

DIPLOMARBEIT

Titel der Diplomarbeit

"Die Auswirkungen der Treibstoffpreise auf die Neuzulassungen von Personenkraftwagen in Österreich"

Verfasser

Philipp GREIN

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, im September 2012

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die den fremden Quellen direkt oder indirekt übernommenen Gedanken sind alle als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Philipp Grein

Danksagung

Ich bedanke mich bei Herrn Univ.-Prof.Dr. Franz Wirl der es mir ermöglichte dieses Thema auszuarbeiten und mir bei Fragen unterstützend zur Seite stand.

Großer Dank gilt meiner Freundin die mich im letzten Studienabschnitt unterstützte, mir Mut zugesprochen hat, mir eine große Hilfe bei der Korrektur dieser Arbeit war und mir mit Rat und Tat zur Seite stand.

Der größte Dank gilt meinen Eltern Barbara und Günter die mich sowohl vor als auch während des Studiums immer unterstützt haben. Abgesehen von der finanziellen Unterstützung welche nicht selbstverständlich ist, haben Sie immer an mich geglaubt, mich in schweren Zeiten motiviert und standen mir, trotz einer längeren Studienzeit, in jeder Lebenslage unterstützend und hilfreich zur Seite. Danke das Ihr immer für mich da seit.

Inhaltsverzeichnis

EIDESS	TATTLICHE ERKLÄRUNG		III
DANKS	AGUNG		v
TABEL	ENVERZEICHNIS		IX
ABKÜR	ZUNGSVERZEICHNIS		XI
1. EIN	LEITUNG		1
2. DE	R AMERIKANISCHE AUTON	MOBILMARKT	3
2.1.	DER AMERIKANISCHE AUTOMO	BIL- UND TREIBSTOFFMARKT	3
2.2.	Auswirkungen der Treibsto	OFFPREISE UND DER REBOUND EFFEKT	6
3. DE	R ÖSTERREICHISCHE AUTO	OMOBILMARKT	10
		'ERREICH	
3.1		e	
3.1	o de la companya de	ogene Versicherungssteuer	
3.1	,		
3.1			
3.1	5. Verschrottungsprämie		13
3.2.		NG IN ÖSTERREICH	
3.2	1. Historische Exkurs - Tre	eibstoffpreise	15
3.2	2. Dieselboom		16
3.2	3. Diesel		17
3.2	4. Benzin		18
3.2	5. Vergleich Benzin und D	iesel	20
3.2	6. Gegenüberstellung der	Treibstoffpreise	21
3.3.	NEUZULASSUNGEN IN ÖSTERRE	EICH	23
3.4.	NEUZULASSUNGEN UNTERTEIL	T IN FAHRZEUGKLASSEN	26
3.4	1. Kleinwagen		28
3.4	2. Stadtwagen		28
3.4	3. Untere Mittelklasse		29
3.4	4. Mittelklasse und Oberkl	lasse	30
3.4	5. Luxusklasse		31
3.4	6. Sportwagen		32
3.4	7. Minivan		32

3.	4.8. Geländewagen	33
3.	4.9. Zusammenfassung der Zulassungen	34
3.5.	NEUZULASSUNGEN NACH BUNDESLÄNDERN	36
3.6.	DER ÖSTERREICHISCHE AUTOMOBILMARKT UND DER REBOUND EFFEKT	39
3.7.	Exkurs: Großbritannien	43
3.8.	DER NEUWAGENKAUF AUS SICHT DES KONSUMENTEN	45
3.9.	Fragestellung und Hypothesen – Zielsetzung	48
4. AU	IFBAU DER ARBEIT	51
4.1.	GRUNDLAGEN FÜR DIE AUSARBEITUNG	52
5. ER	GEBNIS UND ERLÄUTERUNG	53
5.1.	GESAMTE NEUZULASSUNGEN IN ÖSTERREICH - H1	53
5.2.	NEUZULASSUNGEN UNTERTEILT IN FAHRZEUGKLASSEN - H2	56
5.3.	Neuzulassungen in den Bundesländern (Stadt/Land) – H3	62
5.4.	Δ B/D – H4	64
5.5.	WECHSELWIRKUNG BENZIN- UND DIESELZULASSUNGEN	65
5.6.	ÖSTERREICH IM VERGLEICH MIT LÄNDERN DER EUROZONE	66
5.	6.1. Treibstoffpreise in EU Ländern	66
5.	6.2. Neuzulassungen in EU Ländern	68
5.	6.3. Auswirkungen der Treibstoffpreise in der EU	72
6. CO	NCLUSIO	76
7. AP	PENDIX	79
8. LI	ΓERATURVERZEICHNIS	102
9. AE	STRACT	107
9.1.	Deutsch	107
9.2.	ENGLISCH	108
10. C	URRICULUM VITAE	109

Tabellenverzeichnis

TABELLE 1: DIESELPREISENTWICKLUNG JÄHRLICH.	18
TABELLE 2: BENZINPREISENTWICKLUNG JÄHRLICH	19
TABELLE 3: Δ BENZIN UND DIESEL	20
TABELLE 4: T-TEST BEI UNABHÄNGIGEN STICHPROBEN	21
Tabelle 5: Neuzulassungen Österreich (2002 - 2011)	24
TABELLE 6: NEUZULASSUNGEN KLEINWAGEN.	28
TABELLE 7: NEUZULASSUNGEN STADTWAGEN	28
TABELLE 8: NEUZULASSUNGEN UNTERE MITTELKLASSE	29
TABELLE 9: NEUZULASSUNGEN MITTELKLASSE	30
TABELLE 10: NEUZULASSUNGEN OBERKLASSE	31
TABELLE 11: NEUZULASSUNGEN LUXUSKLASSE	31
TABELLE 12: NEUZULASSUNGEN SPORTWAGEN	32
TABELLE 13: NEUZULASSUNGEN MINIVAN	33
Tabelle 14: Neuzulassungen Geländewagen	33
TABELLE 15: NEUZULASSUNGEN NACH BUNDESLÄNDERN	37
TABELLE 16: REGRESSION NEUZULASSUNGEN - TREIBSTOFFPREISE (INKL. VERSCHROTTUNGSPRÄMIE)	53
TABELLE 17: REGRESSION: NEUZULASSUNGEN - TREIBSTOFFPREISE (EXKL. VERSCHROTTUNGSPRÄMIE)	55
TABELLE 18: ERGEBNISSE DER REGRESSION – FAHRZEUGKLASSEN (TREIBSTOFFKLASSE - BENZIN)	56
TABELLE 19: ERGEBNISSE DER REGRESSION - FAHRZEUGKLASSEN (TREIBSTOFFKLASSE - DIESEL)	59
TABELLE 20: JÄHRLICH GEFAHRENE KILOMETER JE PKW UND TREIBSTOFFKLASSE (STATISTIK AUSTRIA)	60
Tabelle 21: Regression - Treibstoffpreise und Neuzulassungen in den Bundesländern	62
$TABELLE~22:~REGRESSION~-\Delta B/D-ZULASSUNGEN~im~ZUSAMMENHANG~mit~Dem~\Delta~Der~Treibstoffpreise$	64
TABELLE 23: WECHSELWIRKUNG BENZIN- UND DIESELZULASSUNGEN	65
TABELLE 24: ZUSAMMENHANG VON TREIBSTOFFPREIS UND NEUZULASSUNGEN IN DER EU	73

Abbildungsverzeichnis

ABBILDUNG 1: ZULASSUNGEN USA 2002 - 2011	4
ABBILDUNG 2: DIESELPREISE USA	4
ABBILDUNG 3: BENZINPREIS USA	5
ABBILDUNG 4: ZUSAMMENSETZUNG DES DIESELPREISES IM MÄRZ 2012	17
ABBILDUNG 5: ENTWICKLUNG DER DIESELPREISE SEIT 01.01.2002.	17
ABBILDUNG 6: ZUSAMMENSETZUNG DES BENZINPREISES IM MÄRZ 2012	18
ABBILDUNG 7: ENTWICKLUNG DER BENZINPREISE SEIT 01.01.2002	19
ABBILDUNG 8: VERGLEICH BENZIN- UND DIESELPREISE AB 01.01.2002	20
Abbildung 9: Normalverteilung der Treibstoffpreise	21
Abbildung 10: Neuzulassungen in Österreich (2002-2011)	23
ABBILDUNG 11: NEUZULASSUNGEN BENZIN UND DIESEL (2002-2011)	25
Abbildung 12: Δ Diesel/Benzin Neuzulassungen	25
ABBILDUNG 13: ANTEIL DER FAHRZEUGKLASSEN AN DEN GESAMTZULASSUNGEN - JÄHRLICH	26
ABBILDUNG 14: NORMALVERTEILUNG DER NEUZULASSUNGEN	27
ABBILDUNG 15: BENZINZULASSUNGEN (KW,SW, UMKL.)	34
ABBILDUNG 16: DIESELZULASSUNGEN (KW,SW,UMKL.)	34
Abbildung 17: Benzinzulassungen (Mkl,Okl,Lkl)	35
ABBILDUNG 18: DIESELZULASSUNGEN (MKL,OKL,LKL)	35
Abbildung 19: Prozentueller Anteil an den Neuzulassungen seit 2003 (gesamt)	38
Abbildung 20: Kartografisch Darstellung der Neuzulassungen 2003 - 2011	38
ABBILDUNG 21: STREUDIAGRAMM BENZIN(0)- DIESEL(1)	54
ABBILDUNG 22: BENZINPREISE AB 2002 IN DEN LÄNDERN DER EUROZONE	67
Abbildung 23: Dieselpreise ab 2002 in den Ländern der Eurozone	68
ABBILDUNG 24: NEUZULASSUNGEN DIESELBETRIEBENER PKW VON LÄNDERN DER EUROZONE	69
ABBILDUNG 25: NEUZULASSUNGEN DIESELBETRIEBENER PKW UNTER 25.000 STÜCK MONATLICH	69
ABBILDUNG 26: NEUZULASSUNG BENZINBETRIEBENER PKW VON LÄNDERN DER EUROZONE	70
ABBILDUNG 27: NEUZULASSUNG BENZINBETRIEBENER PKW LINTER 55 000 STÜCK MONATLICH	71

Abkürzungsverzeichnis

BMW FJ Bund	esministerium für wirtschaft, Familie und Jugend
CO ₂	Kohlenstoffdioxid
EG	Europäische Gemeinschaft
EU	Europäische Union
idgF	in der geltenden Fassung
KFZ	Kraftfahrzeug
Kw	Kleinwagen
Lkl	Luxusklasse
Lkw	Lastkraftwagen
Mkl	Mittelklasse
MöSt	Mineralölsteuergesetz
MVEG	Motor Vehicle Emission Group (Fahrzyklus)
NoVa	Normverbrauchsabgabe
NOx	Stickstoffoxide
Okl	Oberklasse
ORF	Österreichischer Rundfunk
PKW	Personenkraftwagen
ROZ	
Sw	Stadtwagen
u.Mkl	untere Mittelklasse
UNECE	.United Nations Economic Commision for Europe
VDA	Verband der Automobilindustrie
VP	Verschrottungsprämie
WKO	Wirtschaftskammer Österreich

1. Einleitung

Der weltweite Energieverbrauch stieg im Jahr 2011 um 2,5% an. Rund 33,1% der verbrauchten Energie liefert der Rohstoff Öl. ¹ Zukünftig gesehen lässt das globale Wirtschaftswachstum den Energiebedarf und somit den Ölverbrauch auch in den nächsten Jahren steigen. Vor allem in Schwellenländern wie China, Indien und Brasilien aber auch in den USA ist die Nachfrage nach Rohöl und Rohölprodukten in den letzten Jahren sehr stark angestiegen und dieser Trend wird sich, Experten nach zu urteilen, auch weiterhin fortsetzen.^{2,3} Mitunter ein Grund für diese Entwicklung ist die steigende Mobilität der Weltbevölkerung und die daraus resultierende enorme Abhängigkeit vom Öl. Denn obwohl die Fahrzeuge energieeffizienter geworden sind und es immer mehr alternative Lösungen gibt, ist der motorisierte Individualverkehr beinahe vollständig von diesem abhängig und deckt nach wie vor noch rund 96% seines Energiebedarfes durch Öl.^{4,5}

Österreich ist größtenteils auf Importe aus dem Ausland angewiesen. Circa 90% seines Rohund Mineralöls werden importiert. Damit hält Österreich bei einem Anteil von 0,3% des Weltmarktes und hat somit kaum eine Möglichkeit die internationalen Märkte zu beeinflussen. Die enorm hohe Nachfrage lässt die Produktenpreise sowohl international als auch national steigen und führt zu einem dramatischen Kostenanstieg bei den Treibstoffpreisen.

Die beträchtlich erhöhten Treibstoffpreise sind derzeit auch eines der am meist diskutierten Themen in Österreich. Sie gehören zum Tagesprogramm und es vergeht kaum eine Woche in der nicht in den Medien darüber berichtet wird. Und das aus gutem Grund, liegt doch der Motorisierungsgrad der Österreicher bei 536 PKW je 1000 Einwohner und betrifft somit den Großteil der Bevölkerung. Darüber hinaus zählt das KFZ zu den größten Haushaltsposten des privaten Haushalts. Rund 13,9% des Einkommens werden im Durchschnitt monatlich für Anschaffung, Treibstoff, Reparatur und Zubehör ausgegeben. Das Thema erhitzt die Gemüter und eine eventuelle Beruhigung ist derzeit nicht absehbar. Der Autor stellt sich nun die grundlegende Frage inwiefern die drastisch steigenden Treibstoffpreise eine Auswirkung auf

¹ BP Statistical Review of World Energy; 2012, S. 2 ² The Economic Effects of Energy Price Shocks; 2008; S. 899

Der Österreichische Kraftstoffmarkt; 2005; Seite 10 ff.

vgl. Mehr Wettbewerb und Ressourceneffizienz im Verkehr; 2012

⁵ Swiss Federal institute of Technology Zürich; 2007

Fachverband für Mineralöl; 2012

⁷ ORF, 2012

⁸ Vgl: Statistik Austria, 2011

die Zahl der Neuzulassungen in Österreich haben. Vorwegnehmen kann man auf jeden Fall, dass die österreichische Automobilbranche mit dem vergangenen Jahr 2011 ein Rekordjahr bei den Neuzulassungen in der Fahrzeugklasse der Pkw verzeichnen konnte. Die Tatsache, dass genau in einer Zeit in der die Treibstoffpreise Rekordhöhen erreichen, die Zahl der Neuzulassungen auf einem Höchstwert sind, erscheint auf den ersten Blick sehr paradox und veranlasst dazu sich genauer mit der Thematik zu beschäftigen.

Ziel der Arbeit ist es herauszufinden ob die Treibstoffpreise die Zahl der Neuzulassungen erklären können, wie sich die Neuzulassungen bei den steigenden Treibstoffpreisen verändern und ob es einen Trend hin zu effizienteren Fahrzeugen gibt.

Zu Beginn dieser Diplomarbeit wird ein besonderes Augenmerk auf die theoretischen Grundlagen gelegt. Einstieg in dieses Thema bildet die Betrachtung der Entwicklungen des amerikanischen Automobilmarktes, sowie der Treibstoffpreise in den USA. Des Weiteren werden die Auswirkungen der Treibstoffpreiserhöhungen auf den amerikanischen Markt anhand wissenschaftlicher Studien erläutert. Einer der wichtigsten Aspekte in den Studien ist der Rebound Effekt, welchem besondere Aufmerksamkeit gewidmet wird.

In weiterer Folge widmet sich der Autor dem österreichischen Automobilmarkt, den Rahmenbedingungen für den Konsumenten beim Erwerb eines Pkw in Österreich und den Treibstoffpreisentwicklungen, sowie den Neuzulassungen. Auch hier werden anschließend Studien zum österreichischen Automobilmarkt präsentiert.

Auf Basis der bisher durchgeführten Studien und Ausarbeitungen in der Literatur formuliert der Autor dann eine detaillierte Fragestellung für den österreichischen Automobilmarkt und nennt die Forschungsleitenden Hypothesen für die folgende statistische Ausarbeitung des Themas.

Abschließend wir der europäische Automobilmarkt und die Treibstoffpreise in ausgewählten Ländern beschrieben und für eine Auswertung herangezogen um aufzuzeigen, ob man zu einem identen Ergebnis kommt.

2. Der Amerikanische Automobilmarkt

Im folgenden Teil der Arbeit werden die theoretischen Grundlagen für diese Arbeit näher beschrieben. Zuerst wird der amerikanische Automobilmarkt, seine Entwicklung sowie die Entwicklung der Treibstoffpreise in den USA erläutert. Daraufhin wird auf die Erkenntnisse wissenschaftlicher Studien eingegangen. Die USA wurden vom Autor deshalb gewählt, da bei einer weltweiten Betrachtung des Fahrzeugmarktes die USA als einer der wichtigsten Märkte hervorgeht. Die USA führen mit über 800 Fahrzeugen pro 1000 Einwohner die Liste des weltweiten Kfz-Bestandes an und stellen den bedeutendsten Benzinabsatzmarkt.

2.1. Der amerikanische Automobil- und Treibstoffmarkt

In den USA zeigt sich, dass in den Sommermonaten Mai bis Juli die meisten Pkw zugelassen werden. Die präferierte Treibstoffart ist Benzin. Dies spiegelt sich in den Zulassungszahlen wider, welche in Abbildung 1 dargestellt sind. Der Anteil von benzinbetriebenen Pkw in den USA schwankt zwischen 98,63% im Februar 2004 und 87,73% im November 2008. Der Grund für den Rückgang an Neuzulassungen im Jahr 2008 war die Wirtschaftskrise, die den Absatz von langlebigen Gütern sinken und somit den amerikanischen Automobilmarkt zusammenbrechen lies. Ab Mai 2008 ist die Zahl der Zulassungen bei benzinbetriebenen Pkw von 1.277.898 Zulassungen auf 637.553 Stück im November 2008 gesunken. Im November 2008 stiegen die Zulassungen im Dieselsegment mit 40.150 Stück auf ihren höchsten Anteil. Kurz darauf sanken die Dieselzulassungen jedoch wieder auf einen niedrigeren Wert.

In den USA gab es, wie auch in Österreich, eine Verschrottungsprämie. Diese ist bekannt unter dem Namen "Car Allowance Rebate System" (CARS) oder "Cash for Clunkers" und trat am 1. Juli 2009 in Kraft. Ziel dieser Verschrottungsprämie war es, Autohalter zu animieren, ihren alten Pkw früher als geplant einzutauschen. Eine Prämie erhielten jeweils die Personen, welche sich einen Pkw oder Truck kauften und deren alter Pkw maximal 18 Meilen pro Gallone kam. Die Prämie betrug zwischen \$ 3.500 und \$ 4.500. Das Programm endete am 24. August 2009. Erkennbar ist der deutliche Anstieg an Neuzulassungen in diesem Zeitraum in Abbildung 1. Die Erhöhung der Verkaufszahlen von neuen Pkw in den Monaten Juli und August 2009 war eine der höchsten in der Geschichte der USA. Insgesamt gab es für die Verschrottungsprämie 690.114 Bewerber. Erwartet hat man sich jedoch 750.000. Ein Grund für die geringere Zahl an Bewerbern war, dass die meisten eingetauschten Pkw die höchste Förderung von \$ 4.500

bekamen.⁹ Nach den Monaten Juli und August im Jahr 2009 sank die Zahl der Neuzulassungen wieder.

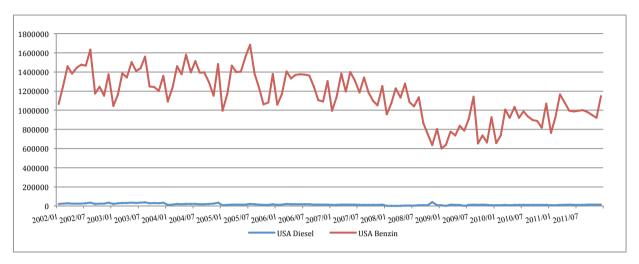
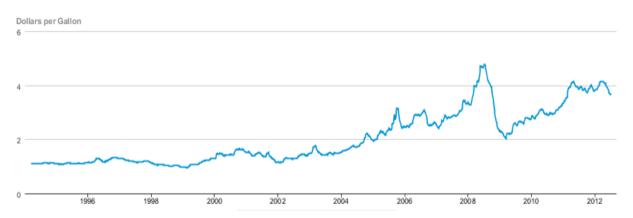



Abbildung 1: Zulassungen USA 2002 - 2011

Ein Grund für die geringe Anmeldung an dieselbetriebenen Pkw in den USA ist, dass die Anschaffung eines Pkw mit Dieselantrieb im Durchschnitt um 2,700 USD teurer ist als die Anschaffung eines identen Pkw mit Benzinmotor. Den größten Einfluss hat jedoch der Dieselpreis. Diesel ist in Amerika teurer als Benzin, da auf Diesel weit höhere Steuern lasten. Der Vorteil, den der Dieseltreibstoff in der EU hat, fällt hier somit weg. Mitunter eine Rolle dürfte auch die Verfügbarkeit des Diesel#2 spielen, der in den USA für die neue Generation von Motoren benötigt wird. Laut einer Studie verkaufen nur etwa 42% der Tankstellen in den USA den schwefelarmen Diesel.

Abbildung 2: Dieselpreise USA¹²

⁹ Economic Analysis of Car Allowance System; 2009

¹⁰ Chappel,; 2012

¹¹ Werb;2012

¹² U.S. Energy Information Administration; 2012

Wie aus den Daten von Abbildung 2 errechnet, liegt der Dieselpreis normalerweise stabil unter 1,00 € pro Liter. Die Steuern für Diesel liegen zwischen 0,324 und 0,743 Dollar pro Gallone. ¹³ Den höchsten Stand erreichte der Dieselpreis im Juli 2008 mit 4,703 Dollar pro Gallone. Das entspricht zum jetzigen Zeitpunkt einem Preis von 1,01 € pro Liter. Der darauf folgende Preissturz ist zurückzuführen auf den Beginn der Bankenkrise. Im März 2009 kostete 1 Liter wieder knapp die Hälfte ehe der Preis für Diesel kurz danach wieder anstieg.

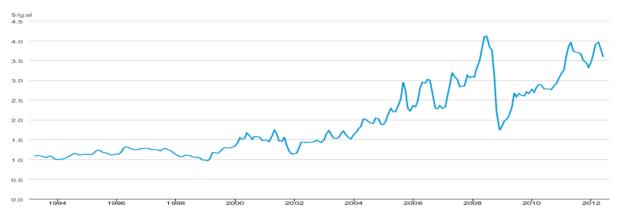


Abbildung 3: Benzinpreis USA¹⁴

Auch der Benzinpreis erreichte im Juli 2008 mit 4,114 \$ pro Gallone seinen Höchststand. Der Preis entspricht, beim Wechselkurs vom 17.07.2012, 0,887 € pro Liter. ¹⁵ Im Gegensatz zum Dieselpreis hat der Benzinpreis in den USA einen starken Einfluss auf die Anzahl der Neuzulassungen, da im Durchschnitt mehr als 90% der Neuzulassungen benzinbetriebene Pkw sind.

¹⁴U.S. Energy Information Administration; 2012

¹³ American Petroleum Institute; 2012

¹⁵ American Petroleum Institute; 2012

2.2. Auswirkungen der Treibstoffpreise und der Rebound Effekt

In der Literatur sowie in wissenschaftlichen Journalen wurden bisher verschiedene Ansätze und Analysen präsentiert, um zu erklären, wie sich der Treibstoffpreis auf die Zahl der Neuzulassungen auswirkt und wie sich Neuwagenkäufer in weiterer Folge im Bezug auf Antriebsart und Modellklasse entscheiden. Dabei wurden die Entwicklungen der Pkw in den letzten Jahrzehnten betreffend Gewicht, Treibstoffverbrauch und Ausstattung beschrieben und auf ihre Zusammenhänge untersucht. Im folgenden Teil der Arbeit werden verschiedene Methoden sowie die Ergebnisse einzelner Studien präsentiert und erläutert. Zum einen werden Studien vorgestellt, welche sich auf Fakten, aktuelle Zahlen und Entwicklungen stützen, zum anderen wird auf empirische Forschungen eingegangen, im Zuge deren der Konsument direkt zu seinem Kaufverhalten befragt wurde.

Eine in den USA durchgeführte Studie ¹⁶ hatte zum Ziel, den Zusammenhang der Treibstoffpreise mit den Neu- und Gebrauchtwagenkäufen aufzuzeigen. Verwendet wurden hierfür Daten aus den Jahren 1999 bis 2008. Da ein Anstieg des Treibstoffpreises zur Folge hat, dass die laufenden Kosten für alle Pkw steigen, nahm man daher an, dass sich die Nachfrage nach verbrauchsärmeren Pkw steigert und die Nachfrage nach Pick-up-Trucks sowie SUVs sinkt. Es wurden lineare Wahrscheinlichkeitsmodelle verwendet. Die verschiedenen Fahrzeugtypen wurden in vier Unterklassen geordnet und nach ihrem Verbrauch unterteilt. Der stärkste Effekt der Preissteigerungen des Treibstoffpreises zeigte sich in der Neuwagensparte. So würden bei einer Treibstoffpreiserhöhung um \$ 1 die Zahl der Neuzulassungen in der effizientesten Klasse um 17,70% steigen und die Neuwagenkäufe im Segment der ineffizientesten Fahrzeuge um 17,50% sinken.

Die Ökonomen Klier und Linn¹⁷ nahmen an, dass die Treibstoffpreise den amerikanischen Neuwagenmarkt beeinflussen und sich auf die Verkaufszahlen einzelner Fahrzeugmodelle auswirken. Diese Studie kombiniert die Veränderung der Treibstoffpreise über eine Zeitreihe von 1978 bis 2007 mit der Veränderung hinsichtlich der Kraftstoffeinsparungen im Querschnitt. Darüber hinaus nahm man an, dass die Treibstoffpreise eine Auswirkung auf die Verkaufszahlen einzelner Fahrzeugmodelle und somit auf die Marktanteile einzelner Segmente hat. Die Entwicklung der Treibstoffpreise führte unter anderem dazu, dass knapp die Hälfte des

¹⁶ Busse et.al.; 2009

¹⁷ Klier et.al.; 2010

Marktanteilverlustes der amerikanischen Automobilindustrie darauf zurückzuführen ist. Das Ergebnis der steigenden Treibstoffpreise in den Jahren 2002 bis 2007 war, dass sich der Marktanteil kleinerer SUVs von 7,50% auf 17,30% erhöhte, während sich der Marktanteil großer SUVs von 18,30% auf 12,00% verringerte. Im gleichen Zeitraum sanken auch die Marktanteile amerikanischer Hersteller, die sich hauptsächlich auf den Verkauf und die Herstellung von großen Fahrzeugen stützten, um 20,00%. In diesem Zusammenhang zeigte sich ebenfalls, dass die Erhöhung der Treibstoffpreise um \$ 1,11 pro Gallone¹⁸ für rund die Hälfte des Verlustes an Marktanteilen großer SUVs verantwortlich war.

Auch Walter M. McManus (2007) beschäftigte sich mit dem Zusammenhang der Treibstoffpreise und den Pkw Verkäufen. 19 Er kritisiert, dass amerikanische Fahrzeughersteller einen solchen Zusammenhang dementieren und der Meinung sind, dass das Gesetz der Nachfrage nicht auf ihren Markt zutrifft und somit steigende Treibstoffpreise keine Auswirkung auf die Verkäufe von SUVs und Pkw haben.²⁰ Als einer der Gründe führt er die Besessenheit der Automobilindustrie für die Aufzählung von Verkaufszahlen an, bei der Hummers mit Minis gleichgesetzt werden. Nach den Anschlägen des 11. Septembers 2001 in New York stagnierte der amerikanische Automarkt, da sich die Bürger unsicher über die Folgen und weiteren Geschehnisse waren. Die amerikanischen Fahrzeughersteller, allen voran General Motors (GM), reagierten sofort und führten aufgrund dieser Tatsache am 19. September 2001 die 0%-Finanzierung ein. Bekannt wurde diese Kampagne von GM unter dem Namen "Keep America Rolling". Mit Beginn dieser Kampagne trat GM einen Preiskampf zwischen den amerikanischen Fahrzeugherstellern los, der bis zum März 2006 andauerte. Die Kampagnen der Fahrzeughersteller erwiesen sich als sehr effektiv und kurbelten den Verkauf von großen SUVs an. Viele Konsumenten nutzten eine solche Finanzierung, um sich ein Fahrzeug anzuschaffen, welches sie sich sonst nicht leisten hätten können. Diese Tatsache erklärt unter anderem, warum die Verkaufszahlen von großen SUVs nahezu gleich blieben. Außerdem zeigt sich, dass sich ein steigender Treibstoffpreis positiv auf die Nachfrage nach effizienteren Fahrzeugen auswirkt, und die Konsumenten bereit sind mehr für einen Pkw zu bezahlen, wenn er weniger verbraucht. Für diese Studie wurden Daten von 445 Fahrzeugen von 2002 bis 2005 gesammelt und für eine Cross-section-time-series-Analyse herangezogen. Querschnittsanalyse den Preis, die Leistung, das Leergewicht, Treibstoffverbrauch und die Zeitreihenanalyse den Treibstoffpreis (Benzin) sowie das frei

¹⁸ Eine Gallone entspricht 3,78541178 Liter

McManus; 2007
 McManus; 2007
 McManus; 2007

verfügbare Pro-Kopf-Einkommen beinhalteten. Hier zeigt sich bei einer Regression der Variablen, dass mehr Leistung und ein höheres Eigengewicht mit einem höheren Fahrzeugpreis und ein höherer Verbrauch mit einem geringeren Fahrzeugpreis zusammenhängen. Man konnte bestätigen, dass der Einfluss der Treibstoffpreise auf die Fahrzeugpreise vom Treibstoffverbrauch abhängt. Das heißt, je größer der Verbrauch eines Fahrzeuges, desto größer ist der Einfluss steigender Treibstoffpreise auf den Fahrzeugpreis. So fiel im Zeitraum von 2002 bis 2005 der durchschnittliche Preis eines großen SUVs um bis zu \$ 2.300 mehr als im Vergleich der Preis eines kleinen Pkw.

Kauft sich der Konsument nun ein spritsparendes Fahrzeug, so bedeutet dies nicht unbedingt, dass er sich durch diese Investition Geld spart, da ein verbrauchsärmeres und somit effizienteres Fahrzeug zur zusätzlichen Nutzung anregt. ²¹ Denn der Mensch macht das Fahren unter anderem abhängig vom Energieverbrauch und somit von den variablen Kosten pro zurückgelegten Kilometer. Ist ein Pkw effizienter, kostet es weniger, eine bestimmte Strecke zurückzulegen, und man neigt dazu, mehr und weiter mit dem Pkw zu fahren. Dies hat natürlich zur Folge, dass die Ausgaben für Treibstoff im Endeffekt gleich hoch sind wie zuvor. Dieser sogenannte "Rebound Effekt" wurde von Small und Van Dender (2007) untersucht und erläutert. Man fokussierte sich dabei bewusst auf einen längeren Zeitraum und machte sich Daten von Fahrzeugen aus den Jahren 1966 bis 2001 zu Nutze, um die Entwicklung des Effektes und mögliche Einflussfaktoren zu untersuchen. Der Datensatz beinhaltet den Treibstoffverbrauch und die gefahrenen Meilen. Über den betrachteten Zeitraum war der Rebound Effekt gesamt gesehen schwächer (10.7%) als angenommen (22.2%) und sank mit Verlauf der Zeit stetig. Speziell zwischen 1997 und 2001 (2,2%) war er um die Hälfte geringer als über den gesamten betrachteten Zeitraum. Der Rebound Effekt verändert sich mit dem Einkommen, der Verstädterung und den Treibstoffkosten. Es konnte nachgewiesen werden, dass bei einem steigenden Einkommen der Treibstoffpreis weniger relevant ist und nicht darüber entscheidet, ob mehr oder weniger gefahren wird. Anderseits hält man auch fest, dass der Effekt bei Veränderungen der Treibstoffpreise möglicherweise steigt, da die Treibstoffkosten die laufenden Kosten erhöhen. Anhand der derzeitig hohen Treibstoffpreise ist eine Auswirkung auf die Anzahl der gefahrenen Kilometer und auf die Wahl des Fahrzeuges deutlich erkennbar.

-

²¹ Small; 2007

Auf Grund des hohen Bedarfs und der daraus resultierenden steigenden Treibstoffpreise sind die USA sehr bestrebt, sich schrittweise von fossilen Energieressourcen abzuwenden und die Abhängigkeit von ausländischem Erdöl zu senken. 2007 beschlossen George W. Bush und seine Regierung den sogenannten "Biofuelplan"²². Dessen Ziel ist es, den Erdölimport bis 2025 um 75%²³ zu verringern und die Produktion von Biotreibstoff zu verfünffachen. Der derzeit regierende Präsident Barack Obama will darüber hinaus die Treibhausgasemissionen im Vergleich zu 2005 bis zum Jahr 2050 um 80% senken.²⁴ Die USA gelten jetzt schon als der weltweit größte Biosprithersteller und viele Amerikaner sind bereits auf Elektro- oder Hybridautos umgestiegen, sei es auch nur aus Imagegründen.

²² Theile; 2011 ²³ Rosin; 2006; S. 1.ff

²⁴ Schiffer et.al.; 2010; S. 7 ff.

3. Der österreichische Automobilmarkt

Diese Diplomarbeit hat zum Ziel die leitende Frage zu beantworten, ob die drastisch gestiegenen Treibstoffpreise, wie in den USA, auch in Österreich eine Auswirkung auf die Zahl der Neuzulassungen haben oder nicht. Um diese Frage zu beantworten werden einleitend die wirtschaftlichen und umweltpolitischen Rahmenbedingungen, welche den Treibstoffpreis sowie die Fahrzeugpreise in Österreich beeinflussen erläutert. Des Weiteren werden die Entwicklungen der österreichische Treibstoffpreise und die Zahl der Neuzulassungen beschrieben, und näher auf diese eingegangen. In weiterer Folge präsentiert der Autor wissenschaftliche Studien zum österreichischen Fahrzeugmarkt und geht auch hier auf den Rebound Effekt ein.

3.1. Rahmenbedingungen in Österreich

Im folgenden Abschnitt werden wirtschaftliche und umweltpolitische Faktoren, welche den Treibstoffpreis und die Pkw Preise in Österreich beeinflussen, näher erläutert.

3.1.1. Normverbrauchsabgabe²⁵

Die Normverbrauchsabgabe ist eine einmalig zu zahlende Abgabe. Ihr unterliegen alle Kraftfahrzeuge (Pkw, Kombinationsfahrzeuge und Motorräder) die in Österreich erstmalig zum Verkehr zugelassen werden. Dazu zählen nicht nur Fahrzeuge die in Österreich neu gekauft werden, sondern auch Fahrzeuge die entweder neu oder gebraucht oder als Übersiedlungsgut aus dem Ausland eingeführt werden. Es fallen aber auch Fahrzeuge darunter, die zum Zeitpunkt des Kaufes auf Grund ihres Verwendungszweckes begünstigt waren und durch Änderung ihrer Nutzung nachträglich unter die Abgabepflicht fallen.

Von der NoVA befreit sind ausschließlich elektrisch betriebene Fahrzeuge, Kleinkrafträder (Moped-Zulassungen) und Ausfuhrlieferungen in den europäischen Raum. Darüber hinaus noch Fahrzeuge, welche einem begünstigten Verwendungszweck (Diplomatenfahrzeuge, Mietwagen, Taxis, Rettungs- und Einsatzfahrzeuge der Feuerwehr) unterliegen.

-

²⁵ BMW FJ, 2012

Rechtsgrundlage für die NoVA ist das *Normverbrauchsabgabegesetz 1991 (NoVAG)*, *BGBI 1991/695 idgF*.

Die Höhe der zu entrichtenden Abgabe wird bemessen am Nettowert des Fahrzeuges und ist bei Kraftfahrzeugen abhängig vom durchschnittlichen Kraftstoffverbrauch und bei Motorrädern vom Hubraum. Die NoVA ist nach oben hin mit 16% begrenzt und fällt nicht in die Bemessungsgrundlage der Umsatzsteuer. Abgeführt wird sie in der Regel vom Fahrzeughändler oder Leasinggeber und wird wie folgt berechnet:

- Benzin: (Gesamtverbrauch gem. MVEG Zyklus abzüglich 3 Liter) x 2%
- Diesel: (Gesamtverbrauch gem. MVEG Zyklus abzüglich 2 Liter) x 2%
- Motoren für andere Kraftstoffarten: (Gesamtverbrauch gem. MVEG Zyklus abzüglich
 3 Liter bzw. kg) x 2%
- Motorräder: 0,02% x (Hubraum in ccm abzüglich 100 ccm)

Die berechnete Abgabe kann sich auf Grund eines im Juli 2007 eingeführten Bonus/Malus-Systems je nach Abgasverhalten des Fahrzeuges erhöhen oder verringern. Zwischen 1. März 2011 und dem 31. Dezember 2012 gilt ein Bonus/Malus für CO₂ und NOx − Emissionen, welches nach sich zieht, dass sich die Steuerschuld für Fahrzeuge deren CO₂ Ausstoß größer ist als 150 g/km um 25 € je g/km erhöht. Ist der CO₂ Ausstoß höher als 180 g/km so erhöht sich die Steuerschuld um weitere 25 € je g/km und bei einer Überschreitung der Emissionsgrenze von 220 g/km erhöht sich die zu entrichtende Steuer noch einmal um 25 €. Ab dem 1. Jänner 2013 gelten neue Richtwerte für die Emissionsgrenzen, so wird die Grenze von 180 g/km auf 170 g/km und 220 g/km auf 210 g/km herabgesetzt.

