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ABSTRACT 

Gasterosteus aculeatus occurs in the Mediterranean Sea only in isolated coastal 

populations. During the Pleistocene the Adriatic Basin was affected repeatedly by 

changing sea levels. Thus Northern Adriatic freshwater populations of the threespine 

stickleback were isolated since at least the last glacial maximum. From these populations 

the Neretva System and Isonzo River form the most extreme points being the first and last 

isolated populations respectively. From these two systems, together with reference 

populations from Iznik Lake in Turkey and Mulargia in Sardinia, a total of 208 G. 

aculeatus specimens were examined with geometric morphometric methods to analyse 

variation of body shapes between populations as well as within one freshwater system, 

the Neretva System. The populations were analysed with relative warp analyses as well as 

with canonical variate analyses. Also the extent of sexual dimorphism on body shape and 

the state of parasitism with Schiostocephalus solidus and its influence on body shape is 

noted. Further the usage of a ratio of two distances (distance between the first/second and 

third dorsal spine, length of the dorsal fin) for sex determination is investigated. Body 

shape differences are not so much found between the Adria populations but mostly found 

within the Neretva System. Sexual dimorphism in body shape, especially in head 

morphology, is the highest source of variation and found in all populations. Only one 

population within the Neretva System is highly parasited and the body shape of these 

specimens is intermediate to not parasited males and females. The usage of one trait like a 

ratio of two distances to classify specimen as male or female is not advisable since sex 

dimorphism in body shape is comprised of many single small traits. The results of this 

study are mirrored by already existing genetic studies, thus complementing the picture of 

the populations of the Adriatic Drainage System. 
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ZUSAMMENFASSUNG 

Gasterosteus aculeatus tritt im Mittelmeer nur in isolierten, küstennahen Populationen 

auf. Während des Pleistozäns war das Adria Becken wiederholt durch schwankende 

Meeresspiegel Niveaus starken Veränderungen unterworfen. Daher sind die 

Süßwasserpopulationen des dreistachligen Stichlings in der Nordadria zumindest seit der 

Maximalphase der letzten Eiszeit isoliert. Das Neretva System und der Fluss Isonzo 

stellen die extremsten Punkte dieser Region dar, nämlich jeweils die erste 

beziehungsweise die letzte isolierte Population. Aus diesen zwei Systemen, gemeinsam 

mit Referenz-Populationen vom Iznik See in der Türkei und Mulargia auf Sardinien, 

wurden insgesamt 208 G. aculeatus Individuen mit Methoden der geometrischen 

Morphometrie untersucht um die Varianz der Gestalt des Körpers zu untersuchen, sowohl 

zwischen Population als auch innerhalb einer Population, dem Neretva System. Die 

Populationen wurden sowohl mit Relative Warp Analysen als auch mit Canonical Variate 

Analysen untersucht. Auch wurde der Grad des Sexualdimorphismus in der Körpergestalt 

festgestellt, wie auch den Befall mit dem Parasiten Schistocephalus solidus und dessen 

Auswirkung auf die Körpergestalt. Ebenso wurde untersucht, inwieweit das Verhältnis 

von zwei Distanzen (Distanz zwischen ersten/zweiten und dritten Dorsalstachel, Länge 

der Rückenflosse) verwendbar ist um das Geschlecht zu bestimmen. Die Unterschiede in 

der Körpergestalt sind nicht so sehr zwischen den Populationen zu finden, sondern eher 

innerhalb des Neretva Systems. Sexualdimorphismus in der Körpergestalt, besonders am 

Kopf, stellt die größte Variation dar und findet sich in allen Populationen. Nur eine 

Population des Neretva Systems war stark vom Parasit Schistocephalus solidus befallen, 

wodurch die Körpergestalt der befallenen Individuen eine Mittelform zwischen nicht 

befallenen Männchen und Weibchen annahm. Es ist nicht ratsam nur ein Merkmal, wie 

zum Beispiel das Verhältnis zweier Distanzen, zu verwenden um das Geschlecht eines 

Individuums zu bestimmen, da der Sexualdimorphismus der Körpergestalt aus vielen 

einzelnen Merkmalen zusammengesetzt ist. Die Ergebnisse dieser Studie spiegeln die 

Ergebnisse bereits existierender genetischer Studien wieder, wodurch das Bild der 

Populationen des Adria Eizugsgebietes ergänzt wird. 
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INTRODUCTION 

SYSTEMATIC POSITION 

The systematic position of Gasterosteus aculeatus is described in Nelson (2006) and 

summarized here.  

Gasterosteus aculeatus, as part of the Class Actinopterygii, is placed in the Devision 

Teleostei and in there is positioned in the Superorder Acanthopterygii. Within this 

Superorder one of the Orders is the Order Gasterosteiformes. The Gasterosteiformes have 

two suborders, the Syngnathoidei and the Gasterosteoidei. The Gasterosteoidei contain 

four families, the Hypoptychidae, the Aulorhynchidae, the Indostomidae and the 

Gasterosteidae. Within the Gasterosteidae five genera exist, one of them is Gasterosteus. 

There are now only two accepted species within the generum. One is Gasterosteus 

wheatlandi Putnam, 1866, and the other is Gasterosteus aculeatus Linnaeus, 1758 

(Paepke, 2002; Nelson, 2006). The genus Gasterosteus, comprised of G. aculeatus and G. 

wheatlandi, is viewed as a monophyletic sister lineage to all other species within the 

Gasterosteidae (Kawahara et al., 2009). Nelson (2006) views G. aculeatus as a species 

complex rather as a single species due to extensive phenotypic variation. 

Kotellat (1997) discussed the distribution of G. aculeatus within Europe and suggested a 

classification in four different species, based upon the distribution patterns in Europe. He 

suggested G. gymnurus Cuvier, 1829 for the western and southern populations of G. 

aculeatus. This has been considered and discussed by Kleinlerchner et al. (2008) and now 

G. gymnurus is still used in some works (Vila-Gispert, Alcaraz & García-Berthou, 2005; 

Magalhães et al., 2007; Filipe et al., 2009; Maceda-Veiga et al., 2010; Vizi & Vizi, 2010; 

Sánchez-Hernández et al., 2011). Since the majority of the studies published about the 

threespine stickleback refer to G. aculeatus as the threespine stickleback (see References 

in this study), the threespine stickleback is referred to as G. aculeatus in this study too. 

 

DISTRIBUTION 

The threespine stickleback, Gasterosteus aculeatus, has a widespread distribution 

throughout the Holarctic and is found on all three continents in the northern hemisphere 

(Wooton, 1984; Bell & Foster, 1994b; Bell & Andrews, 1997; Paepke, 2002), mainly in 

cold and temperate regions (Münzing, 1963; Paepke, 2002). In Northern America the 

threespine stickleback is found on the Pacific coast from Alaska to Southern California in 
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marine and freshwater habitats, while on the Atlantic coast habitats, marine and 

freshwater, are only found north of Maine (Münzing, 1963; Wooton, 1984). In Asia the 

south most distribution is Japan and Korea and there only in coastal areas (Wooton, 

1984). 

Within Europe G. aculeatus has settled around coastal regions from the Barent Sea, 

across Iceland to Great Britain and Ireland, as well as Scandinavia, the North Sea and the 

Baltic Sea to North Europe (Paepke, 2002). In Central Europe G. aculeatus was 

introduced in many freshwater areas, like in Austria, Czech, Slovakia, Hungary and 

Switzerland (summarized in Paepke, 2002). The southern border of the distribution is the 

northern coast of the Mediterranean Sea, for example Spain, Italy and the Balkan 

peninsula (Münzing, 1963; Wooton, 1984; Paepke, 2002). The eastern distributions reach 

as far north as the White Sea, while the most eastern habitats are the west coast of the 

Black Sea and as far as the River Dnieper (Münzing, 1963; Wooton, 1984).  

Within the Mediterranean Sea no marine populations are present, only isolated freshwater 

populations in rivers flowing into the Mediterranean, like in Spain, Italy, the Balkan 

Peninsula and as far as Turkey (Münzing, 1963; Wooton, 1984; Paepke, 2002). G. 

aculeatus has been collected in Italy since the mid of the 19th century in more than 30 

localities, on the Italian Peninsula and on Sardinia Island (Bianco, 1980). Along the 

Balkan Peninsula G. aculeatus is reported to be present in Croatian freshwater systems, 

like River Neretva and its tributaries (Karaman, 1928; Mrakovcic, Misetic & Povz, 1995; 

Zanella, 2009; Zanella et al., 2009; DeFaveri et al., 2012). Also in Turkey G. aculeatus 

has been reported in freshwater habitats, like Iznik Lake (Münzing, 1962; Özuluğ, Altun 

& Meriç, 2005; Tarkan et al., 2006). 

