B solution 30%/0,4% 1,673ml  

 Tris pH6,8 0,5M 3,15  

 SDS 10% 125µl  

 APS 10% 125µl  

 TEMED pure 12,5µl  

 Aqua bidest  7,46ml  

     

10% running gel A/B solution 30%/0,4% 6,7ml  

 Tris pH8,8 1,5M 5ml  

 SDS 10% 200µl  

 APS 10% 100µl  

 TEMED pure 10µl  

     

10% APS 
Ammonium 

persulfate 
pure 0,1g 

 

 Aqua bidest  1ml  

     

Antibodies Target protein Prov ider Catalogue no. 

    

 Actin Santa Cruz sc-1616 

 pFRS2Y196 Cell Signaling 3864S 

 pFRS2Y436 Cell Signaling 3861S 

 FRS2 Abnova H00010818-B01 

 p-AKTS473 Cell Signaling 9271S 

 AKT Cell Signaling 9272 

 p-ERK1/2 Cell Signaling 9101 
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 ERK1/2 Cell Signaling 9102 

 p-S6 Cell Signaling 2215 

 S6 Cell Signaling 2317 

 α-Rabbit (Donkey), 

HRP 
Promega V7951 

 α-Mouse 

(Chicken), HRP 
Santa Cruz sc-2954 

 

Medium was removed and cells were washed twice with cold D-PBS. After 

removing D-PBS completely, 100µl RIPA+ was added, the dish was left on 

ice for at least  5min and the cells were scraped using a cell scraper. The 

cell lysate was transferred to a microtube and left on ice for at least 10min 

while being vortexed regularly. Samples were centrifuged for 30min at 4°C, 

12500rpm and the supernatant was transferred to a fresh microtube and 

stored at -80°C. 

Prot ein concent rat ion was determined using Biorad Protein Assay 

Standard I I , BSA (10-0,156mg/ml) was used as a reference. 5µl of 

RIPA+/BSA dilut ion/sample was mixed with 20µl Reagent A’ (1ml Reagent 

A +20µl Reagent S) and 200µl Reagent B and incubated at room 

temperature (RT) for 20min, optical density was determined using a micro-

plate reader (absorbance 655nm/reference 450nm). Samples were 

adjusted to 1µg/µl in 1x sample buffer and stored at -20°C. 

SDS-PAGE: Protein samples in 1x sample buffer were boiled for 10min at 

95°C and vortexed. Thirty µl of those lysates were then applied to a 4% 

stacking/10% separation SDS-polyacrylamide gel. 2µl of the molecular 

weight marker “Magic Mark XP” (Invit rogen, Carlsbad CA) were loaded in 

parallel for est imation of molecular mass separation within the gel. 

Separating condit ions were 100V constant for about 2 hours in a Biorad 

Minigel Electrophoresis Chamber. 
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Prot ein t ransfer: Separated proteins were transferred to a methanol-

activated PVDF membrane using a Biorad Mini Transblot Module. Transfer 

condit ions were 290mA constant at 4°C overnight. 

Immunost aining: Membranes were blocked in blocking solut ion +4% FCS 

for 1h at RT on a shaker, washed 3 t imes, 5min each in TBS-T and 

incubated overnight with 10ml of the first  ant ibody at 4°C on a shaker. First  

ant ibody was saved, membranes washed 3 t imes, 5min each in TBS-T, 

incubated with the second antibody for 1h at RT on a shaker and finally 

washed 4 t imes (2x5min, 2x10min) with TBS-T and 4 t imes (2x5min, 2x10min) 

with TBS. 

Det ect ion: Protein bands were visualized by chemiluminescent detection 

through horseradish peroxidase conjugated to the secondary antibody. 

2,5ml Detection Solut ion 1 and 2,5ml Detection Solut ion 2 (ECL-Substrate) 

were added to the membrane and incubated for 5min on a shaker. 

Autoradiography films were exposed to the membrane for different t imes 

and developed with a Canon table developer. 

 

RNA-Isolation 

Cells were grown in growth medium containing 10% FCS in a T25 t issue 

culture flask. 

Homogenizat ion: Medium was completely removed and cells were 

incubated with 3ml of TRI Reagent (Sigma-Aldrich, St . Louis MO) for at least 

5min at RT while shaking the flask vigorously. Cell lysate was homogenized, 

t ransferred into a microtube and stored at -80°C. 

RNA-Ext ract ion/Precipit at ion: 150µl of cold bromo chloropropane (BCP) 

were added per sample, vortexed for 15sec, left at RT for 15min and 

centrifuged 15min at 4°C, 12500rpm. The aqueous phase was transferred 

into a new microtube; 1ml of isopropanol was added per sample, 
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vortexed for 15sec and centrifuged 10min at 4°C, 12500rpm. The 

supernatant was aspirated, 1,5ml 75% EtOH were added, vortexed for 

15sec and centrifuged 10min at 4°C, 12500rpm. The supernatant was 

aspirated again and the remaining RNA pellet was air-dried. Finally, RNA 

was dissolved in 20µl DEPC-treated water and stored at -80°C. 

Quant ificat ion and qualit y cont rol of RNA:  RNA was quantified 

spectrophotometrically measuring a 1:500 diluted sample against aqua 

bidest at 260/280nm twice in a quartz cuvette. Calculat ion of RNA -

concentrat ion: OD260 x 40 = µg/µl. Est imation of purity: 260/280 rat io ≥ 1,5. 

Quality/integrity of RNA was determined by agarose gel electrophoresis. 

0,3g agarose in 30ml 1xTAE (40mM Tris-acetate, 1mM EDTA in aqua bidest) 

were heated for 40 seconds in a microwave oven. After adding 3µl of Gel 

Red (Biot ium, Hayward CA), the fluid was poured into the assembled 

electrophoresis chamber. When the gel had polymerized, 250ml 1xTAE 

were added. Subsequently, prepared samples (0,5µl RNA in 12µl aqua 

bidest and 3µl 5x gel loading solut ion) were applied and separated using 

70V/210mA for 30 to 45min. RNA was photographed using a Herolab gel 

documentation system and checked for a clear appearance of the 

18S/28S ribosomal RNA bands. 
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cDNA-Synthesis 

Quantitated RNA was diluted to 0,2µg/µl. 

Mast ermix 

 Vol./sample (µl) Final conc. 

5x reaction buffer (250mM Tris-HCl pH8,3, 

375mM KCL, 15mM Mg2Cl2) 
4 1x 

DTT (100mM) 2 10mM 

BSA (RNAse/DNAse free), 2,9mg/ml 1 0,28mg/ml 

Protector RNAse Inhibitor (40U/µl) 0,315 0,62U 

DEPC-treated water 0,185  

dNTP Mix 100mM 0,8 7,8mM 

Random hexamer primers (100µM) 1 5µM 

200 UM-MLV reverse transcriptase (200U/µl) 1 10U 

total 10,3  
 

10µl RNA (0,2µg/µl) were added to 10,3µl Mastermix and incubated for 

60min at 37°C. cDNA and diluted RNA were stored at -80°C. 

