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I wonder why, I wonder why

I wonder why I wonder ...

I wonder why I wonder why,

I wonder why I wonder.

Richard Feynman

We cannot change the cards we are dealt, just how we play the hand.

Randy Pausch

Computers are to biology what mathematics is to physics.

Harold Morowitz



Abstract

Epigenetics, investigating the biological information of genomes not only encoded in the

DNA sequence, has become a hot topic boosted by rapid development of high-throughput

technologies. In the light of that, bioinformatics plays an important role in analyzing

the massive datasets to further examine the data and to formulate biological hypotheses.

DNA methylation is one important epigenetic mark in developmental and disease bi-

ology. One widely-used technique to profile genome-wide DNA methylation is based on

bisulfite conversion of unmethylated cytosines (C) to thymines (T), followed by deep

sequencing technology, called BS-Seq data. The C-T conversion raises a number of chal-

lenges in mapping the bisulfite-converted short reads to the reference genome. Besides,

the current technology cannot consider the heterogeneity of DNA methylation from mix-

tures of cells. This affects the accuracy of estimating the DNA methylation patterns in

the genome. Hence, new bioinformatics methods are required to estimate the cell-type

specific DNA methylation.

Integrating multiple datasets of profiling epigenetic/chromatin marks for many dif-

ferent samples, conditions and organisms is also an underdeveloped field in bioinfor-

matics, given the rapid growth of biological data. It is essential for further studies to

find epigenomic patterns like a chromatin-based epigenetic code. However, comparative

bioinformatics procedure is difficult because of different distributions or different scales

of the marks.

In this thesis, I have developed bioinformatics tools and applied them to the model

organism, Arabidopsis thaliana. First, I have implemented a new and sensitive analysis

tool for analyzing BS-Seq data based on Smith-Waterman local alignment mapping.

Second, I have developed an efficient algorithm to deal with heterogeneity in DNA

methylation data derived from BS-Seq. Finally, I have suggested a method to integrate

epigenomic signals from multiple genome-wide profiling data for further data mining

purpose, e.g. epigenetic signature discovery.
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Zusammenfassung

Epigenetik, die Erforschung der biologischen Information in Genomen ausserhalb der

DNA Sequenz, hat durch die rasche Entwicklung der Hochdurchsatz-Techniken beson-

ders viele Impulse bekommen. Deshalb spielt die Bioinformatik eine wichtige Rolle bei

der Analyse der ausserordentlich grossen Datenmengen und der Formulierung biologis-

cher Hypothesen in der Epigenetik.

DNA Methylierung ist ein wichtiger epigenetischer Parameter in der normalen und

pathologischen Entwicklungsbiologie. Genomweite DNA Methylierungsprofile werden

hauptschlich durch Bisulfit-Konversion genomischer DNA erstellt, bei der unmethyliertes

Cytosin (C) in Thymin (T) umgewandelt wird, gefolgt von Hochdurchsatz-Sequenzierung

(BS-Seq). Die Umwandlung von C zu T erschwert die Zuordnung der Einzelsequen-

zen zum Referenzgenom in mehrerer Hinsicht. Ausserdem kann mit der herkmmlichen

Technik die Heterogenitt der DNA Methylierung in Material aus mehreren Zellen oder

Geweben nicht bercksichtigt werden. Das beeintrchtigt die Genauigkeit bei der Bes-

timmung der genomischen Methylierungsmuster. Deshalb sind neue bioinformatische

Methoden erforderlich, um zellspezifische DNA Methylierung zu erkennen.

Aufgrund der schnell wachsenden Datenmengen ist die gleichzeitige Erfassung mehrerer

epigenetischer Parameter in Form von Chromatineigenschaften in verschiedenen Proben,

Bedingungen oder Organismen eine weitere Herausforderung und ein wenig bearbeit-

etes Gebiet der Bioinformatik, jedoch Voraussetzung zur Entdeckung eines chromatin-

basierten epigenetischen Codes. Vergleichende bioinformatische Anstze werden hierbei

durch unterschiedliche Verteilung und/oder Spannweite der Parameter erschwert.

In dieser Dissertation stelle ich von mir entwickelte bioinformatische Methoden zu

diesen Themenbereichen vor und zeige deren Anwendung auf Daten aus dem Model-

lorganismus Arabidopsis thaliana. Als erstes habe ich ein neues und hochauflsendes

Verfahren zur Analyse von BS-Seq Daten entwickelt, welches auf dem Smith-Waterman

local alignment Prinzip beruht. Zweitens habe ich einen effizienten Algorithmus konzip-

iert, um den Grad der Heterogenitt in BS-Seq Daten zu bestimmen. Drittens habe

vi



vii

ich eine Methode entworfen, mit der man zahlreiche epigenetische Parameter und deren

genomweite Profile zusammenfassen, vergleichen und optisch darstellen kann, um die

weitere Analyse und Interpretation zu erleichtern.

Parts of this thesis have been published or submitted:

(i) Dinh HQ, Dubin M, Sedlazeck FJ, Letter N, Mittelsten Scheid O, von

Haeseler A. (2012) Advanced methylome analysis after bisulfite conversion: An

example in Arabidopsis. PLoS ONE, 7, e41528.

(ii) Dinh HQ, Mittelsten Scheid O, von Haeseler A (2011). MethColor: a

computational approach to uncover DNA methylation heterogeneity. In the Pro-

ceedings of the German Conference on Bioinformatics (GCB2011, Weihenstephan,

Germany, September 2011).

(iii) Dinh HQ, Mittelsten Scheid O, von Haeseler A. Epi-Speller: a tool to

discover epigenetic signatures. submitted to Epigenetics & Chromatin.
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Chapter 1.

Introduction & Background

Epigenomics is where genomics was 30 years ago, when everyone was working

on part of the puzzle.

Peter Jones

1.1. Epigenetics

Epigenetics, a term coined by Conrad Waddington (Waddington, 1942) in the context

of how cell fates are established during development, commonly refers nowadays to the

study of mitotically and/or meiotically heritable changes in gene function that cannot be

explained by changes in the DNA sequence (Russo et al., 1996; Allis et al., 2007). Epi-

genetic changes are rather exerted by biochemical modifications of DNA and associated

proteins, many common in all eukaryote species. They are conserved during cell division

and development (Allis et al., 2007). The most prominent and most studied epigenetic

elements are DNA methylation (e.g. Klose and Bird, 2006) and histone modifications

(e.g. Kouzarides, 2007), but other epigenetic features like nucleosome positioning (Jiang

and Pugh, 2009) or chromatin remodeling (e.g. Alabert and Groth, 2012), histone vari-

ants (e.g. Talbert and Henikoff, 2010), etc. gain increasing attention.

Methodology in epigenetic research has quickly changed along with the rapid devel-

opment of high-throughput genome technology. Nowadays, more and more epigenomes

across different species, developmental stages, tissues or conditions have been success-

fully profiled by numerous research teams (e.g. Satterlee et al., 2010). Not only did the

genome-wide profiling technology help to gain high resolution (even at single bp level)
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2 Chapter 1. Introduction & Background

of epigenetic maps, but it also boosted the discovery of biological roles of epigenetic

elements. Concomitantly, the challenges in data analysis have also risen in the context

of more and more sophisticated high-throughput techniques and special properties of

epigenetic data (Bock and Lengauer, 2008).

1.1.1. DNA methylation and bisulfite conversion

DNA methylation (Holliday and Pugh, 1975; Razin and Riggs, 1980) was the first herita-

ble epigenetic mark discovered to correlate with the variability of gene expression across

many eukaryotes. It occurs as an addition of methyl groups (CH3) to the DNA, usually

at position 5 of cytosine residues (mC). DNA methylation patterns are established and

maintained, depending on the nucleotide context of the cytosines, by the enzyme family

of DNA methyltransferases (DNMTs) (Bird, 2002). While in differentiated mammalian

cells mC is found nearly exclusively in the dinucleotide CG, all analyzed plants (e.g.

Arabidopsis Lister et al., 2008), some fungi (e.g Neurospora crassa, Selker et al., 2003),

insects (e.g honey bee Lyko et al., 2010) and mammalian stem cells (Lister et al., 2009)

have in addition mC followed by H (= A, T, C) (Dyachenko et al., 2010).

DNA methylation patterns vary according to different cells, cell types, developmental

stages and external conditions and can correlate with different cellular phenotypes. In

the course of practical methylation analysis, DNA samples are usually prepared from

large cell populations that can have heterogeneous DNA methylation profiles (Laird,

2010). Given the important implication of DNA methylation in development and diseases

(e.g. in cancer types), genome-wide profiling of this modification is essential to gain a

comprehensive picture of epigenetic regulation.

The state-of-the-art technique to analyze DNA methylation applies bisulfite (BS) con-

version that was discovered in 1980 (Wang et al., 1980). With this biochemical technique

and in combination with PCR amplification (Frommer et al., 1992), the modification

can be detected at single-bp resolution. The procedure chemically converts unmethy-

lated cytosines to uracil, whereas the methylated cytosines remain unchanged. During

subsequent PCR and sequencing, uracil residues become apparent as thymines (Fig.

1.1). Initially applied to single or a few genomic regions by amplification with specific

primers and individual Sanger sequencing (Frommer et al., 1992; Clark et al., 1994), it

is now also performed at a genome-wide scale by Next Generation Sequencing (NGS)
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(Lister and Ecker, 2009; Laird, 2010). Complete conversion and sufficient coverage of

the sequencing provided, this allows to generate a methylome, a single-bp map of DNA

methylation along the whole genome.

Figure 1.1.: DNA methylation & BS conversion: Figures from http://www.

methylogix.com and http://www.alphabiolab.com

1.1.2. Histone modifications

Major elements of chromatin organization in eukaryotes are the nucleosomes, multimeric

complexes formed by the assembly of different histone molecules that are in the center

of 147 bp DNA wrapped around them to result in a bead-on-the-string structure (Fig.

1.2). Histones play an important role in gene regulation and are carriers of epigenetic

information (Strahl and Allis, 2000) since histone tails can be biochemically modified by

several different posttranslational processes, among others by acetylation, phosphoryla-

tion and methylation. The number of possible modifications at one genomic position is

extremely high, since different residues at several amino acid positions of four canonical

http://www.methylogix.com 
http://www.methylogix.com 
http://www.alphabiolab.com
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histones (namely H2A, H2B, H3 and H4) and their variants (e.g. H3.3, H2A.Z, CENP-

A) can be combined. These modifications can change the chromatin configuration and

DNA accessibility and thereby regulate gene expression, recombination, or replication

by cis- and trans- effects.

Chromatin ImmunoPrecipitation (ChIP) (Figure 1.2) is a biochemical technique, in-

vented in 1988 by Solomon et al. (1988), used to determine whether a histone protein

binds to or is localized at a specific DNA sequence. The genomic regions of interest

are enriched by binding partially fragmented DNA chromatin complexes to specific an-

tibodies corresponding to the profiled marks. The profiling of histone modifications is

commonly studied by ChIP followed by microarray (ChIP-chip), (Ren et al., 2000) or

ChIP followed by next generation sequencing (ChIP-Seq), reviewed in Park (2009).

The enriched genomic regions are quantified by relative abundance of microarray hy-

bridization signal intensities or the number of mapped reads in deep sequencing data.

Figure 1.2.: Histone structure and Chromatin Immunoprecipitation, adapted

from (Marks et al., 2001) and English Wikipedia http://en.wikipedia.

org/wiki/Histone.

It was suggested that the combination of histone modifications determines chromatin

and gene expression activities in a way presenting a “histone code” or “chromatin-based

http://en.wikipedia.org/wiki/Histone
http://en.wikipedia.org/wiki/Histone
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epigenetic code” (Jenuwein and Allis, 2001; Allis et al., 2007). However, unlike the

universal genetic code, any epigenetic code (if existing) must vary considerably across

organisms, given the high diversity of histone modifications and their different “imple-

mentations”. More than a decade after the idea of a code was proposed, there are many

computational efforts to analyze the diversity of epigenomes for a large number of chro-

matins marks supporting the hypothesis across organisms (Hon et al., 2008; Ernst and

Kellis, 2010; Roudier et al., 2011) (reviewed in (van Steensel, 2011)). The accumulating

data about the genomic distribution of multiple chromatin marks in many organisms

offer a great opportunity to test the hypothesis of an epigenetic code and to decipher it.

1.1.3. Plant/Arabidopsis and epigenetics

Plants have an impressive portfolio of epigenetic regulators and have contributed sub-

stantially to insight into epigenetic regulation. Especially the model organism Arabidop-

sis thaliana has proven very suitable for epigenetic research. In fact, the first single-bp

resolution methylome published was that of Arabidopsis (Lister et al., 2008). Beside

of their contribution to pioneering discoveries and analyses of epigenetic phenomena

from early on, plants provide some other benefits in epigenetic research. First, in terms

of many epigenetic concepts, plants are more similar to mammals than other animals

(Matzke and Mittelsten Scheid, 2006) and therefore offer approaches also for biomedi-

cally relevant research. In addition, plants offer experimental possibilities for epigenetic

research that are difficult to apply in mammals, in terms of both methodology and con-

cepts (more details reviewed in Matzke and Mittelsten Scheid (2006)). However, there

are also some extra challenges in plants, like the significant amount of non-CG methy-

lation in genomic DNA. Although Arabidopsis was such a widely applied model system

due to its small genome size, the potential for C/mC at every C position made the anal-

ysis of BS-Seq data from Arabidopsis more difficult and potentially biased compared

to other eukaryotic organisms. On the other hand, the rapid increase in data sets for

multiple epigenetic parameters, gene expression data under numerous conditions, nucle-

osome position information and naturally existing variation in all these parameters in

Arabidopsis make it a very interesting, though challenging organism for the study of the

connection between genomic and epigenomic information on one hand and phenotype

and adaptation of the organism on the other.
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1.2. High-throughput technology for profiling

epigenomic data at genome-wide scale

Low input, high throughput, no output science.

Sydney Brenner

Nowadays, biology research is significantly boosted by high-throughput technology.

This allowed answering many long-standing questions quicker, better and more effi-

ciently on a genome-wide scale. High throughput biological assays provide thousands

of measurements per biological sample, and the sheer amount of high throughput data

enables the biology community to tackle many important questions in a comprehensive

and global way at very high resolution genome-wide scale.