 

ECOLOGY 

Gasterosteus aculeatus was widely investigated for its ethology, especially courtship and 

parental behaviour (for a summary see Bell & Foster, 1994b; Hopkins, Moss & Gill, 

2011; Morrell et al., 2012; Snowberg & Bolnick, 2012). However, G. aculeatus shows 

different ecological forms and can be present in a wide range of different habitats 

(Reimchen, Stinson & Nelson, 1985; Paepke, 2002; Clavero, Pou-Rovira & Zamora, 

2009). These include marine, brackish and freshwater habitats (Bell & Foster, 1994b). 

Populations found in marine habitats are believed to be the primitive form (Paepke, 2002; 

Furin, von Hippel & Bell, 2012), from which other forms, anadromous and freshwater, 
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evolved (Bell & Foster, 1994b; Bell & Andrews, 1997; Aguirre & Akinpelu, 2010; Furin 

et al., 2012). Genetics as well as systematics, and zoogeography indicate that freshwater 

habitats have been repeatedly and independently colonized by anadromous sticklebacks 

(Bell & Foster, 1994b; Bell & Andrews, 1997), thus forming populations in low flowing 

streams, large rivers, lakes, ponds and swamps (Reimchen et al., 1985; Bell & Andrews, 

1997).  

Also within one habitat two different populations of G. aculeatus can occur sympatric, by 

having a pelagic or benthic lifestyle (Baumgartner, 1992). This affects the body form 

because of different environmental constraints (Campbell, 1985; Spoljaric & Reimchen, 

2007; Aguirre, 2009), especially feeding (Caldecutt & Adams, 1998; Sánchez-Hernández 

et al., 2011). Predation is also known to have a large influence on morphological traits, 

especially defensive structures like lateral plates, spines and elements of the pelvic girdle 

(Gross, 1978; Reimchen, 1983; Reimchen, 1992), which together are called the defensive 

complex (Ahnelt et al., 1998; Ahnelt et al., 2006b).  

 

MORPHOLOGY 

The threespine stickleback shows a high variation in external morphology (Bell & Foster, 

1994b). Marine and anadromous sticklebacks are rather uniform in morphological traits, 

while divergences of body shape and morphological structures are prominent in 

freshwater population (Campbell, 1985; Reimchen et al., 1985; Spoljaric & Reimchen, 

2007; Aguirre, 2009; Webster et al., 2011). One of the most prominent variations in 

threespine sticklebacks is the varying expression of the bony plates on the lateral side, the 

lateral plates. These plates, if maximally expressed, form a continuous row posterior of 

the head to the end of the caudal peduncle. On the caudal peduncle the plates, then called 

keel plates, form a distinct keel (Wooton, 1984; Bell & Foster, 1994b). The present 

number of lateral plates varies greatly between and within populations, from continuous 

row of plates to a few missing plates up to a complete reduction of lateral plates, spines 

and reduced elements of the pelvic girdle (Penczak, 1965; Campbell, 1985; Klepaker, 

1995; Kitano et al., 2008; Barrett, 2010). Thus four different plate morphs are recognized, 

following the nomenclature of Ziuganov (1983), Banbura & Bakker (1995) and Ahnelt, 

Muerth & Lunardon (2006a): completely plated, partially plated, low plated and low 

plated with keel. Marchinko & Schluter (2007) distinguish only two plate morphs at all, a 
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reduced morph, for partially and low plated, and a complete morph, independent of the 

number of lateral plates or the presence of a keel.  

The distribution of the different plate morphs across Europe seems to follow a pattern 

which indicates a correlation with the different ecological constraints from their habitats 

(Bell & Foster, 1994b; Paepke, 2002). Populations in marine coastal habitats as well as 

the anadsromous form tend to be monomorphic completely plated (Wooton, 1984; Bell & 

Foster, 1994b), while freshwater populations can be polymorphic with a mixture of 

different plate morphs (Münzing, 1963), or monomorphic low plated (Wooton, 1984; Bell 

& Foster, 1994b). 

Especially populations in the Mediterranean region are low plated (Münzing, 1963; 

Wooton, 1984; Bell & Foster, 1994b; Paepke, 2002), but also low plated with keel, earlier 

described as partially plated, occur (Münzing, 1962). 

The reasons for such distributions are several: for example one fact might be the 

difference of burst and prolonged swimming styles, as discussed by Taylor & McPhail 

(1986), another might be the influence of temperature and salinity on different 

osmoregulation systems, as summarized in Paepke (2002). 

Other divergent traits studied in G. aculeatus are mostly parts of the defensive complex, a 

flexible and bony structure comprised of 20 bony elements which encompass the 

abdominal region of the body to protect the fish from injuries by toothed predators 

(Gross, 1978; Reimchen, 1983; Reimchen, 1992; Ahnelt et al., 1998; Ahnelt et al., 

2006b).  

Next to the mentioned traits, overall body form is highly divergent throughout all 

populations and especially differences between male and female sticklebacks are 

prominent (Aguirre et al., 2008; Aguirre & Akinpelu, 2010). Female sticklebacks are 

generally larger in body length (Aguirre et al., 2008), while male sticklebacks have a 

larger head length, a larger snout length and a larger eye diameter (Aguirre & Akinpelu, 

2010). 

 

ADRIATIC SEA BASIN 

The Adriatic Sea basin was repeatedly subjected to lowered sea levels in the past. During 

glaciations in ice ages the sea level was lower across the globe. During the last glacial 

maximum (LGM), approximately 18.000-26.000 years BP, the sea level was about 120m 

lower than today (Fairbanks, 1989; Peltier & Fairbanks, 2006). During the LGM the 
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North-Adriatic Sea basin was devoid of marine water (Fig. 1), and the River Po was 

extended until the now middle Adriatic where it terminated into the Fossa Meso-Adriatica 

(Bianco & Miller, 1990), which formed a freshwater lagoon (van Straaten, 1971).The last 

tributary to this river system was Krka River in Croatia, while the northernmost was 

Isonzo River in Italy (Bianco & Miller, 1990). The Neretva System was not part of the 

Freshwater System 18.000 years BP, but was probably connected during a glacial 

maximum at least 340.000 years BP when the sea level was approximately 240m lower 

than today (Rabineau et al., 2006). With rising temperatures an increase in sea level 

occurred and over the time of several thousand years the North-Adriatic basin changed 

from freshwater to marine conditions, isolating freshwater systems (Correggiari et al., 

1996). With an increased water temperature, the marine and anadromous form of G. 

aculeatus was probably extinct in the Mediterranean Sea (Münzing, 1963; Paepke, 2002). 

Further genetic exchange was inhibited due to the lack of anadromous sticklebacks. Thus 

G. aculeatus shows a pan-Mediterranean distribution, typical for peripheral freshwater 

species (Bianco, Ahnelt & Economidis, 1996). Similar distributions in isolated freshwater 

systems are observed with the freshwater gobiid Padogobius martensii (Günther 1861) 

(Bianco & Miller, 1990) and also in continental Aegean Anatolia and eastern 

Fig. 1. Adriatic Sea during the LGM with the 120m lowered sea 
level (grey); also the hypothetical Po System (dashed lines) in 
the North Adriatic Basin is shown. Especially noted is the mouth 
of the Isonzo River as it is today. Also todays mouth of the 
Neretva System and its hypothetical outlet during the LGM 
(dotted line) is shown (modified after Bianco & Miller (1990) 
and Correggiari, Roveri & Trincardi (1996)). 
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Mediterranean within the genus Knipowitschia (Bianco et al., 1996). The genus 

Knipowitschia consists of primary-like freshwater fishes which show similar distribution 

patterns as primary freshwater fishes (Bianco et al., 1996). The distributions of K. 

caucasica (Berg 1916) is formed, among other factors, by Pleistocene glaciation and 

deglaciation events (Ahnelt, Bianco & Schwammer, 1995; Ahnelt, 2011), similar to the 

distribution of G. aculeatus.  

 

GENETICS 

The genetic background of Gasterosteus aculeatus, especially the basis of the plate 

morphs but also the genetic relationships, has puzzled scientists for decades and much 

work was done all over the world to unravel this puzzle (e.g.: McKinnon & Rundle, 2002; 

Albert et al., 2008; Sharpe et al., 2008; Schluter & Conte, 2009; Barrett, 2010). Since the 

expression of the lateral plates and the keel have a genetic basis, models for the 

inheritance of lateral and keel plates were created, to try to explain the observed plate 

morph distributions (Ziuganov, 1983; Banbura & Bakker, 1995). Recent studies draw 

more accurate pictures of the genetic background and focus on quantitative trait loci 

(QTL). For example, the Ectodysplasin (Eda) allele is responsible for the expression and 

evolution of the low plated morph in freshwater habitats (reviewed in Barrett, 2010). 