 

Polymerase Chain Reaction 

GoTaq Green Master Mix (Promega, Madison WI) in a 25µl reaction 

volume was used for all PCRs. 

Mast ermix    

 Vol./sample (µl) Final conc. 

GoTaq Green Master Mix 12,5 1x 

Forward primer 1 0,8µM 

Reverse primer 1 0,8µM 

PCR water 9,5 0,62U 

cDNA 1  

total 25  
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PCR programs 

    

Program 

name 

annealing 

temp. (°C) 

cycles 

Hot start 95°C, algorithm 

measurement  

50anneal 50 30 

51anneal 51 30 

    52anneal 52 30 

1x 1’ 95°C  53anneal 53 30 

cycle 30’’ 95°C  56anneal 56 30 

 30’’ annealing temp.  60anneal 60 30 

 1’ 72°C  56a40c 56 40 

1x 7’ 72°C  57a45c 57 45 

1x ∞ 4°C  45a45c 45 45 

    56a45c 56 45 

    61a40c 61 40 

    60a40c 60 40 

    60a45c 60 45 

    54a40c 54 40 

    53a35c 53 35 

    63a40c 63 40 

    65a40c 65 40 
 

Primer sequences 

Name Sequence PCR program Reference Target 

 

FGF1s GAAGCCCAAACTCCTCTACTG 57a45c 
Fischer et al 

2008 

FGF1 

FGF1as TGTTGTAATGGTTCTCCTCCA 

FGF2s CTGTACTGCAAAAACGGG 45a45c FGF2 

FGF2as AAAGTATAGCTTTCTGCC 

FGF3s CCTAATCTGGCTGCTACTG 53anneal Self-made 

self-made 

FGF3 

FGF3as CCTCCACTGCCGTTATCTC 

FGF4s ACTACCTGCTGGGCATCAAGCG

G 

56a45c 

Fischer et al 

2008 

FGF4 

FGF4as TCTTGCTCAGGGCGATGAACATG

C FGF5s CCCGGATGGCMAGTCAATGG 61a40c FGF5 

FGF5as TTCAGGGCAACATACCACTCCC

G FGF6s AACGTGGGCATCGGCTTTCACCT

CC 

56a40c FGF6 

FGF6as CCCGCTTTACCCGTCATTTGC 

FGF7s CTTTGCTCTACAGATCATGCTTTC 60a40c FGF7 

FGF7as TTGCCATAGGAAGMAGTGGGCT

G FGF8s TGAGCTGCCTGCTGTTGCACTTG 60a40c FGF8 

FGF8as CTTGGCGATCAGCTTCCCCTTCTT

G FGF9s AATGTGCCCGTGTTGCCGGTG 56a40c FGF9 

FGF9as AATTTTCTGGTGCCGTTTAGTCCTA

GTCCCT FGF10s CCAAGAAGGAGAACTGCC 54a40c FGF10 

FGF10as CCATTCAATGCCACATAC 
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FGF16s ATCTACACGGCTTCTCCTC 50anneal Self-made 

self-made 

FGF16 

FGF16as TCTCCTCGCTCATTCATTC 

FGF17s TGCTGCCCAACCTCACTC 53a35c 

Fischer et al 

2008 

FGF17 

FGF17as TCTTTGCTCTTCCCGCTG 

FGF18s ACTTGCCTGTGTTTACACTTCC 53a35c FGF18 

FGF18as CCAGAACCTTCTCGATGAAC 

FGF19s CGGATCTCCTCCTCGAAAG 60a45c FGF19 

FGF19as GTGTGGTGGTCCACGTATG 

FGF20s ACAGCCTCTTCGGTATCT 56a40c FGF20 

FGF20as GGATCCACTGGTCTAGGTAA 

FGF21s TTCTGTGCTGGCTGGTCTT 56a40c FGF21 

FGF21as CACAGGAACCTGGATGTCTTG 

FGF22s CCTCTTCTCCTCCACTCACTTC 50anneal 

Self-made 

FGF22 

FGF22as TGCTTTGATGACCACGAC 

FGF23s CTGGCTTTGTGGTGATTA 50anneal FGF23 

FGF23as GGAAGTGATACTGAGGAGAG 

 

 

 

    

GAPDHs GAGAACGGGAAGCTTGTCAT 51anneal Grunt et al 

2005 

GAPDH 

GAPDHas TTCAGCTCAGGGATGACCTT 
 

FR5 TCCAGTGGCTAAAGCACATC  

Fischer et al 

2008 

 

FR7 CCGCATCCGAGCTATTAATC FR5-FR7 FGFR-1b 

  52anneal   

FR8 CGCCAAGCACGTATACTC FR5-FR8 FGFR-1c 

  50anneal   

FR11 AACGGGAAGGAGTTTAAGCAG   

FR12 TGGCAGAACTGTCAACCATGC FR11-FR12 FGFR-2c 

  52anneal   

FR13 CTCGGTCACATTGAACAGAG FR11-FR13 FGFR-2b 

  51anneal   

FR17

a 

AACGGCAGGGAGTTCCGCGGC   

FR19 CCCGTCCCGCTCCGACACATTG FR17a-FR19 FGFR-3b 

  60anneal  

FR20 CCCGGCGTCCTCAAAGGTG FR17a-FR20 FGFR-3c 

  56anneal   

FR25 GATGGACAGGCCTTTCATGG   

FR26 TGCTGCGGTCCATGTGGGGTCCTC FR25-FR26 FGFR-4 

  52anneal   
 

Self-designed primers were checked for secondary structures using 

NetPrimer (Premier Biosoft Int ., Palo Alto CA). TM was calculated by the 

nearest neighbour analysis formula provided by OligoCalc (Kibbe 2007). 
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Det ect ion (Agarose gel elect rophoresis) 

1,5g agarose in 100ml 1xTAE (40mM Tris-acetate, 1mM EDTA in aqua 

bidest) were heated for 80 seconds in the microwave oven. After adding 

10µl of Gel Red, the fluid was poured into the assembled electrophoresis 

chamber (15- or 20-slot comb). After the gel had polymerized, 750ml 1xTAE 

were added. Subsequently, 25µl of the DNA-Marker and the complete 

PCR products were applied and separated using 70V/210mA. The run was 

stopped after the yellow dye ran out of the gel and PCR products were 

photographed using a Herolab gel documentation system. 