3.1.2. Kfz – Steuer/motorbezogene Versicherungssteuer

Der Kraftfahrzeugsteuer unterliegen in Österreich Lkw und Busse mit einem höchstzulässigen Gesamtgewicht von über 3,5 t.

Pkw mit einem Gesamtgewicht von unter 3,5 t fallen unter die motorbezogene Versicherungssteuer. Die Einhebung der Steuer erfolgt gemeinsam mit der Haftpflichtprämie.²⁶ Die Grundlagen für die Versicherungssteuer und deren Höhe sind im

_

²⁶ WKO Wien, 2012

Versicherungssteuergesetz 1953²⁷ verankert. Die Bemessung der zu entrichtenden Steuer erfolgt grundsätzlich je Kilowatt, ist aber noch von weiteren Faktoren abhängig. Einen Faktor stellt der Zeitraum der Zulassung bzw. der Zeitraum in dem die Versicherungsprämie geleistet wird dar. Unterschieden wird hierbei zwischen einer monatlichen, halbjährlichen und jährlichen Prämienzahlung. Ein weiterer grundlegender Faktor für die Höhe des Steuersatzes ist die Art des Kfz bzw. die Motorleistung. Des Weiteren unterliegen Pkw einem Mindestsowie einem Höchststeuersatz.²⁸

3.1.3. Mineralölsteuer

Die Mineralölsteuer ist eine Verbrauchsteuer der sowohl Kraftstoffe, Heizstoffe und Mineralöle unterliegen welche im Inland erworben werden als auch Mineralöle die in das Steuergebiet eingebracht werden. Die Bestimmungen dieser sind im Mineralölsteuergesetz 1995 verankert. Schwerpunkt dieser Arbeit sind die Kraftstoffe Diesel und Benzin, die beide jeweils verschiedenen Steuersätzen unterliegen.

Diesel zählt zu den Gasölen und unterliegt seit dem 31. Dezember 2010 einem Steuersatz von 397 Euro je 1000 Liter. Demnach bezahlt der Konsument aktuell an der Zapfsäule je Liter 0,397 Euro an Steuern. Vor dieser Erhöhung war pro Liter eine Mineralölsteuer von 0,347 Euro zu entrichten. Benzin ist in Österreich seit dem 01. Jänner 2010 mit einem Steuersatz von 482 Euro pro 1000 Liter behaftet. Folglich bezahlt der Konsument 0,482 Euro pro Liter Benzin Mineralölsteuer.

Eine Ausnahme dieser Besteuerung bildet unter anderem Agrardiesel. Bei diesem gibt es die Möglichkeit einer Vergütung in Höhe von 0,299 Euro je Liter. ²⁹

3.1.4. Umsatzsteuer

Der Umsatzsteuer unterliegen in Österreich lt. § 1 UStG Ziffer 1 Lieferungen und sonstige Leistungen, die im Inland gegen Entgelt erbracht werden, sowie die Einfuhr von Gegenständen. Der Steuersatz wird am anfallenden Entgelt bemessen und beträgt im Normalfall 20% des Ganzen. Im Grunde genommen betrifft die Umsatzsteuer den Letztverbraucher. Als Steuerschuldner fungiert aber der Unternehmer, der die Umsatzsteuer

-

²⁷ Vgl: BGBl. Nr. 133/1953: 133. Bundesgesetz: §4 - §5 Versicherungssteuergesetz, 1953

²⁸ BMW FJ,2012

²⁹ Vgl: BGBl. Nr. 630/1994: 630. Bundesgesetz: Mineralölsteuergesetz 1995

vom Kunden kassiert und an das Finanzamt abführt. Somit beinhaltet der Erwerb eines Pkw und von Treibstoff eine zusätzliche Steuer in der Höhe von 20%.³⁰

3.1.5. Verschrottungsprämie

In Österreich gab es im Zeitraum vom 01. April 2009 bis zum 31. Dezember 2009 eine Verschrottungsprämie, die so genannte "Ökoprämie" in der Höhe von € 1500.³¹ Die Prämie erhielten Neuwagenkäufer deren eingetauschtes Fahrzeug älter als 13 Jahre war (Erstzulassungsdatum vor 01.01.1996), eine gültige §57a KFG³² Plakette hatte und tatsächlich zum Verkehr in Österreich zugelassen war. Das alte Fahrzeug musste mindestens 1 Jahr auf den Besitzer zugelassen sein und dieser musste auch der Neuzulasser sein. Vorgesehen war die Prämie für die ersten 30.000 Fahrzeuge. Die Prämie lief nicht über den gesamten Zeitraum, da der "Prämientopf" bereits im Juni 2009 erschöpft war.

_

 $^{^{30}}_{\sim}$ Vgl: BGBl. Nr. 663/1994: 663. Bundesgesetz: Umsatzsteuergesetz 1994

³¹ ÖAMTC; 2009

³² Vgl: BGBl. Nr. 267/1967. Bundesgesetz über das Kraftfahrwesen 1967

3.2. Treibstoffpreisentwicklung in Österreich

Im folgenden Teil der Arbeit legt der Autor den Fokus auf die Treibstoffpreisentwicklung in Österreich seit der Einführung des Euro am 01. Jänner 2002 als gültiges Zahlungsmittel. Die Treibstoffpreise wurden aus den Daten des BMW FJ errechnet, welches alle 2 Wochen eine Preisaufzeichnung in Österreich durchführt. Die Diagramme wurden vom Autor basierend auf den zur Verfügung stehenden Daten selbst erstellt. Verwendet wurden ausschließlich Endverbraucherpreise, inklusive aller Abgaben und Steuern. Betrachtet werden die beiden gängigsten Treibstoffklassen Diesel und Benzin.

Grundsätzlich richten sich die Preise für Roh- und Mineralöl nach den Entwicklungen der internationalen Rohölpreise. Maßgeblich für die Treibstoffpreise im europäischen und nationalen Raum sind aber vor allem die Preise für Öl am Rotterdamer Spotmarkt. Hier werden sowohl Rohöl als auch fertige Mineralölprodukte wie Benzin, Diesel und Heizöl zum sofortigen Transport verkauft. Obwohl sich die Preise des Spotmarktes an den Kursen der internationalen Rohstoffbörsen orientieren, werden sie letztlich durch Angebot und Nachfrage determiniert. Für die längerfristige Entwicklung der Treibstoffpreise am Spotmarkt sind aber noch weitere regionale Faktoren mitbestimmend. Kosten für die Lagerung, Lagerbestände und den Transport, die Wettbewerbssituation zwischen den europäischen Raffinerien, deren Auslastung und der Euro-/Dollarkurs, dessen Wechselkursänderungen stets zu Schwankungen bei den Treibstoffpreisen führen, beeinflussen die Preise.

Darüber hinaus stehen die Notierungen auch unter dem Einfluss von politischen und wirtschaftlichen Krisen, Elementarereignissen und Änderungen der Förderpolitik. Aktuell lässt der schwellende Konflikt um die Atompolitik des Irans den Ölpreis steigen und immer weitere Höhen erreichen.

Eine Preiserhöhung auf dem Rotterdamer Markt führt unweigerlich zu einer Preiserhöhung an der Zapfsäule. Argumentiert wird diese aber in erster Linie mit Preisentwicklungen an den Börsen. Preiserhöhungen werden meist sofort und vollständig an den Konsumenten weitergegeben, während Kurssenkungen erst verspätet und schrittweise an den Konsumenten weitergeleitet werden, argumentieren vor allem Verbraucherschützer.³³ Im Jahr 2008 erreichten Benzin und Diesel mit 1,433 € für einen Liter Diesel und 1,339 € für einen Liter Benzin, aufgrund der enorm hohen Rohölpreise, ihren bis dahin höchsten Stand.³⁴ Als eine Konsequenz

³³ Arbeiterkammer Wien; 2008

³⁴ Wirtschaftswoche, 2012

der Lehman-Pleite (Immobilienmarkt) und der daraus resultierenden Wirtschaftskrise fiel der Treibstoffpreis drastisch. Laut einer aktuellen Statistik vom April 2012 ist Diesel der gängigste Treibstoff in Österreich mit insgesamt 2.527.769 zugelassenen Personenkraftwagen, gefolgt von benzinbetriebenen Personenkraftwagen mit 1.996.764 zugelassenen Pkw.³⁵

3.2.1. Historische Exkurs - Treibstoffpreise

In der Vergangenheit waren vor allem politische und wirtschaftliche Ereignisse maßgebliche Faktoren für die Entwicklung der Treibstoffpreise in Österreich.³⁶

Relativ lange hielten sich die Treibstoffkosten auf einem konstanten Niveau. Von 1950 bis 1973 lag der Preis pro Liter umgerechnet bei rund 28 Eurocent. Doch mit Beginn der 1. Ölkrise im Herbst 1973, ausgelöst durch den Jom-Kippur-Krieg, stieg der Ölpreis enorm an. Die Organisation der Erdöl exportierenden Länder (OPEC) senkte die Rohölfördermengen und versuchte so, die erdölimportierenden westlichen Länder, die Israel in diesem Krieg unterstützten, unter Druck zu setzen. Dies führte zu einem Anstieg des Ölpreises um circa 70% und des Treibstoffpreises in Österreich auf circa 42 Eurocent pro Liter.

Nach 1974 beruhigte sich die Lage wieder für ein paar Jahre, ehe 1979 auf Grund weiterer Förderausfälle und der islamischen Revolution, die schließlich zum Ersten Golfkrieg führte, die zweite Ölkrise folgte, die 1980 den Treibstoffpreis in Österreich von 51 auf 72 Eurocent ansteigen ließ. Die Preise erholten sich aber relativ rasch wieder und sanken Ende der 80er-Jahre auf 58 Eurocent. Als 1990 der Irak Kuwait angriff und der zweite Golfkrieg ausbrach, sprach man bereits von einer weiteren großen Krise. Doch diese blieb aus und der Ölpreis schoss nur kurzfristig in die Höhe.³⁷

Nach der Jahrtausendwende konnten vorerst größere Anstiege durch Erhöhung der Fördermengen verhindert werden. Erst Hurrikan Katharina, der die Ölgewinnung am Golf von Mexiko massiv beeinträchtigte, sorgte wieder für einen Anstieg der Ölpreise, die im Juli 2008 ihren Höhepunkt erreichten und in Österreich den Preis pro Liter Benzin auf 1,204 Euro und pro Liter Diesel auf 1,237 Euro steigen ließen. Im Oktober desselben Jahres sanken aber auf Grund der zu erwartenden Auswirkungen der Weltwirtschaftskrise auf die Realwirtschaft sowohl der Ölpreis als auch die Treibstoffpreise wieder.

³⁶ Dr. Herry; 2007; Seite 200 ff.

³⁷ Kilian L.; 2008

³⁵ Statistik Austria, 2012

3.2.2. Dieselboom

Österreich hat in den letzten 20 Jahren einen wahren Dieselboom erfahren. Seit 1990 hat sich die Anzahl der Pkw mit Dieselmotoren versechsfacht. Laut einer Studie vom April 2012 sind derzeit 2.527.769 Millionen Pkws mit Dieselantrieb gemeldet. Das sind rund 56% aller in Österreich zugelassenen Fahrzeuge. Grund für die stetige Steigerung des Dieselmarktanteiles ist einerseits die steuerliche Begünstigung von Dieseltreibstoff, die Diesel zum kostengünstigsten Treibstoff macht und dafür sorgt, dass der Kunde an der Zapfsäule pro Liter Diesel im Vergleich zum Benzin ungefähr 10 Cent weniger bezahlt. Andererseits begründet die effiziente Verbesserung der Dieseltechnologien diese Steigerung. War der Dieselmotor in den 80er-Jahren noch als "Traktor" verschrien, so erlebte er dank Common-Rail-Einspritzung, durchdachter Aufladung und verbesserter Motoren einen regelrechten Aufwind, der ihn mit den Benzinmotoren gleichziehen ließ und ihn genauso sparsam, leise und schnell machte.

Dieser Trend hält auch trotz steigender Treibstoffpreise und der geringer gewordenen Preisdifferenz zwischen Diesel und Benzin nach wie vor an. Allerdings ist er nicht mehr in allen Autoklassen beobachtbar. Speziell in den höheren Leistungsklassen, sind dieselbetriebene Fahrzeuge vorherrschend.

Der Dieselboom bringt aber auch Nachteile mit sich. Die hohe Nachfrage nach dieselbetriebenen Fahrzeugen und somit nach Diesel lässt den Preis immer weiter steigen und den Preisvorteil gegenüber Benzin sinken. Experten kritisieren, dass die Mineralölgesellschaften dem Trend nicht gefolgt sind und ihre Kapazitäten nicht erhöht haben. Was dazu führt, dass Diesel langfristig gesehen knapp wird, importiert werden muss und infolgedessen der Preis weiterhin steigt.

-

³⁸ Statistik Austria, 2012

3.2.3. Diesel

Diesel ist, wie schon im vorherigen Kapitel erläutert, der gängigste Treibstoff in Österreich. Im März des Jahres 2012 musste man an der Tankstelle für einen Liter Diesel 1,438 € bezahlen. Zusammengesetzt hat sich dieser Preis, wie in Abbildung 4 ersichtlich, aus dem Basispreis von 0,801 € je Liter Diesel, einer Mehrwertsteuer von 0,24 € und einer Mineralölsteuer in der Höhe von 0,397 €. Somit erhält der Staat 44% des zu zahlenden Preises, die restlichen 56% sind der Preis für einen Liter Diesel ohne Abgaben und Steuern.

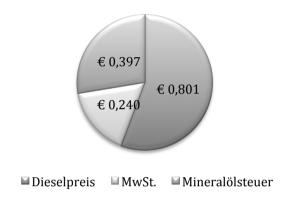


Abbildung 4: Zusammensetzung des Dieselpreises im März 2012

Betrachtet man nun in Abbildung 5 die Preisentwicklung seit der Einführung des Euro im Jahr 2002, so fällt auf, dass im Jahr 2008 ein enormer Preisanstieg auf bis zu 1,408 € im Juli zu verzeichnen war. Vergleicht man den Preis mit dem Preis des Vorjahres und dem des darauffolgenden Jahres, so ist von Juli 2007 auf Juli 2008 eine Preissteigerung von insgesamt 33,33% zu erkennen und von Juli 2008 auf Juli 2009 eine Preissenkung von 30,68%.

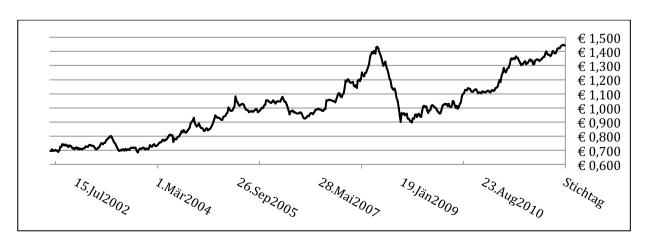


Abbildung 5: Entwicklung der Dieselpreise seit 01.01.2002

Zurückzuführen ist dieser enorme Preisanstieg, wie zu Beginn schon erwähnt, auf die drastisch gestiegenen Rohölpreise. Sieht man sich nun den allgemeinen Verlauf der Dieselpreiskurve an, so erkennt man, dass der Preis nur eine Richtung kennt, nämlich die nach oben. Wie aus Tabelle 1 ersichtlich, steigt der Preis im Durchschnitt pro Jahr um 8,81%. Am teuersten ist der Treibstoff grundsätzlich in den Sommermonaten Mai bis Juli. Vor allem zu Beginn der Ferien sind immer wieder Preiserhöhungen zu verzeichnen.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Preis-€	0,728	0,808	0,950	1,089	1,036	1,237	0,973	1,106	1,332
+/- %		10,97	17,6	14,68	-4,89	19,38	-21,3	13,64	20,40

Tabelle 1: Dieselpreisentwicklung jährlich

3.2.4. Benzin

Aktuell sind in Österreich 4,541 Millionen Pkw zum Verkehr zugelassen.³⁹ 44,1% dieser Kraftfahrzeuge sind benzinbetrieben. Im März 2012 lag der Preis für einen Liter Benzin bei 1,472 €. Wie in Abbildung 6 ersichtlich, setzt sich dieser Preis aus der Umsatzsteuer in Höhe von 0,245 €, der Mineralölsteuer von 0,482 € und dem Preis vor Steuern von 0,745 € je Liter Benzin zusammen. Somit erhält der Staat circa 50% des zu zahlenden Preises in Form von Steuern und Abgaben.

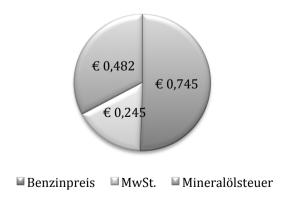


Abbildung 6: Zusammensetzung des Benzinpreises im März 2012

Betrachtet man nun wie beim Diesel die Preisentwicklung von Benzin ab der Einführung des Euro im Jahr 2002 in Abbildung 7, so ist auch hier zu erkennen, dass der Benzinpreis im Jahr

³⁹ Statistik Austria; 2012

2008 seinen bis dahin höchsten Stand erreicht hat. Im Juni 2008 stieg dieser auf eine Höhe von 1,327 € pro Liter. Dies entspricht im Vergleich zum Juni 2007 einer Steigerung von 18,91%. Vergleicht man nun den Preis vom Juni 2009 mit dem vom Juni 2008, so ist eine Senkung von 16,96% zu verzeichnen.

Ebenso wie beim Dieseltreibstoff kommt es beim Benzinpreis zu einer Erhöhung während der Sommermonate Mai bis Juli. Betrachtet man auch hier die Preisentwicklung mittels eines jährlichen Durchschnittspreises, wie in Tabelle 2, so ist ein klarer Aufwärtstrend beim Benzinpreis zu erkennen. Jährlich steigt der Preis für einen Liter Benzin im Durchschnitt um 5,99%.

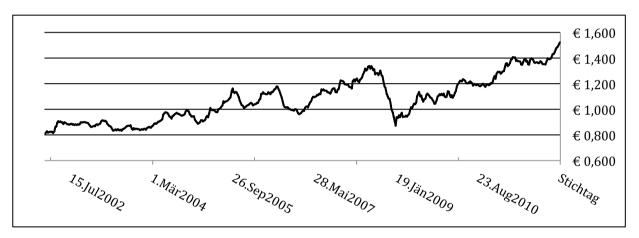


Abbildung 7: Entwicklung der Benzinpreise seit 01.01.2002

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Preis-€	0,861	0,929	1,016	1,156	1,104	1,204	1,041	1,188	1,358
+/- %		7,26	9,29	13,69	-4,61	7,68	-13,6	14,00	14,23

Tabelle 2: Benzinpreisentwicklung jährlich

3.2.5. Vergleich Benzin und Diesel

Vergleicht man nun die Preise beider Treibstoffklassen ab dem Jahr 2002, dargestellt in Abbildung 8, so ist zu erkennen, dass diese demselben Muster folgen. Steigt der Benzinpreis, so steigt auch der Dieselpreis und umgekehrt. Auffällig ist, dass der Dieselpreis fast immer unter dem Benzinpreis liegt. Eine Ausnahme stellt die Preisentwicklung vor der Bankenkrise dar. 2008 ist Diesel zum ersten Mal teurer als Benzin. Doch die Entwicklung währt nicht lange. Zu Beginn des Jahres 2009 ist wieder das alte Bild zu erkennen und Benzin wieder teurer als Diesel. Einzig die Preisdifferenz ist eine wesentlich geringere als zuvor. Erkennbar ist dies in Tabelle 3, in welcher das Δ aus Benzin und Diesel jährlich errechnet wurde. Zurückzuführen ist die geringere Preisdifferenz unter anderem auch auf die Erhöhung der Mineralölsteuer Anfang 2011. Würde Diesel dem gleichen Steuersatz wie Benzin unterliegen und nicht staatlich gefördert werden, so hätte er einen höheren Preis, da der Grundpreis höher ist.

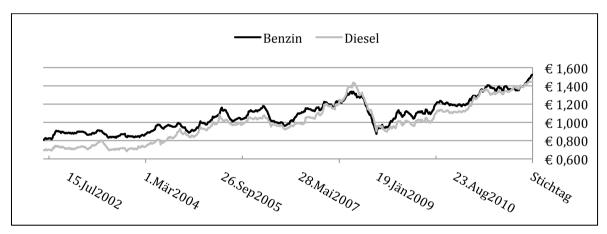


Abbildung 8: Vergleich Benzin- und Dieselpreise ab 01.01.2002

Zu Beginn des Jahres 2011 zeigt sich das gleiche Bild wie im Jahr 2008, in dem Diesel für kurze Zeit ebenfalls teurer ist als Benzin.

Anzumerken ist, dass der Dieselpreis auch mit dem Heizölpreis zusammenhängt, da Diesel der gleichen Gruppe unterliegt. Wird Heizöl teurer, so steigt auch der Dieselpreis.⁴⁰

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Δ Β/D	,134	,121	,066	,067	,068	-,033	,068	,028	,026

Tabelle 3: ∆ Benzin und Diesel

_

⁴⁰ Kleine Zeitung, 2011

3.2.6. Gegenüberstellung der Treibstoffpreise

Für die folgende Auswertung der Treibstoffpreise wurde das Programm SPSS Version 18.0 verwendet. Die Auswertungen sind in vereinfachter Form in selbst erstellten Tabellen veranschaulicht und es werden nur die wichtigsten Werte für einen Vergleich herangezogen. Die detaillierten Ergebnisse der Auswertung sind dem Appendix zu entnehmen. Für die Berechnung wurden die gleichen Daten verwendet wie zuvor für die Beschreibung der Preisentwicklung. Um eine solche Auswertung durchführen zu können, muss zunächst geprüft werden, ob die Treibstoffpreise normalverteilt sind. Betrachtet man Abbildung 9, so ist ersichtlich, dass die Treibstoffpreise diese Bedingung erfüllen und als abhängige Variable der folgenden Analysen verwendet werden können.

Treibstoff	N	Mittelwert	T
Benzinpreis	124	1,0769266133	2,987
Dieselpreis	124	1,0033786285	2,987

Tabelle 4: T-Test bei unabhängigen Stichproben

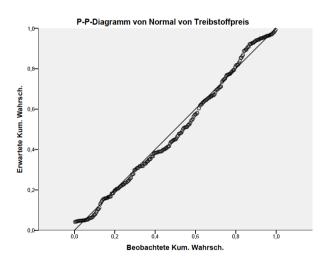


Abbildung 9: Normalverteilung der Treibstoffpreise

Das Ergebnis des T-Tests beruht auf 124 (N) Beobachtungen, also den monatlich errechneten Treibstoffpreisen von Jänner 2002 bis März 2012. Der Mittelwert des Benzinpreises liegt bei 1,0769 € je Liter, der des Dieselpreises bei 1,0338 € je Liter. Somit ist über den gesamten Beobachtungszeitraum ein Liter Benzin im Durchschnitt um 0,074 € teurer als ein Liter Diesel. Nicht zutreffend ist diese Auswertung für den Dieselpreis im Jahr 2008, da dieser damals über

mehrere Monate hinweg höher war als der Benzinpreis. Des Weiteren sind die beiden Treibstoffpreise bei einem T(246) = 2,987; <0,05 signifikant.

Der Autor kommt zu dem Schluss, dass die Treibstoffpreise für Benzin und Diesel nahezu perfekt korrelieren. Das bedeutet, dass in 94,67% aller Fälle, in denen der Benzinpreis steigt, auch der Dieselpreis steigt und umgekehrt. Dieser Prozentsatz sagt jedoch nichts über die wertmäßige Veränderung der Preise aus. Er erklärt lediglich, dass sich beide Preise zum selben Zeitpunkt simultan erhöhen oder verringern.

3.3. Neuzulassungen in Österreich

Im folgenden Kapitel gibt der Autor einen Einblick in die Neuzulassungen von Personenkraftwagen in Österreich. Im ersten Teil werden die Neuzulassungen in ihrer Gesamtheit ausgearbeitet und anschließend in die zwei gängigsten Treibstoffklassen Benzin und Diesel unterteilt. Im zweiten Abschnitt werden die Neuzulassungen in den wichtigsten Fahrzeugsegmenten betrachtet und in weiterer Folge zwischen Benzin und Diesel differenziert. Auch im dritten Abschnitt dieses Kapitels, in welchem auf die Neuzulassungen in den einzelnen Bundesländern eingegangen wird, wird eine Unterteilung in Benzin und Diesel vorgenommen, um eine Auswertung der statistischen Ergebnisse zu ermöglichen. Die Daten für die Neuzulassungen wurden der Datenbank des European Market Analysers der Firma Eurotaxglass's sowie der Datenbank von Statistik Austria entnommen. Die folgenden Diagramme wurden basierend auf diesen Daten vom Autor selbst erstellt. Die Auswertung der Daten beruht auf dem Zeitraum Jänner 2002 bis Dezember 2011.

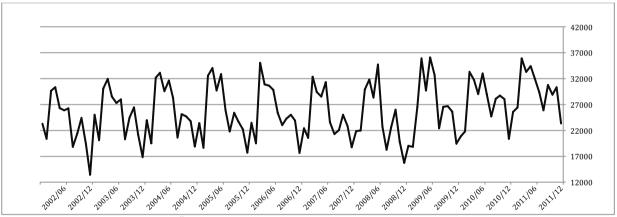


Abbildung 10: Neuzulassungen in Österreich (2002-2011)

Wie in Abbildung 10 ersichtlich, unterliegen die Neuzulassungen jedes Jahr einem ähnlichen Muster. Zu Beginn des Sommers, in den Monaten April bis Juni, werden in Österreich die meisten Pkw zum Verkehr zugelassen. Nach Gesprächen mit verschiedenen Autohändlern⁴¹ ist der enorme Anstieg an Neuzulassungen und das große Interesse der Österreicher, gerade in diesen Monaten ein Auto zu kaufen, auf unterschiedliche Faktoren zurückzuführen. Zum einen werden die im Jänner jeden Jahres auf der Vienna Autoshow⁴² präsentierten neuen Modelle der einzelnen Hersteller an den Handel geliefert und dort vorgestellt, zum anderen werden die Modelle des Vorjahres zu günstigeren Preisen verkauft, um Platz für neue Pkw im Autohaus zu

⁴¹ Bruckschlögl, 2012 - Cetinkaya; 2012

⁴² Vgl: Vienna Autoshow, 2012

schaffen. Für viele Konsumenten lohnt es sich somit mit dem Neuwagenkauf auf die Monate April, Mai oder Juni zu warten.

Wie in Tabelle 5 ersichtlich, wurden im Jahr 2002 insgesamt 279.493 Pkw zum Verkehr zugelassen. Den Platz an der Spitze der Neuzulassungen konnten mit 69,61% die dieselbetriebenen Pkw für sich behaupten. Nur knapp 30% der Neuzulassungen waren benzinbetrieben. In den darauffolgenden Jahren 2003 und 2004 hielten Dieselbetriebene mit knapp 70% noch immer den größten Anteil. Ab dem Jahr 2005 stieg der Anteil der Benzinbetriebenen an den Neuzulassungen.

	Zulassungen	Benzin	Diesel	Δ D/B
2002	279.493 (-)	84.902(30,38%)	194.555(69,61%)	109.653
2003	300.121(+7,38%)	85.564(28,51%)	213.505(71,14%)	127.941
2004	311.292(+3,72%)	90.853(29,19%)	220.255(70,76%)	129.402
2005	307.915(-1,08%)	107.450(34,90%)	199.911(64,92%)	92.461
2006	308.594(+0,22%)	116.085(37,62%)	191.766(62,14%)	75.681
2007	298.182(-3,37%)	120.313(40,35%)	176.746(59,27%)	56.433
2008	293.697(-1,50%)	131.070(44,63%)	160.459(54,63%)	29.389
2009	319.403(+8,75%)	169.416(53,04%)	146.962(46,01%)	-22.454
2010	328.563(+2,87%)	157.917(48,06%)	167.129(50,87%)	9.212
2011	356.145(+8,39%)	157.551(44,24%)	194.721(54,67%)	37.170

Tabelle 5: Neuzulassungen Österreich (2002 - 2011)

Im Jahr 2009 erreichten die Neuzulassungen von Pkw mit Dieselantrieb mit einem Anteil von nur 46,01% ihren bis dahin niedrigsten Stand über den Beobachtungszeitraum. Bei den benzinbetriebenen Pkw konnte man hingegen seit dem Jahr 2002 eine Steigerung der Neuzulassungen verzeichnen, die 2009 mit einem Anteil von 53,04% an den gesamten Neuzulassungen ihren höchsten Stand erreichte. Wie aus Abbildung 11 und Tabelle 5 ersichtlich, sinkt auch die Differenz zwischen den Zulassungen bis zum Jahr 2009 stetig. Der enorme Anstieg der Neuzulassungen in den Monaten April bis Juli 2009, vor allem von benzinbetriebenen Pkw, ist auf die Einführung der Verschrottungsprämie (Rechteck in Abb. 11) in den Monaten April bis Juni zurückzuführen. 43 Diese Prämie hatte auch noch

⁴³ Wirtschaftsblatt, 2009

Auswirkungen auf den Monat Juli, da das Kaufdatum nicht automatisch dem Zulassungsdatum entspricht. Somit konnte auch ein Pkw, der im Juni gekauft wurde, im Juli zugelassen werden, was den Anstieg der Neuzulassungen in diesem Monat erklärt.

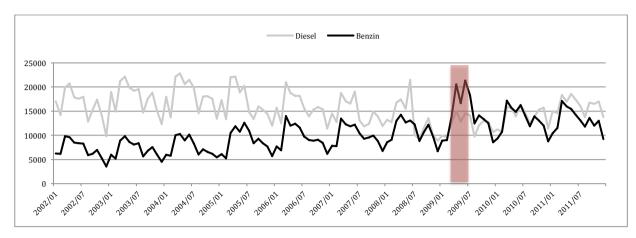


Abbildung 11: Neuzulassungen Benzin und Diesel (2002-2011)

Ab dem Jahr 2010 steigt das ΔD/B wieder an, jedoch fällt der Differenzbetrag wesentlich geringer aus als zuvor. Abbildung 12 spiegelt die Differenz der Neuzulassung bei benzin- und dieselbetriebenen Pkw wider.

Im Jahr 2011 wurden insgesamt 192.721 dieselbetriebene Pkw angemeldet. Das entspricht 54,67% der Summe aller Neuzulassungen. Noch im Jahr zuvor machten die Neuzulassungen nur 50,87%, aus.

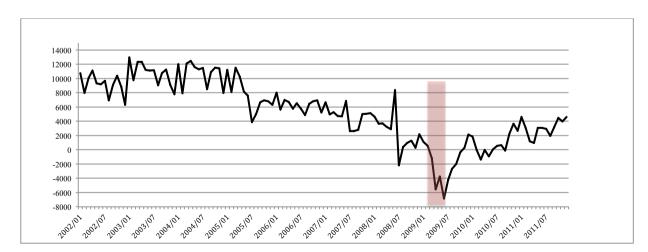


Abbildung 12: A Diesel/Benzin Neuzulassungen

3.4. Neuzulassungen unterteilt in Fahrzeugklassen

Im folgenden Kapitel legt der Autor sein Augenmerk auf die Neuzulassungen der verschiedenen Autoklassen. Unterteilt werden diese Autoklassen in:

- Stadtwagen (SW.)
- Kleinwagen (KW.)
- Untere Mittelklasse (u.Mkl.)
- Mitteklasse (Mkl.)
- Oberklasse (Okl.)
- Luxusklasse (Lkl.)
- Sportwagen (SW.)
- Minivan (MV)
- Geländewagen (GW)

Sowohl die Unterteilung der Fahrzeugklassen als auch die Daten für die Neuzulassungen sind von der Firma Eurotaxglass's und Statistik Austria übernommen worden.

In Abbildung 13 ist ersichtlich, welche Autoklassen den größten Einfluss und somit den größten Anteil an den Neuzulassungen haben.



Abbildung 13: Anteil der Fahrzeugklassen an den Gesamtzulassungen - jährlich

Sieht man sich nun Abbildung 13 genauer an, so ist erkennbar, dass die Zahl der Neuzulassungen stark von den Zulassungen der Segmente Stadtwagen, unteren Mittelklasse sowie Mittelklassewagen abhängig ist.

In den folgenden Abschnitten betrachtet der Autor die Neuzulassungen der diversen Autoklassen genauer und prüft etwaige Voraussetzungen für die anschließenden statistischen Tests. Die Summe der Gesamtzulassungen ist normalverteilt und erfüllt genauso wie der Treibstoffpreis die Voraussetzungen, um als Variable für eine Regressionsanalyse verwendet zu werden. Aus Abbildung 14 geht die nahezu exakte Normalverteilung der Zulassungen hervor.

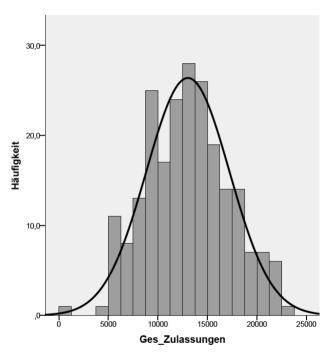


Abbildung 14: Normalverteilung der Neuzulassungen

3.4.1. Kleinwagen

Zu den Kleinwagen zählen Fahrzeuge wie Fiat Panda, Fiat 500, VW UP und Renault Twingo. Die Zulassungen der Fahrzeugklasse Kleinwagen machen nur einen kleinen Teil der Gesamtzulassungen aus. Sie konnten aber sowohl im Krisenjahr 2008 als auch im darauffolgenden Jahr ein Plus verzeichnen und hatten einen 5- bzw. 7-prozentigen Anteil an den Gesamtzulassungen. Folglich ist die Klasse der Kleinwagen, mit Ausnahme des Jahres 2009, kaum verantwortlich für Schwankungen der Summe der Zulassungen. Betrachtet man die Gruppe der Kleinwagen genauer, so ist sehr auffällig, dass die präferierte Treibstoffart Benzin ist. Zurückzuführen ist dies unter anderem auf den Verwendungszweck von Kleinwagen, welch vermehrt in Städten zur Erstzulassung angemeldet werden und vorwiegend für kurze Strecken oder als Zweitwagen dienen

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	5.335	9.095 (+70,48%)	11.306 (+24,31%)	12.407 (+9,74%)	11.222 (-9,55%)	14.290 (+27,34%)	22.560 (+57,87%)	20.001 (-11,34%)	18.213 (-8,94%)
Benzin	4.469 (83,77%)	7.788 (85,63%)	9.654 (85,34%)	10.455 (84,27%)	9.416 (83,91%)	12.561 (87,90%)	21.656 (95,99%)	18.922 (94,61%)	17.826 (97,88%)
Diesel	866 (16,23%)	1.307 (14,37%)	1.652 (14,66%)	1.952 (15,73%)	1.806 (16,09%)	1.729 (12,10%)	904 (4,01%)	1.079 (5,39%)	387 (2,12%)
Δ B/D	3.603	6.136	8.002	8.503	7.610	10.832	20.752	17.843	17.439

Tabelle 6: Neuzulassungen Kleinwagen

3.4.2. Stadtwagen

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	70.588	66.575 (-6,69%)	64.866 (-2,57%)	70.455 (+8,62%)	67.848 (-3,70%)	68.687 (+1,24%)	79.435 (15,65%)	77.141 (-2,89%)	78.350 (+1,57%)
Benzin	39.945 (56,59%)	36.961 (55,37%)	41.220 (63,55%)	48.657 (69,06%)	51.907 (76,50%)	55.879 (81,35%)	69.778 (87,84%)	64.767 (83,96%)	66.863 (85,34%)
Diesel	30.643 (43,41%)	29.614 (44,63%)	23.646 (36,45%)	21.798 (30,94%)	15.941 (23,50%)	12.808 (18,65%)	9.657 (12,16%)	12.374 (16,04%)	11.487
$\Delta \mathbf{B}/\mathbf{D}$	9.302	7.347	17.574	26.859	35.966	43.071	60.121	52.393	55.376

Tabelle 7: Neuzulassungen Stadtwagen

Die Neuzulassungen von Pkw, die in die Klasse der Stadtwagen fallen, machen in den beobachteten Jahren immer mehr als 20% der Gesamtzulassungen aus und steigen im Jahr 2009 sogar auf ca. 25%. Typische Fahrzeuge, die in diese Fahrzeugklasse fallen, sind unter anderem der VW Polo, welcher in allen betrachteten Jahren die meisten Zulassungen

verzeichnen konnte⁴⁴, sowie Skoda Fabia, Seat Ibiza, Ford Fiesta, Mini, die Mercedes-Benz A-Klasse und Audi A1

Wie in Tabelle 7 ersichtlich, wurden im Jahr 2011 die meisten Stadtwagen zugelassen. Dem gegenüber steht das schwächste Jahr der Zulassungen 2005. Die Summe der Zulassungen schwankt bei dieser Autoklasse zwischen 64.866 und 78.350. Betrachtet man jedoch Benzinund Dieselbetriebene gesondert, so ist erkennbar, dass immer mehr benzinbetriebene Pkw für den Verkehr zugelassen werden, während Dieselbetriebene stetig an Zulassungen verlieren. Die höchste Differenz zwischen den Zulassungen gab es im Jahr 2009, in welchem um 60.121 mehr benzin- als dieselbetriebene Stadtwagen zugelassen wurden.