Based upon the Eda allele Colosimo et al. (2005) provided the transporter hypothesis by 

which the low plated morph is present in marine populations as standing variation and 

breaks through if G. aculeatus settles in freshwater habitats. 

Considerable work has been done to resolve the genetic relationships of G. aculeatus 

populations in Europe based upon mtDNA and microsatellite data (Mäkinen, Cano & 

Merilä, 2006; Cano et al., 2008; Mäkinen & Merilä, 2008; DeFaveri et al., 2012). 

Freshwater populations in the Adriatic Drainage System have repeatedly been the target 

of genetic analyses (Mäkinen et al., 2006; Cano et al., 2008; Mäkinen & Merilä, 2008; 

DeFaveri et al., 2012), who repeatedly grouped Adriatic populations separately of the rest 

of Europe based mainly on mtDNA or microsatellites. DeFaveri et al. (2012) set the 

northern border of the Adriatic Lineage of G. aculeatus south of Krka River, thus 

counting all G. aculeatus populations within the Adriatic Drainaige System north of Krk 

River to the European Lineage. The Adriatic Lineage was further divided in a Skadar 

Clade and a Neretva Clade (DeFaveri et al., 2012).  
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The G. aculeatus populations of the Balkan Peninsula are sometimes referred to as 

ancient glacial refugia (Mäkinen & Merilä, 2008) and even deemed as protective 

conservation units (Cano et al., 2008).  

Morphological studies about Mediterranean populations are rare. Some works exist from 

Spain (Lobon-Cervia, Penczak & de Sostoa, 1988; Hermida et al., 2005), France (Crivelli 

& Britton, 1987) and Italy (Bianco, 1980), but only few were done in the Adriatic System 

and especially in the Balkan Peninsula (Vuković & Prolić, 1966; Vuković & Kosorić, 

1967; Zanella, 2009; Zanella et al., 2009). Rarely geometric morphometric methods were 

used to analyse G. aculeatus populations in the Balkan Peninsula. Also a lack of the 

combination of morphometric with genetic methods is observable. Since DeFaveri et al. 

(2012) uses similar populations from the Neretva System as used in this study, a 

comparison of genetic data with geometric morphometric data is possible. 

 

AIMS 

After the LGM, freshwater populations of Gasterosteus aculeatus in the Adriatic System 

were gradually isolated during several thousand years with Isonzo River as the last 

isolated river. Since G. aculeatus starts breeding after one or two years (Foster, 1994) 

morphological differences, if present, between the populations of the Neretva System and 

Isonzo River might be the result of evolutionary change of several thousand generations.  

The tributaries of the River Neretva and the River Neretva itself possess different 

ecological conditions. There is a large body of literature on the adaptation of threespine 

stickleback body shape and other morphological traits to different environments (e.g.: 

Hagen & Gilberts, 1972; Giles, 1983; Reimchen et al., 1985; Crivelli & Britton, 1987; 

Baumgartner, 1992; Ahn & Gibson, 1999; Spoljaric & Reimchen, 2007; Sharpe et al., 

2008; Clavero et al., 2009), but little is known about stickleback populations in the 

Adriatic System. In this study I investigate body shape differences between populations 

within the Neretva System using geometric morphometric methods. 

It has been shown for several stickleback populations that male sticklebacks are smaller 

in standard length, have a larger head length, a larger snout length and a larger eye 

diameter relative to female sticklebacks (Caldecutt & Adams, 1998; Aguirre et al., 2008; 

Aguirre & Akinpelu, 2010). I assess sexual dimorphism in Neretva populations of the 

threespine stickleback and compare pattern and magnitude of sexual dimorphism across 

different populations. 
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MATERIAL AND METHODS 

 

A total of 208 Gasterosteus aculeatus specimens were examined. They originate from 

different freshwater systems (Fig. 2): the Neretva System in Croatia and in Bosnia 

Herzegovina, the River Isonzo in Italy, Mulargia on Sardinia Island in Italy, and the Iznik 

Lake in Turkey. Within the Neretva System, four sampling sites were used: Buna River, 

Hutovo Blato Wetland Canal, Neretva River and Norin River (Fig. 3). 

 

Specimens from Iznik Lake and from Mulargia were from the Zoologisches Museum 

Hamburg, Germany. Specimens from the River Isonzo were from the Naturhistorisches 

Museum Wien, Austria. The specimens were preserved in 70% ethanol. Samples from the 

Neretva System were collected during surveys of the Institute of Oceanography and 

Fisheries in Split in May 2009, August 2009 and May 2010. The samples are deposited in 

the collection of Harald Ahnelt. All specimens have been preserved in 70% ethanol. Fresh 

caught specimens were euthanized with a water-clove oil emulsion (clove oil 

concentration: 100% Eugenia caryophyllata) and preserved in 4% formol. Afterwards, 

they were first transferred to 40% and then to 70% ethanol. 

 

12°30’ E 17°30’ E 22°30’ E 27°30’ E 32°30’ E 

12°30’ E 17°30’ E 22°30’ E 27°30’ E 32°30’ E 

45° N 

43° N 

41° N 

39° N 

45° N 

43° N 

41° N 

39° N 

Fig. 2. Locations of Gasterosteus aculeatus sites in the North Mediterranean Sea. A: Neretva 
System in Croatia and in Bosnia and Herzegovina, B: Isonzo River near Monfalcone in Italy, 
C: Iznik Lake in Turkey, D: Mulargia on Sardinia Island in Italy. Scale bar is 200km. 
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Only adult (standard length (SL) ≥ 30.0 mm) specimens were used for analyses. Maturity 

of G. aculeatus is defined as the point, when no additional lateral plates are developed 

(Bell, 1981). There are different opinions in the literature when this point is achieved. 

Wooton (1984) describes that adult G. aculeatus are typically 35-80 mm in total length. 

Bell (1981) reports that the point of maturity for completely and low plated specimens 

differs by 8.8 mm in standard length (completely: 30.3 mm; low: 21.5 mm). If the caudal 

fin in G. aculeatus is not more than 5.0 mm in length, the standard length point of 

adulthood of Wooton (1984) and the completely morph of Bell (1981) are similar. Since 

in this work only low plated morphs were used, a specimen with a SL of 30.0 mm or 

more certainly completed its development of number of lateral plates, according to Bell’s 

(1981) and Wooton’s (1984) above mentioned criteria. Thus for this study the threshold 

of maturity is set to 30.0 mm SL. 

The sex of all specimens was determined by gonad inspection. For this, a cut was made 

on the right body side caudal to the last lateral plate under a binocular. Dissecting and 

determining the sex of a specimen was always the last procedure after all measurements. 

 

17°28’  E 17°34’  E 17°40’  E 17°46’  E 17°52’  E 

17°28’  E 17°34’  E 17°40’  E 17°46’  E 17°52’  E 

43°16’  N 

43°12’  N 

43°08’  N 

43°04’  N 

43°00’  N 

43°16’  N 

43°12’  N 

43°08’  N 

43°04’  N 

43°00’  N 

Fig. 3. Sampling sites of Gasterosteus aculeatus in the Neretva System. 1: 
Buna River, 2: Hutovo Blato Wetland Canal, 3: Neretva River near Komin, 4: 
Norin River near Vid. Scale bar is 3km. 
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From the Neretva System a total of 105 specimen (male: n=49, female: n=56; SL: 30.0-

65.0mm) were collected. Within the Neretva System Buna River was represented with 33 

specimens (male: n=14, female: n=19; SL: 30.0-55.0mm), Hutovo Blato Wetland with 8 

specimens (male: n=8, no females present; SL: 35.0-45.0mm), Neretva River with 27 

specimens (male: n=21, female: n= 6; SL: 30.0-60.0mm) and Norin River was 

represented with 37 specimens (male: n=6, female: n= 31; SL: 30.0-65.0mm). From 

Isonzo River a sample with 17 specimens (male: n=13, female n=4; SL: 30.0-70.0mm) 

was available. The Iznik Lake sample had 76 specimens (male: n= 12, female: n=64; SL: 

40.0-65.0mm). Mulargia had a sample size of 10 specimens (male: n=7, female: n=3; SL: 

45.0-55.0mm). 

 

NERETVA SAMPLING SITES 

 

Buna River 

Coordinates: 43°14'46'' N, 17°51'21'' E 

Above sea level: 38m 

 

Buna River is a side arm of Neretva River, approximately 51.3km upstream. The 

sampling site was located 3.3km upstream in Buna River. The river was low to medium 

in current speed. At the river bank areas with very low current speed were found (Fig. 4). 