 

Identification of signal peptides and transmembrane domains 

 

 

Figure 6 | Overview of working steps for identification of transmembrane 

domains and signal peptides, exon identification and primer choice  by the 

example of FGFR-1 transcript variant 2 (accession number NM_015850). Details 

are described in the text. 
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Figure 6 gives a short overview of the workflow for identification of the 

transmembrane domain, exon identification and result ing primer choice. 

Every single step is described below in more detail. The whole procedure 

was done for all exist ing transcript variants of FGF receptors 1-4 (data not 

shown). 

Hydrophobic clust er predict ion 

MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEE

VEVQDSVPADSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNPVAPYWTSPEKMEKKLHAVPAAKTV

KFKCPSSGTPNPTLRWLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLP

ANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIG

LSHHSAWLTVLEALEERPAVMTSPLYLEIIIYCTGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVTVSADSSASMN

SGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRDRLVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATEKD

LSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARG

MEYLASKKCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLG

GSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRIVALTSNQEYLDLSMPLDQYSPSFPDT

RSSTCSSGEDSVFSHEPLPEEPCLPRHPAQLANGGLKRR 

Table 7 | Protein sequence of FGFR-1 transcript variant 2 (accession number 

NM_015850) 

 

DAS-TMfilter (dense alignment surface) is able to identify hydrophobic 

clusters at high currency and with lower false posit ive rates than classic 

programs because it  compares the results to experimentally documented 

proteins (Cserzo et al 2002, Cserzo et al 2004). Table 7 shows the complete 

protein sequence of FGFR-1 transcript variant 2 (NM_015850p). 

 
 

 

Figure 7 | Summarized output of DAS-TMfilter for FGFR-1 transcript variant 2. 

Hydrophobic clusters reaching a score of 2.5 are tagged as transmembrane 

regions. 
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DAS-TMfilter identified two hydrophobic clusters in this protein sequence. 

The first  one has its maximum at 13 amino acids indicating a signal peptide 

and the second maximum is found at amino acid 384 (figure 7). 

Reverse t ranslat ion of prot eins 

The predicted transmembrane domain of FGFR-1 has the amino acid 

sequence “IIYCTGAFLISCMVG” and was translated back into the 

nucleotide sequence for comparison purposes. Molecular toolkit  is a small 

package of useful programs for t ranslat ion of nucleotide sequences into 

amino acid sequences and vice versa (Bowen 2008). The reverse 

translated nucleotide sequence of the predicted transmembrane domain 

is “ATTATTTATTGTACTGGTGCTTTTCTTATTTCTTGTATGGTTGGT ”. 

 

 

Figure 8 | Cutout of FGFR-1 transcript variant 2 with binding prediction for 

primers FR3, FR5, FR6 and FR8 established with Sequence extractor (Stothard et 

al 2006). Numbers show the nucleotide position, green-colored primers are 

“forward” while red-colored primers are “reverse”. Grey-colored text reflects the 

antisense-strand of the nucleotide sequence. Fragment lengths can be 

determined by clicking the respective primers. 
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Exon ident ificat ion 

“EMBOSS pairwise alignment” (Rice et al 2000) was used for sequence 

alignments of the predicted transmembrane domain with the complete 

nucleotide sequence of FGFR-1 transcript variant 2. Exon 10 was identified 

to contain the transmembrane domain of FGFR-1 (figure 6). 

Primer binding and fragment  lengt h predict ion 

Sequence extractor (Stothard 2006) was used for primer binding and 

fragment length predict ion (figure 8 shows a cutout of FGFR-1 transcript 

variant 2 with primers FR3, FR5, FR6 and FR8). The results were validated 

with UCSC in-silico PCR (Kent et al 2002). 
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5 Results 
 

5.1 Analysis of fibroblast growth factor receptor splice variants 
 

As shown in figures 9-12, fibroblast growth factor receptors exhibit  a great 

variety in expression of splice variants. Although every single variant likely 

has its features, receptors with a transmembrane domain and a signal 

peptide for t ransport to the cell membrane were of major interest in our 

studies. In order to span cell membranes, t ransmembrane domains as well 

as signal peptides contain hydrophobic clusters which can be identified 

by bioinformatic methods as described before. 

 

5.1.1 Fibroblast growth factor receptor 1 
 

Exon 1 corresponds to the signal peptide and is present in all known splice 

variants of FGFR-1. Exons 2-9 represent immunglobuline (Ig)-like ligand 

binding domains with exons 8 and 9 determining I I Ib- and I I Ic-variants and 

therefore specificity in binding FGFs. Exon 10 contains the hydrophobic 

transmembrane domain. Exons 11-19 are situated in the cytoplasm and 

include the split  tyrosine kinase domain and cofactor binding sites as 

described before. Variants ‘b’ of exons 3, 4, 7, 17 and 18 consist  of 

corresponding variant ‘a’ plus a few nucleotides. Primers FR5 (forward) 

and FR7/FR8 (reverse) were chosen for expression analysis result ing in 

detection of all splice variants with a transmembrane domain while 

dist inguishing between splice variant I I Ib and I I Ic. 
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Figure 9 | FGFR-1 splice variants and primer binding. Green-colored primer   

names indicate forward, red-colored primer names reverse primers. Variant I I Ib 

was identified by BLAT (Kent 2002) search with FGFR-1 transcript variant 2 

(NM_015850) as input and does not have an accession number yet. 

 

 

5.1.2 Fibroblast growth factor receptor 2 

The signal peptide is only present in 4 out of 8 splice variants with a 

transmembrane domain. Exons 2-10 represent ligand binding domains, 

where exons 9 and 10 determine splice variants I I Ib and I I Ic. Both forms of 

exon 11, ‘a’ and ‘b’, include the functional t ransmembrane domain. 

‘B’-forms of exons 3 and 21 contain the corresponding ‘a’-form plus a few 

nucleotides. Exons 12-21 encode the split  tyrosine kinase domain and 

cofactor binding sites as described before. Primer pairs FR11 (forward) and 

FR12/FR13 (reverse) enabled detection of all splice variants containing the 

transmembrane domain and a I I Ib/I I Ic-determining exon. 
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Figure 10 | FGFR-2 splice variants and primer binding. Green-colored primer   

names indicate forward, red-colored primer names reverse primers. 
 

 

5.1.3 Fibroblast growth factor receptor 3 
 

There exist  only three different splice variants of FGFR-3. NM_000142 and 

NM_022965 are membrane-bound and represent isoforms I I Ib and I IIc 

(exons 8 and 9). NM_001163213 does not exhibit  a transmembrane domain 

as well as no exon for determining the I I Ib/IIIc splice variant. Therefore, 

primers FR17a (forward) and FR19/FR20 (reverse) were chosen for 

expression analysis. 
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 Figure 11 | FGFR-3 splice variants and primer binding. Green-colored primer   

names indicate forward, red-colored primer names reverse primers. 
 