1.2.1. Widely-used technologies used in epigenetic research

Microarrays, also called DNA chips, consist of thousands of microscopic DNA spots

attached to a solid surface, each spot containing a short specific DNA sequence repre-

senting known genes or genomic regions called probes. A fluorescently labeled sample

of DNA or RNA is hybridized against the microarray, and the relative abundance of

a nucleotide sequence in the sample is detected and quantified by the probe-target hy-

bridization signal (Schena et al., 1995). Microarrays have been widely used for measuring

gene expression or single nucleotide polymorphisms. Tiling microarrays are high-density

oligonucleotide-based microarrays that refine genome-wide resolution (Mockler et al.,

2005) due to overlapping (tiled) probes. In contrast to the standard microarray, the

signal at specific genomic regions can be normalized and summarized over all overlap-

ping probes that contain those regions. Typical applications of tiling arrays are hy-

bridizations with DNA from chromatin ChIP-chip to determine histone modifications,

transcriptional factor binding or transcriptome profiles.

NGS, or deep sequencing, refers to the massive parallelization technology of DNA

sequencing. Even though there are different NGS frameworks, they commonly share

the same principle based on the so-called cyclic-array sequencing by iterative cycles of

enzymatic manipulation and imaging-based data collection (Shendure and Ji, 2008). The

most popular technologies are 454 pyrosequencing, Illumina (Solexa) sequencing, SOLiD

sequencing, to name a few, in which the sequencing reactions proceed in parallel on
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Bisulfite 
MeDIP 
MethylCap 

ChIP 
Microarray 

Next-gen sequencing FAIRE 
DNAse 

Figure 1.3.: Epigenomics meet high-throughput data technology, adapted from

(Cancer Research Human Epigenome Task Force and European Union, Net-

work of Excellence, 2008). Many epigenetic components, e.g DNA methyla-

tion, histone modification, DNA sensitivity can be profiled by either microar-

ray or NGS technology. For example, DNA methylation is profiled by BS-

Seq, MeDIP(Methylated DNA immunoprecipitation) or MethylCap. ChIP

is used to profile the histone modifications, and FAIRE (formaldehyde-

assisted isolation of regulatory elements), and DNAse assays are used to

profile the open chromatin regions and nucleosome positioning.
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millions of template sequences. Applications of NGS are very diverse including genome

(re-)sequencing, transcriptome/small-RNA sequencing or ChIP-Seq and sequencing of

BS-treated DNA. Though microarrays are still useful and complementary for certain

experimental purposes (e.g the Capture Sequencing technology Mercer et al., 2012),

NGS has remarkably boosted the epigenetic research. It offers the opportunities to

discover many novel biological insights or to test the hypotheses based on small-scale

observations over the past. However, it also raised a lot of computational challenges

that need to be addressed.

1.2.2. Methylome profiling by bisulfite deep sequencing (BS-Seq)

Although there are many different technical frameworks to profile DNA methylomes (for

a detailed review, see (Lister and Ecker, 2009)), all methods based on BS conversion

share the same workflow: first, genomic DNA is fragmented and ligated to framework-

specific methylation-annotated sequence adapters; in the second step, DNA is treated

with BS under denaturing conditions, upon which unmethylated cytosines in adapter

sequences and genomic DNA undergo deamination to uracil. Subsequent PCR ampli-

fication and enrichment with primers complementary to the adapters yield sequencing

libraries, which are then sequenced in parallel by the appropriate sequencers.

The resulting fluorescence signals are detected and quantified to produce the library of

short-length DNA sequences (called BS-Seq short reads) which are aligned with the ref-

erence genome for mapping and further downstream bioinformatics analysis. Depending

on the choice of the adapters and the sequencing protocol, the short reads can represent

the forward only or forward and reverse reads from the Watson (W+ or W−) or Crick

strand (C+ or C−) of the reference genome (Fig. 1.4). In case of Arabidopsis BS-Seq,

both possibilities have been applied: due to different sequence tags on the BS-converted

sequences, Lister et al. (2008) have produced W+ and C+ reads, whereas Cokus et al.

(2008) produced all four possibilities. This has to be considered for read mapping to

the genome. According to a recent comparative study (Harris et al., 2010b), BS-Seq is

currently considered to be the most reliable and precise method to achieve a large-scale

single-bp resolution DNA methylation profile.
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Bisulfite conversion 

PCR & Short read sequencing 

Figure 1.4.: Bisulfite deep sequencing scheme: first, the DNA fragments undergo

BS conversion in which unmethylated cytosines are converted into uracil;

this is followed by PCR amplification and sequencing to produce short reads

which come from either of 4 directions.

1.3. Computational challenges

We are close to having a $1,000 genome sequence, but this may be accompa-

nied by a $1,000,000 interpretation

Bruce Korf

Besides the computational challenges in high-throughput data analysis, like quality

control, filtering, normalization, short-read mapping (reviewed in Bock and Lengauer

(2008)), the analysis of epigenetic data poses some additional and specific difficulties.

In this thesis, I discuss the challenges in computational analysis of DNA methylation

and in data integration that come along with the rapid creation of profiles of chromatin

marks based on genome-wide high-throughput technology.
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1.3.1. BS-Seq mapping and downstream analysis

Important computational tasks in profiling genome-wide DNA methylation by BS-Seq

arise from the C→ T conversion of unmethylated cytosines and from DNA methylation

heterogeneity within a mixture of cell or cell-types in the samples from which the DNA

was prepared (reviewed in Zhang and Smith (2010)).

The loss of the perfect correspondence between read and reference genome in any

sequence containing unmethylated Cs due to BS conversion (unmethylated C→ T or G

→ A in the other strand), and the fact that the short reads are almost equally likely to be

generated in 4 directions (forward and backward orientation from the two complementary

strands) make BS-Seq computationally more difficult. First, the search space in finding

the potential location of short reads in the reference genome is significantly increased

with respect to the C/G-content, because T nucleotides in the short reads can represent

either Cs or Ts in the genome. Second, the (di-)nucleotide complexity is reduced because

the BS-reads are C/G-poor, especially in non-methylated genomic regions. Last, the

asymmetry of the C-T matching process, i.e. T from short reads can be matched with

either C or T in the reference, needs a special weighted function in the scoring-based

mapping methods, like Smith-Waterman local alignment algorithm or other BLAST-like

alignment methods.

Widely used procedures to map BS-Seq short read libraries apply the general-purpose

mapping method with a reference genome restricted to a 3-letter nucleotide alphabet,

with all Cs converted into Ts (Lister et al., 2008; Harris et al., 2010a; Chen et al.,

2010). Other, more efficient methods used a BS-converted wild-card (Xi and Li, 2009;

Smith et al., 2009) in searching read-reference correspondences after C→ T conversion.

However, one of the common major problems of current DNA methylome mapping

strategies is the lack of mapping sensitivity, i.e. the number of mapped reads. This is

a problem especially for experiments where a small amount of biological material limits

the depth of sequencing. Hence, a highly sensitive mapping method is needed.

Apart from the mapping difficulties, there are additional hurdles in the downstream

analysis of DNA methylation. One of the challenges is the choice of the appropriate

statistical test for calling methylation status, e.g. how to define the systematic error

rate for the widely-used binomial test in calling a cytosine methylated or unmethylated,

based on the mapping coverage and profile at each individual position. The error rate,
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which determines the confidence in calling a cytosine methylated or not, might cause

inaccuracy due to the mixture of account sequencing errors, BS conversion errors as

well as the mapping errors themselves. Hence, a comprehensive way of combining and

considering these error types is also needed.

1.3.2. DNA methylation heterogeneity

Although developing nano-technology will probably allow single molecule analysis of

DNA methylomes in future, current BS-Seq techniques require DNA amounts that can

only be prepared from several thousands of cells. These can potentially differ in their

methylation pattern, especially if the samples comprise different cell types or tissues.

Current methylation profiles therefore might not reveal the extent of cell-specific dif-

ferences. Understanding the heterogeneity of DNA methylation patterns, e.g. from a

BS-Seq data set, is therefore an important issue (Mikeska et al., 2010).

Methylation heterogeneity is expected in heterogeneous cell populations that may

contain unmethylated, partially methylated and fully methylated alleles in varying pro-

portions. The BS conversion-based methods, combined with deep sequencing, offer a

great chance to investigate the degree of DNA methylation heterogeneity with compu-

tational approaches. Once the reads are unambiguously mapped and the methylation

is determined for each cytosine, the information can be connected between all other

cytosines combined in one read. Since each single read is expected to represent a single

genomic template, i.e. one allele from one cell, we may ask if we can computation-

ally infer the methylation characteristics of each cell/cell-types and the proportion of

methylation alleles in a mixture of cells (Fig. 1.5).

This problem is analogous to that in metagenomic sequence assembly (Zhang and

Smith, 2010; Peng and Smith, 2011) or to the problem of haplotype reconstruction

in population genetics (Eriksson et al., 2008). Although a reference sequence is avail-

able in the case of BS-Seq data, it is not trivial and classified as an Non-deterministic

Polynomial-time hard (NP-hard) problem in computer science.
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Figure 1.5.: Uncovering DNA methylation heterogeneity from a mixture of

different cell/cell-types via BS-Seq. Red circles indicate methylated

cytosine loci and black ones indicate unmethylated ones. Short-read se-

quencing allows to calculate the average methylation frequency (red %) for

each locus. However, the actual frequency (black %) for tissues/cell(-types)

can be different and needed to be inferred (in black-box ).

1.3.3. Epigenomic data integration

As mentioned before, DNA methylation is just one of many different chromatin marks

and should be evaluated in combination with other biologically relevant features, like

profiles of histone modifications or nucleosome occupancy. Today, technologies allow to

simultaneously profile multiple chromatin marks in the same or similar samples under

different experimental or natural conditions (Fig. 1.6). Many biological questions can

be addressed based on such synoptic data sets, but profiling multiple chromatin data

presents the challenge to integrate the data, to obtain a unified view of the data and to
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make them comparable. Hence, it is necessary to improve methods of data normalization

or to transform and rescale different chromatin signals for comparative studies in an

unbiased manner. It is further necessary to visualize multiple chromatin marks at the

same genomic regions across different data scaling systems.

Figure 1.6.: Multiple chromatin marks for the same genomic regions (an exam-

ple from Arabidopsis ChIP-chip data (Turck et al., 2007))

Besides technical and biological issues to generate each individual profile for a com-

parative study, there is also the computational challenge to integrate the data sets and

analyze them for epigenetic signatures. Scanning for common patterns across different

chromatin mark data sets needs the same reference of a signal alphabet. The simplest

could be the binary system of 0/1, as for DNA methylation at a single cytosine residue.

However, this is not applicable for most other chromatin features that need an appropri-

ate data transformation or representation, given the fuzziness of the epigenetic signals,

often continuous scales for the signal strength, or limitations of experimental procedures.

Hence, a better way to integrate and represent multiple profiling datasets is necessary.

1.4. Contributions of the thesis

In this thesis, we describe computational approaches to analyze two aspects of DNA

methylation, namely how to improve the data analysis after BS-Seq, and how to infer



14 Chapter 1. Introduction & Background

DNA methylation patterns in heterogeneous mixtures. In addition, we describe an

approach how to integrate multiple epigenetic marks from high-throughput data sets.

Accordingly, results of the thesis is organized in 3 chapters as follows.

(i) In Chapter 2, we introduce a new analysis pipeline incorporating the tolerance

of C-T mismatches in the Smith-Waterman short-read local alignment for BS-

Seq data, thereby increasing mapping efficiency. We also introduce a so-called

adaptive error for binomial statistical test in presence of sequencing replicates in

methylation calling, hence enhance the confidence in downstream analysis.

(ii) In Chapter 3, we formalize the computational problem of inferring DNA methy-

lation patterns in mixtures of different methylomes. I developed a method called

MethColor to estimate the number of distinct methylation profiles and to char-

acterize their patterns by empirical mapping heuristics. we provided a proof-of-

concept simulation study.

(iii) In Chapter 4, we propose a novel way to interpret multiple epigenetic parameters

(i.e. DNA methylation level or chromatin modification distribution) in the search

for biological patterns and correlations between chromatin features and gene ex-

pression data. The approach is based on the principle to convert the relative

prevalence of epigenetic marks into a letter code that then can be further ana-

lyzed with existing data mining tools. we showed an application with epigenetic

signatures in Arabidopsis thaliana.



Chapter 2.

Advanced methylome analysis after

bisulfite deep sequencing: an example

in Arabidopsis

In theory, there is no difference between theory and practice.

But, in practice, there is.

Jan L. A. van de Snepscheut/Yogi Berra

Summary

Deep sequencing after bisulfite conversion (BS-Seq) is the method of choice to generate

whole genome maps of cytosine methylation at single base-pair resolution. Its appli-

cation to genomic DNA of Arabidopsis flower bud tissue resulted in the first complete

methylome, determining a methylation rate of 6.7% in this tissue. BS-Seq reads were

mapped onto an in silico converted reference genome, applying the so-called 3-letter

genome method. Here, we present BIsufite Sequencing Scorer (BiSS), a new method

applying Smith-Waterman alignment to map bisulfite-converted reads to a reference

genome. In addition, we introduce a comprehensive adaptive error estimate that ac-

counts for sequencing errors, erroneous bisulfite conversion and also wrongly mapped

reads. The re-analysis of the Arabidopsis methylome data with BiSS mapped substan-

tially more reads to the genome. As a result, it determines the methylation status of

an extra 10% of cytosines and estimates the methylation rate to be 7.7%. We validated

15
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the results by individual traditional bisulfite sequencing for selected genomic regions. In

addition to predicting the methylation status of each cytosine, BiSS also provides an

estimate of the methylation degree at each genomic site. Thus, BiSS explores BS-Seq

data more extensively and provides more information for downstream analysis.

2.1. Introduction

Whole genome sequencing of numerous species and individuals has considerably ex-

panded our understanding of biological diversity and evolution, of normal and abnormal

phenotypes. However, it also revealed that regulation of, and differences in, gene ex-

pression are not always connected with differences in DNA sequence information. The

occurrence of different phenotypes or heritable changes of gene expression, in spite of

identical genetic information, has driven the search for additional, epigenetic informa-

tion transmitted from cell to cell or from parents to progeny. One major component of

epigenetic inheritance and regulation is chemical DNA modification by methylation at

the 5 position of cytosine residues (mC). This modification occurs in some fungi and

insects, in all mammals and higher plants examined to date, and it is sometimes re-

ferred to as the fifth base. Research on the role of mC was stimulated by its potential to

transmit epigenetic information during DNA replication. Its study was facilitated by the

ground-breaking development of bisulfite sequencing, in which non-methylated cytosines

get chemically converted into uracil and can be distinguished from methylated residues

after PCR amplification and subsequent DNA sequencing (Frommer et al., 1992). DNA

methylation was the first epigenetic mark that could be analysed at high resolution, and

its analysis profited substantially from the rapid development of sequencing technolo-

gies. It is now accepted as one of the most comprehensive and efficient methods (Harris

et al., 2010b).