The river bed was mostly mud with large dense patches of algae and submerged weed and 

trees. Especially at the river bank the trees provided shading. The sampling was done in 

Fig. 4. Buna River sampling site. 
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1.0-1.3m depths at low current speed areas with dense vegetation or in open areas directly 

next to vegetation. Buna River was sampled on three different days: one in May 2009, 

one in August 2009, and one in May 2010. Water temperature ranged from 11.2-15.9 °C, 

while Salinity was 0.1-0.2ppt. Oxygen levels were 5.22-8.7mg/l, which are 62.8-86.5% 

O2 (Tab. 1).  

 

Hutovo Blato Wetland 

Coordinates: 43°03'51'' N, 17°45'19'' E 

Above sea level: 2m 

 

The sampling site in the Hutovo Blato Nature Park in Bosnia and Herzegovina was a 

small canal, a side arm of Krupa River. Krupa River inserts on the left side in Neretva 

River 24.6km upstream. The sampling site has a distance to Neretva River of 9.1km. The 

canal has a very low water current and is highly vegetated (Fig. 5). Dense patches of 

water plants as well as floating plants were located near the river bank. The canal bed 

consisted mainly of mud. Since the canal was used for boat travelling, the middle of the 

canal was much deeper than near the river bank and was freer of vegetation. Thus the 

water surface was not shaded by trees. Sampling was done near the river bank in 0.5-1.0m 

water depth near and under plants. Sampling was conducted two times, once in May 2009 

and once in August 2009. Water temperature was 17.7-19.3°C and salinity 0.2-0.7ppt. 

Oxygen levels were 1.90-5.83mg/l. 

 

Fig. 5. Hutovo Blato Wetland sampling site. 
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Neretva River 

Coordinates: 43°02'29'' N, 17°31'56'' E  

Above sea level: 0m  

 

Along the right river bank of the Neretva River, approximately 7.9km upstream, the city 

Komin is located. There the Neretva is approximately 115m wide, has a water depth of 

far more than 2m and has a medium to fast current. The river bank is steep and artificially 

regulated, although dense algae patches still occur (Fig. 6). One sampling was done in 

May 2009 by hand net on the right river bed in and around algae patches. The second 

sampling in May 2010 was conducted by a fisherman during the morning fish catching. 

The sticklebacks have been a by-catch. Ecological factors were assessed only in May 

2009. Water temperature was 16.8°C and salinity 1.2ppt. Oxygen level was at 5.40mg/l 

and 68.3%. 

 

Norin River 

Coordinates: 43°04'49'' N, 17°37'44'' E 

Above sea level: 1m 

 

Approximately 16.1km upstream, the River Norin runs into the River Neretva. If 

followed upstream for 7.9km the town of Vid can be found. In this area the River Norin is 

highly regulated and water current is low (Fig. 7). The river bed consists mostly of gravel 

with patches of algae. No shade is provided by the surrounding vegetation because of the 

Fig. 6. Neretva River sampling site. 
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controlled environment. The only shade is given by bridges across the river. Sampling has 

been conducted in August 209 and May 2010. Both times it was conducted in algae and 

plant patches near a stone bridge in 0.5m depth. The water temperature was 16.6-17.5°C 

with 0.3-0.4ppt salinity. The oxygen levels were 5.72-5.82mg/l. 

 

Tab. 1: Ecological data of the sampling sites from each collection date: water temperature 
in degrees celsius (Temp), levels of salinity in parts per trillion (Sal), levels of oxygen in 
milligram per liter and in percent. 

Population Temp [°C] Sal [ppt] O2 [mg/l] O2 [%] 
Buna River     
27.05.2009 15.9 0.2 8.70 86.5 
27.08.2009 15.5 0.2 5.22  
26.05.2010 11.2 0.1 7.15 62.8 
Hutovo Blato 
Wetland 

    

26.05.2009 19.3 0.2 5.83 69.8 
29.08.2009 17.7 0.7 1.90  
Neretva River     
26.05.2009 16.8 1.2 5.40 60.5 
Norin River     
28.08.2009 16.6 0.4 5.82  
25.05.2010 17.5 0.3 5.72 62.5 

Fig. 7. Norin River sampling site. 
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DATA ACQUISITION 

Tab. 2: Used Landmarks and their positions, modified after Walker (1997). Landmark 
types follow Bookstein (1991) (Bookstein, 1991) (Bookstein, 1991). Nr. = Landmark 
Number; Definition = exact description of position; Type = Landmark Type 1, 2 or 3; sl = 
sliding landmark 

Nr. Definition Type 
1 most anterior point of praemaxillare and dentale touching 2 
2 anterior insertion point of first dorsal spine at dorsal midline 1 
3 anterior insertion point of second dorsal spine at dorsal midline 1 
4 anterior insertion point of third dorsal spine at dorsal midline 1 
5 anterior base of first dorsal fin ray 1 
6 anterior base of last dorsal fin ray 1 
7 insertion point of the fin membrane of the caudal fin at dorsal midline 1 
8 mid point of posterior edge of the caudal peduncle 3 
9 insertion point of the fin membrane of the caudal fin at ventral midline  1 
10 anterior base of last anal fin ray 1 
11 anterior base of first anal fin ray 1 
12 anterior insertion point of anal spine at ventral midline 1 
13 posterior tip of ventral processus of pelvic girdle 2 
14 anterio-ventral base of left ventral spine 2 
15 most posterior edge of ectocoracoid 3 
16 anterior tip of ectocoracoid 3 
17 postrior edge of lower jaw 3 
18 most dorsal edge of orbit 3 
19 most anterior edge of orbit 3 
20 most ventral edge of orbit 3 
21 most posterior edge of orbit 3 
22 dorsal start of operculum membrane 1 
23 most dorsal edge of ectocoracoid 3 
24-28 dorsal curve of head at dorsal midline sl 
29-30 dorsal curve of caudal peduncle at dorsal midline sl 
31-32 ventral curve of caudal peduncle at ventral midline sl 
33-35 ventral curve of pelvic and pectoral girdle at ventral midline sl 
36-37 ventral curve of throat at ventral midline sl 
38-39 ventral curve of lower jaw at ventral midline sl 
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Fig. 8. Landmarks used for Geometric Morphometrics with G. aculeatus specimens; LM 1-23 
normal Landmarks (black), LM 24-39 Semi-Landmarks (gray). 
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Pictures were taken with an Olympus E-3 digital Camera with a 50mm 1:2 Macro 

Objective. The Camera was mounted on a Repro-Stativ. Pictures from adult specimens 

(SL ≥ 30.0 mm) were taken at a distance of 55cm. The specimens were put on a self-

made wooden podest. The wooden beams where the specimens were put on were 

adjustable for the length of the specimens. The podest with the specimen was illuminated 

with four 40W opal light bulbs. On all pictures a scale bar and the specimen’s ID was 

present. Pictures taken from the left side were used for further statistical analyses. 

Landmark digitalization was done with the program tpsDig, version 2.12 (Rohlf, 2008a). 

39 Landmarks (Tab. 2) were set to describe the shape of the specimen. With tpsUtil, 

version 1.44 (Rohlf, 2009b) 16 of the 39 landmarks were defined as sliding landmarks 

(Fig. 8). This type of landmarks extend landmark-based statistics to curves and smooth 

surfaces (Mitteroecker & Gunz, 2009), providing a more comprehensive description of 

form and shape of the object. 

 

STATISTICAL ANALYSIS 

Landmark digitalization was conducted with tpsDig, version 2.12 (Rohlf, 2008a) and 

relative warp analyses were done in tpsRelw, version 1.46 (Rohlf, 2008b). Regressions on 

size and sex were conducted with tpsRegr, version 1.37 (Rohlf, 2009a), and analyses of 

centroid size were done with tpsSpline, version 1.20 (Rohlf, 2004). 

Since it is not possible to create plots with grouped areas in tpsRelw, the score matrix of 

the relative warps as well as Centroid Size and further information, like sex and state of 

parasitism, were imported into PAST, version 1.91 (Hammer, Harper & Ryan, 2001). To 

achieve this, the necessary data, which were saved as a .nts file, was converted to a .csv 

file with the nts2csv program (Cavalcanti, 2008) and opened in MS Excel for Mac 2011, 

version 14.0.2. There the columns were renamed and the data was copied to PAST, where 

a grouped plot could be drawn. 