 

5.1.4 Fibroblast growth factor receptor 4 
 

As described above, no I I Ib/I I Ic splice variant s of FGFR-4 do exist . The ‘b’-

form of exons 1 and 10 contain the complete ‘a’-form plus a few 

nucleotides. As shown in figure 12, splice variant NM_022963 does not  

contain a signal peptide or a transmembrane domain. To exclude this 

isoform, primers FR25 (forward) and FR26 (reverse) were chosen for 

expression analysis. 

 

Figure 12 | FGFR-4 splice variants and primer binding. Green-colored primer   

names indicate forward, red-colored primer names reverse primers. 
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5.2 Expression profile of FGFR isoforms in ovarian cancer cell 

lines 
 

Figure 13 shows the expression pattern of FGFR isoforms in ovarian cancer 

cell lines. The two images represent independent experiments with 

different exposure t imes to account for the lower mRNA expression of 

primary ovarian surface epithelium (OSE) cells.   

 

Figure 13 | RT-PCR expression profile of fibroblast growth factor receptor (FGFR) 

isoforms in human ovarian cancer cell lines. CAOV-3, HEY, HOC-7, SKOV-3, TR-

170, A2774, A-2780, H-134 and OVCAR-3 represent cancer cell lines derived from 

ovarian adenocarcinomas. PA-1 is derived from a teratocarcinoma. IOSE-80, 

IOSE-364 and IOSE-386 cell lines were obtained by immortalization of human 

ovarian surface epithelium. OSE cells were isolated from primary ovarian surface 

epithelium. The two images represent independent experiments with different 

exposure times to account for the lower FGF receptor mRNA expression of 

primary ovarian surface epithelium (OSE) cells. 
 

FGFR-1b is expressed by all cell lines, but cancer cell lines except H-134 

and HOC-7 show much stronger expression than OSE cells. FGFR-1c is 

evenly expressed among cancer and immortalized cell lines and shows a 

stronger expression than in OSE cells. FGFR-4 gives a similar picture of 

expression among cancer cell lines and immortalized cells, which do 
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express considerably more FGFR-4 than OSE cells. When taking a closer 

look to the expression of FGFR-2 and FGFR-3 isoforms, cancer cell lines can 

be divided into 6 groups from expressing none to all FGFR-2 and FGFR-3 

transcript variants (Table 8). 

 

 FGFR-2b FGFR-2c FGFR-3b FGFR-3c 
 

CAOV-3 - - - - 
 

HEY - (+) - - 
 

HOC-7 + - + - 
 

OVCAR-3 + + + - 
 

A-2780 - - + + 

H-134 - - + (+) 
 

PA-1 + + + + 

SKOV-3 + + + + 

TR-170 (+) + + + 

A-2774 + + + (+) 
 

Table 8 | Different expression patterns of FGFR-2 and 

FGFR-3 isoforms in ovarian cancer cell lines. “+” 

normal expression, “(+)” borderline expression, “-“ no 

expression. 
 

Due to the distribut ion in expressing different FGFR isoforms and favorable 

growth propert ies, A-2780, HEY, OVCAR-3 and SKOV-3 were chosen for 

further invest igations (Table 9) 

 

 1b 1c 2b 2c 3b 3c 4 

A-2780 + + - - + + + 

HEY + + - (+) - - + 

OVCAR-3 + + + + + - + 

SKOV-3 + + + + + + + 
        

Table 9 | Expression of FGFR transcript variants in A-

2780, HEY, OVCAR-3 and SKOV-3 cancer cell lines. 

“+” normal expression, “(+)” borderline expression, “-

“ no expression. 
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5.3 Expression profile of FGFs in ovarian cancer cell lines 
 

 

Figure 14 | RT-PCR expression profile of fibroblast growth factors (FGFs) in human 

ovarian cancer cell lines. CAOV-3, HEY, HOC-7, SKOV-3, TR-170, A2774, A-2780, 

H-134 and OVCAR-3 represent cancer cell lines derived from ovarian 

adenocarcinomas. PA-1 is derived from a teratocarcinoma. IOSE-80, IOSE-364 

and IOSE-386 cell lines were obtained by immortalization of human ovarian 
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surface epithelium. OSE cells were isolated from primary ovarian surface 

epithelium. FGFs are arranged by intrinsic relationship as described in figure 3. 

The two images represent independent experiments with different exposure 

times to account for the lower FGF mRNA expression of primary ovarian surface 

epithelium (OSE) cells. 
 

As previously described, fibroblast growth factors can be arranged in 

subfamilies by homology and binding propert ies. The expression of FGF 

mRNAs was therefore arranged by subfamily identity as mentioned before. 

FGF-1, FGF-2, FGF-5, FGF-20 and FGF-18 are expressed by the majority of 

ovarian cancer cell lines (figure 14). FGF-3, FGF-8, FGF-10, FGF-19, FGF-21 

and FGF-23 are only expressed by some cell lines. A-2780 is expressing the 

greatest number of FGFs by far (figure 14). It  has to be noted that binding 

of FGF-19, FGF-21 and FGF-23 to its receptors is dependent on the 

presence of a co-receptor (α-/β-Klotho). The relevance of these latter 

growth factors regarding survival, proliferat ion and migrat ion of ovarian 

cancer cells can therefore be quest ioned (Sinha et  al 2008, Urakawa et al 

2006). 

 

5.4 Potential autocrine signaling loops in ovarian cancer cells 
 

Fibroblast growth factors and their receptors show a dist inct pattern of 

t issue-specific expression, enabling cell communication while preventing 

undesired autocrine st imulat ion. As was shown for many different t issues, 

cancer cells corrupt this system.  

All ovarian cancer cell lines show de novo expression of FGF-10, a strong 

activator of FGFR-2 I I Ib, which can be found in normal ovarian surface 

epithelial cells. CAOV-3, HEY and H-134 are the only ovarian cancer cells 

that do not express a combination of FGFs/FGFRs with a high mitogenic 

potential. HOC-7, A-2774, TR-170 and OVCAR-3 cells do express the 

combination FGF-10/FGFR-2 I I Ib, but FGF-10 or FGFR-2 I I Ib expression is very 

low. SKOV-3 cells do express low levels of FGF-10 and normal levels of 
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CAOV-3 

 5 + 10 (+) 20 (+) 18 + 

1b + 3,8 39,4 7,3 6,3 

1c + 59 12,5 28,1 4,7 

4 (+) 7 11,5 26,6 52,8 
     

 

Table 10 | Potential autocrine 

signaling loops of different ovarian 

carcinoma cells. All cell lines show 

de novo expression of FGF-10, a 

strong activator of FGFR-2 I I Ib, 

which is expressed in healthy 

ovarian surface epithelial cells. 