Bisulfite conversion followed by deep sequencing (BS-Seq) has been successfully ap-

plied in many species and cell types to analyze the methylome. However, the mismatches

after converting unmethylated cytosine residues make the mapping of short reads during

BS-Seq more challenging than during genome sequencing. Not for the first time, pio-

neering epigenetic research was performed in plants, as the first whole methylome was

established for Arabidopsis thaliana (Cokus et al., 2008; Lister et al., 2008). In addi-

tion, some plant genomes have lower levels of total mC compared to that of mammals,
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therefore more mismatches after bisulfite conversion, and more mC in a non-CG con-

text. BS-Seq of genomic DNA isolated from flower buds was fragmented, ligated with

methylated adaptors, followed by bisulfite conversion prior to PCR amplification and

deep sequencing. The total mC content was calculated as 6.7% of those C positions for

which the methylation status could be determined (Lister et al., 2008). This is in good

agreement with experimentally measured values in the range from 4.6 to 8.6%, obtained

by different methods and with different tissue (Kakutani et al., 1999; Leutwiler et al.,

1986; Rozhon et al., 2008). However, we noticed a discrepancy between the total mC

content calculated after BS-Seq and the frequency estimated from counting cytosines

occurring in the raw data from the short-read libraries (Lister et al., 2008). Any C in

the sequence between the methylated adaptors should directly correspond to methylated

cytosines in the genome, complete conversion and low sequence error rates provided. We

calculated three Illumina sequencing runs of the data set in (Lister et al., 2008) to report

roughly 10% mC, while the other two suggest 23 − 26%, probably due to incomplete

bisulfite conversion, or sequencing errors. Pooling all five runs would correspond to

14.7% methylation. We suspected the discrepancy to originate from limited mapping

of individual short reads to the reference genome since only 78.5% of genomic cytosines

were included in at least 2 mapped reads (Lister et al., 2008). This could have been

due to the mapping procedure: the so-called three-letter genome method, in which all

genomic cytosines are converted in silico to thymine, before the reads are mapped using

ELAND software from the Illumina company, interpreting C-T mismatches as indicative

for methylated cytosines during the downstream analysis (Lister et al., 2008). We refer

to it as Arabidopsis 3-letter Methylome (A3M) method in the following.

Aiming to improve mapping efficiency and accuracy for analysis of plant material, we

have developed BiSS (BIsulfite Sequence Scorer), based on an efficient Smith-Waterman

(SW) local alignment implementation for BS-Seq mapping with a customized alignment

scoring function. SW has the potential to produce superior alignments due to the base-

by-base resolution in sequence comparison. Previous (Ning et al., 2001) and the recent

work (Sedlazeck et al., 2012, submitted) suggests that SW local alignment is in fact

the most sensitive method for NGS mapping available to date. High specificity and

confidence are obtained with this method, admittedly at the cost of increased computing

time. SW local alignment was implemented in the MAQ program recently (Li et al., 2008;

Chen et al., 2010) but not yet evaluated in comparison with other methods. Therefore,
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we applied this SW approach using a special asymmetric score for BS-Seq data to

re-analyze the Arabidopsis methylome data set with BiSS.

For the data analysis downstream of mapping the reads, we introduced a compre-

hensive adaptive error estimate that accounts for sequencing errors, erroneous bisulfite

conversion and also wrongly mapped reads. With BiSS, we were able to map many

more short reads unambiguously to the reference genome than other methods. The

increased coverage gives increased power to call an individual cytosine methylated or

un-methylated, thus allowing the determination of methylation status at significantly

more sites. The re-analysis of the Arabidopsis methylome dataset using BiSS and the

adaptive error estimate could identify the methylation status of an extra 10% of ge-

nomic cytosines and resulted in estimation for the global methylation to be 7.7% of

all cytosines. We validated these results by traditional individual traditional bisulfite

sequencing (ITBS) at several randomly chosen genomic regions. In all but one locus

these results confirmed the prediction from our BiSS analysis. Moreover, these data

show that the BiSS method provides an accurate estimation of the degree of methyla-

tion at individual partially methylated genomic sites.

2.2. Results

2.2.1. BiSS can map more reads unambiguously to the reference

genome

BiSS calls a read uniquely mapped if it can identify only one SW-alignment with the

highest score. To avoid mapping artefacts we excluded reads with an alignment identity

(not considering bisulfite mismatches) below 85%. More than half (53.2%) of the raw

reads were above this threshold and were used for the downstream analysis. In total,

we were able to map approximately 77 million unique reads, 1.96 x times more than the

A3Mapproach used in the original data analysis.

There are also several other published methods to analyze BS-Seq data, such as

BSMAP (Xi and Li, 2009), RMAPBS (Smith et al., 2009), BRAT (Harris et al., 2010a),

BS-Seeker (Chen et al., 2010), PASH 3.0 (Coarfa et al., 2010), BisMark (Krueger and

Andrews, 2011), and MethylCoder (Pedersen et al., 2011). We compared BiSS to a
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Methoda Number of mapped reads Number of analyzed readsb

A3Mc 55, 805, 931(38.6%) 39, 113, 599(27.1%)

BSMAPd 73,215,737 (50.7%) 47,922,346 (33.2%)

RMAPBSe 64, 061, 732(44.4%) 47, 859, 115(33.1%)

BS-Seeker 51, 657, 927(35.8%) 37, 939, 172(26.3%)

BisMark 50, 324, 319(34.8%) 37, 706, 400(26.1%)

BiSS 103,073,409 (71.4%) f 76,841,502 (53.2%)g

adefault parameters unless otherwise specified
bUniquely mapping, except BiSS
cA3M results reported by (Lister et al. 2008)
dBSMAP parameters: -p 8 -s 12 -r 2 -w 100 -n 1 -v 5 -g 5, recommended by the authors,

maximal 5 mismatches
eRMAP parameters: -m 5 v, default parameters
funiquely highest SW scored alignments
gabove 85% identity

Table 2.1.: Comparison of mapping results for BiSS and other selected

programs

selection of these, including the most recently published aligners BisMark (Krueger and

Andrews, 2011) and BSMAP (Xi and Li, 2009), the most sensitive mapping according

to previous comparative studies (Harris et al., 2010b; Chatterjee et al., 2012). With

the parameters recommended by the authors (Xi and Li, 2009), BSMAP mapped 1.60

times less reads than BiSS (Table 2.1). RMAP mapped 1.61 times less reads, and all

other methods performed in a comparable range or less (Table 2.1). To compare the

BiSS-generated Arabidopsis methylome with the previous interpretation of the same

data, we chose A3M for a more detailed comparison, since this was applied in the

pioneering approach to generate a single-bp methylation profile after mapping. Details

on the comparison and mapping statistics can be found in Supplementary Tables 1-5 1.

In summary, BiSS almost doubles the number of mapped reads that can be used for mC

analysis. This translated to over 10% more cytosines in the genome that are covered

by at least 2 mapped reads, the minimum required for methylation calling in the A3M

approach.

1Supplementary tables 1-20 for this chapter are in a large EXCEL file deposited online at http:

//www.cibiv.at/software/ngm/BiSS

http://www.cibiv.at/software/ngm/BiSS
http://www.cibiv.at/software/ngm/BiSS
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2.2.2. BiSS extends the methylome of Arabidopsis thaliana

Since the number of Cs for which the methylation status could be assigned differs between

the two methods, we investigated the degree of overlap between them (Table 2.1).

A3M

M (5.3%) U (73.6%) X (21.1%)

BiSS

M (6.9%)
1, 839, 780 371, 418 749, 156

M/M (4.3%) M/U (0.9%) M/X (1.7%)

U (82.6%)
397, 308 30, 970, 572 4, 028, 624

U/M(0.9%) U/U(72.2%) U/X(9.4%)

X (10.5%)
30, 359 230, 988 4, 257, 806

X/M (0.07%) X/U(0.54%) X/X(9.9%)

Table 2.2.: Congruency between methylation calling by A3M and BiSS: M:

methylated, U: unmethylated, X: not determined due to lack of sufficient

sequencing coverage. Percentages refer to the total number of genomic

cytosines.

There was good agreement (76.5%) between the two methods when classifying methy-

lated (M/M) and unmethylated (U/U) cytosines. For 9.9% of cytosines neither A3M

nor BiSS could make a call (X/X). However, BiSS was able to determine the methy-

lation status of 89.5% of the genomic Cs, in contrast to 79% for A3M. In total, BiSS

called 6.9% of all Cs methylated (Table 2.2), 30% more than A3M, which scored 5.3%

methylated. The additional Cs called methylated by BiSS were mainly from the fraction

where A3M was unable to make a call (X in Table 2.2). However, some Cs (0.9%) called

unmethylated by A3M were assigned to the methylated category by BiSS (M/U). A

substantial fraction (9.4%) of Cs, for which A3M could not call the methylation state,

was assigned to the unmethylated category by BiSS (U/X). Small shifts also occur in

the opposite directions: 0.9% A3M-called methylated Cs are considered unmethylated

by BiSS (U/M), and only 0.6% of Cs not determined by BiSS were assigned by A3M

(X/M and X/U, Table 2.2). Thus, the more efficient mapping procedure employed in

BiSS was able to considerably reduce the uncharted portion of the methylome. In sum-

mary, the analysis of the data set by BiSS largely corroborates the previously published

analysis on the amount and distribution of genomic mCs but was able to determine the
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methylation status at 10.6% more sites in the reference genome. This reanalysis indicates

higher levels of mC i (7.7%) in flower tissue than previously reported to (6.7%).

To gain a deeper insight into the different performance of both methylation assignment

approaches, we computed the differences corresponding to the sequence context of the

cytosines (CG, CHG, CHH; with H=A, C, or T). The results are illustrated in Figure

2.1. In the reference genome, CHH is naturally most frequent (73%), followed by CHG

and CG, the latter occurring at almost equal frequency (Figure 2.1). The frequency

distribution of mC with respect to the sequence context shows a strong preference for

mCG as expected, and is nearly identical for A3M and BiSS (Figure 2.1). Thus,

although BiSS assigns a methylation status to more genomic Cs, it does it without a

bias for any sequence context.
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Figure 2.1.: Distribution of cytosine sequence context. (A) Frequency of sequence

context in the reference genome. (B) Frequency of sequence context of

methylated C according to BiSS and A3M.

We have further split the congruency assignment (Table 2.2) into the C-sequence con-

text (Figure 2.2). Sixty five per cent of methylated Cs identified by both methods (M/M)

occur in a CG dinucleotide context. The frequencies of C-contexts for unmethylated Cs

(U/U) are almost identical to their genomic frequencies. The methylated Cs only called

by BiSS (M/X) were in all sequence contexts, while unmethylated Cs only called by

BiSS (U/X) occurred largely in the CHH context (Figure 2.2). The few Cs only called
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by A3M have a similar distribution. Taken together with the absolute numbers in Table

2.2, it can be concluded that the SW scoring method used by BiSS is able to assign

a methylation status to a significant number of CHH sites that could not be called by

A3M. This suggests that the CHH context is more challenging to map, as seen from the

large fraction of CHH sites where the two methods either disagree or both fail to make

a call.
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M/M M/U M/X 

U/M 

X/M 
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Figure 2.2.: Methylation status according to BiSS and A3M split into distri-

bution of cytosine sequence context. M, methylated; U, unmethylated;

X, not determined. Percentages refer to the total numbers in Table 2.2.
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2.2.3. Evaluating the methylation level

The decision to call a genomic C as methylated is based on a statistical test that considers

the number of reads mapped to a genomic C, the C/T counts at the site and the estimated

adaptive error (see Material and Methods). Thus, a genomic C can be called methylated

with confidence even if not every mapped read contains a C at that site. The coexistence

of Cs and Ts at individual positions reflects the biologically well-known heterogeneity

of methylation between alleles in the same genome or in different cell types, tissues or

individuals. A plot of the degree of mC, calculated as the C/(C+T) ratio of mapped

reads for each C in the reference genome shows that this ratio varies across the entire

range from 0-1 (Figure 2.3).

Methylation level (C/(C+T) ratio)

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0e
+0

0
1e

+0
6

2e
+0

6
3e

+0
6

4e
+0

6
5e

+0
6

Figure 2.3.: Global methylation level. Ratio of the number of mapped Cs divided

by the number of mapped C plus T for all classified Cs. Black: Cs that are

called methylated, White: C that are not called methylated.
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For the majority of the Cs that BiSS calls methylated, the ratio is typically above or

equal to 0.5. However, 1.1% of the mCs in the genome display a C/(C+T) less than 0.5.

This suggests that genomic Cs with a C/(C+T) ratio larger than 0.4, say, are probably

methylated but were not called as such due to the very conservative nature of the test.

Thus our estimate of 7.7% methylated Cs is likely to be an underestimate, and the true

methylation level may be higher (for example, if all Cs with a C/(C+T) above 0.4 are

called methylated we get an estimate of 9.1%.

2.2.4. BiSS methylation calling is validated by independent bisulfite

sequencing

To confirm the improved accuracy of the BiSS method compared to A3M, methylation

levels at selected regions of the genome were independently determined by individual

traditional bisulfite sequencing (ITBS) and compared to the results from BiSS and

A3M. We selected 2 regions where both methods reported high methylation (M/M) and

two regions were both reported no methylation (U/U). We further identified 4 regions

where the two methods disagreed in methylation calling (2 x M/U and 2 x U/M), and

6 regions that were mapped by BiSS but lacked sufficient sequencing coverage in A3M

results (M/X and U/X). The regions represent genic, intergenic and repetitive sequences

(Table A.1). For each region, we compute the Pearson correlation coefficient between

calculated methylation levels from A3M/BiSS and ITBS. Representative correlations

for each comparison category are shown in Figure 2.4.