For further analyses certain distances between Landmarks were calculated following the 

formula based upon Pythagoras' theorem: 

( ) ( ) 102
12

2
12 ⋅⋅





 −+−= scaleLMD xyyxxx  

where LMDx  is the calculated landmark distance, 1x , 1y , 2x , 2y are the x and y coordinates 

for the landmarks respectively, scalex  is the scale factor for the picture and 10 is the factor 

to transfer from centimeter to millimeter. 
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The landmark distance ratio described in chapter 3.2 follows the formula: 

LMDb

LMDa
ratio x

x
LMD =  

where ratioLMD  is the calculated landmark distance ratio, LMDax  is the first landmark 

distance and LMDbx  is the second landmark distance. 
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RESULTS 

GEOMETRIC MORPHOMETRICS 

A scatter plot of the first two relative warps of the sex-specific average shapes of the 

sticklebacks from four populations, Neretva System, Isonzo River, Iznik Lake and 

Mulargia, shows that the two Adria populations, Neretva System and Isonzo River, are 

more similar to Iznik Lake population then to Mulargia population (Fig. 2). The first 

relative warp (accounting for 42.0% of total shape variation) describes the differences 

between the outgroup Mulargia to the rest of the populations. These differences are 

mainly in body height (LM 3 to 14, 4 to 13), the lengths of the dorsal and anal fin (LM 5-

6, 10-11), and in the form of the caudal peduncle (LM 6-10). The distance from the 

caudal tip of the ventral process to the anal spine (LM 12-13) and also the form of the 

head (LM 1, relative to LM 24 and LM 39) differs along the first relative warp (Fig. 2). 

The second relative warp (accounting for 39.7% of total shape variation) represents 

differences in body shape between male and female specimens. The mean values of male 

specimens have positive scores in all Adria populations. The mean values of female 

specimens of Adria populations have negative scores, except for Mulargia sticklebacks, 

where a low positive score is present (Fig. 2). Differences in body shape comprise the 

diameter of the eye (LM 18-21) and also the distance between the second and third dorsal 

spine (LM 3-4), the length of the ventral process (LM 13-14), anal fin length (LM 10-11), 

and the distance between anal spine and the tip of the ventral process (LM 12-13). Also 

the whole head form is affected (Fig. 2).  

 

A scatter plot of the first two relative warps of the sex-specific average shapes of the 

sticklebacks from four populations of the Neretva System (Buna River, Hutovo Blato 

Wetland, Neretva River and Norin River) (Fig. 10), shows a distribution pattern mainly 

influenced by sex and the separation between Buna River population and the rest of the 

Neretva populations. The first relative warp (accounting for 68.4% of total shape 

variation) shows mainly body shape differences between male and female sticklebacks. 

These differences are located in the head and abdominal regions. Male sticklebacks have 

larger heads (LM 1-2, 16-17, 24-28 and 33-39) and larger eyes (LM 18-21). Thus in 

female sticklebacks the landmarks of the head region are closer to each other, than in 

male sticklebacks. The second main difference is that the abdomen is shorter in males. 

This fact mainly influences the length of the anal fin (LM 10-11) and the distance 
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between the tip of the ventral process and the anal spine (LM 12-13). Another difference 

is that in females the distance between the second and third dorsal spines (LM 3-4) is 

larger than in males.  

The second relative warp (accounting for 18.5% of total shape variation) displays 

differences between Buna River specimens and the other three Neretva System 

populations (Fig. 10). Buna River sticklebacks have a larger body height (LM 2 to LM 

14), smaller eyes (LM 18-21) and the dorsal spines are located closer together (LM 2-4). 

Also the ventral process (LM 10-11) and the anal fin (LM 13-14) are shorter than in other 

Neretva System populations. The relative position of the ventral process to the anal spine 

(LM 12-13) is different in Buna River sticklebacks (Fig. 10). 

To achieve a better group separation for male and female subgroups of each investigated 

population a canonical variate analysis based upon the first 15 relative warps of the 

previously conducted relative warp analysis was calculated (Fig. 11). This was done for 

the Adria grouped populations as well as for the Neretva System populations.  

 

The CVA of the Adria grouped populations reveals a clustering mainly influenced by sex 

(Fig. 11A). The first two canonical variates (CV 1: accounting for 62,0% of total shape 

variation; CV 2: accounting for 17,4% of total shape variation), split all populations 

(Neretva System, Isonzo River, Iznik Lake, Mulargia) in male and female clusters. Only 

female Neretva System specimens overlap in a rather large area with male specimens 

from all other populations. All other populations separate between male and female 

specimens. Clusters of female specimens show overlapping areas between the 

populations. The clusters of male specimens show no overlapping areas, except for male 

Neretva System specimens. 

As in the relative warp analysis of Neretva System populations, the CVA shows several 

clusters in the first two canonical variates (CV 1: accounting for 54.6% of total shape 

variation; CV 2: accounting for 36.5% of total shape variation), reflecting population 

separations and sex (Fig. 11B). The population separation is mainly between Buna River 

sticklebacks and the rest of the Neretva System populations. Also the first relative warp is 

represented by sex differences. Thus the CVA clusters the Neretva System populations 

mainly by body shape differences, which separate Buna River population from the rest of 

the Neretva System populations and sex. 
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Fig. 9. First two relative warps (accounting for 81.7% of total shape variation) of Gasterosteus 
aculeatus sex-specific average shapes of the Adria grouped populations. Populations used are: 
the Neretva System (male: cross, female: plus), Isonzo River (male: empty bar, female: full 
bar,) Iznik Lake (male: empty square, female: full square) and Mulargia (male: empty inverse 
triangle, female: full inverse triangle). The means are calculated after a Procrustes fit of the 
landmark coordinations. Only adult (≥30mm SL) and not parasited specimens were used 
(n=194). Grey dotted lines connect the sexes of the same population. The deformation grids 
show deformations along the relative warps in relation to the overall consensus configuration 
(exaggerated by a factor of three). 
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Fig. 10. First two relative warps (accounting for 86.9% of total shape variation) of Gasterosteus 
aculeatus sex-specific average shapes of the Neretva System populations, split by sex. Populations used 
are: Buna River (male: empty triangle, female: filled triangle), Hutovo Blato Wetland (male: empty 
diamond, no female specimens present), Neretva River (male: cross, female: plus), Norin River (male: 
empty circle, female: filled circle). The means are calculated after a Procrustes fit of the landmark 
coordinations. Only adult (≥30mm SL) and not parasited specimens were used. Grey dotted lines connect 
the sexes of the same population. The deformation grids show deformations along the relative warps in 
relation to the overall consensus configuration (exaggerated by a factor of three). 
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Fig. 11. Canonical variate analyses of the first 15 relative warps of Gasterosteus 
aculeatus landmark configurations. Only adult (SL ≥ 30mm) and not parasited 
specimens were used; A) CVA of Adria grouped populations, split by sex; Neretva 
System (male: cross, female: plus), Isonzo River (male: empty bar, female: filled 
minus) Iznik Lake (male: empty square, female: filled square), Mulargia (male: empty 
inverse triangle, female: filled inverse triangle) B) CVA of Neretva System 
populations, split by sex; Buna River (male: empty triangle, female filled triangle), 
Hutovo Blato Wetland (male: empty diamond, no female specimens present), Neretva 
River (male: cross, female plus ), Norin River (male: empty circle, female: filled 
circle). 

A 

B 



Markus Rokop, Master Thesis 

 
24 

A relative warp analysis of adult, not parasited specimens from all populations reveals 

that the first relative warp is mostly associated with body shape differences influenced by 

sex. These differences account for 39.3% of total shape variation. However, such 

differences may also be size dependent. To show these differences, the centroid size of 

the landmark configuration is used. A small centroid size indicates a small specimen, 

while a large centroid size indicates a large specimen. Shape differences between 

associated with centroid size are the head form, eye diameter, distances between the 

dorsal spines, anal fin length, length of ventral process and insertion point of the 

operculum membrane (Fig. 12F). 

In all populations male specimens tend to have a lower average centroid size than female 

specimens (Fig. 12A-E). Male and female specimens from Buna River have similar 

centroid sizes, although females can reach larger centroid sizes than males. On the first 

relative warp there also exists a small overlapping area (Fig. 12A). Specimens from 

Neretva River were separated by sex on both traits, centroid size and first relative warp 

(Fig. 12B). This means, that female specimens were always larger than males and differed 

in body shape. Norin River specimens differed also on the first relative warp. Female 

sticklebacks, however, cover not only the same centroid size range as males, but can 

reach much larger centroid sizes than male sticklebacks (Fig. 12C). Isonzo River 

specimens did differ by sex on the first relative warp with only a small overlapping area. 