Several other potential autocrine 

signaling loops can be identified 

and are examined in detail in the 

text. + normal expression, (+) 

borderline or very low expression, 

green caption: approximately-

equal expression level of ovarian 

surface epithelium (OSE) cells, 

green numbers: combination of 

FGF/FGFR found in OSE cells too; 

blue: overexpression in comparison 

to OSE cells, red: not expressed in 

OSE cells. Numbers are adapted 

from Zhang 2006 and describe 

relative mitogenic activ ities of FGFs 

at the respective FGF receptor 

proportional to the mitogenic 

activ ity of FGF-1 at this FGF 

receptor. White boxes: relative 

mitogenic activ ity <15% . 1b: FGFR-1 

I I Ib, 1c: FGFR-1 I I Ic, 2b: FGFR-2 I I Ib, 

2c: FGFR-2 I I Ic, 3b: FGFR-3 I I Ib, 3c: 

FGFR-3 I I Ic; 4: FGFR-4; 3: FGF-3, 5: 

FGF-5, 8: FGF-8, 9: FGF-9, 10: FGF-10, 

17: FGF-17, 18: FGF-18, 20: FGF-20. 

 

HEY 

 5 + 10 (+) 20 + 18 + 

1b + 3,8 39,4 7,3 6,3 

1c + 59 12,5 28,1 4,7 

2c (+) 25 6,1 68,4 28,9 

4 + 7 11,5 26,6 52,8 
     

 

HOC-7 

 5 + 10 (+) 20 + 18 + 

1b (+) 3,8 39,4 7,3 6,3 

1c + 59 12,5 28,1 4,7 

2b + 5 217 12,3 7,8 

3b + 1 6 44,3 12,5 

4 (+) 7 11,5 26,6 52,8 
     

 

SKOV-3 

 5 + 10 (+) 20 + 8 + 18 + 

1b + 3,8 39,4 7,3 5,3 6,3 

1c + 59 12,5 28,1 57,5 4,7 

2b + 5 217 12,3 5,9 7,8 

2c + 25 6,1 68,4 91,6 28,9 

3b + 1 6 44,3 18,6 12,5 

3c + 11,8 0,8 89,5 209 77,7 

4 + 7 11,5 26,6 102 52,8 

      
 

A-2774 

 5 (+) 3 + 10 (+) 20 + 18 + 

1b + 3,8 34,4 39,4 7,3 6,3 

1c + 59 0,3 12,5 28,1 4,7 

2b + 5 44,6 217 12,3 7,8 

2c + 25 4,2 6,1 68,4 28,9 

3b + 1 1,5 6 44,3 12,5 

3c (+) 11,8 0,6 0,8 89,5 77,7 

4 + 7 5,8 11,5 26,6 52,8 
 

TR-170 

 5 + 10 + 20 + 18 + 

1b + 3,8 39,4 7,3 6,3 

1c + 59 12,5 28,1 4,7 

2b (+) 5 217 12,3 7,8 

2c + 25 6,1 68,4 28,9 

3b + 1 6 44,3 12,5 

3c + 11,8 0,8 89,5 77,7 

4 (+) 7 11,5 26,6 52,8 
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A-2780 

 5 + 3 + 10 + 20 + 8 + 17 + 18 + 

1b + 3,8 34,4 39,4 7,3 5,3 6 6,3 

1c + 59 0,3 12,5 28,1 57,5 22,7 4,7 

3b + 1 1,5 6 44,3 18,6 10,7 12,5 

3c + 11,8 0,6 0,8 89,5 209 111 77,7 

4 + 7 5,8 11,5 26,6 102 85,5 52,8 
        

 

OVCAR-3 

 5 (+) 10 (+) 9 + 20 + 18 + 

1b + 3,8 39,4 7,3 7,3 6,3 

1c + 59 12,5 12,5 28,1 4,7 

2b + 5 217 2,9 12,3 7,8 

2c + 25 6,1 57,2 68,4 28,9 

3b + 1 6 42,7 44,3 12,5 

4 + 7 11,5 10,1 26,6 52,8 
 

PA-1 

 10 

(+) 

8 + 18 + 

1b + 39,4 5,3 6,3 

1c + 12,5 57,5 4,7 

2b + 217 5,9 7,8 

2c + 6,1 91,6 28,9 

3b + 6 18,6 12,5 

3c + 0,8 209 77,7 

4 + 11,5 102 52,8 
    

 

OSE 

 5 + 9 + 20 (+) 18 + 

1b (+) 3,8 7,3 7,3 6,3 

1c + 59 12,5 28,1 4,7 

2b + 5 2,9 12,3 7,8 

2c (+) 25 57,2 68,4 28,9 

3b (+) 1 42,7 44,3 12,5 

4 (+) 7 10,1 26,6 52,8 
 

H-134 

 10 + 18 + 

1b (+) 39,4 6,3 

1c + 12,5 4,7 

3b + 6 12,5 

3c (+) 0,8 77,7 

4 + 11,5 52,8 
 

 

FGFR-2 I I Ib but show high de novo expression of FGFR-3 I I Ic and 

overexpression of FGFR-4 together with their highly activating ligand FGF-8. 

A-2780 is not expressing FGFR-2 I I Ib but shows de novo expression of FGFR-3 

I I Ic together with its highly activat ing ligands FGF-8 and FGF-17 and 

overexpression of FGFR-4 which is activated by FGF-8 too. Numerous other 

combinations of ligands and receptors can be found where one or both 

parts are overexpressed in different ovarian cancer cells. Since their 

mitogenic potential is below or approximately on par with autocrine 

signaling loops found in normal ovarian surface epithelial cells they are not 

considered as high potential candidates for the identification of autocrine 

signaling loops in ovarian cancer cells. 
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5.5 Modulation of Ras/MAPK and PI3K downstream effectors by 

FGF-1, FGF-2 and conditioned growth medium in ovarian 

cancer cells 
 

One of the first  quest ions when studying a signaling pathway is to verify its 

functionality in the invest igated cell lines. As described previously, FGF-1 is 

the most promiscuous FGFR ligand and capable of activat ing all FGFRs. 

FGF-2 is only binding to I I Ic-variants of FGF receptors 1-3 and to FGFR-4 but 

provides  st rong proliferat ion signals in different  cell lines. As shown in figure 

14, ovarian cancer cells express various FGF ligands suggest ing autocrine 

mechanisms providing survival or proliferat ion signals. Therefore, serum-

depleted cells were either t reated with 5nM FGF-1 or FGF-2 or 1ml of 

condit ioned growth medium (CM) for 5 or 10 minutes. 