The BiSS/A3M methylation levels were confirmed for the U/U and M/M regions,

Figure 2.4, (Supplementary Figure A.1, A.2 and Supplementary Tables 6-9). However

the BiSS prediction had a higher correlation with the ITBS data, even if both methods

call high methylation. For one of the two regions of the M/U category (Figure 2.4,

Supplementary Table 10), BiSS, but not A3M, results were in good agreement with the

ITBS data. However, at the second M/U region the BiSS results did not agree with the

ITBS data (Supplementary Figure A.1, Supplementary Table 11). This appears to be

because there were only 1-2 sequencing runs on which BiSS based the methylation call.

The low coverage in this region is likely due to having only a few cytosines, exclusively

in CHH context, which are more difficult to map. However, even at this locus the

correlation is not much different for both methods (r = 0.37 for A3M and r = 0.33 for
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Figure 2.4.: Examples for validation by individual bisulfite sequencing. The

plots show the correlation between calculated and validated methylation levels

(C/(C+T)) from regions selected for congruency (A) or disagreement (B-D) be-

tween BiSS and A3M. Each point represents one cytosine position. The x-axis

corresponds to the methylation levels calculated from either BiSS (filled circles

and black regression lines) or A3M (open circles and dotted regression lines); the

y-axis shows the result of individual bisulfite sequencing. The legends show the

Pearson correlation coefficients. (A) Methylated region according to both meth-

ods (M/M). (B) A region called methylated by BiSS but not by A3M (M/U);

the rectangles indicate experimentally validated Cs congruent to BiSS (filled)

and discrepant to A3M (open). (C) A region called methylated by BiSS but

not by A3M due to insufficient sequencing coverage (M/X). (D) A region called

methylated by A3M but not by BiSS (U/M), the rectangle symbols are the same

as in (B).
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BiSS). Apart from this exception, there was good agreement between BiSS results and

Sanger data for regions where Cs could not be classified by A3M. One example is shown

in Figure 2.4, five others in the Supplementary Figure A.3 and Supplementary Tables 12-

17. The U/M regions classified by A3M as highly methylated but categorized by BiSS

as unmethylated were indeed unmethylated according to ITBS. The reason for better

performance of BiSS appears to be due to either run-specific information (Figure 2.4,

Supplementary Table 18) or simply by gaining higher coverage (Supplementary Figure

A.1, Supplementary Table 19). Thus, the BiSS predictions had a higher correlation

with Sanger data compared to A3M not only for the methylation calling but also for

predicting the level of methylation.

An interesting case was a region called methylated by A3M (with fully methylated

for many individual sites), which was in strong disagreement with the ITBS data, with

a negative correlation coefficient. The BiSS results had a high correlation with the

ITBS data but did not call any methylation there (Supplementary Figure A.4 and

Supplementary Table 20). A closer look revealed that the A3M-determined methylation

level was based on a read coverage of only 2. Notably, this indicates that we still

underestimate the methylation rate due to the very conservative test mentioned above

(Figure 2.3). Thus, BiSS could obtain a higher coverage and indicated rather low

methylation here. This supports the notion that BiSS can provide a more realistic

interpretation of the BS-Seq data, especially in regions where A3M suffers from low

coverage, and at many CHH sites. In summary, BiSS can help to improve mapping of

BS-Seq reads to the reference genome, to provide higher coverage, and to provide a

refined and more accurate methylome map.

2.3. Discussion

BiSS, a scoring method for whole genome bisulfite deep sequencing data, takes ad-

vantages of SW alignment to evaluate the bisulfite conversion as an add-on for the

general SW-based mapping package (NextGenMap Sedlazeck et al., 2012, submitted).

In addition, BiSS incorporates an adaptive error into the binomial test to correct for

the mismatch ratio including sequencing or mapping errors in the downstream analysis.

Moreover, BiSS also exploits the potential of considering run-specific information, which

can reduce the effect of errors introduced by sequencing bias. It also allows the separate
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analysis of individual sequencing runs representing biological replicates.

The re-analysis of previously published BS-Seq data from Arabidopsis by BiSS in-

creased the number of cytosines for which the methylation status could be reliably deter-

mined by 10% largely due to higher mapping efficiency. In particular, BiSS successfully

identified the methylation status at a significant number of CHH-context cytosines,

where the A3M method performs poorly. Independent bisulfite sequencing confirmed

the BiSS predictions at regions where it disagreed with the A3M method. It also

confirmed that BiSS more accurately predicted the level of methylation at partially

methylated cytosines. Thus, BiSS provides a new and more accurate reference for the

floral Arabidopsis methylome.

We note that some researchers prefer to trim or filter reads prior to the alignment step

to remove bases with low quality scores. To test if filtering prior to alignment affected

the performance of BiSS we repeated the alignment after filtering the raw reads using

the FASTX toolkit http://hannonlab.cshl.edu/fastx_toolkit/index.html. When

mapping this filtered data set of 107 Mio (71%) reads, BiSS was still able to map 10%

more reads than BSMAP, the best performing of the published aligners. BiSS could

also be applied to other Arabidopsis methylome datasets obtained from different material

(Cokus et al., 2008; Zemach et al., 2010), and to data from human DNA (Table A) in

the same order of magnitude in term of running times compared to existing methods.

The improved performance of BiSS with respect to the number of mapped reads

for methylation analysis is mainly due to the SW-based mapping method, applied here

to bisulfite deep sequencing data in open-source software. The algorithm compares

subsequence of different lengths and thereby optimizes the similarity detection, compared

to other BS-Seq mapping methods, which either encode the reference genome in a three

letters alphabet or use special bisulfite conversion masks for mapping the reads with

general-purpose software. SW alignment has also the ability to stop aligning, if the

reads get too different, due to increasing sequencing errors towards the end of longer

NGS reads.

In attempting to maximize the number of aligned reads, one runs the risk of gen-

erating a data set containing a significant portion of incorrect alignments. Therefore,

we independently validated the mC frequency at selected genomic regions (Figure 2.3),

with results that excluded this possibility (Table A). Naturally, the SW-based method

requires extra computing time (Table A) compared to other methods. However, in many

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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cases the gain of extra mapping information will outweigh this disadvantage. As long

as the costs of NGS remain an issue, at least for researchers outside of large genome

centers, it is reasonable to apply optimized evaluation methods. BiSS can also align

both single & paired-end as is described in the manual. Our results suggest that the

improved performance of BiSS compared to competing methods is in large part due

to its superior ability to assign the methylation status to cytosines outside of CG con-

text. This is sure to be appreciated by some researchers, given the growing evidence for

mCHG and mCHH in specialized mammalian cells (Lister et al., 2009).

2.4. Experimental and computational procedures

2.4.1. Mapping deep sequencing reads after bisulfite conversion

BiSS uses the SW local alignment to map the sequencing reads after bisulfite conversion

(BS-reads) to the reference genome with a special scoring function. To speed up com-

putation, a hash-table stores the positions of all k letter words (k-mers) in the genome.

The k-mers are encoded as numbers (keys) as follows: Nucleotide A is converted into

00, C to 01, G to 10, and T to 11. Thus an 8-mer results in a string of 16 zeros or ones;

this string can be converted into an integer number that serves as key to point to the

genomic positions. Keys were also computed for all k-mers in a BS-read. Together with

the hash-table, the BS-read keys allow a quick retrieval of the genomic positions in the

reference genome, where read and genome share the same k-mers.

Because bisulfite conversion turns unmethylated Cs into Ts, the 1-to-1 correspondence

between k-mer in a read and in the reference genome is lost. To account for this, a pre-

computed look-up table was generated that for each k-mer stores the alternative keys

that can be computed by switching a C into a T. Figure 2.5 exemplifies this for the

8-mer A1C2G3T4C5G6C7T8 (key 7015), switching C7 into a T provides key 7023 and

so on. Thus, the k-mer A1T2G3T4C5G6T7T8 with key 15215 from a BS-read will

automatically be associated with the potential genomic regions from the additional keys

in the look-up table. The look-up table needs to be computed only once, thus saving

computing time. In this study k was set to 12.

The hashing table is searched for k-mer co-occurring in a BS-read and the reference

genome to determine the potential locations of SW alignment. To reduce the number
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Figure 2.5.: Example for an asymmetric look-up table for 8 k-mers. The 8-

mer ACGTCGCT (corresponds to key 7015) generates 7 other keys. The

8-mer ATGTCGTT (key 15215) from the BS-read can be looked up to find

its referenced key as ACGTCGCT (key 7015), ACGTCGTT (key 7023),

ATGTCGCT (key 15207) and ATGTCGTT (key 15215) but no others.

of potentially matching genomic regions that need to be scored, at least two k-mers

in the BS-read must occur in close proximity in the reference genome. Moreover, we

allow that the distance between two neighboring k-mers in the read and their distance

in the corresponding genomic sequence can differ by 3 nucleotides. Finally, to reduce

the number of unspecific matches, we excluded all 12-mers from hashing that contain 8

or more Ts. The parameter 8 is the default parameter that can be specified by the user.

For these reads, the SW algorithm is applied with a special scoring function, specifically

a score 4 for match (including C-T mismatch, where C occurs in the reference genome

and G-A in other strand), -2 for mismatch, -10 as gap penalty. The genomic region
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providing the highest alignment score is considered as the genomic origin of the read.

To cope with the huge number of SW alignment computation the package NextGenMap

(Sedlazeck et al., 2012, submitted) which implements a banded SW algorithm speeded

up by Graphical Processing Unit (GPU) computing was used.

2.4.2. Re-analyzing the Arabidopsis thaliana methylome

BiSS was used to re-analyze the BS-read data of Arabidopsis thaliana Col-0 wild type

generated by (Lister et al. 2008). This read library consists of 5 Illumina runs with ap-

proximately 150 million 56-bp BS-reads, thus providing a theoretical coverage of roughly

56. After mapping the reads, only the uniquely mapped reads with at least 85% similarity

(calculated after excluding C-T mismatches on the Watson strand and G-A mismatches

on the Crick strand) were further analyzed. Following (Lister et al., 2008), only genomic

cytosines with at least 2 mapped reads are further used for statistical calling of the

methylation status (see below). To compare BiSS results with those of A3M, the same

assembly version (TAIR7 Arabidopsis thaliana) was used as a reference. The alignment

profile of the A3M method was downloaded from NCBI Gene Expression Omnibus (ac-

cession number GSE10877), the list of methylcytosines was provided by the authors of

(Lister et al., 2008).

2.4.3. Methylcytosine calling

To determine if a specific cytosine was methylated a binomial test was performed. The

parameters of the binomial distribution are n as the coverage at a genomic cytosine

position, p=0.04 as the assumed sequencing or conversion error, and m as the number

of BS-reads that carry a C at that position, indicating methylation. In addition, a so-

called adaptive error was introduced. Whenever the frequency of non C-T mismatches

at a given genomic cytosine position is bigger than the default error, we used the local

mismatch frequency as parameter for the binomial distribution. Thus, the adaptive

error will reduce a potential bias due to reads that are aligned to the wrong genomic

region. To account for multiple testing, the False Discovery Rate p-value adjustment

based on Benjamini and Hochberg (Benjamini and Hochberg, 1995) from the R statistical

computing package (www.R-project.org).

www.R-project.org
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The actual methylcytosine calling was done in several steps: First the pool of all

mapped reads from the 5 sequencing runs was considered to identify genomic Cs with

a read coverage of at least 2. Then a binomial test was applied as described above,

together with the FDR correction, to test the methylated cytosines with significance

cut-off of 5%. The resulting list of methylated cytosines was then analyzed to account for

differences between sequencing runs. The binomial test was then applied for all mapped

reads from individual runs, again requiring coverage of at least two. If the majority

of runs where the test could be performed suggested methylcytosine, the genomic C

was called as methylated, otherwise not. This approach considers the experiments with

varying bisulfite conversion rates in different runs. In case of no sufficient coverage in

any individual run, the methylation decision was based on the global test in the pooled

set.

2.4.4. Experimental validation

A window-scanning strategy was used to identify genomic regions of 250-500 bp for

which the BiSS and A3M methods were in disagreement as to the extent of calculated

methylation. These sequences were analysed for their methylation level by conventional

bisulfite sequencing of individual regions. For this, plants of the Arabidopsis thaliana

accession Col-0 (Columbia) were grown under long day (16h/d) light condition at 21C

and DNA was extracted from 100 mg of unopened flower buds using the Phytopure

DNA extraction kit (GE Healthcare; Little Chalfont, UK). After an additional RNase A

treatment, 1 g of DNA was digested with either EcoRI or KpnI (excluding a restriction

recognition site between the primers for the region) and purified with a PCR purification

kit (Qiagen; Hilden, Germany) according to the manufacturers protocol. Five hundred

ng of DNA were bisulfite-converted using the EpiTect Bisulfite Kit (Qiagen; Hilden,

Germany) according to the manufacturers alternative protocol for dilute solutions. The

sequences of interest were amplified using the polymerase PfuTurbo Cx (Agilent Tech-

nologies; Santa Clara, CA) and methylation-neutral primers. Amplicons were cloned

into the pJET1.2/blunt vector (Fermentas; Vilnius, Lithuania) and transformed into

E. coli. For each amplicon at least 8 independent clones were sequenced, aligned and

analysed as described in (Foerster and Mittelsten Scheid, 2010).
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Data access

The BiSS analysis pipeline is based on Graphic Processing Unit computation on CUDA

(Computer Unified Device Architecture) framework, and details of the Arabidopsis

methylome generated by BiSS are available at http://www.cibiv.at/software/ngm/

\gls{BiSS}.

System Requirements: CPU: SSE enabled dual-core (quad-core recommended),

RAM: 4 GB (16 GB recommended), GPU (optional): CUDA (Nvidia) or ATI Stream

Technology (ATI) enabled, OS: Linux (OpenSUSE with gcc 4.3.4 recommended), Soft-

ware: CUDA 3.2 (or higher), AMD Accelerated Parallel Processing SDK 2.5.

http://www.cibiv.at/software/ngm/\gls {BiSS}
http://www.cibiv.at/software/ngm/\gls {BiSS}


Chapter 3.

MethColor - a computational approach

for uncovering DNA methylation

heterogeneity in deep sequencing data

It’s all about heterogeneity.