3.4.3. Untere Mittelklasse

Zur unteren Mittelklasse zählen Fahrzeuge wie VW Golf, VW Beetle, BMW 1er, Audi A3, die Mercedes B-Klasse und Toyota Auris. Wie aus Tabelle 8 hervorgeht, sind bei dieser Autoklasse nicht mehr Pkw mit Benzinmotor die erste Wahl bei Autokäufern. In den Jahren 2003 bis 2008 wurden in diesem Segment stets mehr Pkw mit Dieselantrieb zum Verkehr zugelassen. In den beiden darauffolgenden Jahren 2009 und 2010 wurden erstmals mehr Benziner zugelassen. Doch schon im Jahr 2011 setzt sich das alte Bild wieder fort und die Dieselbetriebenen gewannen wieder die Oberhand.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	68.272	76.891 (+12,62%)	78.946 (+2,67%)	68.328 (-13,45%)	66.141 (-3,20%)	65.450 (-1,04%)	73.745 (+12,67%)	74.777 (+1,40%)	76.187 (+1,89%)
Benzin	15.432 (22,60%)	20.960 (27,26%)	27.285 (34,56%)	25.210 (38,90%)	26.382 (39,89%)	29.192 (44,60%)	38.811 (52,63%)	38.089 (50,94%)	33.862 (44,45%)
Diesel	52.840 (77,40%)	55.941 (72,74%)	51.661 (65,44%)	43.118 (61,10%)	39.759 (60,11%)	36.258 (55,40%)	34.934 (47,37%)	36.688 (49,06%)	42.325 (55,55%)
$\Delta \mathbf{B}/\mathbf{D}$	-37.408	-34.981	-24.376	-17.908	-13.377	-7.066	3.877	1.401	-8.463

Tabelle 8: Neuzulassungen untere Mittelklasse

Personenkraftwagen aus der unteren Mittelklasse machten bis 2006 den Großteil der Neuzulassungen aus. Ab dem Jahr 2006 kann jedoch die Klasse der Stadtwagen den Löwenanteil an Neuzulassungen für sich behaupten. Ein Grund für diesen Wechsel an der Spitze ist unter anderem, dass die Ausstattungen der Stadtwagen denen der unteren Mittelklasse um nichts mehr nachstehen. So ist der Unterschied in der Ausstattung eines VW

-

⁴⁴ Eurotax Market Analyser, 2012

Polo und eines VW Golf zum jetzigen Zeitpunkt nicht so gravierend wie etwa noch vor 10 Jahren. Einen VW Polo kann man nahezu mit der gleichen Ausstattung kaufen wie einen VW Golf. Darüber hinaus ist gerade in diesen Autoklassen das Bedürfnis nach einem treibstoffsparenden Pkw ein wichtiges Kaufargument. Dieser Trend wurde auch von den Automobilkonzernen wahrgenommen und man investierte viel Geld und Zeit in die Entwicklung neuer kostengünstigerer und verbrauchsärmerer Fahrzeuge. Speziell in den unteren Fahrzeugklassen wird deshalb die Modellpalette laufend erweitert.

3.4.4. Mittelklasse und Oberklasse

Das Mittelklassesegment, zu welchem unter anderem Audi A5, BMW 3er, VW Passat und die Mercedes C-Klasse zählen, verzeichnet bei den Neuzulassungen seit einigen Jahren in Summe ein stetiges Minus. Die einzigen Ausnahmen bilden die Jahre 2006 und 2011, in welchen wieder mehr Mittelklassewagen zugelassen worden sind als im vorangegangen Jahr. Beachtlich ist jedoch, wie in Tabelle 9 ersichtlich, die Verringerung des Δ Wertes zwischen benzin- und dieselbetriebenen Zulassungen. Wurden im Jahr 2003 noch 42.703 mehr dieselbetriebene Mittelklassewagen zugelassen, so beträgt die Differenz zwischen den Zulassungen in den Jahren 2008 bis 2011 nur mehr zwischen 23.273 und 18.595. Dies erweckt im ersten Augenblick den Anschein, dass mehr Mittelklassewagen mit Benzinmotor zugelassen worden sind. Betrachtet man jedoch die Menge der Zulassungen genauer, so ist erkennbar, dass der prozentuelle Anteil an dieselbetriebenen Wagen immer zwischen 72% im Jahr 2009 und 86% im Jahr 2003 schwankt. Im Jahr 2009 erreichte die Zahl der Zulassungen von Benzinern mit einem Anteil von 27,54% den höchsten Stand in dieser Fahrzeugklasse.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	57.849	48.847 (-15,56%)	46.977 (-3,83%)	48.148 (+2,49%)	42.178 (-12,40%)	41.637	41.402 (-0,56%)	36.019 (-13,00%)	38.040 (+5,61%)
Benzin	7.573 (13,09%)	6.002 (12,29%)	7.173 (15,27%)	6.908 (14,35%)	6.000 (14,23%)	9.182 (22,05%)	11.402 (27,54%)	8.871 (24,63%)	7.564 (19,88%)
Diesel	50.276 (86,91%)	42.845 (87,71%)	39.804 (84,73%)	41.240 (85,65%)	36.178 (85,77%)	32.455 (77,95%)	30.000 (72,46%)	27.148 (75,37%)	30.476 (80,12%)
$\Delta \mathbf{B}/\mathbf{D}$	-42.703	-36.843	-32.361	-34.332	-30.178	-23.273	-18.598	-18.277	-23.182

Tabelle 9: Neuzulassungen Mittelklasse

In der Oberklasse zeigt sich ein nahezu identes Bild wie in der Mittelklasse. Die Zulassungen verzeichnen bis zum Jahr 2009 ein kontinuierliches Minus. Genauso sank auch die Differenz

zwischen Benzin- und Dieselzulassungen. Im selben Jahr erreichten die Neuzulassungen in diesem Segment mit nur 6.674 zum Verkehr zugelassenen Pkw ihren Tiefpunkt. Davon fielen 85,32% auf diesel- und 17,22% auf benzinbetriebene Pkw. Anteilsmäßig betrachtet, wurden im Jahr 2009 in dieser Fahrzeugklasse die meisten Benziner zugelassen. Ansonsten schwankte der Anteil zwischen 14% und 15%. Im Jahr 2011 entfielen nur 9,65% auf Benzinbetriebene. Zur Sparte der Oberklasse zählen Fahrzeuge wie Audi A6, Audi A7, BMW 5er oder Porsche Panamera.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	11.938	11.744 (-1,63%)	10.793 (-8,10%)	9.524 (-11,76%)	8.011 (-15,89%)	6.970 (-12,99%)	6.674 (-4,25%)	8.758 (+31,23%)	10.977 (+25,34%)
Benzin	1.785 (14,95%)	1.882 (16,03%)	1.682 (15,58%)	1.560 (16,38%)	1.357 (16,94%)	1.023 (14,68%)	1.149 (17,22%)	1.308 (14,93%)	1.059 (9,65%)
Diesel	10.153 (84,05%)	9.862 (83,97%)	9.111 (84,42%)	7.964 (83,62%)	6.654 (83,06%)	5.947 (85,32%)	5.525 (82,78%)	7.450 (85,07%)	9.918 (90,35%)
$\Delta \mathbf{B}/\mathbf{D}$	-8.368	-7.980	-7.429	-6.404	-5.297	-4.924	-4.376	-6.142	-8.859

Tabelle 10: Neuzulassungen Oberklasse

3.4.5. Luxusklasse

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	1.141	970 (-14,99%)	968 (-0,21%)	1.517 (+56,71%)	1.387	903 (-34,90%)	609 (-32,56%)	712 (+16,91%)	816 (+14,61%)
Benzin	739 (64,77%)	566 (58,35%)	512 (52,89%)	666 (43,90%)	548 (39,51%)	394 (43,63%)	213 (34,98%)	238 (33,43%)	317 (38,85%)
Diesel	402 (35,23%)	404 (41,65%)	456 (47,11%)	851 (56,10%)	839 (60,49%)	509 (56,37%)	396 (65,02%)	474 (66,57%)	499 (61,15%)
$\Delta \mathbf{B}/\mathbf{D}$	337	162	56	-185	-291	-115	-183	-236	-182

Tabelle 11: Neuzulassungen Luxusklasse

Die Luxusklasse ist das Segment, in dem die wenigsten Pkw zum Verkehr zugelassen werden. Im Jahr 2006 wurden insgesamt 1.517 Luxusklassewagen neu zugelassen. Wie auch in der Oberklasse war die Summe der Neuzulassungen im Jahr 2009 mit nur 609 Pkw am geringsten. Zu den zugelassen Luxuswagen zählen unter anderem Fahrzeuge wie BMW 7er, Audi A8, VW Phaeton aber auch Bentley Continental GT. Interessant ist hier der Aspekt, dass sich das ΔB/D von einem noch positiven Wert im Jahr 2003 ab dem Jahr 2006 in einen negativen Wert wandelt. So wurden im Jahr 2003 noch um 337 mehr Benziner als Diesel zugelassen, jedoch im Jahr 2011 um 182 weniger. Der Anteil an Benzinern an der Summe der Zulassungen in der Luxusklasse schrumpfte in den vergangenen 10 Jahren von 64,77% fast um die Hälfte auf nur

mehr 38,85%. Zurückzuführen ist dies unter anderem auf die Weiterentwicklung der Dieselmotoren.

3.4.6. Sportwagen

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	3.296	4.116 (+24,88%)	3.542 (-13,95%)	3.611 (+1,95%)	3.371 (-6,65%)	2.614 (-22,46%)	2.450 (-6,27%)	2.470 (+0,82%)	2.523 (+2,15%)
Benzin	2.936 (89,08%)	3.903 (94,83%)	3.332 (94,97%)	3.202 (88,67%)	3.002 (89,05%)	2.363 (90,40%)	2.205 (90,00%)	2.228 (90,20%)	2.315 (91,76%)
Diesel	360 (10,92%)	213 (5,17%)	210 (5,03%)	409 (11,33%)	369 (10,95%)	251 (9,60%)	245 (10,00%)	242 (9,80%)	208 (8,24%)
$\Delta \mathbf{B}/\mathbf{D}$	2.576	3.690	3.122	2.793	2.633	2.112	1.960	1.986	2.107

Tabelle 12: Neuzulassungen Sportwagen

Zu der Klasse der Sportwagen zählen beispielsweise Audi TT, Porsche 911, BMW Z4, Lamborghini, Ferrari und Audi R8. Bei dieser Autoklasse spiegelt sich das Bild der Ober- und Luxusklasse in den Gesamtzulassungen wider. Seit dem Jahr 2004 nahmen die Zulassungen stetig ab und erreichten wie auch schon bei der Luxusklasse im Jahr 2009 ihren Tiefpunkt. Seither ist ein leichter positiver Trend bei den Neuzulassungen zu erkennen. Sportliche Pkw werden präferiert als Benziner erworben, da diese einen viel höheren Drehzahlbereich als Dieselmotoren haben und somit ein schnelleres und dynamischeres Fahren ermöglichen.

3.4.7. Minivan

Zu der Fahrzeugklasse der Minivans zählen Fahrzeuge wie Ford Galaxy, Renault Espace, Seat Alhambra, VW Sharan und Citroën C8. Diese Fahrzeugklasse vereint die Vorteile eines Pkw und eines Vans und besticht vor allem durch Ihren geräumigen, hohen Innenraum, dem Platzangebot und ihre Funktionalität. Die Fahrzeugmodelle, die einen Anteil von über 50% an den Neuzulassungen im Jahr 2011 hatten, sind der VW Sharan und der Ford Galaxy. Seit Beginn der Betrachtung verlor die Fahrzeugklasse Minivan nahezu in jedem Jahr an Neuzulassungen, die im Jahr 2009, trotz Einführung der Verschrottungsprämie, einen Tiefststand von 11.248 Zulassungen erreichten. Die Prämie schien für Käufer in dieser Fahrzeugklasse nicht attraktiv zu sein. Auch bei dieser Fahrzeugklasse werden kaum Benziner zum Verkehr zugelassen. Begehrt ist die Fahrzeugklasse der Minivan vor allem bei Familien, da der Fahrgastraum sehr geräumig ist und dieser über drei Sitzreihen verfügt, aber auch bei

Firmen, die das Fahrzeug sowohl für den Personentransport als auch für Materialtransport verwenden, da die Sitze meist umgeklappt, versenkt oder ausgebaut werden können, und somit der Gepäckraum zu einem Laderaum umfunktioniert werden kann.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	22.209	22.156 (-0,24%)	15.839 (-28,51%	16.544 (+4,45%)	14.662 (-11,38%)	15.430 (+5,24%)	11.248 (-27,10%)	12.619 (+12,19%)	16.459 (+30,43%)
Benzin	698 (3,14%)	564 (2,55%)	521 (3,29%)	516 (3,12%)	418 (2,85%)	516 (3,34%)	317 (2,82%)	391 (3,10%)	257 (1,56%)
Diesel	21.511 (96,86%)	21.592 (97,45%)	15.318 (96,71%)	16.028 (96,88%)	14.244 (97,15%)	14.914 (96,66%)	10.931 (97,18%)	12.228 (96,90%)	16.202 (98,44%)
$\Delta \mathbf{B}/\mathbf{D}$	-20.813	-21.028	-14.797	-15.512	-13.826	-14.398	-10.614	-12.619	-15.945

Tabelle 13: Neuzulassungen Minivan

3.4.8. Geländewagen

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Gesamt	9.832	10.710 (+8,93%)	11.221 (+4,77%)	13.775 (+22,76%)	12.372 (-10,19%)	9.404 (-23,99%)	10.435 (+10,96%)	9.916 (-4,97%)	12.347 (+24,52%)
Benzin	1.501 (15,27%)	1.347	1.280	1.331 (9,66%)	1.365	1.028 (10,93%)	933 (8,94%)	801 (8,08%)	705 (5,71%)
Diesel	8.331 (84,73%)	9.363 (87,42%)	9.941 (88,59%)	12.444 (90,34%)	11.007 (88,97%)	8.376 (89,07%)	9.502 (91,06%)	9.115 (91,92%)	11.642 (94,29%)
Δ B/D	-6.830	-8.016	-8.661	-11.113	-9.642	-7.348	-8.569	-8.314	-10.937

Tabelle 14: Neuzulassungen Geländewagen

Zu den Fahrzeugen der Geländewagen zählen die seit Beginn der 90er-Jahre immer attraktiver gewordenen SUVs. SUV dient als Abkürzung für Sport Utility Vehicle bzw. Geländelimousine. Sie ähneln einem Geländewagen nicht nur optisch, sondern auch in der Hinsicht, dass sie meist mit einem Allradantrieb versehen sind und idente Proportionen aufweisen. Aus technischer Sicht gleichen sie jedoch mehr einem Pkw als einem Geländewagen. Begründer dieser Fahrzeugklasse war unter anderem Toyota mit dem Modell RAV4. Seit dem Jahr 2000 sprangen auch andere Fahrzeughersteller wie BMW mit dem X5 und X3, Audi mit den beiden Modellen Q7 und Q5 und VW mit dem Touareg auf diesen Trend auf. Die Fahrzeuge der SUV-Klasse sind in den meisten Fällen nur für den Gebrauch auf der Straße ausgelegt und nicht für Geländetauglichkeit konzipiert. Zu dieser Klasse zählen aber nicht nur SUVs, sondern auch tatsächliche Geländewagen, wie die Mercedes G-Klasse, welche jedoch nur 2 Zulassungen im Jahr 2011 aufweisen konnte. Auch in diesem Fahrzeugsegment zeigt sich in den Daten der Neuzulassungen ein klarer Trend zum Dieselantrieb. Mit knapp

94,00% der Neuzulassungen konnte der Diesel im Jahr 2011 den höchsten Anteil seit Beginn der Beobachtung für sich behaupten.

3.4.9. Zusammenfassung der Zulassungen

Betrachtet man nun die Zulassungen der einzelnen Fahrzeugsegmente zusammenfassend, so ist erkennbar, dass der Benzinantrieb in den unteren Fahrzeugklassen einen regelrechten Popularitätssprung machte. (Abbildung 15)

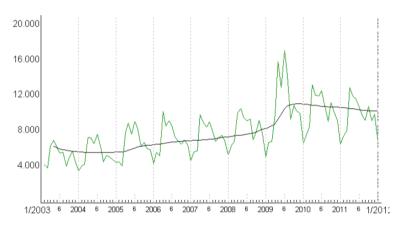


Abbildung 15: Benzinzulassungen (KW,SW, uMkl.)

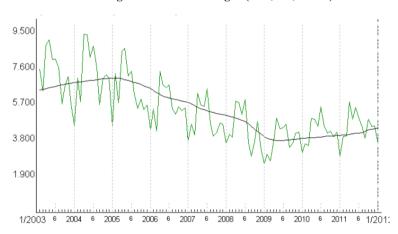
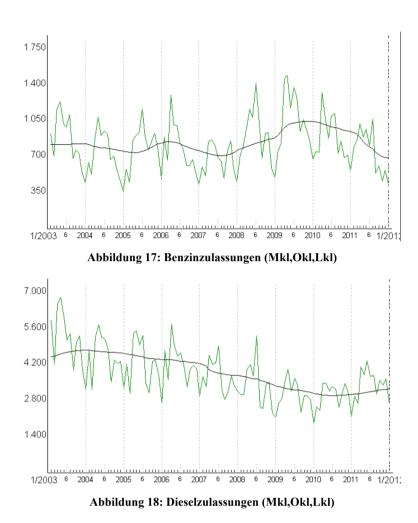



Abbildung 16: Dieselzulassungen (KW,SW,uMkl.)

Der Dieselantrieb, welcher in diesen Fahrzeugklassen ohnehin schon einen geringen Anteil ausmachte, verlor weiterhin an Zulassungen. (Abbildung16)

In den höheren Fahrzeugsegmenten zeigt sich ein nahezu gleiches Bild. Die Zulassungen fallen gesamt gesehen jedoch. Grund dafür ist vor allem der Verlust von Zulassungen im Dieselsegment.

Die Neuzulassungen der einzelnen Fahrzeugsegmente sind alle Normalverteilt und können für die weitere Auswertung herangezogen werden.

3.5. Neuzulassungen nach Bundesländern

Im folgenden Abschnitt dieser Arbeit legt der Autor den Fokus auf die Neuzulassungen in den einzelnen Bundesländern Österreichs ab dem Jahr 2003 und erläutert diese näher. In Tabelle 15 wurden die jährlichen Neuzulassungen sowohl gesamt als auch gesondert für Benzin- und Dieselbetriebene aufgelistet.

Die meisten Neuzulassungen pro Jahr gibt es in Wien, Niederösterreich und Oberösterreich. Danach folgt mit größerem Abstand die Steiermark. Die Verteilung der gesamten Neuzulassungen spiegelt die Einwohnerzahl der neun Bundesländer wider. Einzig Salzburg und Kärnten tauschten bei den Neuzulassungen die Plätze.

Wien konnte bei den Neuzulassungen gesamt gesehen ein klares Plus verzeichnen. Wurden im Jahr 2003 noch 60.929 Pkw zugelassen, so waren es im Jahr 2011 bereits 72.595. Einzig in den Jahren 2007 und 2008 ist ein kleines Minus bei den Zulassungen zu erkennen. Die bevorzugte Treibstoffart bei den Neuzulassungen in Wien ist bis zum Jahr 2008 Diesel. Im Jahr 2009 wurden jedoch um 4.498 mehr Benziner zum Verkehr zugelassen. Ab dem darauffolgenden Jahr ist wieder das alte Bild zu erkennen und es wurden mehr Diesel zugelassen. In Niederösterreich und Oberösterreich zeigt sich ein nahezu identes Bild. In den Bundesländern Tirol und Salzburg blieben die jährlichen Zulassungen über den beobachteten Zeitraum nahezu konstant. Es wurden immer mehr Diesel als Benziner angemeldet. Einzig die Differenz zwischen benzin- und dieselbetriebenen Pkw wurde stetig geringer. Auch in den Bundesländern Steiermark, Kärnten, Vorarlberg und Burgenland ist ein ähnliches Muster erkennbar. Nur in den Jahren 2008, 2009 und 2010 wurden in diesen Bundesländern mehr Benziner als Diesel zum Verkehr zugelassen.

Wiener bei nur 394 Pkw je 1000 Einwohner und ist somit der niedrigste in ganz Österreich. Ein Grund dafür ist sicherlich, dass es in Wien ein sehr gut ausgebautes öffentliches Verkehrsnetz gibt und 40% der Haushalte gar keinen Pkw besitzen. Die meisten Pkw je 1000 Einwohner gibt es mit 618 im Burgenland, dicht gefolgt von Niederösterreich mit 612. Die Werte für Kärnten, Oberösterreich und die Steiermark liegen zwischen 591 und 568 Pkw je 1000 Einwohner. Salzburg, Tirol und Vorarlberg weisen einen Wert zwischen 527 und 505 Pkw auf. Die Anzahl der Pkw je 1000 Einwohner ist mit 987 Pkw im 1. Wiener Gemeindebezirk österreichweit am höchsten. Dies könnte womöglich an der enorm großen Anzahl an Firmenwagen liegen. 45 Warum gerade in Bundesländern wie Burgenland, Kärnten, Steiermark, Niederösterreich und

⁴⁵ wien.gv.at; 2012

Oberösterreich der Motorisierungsgrad so hoch ist, liegt daran, dass diese einen sehr hohen Anteil an ländlichem Raum aufweisen, dessen Infrastruktur oftmals nicht flächendeckend sichergestellt und das öffentliche Verkehrsnetz nur unzureichend erschlossen ist. Hier ist man meist auf ein Fahrzeug angewiesen. Oft sind die Gebiete so zerstreut, dass ein Alltag ohne Fahrzeug unmöglich wäre und schon für den einfachen täglichen Einkauf oder dem Weg zur Arbeit benötigt wird. So fährt vielerorts nur dreimal täglich ein Bus ins Zentrum der nächstgelegenen Stadt.

	2003	2004	2005	2006	2007	2008	2009	2010	2011
Wien	60.929	61.492	61.599	65.605	62.116	63.473	68.147	68.902	72.595
W. B.	18.194	18.840	20.742	23.188	23.576	25.108	36.069	33.618	32.763
W. D.	42.689	42.590	40.723	42.369	38.430	38.072	31.571	34.872	39.125
NÖ	56.887	59.830	59.266	58.975	56.032	55.054	61.588	64.437	70.152
NÖ B.	16.183	17.430	21.122	23.015	24.019	27.084	34.559	32.385	32.696
NÖ D.	40.677	42.385	38.038	35.927	31.949	27.835	26.552	31.697	36.907
OÖ	51.235	52.695	53.287	51.420	51.414	49.135	54.937	56.233	63.459
OÖ B.	15.297	15.775	19.712	20.312	21.822	23.122	30.451	27.479	28.942
OÖ D.	35.926	36.905	33.484	31.055	29.539	25.767	24.069	28.378	33.981
Stmk	40.377	42.627	42.895	42.858	41.036	40.087	43.529	45.141	47.954
Stmk B	10.910	12.348	15.497	17.432	17.814	19.433	23.975	23.062	21.991
Stmk D.	29.435	30.250	27.322	25.381	23.168	20.531	19.250	21.668	25.593
T	25.148	26.318	25.445	25.323	24.146	23.387	24.787	25.609	27.658
T B.	6.929	7.557	8.953	9.392	9.387	10.445	12.247	11.808	11.436
T D.	18.207	18.740	16.431	15.909	14.727	12.879	12.438	13.702	15.978
Sbg	24.670	25.687	24.805	24.117	24.056	24.245	23.448	25.556	26.829
Sbg B.	7.247	7.486	8.441	8.645	8.915	10.353	10.977	11.415	10.352
Sbg D.	17.393	18.181	16.290	15.413	15.103	13.825	12.313	13.929	16.224
Ktn	18.684	20.149	18.746	18.380	18.123	17.139	19.599	18.851	19.806
Ktn B.	5.371	6.141	6.422	6.849	7.488	7.862	10.650	9.499	8.794
Ktn D.	13.310	13.999	12.288	11.528	10.616	9.253	8.896	9.285	10.829
Vbg	12.025	11.860	11.662	11.273	11.244	11.166	11.439	12.143	13.989
Vbg B.	3.924	3.929	4.373	4.664	4.900	5.560	6.416	6.102	6.500
Vbg D.	8.088	7.918	7.273	6.597	6.332	5.583	4.951	5.958	7.135
Bgld	10.166	10.634	10.210	10.643	10.015	10.011	11.929	11.691	13.703
Bgld B.	2.610	2.755	3.245	3.916	4.219	4.913	6.542	5.400	5.875
Bgld D.	7.553	7.878	6.953	6.719	5.782	5.052	5.327	6.203	7.731

Tabelle 15: Neuzulassungen nach Bundesländern

In den folgenden Abbildungen Nr. 19 und 20 zeigt sich der prozentuelle Anteil der einzelnen Bundesländer an der Summe der Neuzulassungen über den betrachteten Zeitraum. Wien hält,

wie schon näher erläutert, jährlich das Maximum an Neuzulassungen, ist jedoch dicht gefolgt von Niederösterreich und Oberösterreich. Betrachtet man diesel- und benzinbetriebene Pkw getrennt, so unterscheiden sich die einzelnen Anteile wenig voneinander. Einzig Wien und Niederösterreich sind, was die Summe der zugelassen Benziner anbelangt, gleich auf.

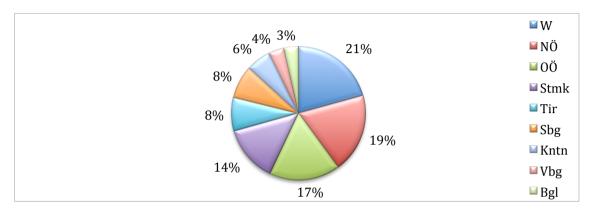


Abbildung 19: Prozentueller Anteil an den Neuzulassungen seit 2003 (gesamt)

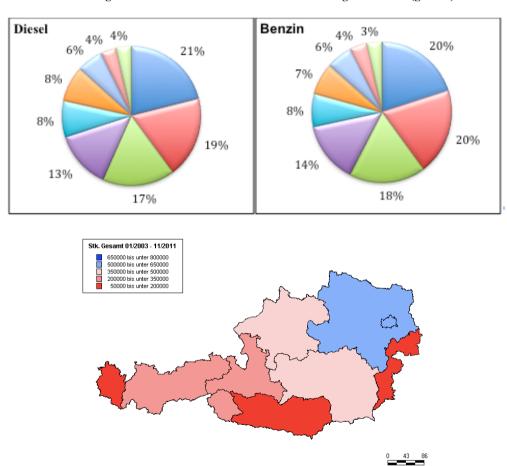


Abbildung 20: Kartografisch Darstellung der Neuzulassungen 2003 - 2011^{46}

⁴⁶ Eurotax Market Analyser; 2012

3.6. Der österreichische Automobilmarkt und der Rebound Effekt

Eigentlich sollte die Verbesserung der Effizienz von Fahrzeugen dazu dienen, Energie und Kosten zu sparen und die Umwelt (Kyoto-Ziele) weniger zu belasten. Doch die von Experten berechneten Einsparungen fielen bis dato niedriger aus als erhofft. Eine Erklärung dafür ist, dass diese Maßnahmen den Konsumenten zu einer vermehrten Nutzung des Fahrzeuges anregen (direkter Rebound) und/oder ihn dazu verleiten das angesparte Geld in ein größeres, leistungsstärkeres und qualitativ besseres Fahrzeug zu investieren (indirekter Rebound). Forscher beweisen, dass dieser Effekt die Einsparungen und Vorteile einer verbesserten Effizienz verringert oder sogar zunichte macht und zu einer Erhöhung des Energieverbrauches führt.

In einer Untersuchung von Görlich und Wirl (2010) ⁴⁷ wurde auf diese Problematik eingegangen und im Zuge dessen der Zusammenhang zwischen der Effizienz eines Fahrzeuges (η), der dazu aufzubringenden Energie (e) und der Qualität der Leistungen (q) (PS, Größe, Allradantrieb, Klimaanlage, etc.) mit einer Nutzenfunktion dargestellt.

u(s,q),

wobei

 $s = e\eta$

Wobei *s* die gefahrenen Kilometer angibt, die mit einer vollen Tankfüllung möglich sind. Man kam zu dem Ergebnis, dass eine Erhöhung der Energieeffizienz nicht nur zu einer vermehrten Nutzung führt, sondern auch die Einstellung und das Kaufverhalten der Konsumenten verändert. Denn durch die Einsparungen auf Grund der Effizienzverbesserung, bleibt mehr Geld für bessere Qualität (Leistung, Sicherheit, Luxus) und zusätzlichen Komfort (bessere Ausstattung). Diese Aufwertung und die erhöhte Kilometerleistung haben somit zur Folge, dass ein effizienteres und qualitativ hochwertigeres Auto langfristig gesehen kostspielig ist und die Energienachfrage als auch die Emissionen wieder steigen.

Hierbei spielt auch die Automobilindustrie eine wesentliche Rolle, da das Kaufverhalten der Konsumenten sehr stark von den Treibstoffpreisen abhängt. Sinkt der Preis, so wird mehr für Leistung und Qualität ausgegeben, steigt dieser so wird beim Kauf vor allem auf die Effizienz des Fahrzeuges geachtet.

-

⁴⁷ Görlich et.al. 2010

Auch Ölpreis-Schocks und deren Folgen haben einen beträchtlichen Einfluss auf das Kauverhalten und die Automobilindustrie. Sie erhöhen die Nachfrage nach neuen effizienteren Autos und die Anzahl der verschrotteten Fahrzeuge. Steigt der Preis, so ist das alte Fahrzeug aufgrund des enormen Verbrauchs zu kostenintensiv und nicht mehr rentabel, sinkt der Treibstoffpreis so bietet es zu wenig Qualität. Diesem Effekt wirken jedoch die wirtschaftliche Lage, welche sich bei steigenden Treibstoffpreisen zumeist verschlechtert, und die Verschrottungsprämie entgegen.

Im zweiten Teil ihrer Arbeit werden Daten des österreichischen Automobilmarktes herangezogen, um unter anderem die hohe Zahl der Dieselzulassungen und die Auswirkungen der dramatisch steigenden Treibstoffpreise auf die Effizienz der Neufahrzeuge zu erläutern. Dabei kam man zu dem Ergebnis, dass sich der Treibstoffpreis stark aber verzögert auf die Effizienz der neuen Fahrzeuge auswirkt. Ein Grund für diese Verzögerung ist, dass Automobilhersteller erst dann reagieren und effizientere Fahrzeuge auf den Markt bringen, wenn die Treibstoffpreise drastisch steigen (Ölkrisen). Die durchschnittliche Motorleistung der Fahrzeuge stieg bis zum Jahr 2008 an und fiel im Jahr 2009 wieder ab. Als Grund dafür werden die dramatischen Treibstoffpreiserhöhungen im Jahr 2008 angegeben.

Seit dem Jahr 2003 werden mit Dieselfahrzeugen mehr Kilometer zurückgelegt als mit Benzinbetriebenen. Als ein Grund wird mitunter die gewaltig steigende Zahl der Dieselzulassungen angegeben. Auch die Distanzen die zurückgelegt werden sind länger. Ein zusätzlicher interessanter Aspekt, auf den die Studie eingeht, ist, dass sich die Gesamtzahl der gefahrenen Kilometer trotz eines steigenden Einkommens im Zeitraum von 2003 bis 2008 reduzierte. Argumentiert wird dies mit den steigenden Treibstoffpreisen und der Tatsache, dass Familien meist mehrere Fahrzeuge besitzen und diese als Zweit- und Drittautos nicht so intensiv genutzt werden. Eine weitere Folge der Ölpreis-Schocks war, dass die erhöhten Treibstoffpreise eine Auswirkung auf die Fahrzeuggröße haben und Konsumenten kleinere Fahrzeuge kauften. Betrachtet man die Summe der Neuzulassungen am Beispiel Österreich, so sind Klein-, Stadt- und untere Mittelklassewagen die wichtigsten Klassen.

Betrachtet man die Antriebsarten, so ist ein interessanter Aspekt der Durchbruch des Dieseltreibstoffes und die enorme Zuwachsrate in Österreich. In kaum einem anderen Land ist Diesel so populär. Im Großteil Europas war Diesel aufgrund niedrigerer Steuern billiger als Benzin. Dies änderte sich jedoch, als der Anteil von dieselbetriebenen Pkw stieg. Das Hauptproblem des Konsumenten, wie am Beispiel des Diesels ersichtlich, ist die

Kurzsichtigkeit bei der Kaufentscheidung. Es werden zu kurze Planungszeiträume bemessen und die Abzinsung der zukünftigen Vorteile ist zu hoch.

In einer weiteren Studie aus dem Jahr 2009 wurde die Entwicklung der Fahrzeuge im Zeitraum 1990 bis 2007 untersucht. 48 In die Untersuchung wurden Aspekte wie Gewicht, Leistung, Hubraum, Antriebssystem und Treibstoffverbrauch miteinbezogen. Der Fahrzeugbestand wuchs durchschnittlich pro Jahr um 2,1%, im betrachteten Zeitraum um 43%. Darüber hinaus kam es auch zu einer Veränderung der Nachfrage hinsichtlich der Antriebsart, so sank der Bestand an Benzinbetriebenen um 1,6 %, während der Bestand an Dieselbetriebenen um 10,6% p.a. zulegen konnte. Ab dem Beginn der 90er-Jahre ist eine klare Präferenz der Österreicher für Diesel zu erkennen. Einerseits weil Dieseltreibstoff im betrachteten Zeitraum wesentlich günstiger war, andererseits weil sie verbrauchsärmer waren und sich vor allem für Viel- und Langstreckenfahrer rentierten. Unterstützt wurde dieser Trend auch von der Politik, welche die Steuer auf Diesel niedriger ansetzte als auf Benzin und von der Automobilindustrie, welche die Dieseltechnologie wesentlich verbesserte. Doch seit Beginn des 21 Jahrhunderts ist eine Trendwende zu beobachten, die den Anteil an Dieselneuzulassungen sinken lässt. Eine Erklärung dafür ist, dass die Unterstützung der Politik langsam versiegt und die Preisdifferenz zwischen Benzin und Dieseltreibstoff immer geringer wird. Darüber hinaus kommen Zweifel auf, ob die technologischen Effizienzverbesserungen tatsächlich zu einer Reduktion des Treibstoffbedarfs und der Emissionen führt. Da nämlich mit Dieselfahrzeugen auf Grund ihres niedrigeren Verbrauches durchschnittlich mehr Kilometer zurückgelegt werden und diese somit genauso zur Erhöhung der CO₂-Emissionen beitragen wie Benziner.