 

5.5.1 FGF-1 and FGF-2 trigger activation of the Ras/MAPK pathway, but 

not of the PI3K-pathway in A-2780, OVCAR-3 and SKOV-3 ovarian 

cancer cells 
 

As shown in figure 15, FGF-1 and FGF-2 trigger activat ion of the Ras/MAPK 

(ERK1/2), but not the PI3K (AKT, S6) pathway. Interest ingly, FGF-2 causes a 

much stronger phosphorylat ion of ERK1/2 than FGF-1 in A-2780 and 

OVCAR-3, but not in SKOV-3 cells. Although the situation with condit ioned 

growth medium (CM) is not as clear, ERK1/2 is phosphorylated in all three 

cell lines when treating cells with condit ioned growth medium. 
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A-2780 

 

OVCAR-3 

 

SKOV-3 

 

Figure 15 | Ligand-dependent phosphorylation of fibroblast growth factor 

receptor (FGFR) downstream effectors in ovarian cancer cells in vitro.  

FGF-1, FGF-2 and conditioned growth medium induce phosphorylation of 

ERK1/2 by different degrees, but do not trigger activation of the PI3-kinase 

pathway (AKT, S6). Serum depleted cells were stimulated with 5nM of FGF-1 or 

FGF-2 or 1ml of conditioned growth medium for 5 or 10 minutes. 
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5.5.2 FGF-1 and FGF-2 are not capable of activating Ras/MAPK in HEY 

ovarian cancer cells 
 

FGF-1 and FGF-2 are not able to trigger activat ion of Ras/MAPK pathway 

and only show minor induction of PI3K pathway in HEY cells in vit ro. Failure 

of Ras/MAPK activat ion is due to the fact that phosphorylat ion levels of 

ERK1/2 are already very high (exposure t ime of pERK in figure 16 is as short 

as feasible). Condit ioned growth medium is able to activate the PI3K 

pathway to a higher degree than FGF-1 or FGF-2 alone, suggest ing that 

HEY cells release growth factors besides FGFs which are capable of 

signaling in an autocrine manner. 

HEY 

 

Figure 16 | Ligand-dependent phosphorylation of fibroblast growth factor 

receptor (FGFR) downstream effectors in HEY ovarian cancer cells. FGF-1, FGF-2 

and conditioned growth medium are not able to induce phosphorylation of 

ERK1/2 because it is already highly activated in HEY cells. Conditioned growth 

medium triggers phosphorylation of PI3K pathway (p-AKT). Serum depleted cells 

were stimulated with 5nM of FGF-1 or FGF-2 or 1ml of conditioned growth 

medium for 5 or 10 minutes. 
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5.6 Influence of FGF-1 and FGF-2 on proliferation of ovarian 

cancer cells in vitro 
 

To work out the effects of FGF ligands on cell growth, a cell proliferat ion 

assay was performed. Cells were seeded and allowed to adhere 

overnight before treating them with different concentrat ions of FGFs (0-

0,1-0,5-1-5-10 nM) for 72 hours. 

 

5.6.1 FGF-2 but not FGF-1 induces cell proliferation in A-2780 and HEY 

ovarian cancer cells 
 

A-2780 

  

HEY 

  

Figure 17 | Effects of FGF-1 and FGF-2 on growth of A-2780 and HEY ovarian 

cancer cells. Crystal v iolet staining. Means ± SD, n=3. Dose-dependent growth 

stimulation after 72 hours  of treatment with FGF-1 or FGF-2. 

  



67 

 

As shown in figure 17, FGF-2 is able to st imulate proliferat ion of A-2780 cells 

by 40% and of HEY cells by 26,5% in proport ion to untreated cells while 

FGF-1 is not capable of doing so. 

 

5.6.2 Neither FGF-1 nor FGF-2 induce cell proliferation in OVCAR-3 and 

SKOV-3 ovarian cancer cells 

 

As shown in figure 18, neither FGF-1 nor FGF-2 is able to induce proliferat ion 

in OVCAR-3 and SKOV-3 ovarian cancer cells in vit ro. This is part icularly 

surprising for OVCAR-3 due to the strong phosphorylat ion of ERK1/2 when 

st imulated with FGF-2 (figure 15). 

OVCAR-3 

  

SKOV-3 

  

Figure 18 | Effects of FGF-1 and FGF-2 on growth of OVCAR-3 and SKOV-3 

ovarian cancer cells. Crystal v iolet staining. Means ± SD, n=3. Dose-dependent 

growth stimulation after 72 hours of treatment with FGF-1 or FGF-2. 
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5.7 Effects of fibroblast growth factors on migration of A-2780, 

HEY and SKOV-3 ovarian cancer cells 
 

Tissue invasion and metastasis are the major sources of mortality in cancer 

patients and this eminently applies to ovarian cancers. To determine the 

influence of fibroblast growth factors on the migrat ion of ovarian cancer 

cells, the scratch-assay protocol of Liang et al 2007 was adapted to 

enable stat ist ical analysis. Unfortunately, it  is necessary to seed the cells at 

very high densit ies and OVACR-3 cells failed to adhere when doing so (it  is 

not possible to let the cells grow until reaching confluence since they 

generate an extracellular matrix-like structure which prevents migrat ion, 

Liang et al 2007). Data can therefore only be shown for A -2780, HEY and 

SKOV-3 cells. Treatment with FGF-2 was only done in A-2780 cells as the 

most promising cell line due to the strong phosphorylat ion of ERK1/2 (figure 

15). 
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Figure 19 | Effects of FGF-1 and FGF-2 on migration of A-2780, HEY and SKOV-3 

ovarian cancer cells. Migration in response to 5nM FGF-1 or FGF-2 versus 

untreated. Calculation of migration distance: mean gt – mean g0 (g… gap 

width, t… time points, n ≥ 5). 

 

A-2780 cells migrate very slowly when compared to HEY and SKOV-3 cells 

and they are not able to close the scratch in a t ime-frame of 48 hours 

(data not shown) and neither FGF-1 nor FGF-2 is able to induce migrat ion 

in those cells. HEY and SKOV-3 cells are much more versat ile and close the 
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scratch after around 6 hours. Treatment with FGF-1 activates migrat ion in 

SKOV-3 and to a higher degree in HEY cells, but the increase is non-

significant in both cases and further experiments are necessary to confirm 

these results. 