Bill Gates

Summary

DNA methylation is an important epigenetic biomarker, for instance in cancer medicine,

but the degree of modification at a specific genomic cytosine may vary according to indi-

vidual cells, tissues, or developmental stages. To capture and elucidate the heterogenous

nature of DNA methylation is one of the challenges in both, biological and computa-

tional aspects. Deep sequencing data after bisulfite conversion of non-methylated cy-

tosines which provide the methylation state at single-bp resolution allow to tackle this

problem since individual reads represent individual genomic copies, even if the DNA was

prepared from multiple cell types.

We introduce a computational approach to identify the minimal number of distinct

methylation profiles in such pooled data sets. We use a graph coloring method, called

MethColor, together with empirical heuristics to characterize different, cell- or tissue-

type-specific methylation profiles. A simulation study demonstrates the potential of this

method.

33
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3.1. Introduction

DNA methylation is an important epigenetic mark that plays a crucial role in the cellular

development of many eukaryote organisms (Laird, 2010). It is also known as a crucial

biomarker in nearly all types of cancers (Jaenisch and Bird, 2003). DNA methylation

profiling as a diagnostic tool has become more and more attractive along with the de-

velopment of simplified, accelerated and cost-efficient high-throughput data technology.

DNA methylation is widely-known as the addition of a methyl group to the position

5 of genomic cytosines. Hence, the modification leaves the DNA sequence unaltered

but changes chromatin features and gene expression. DNA methylation is detected by

bisulfite conversion (Frommer et al., 1992) which converts unmethylated cytosines (C) to

uracil, after PCR to thymines (T), while the methylated cytosines are not affected. With

the advent of the next-generation sequencing technology, the so-called bisulfite deep se-

quencing (BS-Seq) technology has recently been developed to obtain high resolution

DNA methylation maps (Lister et al., 2008; Cokus et al., 2008). To obtain the map, the

BS-Seq short reads (thereafter referred to as reads) are mapped to the reference genome.

Then, the methylation profile for every genomic cytosine is generated: C-T mismatches

indicate genomic unmethylated Cs whereas C-C matches indicate methylated genomic

Cs in absence of sequencing error. Thus, one can characterize the methylation state for

every cytosine at single-bp resolution (so-called whole-genome methylation profiles or

methylomes). This is referred to as methylation profiles thereafter.

Current sequencing technologies use DNA samples prepared from a mixture of cells

with potentially heterogenous DNA methylation profiles(Laird, 2010; Pelizzola and Ecker,

2011). This leads to average measurements across DNA molecules but inaccurate esti-

mation of DNA methylation levels for single sites as the frequency of cell types in the

mixture is typically not determined (Laird, 2010). This has raised a challenge in both

computational and biological aspects, although each read in the BS-Seq approach pro-

vides a discrete DNA methylation pattern for a single genomic DNA molecule. Thereby,

inferring the distinct cell type-specific profiles in DNA mixtures is important for uncov-

ering the heterogeneity of DNA methylation.

Here we suggest a computational approach, called MethColor, to differentiate the

methylation profiles across cells in DNA mixtures based on mapped read libraries. First,

a mapped read library is transformed into a graph in which each node represents one
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read, and an edge is formed if the reads overlap on the reference genome but display a dif-

ferent methylation patterns (i.e. incompatible reads). Then, we propose an optimization

problem of finding the minimal number of distinct methylation profiles as a well-known

graph coloring problem in computer science (Cormen et al., 1990). The read nodes that

have the same color constitute a methylation profile. Different colors imply distinct

profiles in the cell population, and the minimal number of profiles provides the most

parsimonious explanation of the observed methylation state from the mapped reads. In

addition, we use a simple heuristic based on the empirical methylation frequency at a

single locus estimated from the mapped reads to obtain the final methylation profiles.

To demonstrate the efficiency of our approach, we use simulated data and evaluate both

the minimal number of inferred profiles and the similarity between the inferred profiles

and the original. The results offer a promising perspective for the proposed approach in

understanding DNA methylation heterogeneity.

3.2. Computational problem formulation

3.2.1. Input data and optimization problem

The input data are a reference genome consisting of n genomic cytosines and a library of

mapped BS-Seq reads, where we only consider reads that map uniquely to the reference

genome without sequencing errors (the sequencing errors can be corrected, Eriksson

et al., 2008). Each mapped read r is represented by a so-called location vector p(r) =

(p1(r), . . . , pk(r)), p1(r) < . . . < pk(r) which indicates the positions of the cytosines in

the reference genome where k is the number of genomic cytosines mapped by read r.

We use pi instead of pi(r) for short. Each mapped read has an associated methylation

string of length k, S(r) = s1 . . . sk where

si =

1 the cytosine at the genomic position pi is methylated

0 otherwise
(3.1)

The goal is to find the minimal set of methylation profiles G = {G1, . . . , Gγ}, where

Gi = gi1, . . . gin with gij ∈ {0, 1}, j = 1 . . . n indicates the methylation state of the

cytosine at position j, such that the methylation string of every read is the substring of

at least one profile in G. In other words, one needs to find a minimal number of distinct
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DNA methylation profiles of the whole genome, such that the methylation pattern of

every read is contained in at least one profile. This problem is classified as a NP-hard

problem (Peng and Smith, 2011, and references therein).

Figure 3.1 (a) shows an input of 9 reads across 5 genomic cytosines. The methylation

strings derived from the corresponding reads are displayed in Figure 3.1 (b). For this

example, three profiles G1 = 11000, G2 = 00011, G3 = 10101 are the unique optimal

solution to explain the data. Specifically, the reads {R1, R4, R7} are generated by G1,

{R2, R5, R8} by G2 and the rest by G3.

3.2.2. Graph coloring problem

We reformulate the above optimization problem as a graph coloring problem. Each read

is represented as a node, two nodes are connected by an edge if the mapped regions in the

reference genome corresponding to the two reads r and r′ overlap. It means ∃(pi, . . . , pj)
such that min(p(r), p(r′)) ≤ pi ≤ pj ≤ max(p(r), p(r′)) and if the two methylation

patterns in the overlap are different. That is, an edge indicates that the methylation

patterns of the two reads are different although both reads map at least partially to

the same genomic region. We solve the minimal number of methylation profile problem

by assigning colors to the nodes such that any two nodes connected by an edge must

have different colors. Figure 3.1 (b) illustrates the graph for the data in Figure 3.1 (a).

The nodes are colored by 3 colors corresponding to the 3 distinct profiles G1, G2, G3

mentioned above.

3.3. MethColor method

3.3.1. Estimate the minimal number of methylation profiles

We suggest a greedy algorithm as a quick approximation to find the minimal number of

colors to color the nodes of the read graph. The greedy idea is similar to the McColor

algorithm presented in Lvque and Maffray (2005). However, we apply it to arbitrary

graphs and use a heap data structure for efficiency in choosing the coloring nodes.

Given M nodes, C = {1, . . . ,M} is the set containing the maximal number of colors.

For each node x, nbCol(x) denotes the set containing the colors of its colored neighbors



3.3. MethColor method 37

R2	
  

R3	
  

R4	
  

R1	
  

R5	
  
R9	
  

R7	
  

R6	
  

R8	
  

C1  C2 C3 C4 C5 

C1 C2 

T2 T3 

T4 C5 

C2 T3 T4 

C4 C5 

C1 T2 C3 

T4 T5 

T1 T2 T3 

T2 C3 T4 

Ref 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

(a) (b) 

Figure 3.1.: An illustrative example where the reference genome has 5 cy-

tosines (n = 5): (a) 9 reads derived from 3 cells with different DNA

methylation patterns indicated by 3 colors: red(G1), blue (G2), and yellow

(G3); the subscripts indicate the mapped positions at cytosines enumerated

by the order of their relative positions in the reference genome; (b) the graph

with 9 nodes built from the input data, three colors are assigned to the reads

according to their cell of origins.

and color(x) denotes the color of a node x, color(x) = 0 if x is not yet colored. Our

algorithm (see pseudo code: Algorithm 3.1) works as follows: we start with color 1

assigned to a random node. At each step, we select from the set of yet uncolored nodes

(color(x) = 0) the node x for which |nbCol(x)| is maximal; and the color assigned to

x is color(x) = min{C \ nbCol(x)}. For every uncolored y connected by an edge with

x, nbCol(y) is then updated. The process is repeated until all nodes are colored. For

efficient implementation, we use the heap data structure (Cormen et al., 1990) as a

binary tree where each node x of the heap H has the key value key(x) = |nbCol(x)|.
Thus, the root of the heap is always the uncolored node x with the largest |nbCol(x)|.



38 Chapter 3. Uncovering DNA methylation heterogeneity

Algorithm 3.1: Pseudo code of graph coloring algorithm

Data: A mapped read library.

Output: An assignment of colors for every node.

begin
Building graph G = (V,E) corresponding to the mapped read library;

Initialization: ∀x : nbCol(x) = ∅; color(x) = 0; push(x,H);

foreach i = 1..|V | do
x = pop(H) ;

color(x) = min{C \ nbCol(x)};
forall y : (x, y) ∈ E and color(y) = 0 do

nbCol(y) = nbCol(y) ∪ color(x) ;

update H: key(y) = |nbCol(y)| ;

end

The graph coloring algorithm has the worst complexity of O(|E| log |V |) where |V | is

the number of nodes, i.e the number of reads and |E| is the number of edges. Generating

the graph has O(|E|∗kmax) complexity where kmax is length of the longest location vector.

Fig. B.1 show a more detailed illustration via an example.

3.3.2. Heuristics for determining the DNA methylation profiles

After coloring the read graph, the reads that belong to one color are used to construct

the intermediate profile as the consensus string of those reads’ methylation strings. Ĝ =

{Ĝ1, . . . , Ĝγ} is the set of inferred methylation profiles, in which Ĝi = ĝi1 . . . ĝiN , ĝij ∈
{0, 1, 2}, where 0 indicates unmethylated, 1 methylated and 2, unresolved, i.e there is

no read assigned at genomic cytosine j and profile i. We note that due to the greedy

strategy, some methylation profiles are only comprising very few reads, i.e the profile

consists of many 2 (unresolved states).

To determine unresolved methylation states, we use a heuristic based on the empirical

methylation level f(Ci) at cytosine position i that can be computed from mapped reads

as the ratio of reads with cytosine at that position over the total number of mapped

reads at position i. From the intermediate profiles we compute f̂(Ci) as the preliminary

methylation level computed from the profiles ignoring unresolved states (Figure 3.2
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shows an example). To minimize the difference between f(Ci) and f̂(Ci) we apply the

following heuristic. A read r is called movable from one profile Ĝ to another Ĝ′ if its

methylation pattern is compatible with the methylation profile of Ĝ′. If we move a read

from Ĝ to Ĝ′, we will recalculate the f̂(Ci) for all cytosines affected by this move. Then,

the goal is now to replace most of the unresolved states in the intermediate profiles and

at the same time to minimize the difference i for which |f(Ci) − f̂(Ci)|. To do this we

perform a greedy strategy by starting with genomic position i if the |f(Ci)− f̂(Ci)| are

maximal. This process is repeated until we cannot find any suitable movement. Fig (2c)

displays the final result (see Fig. B.2 for a more detailed illustration).

Figure 3.2.: Illustration of building the final methylation profiles:

(a) the 5 cytosines in the example from Figure 3.1 and their empirical methy-

lation level f(C);

(b) the columns represent 3 intermediate patterns with 1: methylated, 0:

unmethylated, 2: unresolved, and their methylation level f̂(C);

(c) The heuristics move reads from the Ĝ1 to Ĝ2 or Ĝ3 to resolve unresolved

positions such that f̂(Ci) is as close to f(Ci) as possilbe. This leads to the

final profile.
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3.4. Simulation study

3.4.1. Datasets

We simulated the BS-Seq short reads from 10 kbp reference assuming no sequencing

error, a 6% methylation rate (motivated from an empirical study by Lister et al. (2008))

and 10 distinct DNA methylation profiles. Mapped short (72-bp), intermediate (125-bp),

and long (250-bp) reads were randomly generated with sequencing coverage of 5, 10, 15,

and 20 after mapping. A coverage of 20 is high compared to the available BS-Seq datasets

(Lister et al., 2008, 2011). Here we simulated equal number of reads for each profile.

Hundred datasets were generated for each combination of read length and sequencing

fold-coverage. Thus, we had 1200 datasets in total.

For evaluation, we first computed the empirical distribution of the number of in-

ferred methylation profiles for all simulations, i.e how often MethColor estimated ex-

actly the original number of methylation profiles or under-/overestimated it. Then, we

used Hamming distance to evaluate the similarity between inferred and originally sim-

ulated methylation profiles. As the assignment of the inferred profile and the original

profile is not predictable, we applied a greedy strategy. First, the pair of predicted and

simulated profiles with smallest Hamming distance was chosen, deleted from the set

of unassigned ones, and then the process was repeated until no pair can be selected.

Then we tested if the Hamming distance for each selected pair is significantly smaller

in comparison with the distribution of Hamming distances between random patterns at

the same methylation rate. The cutoff 5% is used as the lower-bound distance.

3.4.2. Simulation results

Figure 3.3(a) shows that the ability to predict the correct number of profiles depends

on the read length and the coverage. In case of low coverage (of coverage 5), all the test

underestimate the number of distinct profiles regardless the read length. Increasing the

number of mapped reads leads to more cases in which the algorithm estimates exactly the

number of profiles. In addition, longer reads also improve the coloring results for the case

of high coverage (sequencing fold of 10 and 15). However, when the coverage exceeds 15,

the precision of the algorithm decreases, it tends to overestimate the number of profiles

especially for long read lengths. We speculate that the graph gets too complex due to
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Figure 3.3.: Performance of MethColor with diverse sequencing coverages and

read lengths: (a) solid/dashed lines indicate the number of exactly/under-

estimated number of profiles, (b) the average Hamming distance of the in-

ferred patterns and original ones for the worst and the best cases that corre-

sponds to the short and long read length at 20-fold coverage. The horizontal

dashed line indicates the 5% lower bound of Hamming distance between two

random profiles.

the number of read nodes and graph edges are much risen. This simulation also provides

a hint of how much sequencing is needed to have an exact estimation of methylation

profiles.