Eine deskriptive Analyse der Nachfragemuster, unter Beachtung des Fahrzeugbestandes hinsichtlich Leistung, Hubraum und Gewicht, ergab, dass bei Dieselbetriebenen ein starker Trend zur Leistungsklasse zwischen 60 und 80 kW zu erkennen ist, der für einen wachsenden Massenmarkt für mittlere und größere Pkw sorgt. Im Segment der Benzinbetriebenen sanken in nahe zu allen Klassen die Anteile am Fahrzeugmarkt, jedoch mit unterschiedlich hohen Verlusten. Den geringsten Verlust verzeichnete die Klasse der Kleinwagen, in der trotzdem benzinbetriebenen Pkw dominant sind. Im Hinblick auf die Treibstoffeffizienz stellte sich heraus, dass Dieselbetriebene im Durchschnitt um 1,03% und Benzinbetriebene um 1,56% jährlich effizienter wurden. Im Dieselsegment wurden die höchsten Effizienzfortschritte im Bereich der 60 bis 80 kW motorisierten Pkw registriert. Eine Ableitung dieses Ergebnisses ist, dass durch die technologischen Verbesserungen der Motoren zwar der durchschnittliche

⁴⁸ Meyer et.al; 2009

Verbrauch von neu zugelassenen Fahrzeugen geringer wurde, aber sich dadurch auch die Nachfrage, im Besonderen bei Dieselfahrzeugen, auf größere und schwerere Fahrzeuge verschoben hat. Die Autoren kamen zum Entschluss, dass die Effizienz- und Technologieverbesserungen sehr wesentlich zum Klimaschutz und zur Reduktion der Emissionen hätten beitragen können, wenn sich nicht das Kaufverhalten und somit die Nachfrage, die vor allem bei Dieselfahrzeugen den Vorteil des geringen CO_s-Ausstoßes zunichte machen, verschoben hätte.

Der beschriebene Rebound Effekt zeigt sich auch in zwei weiteren Studien, welche den niederländischen Automobilmarkt als Grundlage nehmen. Es geht hervor, dass vor allem dieselbetriebene Pkw, die auf Grund der Effizienzverbesserungen auf 100 km weniger Treibstoff verbrauchen, zu einer vermehrten Nutzung anregen. Dies hat zur Folge, dass die gefahrene Kilometerleistung deutlich erhöht wird und die durch einen effizienteren Motor möglichen Einsparungen kompensiert werden. Zwischen 1990 und 1997 entwickelte sich die Effizienz beim Verbrauch kaum, da mitunter die Ansprüche der Konsumenten hinsichtlich der Qualität, des Services und der Größe anstiegen und das Kriterium Effizienz beim Fahrzeugkauf in den Hintergrund rückte.

⁴⁹ Van den Brink et.al.; 2001

⁵⁰ Rouwendal et.al.; 1999

3.7. Exkurs: Großbritannien

Auch in Großbritannien war im Zeitraum von 1998 bis 2007 eine Penetration des Marktes mit Dieselfahrzeugen zu erkennen. Seit dem Jahr 1998 konnten Dieselfahrzeuge ihren Marktanteil erhöhen und seit 2000 verdoppelten sich die Verkaufszahlen.⁵¹ Im Jahr 2009 verzeichneten Dieselbetriebene bei den Neuzulassungen bereits einen Anteil von 40%. Bei den Dieselbetriebenen zeigt sich, dass eine effizientere Nutzung des Treibstoffes Umweltverschmutzung erhöhen kann, da Dieselfahrzeuge mehr Partikel ausstoßen als Benzinfahrzeuge. Auch in diesem Artikel wird der Rebound Effekt als einer der möglichen Gründe dafür genannt, dass die technologischen Verbesserungen hinsichtlich des Treibstoffverbrauches seit dem Jahr 2002 vor allem bei Dieselfahrzeugen weder zu Treibstoffnoch zu Emissionseinsparungen führen, da Fahrzeughalter mit effizienteren Fahrzeugen mehr Kilometer zurücklegen. Bei einer Langzeitanalyse (1978-2004) des Dieseltreibstoffes stellte sich heraus, dass es einen langfristigen Zusammenhang zwischen dem Treibstoffverbrauch, dem Treibstoffpreis, dem verfügbaren Einkommen und Verbrauchsnormen gibt. So fördert unter anderem ein höheres Einkommen den Erwerb von effizienteren Fahrzeugen. Schon eine 10%ige Erhöhung des Einkommens führt zu einer 47%igen Verringerung des Verbrauches pro 100km. Auf kurze Frist präferieren Konsumenten mit höherem Einkommen, vor allem bei Benzinern, größere und stärkere Fahrzeuge. Aus den Ergebnissen der Analyse geht hervor, dass die durchschnittliche Treibstoffeffizienz von Fahrzeugen invers mit dem Dieselpreis und dem Einkommen zusammenhängt, so wie dass diese auf Veränderungen des Dieselpreises sensitiver reagiert als auf die Einführung von Vereinbarungen der europäischen Umweltpolitik. Interessant ist, dass das Kurzzeitmodel die Veränderung der Kundenbedürfnisse beim Fahrzeugkauf hinsichtlich der Effizienz erfasst, während hingegen das Langzeitmodel die technologischen Veränderungen, die durch Preis und Einkommen beeinflusst werden, erfasst.

In einer anderen Untersuchung⁵² basierend auf Daten von Neuzulassungen in Großbritannien zeigt sich ein Zusammenhang zwischen den Zulassungen in den Verbrauchsklassen der Fahrzeuge. Der verwendete Datensatz beinhaltet 203 Neuwagen mit Benzinmotoren, welche in GB im Jahr 1991 zum Verkauf angeboten wurden. Die jährlich gefahrenen Kilometer wurden als fix angenommen und beim Treibstoffpreis wurde eine jährliche Erhöhung von 5% angenommen. Ein Ergebnis der Studie war, dass eine Erhöhung des Treibstoffpreises die

⁵¹ Bonilla; 2009

⁵² Witt; 1997

Nachfrage nach effizienteren Fahrzeugen, wenn auch nur gering, steigen ließ. Somit schwächt ein steigender Benzinpreis die Nachfrage nach großen Pkw und mehr Leistung. Als eine mögliche Lösung zur Minimierung des Treibstoffverbrauches werden hier Anforderungen der Politik an die Fahrzeughersteller genannt, da diese effektiver wären als Steuern.

Eine andere Studie⁵³, welche die Kosten von Steuererhöhungen und der CAFE⁵⁴-Richtlinie kommt zu dem Ergebnis, dass eine Erhöhung der Steuern auch eine Erhöhung des sozialen Wohls bedeutet. Dem gegenüber stünde die strengere Auslegung der CAFE-Richtlinie, welche wiederum zu einer Verminderung des sozialen Wohls führen würde. Ein weiterer positiver Aspekt der Treibstoffsteuer ist, dass die gefahrenen Kilometer minimiert werden und die Treibstoffeffizienz beschleunigt wird. Im Gegensatz dazu steht die CAFE-Richtlinie, welche laut dieser Studie zu mehr Fahren anregt, da eine Verbesserung des Treibstoffverbrauches die Kosten je gefahrener Mile reduziert.

-

⁵³ West et.al.; 2005

⁵⁴ Corporate Average Fuel Economcy

3.8. Der Neuwagenkauf aus Sicht des Konsumenten

Der Konsument hat somit die Qual der Wahl beim Neuwagenkauf. Entscheidet er sich lieber für den verbrauchsärmeren Diesel oder für den in der Anschaffung günstigeren Benziner. Nur wenige Konsumenten nutzen für ihre Entscheidungsfindung handfeste Kalkulationen, welche auf aktuellen Zahlen und Erfahrungswerten beruhen. Es ist für den Konsumenten auch durchaus schwierig zu kalkulieren, wie sich der Treibstoffpreis und die Instandhaltungskosten entwickeln, einzig die Servicekosten sind für einen bestimmten Zeitraum noch am einfachsten zu berechnen. Verschiedene Studien aus den USA untersuchten den Entscheidungsweg, den der Konsument beim Neuwagenkauf beschreitet.

In einer Studie über den Zeitraum 2003 bis 2004 wurden Personen, welche sich in naher Zukunft einen Pkw kaufen wollen, oder gekauft haben, über ihre Entscheidungsfindung befragt. 55 Die Teilnehmer wurden in neun Lifestyle-Gruppen unterteilt, von denen ausgegangen wurde, dass sie verschieden sensibel auf den Treibstoffverbrauch eingehen. Insgesamt nahmen an dem Interview 57 Personen teil. Die Befragung wurde in vier Phasen unterteilt. In den ersten drei Phasen wurde besonders darauf geachtet, keine Fragen zu stellen, die den Konsumenten aktiv über die Treibstoffeffizienz nachdenken lassen. Der erste Teil des Interviews bezog sich auf alle Fahrzeuge, die der Haushalt bisher besaß. Im zweiten Teil ging man auf den aktuellsten/letzten Fahrzeugkauf ein. Im dritten Teil wurde mit den teilnehmenden Personen ein möglicher Neuwagenkauf durchgesprochen, bei welchem der Treibstoffverbrauch als eines der wichtigsten Attribute angenommen wurde. Man kam zu dem Ergebnis, dass es nur wenige Haushalte gab, die in den ersten drei Phasen des Interviews die Treibstoffeffizienz als Kriterium in ihre Kaufentscheidung miteinbezogen. In der vierten Phase erkundigte man sich direkt nach dem Treibstoffverbrauch, -kosten und der Effizienz. Erschreckend war, dass die meisten der befragten Haushalte keine Ahnung von ihren Treibstoffkosten über die Zeit hatten, weder wöchentlich, monatlich noch jährlich. Es wurde weder ein Budget dafür eingeräumt noch Aufzeichnungen über die Kosten geführt. Einige Fahrzeugbesitzer konnten den Interviewern nicht einmal den aktuellen Verbrauch ihres Fahrzeuges nennen. Im weiteren Verlauf wurde die Frage gestellt, wie viel ein Haushalt bereit wäre, für mehr Effizienz beim Treibstoffverbrauch zu bezahlen. In nahezu allen Fällen kam man zu dem Resultat, dass die Befragten nur Schätzungen und Vermutungen als Antwort gaben und dass dies bisher keiner der Aspekte war, über den jemand bei einem Fahrzeugkauf nachdachte. Einige der Haushalte

⁵⁵ Turrentine et.al.; 2008

gaben auch an, dass sie sich nicht auf die Treibstoffkosten konzentrieren und ihnen keine Aufmerksamkeit schenken, da sie diese so oder so nicht beeinflussen, geschweige denn ändern können. Man fand am Beispiel von Hybridfahrzeugen heraus, dass die meisten Hybridfahrzeuge aufgrund von ideologischen Gründen gekauft wurden und nicht, um Geld zu sparen. Somit wurden Entscheidungen über die Treibstoffeffizienz und in weiterer Folge über die Kaufentscheidung des Fahrzeuges mit Emotionen getroffen und nicht aufgrund von Berechnungen und Analysen. Dies bedeutet jedoch nicht, dass Konsumenten sich gar keine Gedanken über den Treibstoffverbrauch machen. Über den betrachteten Zeitraum schwenken immer mehr Konsumenten weg von den Benzinschluckern hin zu verbrauchsärmeren und effizienteren Fahrzeugen. Als ein Grund dafür werden die steigenden Treibstoffpreise und die Debatte über den Klimawandel angegeben.

Das Ergebnis, zu dem die Autoren hier kommen, wird von zwei weiteren Studien untermauert. Eine dieser Studien baut auf einem Datensatz von 2.100 Personen, aus dem Jahr 2010, in den USA auf. Inhalt waren sowohl demographische Daten und Fahrzeugdaten als auch Erwartungen über den zukünftigen Treibstoffpreis. 56 Unter anderem enthielt die Studie den Treibstoffverbrauch von den Fahrzeugen der befragten Personen und die wahrgenommenen Kosten für alternative Fahrzeuge mit unterschiedlichen Effizienzmerkmalen. Allcott kam zu amerikanische Konsumenten den dem Schluss, dass Treibstoffkosten nur Aufmerksamkeit schenkten. Zum zweiten unterschätzten Konsumenten den Treibstoffkostenunterschied zwischen Fahrzeugen mit einer geringen Kilometeranzahl pro Galone und überschätzten den Kostenunterschied bei einer hohen Kilometeranzahl pro Galone. Drittens scheinen die untersuchten Personen gut über die Treibstoffpreise Bescheid zu wissen, wobei nur eine geringe Anzahl der Teilnehmenden davon ausgeht, dass die Treibstoffpreise steigen werden. Die Befragung enthielt, wie auch schon die der vorigen Studie, vier Fragen. Anfangs wurden die Teilnehmer wiederum über ihr aktuelles Fahrzeug befragt. Daraufhin wurde darauf eingegangen, wie sich nach Meinung der Befragten der Treibstoffpreis entwickelt. In der dritten Fragerunde wurde nach einer möglichen Alternative zu ihrer letzten Kaufentscheidung gefragt, falls es denn das gekaufte Modell gar nicht geben würde. Im vierten Abschnitt der Studie wurden die Befragten aufgefordert den Kostenunterschied zwischen einem Ersatzfahrzeug mit geringerem Verbrauch und ihrem aktuellen Fahrzeug zu berechnen. Nach all den vorangegangen Stufen der Befragung wurden die Teilnehmer dazu angehalten anzugeben, wie sehr sie über die Treibstoffkosten bei ihrem Fahrzeugkauf nachdachten. Rund

⁵⁶ Allcott; 2011

40% der Befragten gaben an, diese überhaupt nicht berücksichtigt zu haben. 35% haben sich zwar Gedanken darüber gemacht, stellten aber keine Berechnung dieser Art an, und nur 24% gaben an kleinere Berechnungen (21%) oder exakte Berechnung (3%) durchgeführt zu haben. Somit ist auch hier das eindeutige Ergebnis, dass sich die befragten Personen nicht über die zukünftigen laufenden Kosten ihres Fahrzeuges im Klaren sind.

Auch ein Interview in Kalifornien, an welchem 57 Haushalte teilnahmen, beinhaltet den gleichen Aufbau der Befragung wie die beiden zuvor erläuterten Studien. ⁵⁷ Auch hier wurden die Teilnehmer erst im letzten Abschnitt des Interviews darauf hingewiesen, dass das Hauptaugenmerk der Studie auf der Wahrnehmung der Treibstoffeffizienz liegt. Nur wenige Haushalte gingen in dem Gespräch auf den Faktor Treibstoffeffizienz ein, wobei eine Gruppe von Studenten das größte Interesse an diesem Thema zeigte. Meistens wurden als Gründe für den Fahrzeugkauf Aspekte wie Größe und die Leistung angegeben. Als ein Grund, warum auch in dieser Studie nur eine äußerst geringe Zahl an Haushalten den Treibstoffverbrauch in die Kaufentscheidung miteinbezieht, wird auch hier angegeben, dass es für Konsumenten äußerst schwer ist, die zukünftigen Kosten für Treibstoff zu berechnen. Meistens werden auch keine Aufzeichnungen über den aktuellen Treibstoffverbrauch geführt, somit ist auch hier ein Vergleich nicht möglich. Haushalte machen wenn überhaupt nur kleinere Berechnungen und stellen Annahmen über die Kosten über die Zeit auf.

⁵⁷ Turrentine et.al.; 2007

3.9. Fragestellung und Hypothesen – Zielsetzung

Die zu Beginn schon grob formulierte Frage, ob die Treibstoffpreise die Zahl der Neuzulassungen erklären können, wurde in der Literatur auf verschiedene Arten analysiert. Man kam zu den Ergebnissen, dass die Treibstoffpreise die Wahl des Konsumenten beeinflussen. Das Hauptaugenmerk der Studien lag auf dem direkten und indirekten Rebound Effekt. Anhand der gewonnen Erkenntnisse aus der Literatur und den Entwicklungen der Neuzulassungen in Österreich konkretisiert der Autor nun seine Fragestellung und stellt in weiterer Folge Hypothesen auf, um der Frage auf den Grund zu gehen.

Beeinflussen die Treibstoffpreise die Wahl des Konsumenten beim Neuwagenkauf und lassen diese den Konsumenten vermehrt zu effizienteren Fahrzeugen greifen?

1.) Können die Treibstoffpreise die Zahl der Neuzulassungen erklären?

Wie schon im vorigen Kapitel gezeigt wurde, stieg die Zahl der Neuzulassungen in den vergangenen Jahren stark an und erreichte im Jahr 2011 sogar ein Rekordhoch. War im Jahr 2002 noch eine Differenz von 109.653 Neuzulassungen zwischen Benzin und Dieselantrieben so waren es im Jahr 2011 nur mehr 37.170 mehr Dieselzulassungen und im Jahr 2009 wurden seit langem wieder mehr Benziner zum Verkehr zugelassen. In Österreich werden die beiden Treibstoffklassen gesondert voneinander betrachtet, da es in Österreich einen regelrechten Dieselboom gegeben hat. Auf Basis dieser Daten stellt der Autor folgende Hypothese auf:

H1: Die drastisch gestiegenen Treibstoffpreise wirken sich auf die Zahl der Neuzulassungen aus.

2.) Verändern die Treibstoffpreise die Zahl der Neuzulassungen in den verschiedenen Fahrzeugsegmenten?

Die in dieser Arbeit präsentierten Studien zeigten einen Zusammenhang zwischen den Treibstoffpreisen und den Neuwagenkäufen in den verschiedenen Fahrzeugsegmenten auf. Sowohl Buse et.al.(2009) als auch Klier et.al. (2010) stellten in ihren Studien fest, dass die drastisch gestiegenen Treibstoffpreise zu hohen Verlusten bei den Marktanteilen großer SUVs führten und sich Konsumenten entweder vermehrt für kleine SUVs entschieden oder überhaupt

auf einen weit effizienteren Pkw zurückgriffen. Auch die Studie von Small (2007) zeigt, dass Konsumenten zunehmend zu kleineren Fahrzeugen greifen, wenn der Treibstoffpreis hoch ist und große Fahrzeuge kaufen, wenn der Treibstoffpreis niedrig ist. Zurückzuführen ist dies auf den Rebound Effekt. Auch Görlich und Wirl (2010) zeigen in ihrer Studie, dass das Kaufverhalten der Konsumenten unter anderem vom Treibstoffpreis abhängt. Folglich stellt der Autor folgende Hypothese für den österreichischen Automobilmarkt auf:

H2: Die Treibstoffpreise zeigen positive Auswirkungen in den kleineren Fahrzeugklassen und negative Auswirkungen in den oberen Fahrzeugklassen.

3.) Gibt es einen Unterschied bei den Erklärungen der Variablen zwischen den Bundesländern. (explorativ)

In ländlichen Regionen ist es meist schwierig ohne Fahrzeug mobil zu sein und mit öffentlichen Verkehrsmitteln zu fahren. Möchte man flexibel und unabhängig sein, so kommt man in den nicht urbanen Gebieten meist nicht um den Kauf eines Pkw herum. In einer Großstadt wie Wien hingegen, ist es, auch ohne einen Pkw zu besitzen, unkompliziert von A nach B zu kommen, da das öffentliche Verkehrsnetz flächendeckend ausgebaut ist. In der Stadt hat man somit eine sehr gute Alternative und kann weitgehend auf einen Pkw verzichten.

H3: Die steigenden Treibstoffpreise wirken sich in der Stadt (Wien) stärker aus als am Land (andere Bundesländer).

4.) Wirkt sich die sinkende Differenz zwischen Benzin- und Dieselpreisen auf die Differenz zwischen den beiden Treibstoffklassen in den Zulassungen aus?

Der Diesel ist hinsichtlich des Verbrauches und der Reichweite klar im Vorteil. Allerdings sinkt die Differenz zwischen den beiden Treibstoffklasse erheblich. Teilweise war Diesel sogar schon teurer als Benzin. Die Anschaffungskosten eines Pkw mit Dieselantrieb sind meist höher als mit Benzinantrieb. Die momentane Diskussion über die Umweltschädlichkeit und die höhere Emissionsbelastung dieser, weil mit einem dieselbetriebenen Fahrzeug mehr Kilometer zurückgelegt werden sind ein Grund dafür, warum der Dieseltreibstoff in naher Zukunft womöglich keine steuerliche Begünstigung mehr aufweist und somit teurer wird als Benzin.

Bei dieser Fragestellung gilt es herauszufinden, ob die Differenz zwischen Benzin- und Dieselpreis, die Differenz der Zulassungen zwischen den Antriebsarten erklären kann.

H4: Die sinkende Differenz zwischen den Preisen wirkt sich positiv auf die Zahl der Benzinzulassungen aus.

5.) Kann sich die Zahl der Diesel- und Benzinzulassungen gegenseitig erklären? (explorativ)

Die Frage die es hier zu beantworten gilt, ist ob die Zahl der Dieselzulassungen die Zahl der Benzinzulassungen erklären kann und ob eine Wechselwirkung zwischen ihnen besteht. Werden automatisch mehr Benziner zugelassen wenn mehr Diesel zugelassen werden, oder besteht ein negativer Zusammenhang zwischen den beiden Variablen?

6.) Sind in den Ländern der EU ähnliche Auswirkungen zu finden?

Können die Treibstoffpreise auch in anderen Ländern der Eurozone die Zahl der Neuzulassungen erklären, oder zeigt sich hier kein Zusammenhang zwischen den beiden Variablen Treibstoffpreis und Neuzulassungen.

4. Aufbau der Arbeit

Der Autor legt nun seinen Fokus auf die zuvor gestellten Fragen und Hypothesen und wie diese beantwortet werden sollen und prüft ob diese bestätigt oder verworfen werden können. Für die Ausarbeitung wird das Programm SPSS 18.0 verwendet, welches auch unter dem Namen PASW 18.0 bekannt ist, da SPSS aus marktrechtlichen Gründen im Jahr 2010 umbenannt worden ist, wobei das Programm zum jetzigen Zeitpunkt wieder den Namen SPSS trägt. Die verwendeten Daten wurden mit Excel in eine geeignete Form gebracht und die Differenzen zwischen Benzin- und Dieselzulassungen sowie die benötigten Neuzulassungen monatlich herausgearbeitet. Mittels SPSS werden in weiterer Folge Regressionen berechnet, welche sowohl einen möglichen Zusammenhang(R) als auch eine Signifikanz der verwendeten Variablen aufzeigen. Das Ergebnis für das Bestimmtheitsmaß (korrigierte R-Quadrat) gibt unter anderem an, wie hoch der Anteil der Streuung an der Gesamtstreuung ist (bereinigt). Der Regressionskoeffizient b ist ebenso interessant und wird für weitere Berechnungen benötigt. Er gibt in unserem Fall an, wie viele Zulassungen es gibt, wenn der Treibstoffpreis um 1,00 € höher ist. In weiterer Folge wird mittels der Regressionsgleichung

$$y = a + bx$$

berechnet, wie sich die Zahl der Neuzulassungen verändert, wenn der Treibstoffpreis auf einen höheren Wert steigt. Wobei a die Konstante, b die Steigung der Regressionsgeraden sind und x für den gewählten Treibstoffpreis steht. A und b sind die Regressionskoeffizienten.

Für die Überprüfung der Hypothese H1 werden die gesamten Zulassungen aus den Jahren 2003 bis 2011 herangezogen. Sowohl bei den Neuzulassungen als auch den Treibstoffen werden die beiden Treibstoffklassen Benzin und Diesel in dieser Ausarbeitung separat betrachtet.

Für die zweite Fragestellung kann die zuvor schon vorgenommene Unterteilung in die einzelnen Fahrzeugsegmente verwendet werden, da diese dafür geeignet ist. Auch hier werden sowohl Diesel als auch Benziner getrennt voneinander betrachtet und für die Regression herangezogen.

Dasselbe geschieht auch mit den Neuzulassungen in den einzelnen Bundesländern, wobei der Autor bei der Unterteilung in Stadt und Land, Wien als Stadt, und die anderen Bundesländer als nicht urbanen Raum verwendet.

Mittels des Programms Excel werden die Differenzen sowohl bei den Zulassungen als auch bei den Treibstoffpreisen herausgerechnet und für eine Regression herangezogen.

Im letzten Abschnitt der Tests zieht der Autor die Neuzulassungen und Treibstoffpreise ausgewählter Länder der Europäischen Union für eine Gegenüberstellung heran. Einleitend wird sowohl auf die Entwicklung der Treibstoffpreise als auch auf die der Neuzulassungen eingegangen, bevor ein möglicher Zusammenhang aufgezeigt wird.

4.1. Grundlagen für die Ausarbeitung

Die Daten der Neuzulassungen in Österreich stammen von Statistik Austria⁵⁸ so wie von Eurotexglass's⁵⁹. Die Einteilung der einzelnen Fahrzeugsegmente wurde von der Firma Eurotaxglass's übernommen. Die Treibstoffpreise aus diesen Jahren werden der Datenbank der European Comission⁶⁰ so wie der des Bundesministeriums für Wirtschaft, Familie und Jugend⁶¹ entnommen.

Für die internationale Ausarbeitung werden Daten des Statistischen Bundesamtes ⁶² in Deutschland, der Unece⁶³ und von BDW Automotive⁶⁴ verwendet.

⁵⁸ Statistik Austria, 2012

⁵⁹ Eurotaxglass's, 2012

⁶⁰ European Comission, 2012

⁶¹ BMW FJ, 2012

⁶² Statistisches Bundesamt, 2012

⁶³ Unece, 2012

⁶⁴BDW -Automotive; 2012

5. Ergebnis und Erläuterung

In diesem Kapitel werden die Ergebnisse der Auswertung präsentiert und erörtert. Eine mögliche Begründung, sowie eine Diskussion zu den Entwicklungen werden ebenfalls berücksichtigt. Es gilt hier die zuvor beschriebenen Fragestellungen auf Basis der vorhandenen Daten die Fragestellungen zu beantworten. Die Ergebnisse der Regressionen sowie der Korrelationen sind in selbst erstellten Tabellen in vereinfachter Form veranschaulicht. Die detaillierten Ergebnisse sind dem Appendix zu entnehmen.

5.1. Gesamte Neuzulassungen in Österreich - H1

Tabelle 16 zeigt die Ergebnisse der Regression für die Variablen Neuzulassungen und Treibstoffpreis, wobei eine getrennte Betrachtung von Diesel und Benzin von Bedeutung ist. Beta beschreibt die Höhe und Richtung des Zusammenhangs (r), a/b sind die Regressionskoeffizienten und das korrigierte r-Quadrat gibt an, auf wie viel Prozent der Gesamtpopulation das Ergebnis ausgelegt werden kann.

Ersichtlich ist, dass der Benzinpreis die Zahl der Neuzulassungen bei b=11577,877, p<0,01 signifikant erklären kann. Der Zusammenhang beträgt r = 0,542 und entspricht einer erklärten Varianz von 28,7 %. Der Dieselpreis erklärt die Neuzulassungen ebenfalls signifikant, bei b= -4164,433, p<0,01. Der Zusammenhang zwischen den Variablen beträgt hier jedoch nur 5,4% an erklärter Varianz

Tabelle 16: Regression Neuzulassungen - Treibstoffpreise (inkl. Verschrottungsprämie)

Treibstoffklasse	Korrigiertes R ²	R(Beta)	a/b
Benzin	0,287	0,542	-1938,442 / 11577,877**
Diesel	0,054	-0,251	19687,343 / -4164,433**

^{**.} Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Man kommt zu dem doch überraschenden Ergebnis, dass die Treibstoffpreise sich gesamt gesehen positiv auf die Zahl der Neuzulassungen auswirken. Allerdings unterscheiden sich die beiden Treibstoffklassen stark voneinander. Während ein höherer Benzinpreis positiv mit den

^{*.} Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Zulassungen zusammenhängt, sinken die Zulassungen im Dieselsegment, wenn der Dieselpreis steigt. Nimmt man nun in Österreich für beide Treibstoffklassen einen Treibstoffpreis von 1,70 €/Liter an, was in Anbetracht der momentanen Entwicklungen durchaus realistisch ist, so kommt man durch Verwendung der Regressionsgleichung zu folgendem Ergebnis: Je höher der Benzinpreis, umso mehr Benziner werden zum Verkehr zugelassen. Bei dem angenommen Treibstoffpreis würden die Zulassungen bei einem monatlichen Wert von ≈17.743 Pkw liegen. Beim Diesel hingegen sinken die Zulassungen und es würden ≈12.607 Pkw angemeldet werden. Ein Grund für diese Entwicklung kann zum jetzigen Zeitpunkt der Auswertung noch nicht genannt werden.

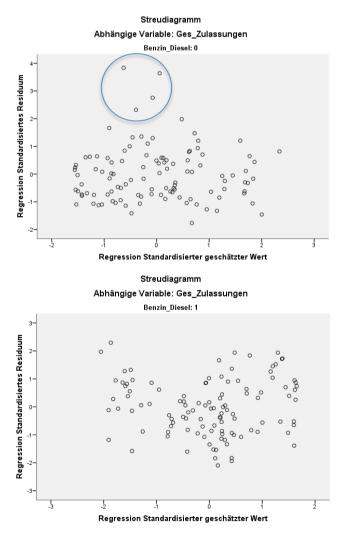


Abbildung 21: Streudiagramm Benzin(0)- Diesel(1)

Wie im Streudiagramm dargestellt (Abbildung 21), sind einige Werte über dem Toleranzniveau von +2,5. In der Abbildung wurden diese Werte blau umrahmt. Der Grund für diese Überschreitung ist die hohe Zulassungszahl vor allem von Benzinern im Jahr 2009 während

den Monaten der Verschrottungsprämie April, Mai und Juni. Auch der Wert für den Monat Juli liegt über dem Toleranzniveau, da hier noch Fahrzeuge zugelassen wurden, welche noch zum Zeitpunkt der Verschrottungsprämie gekauft wurden. Um das Ergebnis der Auswertung nicht zu verfälschen, wurden diese 4 Monate bei einer erneut durchgeführten Regression aus dem Datensatz entfernt. Tabelle 17 stellt das Ergebnis dieser dar und zeigt, dass auch ohne den Monaten der Verschrottungsprämie der Treibstoffpreis die Zahl der Neuzulassungen signifikant erklärt, bei b = 12.553,553, p<0,01 für Benzin und b = -4.274,627, p<0,01 für Diesel. Der Zusammenhang der Variablen Benzinpreis und Zulassungen beträgt r = 0,667 und entspricht einer erklärten Varianz von 43,90%. Beim Diesel beträgt der Zusammenhang r = 0,055, dies entspricht 5,50% an erklärter Varianz

Tabelle 17: Regression: Neuzulassungen - Treibstoffpreise (exkl. Verschrottungsprämie)

Treibstoffklasse	Korrigiertes R ²	R (Beta)	a/b
Benzin	0,439	0,667	-3312,153 / 12553,553**
Diesel	0,055	-0,258	19864,830 / -4274,627**

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Ohne den Monaten der Verschrottungsprämie, kann der Benzinpreis deutlich mehr Neuzulassungen erklären, als mit diesen. Beim Dieselpreis hingegen ist kaum eine Veränderung bemerkbar. Nimmt man auch hier zur Berechnung einen Treibstoffpreis von 1,70€/Liter an, so würden ≈18.029 Benziner und ≈12.603 Diesel neu zugelassen werden. Die Verschrottungsprämie zeigte somit, wie schon angenommen, hauptsächlich eine Auswirkung bei den Benzinern und nicht bei den Dieselbetriebenen.

Die erste Hypothese kann somit bestätigt werden und man kommt zum überraschenden Ergebnis, dass die Neuzulassungen der Benziner positiv mit den Treibstoffpreisen zusammenhängen. Der Dieselpreis hingegen zeigt einen geringfügigen negativen Zusammenhang. Gründe für diese Entwicklung werden im nächsten Kapitel herausgearbeitet.

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

5.2. Neuzulassungen unterteilt in Fahrzeugklassen - H2

In der Hypothese 2 wird auf Basis der beschriebenen Studien unterstellt, dass sich ein steigender Treibstoffpreis positiv auf die Zahl der Neuzulassungen in den unteren und negativ in den höheren Fahrzeugklassen auswirkt. Hier werden sowohl Benzin- als auch Dieseltreibstoff für eine Regression herangezogen.

Tabelle 18: Ergebnisse der Regression – Fahrzeugklassen (Treibstoffklasse - Benzin)

Fahrzeugklasse	Korrigiertes R ²	R (Beta) (ohne VP)	a/b
Kleinwagen	0,325	0,576	-1069,058 / 1944,341**
	(0,510)	(0,710)	(-1226,912 / 2034,864**)
Stadtwagen	0,288	0,542	-768,612 / 4752,561**
	(0,435)	(0,664)	(-1181,708 / 4996,219**)
Untere Mittelklasse	0,229 (0,322)	<i>0,486</i> (0,573)	-421,838 / 2551,177** (-654,842 / 2692,964**)
Mittelklasse	0,006	0,121	455,073 / 176,627
	(0,019)	(0,167)	(391,542 / 215,173)
Oberklasse	0,210	-0,466	246,033 / -117,414**
	(0,218)	(-0,475)	(249,224 / -119,525**)
Luxusklasse	0,192	-0,447	101,715 / -58,012**
	(0,206)	(-0,462)	(103,685 / -59,092**)
Geländewagen	0,046	-0,234	213,875 / -110,327*
	(0,045)	(-0,233)	(214,734 / -110,011*)
Minivan	0,242	-0,499	95,391 / -51,990*
	(0,249)	(-0,506)	(96,512 / -52,688**)

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

In Tabelle 18 werden die Ergebnisse der Regression für die Treibstoffklasse Benzin vereinfacht dargestellt. Bei der Gruppe der Kleinwagen kann der Treibstoffpreis die Neuzulassungen bei b = 1.944,341, p<0,01 signifikant erklären. Der Zusammenhang beträgt r = 0,576 und entspricht 32,50% der erklärten Varianz. Im Segment der Stadtwagen erklärt der Prädiktor Treibstoffpreis die Zulassungen bei b = 4.752,561, p<0,01 ebenfalls signifikant. Der Zusammenhang beträgt hier r = 0,542, was 28,80% der erklärten Varianz entspricht. Bei der unteren Mittelklasse fällt das Ergebnis bei b = 2.551,177, p<0,01 ebenso signifikant aus. Der Zusammenhang beträgt hier r = 0,486. Dies entspricht 22,90% der erklärten Varianz. In der Mittelklasse ist das Ergebnis der Regression nicht signifikant. In der Oberklasse zeigt sich bereits ein anderes Bild als bei den unteren Fahrzeugklassen. Der Benzinpreis kann die Neuzulassungen in der Oberklasse bei b = -117,414, p<0,01 signifikant erklären, jedoch beträgt der Zusammenhang r = -0,466, was einer erklärten Varianz von 21,00% entspricht. Waren bis jetzt die Zusammenhänge immer positiv, so sind diese ab der Oberklasse negativ. In der Luxusklasse kann der Benzinpreis die Neuzulassungen bei b = -58,012, p<0,01 ebenfalls signifikant

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

erklären. Der Zusammenhang beträgt r = -0,447. Dieses R entspricht einer erklärten Varianz von 19,20%. Bei der Klasse der Geländewagen kann der Benzinpreis die Neuzulassungen bei b = -110,327, p<0,05 signifikant erklären. Der Zusammenhang ist allerdings gering und beträgt r = 0,234, dies entspricht 4,60% an erklärter Varianz. Im letzten betrachteten Segment, dem Segment der Minivans, zeigt sich auch ein signifikanter Zusammenhang. Bei b = -51,990, p<0,01 beträgt der Zusammenhang r = -0,499, was 24,20% an erklärter Varianz entspricht.

Verwendet man auch hier die zuvor beschriebene Gleichung der Regressionsgeraden und nimmt einen Treibstoffpreis (= x) von 1,70 €/Liter an, so zeigt sich, dass vor allem die Klassen der Stadtwagen, Kleinwagen und unterem Mittelklasse ihren Anteil an den Gesamtzulassungen erhöhen können. Sinkt der Preis für Benzin, so ist die Effizienz des Fahrzeuges für den Konsumenten nicht mehr von großer Bedeutung und er investiert mehr in ein größeres und besser ausgestattetes Fahrzeug. Im Segment der Kleinwagen werden ≈2.236 neu zugelassen. Bei den Stadtwagen ≈7.311, der unteren Mittelklasse ≈3.915, der Oberklasse ≈46, der Luxusklasse ≈3, den Geländewagen ≈26 und in der Klasse der Minivan ≈7 Fahrzeuge im Monat zugelassen. Ein umgekehrtes Bild zeigt sich, wenn die Treibstoffpreise fallen. Es werden weniger Stadt-, Kleinwagen und Fahrzeuge der unteren Mittelklasse zugelassen, dafür aber mehr in den anderen Leistungsklasse. Ein Grund warum der Zusammenhang der Variablen Preis und Menge in der Mittelklasse nicht signifikant ist, könnte sein, dass sich Käufer der höheren Fahrzeugklassen bei hohen Treibstoffpreisen aus Effizienzgründen, für ein Fahrzeug der Mittelklasse entscheiden. Aus umgekehrter Sicht investieren, bei fallenden und niedrigeren Treibstoffpreisen, Käufer von Stadt- und Kleinwagen in Fahrzeuge der Mittelklasse, um mehr in Komfort und Leistung zu haben, da diese Attribute nun wichtiger sind.