 

5.8 Impact of FGFR inhibition on survival and proliferation of 

ovarian cancer cells in vitro 
 

To study the dependence of ovarian cancer cells on FGF signaling, two 

different tyrosine-kinase inhibitors were used. PD173074 is inhibit ing FGFR 1-

3 and FGFR-4 at higher doses, while Dovit inib (CHIR-258) is a more 

promiscuous inhibitor (see table 6 for in vit ro kinase assay data). However, 

the major targets of Dovit inib are FGFR-1, FGFR-3 and VEGFR-2. Cell lines 

were treated with different concentrat ions of inhibitors (0,1 – 0,5 – 1 – 5 – 

10µM) and cell numbers were determined after 72 hours of t reatment. 

 

5.8.1 Fibroblast growth factor receptor signaling is crucial for proliferation 

of A-2780 ovarian cancer cells 

 

Figure 20 | Effects of tyrosine-kinase inhibitors Dovitinib (CHIR-258) and 

PD173074 on growth of A-2780 ovarian cancer cells. Crystal v iolet staining. 

Means ± SD, n=3. Dose-dependent growth inhibition after 72 hours of treatment 

with Dovitinib or PD173074. 
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FGFs are able to induce proliferat ion of A-2780 cells in vit ro (figure 17) and 

trigger strong phosphorylat ion of ERK1/2 (figure 15). As shown in figure 20, 

A-2780 cells are highly sensit ive to inhibit ion of FGFR in vit ro. Corresponding 

IC50-values are 0,83µM for PD173074 and 3,03µM for Dovit inib. 

 

5.8.2 PD173074 but not Dovitinib (CHIR-258) inhibits HEY ovarian cancer 

cell proliferation 
 

Although it  is not possible to st imulate proliferat ion of HEY cancer cells with 

FGFs, FGF receptor signaling might provide ligand-independent benefits 

for cell proliferat ion and survival. As shown in figure 21, HEY cells are 

sensit ive to PD173074 (IC50 = 3,29µM) but resistant to treatment with 

Dovit inib. 

 

Figure 21 | Effects of tyrosine-kinase inhibitors Dovitinib (CHIR-258) and 

PD173074 on growth of HEY ovarian cancer cells. Crystal v iolet staining. Means ± 

SD, n=3. Dose-dependent growth inhibition after 72 hours of treatment with 

Dovitinib or PD173074. 
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5.8.3 Neither PD173074 nor Dovitinib (CHIR-258) inhibits OVCAR-3 ovarian 

cancer cell proliferation at clinical relevant concentrations 
 

As shown in figure 22, OVCAR-3 cells are resistant  to PD173074 treatment 

and show only minor sensit ivity to treatment with Dovit inib (IC50 = 8,44µM). 

 

Figure 22 | Effects of tyrosine-kinase inhibitors Dovitinib (CHIR-258) and 

PD173074 on growth of OVCAR-3 ovarian cancer cells. Crystal v iolet staining. 

Means ± SD, n=3. Dose-dependent growth inhibition after 72 hours of treatment 

with Dovitinib or PD173074. 

 

 

5.8.4 PD173074 and Dovitinib (CHIR-258) exhibit similar dose response 

curves on inhibition of SKOV-3 ovarian cancer cell proliferation 
 

As shown in figure 23, PD173074 and Dovit inib show dose-responsive 

inhibit ion of SKOV-3 cell proliferat ion at doses that can be reached 

clinically. Corresponding IC50-values are 4,62µM for PD173074 and 4,81µM 

for Dovit inib. 
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Figure 23 | Effects of tyrosine-kinase inhibitors Dovitinib (CHIR-258) and 

PD173074 on growth of SKOV-3 ovarian cancer cells. Crystal v iolet staining. 

Means ± SD, n=3. Dose-dependent growth inhibition after 72 hours of 

treatment with Dovitinib or PD173074. 
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6 Discussion 
 

The majority of ovarian cancer cell lines show overexpression of FGFR-1c 

(9/9, 100%), FGFR-1b (7/9, 78%) and FGFR-3b (7/9, 78%) in comparison to 

OSE cells and at least half of them (>5/9, >56%) overexpress FGFR-4 and 

show de novo expression of FGFR-3c. Addit ionally, 44% of the invest igated 

cell lines lost expression of FGFR-2b. When taking a closer look at potential 

signaling loops, some restrict ions have to be considered. Although FGF-1 

and FGF-2 are translocated through the cell membrane, they normally 

stay bound to the cell surface and are only released if the cell is 

damaged. This makes it  unlikely that they trigger autocrine downstream 

signaling (Malecki et al 2004). FGF-5 was originally published as a proto-

oncogene with transforming potential (Zhan et al 1988) but was later 

shown to be induced by serum growth factors like EGF, PDGF and TGF-α 

(Werner et al 1991). The expression must therefore be considered a cell 

culture derived art ifact, but as shown in table 10, FGF-5 is not a strong 

activator of the expressed FGF receptors anyway. The de novo expression 

of FGF-7 in immortalized ovarian surface epithelium cell lines (IOSE-80, 

IOSE-364, IOSE-386) might be a result  of the genomic transformation during 

the immortalizat ion process eliminating their use for comparison when 

evaluating fibroblast growth factor receptor and ligand expression in 

ovarian cancer cells. As mentioned before, the FGF-19 subfamily (FGF-19, 

FGF-21 and FGF-23) is dependent on the expression of Klotho proteins in 

the target cells in order to activate downstream signaling which have not 

been found in other t issues than kidney and liver. De novo expression of 

FGF-10, although very low in most cells, was found in all evaluated cell 

lines and the majority of them expressed its high affinity receptor FGFR-2b, 

leading to an autocrine signaling loop with a strong mitogenic potential. 

Several other potential autocrine loops could be identified too. In fact, 

CAOV-3, HEY and H-134 cells are the only evaluated cell lines without any 
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potential autocrine signaling loop with a strong mitogenic potential 

(compare table 10 and belonging text). 

A-2780 ovarian cancer cells are expressing FGFR-4 and both splice variants 

of FGFR-1 and FGFR-3 (figure 13). They also express a wide variety of FGF 

family members (figure 14). Nevertheless, the MAP kinase signaling system 

is yet not highly active in these cells, but can be induced by FGF-1, to a 

much higher degree by FGF-2 and by condit ioned growth medium (figure 

15). This correlates with the induction of cell growth by FGF-2 (figure 17). 