Female specimens had larger centroid sizes than males and overlap only in a small area 

(Fig. 12D). The reference populations show a bit different picture. While Iznik Lake 

specimens and Mulargia specimens separate into their sex clusters respectively on the 

first relative warp, they completely overlap regarding centroid size Fig. 12E). Only some 

female specimens from Iznik Lake can reach larger centroid sizes than males. 
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Fig. 12. Relation of Gasterosteus aculeatus centroid size with the first relative warp 
(accounting for 39.3% of total shape variation) with all populations together; only 
adult (≥30mm) and not parasited specimens were used. All populations were both 
sexes are present are shown with split sexes. A) Buna River (male: empty triangle, 
female: filled triangle). B) Neretva River (male: cross, female: plus). C) Norin River 
(male: empty circle, female: filled circle). D) Isonzo River (male: empty bar, female: 
filled minus). E) Reference populations Iznik Lake (male: empty square, female: filled 
square) and Mulargia (male: empty inverse triangle, female: filled inverse triangle). F) 
thin plate spline deformation grids. The deformation grids show deformations along 
the axes in relation to the overall consensus configuration (exaggerated by a factor of 
three). 
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A closer look at the Neretva System sticklebacks with another relative warp analysis 

confirms that the first relative warp shows sex differences. The first relative warp 

(accounting for 37.3% of total shape variation) shows similar differences as a relative 

warp computed without parasited specimens. It represent sex differences, mainly eye 

diameter, head form, distances between the dorsal spines, anal fin length, ventral process 

length, distance between anal spine and tip of ventral process and position of operculum 

membrane insertion point. The second relative warp (accounting for 15.1% of total shape 

variation) is mainly influenced by body shape differences caused by the parasite 

Schistocephalus solidus. This results in an expanded abdominal swelling, mainly anal fin 

length, distance between anal spine and tip of ventral process and ventral process length. 

Also a dorsal-ventral bending is observable (Fig. 13F). In Buna River only female 

specimens had positive scores for the first relative warp, while male specimens had low 

and negative scores (Fig. 13A). An overlapping area does exist with female specimens 

also having low negative scores. Specimens from Neretva River had the same tendency 

with positive scores on the first relative warp for female specimens and negative scores 

for male specimens. In this population no overlapping region exists on the first relative 

warp (Fig. 13B). Also mostly positive scores on the first relative warp are found for 

female sticklebacks in Norin River. Male specimens from Norin River had only negative 

scores. A large part of adult specimens from Norin River (45.7% in total; 37.8% of 

photographed specimens) were parasited by Schistocephalus solidus. This parasite can 

reach an enormous body length inside the body cavities of its host. This affects the body 

shape. Gasterosteus aculeatus with S. solidus in their bodies in Norin River often have a 

body shape similar to not parasited females, independent of their real sex (Fig. 13C). 

However the range of the parasited specimens on the first relative warp stretches from the 

average male to the average female specimens, blurring the borders of the two sexes set 

by the unparasited specimens. Specimens from Isonzo River show a clear sex separation 

along the first relative warp with no overlap. Female specimens are located in the positive 

range, male specimens in the negative (Fig. 13D). The reference populations, Iznik Lake 

and Mulargia, have the same tendency as the rest of the populations. On the first relative 

warp male specimens have negative scores, female specimens have positive scores. Only 

one parasited specimen exists in Mulargia. This specimen is male and shows no different 

body shape as other male Mulargia specimens (Fig. 13E). 
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Fig. 13. First two relative warps (accounting for 52.4% of total shape variation) of 
Gasterosteus aculeatus with parasited specimens. Only adult (SL ≥ 30mm) specimens were 
used. All populations were both sexes are present are shown with split sexes. Parasited 
specimens are not split by sex and marked as a star. A) Buna River (male: empty triangle, 
female: filled triangle). B) Neretva River (male: cross, female: plus). C) Norin River (male: 
empty circle, female: filled circle). D) Isonzo River (male: empty bar, female: filled minus). E) 
Reference populations Iznik Lake (male: empty square, female: filled square) and Mulargia 
(male: empty inverse triangle, female: filled inverse triangle). F) thin plate spline deformation 
grids. The deformation grids show deformations along the axes in relation to the overall 
consensus configuration (exaggerated by a factor of three). 
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DISTANCE RATIOS 

 

Tab. 3. Mean values and ANOVA tests of the differences of distance ratios of Landmarks 
5 to 6 and 3 to 4 of Gasterosteus aculeatus populations regarding sex. Pop=population; 
n=sampling size; mean=average mean value; STDV=standard deviation; var=variance; 
Lev.=p-value of Levene's-Test of Homogeneity of Variance; p=p-value of ANOVA. 

Pop Sex n Mean STDV Var Lev. p 

Buna River 
m 14 2.19 0.34 0.114 

0.257 0.135 
f 19 2.04 0.23 0.051 

Neretva River 
m 21 1.86 0.24 0.057 

0.730 0.074 
f 6 1.66 0.20 0.041 

Norin River 
m 5 1.78 0.22 0.048 

0.348 0.178 
f 17 1.67 0.15 0.022 

Isoonzo River 
m 12 1.66 0.19 0.038 

0.705 0.916 
f 5 1.64 0.20 0.042 

Iznik Lake 
m 12 1.60 0.17 0.027 

0.684 0.001 
f 64 1.45 0.14 0.019 

Mulargia 
m 7 2.27 0.26 0.066 

0.389 0.128 
f 3 2.00 0.15 0.022 

 
Tab. 4. Mean values and ANOVA tests of the differences of distance ratios of Landmarks 
5 to 6 and 2 to 4 of Gasterosteus aculeatus populations regarding sex. Pop=population; 
n=sampling size; mean=average mean value; STDV=standard deviation; var=variance; 
Lev.=p-value of Levene's-Test of Homogeneity of Variance; p=p-value of ANOVA. 

Pop Sex n Mean STDV Var Lev. p 

Buna River 
m 14 1.24 0.14 0.021 

0.065 0.597 
f 19 1.22 0.08 0.007 

Neretva River 
m 21 1.05 0.12 0.014 

0.712 0.420 
f 6 1.01 0.11 0.011 

Norin River 
m 5 1.04 0.07 0.004 

0.932 0.110 
f 17 0.98 0.07 0.005 

Isoonzo River 
m 12 0.98 0.10 0.009 

0.383 0.857 
f 5 0.99 0.12 0.015 

Iznik Lake 
m 12 0.91 0.07 0.005 

0.710 0.023 
f 64 0.86 0.07 0.004 

Mulargia 
m 7 1.30 0.09 0.008 

0.138 0.060 
f 3 1.18 0.04 0.001 
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Fig. 14. Histograms of the ratio of the distances between the Landmarks 5 to 6 and 
3 to 4 of Gasterosteus aculeatus. Shown are all sampling sites where sex 
separation was possible; male = white bars, female = black bars; A) Buna River, 
n=33; B) Neretva River, n=27; C) Norin River, n=22; D) Isonzo River, n=17; E) 
Iznik Lake, n=76; F) Mulargia, n=10. 
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Fig. 15. Histograms of the ratio of the distances between the Landmarks 5 to 6 and 
2 to 4 of Gasterosteus aculeatus. Shown are all sampling sites where sex separation 
was possible; male = white bars, female = black bars; A) Buna River, n=33; B) 
Neretva River, n=27; C) Norin River, n=22; D) Isonzo River, n=17; E) Iznik Lake, 
n=76; F) Mulargia, n=10. 
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One of the main differences between the sexes of Gasterosteus aculeatus, regardless of 

the observed population, is the distance between dorsal spines, especially from the second 

to the third dorsal spine (inter-dorsal-spine-distance, LM 3-4) (Fig. 2, Fig. 10, Fig. 12F, 

Fig. 13F). Female specimens seem to have a longer distance between the second and third 

dorsal spine while in male specimens the distance is shorter. The dorsal fin shows no 

difference between the sexes. Thus the ratio of the inter-dorsal spine distance to the dorsal 

fin length is expected to be different in male and female specimens. It is expected that 

females have a smaller ratio of these two distances than males. Histograms of the 

distribution of this ratio show, that female G. aculeatus have a lower ratio than males. 

However, there is no clear distinction between the two sexes. In Iznik Lake population 

(Fig. 14E) the distinction is the most visible, although also in this population the two 

sexes overlap. In the Neretva River populations (Fig. 14B) the least distinction between 

the sexes is possible.  