Lässt man auch bei der einzelnen Auswertung der Fahrzeugklassen (Benzin) die vier Monate, in denen die Verschrottungsprämie ihre Auswirkungen zeigt, außen vor, so wird das Ergebnis vor allem in den niedrigeren Fahrzeugsegmenten noch eindeutiger. So kann der Treibstoffpreis die Neuzulassungen in der Fahrzeugklasse der Kleinwagen bei r = 0,717 signifikant erklären. Dies entspricht nun 51,00% an erklärter Varianz. Auch in der Klasse der Stadtwagen ist der Zusammenhang zwischen den beiden Variablen deutlich gestiegen, so erklärt der Benzinpreis die Zulassungen bei einem r = 0,664 signifikant, was 43,50% an erklärter Varianz entspricht. In der unteren Mittelklasse zeigt sich ebenso ein signifikant stärkerer Zusammenhang der Variablen bei einem r = 0,753, was 32,20% an erklärter Varianz entspricht. In der Mittelklasse

zeigt sich, auch ohne den vier Monaten, kein signifikanter Zusammenhang. Die Zusammenhänge stiegen auch in den höheren Fahrzeugklassen minimal an. Die Treibstoffpreise können somit die Zulassungssteigerungen in den kleineren Fahrzeugsegmenten noch stärker erklären.

Ein Grund für die Zusammenhänge zwischen dem Benzinpreis und den Neuzulassungen in dieser Treibstoffklasse und dem momentanen Trend hin zu effizienteren Fahrzeugen ist, der in den verschiedenen Studien beschriebene, indirekte Rebound Effekt. Ist der Treibstoffpreis hoch, so erwirbt der Konsument ein effizientes Fahrzeug. Die Fahrzeuge der unteren Klassen sind effizienter, da sie meistens eine geringere Motorleistung, weniger Hubraum und weniger Gewicht haben. Sinkt jedoch der Treibstoffpreis, so ist der Anreiz für den Konsumenten groß, sich ein Fahrzeug aus einer höheren Leistungsklasse zu kaufen, da er weniger für den Treibstoff bezahlt und somit das vorhandene Kapital in ein teureres Fahrzeug investiert wird. Eine Rolle spielt der indirekte Rebound Effekt vor allem in Klassen bei welchen der Preisunterschied nicht zu hoch ausfällt, wie bei den Stadt-, Kleinwagen, der unteren Mittelklasse und der Mittelklasse.

Bei den Variablen Dieselzulassungen und Dieselpreis zeigt sich hingegen ein konträres Bild. Wie aus Tabelle 19 zu entnehmen ist, kann der Dieselpreis die Zahl der Neuzulassungen weder in den Segmenten Kleinwagen, Oberklasse noch in der Luxusklasse signifikant erklären. Bei der Klasse der Stadtwagen hingegen können die Dieselpreise die Neuzulassungen bei b = -2.488,409, p<0,01 signifikant erklären. Der Zusammenhang beträgt r = 0,860, was 45,80% an erklärter Varianz entspricht. In der unteren Mittelklasse erklären sich die Variablen bei b= -2.004,610, p<0,01 ebenfalls signifikant. Der Zusammenhang beträgt hier r = -0,429, was 17,70% an erklärter Varianz entspricht. In der Mittelklasse erklären sich die Variablen mit einem b von -2.188,818 und p<0,01 auch gegenseitig. Der Zusammenhang von r = -0,503 entspricht 24,60% an erklärter Varianz. In der Klasse der Geländewagen können die Preise für Diesel die Neuzulassungen bei b = 210,296, p<0,05 ebenfalls signifikant erklären. R entspricht in dieser Fahrzeugklasse 0,290, was einer erklärten Varianz von 3,50% entspricht. In dem Fahrzeugsegment der Minivan erklären sich die Variablen ebenfalls signifikant bei b = -681,414, p<0,01. R beträgt -0,366, was 12,60% an erklärter Varianz bedeutet.

Tabelle 19: Ergebnisse der Regression - Fahrzeugklassen (Treibstoffklasse - Diesel)

Fahrzeugklasse	Korrigiertes R ²	R (Beta) (ohne VP)	a/b
Kleinwagen	0,008	-0,131	147,254 / -40,261
Kiemwagen	(0,010)	(-0,137)	(150,392 / -42,109)
Stadtwagen	0,458	-0,680	4100,751 / -2488,409*
Stautwagen	(0,489)	(-0,702)	(4182,521 / -2539,147**)
Untere Mittelklasse	0,177	-0,429	5969,892 / -2004,610**
Officie Witherklasse	(0,175)	(-0,431)	(5718,631 / -2017,492**)
Mittelklasse	0,246	-0,503	5292,772 / -2188,818**
Witterklasse	(0,250)	(-0,507)	(5322,724 / -2207,216**)
Oberklasse	0,018	-0,165	849,390 / -166,620
Oberkiasse	(0,021)	(-0,174)	(861,643 / -174,129)
Luxusklasse	0.002	0,086	34,489 / 9,971
Luxuskiassc	(0,003)	(0,081)	(35,456 / 9,160)
Geländewagen	0,035	0,290	618,730 / 210,296*
Gerandewagen	(0,036)	(0,212)	(615,213 / 211,366*)
Minivan	0,126	-0,366	2023,316 / -681,414**
	(0,140)	(-0,385)	(2063,541 / -706,762**)

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Die Klasse der Stadtwagen verzeichnet bei steigenden Treibstoffpreisen ein Minus bei den Zulassungen, ebenso die untere Mittelklasse, Mittelklasse und das Segment der Minivan. Einzig im Segment der Geländewagen zeigt sich ein geringfügig positiver Zusammenhang zwischen den Variablen Preis und Menge. Zur Veranschaulichung werden die Regressionskoeffizienten auch hier in die Gleichung der Regressionsgeraden eingesetzt. Bei den Stadtwagen kommt es zu null Zulassungen, wenn der Dieselpreis 1,65 €/Liter übersteigt. In der unteren Mittelklasse werden bei einem Preis von 1,70 €/Liter noch ≈2.562 Pkw zugelassen. In der Mittelklasse sinken die Zulassungen auf einen Wert von ≈1572 Stück je Monat. Im Segment der Minivan fallen die Zulassungen ebenfalls auf ≈865 Stück. Einzig bei der Klasse der Geländewagen steigt die Zahl der Neuzulassungen geringfügig auf ≈976 Stück monatlich.

Lässt man auch bei dieser Regression die Monate der Verschrottungsprämie weg, so zeigt sich, dass die Prämie im Segment der Dieselbetriebenen kaum zu einer Veränderung geführt hat. Allerdings ist der Zusammenhang zwischen den Variablen minimal größerer als zuvor. Dieser steigert sich lediglich maximal um 2,00% je Variable.

Somit wird auch bei Betrachtung der einzelnen Segmente bemerkbar, dass die Verschrottungsprämie fast nur bei den Benzinern ihre Auswirkungen hat und dort hauptsächlich in den unteren Leistungsklassen.

Die Treibstoffpreise wirken sich somit unterschiedlich auf die Zahl der Neuzulassungen aus. Vor allem der steigende Benzinpreis zeigt einen positiven Zusammenhang mit den

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Zulassungen in den unteren Segmenten, welche hauptverantwortlich für die Steigerung der Gesamtzulassungszahlen sind. Dies spiegelt die Erkenntnisse der Literatur wieder und zeigt auf, dass es auch bei der Kaufentscheidung einen Rebound Effekt gibt. Bei der Treibstoffklasse Diesel hingegen zeigt sich ein gemischtes Bild.

Grundsätzlich kann für die Treibstoffklasse der Benziner die Hypothese bestätigt werden. Bei den Dieselbetrieben hingegen muss diese verworfen werden, da der Autor hier zu einem umgekehrten Ergebnis kommt.

Warum sich die steigenden Treibstoffpreise in den verschiedenen Treibstoffklassen unterschiedlich auswirken, wird anhand eines Kostenvergleiches ausgewählter Fahrzeuge erläutert. Die genauen Daten der verwendeten Fahrzeuge und Treibstoffpreise wie auch die durchgeführten Berechnungen sind dem Appendix zu entnehmen. Für den Kostenvergleich wurden die durchschnittlichen Triebstoffpreise aus den Jahren 2003 und 2009 herangezogen. Es wird eine Nutzungsdauer von 5 Jahren angenommen. Als Anhaltspunkt sind in Tabelle 20 die durchschnittlich gefahrenen Kilometer pro Jahr dargestellt.

Treibstoff	1999/2000	2003/2004	2005/2006	2007/2008	2009/2010
Benzin	12.032	11.950	11.429	11.342	10.964
Diesel	15.965	16.433	15.680	15.232	14.815
Sonstiger		14.011	11.426	9.885	10.007
Durchschnitt	13.461	14.142	13.740	13.497	13.093

Tabelle 20: Jährlich gefahrene Kilometer je Pkw und Treibstoffklasse (Statistik Austria)

In der Klasse der Kleinwagen wird der Fiat 500 Lounge für einen Kostenvergleich herangezogen. Die Benzin- und Dieselvariante unterscheiden sich im Anschaffungspreis um 1.400 €, wobei der Preisvorteil zugunsten des Benziners ausfällt. Bei der gewählten Nutzungsdauer rentiert sich der Diesel ab einer jährlichen Kilometerleistung von 46.296 (2003) und 75.819 (2009). Dieses einfache Beispiel zeigt, warum in der Klasse der Kleinwagen ein Benziner die bessere Wahl ist. Betrachtet man die aktuell sinkende Preisdifferenz zwischen den Treibstoffklassen, so wird sich auch in Zukunft der Konsument immer mehr für den Benziner entscheiden.

Bei den Stadtwagen zieht der Autor das Modell VW Polo für diese Gegenüberstellung heran. Hier müsste man 19.907 (2003) bzw. 19.328 (2009) Kilometer jährlich zurücklegen, damit sich der um 1.970,00 € höhere Anschaffungspreis des Diesels amortisiert. Dieses Faktum ist

mitunter einer der Gründe, warum die steigenden Benzinpreise positiv mit der Zahl der Neuzulassungen zusammenhängen..

In der unteren Mittelklasse (VW Golf Trend Line) und Mittelklasse (BMW 3er) kommt der Autor aufgrund der Preisdifferenz zwischen den jeweiligen Benzin- und Dieselmodellen zu dem Ergebnis, dass mehr als 21.000 bzw. 20.000 Kilometer mit den Dieselbetriebenen gefahren werden müssen, um eine Ersparnis gegenüber dem Benziner zu haben. Auch hier liegen die berechneten Kilometerleistungen klar über dem in Tabelle 22 gezeigten Durchschnitt. In der nächst höheren Klasse, der Oberklasse, zeigt sich hingegen schon ein anderes Bild. Hier wird der Audi A6 für einen Kostenvergleich herangezogen. Die beiden Modelle weisen hier eine deutlich geringere Preisdifferenz von 610,00€ auf. Bei der gewählten Nutzungsdauer genügen 6.012 (2003) gefahrenen Kilometer jährlich, damit sich der Diesel rentiert. Dies erklärt, warum gerade im Benzinsegment die steigenden Treibstoffpreise einen negativen Einfluss auf die Zahl der Neuzulassungen haben. Hier ist der Diesel klar die bessere Wahl

Ein vollkommen anderes Bild zeigt sich im Segment der Luxusklasse. Hier wurde das Modell VW Phaeton für einen Vergleich herangezogen. Vergleicht man die Anschaffungspreise, so ist ersichtlich, dass das Dieselmodell in der Anschaffung kostengünstiger ist als der Benziner. Eine Berechnung und ein Vergleich der Kosten lohnt sich hier nicht, da der Konsument mehrere Vorteile hat, wenn er sich für den Diesel entscheidet. Er ist günstiger in der Anschaffung, effizienter und der Treibstoff ist momentan noch geringfügig günstiger.

Zusammenfassend kann gesagt werden, dass die steigenden Treibstoffpreise und die sinkende Differenz dieser, die Entscheidung des Konsumenten in den wichtigsten Fahrzeugklassen zurecht vermehrt auf den Benziner fallen lässt und dies. Der Rebound Effekt wird auch hier für die Klasse der Benziner bestätigt. Auch zeigt sich, dass sich der Konsument bei steigenden Treibstoffpreisen für effizientere Fahrzeuge entscheidet.

Es gilt jedoch zu beachten, dass bei dieser Gegenüberstellung der Entwicklung keine weitere Variable, wie Einkommen oder Inflation, miteingeflossen ist.

5.3. Neuzulassungen in den Bundesländern (Stadt/Land) – H3

Es gilt mit der dritten Fragestellung herauszufinden, ob die Treibstoffpreise in den Bundesländern die Zulassungen erklären können, und ob die Zusammenhänge in der Stadt (Wien) andere sind als am Land.

Tabelle 21: Regression - Treibstoffpreise und Neuzulassungen in den Bundesländern

Bundesland	Ben	zin	Dies	el
Dundesiand	r (a/b)	Korrigiertes r ²	r (a/b)	Korrigiertes r ²
Burgenland	0,554 (-178,656 / 499,450**)	0,301	-0,141 (654,873 / -100,394)	0,011
Kärnten	0,427 (43,749 / 546,995**)	0,174	-0,431 (1424,735 / -490,605**)	0,178
Niederösterreich	0,560 (-663,446/2551,148**)	0,307	-0,266 (3852,387/-928,671**)	0,062
Oberösterreich	0,523 (-455,258/2145,380**)	0,267	-0,180 (3156,912 / -545,850)	0,024
Salzburg	0,491 (37,324/679,016**)	0,234	-0,196 (1556,069/-262,183*)	0,030
Steiermark	0,527 (-318,853 / 1671,664**)	0,271	-0,305 (2813,013 / -725,043**)	0,085
Tirol	0,497 (-10,662 / 758,091**)	0,240	-0,285 (1755,166/-454,917**)	0,073
Vorarlberg	0,578 (-57,081 / 447,316**)	0,328	-0,263 (733,925/-173,645**)	0,061
Wien	0,535 (-335,558/2278,818**)	0,275	-0,164 (3740,263 / -483,125)	0,018
Land	0,538 (-1602,883 / 9299,059**	0,283	-0,264 (15947,080/-3681,308**	0,061

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

In Tabelle 21 werden die Ergebnisse der Regressionen mit den Treibstoffpreisen als Prädiktor und den Neuzulassungen in den Bundesländern als Variable in vereinfachter Form dargestellt. Ersichtlich ist sofort, dass der Benzinpreis die Neuzulassungen in allen Bundesländern signifikant erklären kann. Der geringste Zusammenhang besteht im Bundesland Kärnten bei b= 546,995, p<0,01. Der Zusammenhang beträgt r = 0,427, was 17,40% an erklärter Varianz entspricht. Den größten Zusammenhang gibt es in Vorarlberg bei b = 447,316, p<0,01. Dieser beträgt r = 0,578, was 32,80% an erklärter Varianz entspricht. Bei den Benzinern ist der Zusammenhang, wie auch schon in den einzelnen Segmenten, ein positiver. Es gibt kaum Unterschiede zwischen den einzelnen Bundesländern.

Im Segment der Dieselbetriebenen können weder im Burgenland und Oberösterreich noch in Wien die Treibstoffpreise die Zahl der Zulassungen signifikant erklären. In den anderen Bundesländern hingegen erklären die Treibstoffpreise die Neuzulassungen signifikant. Am

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

größten ist die erklärter Varianz in Kärnten mit 17,80%, bei r = -0,431 und einem b von -490,605,p<0,01. War der Zusammenhang bei den Benzinern noch ein positiver, so ist er nun ein negativer. In den signifikanten Bundesländern sinkt die Zahl der Dieselzulassungen, wenn der Preis für Diesel steigt und umgekehrt.

Bei den Benziner muss die aufgestellt Hypothese verworfen werden, da die Zusammenhänge in allen Bundesländern nahezu ident sind. Beim Diesel zeigen sich in einigen Bundesländern Zusammenhänge, in anderen nicht. Die Hypothese, dass sich der Treibstoffpreis in der Stadt anders auswirkt als an Land, muss für die Treibstoffklasse der Benziner verworfen werden. Bei den Dieselbetriebenen hingegen zeigen sich Unterschiede. So erklärt der Dieselpreis die Zahl der Zulassungen signifikant am Land während er in der Stadt keinen signifikanten Zusammenhang mit den Neuzulassungen aufweist. Für diese Auswertung gilt es jedoch zu beachten, dass ein gleicher Treibstoffpreis für alle Bundesländer verwendet wurde. Im Normalfall unterscheiden sich diese jedoch. Auch hier fließt das durchschnittliche Einkommen pro Kopf, welches in Wien am größten und im Burgenland am geringsten ist (2009),⁶⁵ nicht in die Auswertung mit ein. Es gilt auch zu beachten, dass in Wien die meisten Dieselfahrzeuge zugelassen wurden. Über den gesamten Beobachtungszeitraum sind vor allem Geländewagen und Fahrzeuge der Ober- und Luxusklasse in Wien bei den Neuzulassungen stark vertreten, welche die höchsten die höchsten Dieselanteile aufweisen.

_

⁶⁵ Statistik Austria; 2012

5.4. Δ B/D - H4

In dieser Untersuchung wurde unterstellt, dass sich die sinkenden Differenz zwischen den Treibstoffpreisen, positiv auf die Zahl der Neuzulassungen der Benziner auswirkt. Die Ergebnisse der Regression sind in Tabelle 22 zusammengefasst.

Tabelle 22: Regression - Δ B/D-Zulassungen im Zusammenhang mit dem Δ der Treibstoffpreise

Δ B/D	Korrigiertes r ²	R (Beta)	a/b
Kleinwagen	0,035	-0,210	1096,464 / -2194,341*
Stadtwagen	0,132	-0,374	3701,243 / -12389,295**
Untere Mittelklasse	0,207	-0,463	-572,464 / -10609,606**
Mittelklasse	0,190	-0,445	-1945,718 / -6845,954**
Oberklasse	0,061	-0,264	-503,969 / -869,008**
Luxusklasse	0,148	0,395	-17,690 / 174,463**
Gesamt	0,171	-0,423	-2339,849 / -35366,869**

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Im Segment der Kleinwagen zeigt sich, dass eine sinkende Differenz zwischen den Preisen die Differenz zwischen den Zulassungen signifikant erklären kann bei b = -2194,341, p<0,05. Der Zusammenhang beträgt r = -0,210, was 3,5% an erklärter Varianz entspricht. Bei den weiteren Fahrzeugklassen erklären sich die Variablen ebenfalls signifikant. In der Klasse der Stadtwagen beträgt der Zusammenhang r = -0,374, was 13,20% an erklärter Varianz entspricht. Im Segment der unteren Mittelklasse (r = -0,463) und der Mittelklasse (r = -0,445) sind die Zusammenhänge am stärksten. In der Oberklasse zeigt sich das bei r = -0,264 und b=-869,008 die Variablen sich ebenso negativ beeinflussen. Einzig in der Luxusklasse ist ein positiver Zusammenhang erkennbar. Das Ergebnis für die gesamte Zahl an Neuzulassungen zeigt noch einmal, dass sich die sinkende Differenz zwischen den Preisen für Benzin und Diesel positiv auf die Zahl der Benzinzulassungen auswirkt. Bei b = -35.366;869, p>0,01 und r = -0,423, was 17,10% an erklärter Varianz entspricht, erklären sich die Variablen signifikant.

Dieses Ergebnis bekräftigt die zuvor gewonnen Ergebnisse der Regression und verdeutlicht die positive Auswirkung des steigenden Benzinpreises auf die Zahl der Neuzulassungen. Die sinkende Differenz zwischen den Preisen führt dazu, dass Diesel nicht mehr die Attraktivität für den durchschnittlichen Konsumenten hat, wie noch vor einigen Jahren.

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Die hier aufgestellt Hypothese, dass sich die sinkende Differenz der Preise positiv auf die Zahl der Benzinzulassungen auswirkt (H4), kann somit bestätigt werden.

5.5. Wechselwirkung Benzin- und Dieselzulassungen

Zieht man zur Beantwortung dieser Frage die Ergebnisse der Korrelation aus Tabelle 23 heran, so geht hervor, dass sich die Variablen Benzin- und Dieselzulassungen in den Segmenten der Kleinwagen und unteren Mittelklasse nicht erklären können. Im Segment der Stadtwagen hingegen zeigt sich ein negativer Zusammenhang. Steigen die Zulassungen von Benzinbetriebenen, so sinken die der Dieselfahrzeuge und umgekehrt. Ab der Mittelklasse erklären sich die Variablen positiv. So steigen die Zulassungen Benzinbetriebener an, wenn auch die der Dieselbetriebenen steigen und umgekehrt.

Tabelle 23: Wechselwirkung Benzin- und Dieselzulassungen

ΔD/B	KW	SW	uMkl	Mkl	Okl	Lkl
KW	-0,183	-0,032	0,047	0,118	0,277**	0,308**
SW	-0,548**	-0,313**	-0,326**	-0,023	0.750**	0,720**
uMkl	-0,237*	0,014	0,024	0,190*	0,705**	0,594**
Mkl	-0,354**	-0,050	-0,106	0,250**	0,696**	0,725**
Okl	-0,141	0,035	0,005	0,103	0,603**	0,476**
Lkl	-0,049	0,128	0,135	0,094	0,214*	0,398**

^{**.} Der Zusammenhang ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Vergleicht man die Ergebnisse der Fahrzeugklassen untereinander, so zeigt sich vor allem zwischen den dieselbetriebenen Stadtwagen und den benzinbetriebenen Kleinwagen ein negativer Zusammenhang. Auch beim Vergleich der Stadtwagen mit der unteren Mittelklasse fällt auf, dass bei einer Steigerung der Dieselzulassungen im Stadtwagensegment, die Zulassungen der Benziner in der unteren Mittelklasse fallen. Steigen die Zulassungen im Benzinsegment der Oberklasse, so steigen auch die Zulassungen im Dieselsegment der Mittelklasse. Darüber hinaus können die Benzinbetriebenen der Ober- und Luxusklasse die Dieselzulassungen der anderen Fahrzeugsegmente stark erklären können.

^{*.} Der Zusammenhang ist auf dem Niveau von 0,05 (2-seitig) signifikant.

5.6. Österreich im Vergleich mit Ländern der Eurozone

In diesem Teil der Arbeit werden Länder der Eurozone zu einem Vergleich mit Österreich herangezogen. Es werden, wie schon zuvor, monatliche Neuzulassungsdaten unterteilt in Diesel- und Benzinmotoren ab dem Jahr 2002 herangezogen. Zur Verfügung gestellt wurden diese Daten von dem Unternehmen BDW Automotive GmbH mit Sitz in Leverkusen. Der Abruf dieser Daten erfolgte auf elektronischem Weg. 66 Die Treibstoffpreise, der für diese Auswertung verwendeten Länder, bezog der Autor von der Website der European Kommission, die alle zwei Wochen die aktuellen Preise jedes Landes aufzeichnet und veröffentlicht. Daraus errechnete der Autor einen monatlichen Durchschnittspreis, der dann für die folgende Ausarbeitung verwendet wurde. 167 Im ersten Abschnitt werden die Treibstoffpreise der Eurozone-Länder näher erläutert und es wird auf deren Zusammensetzung eingegangen. Im zweiten Teil werden die Neuzulassungen in den Treibstoffklassen Diesel und Benzin näher betrachtet und auf eine mögliche Auswirkung der Verschrottungsprämie untersucht. Im dritten Teil dieses Kapitels wird mittels statistischer Tests untersucht, ob in anderen Ländern der Eurozone, genau so wie in Österreich, ähnliche Auswirkungen des Treibstoffpreises auf die Neuzulassungen zu beobachten sind.

5.6.1. Treibstoffpreise in EU Ländern

In den Ländern der Eurozone gibt es sowohl beim Diesel als auch beim Benzin große Preisdifferenzen. Insbesondere beim Benzin sind diese Preisdifferenzen teils enorm. Schuld daran ist aber nicht die Umsatzsteuer der verschiedenen Länder, welche zwischen 15% in Luxemburg und 23% in Griechenland liegt. Vielmehr trägt die unterschiedlich hohe Mineralölsteuer zu diesen enormen Preisunterschieden bei. Die Niederlande haben mit 0,66 €/L EU-weit den höchsten Mineralölsteuersatz und führten deshalb auch bis Oktober 2010 die Liste der Benzinpreise an. Im Jahr 2008 betrug der Preis für einen Liter Benzin kurzzeitig 1,68 €. Im Oktober 2010 wurden sie von Griechenland abgelöst. Trotz der niedrigen Mineralölsteuer von 0,31 € pro Liter Benzin stieg der Benzinpreis seit Beginn der wirtschaftlichen Krise in diesem Land enorm an. Bis dahin war er in Griechenland aufgrund der niedrigen Steuer am günstigsten. Der Preis in den Niederlanden wird gefolgt von den Preisen in Deutschland, Frankreich, Belgien, Finnland, Portugal und Italien. In diesen Ländern liegt die Steuer auf

66 Jens Schultz, 2012

⁶⁷ European Commission, 2012

einen Liter Benzin bei über 0,55 €. Österreich liegt mit seinem Steuersatz und Benzinpreis im Mittelfeld der Eurozone-Länder. Luxemburg, Irland, Slowenien, Spanien, die Slowakei und Estland bilden das untere Drittel der Preisliste. Am günstigsten tankt der Pkw-Besitzer derzeit in Estland, wo pro Liter Benzin nur 0,29 € an Steuern anfallen.

Betrachtet man Abbildung 22, so ist erkennbar, dass in allen Mitgliedsstaaten der Währungsunion die gleichen Preisschwankungen auftreten, allerdings teilweise zeitlich versetzt. Die einzige Ausnahme bildet Griechenland.

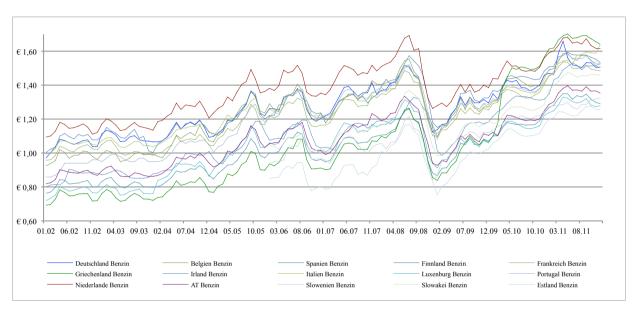


Abbildung 22: Benzinpreise ab 2002 in den Ländern der Eurozone

Beim Diesel zeigt sich ein ähnliches Bild wie bei der Treibstoffklasse Benzin. Die unterschiedlichen Steuersätze, die auf Diesel lasten, schwanken in den beobachteten Ländern zwischen 0,47 €/L in der Slowakei und 0,27 €/L in Griechenland. Die geringere Differenz der Steuern ist in Abbildung 23 ersichtlich. Die einzige Ausnahme bei den Preissenkungen und - erhöhungen bildet abermals Griechenland.

Ansonsten verlaufen die Dieselpreise aller betrachteten Länder nahezu ident. Ein Grund für die geringere Differenz des Dieselpreises zwischen den Ländern ist die steuerliche Begünstigung in diesen Ländern. Den höchsten Dieselpreis muss der Konsument im Durchschnitt in Italien bezahlen. Hier ist die Steuer mit 0,42 €/L nach Deutschland mit 0,47 €/L am höchsten. Ein Grund, warum der Diesel in Italien geringfügig teurer ist als in Deutschland, könnte unter anderem die um 2% höhere Umsatzsteuer sein. Es ist außerdem zu beachten, dass bei der Preisgestaltung auch die Kosten für den Transport eine Rolle spielen.

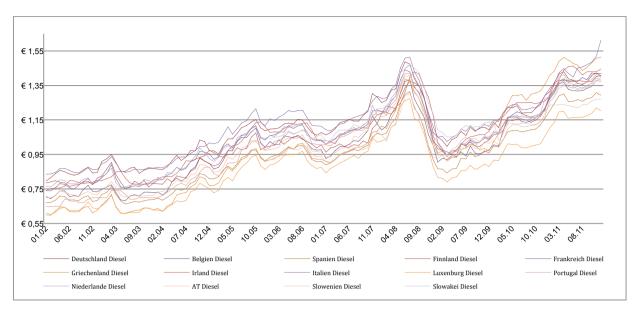


Abbildung 23: Dieselpreise ab 2002 in den Ländern der Eurozone

Erkennbar ist, sowohl beim Benzin als auch beim Diesel, der drastische Preisanstieg im Jahr 2008 und der Preissturz im Zuge der Wirtschaftskrise. Der Treibstoffpreis sank zwar bis zu Beginn des Jahres 2009 in allen beobachteten Regionen wieder, stieg aber dann ab diesem Zeitpunkt wieder an.

5.6.2. Neuzulassungen in EU Ländern

Bei den Neuzulassungen in den betrachteten Ländern der Eurozone ist ein identes Bild wie in Österreich erkennbar. In den Monaten April, Mai und Juni sind die meisten Neuzulassungen zu verzeichnen. Bei der Gesamtzahl der Neuzulassungen von dieselbetriebenen Pkw liegt Frankreich trotz eines Motorisierungsgrades von nur 482 Pkw pro 1000 Einwohner an erster Stelle. Dicht gefolgt von Deutschland, Spanien und Italien. Generell ist erkennbar, dass die Zahl der Neuzulassungen aus Abbildung 24 sich nach der Einwohnerzahl des jeweiligen Landes richtet. Frankreich hat jedoch um 16 Millionen weniger Einwohner als Deutschland und führt dennoch die Zulassungsstatistik bei den dieselbetriebenen Pkw an. In Spanien war in den Jahren 2003 bis Mitte 2008 ein deutlicher Trend zum Diesel zu erkennen, der aber im Jahr 2008 wieder gebremst wurde. Grundsätzlich lassen sich die Zulassungen im unteren Drittel der Abbildung nach den Einwohnerzahlen der jeweiligen Staaten auflisten. Ausnahmen bilden jedoch Belgien und die Niederlande. In Belgien kommen auf 1000 Einwohner 481 Pkw und die

-

⁶⁸ Eurostat, 2012

Tendenz ist steigend. In den Niederlanden kommen bei einer Einwohnerzahl von 16,65 Millionen auf 1000 Einwohner 604 Pkw.

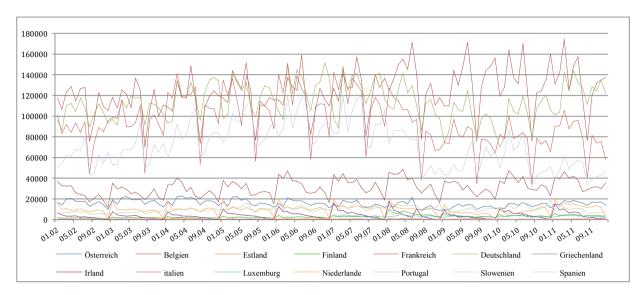


Abbildung 24: Neuzulassungen dieselbetriebener Pkw von Ländern der Eurozone

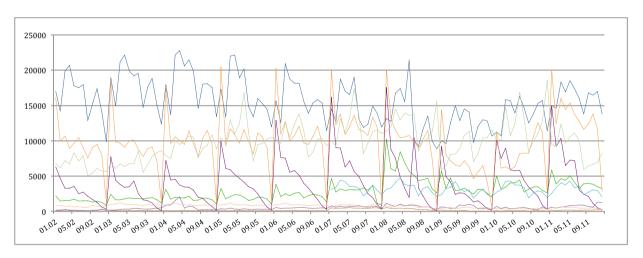


Abbildung 25: Neuzulassungen dieselbetriebener Pkw unter 25.000 Stück monatlich

Gleich wie in Österreich gab es in verschiedenen Ländern beim Kauf eines neuen Pkw eine Verschrottungsprämie für den alten. Die Anforderungen bei den verschiedenen Prämien waren nahezu in jedem Land ähnlich. Das Auto musste mindestens 9 bis 13 Jahre alt sein und der Neuwagen durfte einen bestimmten CO₂-Ausstoß nicht überschreiten. Die finanziellen Mittel, die der Staat zur Verfügung stellte, waren jedoch unterschiedlich. In Österreich wurde beim Kauf eines neuen Pkw die Verschrottungsprämie im Wert von 1500 € vom Neuwagenpreis abgezogen. In Deutschland bekam man hingegen 2500 €. In Italien wurde bezüglich der Höhe der Prämie zudem noch zwischen der gewählten Antriebsart des neuen Kfz unterschieden. Für ein Benzin- oder Dieselfahrzeug erhielt der Käufer 1.500 €, entschied er sich hingegen für eine alternative Antriebsart, so bekam man ein finanzielle Unterstützung von bis zu 5.000 €.

Außerdem war das Kfz für die Dauer von drei Jahren von jeglichen Steuern befreit. In Luxemburg wurde ebenfalls zwischen den verschiedenen Treibstoffarten und deren Co₂-Emissionen differenziert. Die Prämie lag hier zwischen 1.500 € und 7.500 €. Spanien ging einen anderen Weg. Hier wurde der Autokäufer nicht direkt finanziell unterstützt. Vielmehr stellte man beim Kauf eines neuen Pkw ein zinsloses Darlehen in Höhe von bis zu 10.000 € zur Verfügung.

Die Laufzeit der finanziellen Unterstützung war in allen Ländern abhängig von der Anzahl der zugelassenen Pkw. Es wurde vom Staat ein fixes Budget für die Abwrackprämie veranschlagt und sobald dieses aufgebraucht war endete auch die Unterstützung.⁶⁹ In Deutschland war die Abwrackprämie als Umweltprämie bekannt und lief vom 14. Jänner 2009 bis 02. September 2009. Dieser Zeitraum liegt in Abbildung 26 auf der für Deutschland relevanten Linie zwischen den beiden Markierungspunkten. Danach waren alle dafür eingeräumten finanziellen Mittel aufgebraucht. In Frankreich unterstützte der Staat den Neuwagenkauf vom 19. Jänner 2009 bis 31. Dezember 2010. In Italien war eine Unterstützung von 01. Jänner 2007 bis 31.Dezember 2008 und in Spanien von August 2008 bis 01. Oktober 2010 garantiert. Es gibt in der Eurozone nur ein einziges Land, in dem die Verschrottungsprämie dauerhaft ist, nämlich Zypern. Hier wird der Kauf eines Neuwagens bei Verschrottung eines mindestens 15 Jahre alten Autos mit bis zu 1799 € gefördert.

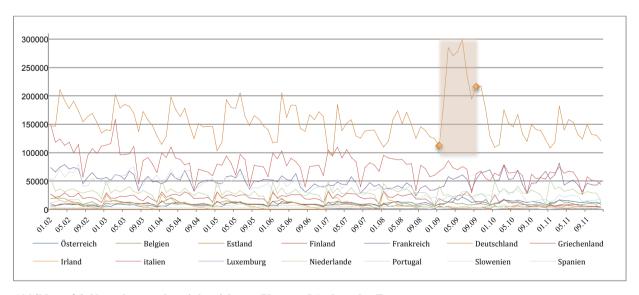


Abbildung 26: Neuzulassung benzinbetriebener Pkw von Ländern der Eurozone

⁶⁹ Kretzmann, 2009

Abbildung 27: Neuzulassung benzinbetriebener Pkw unter 55.000 Stück monatlich

Die größte Auswirkung zeigt die Verschrottungsprämie bei den benzinbetriebenen Pkw in Deutschland. Hier konnte man in den ersten acht Monaten des Jahres 2009 ein Plus von 26,8% erzielen. Wurden im Juni 2008 noch 171.685 Benziner zugelassen, so waren es ein Jahr darauf fast 300.000. Nachdem das Kontingent der Umweltprämie erschöpft war, ging die Zahl der Neuzulassungen in Deutschland wieder zurück. Auch in den anderen Ländern zeigt die Abwrackprämie ihre Auswirkungen auf den Automobilmarkt. So konnte Portugal ein Plus von 62,1% verzeichnen. Sowohl in Italien als auch in Spanien und Frankreich wurden mehr Pkw verkauft und neu zugelassen als noch im Jahr zuvor.

Der Autor nimmt auch wie schon für das Land Österreich statistische Tests zu Hilfe, um einen möglichen Zusammenhang zwischen den Treibstoffpreisen und den Neuzulassungen der jeweiligen Staaten aufzuzeigen.