Finally, not only the precise number of different profiles is estimated but also the

accuracy of individual methylation state of each profile. Figure 3.3(b) presents the

average Hamming distance of 10 inferred-original pairs indexing from the closest pair to

the most distant one. Here we only show two examples from simulated datasets (the

short and the long read case with the sequencing coverage of 20), that provide the best

fit to the simulated profiles (small Hamming distance, lower curve) and the worst fit

(large Hamming distance, upper curve). The results demonstrate that MethColor can

estimate well the methylation patterns of up to 8 out of 10 DNA methylation profiles

as the Hamming distance is ranging from 0.06 to 0.1. The average Hamming distance
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is then significantly smaller than the analytical lower bound from the distribution of

distance between random patterns given the same methylation rate (dotted horizontal

line in figure 3.3(b)), assuming a p-value 0.05.

We also performed the experiments with non-uniform distribution of methylation pro-

file frequency, and the results are similar in terms of inferring the number of methylation

profiles.

Taking all together, the simulation results prove the potential MethColor to be applied

for experimental biological data.

3.5. Discussion

We formulated a computational problem aiming to understand the heterogeneity of

DNA methylation based on the mapping profiles from deep sequencing data after bisul-

fite conversion. Our approach, MethColor, efficiently estimates the number of distinct

methylation profiles as well as their specific profiles. Despite a rough estimation, this

can provide valuable information for research and diagnosis and help to understand the

diversity of DNA methylation patterns.

In addition, the DNA methylation profile frequency can be estimated based on the

inferred patterns by the Expectation Maximization approach used in haplotype con-

struction problem (Eriksson et al., 2008). Our approach can also be generalized to the

haplotype reconstruction, for instance, in the viral population according to (Eriksson

et al., 2008). Our approach can also work in a context of pooled sequencing of different

individuals or ecotypes (Docherty et al., 2010), in presence of one available reference

genome, e.g. help to assemble shortreads mapped to common reference genome (Peng

and Smith, 2011).

Future works will address: (i) incorporating sequencing errors, (ii) applying the Meth-

Color to analyze available biological datasets, for example the recent diverse set of

methylome data from human embryonic stem cells (Lister et al., 2011). In dealing with

sequencing error, we can either do error correction before or incorporate the non C-T

mismatches as the weights of the edges in the read graph.



Chapter 4.

Epi-Speller: a bioinformatic tool to

discover epigenetic signatures

Deciphering the epigenetic code will illuminate

some of the most profound questions in biology

Stephan Beck

Summary

The concept of a chromatin-based epigenetic code, proposed more than a decade ago,

associates specific combinations of chromatin marks with different gene expression states

and their maintenance. High-throughput technologies like microarray profiling or next

generation sequencing enable us to examine the validity of the concept, by profiling

transcriptomes and multiple chromatin marks for many different samples, conditions

and organisms. The large amounts of generated data require efficient and instructive

computational methods to identify and interpret biologically relevant correlations and

to challenge the hypothesis of an epigenetic code.

Here, we introduce a generally applicable bioinformatic method to group epigenetic in-

formation across genome-wide chromatin data sets. It automatically classifies the abun-

dance of chromatin-based signals into discrete categories and transforms the categories

into so-called epi-letters. Each genomic region can then be represented as a combined

string of epi-letters referring to different chromatin marks. This synoptic compilation

can be used for further clustering to determine common epigenetic signatures and can

43
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be represented applying the concept of the DNA motif sequence logo. We present the

results of applying the epi-letter principle using published data from 12 chromatin marks

in the model organism Arabidopsis thaliana.

We propose a new and simple tool for finding and representing epigenetic patterns

across genome-wide profiling data of different chromatin marks. We provide a proof-

of-concept application with published data, resulting in a classification of epigenetic

signatures in Arabidopsis thaliana. The method has also other potentials for de novo

discovery and visualization of general genome-wide profiling patterns.

4.1. Background

The concept of a chromatin-based epigenetic code was proposed more than ten years

ago (Strahl and Allis, 2000; Jenuwein and Allis, 2001). It describes the principle that

a certain combination of chromatin marks and their distribution across the genome

would influence the accessibility of DNA for the transcription machinery and thereby

determine gene activity. In the last decade, various epigenetic marks, including DNA

methylation, multiple histone modifications and nucleosome occupancy, were quantified

in many different eukaryotic organisms, and genome-wide profiles are available after hy-

bridization to chip arrays or deep sequencing. This has produced a massive amount

of data that can now be mined to associate the different combinations of chromatin

patterns with biological features (van Steensel, 2011). This task can only be accom-

plished with the power of computational methods. Chromatin signature analysis (for

review see van Steensel (2011)) has applied different methods including clustering, con-

sidering all marks (Roudier et al., 2011) or a data set reduced by Principal Component

Analysis (PCA) (Filion et al., 2010), genome-scanning methods (e.g. with a Hidden

Markov Model (HMM) (Ernst and Kellis, 2010)), or genome segmentation method with

a Bayesian network (Hoffman et al., 2012). All approaches share the principle to com-

pare regions defined by common chromatin features with gene expression signatures

across the genome. Extensive analyses were performed for three organisms: Drosophila

(Filion et al., 2010), Arabidopsis (Roudier et al., 2011) and Homo sapiens (Ernst and

Kellis, 2010), applying chromatin immunoprecipitation with modification-specific anti-

bodies (ChIP) or DNA adenine methyltransferase identification (DamID), combined

with either tiling arrays or deep sequencing technology. The common finding was that
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the combinatorial complexity of multiple chromatin marks is surprisingly low (Rando,

2012), with a few chromatin types characterized by presence (or absence) of a specific

combination of chromatin marks. An example is a compilation of 53 different chromatin

features in Drosophila that resulted in only five different types (Filion et al., 2010). A

data set for twelve chromatin marks in Arabidopsis identified only four different combina-

tions (Roudier et al., 2011). The recently completed work with human CD4 T-cells and

38 distinct marks (Ernst and Kellis, 2010) discovered 51 chromatin states summarized

in 5 big groups. However, the low complexity might be misleading. ChIP and DamID

require a substantial amount of biological material where epigenetic heterogeneity might

go undetected. Further, the number of different chromatin modifications discovered to

be relevant for DNA accessibility and transcriptional regulation is still increasing, mak-

ing a synoptic view more demanding while more difficult. Hence, for already existing as

well as for future data, there is a growing need of more sophisticated analysis methods,

including bioinformatics tools, to discover chromatin signatures in complex data sets

and their functional relevance.

Considering the different ranges of chromatin parameters, one important task in signa-

ture discovery is providing an unbiased comparative framework to determine the level of

occupancy at all genomic regions. Chromatin marks and DNA methylation are usually

profiled and summarized as enrichment levels of each mark at a given genomic region.

For a synoptic comparison, it is essential to normalize absolute values and to consider

the genomic resolution that is determined by the experimental procedure. Ideally, a

common scale with similar resolution along the reference genome would be optimal to

visualize multiple chromatin features within the same genomic regions, e.g. in a genome

browser.

To uncover biologically relevant correlations and to shape hypotheses about their

causal relationship, the various chromatin features should be seen in connection with

gene activity, gene structure, and the nature of the genetic information. Gene expression,

clearly correlated with specific chromatin states (reviewed in van Steensel (2011)), is

quantified in all organisms similarly as amount of RNA homologous to the reference

genome, and results can be displayed as for the different chromatin marks. However, a

connection of chromatin states with gene structures and sequence categories cannot be

documented in a linear fashion. A rough breakdown separates sequence categories into

three basic types, i.e. genic and intergenic regions and repetitive DNA like transposable
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elements or satellites (Roudier et al., 2011). A finer resolution of genic regions considers

gene components like enhancers, promoters, introns and exons, and untranslated regions

(Ernst and Kellis, 2010). Further, known or assumed functions of genes, summarized in

GO terms (Ashburner et al., 2000) are frequently tested for a connection with specific

chromatin states. For all studies asking for a significant correlation of any parameter with

epigenetic marks, a quantitative yet simple synoptic summary of chromatin organization

at a defined site of the genome would be supportive.

Another challenge for comparative studies comes from the different dynamic ranges

of several chromatin parameters and non-Gaussian distributions. While diagrams in-

dicating the measured values as continuous parameter allow informative graphic docu-

mentation, a comparison of more than three parameters in such presentation is difficult.

This problem of complex vertical comparison is known from multiple DNA or protein

sequence alignments, where it has found an elegant solution by motif discovery algo-

rithms (Bailey, 2008). Similar principles have also been applied to real-valued histone

motif scanning (Hon et al., 2008, 2009). The unsupervised method, ChromaSig, first ex-

ploits the progressive alignment method, and then discovers the histone motifs from the

pre-computed seeds. However, this method is limited to handling only a small amount

of chromatin signatures across the whole genome. More recent work (Ernst and Kellis,

2010) applies alternatively the multivariate HMM for scanning common states across

the human genome in CD4+ T-cells, based on binary representation (presence/absence).

Further, clustering methods have been applied to find chromatin patterns, like PCA

(Filion et al., 2010) and k-mean-based methods (Roudier et al., 2011). However, the

conventional heatmap representation is complex, and a more condensed display could

be helpful.

In this chapter, we introduce a straightforward and generally applicable method to

analyze large sets of epigenetic data along a reference genome. Epi-Speller transforms

chromatin-based information into discrete categories, called epi-letters. Each genomic

region is then represented as a combined string of epi-letters, referring to different chro-

matin marks. This synoptic compilation resembles the DNA or single amino acid letter

code and can be used accordingly for further clustering, alignments, or de novo discovery

of common chromatin signatures. The signatures consisting of similar patterns can be

represented applying the sequence logo concept (Schneider and Stephens, 1990; Crooks

et al., 2004). We show the applicability of Epi-Speller with data from twelve chromatin
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marks (including DNA methylation and histone modifications) in the model organism

Arabidopsis thaliana (Roudier et al., 2011) and compare them with previously published

results. While there is good general agreement, we discuss some interesting differences

obtained with Epi-Speller.

4.2. Results

4.2.1. Epi-Speller - a bioinformatic tool for grouping and

summarizing chromatin data

We introduce a dynamic programming approach to group the intensities of epigenetic

signatures. The algorithm, called Epi-Speller, minimizes the heterogeneity of value

distribution within each group. Three letters represent different signature intensities be-

tween the groups. This so-called epi-letter is then mapped to the genomic region, where

the signature was found (Figure 4.1). Contrary to conventional approaches, Epi-Speller

categorizes values automatically independent of the intensity distribution of the respec-

tive epigenetic mark. The dynamic programming approach is computationally efficient

and can be applied to large genomic data sets. The approach allows the bioinformatic

analysis of many different epigenetic marks across the genome. For a proof of concept,

we analyzed 17.365 genomic regions as defined by the Arabidopsis tiling array and the

intensity values for twelve chromatin marks as described by Roudier et al. (2011). Details

are presented in Figure C.1 and the Material and Methods (section 4.4).

Figure 4.2 displays the empirical signal strength distributions for the chromatin marks.

Most of the distributions are uni-modal and some of them resemble a normal distribu-

tion (e.g. H3K27me2, H3K56Ac, H4K20me1). However, we also note that H3K27me1,

H3K4me2, and H3K9me2 are clearly bi-modal. To capture the different types of distribu-

tions, we introduced a three letter alphabet of epi-letters, representing signal intensities

H(igh), M(edium), L(ow). The results of the epigenetic signal group algorithms are

displayed in Figure 4.1.

A categorization in only two letters (high or low) would split the normally-distributed

intensities along the mode or mean of the distribution, a classification that is not plau-

sible (figure C.2(a)). For normally distributed signal intensities the split in three groups
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2. Representation of genomic locations as strings of epi-letters

1:    LLMMLLLMLHLHHLMMMLH … … … … … … …
2:    HMLHMMHHLLMMHMLHMHH … … … … … … …
3:    MMLHHHMHLLHLHHLHMMH … … … … … … …
4:    LHHLMHMLHHMLHMHMMLH … … … … … … …
5:    LHHMLMHLHHMLHLHLMLH … … … … … … …
6:    HMMHHLMMLLHLHMLHMHH … … … … … … …
7:    HLLLMHLHLLMLHHLMMHH … … … … … … …
8:    HMLMMLMHLLMLHHLHMLH … … … … … … …
9:    LHHHHMMMLHLHHMHHMHH … … … … … … …
10:   MLHHLMHLHHLLHLHMMLH … … … … … … …
11:   HLLLHLLMLMHLHMLHMMH … … … … … … …
12:   LHLHLHMHMHMHHMHLMLH … … … … … … …
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Figure 4.1.: Workflow of the Epi-Speller method. (1) The abundance of the chro-

matin marks along the genome is converted into three categories (epi-letters

Low, Medium, High) according to their individual distribution (see Figure

4.2). (2) The abundance of all analyzed marks at each genomic location

is represented as strings of epi-letters. (3) Clusters representing different

chromatin marks at specific genomic locations by strings of epi-letters are

transposed into clusters of genomic locations that share similar epigenetic

signatures. (4) Letter-based information is condensed and represented by

sequence logo.
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Figure 4.2.: Frequency distribution of different chromatin marks. The x-axis dis-

plays the range of abundance, here the log2 value of hybridization intensity

from the tiling arrays. The y-axis shows the frequency of tiles with a given

signal intensity. The vertical blue lines indicate the borders of the categories

H(igh), M(edium), and L(ow) using the epigenetic signal group algorithms.

is sensible, because the upper- and lower tails of the distribution constitute their own

groups and the bulk of the distribution belongs to the M group (figure C.2(b)). The three
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letters categorization also nicely separates the bimodal distributions e.g. H3K27me1 or

H3K9me2. Note that a refined categorization in 4 or 5 groups does not help for this

data set (as we showed with simulated standard normal distribution, figure C.2(c) and

C.2(d) respectively); except for H3K4me2 all other distributions are at best bimodal.

Thus, for this data the three-way classification appears optimal.

We assigned one of the three epi-letters H, M, and L to each chromatin mark and each

tile. We noted that the frequency of each letter varies across different chromatin marks.

High frequencies of L were found for 5mC, H3K27me3, H3K36me3 and H3K9me2, in

accordance with the relatively low amount of heterochromatin in the small Arabidop-

sis genome. M appears mainly in the marks with normal distribution like H3K27me2,

H3K56ac, and H4K20me1, whereas H is rare in almost all marks, with the exception of

H3K4me2 (Figure 4.2). The assignment of the letters, based on the individual distribu-

tion of the marks, converted the continuous values and the different dynamic ranges for

each chromatin mark to discrete letters along the Arabidopsis chromosome. Finally, the

Epi-state, a string of maximal 12 letters representing each mark, characterizes each tile.