A comparison of the mean ratios of the sexes within each population with ANOVAs 

revealed no significant differences except for Iznik Lake sticklebacks. All compared 

groups had similar variances (Levene test, p>0.05; Tab. 3). In Buna River sticklebacks 

the average female ratio is 2.04±0.23, while the male ratio is slightly higher with 

2.19±0.34 (p=0.135). Males also cover a larger range than females. The range of males, 

however, also covers the one of females, though it is only extended with higher ratios and 

not with lower ones (Fig. 14A). Male Neretva River specimens also have a higher average 

ratio (1.86±0.24) than females (1.66±0.20) (p=0.074). In this population the female range 

is also located within the male ones, although the female lowest value is found below the 

male one (Fig. 14B). In Norin River female sticklebacks have with 1.67±0.15 a lower 

average ratio than male sticklebacks (1.78±0.22) (p=0.178). Male specimens are found 

within the range of the females, though the maximum values are found within the males 

(Fig. 14C). Male and female specimens from Isonzo River have nearly similar 

distributions (Fig. 14D). Also the mean values are nearly the same (males: 1.66±0.19, 

females: 1.64±0.20, p=0.916). Thus no sex separation is visible in Isonzo River 

sticklebacks. Iznik Lake female sticklebacks have an average ratio of 1.45±0.14. The ratio 

of male specimens is mostly locate in the upper half of the range of females. The average 

ratio of male specimens is 1.60±0.17 (p≤0.001). The lowest values are found in females 

(Fig. 14E). The female Mulargia sticklebacks show a ratio found in the lower half of the 

male ratio range (Fig. 14F). With an average ratio of 2.00±0.15 females have a lower 

ratio then males, which is 2.27±0.26 (p=0.128). 
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If the distance between the first dorsal spine and the third dorsal spine is used, instead of 

the distance between the second and third dorsal spine, the difference between the ratios 

of both sexes is even lower. Nearly no tendency can be observed. Both sexes share more 

or less the same ratios (Fig. 15A-F). Only in Mulargia male sticklebacks have a higher 

ratio then females (Tab. 4). 
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DISCUSSION 

In this study Gasterosteus aculeatus populations of the Adria drainage system have been 

analysed with geometric morphometric methods to compare body shapes from different 

freshwater systems. Body shapes from the Adria populations (Neretva System, Isonzo 

River) and reference populations (Iznik Lake, Mulargia) differ between the populations 

mainly by two factors: locality and sex. Specimens from Mulargia population show the 

most differences in body shape to all Adria populations. These differences are expressed 

in body height, head form and length of the dorsal and anal fin. Also the distance between 

the tip of the ventral process and the anal spine is different in Mulargia population.  

Body shapes from within the Neretva System show also differences influenced mostly by 

two factors: alsolocality and sex. Specimens from Buna River are larger in body height, 

have smaller eyes and their dorsal spines are located closer together than elsewhere in the 

Neretva System. Also their ventral process as well as the anal fin is shorter than in the 

other Neretva System populations. 

The second main difference found from both systems is the difference in body shape 

between male and female specimens. These differences are similar in all examined 

populations, not alone in the Adria System, but also include the reference populations. 

Male sticklebacks have a larger head and larger eyes than female sticklebacks. The 

distance between the tip of the ventral process and the anal spine is shorter in males than 

in females. Females have an increased abdominal area, which might be a result of 

gravidity of the female specimens. Also the distance between the first and last fin ray of 

the anal fin is shorter in females than in males. 

Sexual dimorphism in G. aculeatus is a well-known fact and is shown in numerous 

studies (e.g. Sargent et al., 1984; Bakker & Mundwiler, 1999; Kitano, Mori & Peichel, 

2007; Albert et al., 2008; Aguirre & Akinpelu, 2010; Kitano, Mori & Peichel, 2012). For 

instance male and female sticklebacks differ in size of the pectoral fin during breeding 

season with males having a larger pectoral fin than females (Bakker & Mundwiler, 1999). 

As a species with male parental care G. aculeatus males use the pectoral fin to oxygenate 

the eggs with fanning movements (Wooton, 1984; Bell & Foster, 1994a). Sexual 

dimorphism in body shape is similar around the globe for G. aculeatus populations. 

Aguirre & Akinpelu (2010) showed for several populations from Cook Inlet in Alaska, 

that male G. aculeatus have a larger head length than female G. aculeatus. Kitano, Mori 

& Peichel (2007) reported sexual dimorphism in traits like eye diameter and snout length 
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in populations from North America and Japan. These traits with sexual dimorphism were 

also observable in this study (see Results section). Kitano, Mori & Peichel (2007) as well 

as Aguirre et al. (2008) reported for female threespine sticklebacks a larger average 

standard length than males. This connection of sex with size was observable only to a 

small extent in some populations in this study by putting centroid size in relationship with 

the first relative warp of a relative warp analysis. The circumstance that in this study such 

a connection was mostly not visible might be explained through low sample sizes in some 

groups which probably lead to a biased sample. With larger sampling sizes it might be 

possible to observe a larger average female than male standard length. 

Differences in body shape also exist depending on the habitat constraints (Reimchen et 

al., 1985; Spoljaric & Reimchen, 2007). Kitano, Mori & Peichel (2012) reported a 

reduction of sexual dimorphism in body depth in stream resident populations from North 

America and Japan compared to marine populations. A similar effect has already been 

found by Hagen & Gilberts (1972) for lake and stream populations. He reported that over 

distances of a few kilometres body depth and number of gill rakers can vary greatly and 

that they correlate with the habitat the population is located in. Webster et al. (2011) 

showed from the Great Eau drainage in Lincolnshire, eastern England, that, although the 

habitats are connected, differences in body shape between populations exist. These 

differences encompass eye diameter, body depth, shape of the caudal peduncle and 

relative spine sizes. However no sex has been determined. This might lead to difficulties 

in interpreting, since some aspects, like eye diameter but also body depth, as shown 

above, are known to be affected by sex.  

 

Extensive genetic studies have been conducted to resolve the phylogeography and genetic 

relationships of G. aculeatus populations in Europe (Schluter et al., 2004; Cano et al., 

2006; Mäkinen et al., 2006; Cano et al., 2008; Mäkinen & Merilä, 2008; Mäkinen et al., 

2008; DeFaveri et al., 2012).  DeFavieri et al. (2012) conducted extensive genetic 

comparisons of G. aculeatus populations in the drainage system of the Adriatic Sea and 

compared them with other populations in Europe, based upon data from Mäkinen, Cano 

& Merilä (2006) and Mäkinen & Merilä (2008). With mtDNA sequence data and mtDNA 

haplotypes DeFavieri et al. (2012) tried to resolve the phylogeography of G. aculeatus 

freshwater populations. Within the Neretva System they covered the rivers Buna, 

Bregava, Neretva and Norin. Based upon their mtDNA data, populations from the rivers 

Bregava, Neretva and Norin cluster close together and form a close relationship to each 
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other. Buna River population on the other hand forms a separate cluster and has a greater 

distance to the rest of the Neretva System populations. This results mirror the findings of 

this study, where body shape data results in a clustering of Hutovo Blato Wetland, 

Neretva River and Norin River populations. Buna River population clusters separately,  

the sticklebacks having a different average body shape than the rest of the Neretva 

System sticklebacks. 

The populations of the Neretva System have always formed a separate group in recent 

genetic studies, or has been put together with other Mediterranean populations (Mäkinen 

et al., 2006; Cano et al., 2008; Mäkinen & Merilä, 2008). In haplotype networks or 

phylogenetic trees the Neretva System populations are found mostly next to Lake Skadar 

populations (Mäkinen et al., 2006; Mäkinen & Merilä, 2008; DeFaveri et al., 2012), while 

for instance Krka River populations are already counted to the European linage like 

Mirna River populations (DeFaveri et al., 2012). 

 

The driving forces behind phenotypic divergence between populations are mostly direct 

natural selection and genetic drift. In freshwater populations from North Europe Leinonen 

et al. (2006) showed that natural selection is the main factor for phenotypic divergence, 

although genetic drift cannot be dismissed. Since environmental factors like predators or 

amount of relative littoral area directly influence body shape of freshwater populations 

(Walker, 1997), such constraints can be selecting agents of stickleback populations in a 

freshwater system. If the ecological conditions within two freshwater systems are similar 

this would lead to a stabilising selection on body shape, resulting in similar body shapes 

(Kerschbaumer, Mitteröcker & Sturmbauer, 2012). Neutral markers on the other hand 

undergo genetic drift if the two freshwater systems are genetically isolated. Such a 

situation might be the case for populations in the Neretva System and Isonzo River. The 

two freshwater systems are isolated at least since the last glacial maximum (LGM) 18.000 

years BP (Fairbanks, 1989; Peltier & Fairbanks, 2006) and if the ecological conditions, 

like predator regime or habitat diversifications, are similar, the average body shapes of 

the sticklebacks of both systems might be similar too, while neutral markers of mtDNA 

are not due to genetic drift. In the analysis of Mäkinen & Merilä (2008) populations from 

the Rivers Stella and Mirna have been used as the northern most populations of the 

Adriatic System. River Isonzo is located between them. Populations from River Stella and 

River Mirna cluster together in the European linage of the phylogenetic tree of Mäkinen 

& Merilä (2008) while River Neretva populations form their own linage. Also in the 
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phylogenetic tree of DeFavieri et al. (2012) populations from River Mirna are counted to 

the European linage, while the populations from the Neretva System form the Adriatic 

linage. This supports the view of this study that the longer isolation period of the Neretva 

System leads to different mtDNA while changes in phenotypes might not necessarily 

have occurred. 