5.6.3. Auswirkungen der Treibstoffpreise in der EU

Da sich der Treibstoffpreis im betrachteten Zeitraum in allen Ländern der Eurozone gleich entwickelt hat und jeweils zur gleichen Zeit gestiegen und gefallen ist, so ist es interessant herauszufinden, ob die Entwicklung der Treibstoffpreise in den Euroländern die gleichen Folgen nach sich zieht wie in Österreich. Es wurde für alle Länder eine Korrelation mit deren Neuzulassungen und Treibstoffpreisen durchgeführt. Die Auswertung erfolgte ebenfalls mit dem Programm SPSS Version 18.0. Als Variablen dienen die Summe der Neuzulassungen in den jeweiligen Segmenten Benzin und Diesel. Eine Unterteilung in die verschiedenen Fahrzeugklassen wurde hier nicht unternommen. In Tabelle 24 wurden die betrachteten Länder nach deren Kaufkraftstandards aus dem Jahr 2010 beginnend mit dem höchsten geordnet. Der Kaufkraftstandard wird von der Europäischen Union wie folgt beschrieben:

"Lebensstandards können verglichen werden, indem der Preis zu dem bestimmte Waren und Dienstleistungen in den einzelnen Ländern angeboten werden, zum Einkommen in Relation gesetzt wird. Für diese Messung wird eine einheitliche, errechnete Währung verwendet, der so genannte Kaufkraftstandard"⁷⁰

Der KKS (Kaufkraftstandard) der Europäischen Union wird mit 100 angenommen. Alle Werte darüber haben einen höheren KKS als der EU-Durchschnitt, alle darunter einen niedrigeren. Luxemburg hat im Jahr 2010 mit 283 den höchsten KKS und Estland mit 65 den niedrigsten. Alle anderen betrachteten Staaten haben einen höheren KKS als 100, nur Griechenland, Slowenien, Portugal und, wie schon erwähnt Estland, haben einen Wert unter 100.

Bei einer Korrelation von 0,029 für Benzin und 0,149 für Diesel gibt es in Luxemburg keinen Zusammenhang zwischen dem Prädiktor Treibstoffpreis signifikanten Neuzulassungen. In den Niederlanden zeigt sich über den betrachteten Zeitraum auch keine signifikante Auswirkung der Treibstoffpreise auf die Neuzulassungen Personenkraftwagen. In Österreich besteht, wie bereits im Kapitel zuvor schon erläutert, ein positiver Zusammenhang zwischen dem Benzinpreis und den Neuzulassungen mit Benzinantrieb, während der Dieselpreis eine negative Auswirkung auf die Neuzulassungen von Pkw mit Dieselantrieb hat.

-

⁷⁰ Vgl: Europäische Kommission, 2012

Tabelle 24: Zusammenhang von Treibstoffpreis und Neuzulassungen in der EU

Land/ Treibstoffpreis		Benzin	Diesel
Luxemburg (N=60)	Korr.	,029	,149
Niederlande (N=120)	Korr.	-,022	,161
Österreich (N=110)	Korr.	,554**	-,251**
Irland (N=120)	Korr.	-,465**	,142
Deutschland (N=120)	Korr.	-,168	,264**
Belgien (N=120)	Korr.	-,319**	,360**
Finnland (N=120)	Korr.	-,492**	,653**
Frankreich (N=120)	Korr.	-,299**	,334**
Spanien (N=120)	Korr.	-,697**	-,159
Italien (N=120)	Korr.	-,532**	-,142
Griechenland (N=120)	Korr.	-,638**	,383**
Slowenien (N=72)	Korr.	,231	-,471**
Portugal (N=120)	Korr.	-,618**	,457**
Slowakei (N=72)	Korr.	,254	,182
Estland (N=72)	Korr.	-,063	-,068

^{**.} Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

In Irland ist bei der Antriebsart Benzin der Zusammenhang zwischen den Preisen und den Zulassungen bei r = -0.465 signifikant. Ein steigender Benzinpreis wirkt sich in Irland folglich mit einem Minus auf die Neuzulassungen von Pkw aus. Der Dieselpreis hingegen kann die Zulassungen nicht erklären. In Deutschland zeigt sich beim Benzin kein Zusammenhang. Grund dafür könnte der enorme Anstieg der Neuzulassungen in diesem Segment zum Zeitpunkt der Verschrottungsprämie sein. Im Gegensatz kann der Dieselpreis die Zahl der Neuzulassungen in Deutschland bei r = 0,264 signifikant erklären. In Belgien übt der Benzinpreis einen negativen, der Dieselpreis einen positiven Einfluss auf die Neuzulassungen aus. In Finnland zeigt sich ein ähnliches Bild, wobei die Korrelation der Variablen mit -0,492 für Benzin und 0,653 für Diesel weit höher ist als in Belgien. Einziger bedeutender Unterschied ist, dass sich der Dieselpreis positiv auf die Anzahl der Neuzulassungen auswirkt. Dagegen sorgt der Benzinpreis für eine sinkende Zahl an Neuzulassungen. In Frankreich zeigt sich ein ähnliches, wenn auch schwächer ausgeprägtes Bild. Der Benzinpreis wirkt sich hier ebenso negativ und der Dieselpreis positiv auf die Neuzulassungen aus, wobei der Einfluss des Dieselpreises höher ist als der des Benzinpreises. In Spanien allerdings hat der Dieselpreis keinen Einfluss auf die Neuzulassungen. Lediglich der Benzinpreis wirkt sich bei einer Korrelation starken Korrelation von -0,697 negativ auf die Neuzulassungen aus und erklärt

^{*.} Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.

immerhin 48,59% der Zulassungen. Wie auch schon in Spanien wirkt sich in Italien der Benzinpreis negativ auf die Stückzahl der Neuzulassungen aus. Die Korrelation hat einen Wert von -0,532, was 28,30% an erklärter Varianz entspricht. Der Dieselpreis hat auch in Italien keinen Einfluss auf die Zahl der Neuzulassungen. In Griechenland hingegen wirkt sich der Dieselpreis positiv auf die Zahl der Neuzulassungen aus. Steigt dieser, so steigt auch die Anzahl der Neuzulassungen. Bei einem r von 0,383, was 15,00% an erklärter Varianz bedeutet. kann der Dieselpreis die Zulassungen erklären. Wie auch schon in Italien und Spanien wirkt sich in Griechenland ein steigender Benzinpreis negativ auf die Neuzulassungen aus. Bei einem r = -0,638 erklären sich die beiden Variablen signifikant, was 40,70% an erklärter Varianz entspricht. Ein Grund für die negative Auswirkung des Benzinpreises auf die Neuzulassungen könnte unter anderem der enorme Preisanstieg in den letzten Jahren sein. In Slowenien zeigt der Benzinpreis keinen Zusammenhang mit den Neuzulassungen. Lediglich der steigende Dieselpreis wirkt sich negativ auf die Zahl der Neuzulassungen aus. In Portugal zeigt sich, dass ein steigender Benzinpreis eine sinkende Zahl an Neuzulassungen zur Folge hat, während eine Steigerung des Dieselpreises, bei einer moderaten Korrelation, zu einer Erhöhung der Zulassungen führt. Weder der Diesel- noch der Benzinpreis können die Neuzulassungen in der Slowakei und in Estland erklären.

In 8 der 15 Beobachtungen wirkt sich der steigende Benzinpreis negativ auf die Zahl der Zulassungen aus. Einzig in Österreich wirkt sich der Benzinpreis positiv aus. Beim Dieselkraftstoff ist erkennbar, dass nur in Österreich und Slowenien der steigende Preis eine negative Auswirkung auf die Zulassungen hat. In sieben der 15 Beobachtungen wirkt sich dieser positiv auf die Anzahl der Neuzulassungen aus.

In Österreich werden entgegen dem Trend der anderen Mitglieder der Währungsunion mehr benzinbetriebene Pkw neu zum Verkehr zugelassen, wenn der Benzinpreis steigt und geringfügig weniger dieselbetriebene Pkw, wenn der Dieselpreis steigt. Bestätigt wird dies von einer Studie der European Automobile Manufacturers' Association (ACEA)⁷¹. In Österreich wurden von Jänner bis März 2012 um 5,8% mehr Pkw zugelassen als im gleichen Zeitraum des Vorjahres. Die Neuzulassungen in den EU-Ländern nahmen hingegen um 6,6% ab. Ein Grund für dieses starke Minus sind vor allem die enorm gesunkenen Zulassungen in Griechenland. Hier verzeichnete man im Vergleich zum Vorjahr ein Minus von 40,9%. Auch in Portugal wurden im Zeitraum von Jänner bis Mai 2012 um 43% weniger Pkw neu zum Verkehr

-

⁷¹ ACEA; 2012

zugelassen als im selben Zeitraum ein Jahr zuvor. Frankreich und Italien verzeichneten ebenfalls ein Minus von 17,2% und 18,9% in diesem Zeitraum. In Österreich werden somit gegen den EU-weiten Trend trotz der steigenden Treibstoffpreise mehr Pkw zugelassen.

Die durchschnittliche Leistung der in der Währungsunion zugelassenen Pkw liegt bei 84 kW. In Österreich ist dieser Wert mit 82 kW ähnlich dem Durchschnitt. Lediglich Deutschland und Luxemburg liegen mit kW-Werten von 95 und 103 klar über dem Durchschnitt. Den niedrigsten Wert hat, mit durchschnittlich 73 kW, Italien aufzuweisen. Betrachtet man die Gesamtzulassungen der EU Staaten, so ist vor allem erkennbar, dass bis zum Jahr 2008 ein klarer Trend zu leistungsstärkeren Pkw zu erkennen ist. Danach flachte dieser Trend jedoch ab. Ab 2010 wurden wieder vermehrt höher motorisierte Pkw gekauft.⁷²

Ein weiterer einflussreicher Aspekt bei der Wahl des Pkw sind die CO₂-Emissionen. Diese haben nämlich einen Einfluss auf die Höhe der zu entrichtenden Steuer. In Österreich werden bevorzugt Klein- und Stadtwagen sowie Pkw der unteren Mittelklasse gekauft und zum Verkehr zugelassen. Dieser Trend zeigt sich auch in der EU. Waren es im Jahr 2001 noch 3% aller neu zugelassen Pkw, die unter 120 g/km CO₂ ausstießen, so sind es im Jahr 2010 schon 29%. Die Nachfrage nach Fahrzeugen mit einer CO₂-Emission unter 120 g/km stieg im Jahr 2010 gegenüber dem Jahr 2009 um 20%.

Generell ist sowohl in der EU als auch in Österreich ein Trend zu emissions- und verbrauchsärmeren Pkw zu erkennen. Aktuelle Studien belegen eine Reduktion der durchschnittlichen CO₂-Emissionen vor allem bei Fahrzeugen mit Benzinantrieb in allen Fahrzeug- und Leistungsklassen. Bei Dieselbetriebenen steigen seit dem Jahr 2000 die Emissionen leicht an.⁷³

-

⁷² ACEA; 2010

⁷³ Pötscher, Winter; 2008; Seite 20 ff.

6. Conclusio

Es stellte sich die Frage, ob die dramatisch gestiegenen Treibstoffpreise eine Auswirkung auf die Neuzulassungsstatistik von Pkw in Österreich haben und den Konsumenten dazu anhalten ein effizienteres Fahrzeug zu erstehen.

Zu Beginn der Arbeit betrachtet der Autor wissenschaftliche Studien, die sich mit den Entwicklungen der Treibstoffpreise und deren Auswirkungen auf den Automobilmarkt beschäftigen und diese analysierten. Dabei wird das Augenmerk auf den amerikanischen Markt gelegt, da dieser zu den größten und bedeutendsten zählt. Die Ergebnisse belegen einen Zusammenhang zwischen den steigenden Treibstoffpreisen und den Neuzulassungen in den verschiedenen Fahrzeugklassen und bekräftigen, dass Veränderungen der Treibstoffpreise zu Veränderung der Bedürfnisse und des Kaufverhaltens der Konsumenten führen. Ein Aspekt, der sich wie ein roter Faden durch die Studien zieht, ist der Rebound Effekt. Steigt der Benzinpreis, so kaufen Konsumenten vermehrt Effizienz, sinkt dieser so stehen Leistung und Qualität im Vordergrund.

In weiterer Folge wird auf die Entwicklung der Treibstoffpreise sowie der Neuzulassungen am österreichischen Automobilmarkt eingegangen. Hierfür wurden die Neuzulassungen in ihrer Gesamtheit, in den verschiedenen Fahrzeugklassen und den einzelnen Bundesländern betrachtet. Des Weiteren wurde ein Vergleich mit ausgewählten Ländern der EU durchgeführt. Nach Abschluss der Regression kommt der Autor zu dem Ergebnis, dass sich die beiden Treibstoffarten unterschiedlich auf die Zahl der Neuzulassungen auswirken. Gesamt gesehen wirkt sich ein steigender Benzinpreis in Österreich, auch ohne den Monaten der Verschrottungsprämie, stark positiv auf die Zahl der Benzinzulassungen aus, während die Zahl der Dieselzulassungen nur geringfügig negativ mit dem Dieselpreis zusammenhängt.

Betrachtet man die einzelnen Fahrzeugklassen, so zeigt sich bei benzinbetriebenen Pkw im Stadt-, Kleinwagen- und unteren Mittelklassesegment, dass bei steigenden Benzinpreisen auch die Neuzulassungen steigen und umgekehrt. Im Segment der Ober- und Luxusklasse hingegen wirkt sich ein steigender Benzinpreis negativ auf die Neuzulassungen aus. Hier wird der indirekte Rebound Effekt für den österreichischen Automobilmarkt bestätigt. Der Dieselpreis kann im Segment der Kleinwagen und Luxusklasse die Zulassungen nicht erklären. In den Segmenten Stadtwagen, Mittel- und Oberklasse zeigt sich allerdings ein negativer Zusammenhang.

Es gilt jedoch zu beachten, dass weitere exogene Faktoren wie Einkommen, gefahrene Kilometer und dergleichen nicht in die Auswertung mit eingeflossen sind und für weitere Untersuchungen offen bleibt ob diese einen Zusammenhang mit den Neuzulassungen zeigen.

Entgegen den Erwartungen ist trotz der steigenden Treibstoffpreise die Nachfrage nach neuen Fahrzeugen verhältnismäßig hoch. Die Preisentwicklungen für Benzin und Diesel sorgen sogar dafür, dass sich die Bedürfnisse der Kunden im Bezug auf Verbrauch und Nachhaltigkeit verändern und mehr neue und effizientere Fahrzeuge gekauft werden, um längerfristig Kosten zu sparen. Bei den unteren Klassen (Klein-, Stadtwagen und untere Mittelklasse) zeigt sich, dass der Benzinpreis die gestiegene Zahl der Neuzulassungen signifikant erklären kann. Dagegen wirkt sich dieser in den oberen Leistungsklassen negativ auf die Zahl der Zulassungen aus. Beim Diesel zeigt sich ein starker negativer Zusammenhang mit den Zulassungen der Stadtwagen, unteren Mittelklasse und Mittelklasse.

Obwohl Dieselfahrzeuge im Allgemeinen als verbrauchsärmer und kostengünstiger gelten, rentiert sich ein solches erst ab einer bestimmtem Kilometerleistung, da die Anschaffungskosten im Vergleich zum Benziner höher sind. Im Segment der Ober- und Luxusklasse spielt der Treibstoffpreis eine geringere Rolle. Man muss aber auch miteinbeziehen, dass der Kundenstamm ein kleinerer und die Kaufkraft eine größere ist.

Der Dieselantrieb gewann in den letzten Jahren vor allem in den oberen Leistungsklassen immer mehr an Attraktivität. Hauptgründe dafür sind die steuerliche Begünstigung, die ihn billiger als Benzin macht, und der geringere Verbrauch. Es ist jedoch aus aktuellem Anlass nur mehr eine Frage der Zeit wie lange dieser Trend anhält. Nicht nur, dass die Preisdifferenz zwischen Benzin und Diesel von derzeit⁷⁵ 0,05 €/L immer kleiner wird, sondern ihm die aktuelle Umweltproblematik zu schaffen macht. Nach dem Feinstaubproblem belegen nun aktuelle Studien, dass Dieselfahrzeuge deutlich mehr giftige Stickstoffoxide ausstoßen als Benziner. ⁷⁶ Stickstoffoxide gelten als Vorstufe von Feinstaub und Ozon und sind gesundheitsschädigend. Die Diskussion erhitzt die Gemüter und Experten des österreichischen Verkehrsclubs und der Grünen⁷⁷ fordern die steuerliche Begünstigung des Diesels in Österreich fallen zu lassen und diesen gegebenenfalls strengeren Richtlinien zu unterwerfen. Tritt dieser Fall ein, so würde sich das zu mindestens auf die Zahl der Neuzulassungen von Diesel auswirken.

_

⁷⁴ Winterhoff et.al.; 2009; Seite 4 ff.

⁷⁵ Vgl: BMWFJ – Treibstoffpreismonitor (16.07.2012); 2012

⁷⁶ Spiegel.de; 2006 ⁷⁷ oe1.orf.at; 2012

Im Moment führt kein Weg am Verbrennungsmotor vorbei. Zukünftig gesehen wird der Individualverkehr auch in den nächsten Jahrzehnten von fossiler Energie abhängig sein. Die enorme Nachfrage nach individueller Mobilität sorgt dafür, dass die steigenden Treibstoffpreise kaum etwas an der Gesamtzahl der Neuzulassungen ändern werden. Steigen Benzin- und Dieselpreise weiter an und fällt möglicherweise die steuerliche Begünstigung für Diesel, so werden sich höchstens die Marktanteile zwischen den Antriebsarten und den einzelnen Fahrzeugsegmenten verschieben.

Da der Mensch nicht auf das Auto verzichten möchte, wird der Verkehr weiterhin wachsen. Ziel ist es somit den Verkehr und den Verbrauch zu minimieren und die Emissionen zu senken. Die Automobilwirtschaft hat vor allem in den letzten Jahren bereits auf die steigenden Treibstoffpreise reagiert, indem sie die Effizienz der Fahrzeuge verbessert hat. Doch die Effizienzverbesserung allein wird langfristig gesehen nicht ausreichen, um den Verkehr und folglich die Emissionen zu verringern, da eine erhöhte Effizienz zu einer vermehrten Nutzung führt. Hier ist die Politik angehalten, ihre Einflussnahme zu verstärken und Maßnahmen zu setzten, die den Energieverbrauch drosseln und den Verkehr umweltverträglicher machen. Eine sehr effektive Maßnahme, um diesen Rebound Effekt entgegenzuwirken, wäre es die Mineralölsteuer und somit des Treibstoffpreis drastisch zu erhöhen, da der finanzielle Aspekt der einzige ist durch den man den Konsumenten bremsen kann. Darüber hinaus sollte die Entwicklung alternativer Antriebe, die bis dato noch in den Kinderschuhen steckt, forciert und markttauglich gemacht werden. Ein Elektroauto ist für einen durchschnittlichen Pkw Besitzer (13.093 km/p.a.) noch keine wirkliche Alternative, da die Anschaffung mit hohen Kosten verbunden und die Reichweite sehr begrenzt ist. Des Weiteren gibt es noch nicht genügend Ladestationen, um ein Elektrofahrzeug für die breite Masse attraktiv zu machen.

Vorrangiges Ziel sollte sein, dass die Automobilindustrie und die Politik gemeinsam an einem Strang ziehen und Maßnahmen entwickeln die letztendlich zu einem Umdenken in den Köpfen der Menschen führen.

7. Appendix

Appendix 1: Treibstoffpreise seit der Einführung des Euro in Österreich⁷⁸

Monat	Diesel	Benzin	Monat	Diesel	Benzin	Monat	Diesel	Benzin
Apr.12	€ 1,443	€ 1,516	Dez.08	€ 0,999	€ 0,941	Aug.05	€ 1,012	€ 1,077
Mär.12	€ 1,438	€ 1,472	Nov.08	€ 1,114	€ 1,052	Jul.05	€ 0,985	€ 1,052
Feb.12	€ 1,409	€ 1,417	Okt.08	€ 1,172	€ 1,144	Jun.05	€ 0,946	€ 1,010
Jän.12	€ 1,392	€ 1,389	Sep.08	€ 1,281	€ 1,261	Mai.05	€ 0,923	€ 0,986
Dez.11	€ 1,373	€ 1,352	Aug.08	€ 1,321	€ 1,279	Apr.05	€ 0,936	€ 0,994
Nov.11	€ 1,382	€ 1,366	Jul.08	€ 1,408	€ 1,303	Mär.05	€ 0,879	€ 0,941
Okt.11	€ 1,346	€ 1,364	Jun.08	€ 1,400	€ 1,327	Feb.05	€ 0,849	€ 0,913
Sep.11	€ 1,340	€ 1,391	Mai.08	€ 1,336	€ 1,295	Jän.05	€ 0,848	€ 0,899
Aug.11	€ 1,321	€ 1,363	Apr.08	€ 1,248	€ 1,234	Dez.04	€ 0,873	€ 0,924
Jul.11	€ 1,329	€ 1,374	Mär.08	€ 1,219	€ 1,228	Nov.04	€ 0,890	€ 0,957
Jun.11	€ 1,319	€ 1,368	Feb.08	€ 1,174	€ 1,198	Okt.04	€ 0,891	€ 0,982
Mai.11	€ 1,326	€ 1,395	Jän.08	€ 1,167	€ 1,185	Sep.04	€ 0,836	€ 0,953
Apr.11	€ 1,356	€ 1,380	Dez.07	€ 1,185	€ 1,201	Aug.04	€ 0,831	€ 0,966
Mär.11	€ 1,348	€ 1,351	Nov.07	€ 1,181	€ 1,216	Jul.04	€ 0,793	€ 0,948
Feb.11	€ 1,286	€ 1,302	Okt.07	€ 1,092	€ 1,149	Jun.04	€ 0,781	€ 0,954
Jän.11	€ 1,255	€ 1,286	Sep.07	€ 1,075	€ 1,148	Mai.04	€ 0,800	€ 0,959
Dez.10	€ 1,187	€ 1,247	Aug.07	€ 1,050	€ 1,135	Apr.04	€ 0,773	€ 0,909
Nov.10	€ 1,140	€ 1,202	Jul.07	€ 1,056	€ 1,150	Mär.04	€ 0,756	€ 0,886
Okt.10	€ 1,120	€ 1,189	Jun.07	€ 0,985	€ 1,116	Feb.04	€ 0,735	€ 0,862
Sep.10	€ 1,118	€ 1,192	Mai.07	€ 0,990	€ 1,099	Jän.04	€ 0,731	€ 0,850
Aug.10	€ 1,112	€ 1,188	Apr.07	€ 0,983	€ 1,061	Dez.03	€ 0,712	€ 0,845
Jul.10	€ 1,110	€ 1,195	Mär.07	€ 0,961	€ 1,018	Nov.03	€ 0,713	€ 0,843
Jun.10	€ 1,126	€ 1,210	Feb.07	€ 0,938	€ 0,982	Okt.03	€ 0,710	€ 0,849
Mai.10	€ 1,129	€ 1,220	Jän.07	€ 0,936	€ 0,973	Sep.03	€ 0,707	€ 0,861
Apr.10	€ 1,126	€ 1,221	Dez.06	€ 0,965	€ 0,997	Aug.03	€ 0,714	€ 0,862
Mär.10	€ 1,071	€ 1,170	Nov.06	€ 0,965	€ 0,997	Jul.03	€ 0,707	€ 0,841
Feb.10	€ 1,005	€ 1,102	Okt.06	€ 0,971	€ 1,013	Jun.03	€ 0,703	€ 0,840
Jän.10	€ 1,030	€ 1,122	Sep.06	€ 1,014	€ 1,077	Mai.03	€ 0,711	€ 0,843
Dez.09	€ 1,015	€ 1,106	Aug.06	€ 1,063	€ 1,164	Apr.03	€ 0,758	€ 0,873
Nov.09	€ 1,023	€ 1,113	Jul.06	€ 1,046	€ 1,145	Mär.03	€ 0,792	€ 0,905
Okt.09	€ 0,983	€ 1,065	Jun.06	€ 1,043	€ 1,125	Feb.03	€ 0,764	€ 0,898
Sep.09	€ 0,985	€ 1,080	Mai.06	€ 1,045	€ 1,123	Jän.03	€ 0,744	€ 0,877
Aug.09	€ 1,009	€ 1,108	Apr.06	€ 1,032	€ 1,092	Dez.02	€ 0,716	€ 0,868
Jul.09	€ 0,985	€ 1,080	Mär.06	€ 0,994	€ 1,046	Nov.02	€ 0,721	€ 0,878
Jun.09	€ 0,989	€ 1,102	Feb.06	€ 0,982	€ 1,041	Okt.02	€ 0,736	€ 0,899
Mai.09	€ 0,946	€ 1,029	Jän.06	€ 0,979	€ 1,036	Sep.02	€ 0,722	€ 0,892
Apr.09	€ 0,942	€ 0,991	Dez.05	€ 0,973	€ 1,015	Aug.02	€ 0,709	€ 0,881
Mär.09	€ 0,911	€ 0,946	Nov.05	€ 0,991	€ 1,045	Jul.02	€ 0,714	€ 0,884
Feb.09	€ 0,947	€ 0,953	Okt.05	€ 1,025	€ 1,119	Jun.02	€ 0,720	€ 0,888
Jän.09	€ 0,947	€ 0,925	Sep.05	€ 1,031	€ 1,142	Mai.02	€ 0,731	€ 0,896

⁷⁸ Vgl. BMW FJ, 2012

Appendix 2: Vergleich Benzin und Dieselpreis

Gruppenstatistiken

	Benzin_Diesel	N	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes
Treibstoffpreis	Benzin	124	1,0769266133	,17269644446	,01550859853
	Diesel	124	1,0033786285	,21295315135	,01912375753

Test bei unabhängigen Stichproben

			Test der			T-Test für die Mittelwertgleichheit						
			Signifikan	nifikan Sig. Mittlere Standardfehler der D								
		F	z	Т	df.	(2-seitig)	Differenz	der Differenz	Untere	Obere		
Treibstoffpreis	Varianzen sind gleich	3,367	,068	2,987	246	,003	,07354798476	,02462183443	,02505	,1220		
	Varianzen sind nicht			2,987	235,937	,003	,07354798476	,02462183443	,02504	,1220		
	gleich											

Appendix 3: Neuanmeldungen ab 01.2003

Diesel Zulassungen:

	KW	SW	uMkl.	Mkl	Okl	Lkl	Bgld	Ktn	NÖ	OÖ	Sbg	Stmk	Т	Vbg	W
02.12							Ŭ								
03.12	25 21	1041 672	3899 2793	3000 1958	929 747	42 29	791 578	1097 744	3905 2582	3690 2424	1579 1165	2819 1773	1625 988	728 445	3767 2747
01.12	13	933	2927	2169	958	47	643	196	2960	2777	1326	2140	1176	600	2965
12.11	6	744	2818	1964	567	47	541	745	2542	2321	1205	1747	1176	545	2917
11.11	29	1074	3349	2643	890	46	597	923	3126	3013	1417	2335	1368	600	3566
10.11	22	957	3448	2436	846	42	576	984	2978	2928	1396	2064	1319	660	3556
09.11	21	861	3928	2632	852	19	619	978	3030	3022	1470	2230	1372	639	3372
08.11	22	731	3061	2189	760	38	619	684	2502	2564	1191	1736	1088	513	2827
07.11	23	975	3411	2689	985	35	589	881	2949	3013	1284	2009	1268	616	3323
06.11	22	1157	3708	2744	866	46	682	1026	3309	2963	1534	2343	1387	618	3403
05.11	47	1203	4203	3282	953	41	788	999	3528	3203	1570	2422	1621	660	3602
04.11	38	931	3856	2801	888	41	620	966	3382	2796	1402	2335	1526	611	3184
03.11	69	1154	4518	3120	870	36	819	938	3758	3153	1457	2374	1480	610	3571
02.11	47	787	3080	1827	733	73	640	866	2891	2431	1169	1887	1312	527	2798
01.11	41	913	2945	2149	708	35	641	839	2912	2574	1129	2111	1043	536	3006
12.10	43	687	2121	1637	444	39	336	561	2021	1980	1110	1376	950	387	2651
11.10	61	1073 992	2990 2845	2329	613	46	587	868	2967	2714	1277	1978	1270	583	3338
10.10 09.10	73 54	1049	3092	2580 2231	741 696	75 38	663 526	814 825	2613 2550	2675 2293	1309 1186	2033 1883	1381 1082	526 490	3176 2867
08.10	176	1049	2827	1888	521	39	446	691	2475	1928	1124	1626	953	432	2749
07.10	124	1315	3036	2381	768	39	592	830	2729	2460	1148	1891	1094	529	3163
06.10	79	1422	3966	2455	770	46	604	901	3277	2896	1309	2178	1305	626	3125
05.10	90	993	3357	2369	680	31	545	761	2623	2269	1170	1810	1218	463	2971
04.10	93	1070	3655	2650	722	35	541	818	3036	2752	1200	1883	1433	576	3371
03.10	114	1043	3688	2749	606	34	603	929	3151	2713	1324	2232	1287	572	2835
02.10	73	814	2533	1894	434	21	395	641	2106	1721	848	1335	853	385	2295
01.10	99	833	2578	1985	455	31	365	646	2149	1977	924	1443	876	389	2331
12.09	123	569	2374	1527	294	24	341	656	1809	1729	969	1359	980	409	2328
11.09	126	922	3082	2333	396	32	512	786	2231	2145	1010	1802	1086	418	2686
10.09	60	1123	2879	2438	441	30	454	754	2215	2239	1104	1690	1076	425	2871
09.09	46	742 714	2745 2588	2481 1882	400 356	24	488 383	762 630	2144 1629	1988 1621	1051 843	1581 1300	1031 798	430 309	2455 2093
07.09	51	922	3568	2733	550	45	509	867	2578	2312	1181	1885	1178	476	2869
06.09	77	962	3320	2974	583	37	538	878	2686	2402	1133	1839	1266	464	3125
05.09	73	779	3465	2574	491	32	455	760	2444	2192	1054	1637	1072	435	2701
04.09	101	989	3792	3267	649	28	527	876	2787	2499	1246	1941	1322	438	3283
03.09	86	776	2811	2863	601	43	437	793	2481	2038	1053	1573	975	464	2629
02.09	60	574	1990	2328	433	34	292	531	1739	1436	799	1194	825	314	2425
01.09	59	585	2316	2240	331	44	391	603	1809	1468	870	1449	829	369	2106
12.08	57	554	1814	1638	385	27	221	472	1472	1282	814	1047	691	318	2506
11.08	133	673	2487	1805	378	64	297	580	1697	1545	773	1351	759	350	2569
10.08	173	1343	3197	2938	469	28	393	710	2119	2050	1171	1672	1011	444	3848
09.08	64	773	2815	2911	445	20	383	800	1998	1801	1063	1560	950	408	2562
08.08 07.08	40 219	669 816	2141 2535	2185 2153	228 293	7 20	320 275	501 619	1622 1696	1538 1617	798 848	1238 1306	752 746	338 387	2021 2546
06.08	109	1447	4315	4233	904	102	665	1207	3826	3586	1968	2665	1666	731	4880
05.08	138	1367	3556	3048	594	52	468	917	2677	2470	1295	2010	1298	519	3680
04.08	346	1793	3550	3436	636	45	509	951	2995	2771	1409	2144	1449	592	4417
03.08	229	1399	4155	3292	614	52	609	948	2974	2891	1522	2156	1446	546	3488
02.08	78	981	2822	2433	483	43	410	770	2347	2047	1023	1662	1053	435	2834
01.08	143	993	2871	2383	518	49	502	778	2412	2169	1141	1720	1058	515	2721
12.07	81	738	2725	2677	394	22	306	672	2004	1935	1163	1477	903	436	2963
11.07	198	1046	3297	2811	443	54	453	855	2486	2367	1204	1824	1111	520	2985
10.07	204	1167	3244	3064	564	55	452	914	2564	2480	1246	1955	1294	501	3323
09.07	162	1172	2775	2559	471	45	442	754	2211	2105	1059	1618	1068	422	2500
08.07	146	965	2808	2291	410	57	406	739	2312	2085	1000	1613	977	431	2310
07.07	123	1200	3259	2556	455	123	720	1000	2284	2201	1176	1776	1006	761	2886
06.07 05.07	134 144	1833 1844	4446 3517	4149 3392	627 711	77 86	729 502	1099 989	3529 2922	3239 2834	1606 1307	2510 2108	1595 1532	761 596	3969 3752
04.07	127	1802	3629	3406	687	59	534	1024	3166	2766	1409	2219	1546	619	3730
03.07	171	1713	4318	3712	684	99	608	1069	3505	3198	1651	2362	1577	636	3964
		-,15	.515	,			000							555	

	KW	SW	uMkl.	Mkl	Okl	Lkl	Bgld	Ktn	NÖ	OÖ	Sbg	Stmk	Т	Vbg	W
02.07	202	1084	2686	2682	517	71	403	734	2332	1952	989	1716	994	432	3001
01.07	114	1377	3055	2879	691	91	530	914	2634	2377	1293	1990	1124	538	3047
12.06	83	1033	2539	2369	507	34	380	662	1942	1904	938	1431	852	424	2859
11.06	102	1967	3517	3281	603	77	550	915	2771	2384	1363	1981	1186	538	3619
10.06	109	1797	3175	3340	702	53	551	933	2815	2427	1283	2135	1372	500	3778
09.06	140	1854	3467	3201	709	45	545	887	2910	2514	1196	1995	1163	507	3583
08.06	99	1854	3141	2576	602	60	522	832	2561	2157	1244	1696	1227	406	3216
07.06	148	1679	3515	3313	721	65	483	961	2819	2576	1286	2047	1251	556	3516
06.06	230	1958	4437	3790	732	65	576	1081	3476	3096	1334	2373	1592	670	3894
05.06	200	2258	4030	3694	681	80	583	1244	3436	3000	1516	2416	1639	607	3612
04.06	252	2174	4201	4076	698	89	576	1135	3538	3204	1507	2609	1716	621	3762
03.06	262	2397	4679	4828	754	129	988	1228	4281	3444	1526	2839	1655	764	4143
02.06	152	1219	2830	2945	513	73	421	738	2375	1886	1045	1670	1031	429	2886
01.06	175	1608	3587	3827	752	81	544	912	3003	2463	1175	2189	1225	575	3501
12.05	149	1226	2889	2134	436	20	343	652	2150	2148	935	1441	869	434	2882
11.05	172	1720	3680	2965	698	58	498	901	2742	2417	1088	2010	1080	512	3108
10.05	147	1706	3471	3369	873	48	477	911	2842	2417	1284	2221	1268	520	3285
09.05	141	1883	3874	3540	685	35	598	947	3076	2703	1311	2158	1271	644	3201
08.05	130	1953	3305	2398	573	45	475	867	2574	2137	1105	1825	1128	435	2792
07.05	114	1908	4144	2644	718	25	508	902	2938	2537	1169	2080	1309	561	2835
06.05	85	2239	5035	4374	858	38	729	1229	3917	3380	1525	2783	1751	749	4040
05.05	171	2079	4849	4009	855	34	635	1105	3608	3356	1536	2481	1519	705	3876
04.05	121	2653	5802	4294	1063	72	725	1359	4156	3692	1817	3055	1881	776	4530
03.05	211	2479	5728	4335	974	37	823	1395	4331	3741	1879	2956	1834	770	4168
02.05	89	1708	3877	2427	577	9	492	847	2446	2057	1226	1828	1080	486	2826
01.05	122	2092	5007	3315	801	35	650	1173	3258	2899	1415	2484	1441	681	3180
12.04	39	1464	2958	2717	477	16	406	842	2478	2195	1138	1950	1003	495	2871
11.04	85	2247	4642	3435	790	20	620	1153	3482	2857	1439	2415	1418	670	3457
10.04	123	2518	4537	3309	824	26	626	1218	3549	2934	1417	2531	1478	602	3656
09.04	162	2491	4301	3403	864	24	689	1123	3344	3103	1440	2435	1513	647	3548
08.04	105	1990	3505	2712	715	21	509	937	2876	2368	1161	1950	1259	523	2840
07.04	109	2581	4855	3755	927	41	816	1276	3765	3254	1674	2688	1654	720	3862
06.04	137	2986	5577	4271	823	32	759	1373	4146	3612	1799	2853	1811	760	4189
05.04	86	2704	5295	4150	987	54	752	1273	3943	3569	1744	2717	1774	686	3943
04.04	144	3310	5825	4610	1009	58	805	1438	4453	3951	1935	3129	2192	787	3968
03.04	113	3060	6142	4310	850	43	749	1308	4330	3849	1776	3161	2042	847	4005
02.04	97	1977	3670	2564	549	34	459	871	2565	2163	1247	1905	1105	529	2805
01.04	107	2286	4607	3609	1047	35	688	1187	3454	3050	1411	2516	1491	652	3446
12.03	40	1553	2876	2697	467	14	391	757	2390	2207	929	1733	974	428	2468
11.03	115	2064	3431	3289	630	9	538	949	2780	2528	1219	2098	1181	535	3216
10.03	87	2622	4383	4262	947	42	695	1129	3555	3096	1549	2592	1674	704	3687
09.03	90	2422	4039	4032	929	34	611	1102	3223	3015	1572	2378	1416	700	3537
08.03	33	1985	3618	3113	754	25	494	921	2744	2395	1246	2139	1203	503	2981
07.03	64	2800	4681	4286	992	40	673	1177	3718	3310	1650	2687	1714	797	3787
06.03	107	2917	4971	4246	807	31	611	1170	3637	3158	1557	2612	1678	777	3926
05.03	49	2948	4965	5048	903	27	715	1134	3800	3416	1585	2600	1804	782	3926
04.03	84	3393	5533	5757	966	41	759	1395	4265	3518	1817	2921	2049	808	4490
03.03	79	3174	5454	5443	951	47	801	1290	4104	3787	1646	2983	1865	808	3745
02.03	51	2138	4112	3440	682	22	583	1071	2882	2345	1172	2120	1174	493	2976
01.03	67	2627	4777	4663	1125	70	682	1215	3579	3151	1451	2572	1475	753	3950