To find out if some genomic regions are similar to each other with respect to the

chromatin signatures, it is now possible to use standard clustering routines, e.g. k-

means (Roudier et al., 2011) or principal component analysis (Filion et al., 2010). The

resulting clusters of genomic regions can then be further characterized. Here, we employ

the sequence logo concept (Schneider and Stephens, 1990; Crooks et al., 2004) to the

letter representation of tiles occurring in the same cluster. The sequence logo provides

a variety of information (Schneider and Stephens, 1990): (a) the amount of information

present at each position (measured in bits), (b) the order of predominance (the most

frequent on top) of the letters for every chromatin mark, (c) a consensus word constructed

from the letters on the top of the graph, and (d) the relative frequency of the letters at

every mark.

4.2.2. Epi-Speller representation of Arabidopsis chromatin states

To provide a proof-of-concept for the application of Epi-Speller to experimental chro-

matin data, we computed the logos of the four chromatin-states (clusters) CS1, CS2,

CS3, and CS4, as described by Roudier et al. (2011). The height of the stack for each

chromatin mark (Figure 4.3) is proportional to the information of the mark in the clus-
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ters. A high stack is indicative of a large amount of total information, indicating that

large letters are very reliable and therefore characteristic for the corresponding clus-

ter. Thus, the chromatin states are in general characterized by the lack of chromatin

marks, as reflected by the prevalence of letter L. In fact, an L for 5mC, H3K27me3, and

H3K9me2 is characteristic for CS1; the scarcity of 5mC, H3K36me3, H3K9me2, and

H3K9me3 defines CS2, while low amounts of H2Bub, H3K36me3, H3K4me2, H3K4me3,

and H3K9me3 are indicative for CS3. Finally, CS4 is characterized by only little 5mC,

H3K27me3, H3K36me3, and H3K9me2. Chromatin states are further distinguishable by

characteristic H letters: H3K36me3 and H3K4me2 for CS1, H3K27me2 and H3K27me3

for CS2, H3K27me1, H3K9me2, and H4K20me1 in CS3. CS4 is not enriched for any of

the marks.

Despite the low information content, the assignment of the letters H or M correlates

with the characterization of marks in the cluster according to Roudier et al. (2011): the

color code for the boxes below each panel in Figure 4.3 displays the percentage of tiles

within a cluster that is enriched with the corresponding mark (dark purple = 100% of

the tiles marked), whereas the numbers in the boxes represent the percentage of marked

tiles that occur in the cluster. For example, only 56.0% of the tiles with the H3K4me2

mark occur in CS1, but each of these tiles is marked. Thus the predominance of letter

H correlates well with a large fraction of marked tiles in that cluster, whereas letter M

is more often associated with a light purple color, a smaller fraction of marked tiles in a

cluster. Therefore, the sequence logo is in good agreement with the information from the

previous analysis and provides additionally the information content of individual marks

in the cluster.

This becomes even clearer if we compute the consensus sequence. For instance in CS1,

where the tiles are mainly associated with genes (Roudier et al., 2011), the letter H in

the consensus string LHLLLHHHHLHL neatly coincides with the proportion of marked

chromatin markers, i.e. the marks H2Bub, H3K4me2, H3K4me3, H3K56ac, H3K9me3,

and H3K36me3, consistent with high amounts of associated tiles as reflected by the

purple color. Similarly, L matches to tiles with little marks. The same holds true for the

remaining clusters. In some instances the order of M, H or M, L is swapped although the

tiles were classified as associated with the mark. This is certainly due to the more refined

partitioning of the signature intensities (Figure 4.1). Whenever a mark was quantified

by dark purple as having the majority of tiles in the cluster, the automatic cutoff-defined
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Figure 4.3.: The epi-letter logos of four main chromatin states. Epi-speller was

applied to generate sequence logos for clusters CS1-4 in (Roudier et al.,

2011). Each stack represents the distribution and information content (in

bit scores, blue dash line indicates the maximum bit score) of chromatin

signatures with Low, Medium or High intensities within a cluster of regions

with similar signatures. The bar below is adapted from (Roudier et al.,

2011): colors indicate the distribution of chromatin marks from 25% (light-

) to 100% (dark purple); numbers inside cells indicate the percentage of tiles

that are associated with each chromatin mark. The logos are generated using

Weblogo 3.2 program (Crooks et al., 2004). The epi-letters for chromatin

marks for which information contents are low are enlarged in inset.
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approach assigned an H.

To summarize, Epi-Speller provides a comprehensive representation of the chromatin

states based on clustering the signature intensities from tiling arrays. The logo is easy

to interpret and provides additional information compared to other summary statistics.

4.2.3. Letter-based clustering for finding chromatin states

Epi-Speller provides an innovative approach to integrate and represent multiple chromatin-

profiling datasets. We now show that it can be used to infer clusters of different genomic

regions based on epi-letter representation. To this end, we performed a standard k-mean

clustering of the tiles simply by computing the Hamming distance for pairs of epi-letter

tiles (see Method section).

We determined four clusters (called ES1 to ES4) as optimal number of chromatin

states. Cluster ES2 comprises 5.817 tiles from a total of 17.329 tiles whereas three other

clusters represent around 3.800 tiles each (Table 4.1).

Table 4.1.: Congruency between two clustering results. The entries in the table

are the number of tiles that are categorized in CS1-4 as previously published

and ES1-4 according to Epi-speller. Ambiguous tiles indicate those that are

not assigned to any cluster in (Roudier et al., 2011)

CS1 CS2 CS3 CS4 Ambiguous Total

ES1 3805 10 6 28 14 3863

ES2 53 2968 136 2251 409 5817

ES3 2 235 3242 278 164 3921

ES4 2144 297 59 1000 228 3728

Total 6004 3510 3443 3557 815 17329

Table 4.1 also displays the agreement between the epi-letter-based and the previously

defined clusters (Roudier, Ahmed et al. 2011). Clearly, cluster ES3 and CS3 comprise

the same tiles, with the exception of an insignificant number belonging to the other

clusters. Clusters ES3 or CS3 comprises 19% of all tiles, and the resulting sequence

logos are almost identical (Figure 4.4). Moreover, the sequence logo for ES3 or CS3
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is quite distinct from all other logos, because Ls dominate for H3K27me3, H3K36me3,

H3K4me2, H3K4me3, and H3K56ac. The analysis therefore confirms and corroborates

the existence of a unique chromatin state CS3/ES3.
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Figure 4.4.: Comparison of two clustering methods with logo representation.

Sequence logos were built for two clustering results, according to the Epi-

speller clustering (ES, left) or the previous clusters (CS, right), as well as

the significant overlap between them (arrows with logos in the upper part,

from Table 4.1, or quantified as percentage, lower part).
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To simplify the following discussion, we will ignore the entries in Table 4.1 with less

than 866 tiles (5% of all tiles). This lets the following picture emerge for the other

clusters: ES1 is a subset of CS1 and comprises 22% of all tiles. CS1 contains ES1 and

parts from ES4, CS4 is composed of tiles from ES4 and ES2, ES2 contains tiles from CS4

and CS2. CS2 is a subset of ES2 and comprises 17% of all tiles. The clusters ES2/ES4

and CS1/CS4 are therefore not totally congruent. Figure 4 summarizes the relationships

between the two classification schemes together with the sequence logos. The logos for

CS1 and ES1 are very similar, characterized by H signatures at markers H3K36me3,

H3K4me2/3, and H3K56ac. However, the Hs are less pronounced in CS1 because CS1

contains some tiles from ES4 where tiles do not show high levels of the mark at those

sites. The logo of CS2 as a subset of ES2 is identical to the ES2 logo (Figure 4.4).

Four subset clusters that belong to different CS and ES main clusters are characterized

by the prevalence of M signatures. While the clustering results are partially different,

the sequence logos allow a quick comparison of the main characteristics. The method

allows also monitoring the changes in signature strengths and information amount when

moving from the top left cluster ES1 to the bottom right cluster CS2. According to the

epi-letter-based clustering, CS1 is a mixture of quite distinct tile elements of ES1 and

ES4, and the same holds for CS4 that comprises tiles from ES2 and ES4.

4.2.4. Biological annotation analysis of chromatin states

The concept of a chromatin-based epigenetic code proposed that specific combinations of

chromatin states associate with different gene expression states, or with other biological

annotations. In that context, we re-analyzed the biological annotations for chromatin

states inferred by the clustering methods based on continuous values (Roudier et al.,

2011), called CS-state, or on letter representation generated by Epi-Speller, called ES-

state.

First, we examined which functional groups of the genome would be found in the re-

spective clusters (Figure 4.5). ES1 and CS1 compose of about 94% of tiles that represent

gene-rich regions. Similarly, the chromatin states ES3 and CS3 are largely located in

regions with many transposable elements (TEs) (79% of tiles in ES3, and 82% of tiles

in CS3). ES2 and CS2 show a similar composition of tiles containing genes, TEs, and

intergenic regions. The main difference between the two methods is found for the last
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cluster where 86% of ES4 tiles are gene-rich, in contrast to only 51% in CS4. Hence, the

association of three major genomic features with the four clusters shows both similarity

and differences between two methods.
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Figure 4.5.: Annotation of genomic features with chromatin states. The annota-

tion as genes or transposon elements is taken from the TAIR8 version of the

Arabidopsis genome. Tiles that overlap with an annotated feature at least

50 bp are called associated with the corresponding group. The remaining

tiles are considered as intergenic regions. The axis shows the relative propor-

tion (in percentage) for each cluster, according to the Epi-speller clustering

(ES, left) or the previous clusters (CS, right).

To investigate the relevance of the differences among the E and C clusters for gene

expression, transcript profiling data (Schmid et al., 2005) from the same Arabidopsis

tissue as used to generate the chromatin profiles were analyzed for a correlation with

different clusters in both methods (Figure 4.6). We applied the same method as described

before (Roudier et al., 2011) to assign each tile with a corresponding expression level

of its genes. Tiles below 8 (log2 scale) were called lowly expressed (Figure 4.6), in

accordance with Roudier et al. (2011). There is good agreement between both clustering
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methods. CS1 and ES1 consist of tiles with highly expressed genes whereas CS3 and

ES3 are enriched for lowly or non-expressed sequences. The relative distribution of

expression levels within these clusters is well separated from the average over the whole

chromosome (Figure 4.6, upper panel). The distribution for the other clusters is closer

to that along the non-clustered whole chromosome. The only, but interesting difference

was observed for ES4, containing more expressed sequences than the chromosome on

average, in contrast to nearly no difference to the average expression distribution in

CS4 (Figure 4.6, lower panel). This could indicate a more refined clustering by ES in

distinguishing gene expression states associated with chromatin signatures.
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Figure 4.6.: Distribution of gene expression connected with chromatin states.

The expression data are taken from Schmid et al. (2005). They are quantile-

normalized and re-centered in order to consider the difference of signal dy-

namics between Affymetrix ATH1 array and the tiling arrays from (Roudier

et al., 2011). The distribution of gene expression is plotted against the as-

sociation with the 4 different clusters according to the Epi-speller clustering

(ES1-4, top) or the previous clusters (CS1-4, bottom). The black dashed

lines show the distribution of expression levels among all tiles.
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We further analyzed the results of the clustering by Epi-Speller with regard to func-

tional annotations, applying the widely used Gene Ontology categories (Ashburner et al.,

2000). While shuffling cluster labels randomly 1000 times, with the same cluster size,

did not result in any GO category enrichment by chance (Figure C.3), several groups of

GO terms are enriched with genes associated with specific ES clusters, especially with

the gene-rich cluster ES2 (Figure 4.7(a)). Importantly, this specification comprises more

terms, and more pronounced enrichments, than the same analysis for the CS clusters

(Figure 4.7(b)).
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Figure 4.7.: Gene Ontology analysis. Enrichment of certain functional categories

within the clusters was tested by comparing Gene Ontology (GO Slim Bio-

logical Process annotation from TAIR www.arabidopsis.org) distributions

between clusters according to the (A) Epi-speller clustering (ES1-4) or (B)

the previous clusters (CS1-4). The enrichment level is represented from high

(magenta) to low (green). GO categories with less than 10 associated genes

were excluded.

All together, the downstream analysis of the chromatin states indicates that the re-

duction of continuous values to a three-letter scheme for twelve chromatin marks and

their analysis by Epi-Speller does not discard information, but rather allows detecting

more refined differences between chromatin states in correlation with distinct biologi-

cal annotations. This is due to the concept of direct comparisons between epigenomic

www.arabidopsis.org
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signatures, using the same alphabet size but considering differences in the distribution

and prevalence of individual marks. Thus, Epi-Speller can help summarizing complex

chromatin analyses, interpreting chromatin states and finding epigenomic signatures.

4.3. Discussion

Epi-Speller is a bioinformatic tool that finds common patterns among genome-wide data

of abundance of different chromatin marks. This is done by automatically assigning one

of three given categories for each mark at any location, transforming this information

into strings of alphabet letters, grouping similar patterns, and representing them as a

sequence logo. This combinatorial representation of chromatin states compiles large data

amounts, helps visualizing them and allows the application of existing tools for summary

statistics, comparative analysis, or motif search.

Although the three-letter alphabet was found optimal for the example provided here,

the Epi-speller principle is not limited to this alphabet size. In fact, the most suit-

able number of categories depends on the shape of the distributions and can be easily

adapted to different datasets by changing one parameter in the algorithm. Multi-modal

distributions may be better represented with an increased alphabet size, whereas these

may introduce unnecessary fine classification for bell-shaped distributions.

Another flexible parameter that users can adapt to their need is the choice of the clus-

tering procedure, based on either profiling levels or epi-letter-based levels (e.g. Hamming

distance). The congruency between the epi-letter-based clustering method of Epi-speller

and a previously applied method, as shown for the Arabidopsis data here, is evidence

for the similarity between the two principles. Nevertheless, the comparison revealed also

some differences, especially in connection with annotation of genomic regions, gene ex-

pression within the clusters, and functional annotation. These differences can potentially

refine the analysis of biologically relevant parameters and thereby the interpretation of

chromatin data.