The opposite example seemed to have happened with the threespine sticklebacks of 

Mulargia. The body shape of Mulargia specimens shows differences mainly in body 

height and head shape. Specimens are compressed and have short heads. Such a different 

body shape compared to other populations suggests different ecological constraints. 

Further Mulargia specimens showed an extreme reduced number of lateral plates, up to 

the point of zero on both sides, as well as reduced lengths of dorsal and ventral spines 

(not reported in this study). Such reduced elements of the defensive complex are typical 

for Systems with a lack of piscivore fishes (Gross, 1978; Reimchen, 1983; Reimchen, 

1994), but might also have an influence on the body shape. Gross (1978) and Reimchen 

(1983) showed that the elements of the defensive apparatus (defensive complex) 

encapsulate the anterior part of the body. If the lateral plates in the defensive complex are 

completely absent the capsule in the anterior part of the body does not stabilize the body 

and a compressed form might be possible. On the other hand the compressed body shape 

might be a fixation artefact, because of the dehydrating effect of alcohol.  

 

The phenotype of a threespine stickleback might also be influenced by assortative mating. 

Snowberg & Bolnick (2012) showed in two populations of Burnt-Out Lake in British 

Columbia that in the presence of phenotypic divergence threespine sticklebacks show 

signs of mate preferences based upon diet. Furin, von Hippel & Bell (2012) reviewed that 

assortative mating often is based upon body size and thus can lead by standing genetic 

variation to reproductive isolation between the primitiv anadromous population and a 

newly founded freshwater population. Thus, by the combination of assortative mating and 

standing genetic variation, a different body shape in a newly found population can arise 

within a very short time period. 

Schluter & Conte (2009) explained the presence of morphological differences between 

marine and freshwater sticklebacks, by repeated colonization of freshwater habitats 

through anadrome sticklebacks. They formulated the transporter hypothesis, which gives 

an idea how freshwater populations can evolve rapidly and show distinguishable different 
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morphotypes by having standing genetic variation in marine populations which derives to 

high frequencies in newly colonized freshwater habitats.  

 

Although the relative warp analyses of the sex-specific average shapes of G. aculeatus 

revealed certain groupings of the populations, such groupings where not that obvious if 

all specimens were used as single cases in such analyses (data not shown in this study). 

Therefore canonical variate analyses were used to achieve a better group separation. The 

CVA actually failed to do this, although some trends were observable. Within the male 

and female sticklebacks respectively the populations show similar distributions and large 

overlapping areas. Only sex seems to contribute enough differences in body shape to have 

an effect on group separation. Other factors which are based upon the populations alone 

weigh not enough to separate the populations in a CVA.  

The only population that shows differences in the CVA is the Buna River population. 

This population groups separately to all other Neretva River populations, males and 

females respectively. As already mentioned above body shape differs in Buna River 

sticklebacks from all other populations. Already Vuković & Kosorić (1967) showed that 

Buna River specimens have different morphological traits than other stickleback 

populations within the Neretva System. Vuković & Kosorić (1967) compared the relative 

length of the first and second dorsal spine of Buna river specimens with the specimens 

from Norin River examined by Karaman (1928) and found relative shorter spines in Buna 

River specimens than the spines found in Norin River specimens. DeFaveri et al. (2012) 

also separate Buna River populations from the rest of the Neretva River populations, 

especially populations from Norin River and Neretva River, based upon mtDNA 

sequence data and mtDNA haplotypes and thus mirrors the findings based upon 

geometric morphometric data revealed by this study. As already mentioned above, within 

a freshwater system populations can differ in their phenotypic expressions over the 

distance of a few kilometres even if they are physically connected (Hagen & Gilberts, 

1972; Webster et al., 2011). 

 

The thin plate spline deformation grids of the relative warp analyses revealed differences 

between male and female sticklebacks in body shape, as discussed above. One of the 

differences was different distances between the dorsal spines. Male had dorsal spines 

located closer together than females. Since in males and females the length of the dorsal 

fin was more or less similar a distance ratio of the inter-dorsal-spine distance and the 
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dorsal fin length might be different in male and female sticklebacks. This was not the 

fact, since ANOVA tests failed to show convincing significant differences in the inter-

dorsal-spine distance of male and female sticklebacks, regardless of the population. This 

leads to the conclusion that the difference of male and female body shapes is comprised 

of many different aspects and traits. The distance between dorsal spines is only one 

among many (e.g. Kitano et al., 2007; Aguirre et al., 2008; Aguirre & Akinpelu, 2010) 

and the classification of a specimen as male or female cannot be done by a single ratio of 

two distances. More than one external trait is needed to be included, although sex 

determination only by external morphological might yield in false classifications. It is 

better to use gonad inspection or genetic analyses, than relying on external morphological 

features for sex determination. 

 

The threespine stickleback G. aculeatus is the only fish host recognized for the 

plerocercoids of the pseudophyllidean cestod Schistocephalus solidus and get infected 

when they feed on infected copepods and are thus the second host in the three-host life 

cycle of S. solidus (Barber & Scharsack, 2010). The plerocercoid can reach enormous 

body lengths relative to the length of G. aculeatus and alters not only phenotypic traits 

but also swimming and risk-taking behaviour, body conditions and gonad development 

(reviewed in Barber & Scharsack, 2010). 

Norin River population was the only population of the examined populations with a large 

percentage (45.7% of the total sample) of specimens being infected with the parasite S. 

solidus. The infected specimens were all female and the body shape of infected specimens 

showed an intermediate form of not infected male and female specimens. The parasite S. 

solidus is known to be able to reach enormous lengths of several times the body length of 

its host (Barber & Scharsack, 2010). The longer the parasite is the more space in the body 

cavity is needed and the result is a swelling of the lower body, similar to the swelling of 

the abdominal region of a gravid female. Thus infected G. aculeatus can have a body 

shape similar to gravid females. If the parasite does not take up such a large space in the 

body cavity the body shape is similar to not gravid specimens. Female specimens who are 

parasite by S. solidus have a disadvantage in maturation of the eggs and show reduced 

gonad development (reviewed in Barber & Scharsack, 2010). The presence of S. solidus 

influences the development of G. aculeatus (Barber & Scharsack, 2010) and is possible 

the reason that infected female specimens of Norin River population show an 

intermediate form between not infected male and female threespine sticklebacks.  
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CONCLUSIONS 

The populations of the threespine stickleback, Gasterosteus aculeatus, of the Adria 

Drainage System differ in body shape not so much between the populations but rather 

within the Systems themselves. Although the freshwater systems of the Rivers Isonzo and 

Neretva have been separated for thousands of years (Fairbanks, 1989; Peltier & 

Fairbanks, 2006) the morphological differences are rather small. The Neretva System 

itself houses different populations that partially show distinguishable phenotypes. 

Sticklebacks from Buna River, as the most stream upwards population, show 

morphological differences not found in the other examined populations of the Neretva 

System. This is possibly because of habitat constraints like environmental conditions or 

predator pressure (e.g. Hagen & Gilberts, 1972; Gross, 1978; Reimchen, 1994; Webster et 

al., 2011). 

The most striking phenotypic variation universal in all examined populations are body 

shape differences between male and female threespine stickleback. As found in 

populations in Europe, America and Japan (Kitano et al., 2007; Aguirre & Akinpelu, 

2010; Webster et al., 2011), sexual dimorphism in head morphology and other traits along 

the body are also found in the populations of the Adria Drainage System. Thus the traits 

subjected to sexual dimorphism seem to be universal all over the globe. 

Specimens of the threespine stickleback infected with the parasite Schistocephalus solidus 

exhibit body shapes between not infected male and female specimens. Thus a specimen 

with a swelled abdomen is not necessarily a gravid female but could also be a heavily 

parasited specimen. Also a specimen with no abdominal swelling can house S. solidus 

when the parasite is small and does not cover much space in the body cavity. 

Although traits like head size, eye diameter, distances between the dorsal spines differ 

between the sexes, sex determination cannot be done by external observation or by 

measured distances, as was shown with the ratio of two distances in this study. Although 

G. aculeatus males exhibits breeding colouration during the breeding season (Wooton, 

1984), this as well as body shape, is not a reliable information if regarded alone. Sex 

should best be determined by gonad inspection or genetic analyses. The differences 

between two populations, however, is best analysed with combined techniques. The 

stickleback populations from Isonzo River and the Neretva System show differences in 

neutral genetic markers as revealed by DeFavieri et al. (2012), but the average body 

shapes exhibit only marginal differences. Thus using both analyses is in accordance. 
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