Correspondingly, cells are highly sensit ive to inhibit ion of FGF receptor and 

to mult i-kinase inhibit ion (figure 20) with IC50-values of 0,83µM for PD173074 

and 3,03µM for Dovit inib. PD173074 is inhibit ing FGF receptors 1-3 with high 

affinity, indicating that FGFR-1, FGFR-3 or both provide crucial signals for 

the proliferat ion of A-2780 cancer cells. Dovit inib is, amongst other targets, 

inhibit ing FGFR-1 and FGFR-3 suggest ing that the growth suppression is due 

to inhibit ion of the same target. As previously mentioned, more 

promiscuous inhibitors like Dovit inib are less potent against FGF receptors 

than specific FGF receptor inhibitors. This could explain the discrepancy in 

growth inhibit ion of Dovit inib and of PD173074. A -2780 cells are expressing 

the broadest range of FGFs of all tested cell lines. Surprisingly, they do not 

exhibit  the former described FGFR-2b / FGF-10 autocrine signaling loop but 

instead show a unique de novo expression of FGF-8 and FGF-17 in 

combination with de novo expression of FGFR-3c and overexpression of 

FGFR-4 result ing in an autocrine signaling loop with a high mitogenic 

potential (table 10). As shown in figure 19, A-2780 cells are not very motile 

compared to HEY and SKOV-3 cells. Neither t reatment with FGF-1 nor 

t reatment with FGF-2 induced migrat ion in these cells. 

HEY ovarian cancer cells express both variants of FGFR-1, small amounts of 

FGFR-2c and moderate levels of FGFR-4 (figure 13) and no autocrine 

signaling loop with a high mitogenic potential was found (table 10). 

Phosphorylat ion of Ras/MAP kinase pathway could not be elevated by 
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t reatment with FGF-1 or FGF-2 due to the high basal levels of ERK1/2 

phosphorylat ion (figure 16, exposure t imes for pERK are as short as 

feasible), suggest ing a const itut ive activat ion within the Ras/MAP kinase 

pathway. Besides, a slight activat ion of the PI3 kinase pathway could be 

observed. As shown in figure 19, HEY cells are very motile and are able to 

close the scratch in the cell monolayer in a t ime-frame of 5 hours. 

Treatment with FGF-1 triggers migrat ion in a non-significant manner while 

FGF-2 induces proliferat ion significantly in these cells (p<0,05, figure 17). 

HEY cells are resistant to treatment with Dovit inib, but exhibit  sensit ivity to 

PD173074. As mentioned before, PD173074 inhibits FGF receptors 1-3 with 

high affinity and FGF receptor 4 at high doses but Dovit inib only affects 

FGF receptors 1-3. The sensit ivity to treatment with PD173074 could 

therefore be due to an activat ing mutation of FGFR-4 similar to the one 

found in MDA-MB-453 breast cancer cells (Roidl et al 2010). 

OVCAR-3 ovarian cancer cells are expressing all FGF receptor splice 

variants except FGFR-3 I I Ic (figure 13). De novo expression of FGF-10 leads 

to an autocrine signaling loop with a very high mitogenic potential (table 

10). The FGF signaling system is highly inducible by FGF-2 and by 

condit ioned growth medium and to a lesser extent by FGF-1 triggering 

phosphorylat ion of ERK1/2. Surprisingly, neither t reatment with FGF-1 nor 

with FGF-2 is able to induce proliferat ion in these cells (figure 18) and they 

are resistant to FGF receptor inhibit ion by PD173074 and exhibit  only minor 

growth suppression when treated with Dovit inib, suggest ing signaling 

mechanisms that are independent from platelet -derived growth factor 

receptor (PDGFR), fibroblast growth factor receptor (FGF) and vascular 

endothelial growth factor receptor (VEGFR). 

SKOV-3 ovarian cancer cells are expressing all seven splice variants of the 

FGF receptor. The simultaneous expression of FGF-8 and FGF-10 leads to 

mult iple potential autocrine signaling loops (FGF-10 / FGFR-2b, FGF-8 / 

FGFR-3c and FGF-8 / FGFR-4). The FGF receptor signaling system in these 
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cells can be slight ly induced by FGF-1, FGF-2 and condit ioned growth 

medium as evidenced by elevated phosphorylat ion of ERK1/2. Neither 

t reatment with FGF-1 nor with FGF-2 was able to induce proliferat ion in 

these cells (figure 18), but a non-significant increase in motility could be 

observed when treating with FGF-1 (figure 19). Treatment with tyrosine 

kinase inhibitors PD173074 and Dovit inib showed equal growth reduction 

curves. Expecting, that PD173074 inhibits FGF receptors at lower doses 

than Dovit inib due to its higher affinity, this indicates that SKOV-3 cells 

receive proliferat ion signals not only from FGFR-1, FGFR-2 and FGFR-3 but 

from other receptors inhibited by Dovit inib as well. 

Fut ure direct ions 

Recombinant, dominant negative FGF receptors are lacking the 

intracellular tyrosine kinase domain, but are capable to dimerize with 

functional receptors preventing transphosphorylat ion and subsequent 

downstream signaling and are available as a research tool for all four FGF 

receptors. The introduction of dominant negative receptors in future 

experiments would be very useful for a more precise characterizat ion of 

the single receptors. However, it  is not possible to knock down a single 

transcript variant with this method and short interference RNA (siRNA) 

could be used to characterize the function of promising transcript variants 

in more detail. 

As mentioned before, mutations in the extracellular domain of FGF 

receptors are quite common and lead to const itut ive activat ion of the 

affected receptor. HEY ovarian cancer cells expose high basal 

phosphorylat ion-levels of ERK1/2 but are sensit ive to inhibit ion by FGF 

receptor inhibitors, indicating that this st rong activat ing signal originates 

from one of the expressed FGF receptors. Sequencing of the FGF 

receptors could therefore be used to evaluate an activat ing mutation in 

these cells. 
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FGF receptors have been identified as targets for cancer therapy and 

inhibit ion of FGFR-dependent signaling was able to overcome resistance 

to standard therapies and showed synergist ic growth inhibit ion effects 

when combined with EGF receptor inhibitors (Fischer et al 2008, Pardo et al 

2002). Ovarian cancer patients usually respond well to the standard 

therapy Cisplat inum, Paclitaxel and their derivat ives, but recurrence 

accompanied by resistances to those chemotherapeutics is quite 

common. Mult i-kinase inhibitors like Dovit inib and BIBF 1120 are current ly in 

evaluation for the treatment of relapsed ovarian cancer patients and the 

combination of standard therapies with different FGF receptor and mult i-

kinase inhibitors should therefore be considered in future studies. 

As was discussed before, de novo expression of fibroblast growth factors in 

combination with FGFR-2b, which is expressed in normal ovarian surface 

epithelium as well as de novo expression of FGF receptors is a common 

event in ovarian cancer cells and condit ioned growth medium was able 

to trigger activat ion of the Ras/MAP kinase pathway by different degrees 

in the evaluated cells. Matrix-associated laser desorpt ion/ionizat ion t ime-

of-flight (MALDI-TOF) mass spectrometry enables analysis of complex 

composites of proteins relat ively cheap and fast and would be a 

convenient method for the evaluation of fibroblast growth factors in 

condit ioned growth medium of ovarian cancer cells. 
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