The application of Epi-speller presented here has so far considered only the vertical

synopsis of several epigenetic parameters at individual genomic regions. The conversion

of this compiled information into the letter code will also allow applying the principle of

motif search in horizontal direction, along the genome. Comparing different epigenomes,
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or associated with functional parameters like the location of replication origins, recom-

bination hot- or cold spots, matrix attachment sites or three-dimensional conformation

information, the analysis might reveal epi-motifs, i.e. a defined order of combinations

of chromatin marks. Horizontal and vertical analysis can further be applied to decipher

the chromatin signatures in connection with different organs, tissues, or cell types (Ernst

et al., 2011). Furthermore, in addition to Epi-Speller as a discovery tool for epigenetic

signatures, it could be useful to visualize complex data sets. Integrating the Epi-speller

principle into genome browsers will allow to document complex synoptic datasets in an

informative and largely self-explanatory way.

4.4. Materials & Methods

4.4.1. Epigenetic signal grouping algorithm

We want to automatically group n (epigenetic) signals with intensities into g disjoint

groups. The indices i = 1, . . . , n indicate the genomic regions where the signals were

derived from. We want to find a clustering such that the sum of squares

D =
n∑
i=1

(ri − r̄i)
2 (4.1)

is minimal, where r̄i is the average of the r′s that are belonging to the same group as

ri. This so-called grouping problem has been studied before (Fisher, 1958). Here we

describe a dynamic programming algorithm to find the minimum value of D and also an

assignment of the intensities to the g groups. To simplify the problem, we furthermore

assume that the intensities are ordered, i.e r1 ≤ r2 ≤ . . . ≤ rn. Then it was shown, that

the only interesting groupings are contiguous (Fisher, 1958), that is, if ri ≤ rj ≤ rk and

ri, rk are in one group, then rj the intensity between ri, rk belongs to same group. To

formulate the dynamic programming algorithm, some notation is necessary. With

D[a, b] =
b∑
i=a

(ri − r̄[a,b])
2 (4.2)

we denote the least square value for an arbitrary contiguous group [a, b], 1 ≤ a ≤ . . . ≤
b ≤ n, where

r̄[a,b] =
1

b− a + 1

b∑
i=a

ri (4.3)
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is the average intensity in [a, b]. Then, a dynamic programming algorithm solves the

partitioning problem:

Let P = (P (t, i)) be a g×n matrix where each element P (t, i) represents the minimal

sum of squared differences for partitioning [1, i] into t groups. The first row of the matrix

is initialized as follows: P (1, i) = D[1, i] for i = 1, . . . , n. The following rows t = 2, . . . , g

are computed iteratively according to

P (t, i) = min
j<i
{P (t− 1, j) + D[j + 1, i]} for i = t, . . . , n (4.4)

This is done until the full matrix is computed:

P =



P(1,1) P(1,2) P(1,3) . . . . . . P(1,n)

0 P(2,2) P(2,3) P(2,n)

0 P(3,3) P(3,n)
... 0

...

0 . . . 0 P(g,g) . . . P(g,n)


The entry P (g, n) minimizes equation 4.1. Finally an optimal partition is constructed

by a trace back procedure: It starts at P (g, n) and determines in the (g − 1)th row the

matrix entry that minimizes equation 4.4; this is repeated until the first row is hit. Thus,

we have determined the minimum value for equation 4.1 and a corresponding optimal

partition of the intensities. The computing complexity of the dynamic programming

approach is O(gn2). The algorithm was implemented in C++.

In all analyses the number of groups was set equal to three. One group collects the

genomic regions with a low signal intensity (L), one groups collects genomic regions with

medium intensity (M), and the third group contains the genomic regions with a high

intensity (H). The partitioning of the data was done as described above. Subsequently,

we replaced the continuous signal ri in genomic region i by exactly one epi-letter L, M,

H depending on the group the signal intensity was assigned to.

4.4.2. Published data from 12 chromatin mark tiling arrays from

Arabidopsis thaliana

Roudier et al. (2011) published signal intensities measured on ChIP tiling arrays (ChIP-

chip) for 12 chromatin marks on Arabidopsis thaliana chromosome 4. They measured
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the signal strength for two methylation forms (di- and tri-) of H3K4 and H3K9, three

forms (mono-, di- and tri-) methylation of H3K27, H3K36me3, H3K56ac, H4K20me1,

H2Bub, and DNA methylation. The tiles cover approx 90% of the chromosome. Our

analysis is based on n = 17.356 tiles, where data for all 12 chromatin marks are available.

For each epigenetic mark, we computed the optimal classification of the signals into three

groups as described. Each tile represents one genomic region. Thus the twelve epigenetic

signals per tile are replaced by their corresponding epi-letters L, M, or H. Details on the

distribution of tiles for each letter across different chromatin marks were shown in the

Supp. Figure C.1.

4.4.3. Clustering the genomic tiles by Epi-Speller

Each tile is represented by an epi-letter tile composed of 12 epi-letters where each

epi-letter represents the relative strength of the corresponding chromatin mark with

respect to its chromosome-wide distribution. To detect similarities between different

tiles/genomic regions, we computed the Hamming distance between all pairs of epi-letter

tiles, asking how many pairs of letters are different between each other for the same mark.

For example, the distance between LLMHMLHMLHML and LLMHMLHMLHHM is 2

because of the epi-letter pairs (M,H) and (L,M) are different at mark 11 and 12 in the

epi-letter-based representation. The resulting distance matrix was used to group the tiles

into k = 3, , 12 mutually, disjoint clusters such that the tiles in the same cluster have

smaller distance compared to the ones in other clusters by classical “k-mean” clustering

(Lloyd, 1982), using the kmeans function in the R core package (www.r-project.org)

with default parameters.

4.4.4. Summarizing and representing the tile cluster using sequence

logo

To visualize the similarity between epi-strings in the same cluster, we compute the

corresponding sequence logo. The sequence logo is a visualization of the degree of

information content (in bits with maximal log2(3) in 3-letter alphabet) at each position

in the epi-strings. Here, we used the WebLogo tool (http://weblogo.berkeley.edu

(Crooks et al., 2004)) to illustrate the epi-string logo for the tile cluster. Each tile

www.r-project.org
http://weblogo.berkeley.edu
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cluster is also called a chromatin state and will be validated by the following biological

annotation analysis in supporting the chromatin-based epigenetic code. The logo is also

used to check the similarity between different chromatin states to then choose the final

number of states.

4.4.5. Biological annotation analysis

Finally, we investigated if the clusters can be further validated by a biological annota-

tion analysis. Three aspects were investigated: genomic feature (i.e gene/transposon)

distribution, gene expression analysis, GO functional category analysis.

The gene and transposon element annotation is from TAIR8 version of Arabidopsis

genome to compare our results with previously published results (Roudier et al., 2011).

The gene expression analysis was based on developmental microarray data from (Schmid

et al., 2005). We discarded tiles with expression level less than 7 (log2 scale) suggested

as noise in Roudier et al. (2011). The functional category analysis is based on GO

Slim specially categorized for the Arabidopsis genome by TAIR website (http://www.

arabidopsis.org/help/helppages/go_slim_help.jsp). The enrichment level for a

GO category from a given chromatin state is computed by the number of genes in that

state which belongs to the given category normalized by total number of genes in the

category and the total number of genes clustered in the state.

http://www.arabidopsis.org/help/helppages/go_slim_help.jsp
http://www.arabidopsis.org/help/helppages/go_slim_help.jsp
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Appendix A.

Supplementary Figures & Tables to

chapter 2

Table A.1.: Annotated of validated regions by Sanger sequencing

Category Coordinate Annotation AGI Name

M-M
Chr2W 5782325:5782536 Repeat

Chr2W 5782325:5782536 Repeat

U-U
Chr4W 13980472:13980941 Genic AT4G28160

Chr5C 5380040:5380291 Genic AT5G11770

M-U
Chr1W 22875577:22875875 TE AT1E75404

Chr1C 21132234:21132534 Inter-TE AT1TE69815 & AT1TE69865

M-X

Chr1W 7353537:7354023 TE AT1G21020

Chr1C 10803163:10803412 Intergenic AT1TE34895&AT1G30500

Chr2W 5087102:5087413 TE AT2TE20895

Chr3C 14331158:14331560 Intergenic AT3TE58820&AT3G42180

Chr4C 8421678:8422043 Intergenic AT4G14690&AT4G14700

Chr5W 7494919:7495438 TE

U-M
Chr2W 7306350:7306698 Intergenic AT1TE23555&AT1G20967

Chr3W 6728921:6729226 5 upstream AT3G19410

65
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Table A.2.: Comparison of mapping results for BiSS and other selected align-

ing programsa with simulated datab

Running timec #of uniquely d # of correctly e False Positives(%)

Arabidopsis chromosome 1f

BSMAPg 1 min 896,665 894,121 0.28

RMAPh 1.89 mins 892,905 890,732 0.24

BS-Seeker 1.93 mins 875,949 860,737 1.74

BisMarki 6.58 minsj 875,190 873,697 0.17

Human chromosome 21k

BSMAP 1.68 mins 974,176 972,792 0.14

RMAP 2.04 mins 972,599 970,001 0.27

BS-Seeker 2.14 mins 961,751 958,205 0.37

BisMark 6.57 mins 976,237 974,746 0.15

BiSS 6.02 mins 977,578 974,914 0.27

adefault parameters unless otherwise specified.
bArabidopsis chromosome 1 and human chromosome 21 one million single-end reads
cusing multi-processor support (up to 8 cores, for the program that support like BSMAP) in the same

computer. Other programs used 1 core.
dNumber of uniquely mapped reads, except BiSS - we use only the #1 top hit among the highest

SW-scored read alignments
eNumber of correctly mapped reads. A read is called correctly mapped, if the coordinates of the first

aligned position and the last aligned position agree with the origin of the read in the genome
fThe simulation is generated based on Arabidopsis methylation data (0.55:0.23:0.22 for CG:CHG:CHH

methylation at 6% frequency) using our adaption from wgsim program (from SAMtools) with 2%

sequence error and 2% bisulfite conversion error.
gBSMAP version 1 parameters: -p 8 -s 12 -r 2 -w 100 -n 1 -v 5 -g 5, suggested by the authors, maximal

5 mismatches
hRMAP parameters: -m 5 v, default parameters
iBisMark parameters: -n 3 -l 56 -e 150
j* exluding the processing/indexing reference genome by bowtie
kThe simulation is generated for human chromosome 21 (6% CpG methylation frequency) using RMAP

package (well-designed for CpG methylation in mammalian) with 98% bisulfite conversion and maxi-

mal 5 mismatches . Command line: ./simreadsbs chr21.fa -o read chr21 rmap.fa -n 1000000

-w 72 -e 5 -m 6 -b 98
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Figure A.1.: Examples for validation by individual bisulfite sequencing. The

plots show the correlation between calculated and validated methylation lev-

els (C/(C+T)) from regions selected for congruency (A) or disagreement (B-C)

between BiSS and A3M. Each point represents one cytosine position. The x-axis

corresponds to the methylation levels calculated from either BiSS (filled circles

and black regression lines) or A3M (open circles and dotted regression lines); the

y-axis shows the result of individual bisulfite sequencing. The legends show the

Pearson correlation coefficients. (A) Methylated region according to both meth-

ods (M/M). (B) A region called methylated by BiSS but not by A3M (M/U);

the rectangles indicate experimentally validated Cs congruent to BiSS (filled)

and discrepant to A3M (open). (C) A region called unmethylated by BiSS but

methylated by A3M (U/M); the rectangle symbols are the same as in (B).
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Figure A.2.: Examples for validation by individual bisulfite sequencing. The

plots show the correlation between calculated and validated methylation lev-

els (C/(C+T)) from regions selected for congruency (U/U) between BiSS and

A3M. Each point represents one cytosine position. The x-axis corresponds to

the methylation levels calculated from either BiSS (filled circles) or A3M (open

circles); the y-axis shows the result of individual bisulfite sequencing.
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Figure A.3.: Examples for validation by individual bisulfite sequencing. The

plots show the correlation between calculated and validated methylation lev-

els (C/(C+T)) from 5 different regions (A-E) selected for methylation calling

by BiSS versus undetermined state by A3M. Each point represents one cytosine

position. The x-axis corresponds to the methylation levels calculated from BiSS;

the y-axis shows the result of individual bisulfite sequencing. The legends show

the Pearson correlation coefficients.
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Figure A.4.: Examples for validation by individual bisulfite sequencing. The plot

shows the correlation between calculated and validated methylation levels

(C/(C+T)) from a region selected for disagreement between BiSS (calling it

unmethylated) and A3M (calling it methylated). Each point represents one

cytosine position. The x-axis corresponds to the methylation levels calculated

from either BiSS (filled circles and black regression lines) or A3M (open circles

and dotted regression lines); the y-axis shows the result of individual bisulfite

sequencing. The legends show the Pearson correlation coefficients.
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Figure B.1.: A working example of greedy algorithm:

The red color is randomly assigned to the read node R1, hence red cannot be

assigned any more to the nodes R2, R6, R8, R9 (denoted in the neighboring

color list {}).
The node R2 is chosen for next color (blue) as it has the maximal cardinality

of neighboring color list.

Similarly, blue is excluded for the nodes R6, R7, R9. The node R9 is chosen

for the next color (yellow, R6 could have been chosen).

After several steps, all the nodes are colored and it is clear that the input

graph needs only 3 colors to fulfill the requirement that there should be no

connected nodes with the same color.
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(a) An example of read mapping profiles for 9 reads with 3 assigned colors from coloring algorithm:

R - read, G - methylation profile with corresponding color: 1 - methylated, 0 - unmethylalated and

? indicates cytosines whose no assigned read. Color of the read nodes are heuristically re-assgined by

directly comparing the methylation frequency from the empirical mapping and from the coloring inference.
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(b) Mapping profile after reassigning the colors for read R2 (red→ blue) and read R3 (blue→ yellow).

The ?-state are uncovered, and the empirical and coloring frequencies of methylation are closer.

Figure B.2.: Color reassignment based on the empirical heuristics
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Figure C.1.: Data summary.

(A) Absolute number of tiles corresponding to the 12 respective tiling ar-

rays. (B) 3-letter distribution for 12 chromatin marks.
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Figure C.2.: Grouping algorithm for simulated standard normal distribution.

Cutoffs (as tick in the x-axis) indicate the results of the grouping algorithm

in case of (A) 2, (B) 3, (C) 4, or (D) 5 categories.
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Figure C.3.: GO analysis for random cluster. Random clusters were produced by

1000-time bootstrap given the same cluster size from ES clustering results.

GO enrichment levels (with the same condition, see text in chapter 4 and

Figure 4.7) were then computed as average of 1000 times.
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