Benzin Zulassungen:

	KW	SW	uMkl.	Mkl	Okl	Lkl	Bgld	Ktn	NÖ	OÖ	Sbg	Stmk	T	Vbg	W
03.12	2010	7541	3559	557	105	19	660	973	3582	3276	1407	2408	1339	741	3302
02.12	1521	4229	2135	299	55	11	334	616	2146	1860	699	1352	802	430	2130
01.12	1390	4608	2332	451	73	16	408	678	2227	2188	740	1575	667	496	2212
12.11	1032	3938	1925	376	41	17	310	519	1919	1487	585	1182	663	341	2286
11.11	1617	5814	2408	459	80	18	418	696	2688	2354	788	1648	1059	521	2979
10.11	1209	5710	2224	386	68	8	445	698	2517	2233	875	1576	934	541	2362
09.11	1740	5821	3162	507	61	35	544	906	2749	2417	860	1893	972	607	2882
08.11	1480	5212	2499	449	70	14	407	589	2424	2356	683	1606	830	492	2563
07.11	1276	5542	2901	932	96	32	473	697	2660	2576	780	1796	898	494	2806
06.11	1688	6000	3071	678	87	36	608	790	2964	2559	995	2018	974	609	2863
05.11	1726	6445	3508	808	118	34	704	809	3118	2816	1065	2083	1219	622	3227
04.11	1874	6531	3628	744	119	22	584	830	3302	2934	1108	2395	1154	656	3124
03.11	1882	7104	4048	895	91	26	632	1072	3516	3102	1207	2373	1225	723	3528
02.11	1274	4591	2244	657	137	60	390	585	2492	2142	720	1820	767	470	2290
01.11	1028	4155	2244	673	91	15	360	603	2347	1966	686	1601	741	424	1853
12.10	907	3511	1993	481	53	10	336	434	1661	1356	1120	1122	681	331	1832
11.10	1535	4710	2826	613	70	20	400	698	2590	2066	903	1792	895	464	2479
10.10	1548	5015	3477	569	98	18	458	795	2527	2235	922	1840	1019	525	3033
09.10	1849	5958	3329	740	87	18	474	911	2894	2557	977	2035	1048	517	2874
08.10	1306	4589	3099	619	86	16	461	664	2565	1841	807	1785	861	459	2722
07.10	1587	5810	3269	952	126	33	479	850	2815	2569	978	2130	933	529	3137
06.10	1765	6639	4077	905	162	21	443	984	3279	3128	1095	2278	1138	638	3490
05.10	1875	6623	3420	749	108	16	503	926	2860	2750	1057	2086	1128	579	3130
04.10	1971	6176	3849	914	130	25	550	900	3284	2676	1103	2320	1252	567	3168
03.10	2147	6848	4142	1108	180	31	600	1077	3742	3099	1035	2612	1272	636	3409
02.10	1338	4700	2473	604	109	15	384	671	2122	1689	749	1582	888	448	2433
01.10	1094	4188	2135	617	99	15	312	589	2046	1513	669	1480	693	409	1911
12.09	933	3491	2160	556	88	16	311	532	1699	1370	564	1107	635	337	2158
11.09	1977	5271	2736	730	100	17	448	703	2404	1786	815	1777	980	458	3337
10.09	1814	5575	2888	828	118	18	537	793	2716	2261	870	1906	1062	574	2928
09.09	2116	5568	3204	872	164	16	477	867	2811	2679	923	1908	1011	514	3213
08.09	1568	4832	2894	857	53	17	438	728	2402	2302	848	1594	897	478	2974
07.09	2319	7706	4224	1154	98	21	735	1284	3750	3357	1235	2681	1226	666	3741
06.09	3272	9315	4463	1258	109	8	845	1445	4308	3984	1271	2929	1531	772	4438
05.09	2003	6913	3934	1047	98	20	676	1019	3558	3036	988	2358	1166	607	3387
04.09	2567	8569	4704	1378	92	30	835	1296	4351	4019	1304	3027	1480	759	3687
03.09	1193	5200	3448	1328	98	23	519	801	2905	2534	903	1987	959	501	2765
02.09	1013	3685	2065	751	69	9	354	589	1758	1553	606	1344	639	382	1922
01.09	881	3653	2095	643	62	18	367	593	1897	1570	650	1357	661	368	1519
12.08	641	2814	1519	390	78	13	206	366	1388	1102	502	907	548	279	1479
11.08	1102	4201	2334	473	60	37	367	558	2007	1620	665	1461	756	376	1966
10.08	1122	5060	2947	822	71	31	486	777	2547	1985	892	1805	999	477	2477
09.08	1156	4483	2236	832	64	16	427	674	2181	1994	767	1476	939	517	1920
08.08	900	4220	1780	618	32	17	341	575	1984	1619	694	1354	660	374	1493
07.08	1166	5283	2809	915	78	15	444	722	2637	2273	979	1785	955	514	2241
06.08	1181	5123	2757	1154	189	57	459	752	2515	2212	1345	1844	1102	576	2612
05.08	1151	5275	2980	912	112	39	493	700	2501	2171	1066	1800	1050	542	2657
04.08	1301	6069	3059	976	114	56	519	886	2913	2542	1147	2077	1175	591	2666
03.08	1128	5918	2936	808	104	44	512	783	2837	2334	967	2109	966	513	2261
02.08	863	3887	1946	672	63	34	320	517	1910	1623	688	1489	688	397	1717
01.08	850	3546	1889	610	58	35	339	552	1664	1647	641	1326	607	404	1619
12.07	716	3222	1189	362	54	22	185	356	1323	1207	906	789	482	287	1345
11.07	832	4002	1849	462	81	30	312	573	1746	1795	575	1186	673	380	1781
10.07	955	4364	2105	648	144	42	387	610	2068	1755	710	1443	795	458	2015
09.07	943	4340	1844	615	85	34	306	609	1953	1790	643	1458	704	412	1920
08.07	615	4088	2004	341	98	33	330	611	1934	1647	698	1342	707	377	1776
07.07	691	4414	2646	483	109	48	349	733	2020	1784	794	1480	826	456	2101
07.07	571	1111	2010	103	10)	10	J 17	133	2020	1/01	171	1100	520	150	2101

	KW	SW	uMkl.	Mkl	Okl	Lkl	Bgld	Ktn	NÖ	OÖ	Sbg	Stmk	T	Vbg	W
06.07	878	5219	2775	521	111	43	409	704	2349	2223	825	1877	942	484	2443
05.07	814	4908	2609	564	176	51	429	724	2283	2166	834	1789	947	488	2293
04.07	806	4909	3105	629	158	58	432	771	2382	2162	885	1872	1027	504	2332
03.07	934	5724	3046	632	124	71	479	803	2826	2578	967	2030	1158	467	2441
02.07	569	3413	1645	341	100	52	300	507	1593	1321	532	1298	554	272	1582
01.07	663	3304	1565	402	117	64	301	487	1542	1394	546	1250	572	315	1547
12.06	623	2666	1218	275	92	46	199	364	1178	1038	440	880	422	233	1513
11.06	704	3613	1758	350	106	58	271	511	1615	1406	723	1248	619	385	1746
10.06	774	4264	1956	443	151	57	353	561	1653	1485	836	1372	739	355	1823
09.06	804	3855	1760	416	120	54	306	522	1741	1555	574	1385	778	394	1699
08.06	764	3987	1984	417	110	68	310	466	1813	1562	652	1310	778	386	1856
07.06	855	4098	2162	534	155	70	329	563	1896	1782	769	1480	777	375	1909
06.06	914	4881	2644	665	132	29	360	680	2262	2138	854	1802	940	495	2175
05.06	925	5193	2883	762	157	61	405	801	2456	2369	956	1715	1055	457	2371
04.06	1076	4811	2551	791	159	46	375	723	2354	2170	893	1883	1066	475	2230
03.06	1445	5533	3119	1077	145	63	504	800	3113	2403	926	2152	1051	529	2682
02.06	773	2826	1445	506	112	34	248	411	1341	1110	493	1001	577	260	1564
01.06	798	2930	1730	672	121	80	256	447	1593	1294	529	1204	590	320	1620
12.05	588	2232	1365	362	71	33	159	355	1077	913	410	708	470	280	1308
11.05	833	2870	2074	594	110	46	240	487	1590	1272	581	1147	661	320	1493
10.05	875	2985	2055	706	156	54	269	492	1653	1466	687	1226	741	341	1566
09.05	852	3514	2211	639	142	66	303	574	1828	1634	729	1387	840	395	1730
08.05	840	3566	1814	611	110	22	237	601	1654	1402	649	1133	785	304	1668
07.05	1152	3915	3100	648	184	40	300	619	2118	2286	805	1432	775	441	2218
06.05	984	4641	3356	899	203	46	376	741	2473	2410	1010	1840	1006	534	2303
05.05	806	3802	2918	711	156	45	315	578	2114	2102	862	1562	966	388	1960
04.05	1049	4844	2879	682	166	34	370	626	2373	2180	998	1750	1036	444	2262
03.05	716	4265	2742	638	158	45	313	622	2107	1945	880	1556	801	436	1967
02.05	464	2189	1267	305	89	37	162	342	950	1006	390	836	445	193	987
01.05	495	2397	1504	378	137	44	201	385	1185	1096	440	920	427	297	1280
12.04	989	1928	1386	229	89	23	132	482	1010	776	449	591	722	207	1138
11.04	572	2647	1430	323	108	24	173	409	1242	969	511	838	492	316	1307
10.04	616	2819	1471	353	167	25	181	424	1305	1130	514	958	520	287	1340
09.04	640	2927	1561	458	191	37	229	422	1363	1260	577	969	576	337	1507
08.04	458	2624	1316	466	147	39	162	385	1225	1098	440	799	532	226	1317
07.04	588 708	3544	1919	635 703	176 174	89 57	261	548	1576	1476	694	1164	666	376	1794
06.04		4374	2443				337	645	1960	1786	826	1395	810	450	2106
05.04	851 826	3457 3930	2132 2322	683 813	148 203	57	271 309	584 691	1753 1952	1594 1786	777 838	1254 1452	764 867	385 436	1764 2092
03.04	607	4221	2322	591	180	77	309	649	1932	1844	866	1305	769	436	2092
02.04	511	2304	1311	346	119	43	172	439	1008	1027	500	795	436	226	1227
01.04	422	2186	1349	402	180	43	221	463	1008	1027	494	828	403	246	1244
12.03	384	1982	1037	284	119	26	161	250	883	771	351	538	351	205	1062
11.03	417	2697	1343	367	126	39	170	359	1223	984	499	801	457	295	1307
10.03	427	3588	1527	493	175	44	256	503	1421	1282	645	989	609	334	1684
09.03	426	3313	1160	541	173	32	204	455	1186	1200	664	856	486	323	1520
08.03	397	2603	873	492	134	38	163	350	1073	971	464	703	450	276	1252
07.03	382	3792	1270	755	228	109	241	517	1622	1491	723	1059	651	387	1742
06.03	432	3688	1273	780	128	61	230	472	1512	1579	648	999	654	375	1704
05.03	422	4180	1401	765	149	90	256	543	1660	1543	785	1131	694	391	1725
04.03	389	4671	1769	944	175	98	312	597	1856	1758	843	1303	826	416	1988
03.03	336	4141	1745	914	154	73	280	570	1675	1704	712	1114	839	419	1700
02.03	218	2507	987	536	98	53	161	357	923	922	389	689	445	209	1187
01.03	239	2783	1047	702	127	76	176	398	1149	1092	524	728	467	294	1323
01.03	25)	2103	104/	102	14/	70	1/0	370	117/	1072	344	120	70/	<i></i>	1 1 4 1

Appendix 3: Gegenüberstellung Neuzulassungen und Treibstoffpreise:

Regression mit Verschrottungsprämie:

Benzin:

Modellzusammenfassung b,c

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,542°	,293	,287	2947,044

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Treibstoff = 0
- c. Abhängige Variable: Summe

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-1938,442	1905,790		-1,017	,311
	Treibstoffpreis	11577,877	1721,536	,542	6,725	,000

a. Treibstoff = 0

Diesel:

Modellzusammenfassung b,c

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,251	,063	,054	3199,706

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Treibstoff = 1
- c. Abhängige Variable: Summe

Koeffizienten^{a,b}

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	19687,343	1613,680		12,200	,000
	Treibstoffpreis	-4164,433	1538,307	-,251	-2,707	,008

a. Treibstoff = 1

b. Abhängige Variable: Summe

b. Abhängige Variable: Summe

Appendix 4: Auswertung – ohne Verschrottungsprämie:

Benzin:

Modellzusammenfassung^{b,c}

				3	
Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehle r des Schätzer s	Durbin- Watson- Statistik
1	,667ª	,444	,439	2323,892	,927

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Benzin_Diesel = 0
- c. Abhängige Variable: Ges_Zulassungen

Koeffizienten^{a,b}

Mod	dell	Nicht standardisierte Koeffizienten		Standardisiert e Koeffiziente n		
		Regressionsk oeffizientB	Standardfehle r	Beta	Т	Sig.
1	(Konstante)	-3312,153	1523,429		-2,174	,032
	Treibstoffpreis	12553,553	1376,781	,667	9,118	,000

- a. Benzin_Diesel = 0
- b. Abhängige Variable: Ges_Zulassungen

Diesel:

Koeffizienten^{a,b}

N	<i>N</i> odell	Nicht stand Koeffiz		Standardisiert e Koeffiziente n		
		Regressionsk oeffizientB	Standardfehle r	Beta	Т	Sig.
1	(Konstante)	19864,830	1641,580		12,101	,000
	Treibstoffpreis	-4274,627	1560,452	-,258	-2,739	,007

- a. Benzin_Diesel = 1
- b. Abhängige Variable: Ges_Zulassungen

Appendix 5: Gegenüberstellung Neuzulassungen der Fahrzeugklassen und Treibstoffpreise (Benzin = 0 / Diesel = 1)

Stadtwagen:

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,542°	,294	,288	1207,088

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	te Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-768,612	780,597		-,985	,327
	Treibstoffpreis	4752,561	705,128	,542	6,740	,000

a. Treibstoff = 0 b. Abhängige Variable: SW

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,680°	,463	,458	534,353

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten Stand Koef			
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	4100,751	269,486		15,217	,000
	Treibstoffpreis	-2488,409	256,898	-,680	-9,686	,000

a. Treibstoff = 1 b. Abhängige Variable: SW

Kleinwagen:

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,576°	,331	,325	452,794

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	te Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-1069,058	292,812		-3,651	,000
	Treibstoffpreis	1944,341	264,503	,576	7,351	,000

a. Treibstoff = 0 b. Abhängige Variable: KW

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	.131°	.017	.008	60,777

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten Standardisierte Nicht standardisiarte Koeffizienten Koeffizienten

		Nicht standardisier	Nicht standardisierte Koeffizienten			
		Regressionskoeffi zientB Standardfehler		Beta	Т	Sig.
1	(Konstante)	147,254	30,651		4,804	,000
	Treibstoffpreis	-40,261	29,219	-,131	-1,378	,171

a. Treibstoff = 1

b. Abhängige Variable: KW

Untere Mittelklasse:

${\bf Modellzusammenfassung}^{\bf b}$

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,486°	,236	,229	751,951

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-421,838	486,270		-,867	,388
	Treibstoffpreis	2551,177	439,257	,486	5,808	,000

a. Treibstoff = 0 b. Abhängige Variable: uMkl.

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,429°	,184	,177	841,054

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	5696,892	424,162		13,431	,000
	Treibstoffpreis	-2004,610	404,350	-,429	-4,958	,000

a. Treibstoff = l b. Abhängige Variable: uMkl.

Mittelklasse:

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,121°	,015	,006	237,094

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	te Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	455,073	153,324		2,968	,004
	Treibstoffbreis	176 627	138 500	121	1 275	205

a. Treibstoff = 0

b. Abhängige Variable: Mkl

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,503°	,253	,246	749,006

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	5292,772	377,740		14,012	,000
	Treibstoffpreis	-2188,818	360,096	-,503	-6,078	,000

a. Treibstoff = 1 b. Abhängige Variable: Mkl

Oberklasse:

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,466°	,217	,210	36,537

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten a,t

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	246,033	23,628		10,413	,000
	Treibstoffpreis	-117,414	21,344	-,466	-5,501	,000

a. Treibstoff = 0 b. Abhängige Variable: Okl

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,165	,027	,018	198,128

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	849,390	99,920		8,501	,000
	Treibstoffpreis	-166,620	95,253	-,165	-1,749	,083

a. Treibstoff = 1 b. Abhängige Variable: Okl

Luxusklasse:

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,447°	,200	,192	19,047

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	te Koeffizienten	Standardisierte Koeffizienten		
	•	Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	101,715	12,317		8,258	,000
	Treibstoffpreis	-58,012	11,127	-,447	-5,214	,000

a. Treibstoff = 0

b. Abhängige Variable: Lkl

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,086°	,007	-,002	22,486

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	34,489	11,340		3,041	,003
	Treibstoffpreis	9,791	10,810	,086	,906	,367

a. Treibstoff = 1

b. Abhängige Variable: Lkl

Geländewagen:

Modellzusammenfassung b

Modell			Komigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,234°	,055	,046	75,174

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	214,875	48,613		4,420	,000
	Treibstoffpreis	-110,327	43,913	-,234	-2,512	,013

a. Treibstoff = 0

b. Abhängige Variable: Geländewagen

Modellzusammenfassung b

Modell	ъ	BO 1.	Korrigiertes R-	Standardfehler des
	K	R-Quadrat	Quadrat	Schätzers
1	.209°	.044	.035	196.140

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	618,730	98,917		6,255	,000
	Traibstoffprais	210 296	94 297	209	2 230	028

a. Treibstoff = 1

b. Abhängige Variable: Geländewagen

Minivan:

Modellzusammenfassung b

Modell			Komigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,499°	,249	,242	14,807

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	95,391	9,575		9,962	,000
	Treibstoffpreis	-51,990	8,649	-,499	-6,011	,000

a Traibstoff = 0

b. Abhängige Variable: Minivan

Modellzusammenfassung

Modell		-	Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,366°	,134	,126	345,462

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Treibstoff = 1

Koeffizienten a,b

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	2023,316	174,224		11,613	,000
	Treibstoffpreis	-681,414	166,086	-,366	-4,103	,000

a. Treibstoff = 1

b. Abhängige Variable: Minivan

Ohne Verschrottungsprämie:

Kleinwagen

Modellzusammenfassung

 Modell
 R
 R-Quadrat
 Korrigiertes R-Quadrat
 Standardfehler des Schätzers

 1
 ,717°
 ,514
 ,510
 329,391

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten a,b

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-1226,912	213,978		-5,734	,000
	Treibstoffpreis	2034,864	192,937	,717	10,547	,000

a. Benzin_Diesel = 0

b. Abhängige Variable: KW_Zulassungen

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,137ª	,019	,010	61,485

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisier	rte Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	150,392	31,166		4,825	,000
	Treibstoffpreis	-42,109	29,626	-,137	-1,421	,158

a. Benzin_Diesel = 1

b. Abhängige Variable: KW_Zulassungen

Stadtwagen

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	.664ª	.440	.435	938,548

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-1181,708	609,698		-1,938	,055
	Treibstoffpreis	4996,219	549,745	,664	9,088	,000

a. Benzin Diesel = 0

b. Abhängige Variable: SW_Zulassungen

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,702°	,493	,489	521,006

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	4182,521	264,095		15,837	,000
	Treibstoffpreis	-2539,147	251,043	-,702	-10,114	,000

a. Benzin_Diesel = 1

b. Abhängige Variable: SW_Zulassungen

untere Mittelkasse

Modellzusammenfassung^b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,573°	,328	,322	642,244

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-654,842	417,214		-1,570	,120
	Treibstoffpreis	2692,964	376,188	,573	7,159	,000

a. Benzin_Diesel = 0

b. Abhängige Variable: uMkl_Zulassungen

Modellzusammenfassung^b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,431°	,186	,178	855,248

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell				Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	5718,631	433,521		13,191	,000
	Treibstoffpreis	-2017,492	412,096	-,431	-4,896	,000

- a. Benzin Diesel = 1
- b. Abhängige Variable: uMkl_Zulassungen

Mittelklasse

Modellzusammenfassung b

Modell		DO 14	Korrigiertes R-	Standardfehler des
	ĸ	R-Quadrat	Quadrat	Schätzers
1	,167ª	,028	,019	211,990

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin Diesel = 0

Koeffizienten^{a,b}

Modell				Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	391,542	137,713		2,843	,005
	Treibstoffpreis	215,173	124,171	,167	1,733	,086

- a. Benzin Diesel = 0
- b. Abhängige Variable: Mkl_Zulassungen

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,507°	,257	,250	759,239

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Benzin Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	5322,724	384,854		13,831	,000
	Treibstoffpreis	-2207,216	365,834	-,507	-6,033	,000

- a. Benzin Diesel = 1
- b. Abhängige Variable: Mkl_Zulassungen

Oberklasse

Modellzusammenfassung^b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,475°	,226	,218	36,871

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	249,224	23,952		10,405	,000
	Treibstoffpreis	-119,525	21,597	-,475	-5,534	,000

- a. Benzin_Diesel = 0
- b. Abhängige Variable: Okl_Zulassungen

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,174ª	,030	,021	200,131

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin_Diesel = 1

Koeffizienten a,b

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	861,643	101,445		8,494	,000
	Treibstoffpreis	-174,129	96,432	-,174	-1,806	,074

- a. Benzin_Diesel = 1
- b. Abhängige Variable: Okl_Zulassungen

Luxusklasse

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,462°	,213	,206	18,917

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	103,685	12,289		8,437	,000
	Treibstoffpreis	-59,092	11,080	-,462	-5,333	,000

- a. Benzin_Diesel = 0
- b. Abhängige Variable: Lkl_Zulassungen

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	081°	007	- 003	22.817

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell				Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	35,456	11,566		3,066	,003
	Treibstoffpreis	9,160	10,994	,081	,833	,407

- a. Benzin_Diesel = 1
- b. Abhängige Variable: Lkl_Zulassungen

Geländewagen

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,233°	,054	,045	76,549

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Treibstoff = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten Standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	214,734	49,727		4,318	,000
	Treibstoffbreis	-110.011	44.838	233	-2.454	.016

- a. Treibstoff = 0
- b. Abhängige Variable: Geländewagen

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,212ª	,045	,036	197,151

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Treibstoff = 1

Koeffizienten^{a,b}

Modell				Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	615,213	99,935		6,156	,000
	Treibstoffpreis	211,366	94,996	,212	2,225	,028

- a. Treibstoff = 1
- b. Abhängige Variable: Geländewagen

Minivan

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,506°	,256	,249	14,953

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Treibstoff = 0

Koeffizienten^{a,b}

Modell	l	Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	96,512	9,713		9,936	,000
	Treibstoffpreis	-52,688	8,758	-,506	-6,016	,000

- a. Treibstoff = 0
- b. Abhängige Variable: Minivan

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,385°	,148	,140	342,903

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Treibstoff = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten Standardisierte Koeffizienten				
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	2063,541	173,816		11,872	,000
	Treibstoffpreis	-706,762	165,225	-,385	-4,278	,000

- a. Treibstoff = 1
- b. Abhängige Variable: Minivan

Appendix 7: Regression Bundesländer

Burgenland

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,554°	,307	,301	123,072

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin Diesel = 0

Koeffizienten a,b

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-178,656	79,588		-2,245	,027
	Treibstoffpreis	499,450	71,893	,554	6,947	,000

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,141°	,020	,011	140,813

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	654,873	71,015		9,222	,000
	Treibstoffpreis	-100,394	67,698	-,141	-1,483	,141

Kärnten

Modellzusammenfassung^b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,427ª	,182	,174	190,180

- a. Einflußvariablen : (Konstante), Treibstoffpreis
- b. Benzin Diesel = 0

Koeffizienten a,b

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	43,749	122,985		,356	,723
	Treibstoffpreis	546,995	111,095	,427	4,924	,000

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	.431°	.186	.178	204.647

- a. Einflußvariablen: (Konstante), Treibstoffpreis
- b. Benzin Diesel = 1

	Koeffizienten ^{a,b}									
Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten						
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.				
1	(Konstante)	1424,735	103,208		13,805	,000				
	Treibstoffpreis	-490,605	98,387	-,431	-4,986	,000				

Niederösterreich

Modellzusammenfassung^b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,560°	,313	,307	619,152

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-663,446	400,392		-1,657	,100
	Treibstoffpreis	2551,148	361,682	,560	7,054	,000

Modellzusammenfassung^b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,266°	,071	,062	669,434

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisier	te Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	3852,387	337,610		11,411	,000
	Treibstoffpreis	-928,671	321,840	-,266	-2,886	,005

Oberösterreich

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,523°	,274	.267	572,559

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. $Benzin_Diesel = 0$

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-455,258	370,262		-1,230	,222
	Treibstoffpreis	2145,380	334,464	,523	6,414	,000

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,180°	,032	,024	593,762

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. $Benzin_Diesel = 1$

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	3156,912	299,447		10,542	,000
	Treibstoffpreis	-545,850	285,460	-,180	-1,912	,058

Salzburg

Modellzusammenfassung^b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,491°	,241	,234	197,789

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Model		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	37,324	127,906		,292	,771
	Treibstoffpreis	679,016	115,540	,491	5,877	,000

Modellzusammenfassung b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,196°	,038	,030	261,533

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	1556,069	131,897		11,798	,000
	Treibstoffpreis	-262,183	125,736	-,196	-2,085	,039

Steiermark

Modellzusammenfassung^b

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,527°	,278	,271	441,782

a. Einflußvariablen : (Konstante), Treibstoffpreis

b. Benzin Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-318,853	285,691		-1,116	,267
	Treibstoffpreis	1671,664	258,070	,527	6,478	,000

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,305°	,093	,085	450,554

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

	Koeffizienten ^{a,b}									
Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten						
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.				
1	(Konstante)	2813,013	227,224		12,380	,000				
	Treibstoffpreis	-725.043	216.611	305	-3.347	.001				

Tirol

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,497°	,247	,240	217,233

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisier	rte Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-10,662	140,480		-,076	,940
	Treibstoffpreis	758,091	126,898	,497	5,974	,000

Modellzusammenfassung

Modell			Korrigiertes R-	Standardfehler des
	R	R-Quadrat	Quadrat	Schätzers
1	,285°	,081	,073	305,235

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	1755,166	153,936		11,402	,000
	Treibstoffpreis	-454,917	146,746	-,285	-3,100	,002

Vorarlberg

Modellzusammenfassung b

Modell	R	R-Ouadrat	Korrigiertes R- Ouadrat	Standardfehler des Schätzers
1	,578ª	,334	.328	103,570

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-57,081	66,976		-,852	,396
	Treibstoffpreis	447,316	60,501	,578	7,394	,000

Modellzusammenfassung b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,263°	,069	,061	126,670

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell	dell Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	733,925	63,882		11,489	,000
	Treibstoffpreis	-173,645	60,899	-,263	-2,851	,005

Wien

Modellzusammenfassung^b

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,531°	,282	,275	596,125

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 0

Koeffizienten a,b

Model	I	Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-335,558	385,501		-,870	,386
	Treibstoffpreis	2278,818	348,230	,531	6,544	,000

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,164ª	,027	,018	577,948

a. Einflußvariablen: (Konstante), Treibstoffpreis

b. Benzin_Diesel = 1

Koeffizienten^{a,b}

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	3740,263	291,471		12,832	,000
	Treibstoffpreis	-483,125	277,857	-,164	-1,739	,085

Appendix 8: Regression Δ B/D

Δ Kleinwagen - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,210°	,044	,035	556,465

a. Einflußvariablen : (Konstante), Delta B/D

Koeffizienten a

Modell		Nicht standardisierte Koeffizienten		Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	1096,464	82,469		13,295	,000
	Delta B/D	-2194,341	977,590	-,210	-2,245	,027

Δ Stadtwagen - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,374°	,140	,132	1675,734

a. Einflußvariablen : (Konstante), Delta B/D

Koeffizienten a

Modell		Nicht standardisiert	e Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	3701,243	248,346		14,904	,000
	Delta B/D	-12389,295	2943,905	-,374	-4,208	,000

a. Abhängige Variable: SW_Delta B/D

Δ untere Mittelklasse - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,463°	,214	,207	1108,261

a. Einflußvariablen: (Konstante), Delta B/D

Koeffizienten a

Modell		Nicht standardisiert	e Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-572,464	164,246		-3,485	,00
	Delta B/D	-10609,606	1946,977	-,463	-5,449	,000

Δ Mittelklasse - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers				
1	,445°	,198	,190	751,853				
a. Einflußvariablen : (Konstante), Delta B/D								

Koeffizienten ^a

Modell		Nicht standardisiert	e Koeffizienten	Standardisierte Koeffizienten		
		Regressionskoeffi zientB	Standardfehler	Beta	T	Sig.
1	(Konstante)	-1945,718	111,426		-17,462	,000
	Delta B/D	-6845,954	1320.845	445	-5,183	.000

Δ Oberklasse - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,264ª	,070	,061	173,051
a. Ei	influßvari	ablen : (Konsta	ante), Delta B/D	

. (Lieuwille), Deim D.

Koeffizienten^a

Modell		Nicht standardisierte Koeffizienten Standardisierte Koeffizienten				
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-503,969	25,646		-19,651	,000
	Delta B/D	-869,008	304,014	-,264	-2,858	,005

a. Abhängige Variable: Okl Delta B/D

Δ Luxusklasse - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,395°	,156	,148	22,133

a. Einflußvariablen : (Konstante), Delta B/D

Koeffizienten^a

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-17,690	3,280		-5,393	,000
	Delta B/D	174,463	38,883	,395	4,487	,000

Δ Summe Neuzulassungen - Δ B/D

Modellzusammenfassung

Modell	R	R-Quadrat	Korrigiertes R- Quadrat	Standardfehler des Schätzers
1	,423°	,179	,171	4103,662

a. Einflußvariablen : (Konstante), Delta B/D

Koeffizienten^a

Modell		Nicht standardisier	Nicht standardisierte Koeffizienten			
		Regressionskoeffi zientB	Standardfehler	Beta	Т	Sig.
1	(Konstante)	-2339,849	617,929		-3,787	,000
	Delta B/D	-35366,869	7293,987	-,423	-4,849	,000

Appendix 9: Auswertung - Wechselwirkung Benzin Diesel in den Fahrzeugklassen und den Bundesländern

		KW_2	SW_2	uMkl_2	Mkl_2	Okl_2	Lkl_2
Treibstoffpreis_Diesel	Korrelation nach Pearson	,519	,471	,432	,120	-,540	-,462
	Signifikanz (2-seitig)	,000	,000	,000	,212	,000	,000
	N	110	110	110	110	110	110
KW_Zulassungen	Korrelation nach Pearson	-,183	-,032	,047	,118	,277	,308
	Signifikanz (2-seitig)	,056	,741	,623	,220	,003	,001
	N	110	110	110	110	110	110
SW_Zulassungen	Korrelation nach Pearson	-,548	-,313	-,326	-,023	,750	,720
	Signifikanz (2-seitig)	,000	,001	,000	,808,	,000	,000
	N	110	110	110	110	110	110
uMkl_Zulassungen	Korrelation nach Pearson	-,237	,014	,024	,190	,705	,594
	Signifikanz (2-seitig)	,013	,881	,801	,047	,000	,000
	N	110	110	110	110	110	110
Mkl_Zulassungen	Korrelation nach Pearson	-,354	-,050	-,106	,250	,696	,725
	Signifikanz (2-seitig)	,000	,601	,268	,008	,000	,000
	N	110	110	110	110	110	110
Okl_Zulassungen	Korrelation nach Pearson	-,141	,035	,005	,103	,603	,476
	Signifikanz (2-seitig)	,141	,713	,959	,282	,000	,000
	N	110	110	110	110	110	110
Lkl_Zulassungen	Korrelation nach Pearson	-,049	,128	,135	,094	,214	,398
	Signifikanz (2-seitig)	,609	,184	,161	,328	,025	,000
	N	110	110	110	110	110	110

		Lkl_ Zulassungen	Bgl_ Zulassungen	Kntn_ Zulassungen	NÖ_ Zulassungen	OÖ_ Zulassungen	Sbg_ Zulassungen	Stmk_ Zulassungen	Tir_ Zulassungen	Vbg_ Zulassungen	W_ Zulassungen
Lkl_2	Korrelation nach Pearson	,398	,470	,625	,577	,534	,570	,600	,597	.598	,616
	Signifikanz (2-seitig)	,000	,000	.000	,000	,000	,000	,000	,000	,000	,000
	N	110	110	110	110	110	110	110	110	110	110
Bgl_2	Korrelation nach Pearson	.128	,108	-,122	-,007	,036	,016	-,067	.040	-,085	,028
	Signifikanz (2-seitig)	.186	,262	,207	,946	,708	,872	,489	,681	,380	,772
	N	109	109	109	109	109	109	109	109	109	109
Krntn_2	Korrelation nach Pearson	.124	,172	-,007	,093	,126	,092	,038	,133	,008	,081
	Signifikanz (2-seitig)	.198	,073	,940	,334	,193	,344	.698	,169	,933	,405
	N	109	109	109	109	109	109	109	109	109	109
NÖ_2	Korrelation nach Pearson	.142	,168	-,065	,074	,109	,061	-,001	,095	-,014	,067
	Signifikanz (2-seitig)	.140	,081	.499	.447	,260	,527	.989	,326	,884	,490
	N	109	109	109	109	109	109	109	109	109	109
ÖÖ_2	Korrelation nach Pearson	,135	,223	-,001	,138	,182	,132	,069	.170	,064	,116
	Signifikanz (2-seitig)	,163	,020	,994	,152	,058	,173	.476	,078	,509	,228
	N	109	109	109	109	109	109	109	109	109	109
SBG_2	Korrelation nach Pearson	,199	,241	,113	,229	,275	,293	,168	,286	,161	,305
	Signifikanz (2-seitig)	,038	,012	,244	,017	,004	,002	,081	,003	,095	,001
	N	109	109	109	109	109	109	109	109	109	109
Stmk_2	Korrelation nach Pearson	,217	,176	-,042	,090	,118	,078	,019	,121	-,003	,104
	Signifikanz (2-seitig)	.024	,067	,667	,351	,222	,417	,847	,211	,977	,283
	N	109	109	109	109	109	109	109	109	109	109
Tir_2	Korrelation nach Pearson	,199	,215	,075	,175	,216	,186	,115	,230	.083	,220
	Signifikanz (2-seitig)	,038	,025	,440	,069	,024	,053	,233	,016	,392	,022
	N	109	109	109	109	109	109	109	109	109	109
Vbg_2	Korrelation nach Pearson	,137	,257	.023	,167	,220	,180	,103	,204	,104	.172
	Signifikanz (2-seitig)	.155	,007	,809	,083	,021	,061	,285	,033	,280	,074
	N	109	109	109	109	109	109	109	109	109	109
W_2	Korrelation nach Pearson	,095	,164	-,079	,044	,093	,046	-,020	,084	-,028	.041
	Signifikanz (2-seitig)	,328	,088	,414	,646	,338	,638	,833	,385	.770	,672
	N	109	109	109	109	109	109	109	109	109	109
Ges_2	Korrelation nach Pearson	.143	,186	-,006	.112	,150	.107	,050	,141	,021	.118
	Signifikanz (2-seitig)	.137	,052	.947	,243	,117	,264	,601	,141	,830	,220
	N	110	110	110	110	110	110	110	110	110	110

Appendix 10: Laufende Treibstoffkosten Vergleich Benzin Diesel

Treibstoffpreise		Jahr		Benzin		Diesel		Verbrauch = Durchschnitt lt. Produktdatenblatt
			2003	h dh			0,728	Benzin
			2011	en e	1,358	en e	1,332	Kosten
Kleinwagen Fiat 500								10.000 Diff. 13.500
Modell	KW/PS	Preis		Diff		L/ 100km	3	Benzin Diesel Benzin Diesel
0.9 Twin Air Turbo Lounge	62,5 / 85	m	15.700	•			4,0	2003 € 344,40 € 283,92 € 60,48 € 464,94 € 383,29 € 81,65
1.3 Multijet II Lounge	70 /95	m	17.100	•	1.400		3,9	2008 € 481,60 € 482,43 € 0,83 € 650,16 € 651,28 -€ 1,12 2011 € 543,20 € 519,48 € 23,72 € 733,32 € 701,30 € 32,02
Stadtwage VW Polo				ı				10.000 Diff. 13.500
Modell	KW/PS	Preis		ĐĦ		L/ 100km	•	Benzin Diesel Benzin Diesel
1,2 Comfortline	51/70	m	16.330	h	8		5,5	2003 € 473,55 € 276,64 € 196,91 € 639,29 € 373,46 € 265,83
1,2 TDI Comfortline	55 / 75	۴	18.290	ø	1.500		3,8	2008 € 662,20 € 470,06 € 192,14 € 893,97 € 634,58 € 259,39 2011 € 746,90 € 506,16 € 240,74 € 1.008,32 € 683,32 € 325,00
uMkl. VW Golf								10.000 Diff. 13.500
Modell	KW/PS	Preis		ĐĦ		L/ 100km	•	Benzin Diesel Benzin Diesel
1,4 Trendline	59 / 80	m	18.220	ħ	3 470		6,4	2003 € 551,040 € 327,60 € 223,44 € 743,90 € 442,26 € 301,64
1,6 TDI Trendline	66/90	m	20.690				, 4 ,5	2008 € 770,560 € 556,65 € 213,91 € 1.040,26 € 751,48 € 288,78 2011 € 869,120 € 599,40 € 269,72 € 1.173,31 € 809,19 € 364,12
Mkl. Bmw 3er				ı				10.000 Diff. 13.500
Modell	KW/PS	Preis		Diff		L/ 100km	•	Benzin Diesel Benzin Diesel
320i limousine	135 / 184	m	35.200	m	2000		6,1	2003 € 525,210 € 327,60 € 197,61 € 709,03 € 442,26 € 266,77
320d Limousine	135 / 184	m	37.200	۱ ،			4,5	2008 € 734,440 € 556,65 € 177,79 € 991,49 € 751,48 € 240,02 2011 € 828,380 € 599,40 € 228,98 € 1.118,31 € 809,19 € 309,12
Oberklasse Audi A6				١				10.000 Diff. 13.500
Modell	KW/PS	Preis		Diff		L/ 100km	3	Benzin Diesel Benzin Diesel
2.0 TFSI Limousine	132 / 180	m	42.820	•	610		6,5	2003 € 559,650 € 356,72 € 202,93 € 755,53 € 481,57 € 273,96
2.0 TDI Limousine	130/177	٣	43.430				4,9	2008 € 782,600 € 606,13 € 176,47 € 1.056,51 € 818,28 € 238,23 2011 € 882,700 € 652,68 € 230,02 € 1.191,65 € 881,12 € 310,53
Luxusklasse VW Phaeton								10.000 Diff. 13.500
Modell	KW/PS	Preis		ĐĦ		L/ 100km	•	Benzin Diesel Benzin Diesel
V6 4 Motion 5 Sitzer	206 / 280	m	91.300	h	11 200		11,4	2003 € 981,540 € 618,80 € 362,74 € 1.325,08 € 835,38 € 489,70
V6 TDI 4 Motion 5 Sitzer	176 / 240	m	80.000	6			8,5	2008 € 1.372,560 € 1.051,45 € 321,11 € 1.852,96 € 1.419,46 € 433,50
		l	l	l	l	l	L	a selection of animalism of ani

Appendix 11: Kostenvergleich über eine Nutzungsdauer von 5 Jahren

iat 500						
	P	Preis Diff.	Diff. Bei 10.000 km	3/dN	Kilometer die man l	Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet
	2003	1.400,00	60,48	280,00	2003	46.296,30
	2009	1.400,00	36,93		2009	75.819,12
	2011	2011 1.400,00	23,72		2011	118.043,84

ND: 5

Kostenersparnis beim Diesel

VW Golf						
	Pre	Preis Diff.	Diff. Bei 10.000 km	yD/€	Kilometer die man b	Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet
	2003	2.470,00	223,44	494,00	2003	22.108,84
	2009	2.470,00	228,39		2009	21.629,67
	2011	2.470,00	269,72		2011	18.315,29
Bmw 3er						

 Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet

 2003
 19.907,57

 2009
 19.328,44

 2011
 16.283,13

3/QN

Diff. Bei 10.000 km

Preis Diff.

VW Polo

202,81 240,74

1.960,00 1.960,00 1.960,00

2003 2009 2011

	Pı	Preis Diff.	Diff. Bei 10.000 km	0 km ND/€	Kilometer die man b	Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet
	2003	2.000,00	97,771	400,00	2003	22.498,45
	2009	2.000,00	197,16		2009	20.288,09
	2011	2.000,00	228,98		2011	17.468,77
Audi A 6						
	ā	Preis Diff.	Diff. Bei 10.000 km	J/QN	Kilometer die man b	Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet

6.913,36 6.100,61 5.303,89

2003 2009 2011

176,47 199,98 230,02

610,00 610,00 610,00

2003 2009 2011

	te damit sich der Diesel rechnet				
	Kilometer die man bei gegebener Nutzungsdauer fahren müsste damit sich der Diesel rechnet	-62.303,58	-62.831,88	-54.337,37	
	Kilometer die man bei g	2003	2009	2011 -	
	ND/€	- 2.260,00			
	Diff. Bei 10.000 km	362,74	359,69	415,92	
	Preis Diff.	3 -11.300,00	2009 - 11.300,00	2011 - 11.300,00	
VW Phaeton		2003	2005	2011	

 $\label{eq:normalize} ND = Nutzungsdauer \\ ND/\mathcal{E} = Kostendifferenz aufgeteilt auf die Nutzungsdauer$

Appendix 12: Auswirkungen der Treibstoffpreise auf Länder in der Eurozone

Belgien:

Estland:

_	_	_ 1	41	_	_	_	

		Belgien	Benzinpreis
Belgien	Korrelation nach Pearson	1	-,319**
	Signifikanz (2-seitig)		,000
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,319"	1
	Signifikanz (2-seitig)	,000	
	N	120	120

	Korrelationen		
		Estland	Benzinpreis
Estland	Korrelation nach Pearson	1	-,063
	Signifikanz (2-seitig)		,600
	N	120	72
Benzinpreis	Korrelation nach Pearson	-,063	1
	Signifikanz (2-seitig)	,600	
	N	72	70

Korrelationen^a

		Belgien	Dieselpreis
Belgien	Korrelation nach Pearson	1	,360"
	Signifikanz (2-seitig)		,000
	N	120	120
Dieselpreis	Korrelation nach Pearson	,360"	1
	Signifikanz (2-seitig)	,000	
	N	120	120

	Korrelationen		
		Estland	Dieselpreis
Estland	Korrelation nach Pearson	1	-,068
	Signifikanz (2-seitig)		,571
	N	120	72
Dieselpreis	Korrelation nach Pearson	-,068	1
	Signifikanz (2-seitig)	,571	
	N	72	72

Finland:

Frankreich

Korrelationen

		Finland	Benzinpreis
Finland	Korrelation nach Pearson	1	-,492"
	Signifikanz (2-seitig)		,000
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,492"	1
	Signifikanz (2-seitig)	,000	
	N	120	120

	Korrelationen ^a	1	
		Frankreich	Benzinpreis
Frankreich	Korrelation nach Pearson	1	-,299"
	Signifikanz (2-seitig)		,001
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,299**	1
	Signifikanz (2-seitig)	,001	
	N	120	120

Korrelationen^a

		Finland	Dieselpreis
Finland	Korrelation nach Pearson	1	,653"
	Signifikanz (2-seitig)		,000
	N	120	120
Dieselpreis	Korrelation nach Pearson	,653**	1
	Signifikanz (2-seitig)	,000	
	N	120	120

Korrelationen*					
		Frankreich	Dieselpreis		
Frankreich	Korrelation nach Pearson	1	,334"		
	Signifikanz (2-seitig)		,000		
	N	120	120		
Dieselpreis	Korrelation nach Pearson	,334"	1		
	Signifikanz (2-seitig)	,000			
	N	120	120		

Deutschland:

Griechenland:

Korrelationen^a

		Deutschland	Benzinpreis
Deutschland	Korrelation nach Pearson	1	-,168
	Signifikanz (2-seitig)		,067
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,168	1
	Signifikanz (2-seitig)	,067	
	N	120	120

Korrelationen ^a					
		Griechenland	Benzinpreis		
Griechenland	Korrelation nach Pearson	1	-,638**		
	Signifikanz (2-seitig)		,000		
	N	120	120		
Benzinpreis	Korrelation nach Pearson	-,638**	1		
	Signifikanz (2-seitig)	,000			
	N	120	120		

Korrelationen^a

Kontelationen			
	·	Deutschland	Dieselpreis
Deutschland	Korrelation nach Pearson	1	,264"
	Signifikanz (2-seitig)		,004
	N	120	120
Dieselpreis	Korrelation nach Pearson	,264"	1
	Signifikanz (2-seitig)	,004	
	N	120	120

Korrelationen*					
		Griechenland	Dieselpreis		
Griechenland	Korrelation nach Pearson	1	,383"		
	Signifikanz (2-seitig)		,000		
	N	120	120		
Dieselpreis	Korrelation nach Pearson	,383**	1		
	Signifikanz (2-seitig)	,000			
	N	120	120		

Irland:

Italien:

Korrelationen ^a	

Korrelationen-				Korrelationen*			
		Irland	Benzinpreis			italien	Benzinpreis
Irland	Korrelation nach Pearson	1	-,465"	italien	Korrelation nach Pearson	1	-,532"
	Signifikanz (2-seitig)		,000		Signifikanz (2-seitig)		,000
	N	120	120		N	120	120
Benzinpreis	Korrelation nach Pearson	-,465"	1	Benzinpreis	Korrelation nach Pearson	-,532"	1
	Signifikanz (2-seitig)	,000			Signifikanz (2-seitig)	,000	
	N	120	120		N	120	120

Korrelationen ^a	Korrelationen ^a

		Irland	Dieselpreis			italien	Dieselpreis
Irland	Korrelation nach Pearson	1	,142	italien	Korrelation nach Pearson	1	-,142
	Signifikanz (2-seitig)		,123		Signifikanz (2-seitig)		,121
	N	120	120		N	120	120
Dieselpreis	Korrelation nach Pearson	,142	1	Dieselpreis	Korrelation nach Pearson	-,142	1
	Signifikanz (2-seitig)	,123			Signifikanz (2-seitig)	,121	
	N	120	120		N	120	120

Luxemburg:

Niederlande:

	Korrelationen ^a		
		Luxemburg	Benzinpreis
Luxemburg	Korrelation nach Pearson	1	,029
	Signifikanz (2-seitig)		,829
	N	60	60
Benzinpreis	Korrelation nach Pearson	,029	1
	Signifikanz (2-seitig)	,829	
	N	60	120

	Korrelationen ^a		
		Niederlande	Benzinpreis
Niederlande	Korrelation nach Pearson	1	-,022
	Signifikanz (2-seitig)		,811
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,022	1
	Signifikanz (2-seitig)	,811	
	N	120	120

	Korrelationen ^a		
		Luxemburg	Dieselpreis
Luxemburg	Korrelation nach Pearson	1	,149
	Signifikanz (2-seitig)		,256
	N	60	60
Dieselpreis	Korrelation nach Pearson	,149	1
	Signifikanz (2-seitig)	,256	
	N	60	120

1		Korrelationen ^a		
Į			Niederlande	Dieselpreis
l	Niederlande	Korrelation nach Pearson	1	,161
ı		Signifikanz (2-seitig)		,079
l		N	120	120
ı	Dieselpreis	Korrelation nach Pearson	,161	1
ı		Signifikanz (2-seitig)	,079	
l		N	120	120

Portugal:

Slowenien:

		Portugal	Benzinpreis
Portugal	Korrelation nach Pearson	1	-,618**
	Signifikanz (2-seitig)		,000
	N	120	120
Benzinpreis	Korrelation nach Pearson	-,618"	1
	Signifikanz (2-seitig)	,000	
	N	120	120

Korrelationen*					
		Slowenien	Benzinpreis		
Slowenien	Korrelation nach Pearson	1	,231		
	Signifikanz (2-seitig)		,051		
	N	120	72		
Benzinpreis	Korrelation nach Pearson	,231	1		
	Signifikanz (2-seitig)	,051			
	N	72	72		

Korrelationen^a

		Portugal	Dieselpreis
Portugal	Korrelation nach Pearson	1	,457"
	Signifikanz (2-seitig)		,000
	N	120	120
Dieselpreis	Korrelation nach Pearson	,457"	1
	Signifikanz (2-seitig)	,000	
	N	120	120

Korrelationen*						
		Slowenien	Dieselpreis			
Slowenien	Korrelation nach Pearson	1	-,471"			
	Signifikanz (2-seitig)		,000			
	N	120	72			
Dieselpreis	Korrelation nach Pearson	-,471**	1			
	Signifikanz (2-seitig)	,000				
	N	72	72			

Spanien:

Korrelationen*					
		Spanien	Benzinpreis		
Spanien	Korrelation nach Pearson	1	-,697"		
	Signifikanz (2-seitig)		,000		
	N	120	120		
Benzinpreis	Korrelation nach Pearson	-,697"	1		
	Signifikanz (2-seitig)	,000			
	N	120	120		

Korrelationen ^a					
		Spanien	Dieselpreis		
Spanien	Korrelation nach Pearson	1	-,159		
	Signifikanz (2-seitig)		,084		
	N	120	120		
Dieselpreis	Korrelation nach Pearson	-,159	1		
	Signifikanz (2-seitig)	,084			
	N	120	120		

Appendix 13: Länder der Eurozone

Appendix 14: Pkw Dichte in der Europäischen Union:⁷⁹

Merkmal	Pkw-Dich- te	Verkehrstote	Gesamt- emissionen an Treibhausgasen	Waldfläche	Europawahl	Mehr- wert- steuer ¹)	Haushalte mit Breitbandzugang
Jahr *)	2011	2010	2009	2010	2009	2012	2010
Einheit	Pkw je 1000 Ein- wohner	je 1 Million Einwohner	1990 = 100	Anteil an der Fläche insgesamt in %	Wahlbeteiligung in %		%
Europäische Union	473	78	83	36,5	43,0		61
Baden- Württemberg	539	46	84	38,3	52,0	19	75
Deutschland	517	45	74	30,1	43,3	19	75
Belgien	483	88	87	22,2	90,4	21	70
Bulgarien	329	139	53	35,4	39,0	20	26
Dänemark	471	74	90	12,6	59,5	25	80
Estland	407	98	41	49,0	43,9	20	64
Finnland	521	65	94	65,5	40,3	23	76
Frankreich	482	67	92	25,2	40,6	20	67
Griechenland	349	139	117	29,6	52,6	23	41
Irland	437	63	114	10,6	58,6	23	58
Italien	606	79	95	30,4	65,1	21	49
Lettland	400	139	40	52,0	53,7	22	53
Litauen	506	148	44	33,1	21,0	21	54
Luxemburg	678	72	91	33,6	90,8	15	70
Malta	568	37	139	0	78,8	18	69
Niederlande	462	41	94	8,8	36,8	19	80
Österreich	522	81	102	46,3	46,0	20	64
Polen	433	143	83	29,9	24,5	23	57
Portugal	560	83	126	37,5	36,8	23	50
Rumänien	197	142	52	27,6	27,7	24	23
Schweden	465	43	83	63,9	45,5	25	83
Slowakische Republik	294	103	59	39,4	19,6	20	49
Slowenien	521	106	105	61,8	28,3	20	62
Spanien	480	68	130	35,9	44,9	18	57
Tschechische Republik	424	104	68	33,7	28,2	20	54
Ungarn	300	99	69	21,8	36,3	27	52
Vereinigtes Königreich	459	43	73	11,9	34,7	20	
Zypern	579	103	178	18,7	59,4	15	51

¹⁾ Normalsatz.

⁷⁹ Statistisches Landesamt Baden Württemberg, 2012

8. Literaturverzeichnis

Allcott, H. (2011). Consumers' Perceptions and Misperceptions of Energy Costs. *American Economic Review*, 101 (3), 98-104.

American Petroleum institute. (04 2012). *Energy API*. Abgerufen am 30. 06 2012 von Diesel Taxes: http://www.api.org/oil-and-natural-gas-overview/industry-economics/~/media/a375b82cc4184656a093c6168a1dd08e.ashx

APA. (05. 03 2012). *Die Presse*. Abgerufen am 24. 06 2012 von Erstmals 4,5 Millionen Autos in Österreich: http://diepresse.com/home/panorama/klimawandel/737523/Erstmals-mehr-als-45-Millionen-Autos-in-Oesterreich

Arbeiterkammer Wien. (23. 07 2008). Abgerufen am 16. 05 2012 von Arbeiterkammer Wien: http://wien.arbeiterkammer.at/online/hoechststaende-bei-treibstoffen-42069.html?REFP=1761

Auto motor und Sport (dpa/uba). (29. 11 2010). *Auto Motor und Sport*. Abgerufen am 01. 07 2012 von http://www.auto-motor-und-sport.de/eco/preis-fuer-opel-ampera-steht-fest-elektroauto-kostet-ab-42900-euro-3065142.html

BDW Automotive GmbH (Schultz Jens). (2012). Abgerufen am 05 2012 von www.bdw-automotive.de

BMW AG. (06 2012). *BMW*. Abgerufen am 25. 06 2012 von BMW - 7er Reihe: https://www.bmw.at/de/neufahrzeuge/7/limousine/2012/start.html

BMWFJ. (16. 07 2012). *BMWFJ: Treibstoffpreismonitor*. Abgerufen am 26. 07 2012 von http://www.bmwfj.gv.at/EnergieUndBergbau/Energiepreise/Seiten/MonitorTreibstoff.aspx?Report=1

Bonilla, D. (2009). Fuel demand on UK roads and dieselisation of fuel economy. Energy Policy, 37 (10), 2769-3778.

BP Statistical Review of World Energy. (06 2012). Statistical Review of World Energy. 1-48.

Bruckschlögl, G. (03. 06 2012). Neuzulassungen in Österreich. (G. Philipp, Interviewer)

Bundeskanzleramt Rechtsinformationssyste. (12. 06 2012). RIS: Versicherungssteuer 1953 Gesetz §4 - §5. Abgerufen am 12. 06 2012 von

http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10003834

Bundeskanzleramt Rechtsinformationssystem. (12. 06 2012). *RIS: Umsatzsteuer Gesetz 1994*. Abgerufen am 12. 06 2012 von http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10004873

Bundeskanzleramt Rechtsinformtionssystem. (12. 06 2012). *RIS: Mineralölsteuergesetz 1995 idgF*. Abgerufen am 15. 06 2012 von http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10004908

Bundesministerium für Finanzen. (2012). *BMF: motorbezogene Versicherungssteuer*. Abgerufen am 10. 06 2012 von http://www.bmf.gv.at/Steuern/Brgerinformation/AutoundSteuern/MotorbezogeneVersic 5794/ start.htm

Bundesministerium für Wirtschaft. (2012). *BMWFJ: Normverbrauchs Abgabe*. Abgerufen am 05. 06 2012 von http://www.bmf.gv.at/steuern/brgerinformation/autoundsteuern/normverbrauchsabgabenova/ start.htm

Busse, M., Knittel, C., & Zettelmeyer, F. (03 2012). Are Consumers Myopic? Evidence from New and Used Car Purchases.

Busse, M., Knittel, C., & Zettelmeyer, F. (2009). Pain at the Pump: How Gasoline Prices Affect Automobile Purchasing in New and Used Markets. *2*, 2-24.

Cetinkaya, Ö. (13. 04 2012). Neuzulassungen in Österreich und die Auswirkung der Treibstoffpreise. (G. Philipp, Interviewer) Wien.

Chappel, L. (30. 01 2012). *Autonews: Diesel are global stars; U.S. shrugs, steps on gas*. Abgerufen am 15. 05 2012 von http://www.autonews.com/apps/pbcs.dll/article?AID=/20120130/OEM06/301309935/1135

Comission, E. (11. 06 2012). *European Commission: Energy:Statistic Market Observatory*. Abgerufen am 13. 06 2012 von http://ec.europa.eu/energy/observatory/oil/bulletin en.htm

Congressional Budget Office. (01 2008). *Effects of Gasoline Prices on Driving Behavior and Vehicle Markets*. Abgerufen am 03. 05 2012 von http://www.cbo.gov

de Haan, P. (31. 07 2007). Erforschung des Autokaufverhaltens hinsichtlich Treibstoffeinsparung und Technologieakzeptanz. Forschungsplan zum Projekt "Entscheidungsfaktoren beim Kauf treibstoffeffizienter Neuwagen". Bericht zum Schweizer Autokaufverhalten Nr. 2. Abgerufen am 17. 08 2012 von http://www.nssi.ethz.ch/res/emdm/

Dr. Furherr, E. (13. 01 2012). *Wirtschaftskammer Österreich* . Abgerufen am 17. 08 2012 von Novelle zum Immissionsschutzgesetz Luft: http://portal.wko.at/wk/format_detail.wk?angid=1&stid=524930&dstid=31

Dr. Herry, M., DI Sedlacek, N., & Steinacher, I. (11 2007). Verkehr in Zahlen. *Verkehr in Zahlen 2007*. (I. u. Bundesministerium für Verkehr, Hrsg.) Wien, Wien, Österreich.

Dr. Schiffer, H.-W., & Heinrich, C. (06 2010). Energiepolitik der USA. (W. Energierat, Hrsg.) *Energie für Deutschland*, 1-8.

Economic Statistics Administration. (05. 05 2011). *United States Department of commerce*. Abgerufen am 19. 07 2012 von Car or Truck? Why gas Prices Help Drive Car Sales: http://www.esa.doc.gov/Blog/2011/05/05/car-or-truck-why-gas-prices-help-drive-car-sales

Europäische Kommission. (2012). *Europa - Über Europa*. Abgerufen am 04. 07 2012 von http://europa.eu/about-eu/facts-figures/living/index de.htm

Europäische Union . (05 2012). *Europe.eu*. Abgerufen am 17. 07 2012 von Mehr Wettbewerb und Ressourceneffizienz im Verkehr: http://europa.eu/pol/trans/index_de.htm

European Automobile Manufacturers Association. (2012). *European Automobile Manufacturers Association*. Abgerufen am 16. 05 2012 von http://www.acea.be/collection/statistics

Eurostat. (12. 06 2012). *Eurostat: Statistische Datenbank*. Abgerufen am 16. 06 2012 von http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/data/database

Eurotaxglass'S. (2005). *Eurotaxglass's: Market Analyser*. Abgerufen am 15. 04 2012 von http://b2b.eurotaxglass.at/index.php?p=p_mktanalyser&l=deat

Executive office of the president council of exonomic advisers. (10. 09 2009). *whitehouse.gov.* Abgerufen am 17. 06 2012 von http://www.whitehouse.gov/assets/documents/CEA Cash for Clunkers Report FINAL.pdf

Fachverband für Mineralölindustrie. (07 2012). key Facts zum Mineralölmarkt in Österreich. 1-4.

Goerlich, R., & Wirl, F. (2010). Interdependencies between transport fuel demand, efficiency and quality: An application to Austria. *Energy Policy (2010), doi:10.1016/j.enpol.2010.10.015*, 47-58.

Killian, L. (2008). The Economic Effects of Energy Price Shocks. Journal of Economic Literature, 46 (4), 871-909.

Kleine Zeitung. (10. 11 2011). *Kleine Zeitung: Diesel als Aufreger: Teurer als BEnzin*. Abgerufen am 17. 06 2012 von http://www.kleinezeitung.at/allgemein/automotor/2874439/diesel-aufreger-teurer-benzin.story

Klier, T., & Linn, J. (2010). The Price of Gasoline and New Vehicle Fuel Economy: Evidence from Monthly Sales Data. *American Economic Journal: Economic Policy*, 2 (3), 134-153.

Kretzmann, J. (07. 08 2009). *Autobild*. Abgerufen am 13. 05 2012 von Abwrackprämie in Europa: http://www.autobild.de/artikel/abwrackpraemien-in-europa-945389.html

McManus, W. (2007). The link between gasoline prices and vehicle sales:economic theory trumps conventional Detroit wisdom. *Business Economics*, 42 (1), 54-60.

Meyer, I., & Wessely, S. (2009). Fuel efficiency of the Austrian passenger vehicle fleet - Analysis of trends in the technological profile and rtelated impacts on CO2 emissions. *Energy Policy*, 37, 3779-3789.

Ms. Quynh-Nhu Huynh. (15. 06 2012). Abgerufen am 30. 06 2012 von European Automobile Manufacturers' Association: http://www.acea.be/images/uploads/files/20120615_PRPC-FINAL-1205.pdf

OE1.ORF.at. (14. 06 2012). Abgerufen am 17. 06 2012 von http://oe1.orf.at/artikel/307339

OEAMTC; Kleine Zeitung. (15. 04 2009). *Kleine Zeitung*. Abgerufen am 20. 07 2012 von Verschrottungsprämie: Alles, was Sie dazu wissen müssen: http://www.kleinezeitung.at/nachrichten/wirtschaft/finanzkrise/1732564/index.do

ORF. (02. 04 2012). ORF. Abgerufen am 30. 05 2012 von http://news.orf.at/stories/2113232/2113251/

Pötscher, F., & Winter, R. (2008). *CO2 - Monitoring 2008*. Abgerufen am 13. 04 2012 von Umweltbundesamt: http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0194.pdf

Parry, I., Walls, M., & Harrington, W. (2007). Automobile Externalities and Policies. *Journal of Economic Literature*, 45 (2), 373-399.

PVM Oil Associates GmbH. (2005). *Der Österreichische Kraftstoffmarkt 2004*. Bundesministerium für Wirtschaft und Arbeit, Wien.

Reed Messe Wien GmbH. (2011). *Vienna Autoshow*. Abgerufen am 17. 06 2012 von Vienna Autoshow: Die führende Neuheitenschau der Automobilimporteure in Österreich: http://www.viennaautoshow.at/

Rosin, P. (2006). Neue energiepolitische Initiative des US-Präsidenten: Wende der amerikanischen Energiepolitik. Konrad-Adenauer-Stiftung Washington, Washington.

Rouwendal, J., & de Vries, F. (1999). The taxation of drivers and the choice of car fuel type. *Energy Economics*, 21, 17-35.

Small, K., & Van Dender, K. (2007). Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect. *Energy Journal*, 28 (1), 25-51.

Spiegel Online. (30. 05 2006). *Diesel-Abgas gefährlicher als gedacht*. Abgerufen am 20. 07 2012 von http://www.spiegel.de/wissenschaft/mensch/stickstoffdioxid-diesel-abgas-gefaehrlicher-als-gedacht-a-418600.html

Statistik Austria. (24. 05 2012). *Statistik Austria: Kraftfahrzeug - Bestand*. Abgerufen am 30. 05 2012 von http://www.statistik.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge - bestand/index.html

Statistik Austria. (05 2012). *Statistik Austria: Kraftfahrzeug - Bestand*. Abgerufen am 17. 06 2012 von http://www.statistik.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge - bestand/index.html

Statistisches Bundesamt. (2012). *Statistisches Bundesamt: Länder und Regionen*. Abgerufen am 25. 04 2012 von https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Internationales/Internationales.html

Statistisches Landsamt Baden-Württemberg. (17. 04 2012). *Statistisches Landesamt*. Abgerufen am 26. 06 2012 von Daten und Fakten aller Eu Länder: http://www.statistik-bw.de/europa/EUtabelle.asp

Stepmap. (2012). *Stepmap*. Abgerufen am 24. 06 2012 von Karten selbst erstellen: http://www.stepmap.de/karte/eurozone-1129605

Swiss Federal institute of technology zurich. (31. 07 2007). Erforschung des Autokaufverhaltens hinsichtlich Treibstoffeinsparung und Technologieakzeptanz. Zürich. Von http://www.uns.ethz.ch/res/irl/emdm/ETH_CH-Autokauf 02 FP EMDM1065.pdf abgerufen

Theile, C. (08. 03 2011). *Südddeutsche Zeitung*. Abgerufen am 17. 07 2012 von Ethanolweltmacht: http://www.sueddeutsche.de/wirtschaft/oeko-benzin-in-den-usa-die-ethanol-weltmacht-1.1069174

Turrentine, T., Kurani, K., & Heffner, R. (2008). Fuel Economy: What Drives Consumer Choice? *Access Magazin*, 31, 14-19.

U.S. Energy Information Administration. (2012). *U.S. Gasoline and Diesel Retail Prices*. Abgerufen am 29. 06 2012 von http://www.eia.gov/dnav/pet/PET_PRI_GND_DCUS_NUS_M.htm

UNECE. (kein Datum). *UNECE: Statistical Database*. Abgerufen am 25. 05 2012 von http://w3.unece.org/pxweb/dialog/varval.asp?ma=ZZZ_TRRoadNewPasVh_r&path=../database/STAT/40-TRTRANS/02-

TRRoadFleet/& lang=1 & ti=New+Passenger+Car+Registrations+During+the+Year+by+Country % 2C+Fuel+Type+ and +Time

Van den Brink, R., & Van Wee, B. (2001). Why has car-fleet specific fuel consumption not shown any decrease since 1990? Quantitative analysis of Dutch passenger car-fleet specific fuel consumption. *Transportation Researcht Part D*, 6, 75-93.

VCÖ. (16. 02 2010). Österreichs Autos fahren im Schnitt 13.500 Kilometer pro Jahr. Abgerufen am 01. 07 2012 von http://www.vcoe.at/de/presse/aussendungen-archiv/details/items/2010-26?print=true

Werb, H. (05. 01 2009). *Diesel tanken in Amerika? No Way!* Abgerufen am 17. 05 2012 von http://www.welt.de/motor/article2972046/Diesel-tanken-in-Amerika-No-Way.html

West, S. E., & Roberton, C. I. (2005). The Cost of Reducing Gasoline Consumption. *American Evonomiv Review*, 95 (2), 294-299.

Winterhoff, M., Kahner, C., Dr. Urlich, C., Sayler, P., & Dr. Wenzel, E. (2009). *Arthur D Little - Zukunft der Mobilität* 2020. Abgerufen am 21. 04 2012 von

 $http://www.adlittle.at/uploads/tx_extthoughtleadership/ADL_Zukunft_der_Mobilitaet_2020_Langfassung.pdf$

Wirtschaftsblatt APA. (23. 01 2009). *Wirtschaftsblatt*. Abgerufen am 17. 06 2012 von Details zur Verschrottungsprämie: http://www.wirtschaftsblatt.at/home/oesterreich/wirtschaftspolitik/details-zurverschrottungspraemie-sind-fixiert-359169/index.do

Wirtschaftskammer Wien. (01 2012). *WKO Wien: Kraftfahrzeugsteuer*. Abgerufen am 01. 03 2012 von http://portal.wko.at/wk/format_detail.wk?angid=1&stid=452504&dstid=725

Wirtschaftswoche. (03. 04 2012). *Wirtschaftswoche: Vielfältiger EInfluss auf den Treibstoffpreis*. Abgerufen am 16. 05 2012 von http://www.wiwo.de/finanzen/geldanlage/benzinpreis-vielfaeltiger-einfluss-auf-den-preis/6467748-3.html

Witt, R. (1997). The demand for car fuel efficiency: some evidence for the UK. *Applied Economics*, 29 (9), 1249-1254.

www.wien.gv.at. (2012). Abgerufen am 26. 06 2012 von

http://www.wien.gv.at/stadtentwicklung/strategien/parkraumbewirtschaftung/kennzahlen.html

9. Abstract

9.1. Deutsch

Die vorliegende Arbeit untersucht die Auswirkungen der drastisch gestiegenen Treibstoffpreise auf die Neuzulassungen von Personenkraftwagen in Österreich und geht der Frage nach, ob diese den Neuwagenkäufer dazu anhielten effizientere Fahrzeuge zu erstehen.

Als Einleitung dienen wissenschaftliche Studien die ihren Fokus sowohl auf die Entwicklung des Automobilmarktes im Zusammenhang mit den Treibstoffpreisen als auch auf die Auswirkungen dieser auf das Kaufverhalten und die Entscheidungsfindung der Konsumenten beim Neuwagenkauf legen. Eine wesentliche Rolle in nahezu allen Studien spielt der Rebound Effekt, der besagt, dass eine verbesserte Energieeffizienz zu einem veränderten Nutzen und möglicherweise erhöhten Energieverbrauch führt. Es wird auch aufgezeigt, dass der Konsument bei der Entscheidung für ein Fahrzeug kaum Berechnungen anstellt, dabei zukünftige Vorteile und einen längerfristigen Nutzen außer Acht lässt.

Im weiteren Verlauf der Arbeit werden die Neuzulassungen von Personenkraftwagen in Österreich gesamt und unterteilt in die Segmente der verschiedenen Fahrzeugklassen seit dem Jahr 2003 betrachtet. Der Autor kam zu dem Ergebnis, dass sich der steigende Dieselpreis geringfügig negativ und der steigende Benzinpreis deutlich positiv auf die Zahl der Gesamtzulassungen auswirkt. In den untersuchten Fahrzeugklassen hingegen zeigen die Treibstoffpreise unterschiedliche Auswirkungen. Darüber hinaus werden auch die positiven Auswirkungen der Verschrottungsprämie auf die Zahl der Neuzulassungen herausgearbeitet, die vor allem im Bereich der Benziner zu einer Steigerung der Zulassungen führte. Des Weiteren zeigt sich ein Trend hin zu verbrauchsärmeren Pkw die den Segmenten Stadt-, Kleinwagen und untere Mittelklasse angehören. Untermauert wird dieses Ergebnis durch einen Kostenvergleich zwischen ausgewählten Benzin- und Dieselmodellen in den einzelnen Segmenten.

Abschließend werden die Auswirkungen der Treibstoffpreise in Ländern der Europäischen Währungsunion für einen Vergleich mit Österreich herangezogen und die Situation am amerikanischen Automobilmarkt näher beleuchtet.

9.2. Englisch

This thesis examines the impact of drastically rising fuel prices on the purchases of new motor vehicles in Austria and answers the question whether these high fuel prices have encouraged the acquisition of new, more efficient vehicles amongst the population.

Economic studies with a focus on the development of the motor vehicle market in relation to fuel prices, as well as the bearings of such on the consumers' decision making when buying a new car, introduce the topic. In almost all researches, a significant role is played by the Rebound Effect; which implies that higher energy efficiency causes a change in consumer habits and thus possibly in higher energy consumption. In addition, it will be shown that when deciding on a new vehicle, consumers do generally not bother with calculating actual figures. Neither do they take future advantages nor long-term usage into consideration when purchasing a new car.

In the course of the paper, all registrations of new vehicles in Austria since 2003 are examined. In addition, a more detailed investigation into the various vehicle categories is undertaken. The author has come to the conclusion that increasing diesel prices have had a minor negative influence on vehicle purchases, whereas increasing gasoline prices have had a major positive one. A detailed analysis of the different categories of motor vehicles shows variable results. Furthermore, the positive effects of government sponsored wreckage premiums (cash for clunkers) during the year 2009 on the registration of new cars – which particularly show a significant increase in the purchases of gasoline-run vehicles - are explored. It will be shown that there is a trend towards the acquisition of more fuel-efficient cars, especially amongst the hatchbacks, city cars, and mid-sized sedans. These results are confirmed by a cost comparison between selected gasoline and diesel models of these smaller types of vehicles.

Finally, the effects of fuel prices within states of the European Currency Unit are compared with the result of the ones in Austria. The situation of the American automobile market is investigated as well.

10. Curriculum Vitae

Persönliche Daten

Name: Philipp GREIN

Geburtsdatum/-ort: 23.April 1985 in Villach

Ausbildung

1995 – 2003 Realgymnasium Villach / Perau

2003 – 2004 Wehrdienst geleistet

2005 – 2012 Universität Wien

Studiengang: Internationale Betriebswirtschaftslehre

Vertiefungen: Organisation und Personal / Energie und Umweltmanagement

Sprachen

Englisch: sehr gute Kenntnisse in Wort und Schrift

Italienisch: gute Kenntnisse in Wort und Schrift

Russisch: Kenntnisse in Wort und Schrift

Bisherige Arbeitsgeber

04.2012 – heute D – Light GmbH

Forderungsmanagement / Mahnwesen

Buchhaltung

10.2010 - 04.2011 D - Light GmbH

Buchhaltung / Customer Care

Organisation sowie Durchführung von Werbeauftritten für

Fahrzeughersteller

10.2009 – 06.2010 Rockwool Handelsgesellschaft m.b.H.

Unterstützung des Vertriebes

Kalkulationen für Verkaufspreise

08.2007 – heute Durchführung und Organisation verschiedener Events

07.2007 Bezirkshauptmannschaft Villach

Meldeamt und Passamt

07.2006 Nord – Süd Treuhand Villach (Wirtschaftstreuhänder)